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A B S T R A C T   

Analysing multiple genomic regions while incorporating detection and qualification of discordance among re-
gions has become standard for understanding phylogenetic relationships. In plants, which usually have 
comparatively large genomes, this is feasible by the combination of reduced-representation library (RRL) 
methods and high-throughput sequencing enabling the cost effective acquisition of genomic data for thousands of 
loci from hundreds of samples. One popular RRL method is RADseq. A major disadvantage of established RADseq 
approaches is the rather short fragment and sequencing range, leading to loci of little individual phylogenetic 
information. This issue hampers the application of coalescent-based species tree inference. The modified RADseq 
protocol presented here targets ca. 5,000 loci of 300-600nt length, sequenced with the latest short-read- 
sequencing (SRS) technology, has the potential to overcome this drawback. To illustrate the advantages of 
this approach we use the study group Aichryson Webb & Berthelott (Crassulaceae), a plant genus that diversified 
on the Canary Islands. The data analysis approach used here aims at a careful quality control of the long loci 
dataset. It involves an informed selection of thresholds for accurate clustering, a thorough exploration of locus 
properties, such as locus length, coverage and variability, to identify potential biased data and a comparative 
phylogenetic inference of filtered datasets, accompanied by an evaluation of resulting BS support, gene and site 
concordance factor values, to improve overall resolution of the resulting phylogenetic trees. The final dataset 
contains variable loci with an average length of 373nt and facilitates species tree estimation using a coalescent- 
based summary approach. Additional improvements brought by the approach are critically discussed.   

1. Introduction 

Resolving phylogenetic relationships of recently and rapidly radi-
ating species complexes is a challenge because first, standard markers 

using universal primers are too conserved and fail to provide sufficient 
information, and second, inferring relationships is often complicated 
due to incomplete lineage sorting (ILS), hybridization/introgression and 
gene duplication/loss events (Pamilo and Nei, 1988; Maddison, 1997; 
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Maddison and Knowles, 2006; Kubatko and Degnan, 2007; Whitfield 
and Lockhart, 2007; Degnan et al., 2006, Degnan and Rosenberg, 2009; 
Heled and Drummond, 2009; Yang and Rannala, 2010; Rannala et al., 
2020). Since different parts of the genome can have different evolu-
tionary backgrounds, approaches analyzing multiple genomic regions 
have become the baseline for resolving such challenging lineages. The 
multi-species coalescent (MSC) model provides a natural framework for 
species tree inference that accounts for gene tree discordance due to ILS. 
However, full-coalescence approaches under the MSC are computa-
tionally very intensive when applied on large-scale genomic data and 
thus often not feasible (McCormack et al., 2013a; Smith et al., 2014; 
Zimmermann et al., 2014). Other approaches, such as maximum likeli-
hood analysis of concatenated multi-locus data (de Queiroz et al., 1995; 
Yang 1996; de Queiroz and Gatesy 2007), coalescent-based summary 
methods that estimate species trees from independently inferred gene 
trees (here called “locus trees”) (Mirarab et al., 2014a; Mirarab and 
Warnow, 2015; Rannala et al., 2020) or coalescent-based methods that 
use site patterns of assembled loci for species tree inference (Bryant 
et al., 2012; Chifman and Kubatko, 2014; Bryant and Hahn, 2020), 
became increasingly popular and widely used. Despite their popularity, 
these methods each have advantages and disadvantages and their cor-
rect application to modern high-throughput data, in particular ap-
proaches that generate short loci with high amounts of missing data such 
as RADseq, is highly controversial. 

High-throughput sequencing (HTS) technologies and lab workflows 
for sample preparation improved enormously during the last decade and 
provide the opportunity to generate extensive datasets for phylogenetic 
inference (reviewed in Good, 2012; Reuter et al., 2015; Andrews et al., 
2016; Mardis, 2017; McKain et al., 2018). Some of the most popular 
sample preparation protocols are grouped under the term reduced- 
representation library (RRL) preparation protocols, which are often 
combined with short-read sequencing (SRS). These methods target only 
a reduced subset of the studied genome for sequencing, therefore 
reducing computational complexity during assembly and analysis, 
facilitating a deeper sequencing depth per locus while increasing the 
number of samples included. The combination of both HTS and RRL 
enable simultaneous acquisition of genomic data of hundreds up to 
thousands of loci from dozens to hundreds of samples for systematic 
researchers and extend the questions and taxa that can be investigated 
tremendously. Widely used RRL approaches are hybridization capturing 
methods, e.g., on-array capture or in-solution capture (Mamanova et al., 
2010), Hyb-Seq (Weitemier et al., 2014), targeted sequence capture 
(Grover et al., 2012) and restriction-site associated DNA sequencing 
(RADseq; Miller et al., 2007; Baird et al., 2008). The term RADseq 
comprises several methods that all rely on the enzymatic digestion of 
genomic DNA for complexity reduction, followed by adapter ligation, 
further reduction by size selection (either direct or indirect) and high- 
throughput sequencing (reviewed in Andrews et al., 2016). The cross- 
over approach hyRAD by Suchan et al. (2016) combines RADseq with 
capturing using either biotinylated DNA- or RNA-probes (Schmid et al., 
2017; Suchan, 2018) obtained from the enzymatically fragmented DNA 
resources of the target group itself. Yet, the lab workflow is quite com-
plex and time consuming. Thanks to the modular principle of RADseq, 
the individual wet lab steps, restriction endonucleases (REase/s) and 
adapters can be modified as required (see also McCormack et al. 2013b; 
Andrews et al., 2016; McKain et al., 2018; Parchman et al., 2018). This 
flexible toolbox of cheap, fast and individually scalable wet lab modules, 
as well as the fact that no prior genomic information is required, paved 
the way for the success of RADseq methods in various fields of evolu-
tionary research, particularly in non-model organisms (e.g., Eaton and 
Ree, 2013; Escudero et al., 2014; Harvey et al., 2016; Herrera and 
Shank, 2016; Razkin et al., 2016; de Oca et al., 2017; Dillenberger and 
Kadereit, 2017; Hamon et al., 2017; Curto et al., 2018; Wagner et al., 
2018; Gerschwitz-Eidt and Kadereit, 2019; Paetzold et al., 2019; Ran-
cilhac et al., 2019; Hipp et al., 2020; Karbstein et al., 2020; Wagner 
et al., 2020; Buono et al., 2021). 

Despite these obvious benefits of RADseq, the approach poses some 
inherent challenges regarding the wet lab workflow, sequence assembly, 
data set processing and the application of coalescent-based species tree 
inference. Characteristically, RADseq datasets comprise relatively short 
loci (typically 100–250nt) and a high proportion of missing data (Ree 
and Hipp, 2015; Andrews et al., 2016; Eaton et al., 2017; Lee et al., 
2018; McKain et al., 2018). The average fragment length obtained (and 
locus length assembled) depends on the degree of genomic reduction, 
which in turn depends on the REase/s chosen, the selected size segre-
gation window and the genome size of the study group. To some extent, 
missing data (absence of data or missingness) in RADseq data is inher-
ently expected due to mutations of the REase-specific recognition sites 
(Rubin et al., 2012; Eaton et al., 2017; Lee et al., 2018). Technical causes 
for missingness include: varying DNA quantity and quality, size selec-
tion artifacts, PCR bias or low sequencing depth and quality. All of these 
factors influence the average information content per locus and the 
uniformity with which it is distributed across taxa, consequently 
limiting the applicability of inference methods (Gatesy and Springer, 
2014; Xi et al., 2015; Xu and Yang, 2016; Eaton et al., 2017; Sayyari 
et al., 2017; Lee et al., 2018; Molloy and Warnow, 2018). 

RADseq is particularly appealing for studying non-model taxa, as 
large genome-sized datasets can be generated quickly and cost- 
effectively and assembled without requiring a reference genome. How-
ever, de novo assembly and data processing can also be a major chal-
lenge. The bioinformatics effort related to RADseq data is often not 
straightforward and can heavily impact the assembly outcome regarding 
differentiation of orthologs and paralogs, as well as the quantity of 
recovered loci, sequence variation (VAR), single nucleotide poly-
morphisms (SNPs) and parsimony informative sites (PIS), respectively 
(Rubin et al., 2012; Ilut et al., 2014; Harvey et al., 2015; Shafer et al., 
2017; Lee et al., 2018). To facilitate data processing, assembly pipelines 
such as Stacks (Catchen et al., 2013), dDocent (Puritz et al., 2014) and 
ipyrad (Eaton and Overcast, 2020) have been developed. These pipelines 
implement several main steps. 1) In-sample-clustering (ISC), in which 
reads within each sample are grouped by sequence similarity into pu-
tative loci. 2) Consensus calling of allele sequences from clustered reads. 
3) Between-sample-clustering (BSC) of consensus sequences of all loci 
across all samples are clustered by sequence similarity to generate pu-
tatively homologous loci. 4) Data filtering based on given thresholds 
such as the number of samples per locus required (locus coverage) or the 
maximum proportion of shared heterozygous sites in a locus (detection 
of potential paralogs). To determine which reads represent the same 
genomic locus, a clustering threshold (CT) based on sequence similarity 
is used. Yet, genetic variation within the target genomes and across the 
studied taxa makes it difficult to find an appropriate CT (Rubin et al., 
2012; Catchen et al., 2013; Hirsch and Buell, 2013; Ilut et al., 2014; 
Harvey et al., 2015; Ilut et al., 2014; Paris et al., 2017; Shafer et al., 
2017; Lee et al., 2018; McCartney-Melstad et al., 2019). Both over- and 
undermerging are major issues in RADseq datasets, affecting ISC and 
BSC and therefore the resulting datasets. To ensure the homology of the 
assembled loci (Springer and Gatesy, 2018; McCartney-Melstad et al., 
2019; Fernández et al., 2020; Simion et al., 2020), detailed evaluations 
of dataset metrics are used to find balanced dataset-specific CTs for ISC 
and BSC (e.g. Ilut et al., 2014; Mastretta-Yanes et al., 2015; McKinney 
et al., 2017; Paris et al., 2017; McCartney-Melstad et al., 2019). Ap-
proaches to facilitate this problem aim at the determination of suitable 
CTs for homology assessment by analyzing trends of several assembly 
metrics over a wide range of tested CTs (hereafter referred to as “CT 
selection approach”). This is accomplished by plotting the metrics as a 
function of the CT range and searching for a region that avoids over- and 
undermerging areas and that provides an accurate clustering for the 
majority of loci (hereafter referred to as “transition zone”). This tran-
sition zone is assumed to minimize the assembly of paralogs, to maxi-
mize the yield of sequence variation, and to form the smallest distance 
among taxa (Ilut et al., 2014; Mastretta-Yanes et al., 2015; McCartney- 
Melstad et al., 2019). In other words: an informed selection of dataset- 
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specific CTs yields maximum phylogenetic information with minimum 
missingness and least paralogs. Still, such CT selection approaches have 
to be taken with care because 1) the determined CT (for ISC and BSC) 
can never represent all taxa equally well and 2) all other chosen as-
sembly parameters affect the outcome (Shafer et al., 2017; McCartney- 
Melstad et al., 2019). 

Phylogenetic inference of assembled RADseq data presents the next 
challenge because the data properties often limit the choice of methods. 
Added to this is an ongoing, intense debate on the utilization of phylo-
genetic inference methods. The focus is mainly on: 1) the statistical 
consistency under the MSC, 2) the evolutionary framework to which the 
methods are applied (e.g. hybridization, horizontal gene transfer, ILS), 
and 3) the estimation accuracy under varying dataset conditions (e.g. 
linkage, phylogenetic information content, missingness, homology of 
data), leading to constant re-analyses and comparisons of simulated and 
empirical data to proof the diverging concepts (e.g. de Queiroz and 
Gatesy 2007; Edwards et al., 2007, 2016; Kubatko and Degnan, 2007; 
Degnan and Rosenberg, 2009; Leaché and Rannala, 2011; Song et al., 
2012; Bayzid and Warnow, 2013; Wu et al., 2013; Gatesy and Springer, 
2013, 2014; Springer and Gatesy 2014, 2016, 2018; Mirarab et al., 
2014a, b, 2016; Chou et al., 2015; Roch and Steel 2015; Mendes and 
Hahn, 2018; Molloy and Warnow, 2018; Bryant and Hahn, 2020; Ran-
nala et al., 2020). This somewhat amusing and abstruse debate, with 
sometimes remarkably tailored data for proof, complicates the search 
for appropriate phylogenetic inference methods for RRL-SRS data. Fact 
is that the locus properties are pivotal for selecting appropriate species 
tree inference methods. Due to the short fragment length, RADseq loci 
are generally assumed to lack sufficient phylogenetic information to 
generate locus trees as input for coalescent-based summary methods 
(Rubin et al., 2012; Gatesy and Springer, 2014; Xi et al., 2015; Hosner 
et al., 2016; Molloy and Warnow, 2018). 

Gene-tree-based coalescent methods (summary methods; hereafter 
referred to as CB-SM) are a favorable choice for phylogenetic inference 
of rather long and informative loci (Mirarab et al., 2014a, 2016; 
Vachaspati and Warnow, 2015; Xu and Yang, 2016; Molloy and Warnow 
2018; Rannala et al., 2020). CB-SM infer species trees by a two-step 
system: individual gene trees are estimated, and their summary statis-
tics are then used as data input for species tree estimation. While CB-SM 
are becoming popular for their ability to handle large amounts of data in 
a short time, they are best known for their sensitivity to gene tree esti-
mation error (GTEE). When applied to datasets composed of short loci of 
little individual phylogenetic information and a high proportion of 
missingness, as is characteristic of RADseq datasets, the effect on esti-
mation accuracy can get quite severe (Chou et al., 2015; Roch and 
Warnow, 2015; Xi et al., 2015; Xu and Yang, 2016; Sayyari et al., 2017; 
Molloy and Warnow, 2018). Therefore, the focus on the effects of 
filtering loci for specific properties prior to gene and species tree esti-
mation is becoming increasingly relevant (e.g. Lanier et al., 2014; Chen 
et al., 2015; Xi et al., 2015; Hosner et al., 2016; Huang and Knowles 
2016; Simmons et al., 2016; Sayyari et al., 2017; Molloy and Warnow 
2018). 

Coalescent-based site-based methods are another option for species 
tree inference (Bryant et al., 2012; Chifman and Kubatko, 2014; Xu and 
Yang, 2016). Such approaches bypass the generation of locus trees by 
generating the species tree directly from all given site patterns, thus 
avoid the issue of GTEE. The sites are required to have individual his-
tories or at least very little linkage. Violation of this assumption leads to 
a statistically inconsistent species tree estimate (Bryant et al., 2012; 
Chifman and Kubatko 2014; Xu and Yang, 2016). Under certain chal-
lenging data conditions, site-based methods were found to be more ac-
curate than gene tree-based summary (Chou et al., 2015; Long and 
Kubatko, 2018; Molloy and Warnow, 2018). 

RADseq data are most commonly analyzed using maximum likeli-
hood analysis of a concatenated supermatrix (hereafter referred to as 
CA-ML) (Yang, 1996; de Queiroz and Gatesy, 2007; Rubin et al., 2012). 
In case of CA-ML, several thousand loci are treated as one locus that 

evolved under a single evolutionary history. This is violating the MSC 
and may theoretically lead to poorly resolved, incomplete, or positively 
misleading species tree estimates (Degnan et al., 2006, Degnan and 
Rosenberg, 2009; Kubatko and Degnan, 2007; Knowles, 2009; Roch and 
Steel, 2015, Xu and Yang, 2016; Mendes and Hahn, 2018; Rannala et al., 
2020). In addition, bootstrapping is also commonly performed across 
the entire supermatrix, potentially resulting in spuriously high support 
values caused by the sheer dataset size (Kubatko and Degnan, 2007; 
Kumar et al., 2012; Rubin et al., 2012; Liu et al., 2015; Wang et al., 2017, 
Minh et al. 2020a). Still, it also has been shown that CA-ML can be 
comparably or more accurate than coalescent-based methods under 
various conditions of linkage, locus length, information content, miss-
ingness, ILS and GTEE (Mirarab et al., 2014a; Chou et al., 2015; Roch 
and Warnow, 2015; Mirarab et al., 2016; Springer and Gatesy, 2016; 
Long and Kubatko, 2018; Molloy and Warnow, 2018). 

Despite the ongoing debate about the pros and cons of approaches to 
sequence generation, data assembly, phylogenetic inference, and, the 
assumption that RAD data do not favor coalescent-based summary 
methods, we think there is a need to take advantage of the significant 
methodical progress made in the last decade and explore their potential 
for practical use. Our objective is to test whether longer RADseq loci 
enable coalescent-based species tree inference, and to provide advice on 
how to handle and analyze challenging data. 

We modified several modules of the RADseq toolbox to obtain a li-
brary containing a small number of fragments (ca 5,000 assembled loci), 
with lengths of ca. 300-600nt, sequenced with the latest SRS technology 
(Illumina MiSeq v3 kit, 300nt PE) and applied this protocol (Fig. 1) to 
the plant genus Aichryson Webb & Berthel. (Crassulaceae), a rapidly 
radiated yet relatively small genus distributed in Macaronesia, for which 
standard sanger sequenced markers failed to provide a resolved phy-
logeny (Fairfield et al., 2004). The data analysis (Fig. 2) included a CT 
selection approach to facilitate an informed choice of suitable CTs for 
ISC and BSC during de novo assembly (Fig. 3) and an exploratory 
approach to determine the properties of the assembled loci, with respect 
to locus coverage (missingness), locus variability (phylogenetic infor-
mation) and locus length, and thus their suitability as input for CB-SM 
(Fig. 4). We compared the phylogenetic outcome of this assembly 
using CA-ML (RAxML by Stamatakis, 2014), CB-SM (ASTRAL III by 
Zhang et al., 2018) and put it in perspective to the site-based approach 
SVDquartets by Chifman and Kubatko (2014). To assess the phyloge-
netic results, we also evaluated the resulting BS support values relative 
to gene and site concordance factors that were calculated using IQ-TREE 
(Minh et al. 2020a, b). 

2. Materials and methods 

2.1. Study group, sampling and DNA extraction 

Together with Monanthes Haw. and Aeonium Webb & Berthel., 
Aichryson belongs to the Macaronesian tribe Aeonieae of the Crassula-
ceae family (Eggli, 2008). The genus comprises 15 species with the 
centre of diversity on the Canary Islands (11 species; Bañares Baudet, 
2002, 2015a, Baudet, 2017), three species on Madeira, and one species 
on the island of Santa Maria in the Azores (Moura et al., 2015). Aichryson 
is divided into two sections, sect. Aichryson and sect. Macrobia Webb & 
Berthel. Section Macrobia includes only Aichryson tortuosum (Aiton) 
Webb & Berthel., a perennial, small shrub endemic to Lanzarote (subsp. 
tortuosum) and Fuerteventura (subsp. bethencourtianum Botte & 
Bañares). All other species belong to sect. Aichryson and are monocarpic, 
mostly annual herbaceous plants (Bañares, 2015a). Within sect. 
Aichryson several natural hybrids are described (Bañares, 2015b). 
Aichryson proved to be monophyletic and likely sister to Monanthes 
icterica (Webb ex Bolle) Christ in molecular phylogenetic studies on 
Aeonieae based on cp markers and ITS (Mort et al., 2002; Fairfield et al., 
2004). The genus comprises both diploid and tetraploid species (Uhl, 
1961; Suda et al., 2005). 
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We sampled a total of 29 individuals representing 14 species of 
Aichryson (only A. santa-mariensis M.Moura, Carine & M.Seq. is missing) 
and two accessions of Monanthes icterica as outgroup (Supplementary 
Table 1, “sampling”). For 20 samples we were able to assess the ploidy 
level on a CyFlow cytometer (PARTEC) using the isolation buffer “OTTO 
I” (2.1 g Citric-acid-1-hydrat, 10 ml 5% Triton X-100, 90 ml ddH2O). 
FloMax v2.8.2 (QA GmbH, Münster, Germany) was used for the particle 
analysis and the measurement of the peaks (Table S1, “flow cytometry”). 
For the remaining samples, published ploidy levels were incorporated 
(Uhl, 1961; Suda et al., 2005). 

DNA-extraction was conducted using the DNeasy Plant Mini-Kit 
(QIAGEN, Venlo, Netherlands) according to the manufacturer’s proto-
col for “Purification of Total DNA from Plant Tissue (Mini Protocol)” 
with a number of modifications outlined in the online Appendix 1. The 
DNA concentration and quality were evaluated using a NanoDrop 1000 
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), a 
Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) 
and gel electrophoresis. 

2.2. In silico digestion, restriction enzyme choice and adapter design 

The search for suitable restriction enzymes for our approach was 
performed in silico and based on 1) the desired fragment length (300- 
600nt), 2) the number of samples per library (up to 50), 3) the expected 
sequencing output of the MiSeq v3 kit (up to 25 Million), and 4) the 
targeted sequencing depth (aimed at ~ 10 × per fragment), leading to 
the required fragment yield of 5,000 within the target length range. 
Initially we tested commonly used REases individually. However, the 
REases tested did not meet our requirements, thus we tested combina-
tions of two REases each. For this, we have taken into account a mini-
mum length of 6nt for the recognition site and the simultaneous 
applicability of two REases in a single reaction. The in silico digestion 
was performed using the software CLC genomics Workbench v9.5.5 
(Qiagen) with its included “Restriction Site Analysis” for several ge-
nomes of various focal groups including Beta vulgaris L., Amaranthaceae 
(BioProject PRJNA41497) and Kalanchoe fedtschenkoi Raym.-Hamet & 
H.Perrier, Crassulaceae (BioProject PRJNA397334). The resulting re-
striction maps were evaluated with respect to fragments showing two 
cut sites within the desired length window of 300-600nt. Among other 
suitable REase combinations, the REases BamHI (G’GATCC) and KpnI 
(GGTAC’C) best met our criteria for a double digest (for excerpts of the 
REase selection, see also Supplementary Table S2, “in silico digest”). In 
case of Aichryson, the in silico digest of the distantly (yet closest) related 
K. fedtschenkoi genome (divergence to Aeonieae is roughly 58.60 
[44.60–73.62] mya, Messerschmid et al., 2020), resulted in 61,692 
fragments, of which 4,429 fragments fell in the targeted length range. 

In contrast to widely established strategies (Elshire et al., 2011; 
Peterson et al., 2012; Andrews et al., 2016), we aimed at sequencing all 
generated fragment types, including fragments framed by identical re-
striction motifs. Thus, we designed the barcode and common adapters 
for both REases motifs (Table S2, “BamHI adapter”, “KpnI adapter”). The 
barcode sequences were obtained from Elshire et al. (2011) and van 
Gurp (2017). Both barcode and common adapter fit to the overhang of 
the BamHI and KpnI cut sites (Fig. 1b). We were able to achieve the set 
aim with this design, however, we recommend a more flexible adapter/ 
indexing strategy that accounts for technical bias during wet lab and 
sequencing (e.g. MacConaill et al., 2018; Bayona-Vásquez et al., 2019). 

2.3. RADseq 

The major changes compared to other RADseq approaches such as 
ddRADseq (Peterson et al., 2012) or Genotyping by Sequencing (GBS; 
Elshire et al., 2011) are: the usage of two rare cutter REases that produce 
c. 5,000 fragments within a target range of 300-600nt (Fig. 1a), adapters 
binding to all generated fragments (Fig. 1b), an extended size selection 
range (Fig. 1d) and an extra size selection step during the final 

purification (Fig. 1f). In particular the two size selections were impor-
tant to fully exploit the sequencing range (see also Appendix 1, Fig. A1.6, 
A1.7). Since the RADseq toolbox includes many modifiable modules, 
various protocols might be capable of generating libraries/datasets of an 
extended length range and we encourage an impartial testing of this 
potential (see also: McCormack et al. 2013b; Andrews et al., 2016; 
McKain et al., 2018; Parchman et al., 2018). The following is a brief 
overview of the workflow. For the detailed protocol, see Appendix 1 and 
Supplementary Table S3. 

2.3.1. RADseq lab workflow 
We used 200 ng genomic DNA as input for the double digest reaction 

(Fig. 1a), which was followed by adapter ligation (Fig. 1b) in the same 
reaction tube. For thorough saturation of cut sites, 6 µl adapter working 
solution (0.5 ng/µl) containing equimolar amounts each motif pair were 
used. Reactions were incubated for 3 h at 37 ◦C, respectively. The li-
braries were multiplexed using 100 ng DNA each (Fig. 1c), followed by a 
column-based cleaning of the pool. Size selection (Fig. 1d) was per-
formed using Pippin Prep (Sage Science, Beverly, MA, USA) with a 
segregation range of 350-720nt. The size-selected products were 
amplified using a low-cycle 2-step PCR protocol (Fig. 1e). Subsequently, 
PCR products were collected in three pools (Table S3), purified and 
quantified. Final purification, accompanied by the 2nd size segregation, 
was done using the NucleoMag NGS kit (Macherey-Nagel, Düren, Ger-
many) with a ratio of 0.8 bead suspension to one part library. The pu-
rified library was resuspended in 25 µl Buffer AE for sequencing. 

2.3.2. Library quality assessment and sequencing 
Library quality was validated by measuring the DNA concentration 

by Qubit Fluorometer and assessing the fragment distribution by Bio-
analyzer electropherogram (Appendix 1). Sequencing was performed on 
an Illumina MiSeq (San Diego, CA, USA; Reagent Kit v3 600-cycle) at 
StarSEQ (Mainz, Germany) producing 300nt PE reads in three different 
runs (Supplementary Table S4). 

2.4. Data assembly 

2.4.1. Raw sequence treatment 
Raw data quality was assessed with FastQC 0.11.4 (Andrews, 2010; 

Fig. 2a; Table S4 “run I-III”). Raw reads were demultiplexed (Table S2 
and S3) using ipyrad v0.9.52 (Eaton and Overcast, 2020) twice, once for 
each REase cut site (Fig. 2a). This two-fold demultiplexing was neces-
sary due to the motifs occurring on both read directions. The fastq-files 
were combined and adapter sequences were removed with Cutadapt 
1.18 (Martin, 2011). FastQC reports of the demultiplexed/adapter 
trimmed samples were combined using MultiQC v1.9 (Ewels et al., 2016; 
Table S4 “mean quality scores”). 

2.4.2. ipyrad 
We used ipyrad v0.9.52 (Eaton and Overcast, 2020) for de novo 

RADseq assembly. Several filtering parameters of the ipyrad pipeline (v9 
or above, Eaton and Overcast, 2020) represent percentages, allowing the 
application of the selected thresholds to variable read lengths and thus 
supporting clustering of datasets obtained by a broad sequencing range. 
We used default parameters, except for the ones outlined below. 

2.4.3. Assembly parameter settings 
The de-multiplexed samples were split into two groups according to 

ploidy level (di- or tetraploid; Table S1). The diploid dataset contained 
nine Aichryson samples, the tetraploid dataset contained 18 Aichryson 
and two Monanthes icterica samples. Parameter #18 (max_-
alleles_consens) was set to two and four, respectively (Supplementary 
Table S5). With respect to the extended read length, we allowed up to 24 
indels per locus (parameter #23). We assumed increased gene flow and 
set parameter #24 to 0.7 (Bañares, 2015b; max_Hs_consens). Parameters 
#11 and #12, which give the minimum depth for statistical and majority 
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rule base calling, were set to 10. We aimed at an average cluster depth 
(avg_depth_mj) of > 20 × for statistical base calling (Pamilo et al., 2011; 
Eaton and Overcast, 2020). 

2.4.4. Selection of suitable clustering thresholds for ISC and BSC 
Avoiding both, over- and undermerging of putative loci is not trivial 

in high-throughput datasets. If the selected CT is too lax, paralogous 
reads will be incorrectly clustered and treated as orthologs (over-
merging) and if the selected CT is too strict, reads belonging to an actual 
locus will incorrectly be split into several loci (undermerging) with low 
variability (Supplementary Figure S1.A). To determine suitable CTs for 
ISC and BSC, we used several CT selection approaches as guidance (Ilut 
et al., 2014; Mastretta-Yanes et al., 2015; Paris et al., 2017; McCartney- 
Melstad et al., 2019) and defined the assumptions to determine suitable 
CTs. 1) Over- and undermerging ranges have to be identified to avoid 
merging/splitting effects within these areas. 2) Overmerging is indicated 

by highly heterozygous clusters/alleles with a high proportion of filtered 
paralogs (Ilut et al., 2014; McCartney-Melstad et al., 2019). Hence, a 
suitable CT is expected in an increasing area of heterozygosity and a 
decreasing area of flagged paralogs, between the maxima of both met-
rics. 3) Undermerging of orthologs leads to an increased number of loci 
(and lower locus coverage in ISC, lower sample coverage per locus in 
BSC) while sequence divergence among taxa decreases (Mastretta-Yanes 
et al., 2015; McCartney-Melstad et al., 2019). Thus, sequence variation 
declines while missingness increases. A suitable CT is expected near a 
steep increase in number of clusters/loci and amount of missingness 
while heterozygosity is biologically realistic (ISC) and locus variability is 
high (BSC). 

To prevent introducing a potential bias due to ploidy, we split the 
samples into two groups (di- and tetraploid) for ISC assembly (ipyrad 
assembly steps 1–5, Fig. 2b). Following ISC CT selection, all samples 
were merged for BSC (ipyrad assembly steps 6 and 7). A CT range of 

Fig. 1. The lab workflow of the modified RADseq protocol consists of six steps (a – f). a) Genomic DNA is digested simultaneously using the REases BamHI and KpnI. 
b) Barcode and common adapters are ligated to the fragments. c) The barcoded samples are multiplexed and purified. d) The pool is size selected to a 350 – 720 bp 
length range using Pippin Prep. e) The size selected pool is amplified using a low-cycle 2-step PCR. f) The final purification using magnetic beads removes PCR and 
size selection artifacts. 
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0.81–0.99 (in 0.01 increments) was tested. To assess the above-
mentioned criteria for CT selection, we plotted a variety of metrics as a 
function of the tested CT range as box- and scatter plots (see also 
Figure S1.B and S1.C). For the ISC CT selection, we evaluated the 
number of clusters (clusters_total), the average read depth (avg_-
depth_total), the number of filtered paralogs (filtered_by_maxH) and the 
heterozygosity. For the BSC CT selection, we additionally evaluated the 
number of retained loci, sequence variation (VAR, SNPs and PIS) and 
proportion of missingness (sequences_missing). In addition, we calcu-
lated the “new polymorphic loci” (NPL) in order to detect the assembly 
containing most accurately clustered sequence variation, which is 
indicated by the so-called “hockey stick signal” (Paris et al., 2017). We 
expected the transition zone from over- to undermerging to be charac-
terized by trend changes, e.g. prominent differences in the medians of 
adjacent CTs and compressions or expansions of the quartiles (in box-
plots) or changes in the slope intensity (in scatter plots). Multiple suit-
able CTs within a transition zone of a metric and across metrics were 
averaged to determine a consensus CT. 

2.4.5. Processing of the unfiltered ipyrad assembly 
The ipyrad loci-file of the unfiltered “raw” assembly was parsed with 

a custom Perl script (available on GitHub https://github.com/philipph 
uehn/RADseq-locus-filtering) for the specific locus ID, the length, the 
number of samples, SNPs and PIS (VAR in total) and the proportion of 
missingness for each locus (Fig. 2c “parsing of locus properties”). We 
used BLAST + 2.7.1 (Camacho et al., 2009) to identify chloroplast loci 
by blasting all loci against four reference plastomes from the Crassula-
ceae (GenBank accessions: Sedum uniflorum subsp. oryzifolium (Makino) 
H.Ohba: NC_027837, Sedum sarmentosum Bunge: NC_023085, Phedimus 
takesimensis (Nakai) ’t Hart: NC_026065, Phedimus kamtschaticus (Fisch. 
& C.A.Mey.) ’t Hart: NC_037946). Loci of a plastid origin as well as loci 
showing no parsimony informative sites were removed (Fig. 2c, “0 PIS +
cp loci removal”). In addition, this “raw” assembly was used for initial 
phylogenetic inference and clade definition to compare potentially 
different phylogenetic results from subsequently filtered datasets (see 
3.4.1). 

2.5. Locus filtering and dataset selection 

In general, phylogenetic inference by CB-SM is very sensitive to 
GTEE, which most often is caused by loci showing little sequence vari-
ation, high missingness or fractional coverage (Chou et al., 2015; Roch 
and Warnow, 2015; Xi et al., 2015, 2016; Xu and Yang, 2016; Sayyari 
et al., 2017; Hosner et al., 2016; Lee et al., 2018; Molloy and Warnow, 
2018). We filtered the here generated RADseq loci into several sub- 
datasets to test for a potential influence of locus properties on phylo-
genetic inference (Fig. 2c, “locus filtering”). First, we determined the 
impact of the locus properties on CB-SM reconstruction (see 2.5.1). This 

filtering approach suggested a potential impact of biased phylogenetic 
signal due to non-randomly distributed partial taxon coverage (Sand-
erson et al., 2010, 2011, 2015; Simmons, 2012; Xi et al., 2015; 2016; 
Hosner et al., 2016; Sayyari et al., 2017; Dobrin et al., 2018). This so- 
called “biased missingness” has been shown to cause high GTEE, thus 
results in conflicting, unsupported locus trees and consequently in a 
decline of species tree estimation performance (Xi et al, 2015, 2016; 
Hosner et al., 2016; Sayyari et al, 2017; Molloy and Warnow, 2018). We 
therefore performed a second locus filtering with respect to locus length 
and evaluated phylogenetic patterns of CB-SM and CA-ML re-
constructions (see 2.5.2). The locus filtering scripts are available at 
GitHub (https://github.com/philipphuehn/RADseq-locus-filtering). 

2.5.1. Locus filtering by coverage, variability, length intervals and dataset 
selection based on average missingness 

The loci were filtered with respect to the average variability (var =
VAR/locus length/number of samples; “min_var”), minimum number of 
samples per locus (number of samples/locus; “min_samples”), and locus 
length intervals (“length_int”) and rearranged to new sub-datasets 
(Fig. 2c, “locus filtering”, Supplementary Table S6). For the “min_var” 
sub-datasets, seven thresholds were used (0.01, 0.25, 0.50, 0.75, 1.0, 
2.0, 3.0, “min_var_001” – “min_var_300”). Six thresholds by increments 
of four were used for the “min_samples” sub-datasets (4, 8, 12, 16, 20, 
24, “min_samples_4” – “min_samples_24”). The locus length interval 
datasets were created based on eight intervals starting from the mini-
mum length to 250nt, and then ranging by 50nt steps from 251nt to 
550nt, and 551nt to the maximum length (“int_min-250” – “int_551- 
max”). Properties of these datasets, such as the total number of loci, 
VAR, SNPs, PIS (average per locus), sample coverage/missingness, and 
average locus length were recorded (Fig. 2c, “sub-dataset properties 
summary”). For each rearranged sub-dataset, ML locus trees were esti-
mated and used for CB-SM inference (see 2.6.2). We recorded the 
bootstrap support values of all branches of each tree and assigned them 
to three categories: backbone, clade and within clade branch support 
values. Clade branches contained all samples of the defined clades (see 
3.4.1 for clade definition). All support values within the defined clades 
were assigned to within clade branches. All other support values, 
spanning from the outgroup to the clade branches, were recorded as 
backbone support values. Topology changes and conflicts were not 
accounted for. Based on this and on recommendations by studies 
investigating the impact of locus filtering for summary methods (Xi 
et al., 2016; Sayyari et al., 2017; Molloy and Warnow, 2018), we 
selected an average missingness threshold to filter the locus sets (Fig. 2c, 
“dataset selection avg. missingness”). The resulting dataset was subse-
quently used for comparative phylogenetic inference (Fig. 2d). 

Fig. 2. The schematic overview of the data analysis is split into four major parts (a-d, boxes on the right side). The boxes in light blue indicate sub-/datasets. Dashed 
arrows illustrate parameter applications between datasets. Colored box edges show the software used for the work step. During the raw read processing (a) the quality 
is assessed using FastQC, the reads are demultiplexed two times with respect to the REase cut sites and the sample specific barcodes, combined into sample fasta files, 
and adapter and cut sites are removed using cutadapt. For the clustering threshold (CT) selection approach (b), the data set is split based on the assumed ploidy and 
the ipyrad parameters are adjusted as required. For in-sample-clustering (ISC) a CT range of 0.81 – 0.99 is tested for both datasets and ipyrad outputs are evaluated 
with respect to the number of total clusters, total average read depth, clusters rejected by maxH (flagged paralogs) and heterozygosity (Fig. 3a and b). The selected 
ISC assemblies are merged and branched to test the CT range (see above) for between-sample-clustering (BSC). The resulting assemblies are evaluated with respect to 
the number of retained loci, the retained sequence variation (VAR), missingness and the number of new polymorphic loci (NPL, Fig. 3c). The selected “raw” assembly 
is used for initial phylogenetic inference and clade definition (c). The locus properties (locus ID, length, number of samples, number of SNPs, PIS and VAR) are parsed 
using a customized script. Loci showing no variation and chloroplast loci are removed. The loci of the “cleansed” dataset are filtered into several sub-datasets based 
on their properties. The first locus filtering approach, using a missingness threshold for dataset selection, resulted in the “int_251-500” dataset. The second filtering 
approach, using sub-dataset properties and resulting phylogenetic patterns for dataset selection, resulted in the “int_301-450” dataset. The truncated loci of the “raw” 
assembly were re-arranged based on the selected datasets of the locus filtering (locus truncation, dashed arrows). The datasets (“raw”, “int_251-500”, “int_301-450” 
and “short”) are used for comparative phylogenetic inference (d). Individual loci are either concatenated using FASconCAT for CA-ML inference or used to calculate 
ML locus trees as input for CB-SM inference. The SVD datasets are created by picking a single randomly selected parsimony informative character (PIC) of each locus. 
To assess the resulting trees of the tested inference methods across datasets, we compared changes in BS support values and gene (gCF) and site concordance factor 
(sCF) values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.5.2. Locus filtering by length and dataset selection based on sub-dataset 
properties and phylogenetic patterns 

In order to narrow down the suspected dataset bias in terms of 
fractional, non-random locus and/or taxon coverage, we used phylo-
genetic patterns to assess sub-datasets filtered by length. CA-ML infer-
ence of datasets exhibiting this type of bias can result in unsupported or 
overly high supported polytomies resolved as a terraced topology 
(Sanderson et al., 2010, 2011, 2015; Simmons, 2012; Dobrin et al., 
2018). Dobrin et al. (2018) have reported numerous empirical multi- 
locus datasets to be impacted by this issue (e.g. Springer et al., 2012; 
Burleigh et al., 2015; Shi and Rabosky, 2015). Since we generated ML 
locus trees as input for species tree estimation with CB-SM, we assumed 
this terraced topology to also appear if the bias of the underlying data 
was strong. Besides, Hosner et al. (2016) and Sayyari et al. (2017) found 
that a high proportion of fragmentary data (biased incongruence of locus 
trees) can lead to a sharp drop of the resulting BS support values for CB- 
SM inference. 

In addition to the length interval sub-datasets of the first filtering 
(“int_min-250” – “int_551-max”), we filtered the loci requiring an 
increasing, cumulative maximum length (Fig. 2c, “locus filtering”, 
Supplementary Table S7). The eight maximum locus length sub-datasets 
were generated starting at a threshold of 250nt (“max_250”, all loci up to 
250nt length were included) increasing by 50nt increments up to the 
maximum locus length. Each sub-dataset was subjected to phylogenetic 
inference using CA-ML and CB-SM. The sub-dataset properties and 
resulting BS support values were recorded as described in 2.5.1. 

While bootstrapping across a concatenated matrix almost automat-
ically increases the resulting support values with increasing matrix size 
(Kubatko and Degnan, 2007; Liu et al., 2015; Minh et al. 2020a), the 
multi-locus bootstrapping used with CB-SM employs a 2-stage system 
that accounts for variations among loci by resampling during BS 
calculation (Seo, 2008) and thus reacts very sensitive to fragmentary 
data (Xi et al., 2015, 2016; Hosner et al., 2016; Sayyari et al., 2017). We 
expected the BS support values to collapse as soon as the ratio of biased 
to unbiased data (respecting a non-randomly distributed partial taxon 
coverage) became too high. For CA-ML, we expected a similar but less 
sensitive pattern, in particular for the sub-datasets of an increasing 
maximum locus length. 

For the evaluation of a terrace-like topology pattern, the number of 
samples resolved on terraced branches was recorded. We defined that a 
terraced branch must either -originate from a dichotomous branch of the 
tree’s backbone, - the clade’s backbone containing that sample, - or must 
follow an individual branch within a clade, - but must not be included 
within a dichotomous constellation. For instance, phylogenetic infer-
ence of the “raw” dataset using CA-ML, CB-SM and SVD resulted in two, 
five and three terraced branches for clade 5, respectively (Supplemen-
tary Figure S2). The SVD tree contained another terraced branch in clade 
4, but the CA-ML and CB-SM trees did not. By increasing the maximum 
locus length required, we expected the topology to switch from a 
terraced to a dichotomous tree pattern once the biased area has been 
passed or compensated (and vice versa). CB-SM was expected to react 
more sensitive than CA-ML due to the reduced amount of data, with 
individual gene trees as input (Xu and Yang, 2016). Therefore, the 
terraced pattern was assumed to be over-expressed once the amount of 
data became too small (in particular for the length interval sub- 
datasets), and likewise a larger portion of unbiased data would be 
needed for compensation (for the maximum length sub-datasets). 

The dataset, which was intended to be a reasonable compromise for 
both methods, had to meet the following criteria: 1) relatively low 
average missingness, 2) relatively high ratio of PIS to SNPs, 3) relatively 
high BS support values for all tree sections, 4) relatively low number of 
samples resolved on terraced branches, 5) and had to avoid over- and 
under-represented assembly regions. The selected dataset was used for 
comparative phylogenetic inference (Fig. 2d). 

2.5.3. Generating ‘short’ loci by locus truncation 
The loci of the ipyrad “raw” assembly were truncated to one third of 

their original length to compare potential performance differences of the 
here generated loci to a RAD dataset obtained by assembly of 100nt PE 
reads. These shorter loci were intended to show less sequence variation 
and thus negatively affect phylogenetic inference. The truncated loci 
were re-arranged based on the selected datasets of the locus filtering 
(Table 1, Fig. 2c, “locus truncation”). 

2.6. Phylogenetic inference 

We have chosen three commonly used approaches for phylogenetic 
inference of the generated main- and sub-datasets (Table 1, S6 and S7). 
CA-ML and CB-SM were used for inference during locus filtering. For the 
comparative phylogenetic inference, we additionally used SVDquartets 
as third inference approach. We decided not to test a full-coalescent 
method that uses co-estimation of locus trees and species trees such as 
implemented in BEST (Liu, 2008) or BEAST 2 (Bouckaert et al., 2014) 
because computation time and capacities required increase sharply with 
the number of loci and samples. Thus, full-coalescent methods are 
currently not practical for large-scale datasets with thousands of loci (e. 
g. Bayzid and Warnow, 2013; McCormack et al., 2013a; Zimmermann 
et al., 2014). 

2.6.1. Phylogenetic inference with RAxML (CA-ML) 
We used RAxML v8.2.12 (Stamatakis, 2014) to infer maximum 

likelihood phylogenies using GTRGAMMA as substitution model, 20 
runs for BestML and 1,000 bootstrap replicates to assess statistical 
support of relationships. We used the unfiltered ipyrad supermatrix for 
inference of the “raw” assembly. For all other datasets, we concatenated 
individual loci to a supermatrix using FASconCAT v1.11 (Kück and 
Meusemann, 2010). 

2.6.2. Species tree inference with ASTRAL-III (CB-SM) 
ASTRAL-III v5.7.4 (Zhang et al., 2018) estimates species relation-

ships based on gene/locus trees. To generate these locus trees, we used 
RAxML v8.2.12 (Stamatakis, 2014) under the GTRGAMMA model with 
20 runs for BestML and 1,000 bootstrap replicates. ASTRAL was run in 
default mode using unrooted locus trees. We used multilocus boot-
strapping (Seo, 2008) to compute branch support for the estimated 
species trees. 

2.6.3. Svdquartets analysis (SVD) 
SVDquartets (Chifman and Kubatko, 2014) is a quartet-based algo-

rithm to compute species trees from SNP datasets. We used FASconCAT- 
G (Kück and Longo, 2014) to extract and concatenate the 25,320 
parsimony informative characters (polymorphisms that are shared by at 
least two samples, PICs) of the 3,818 loci constituting the “raw” as-
sembly. To meet the requirement for linkage of the dataset (sites must be 
unlinked), we randomly selected a single PIC of each informative locus 
for each dataset (Table 1, “unlinked PICs”). Analyses were run in 
SVDquartets as implemented in PAUP*4.0a168 (Swofford, 2003) with 
1,000 bootstrap replicates under the multilocus bootstrap (Seo, 2008). 
The scripts for generating PIC datasets are available at GitHub (https 
://github.com/philipphuehn/RADseq-locus-filtering). 

2.6.4. IQ-TREE analysis 
We used IQ-TREE v2.1.2 (Minh et al. 2020a, b) to calculate the gene 

(gCF) and site concordance factors (sCF) of the resulting phylogenies, 
which give the percentage of decisive locus trees and alignment sites 
containing or supporting a specific branch in a given reference tree, 
respectively. Locus trees obtained with RAxML were used for gCF 
calculation. For sCF calculation, 1000 quartets were used to obtain 
stable estimations. To assess the resulting phylogenies with respect to a 
potential influence of biased data, we put the resulting topologies and BS 
support values in context with the gCF and sCF values and value 
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differences. In general, both concordance factors are expected to be 
similar if the phylogenetic signal is only impacted by discordant signal, 
e.g. due to ILS (Minh et al. 2020a, b). If other processes affect the 
dataset, such as limited information or a data bias, the gCF values can be 
a lot lower than the sCF values, resulting in large factor value differ-
ences. A large proportion of conflicting signal or a significant variation 
of sites in the dataset can lead to a completely random resolution, which 
is indicated by sCF values ~ 33%. The reasons are either true phylo-
genetic signal caused by ILS or biased signal caused by uneven coverage. 
Distinct factor value differences of alternative topologies may indicate 
non-phylogenetic signal. 

3. Results 

3.1. Final library and MiSeq output 

The fragment distribution of the final library ranged from ca. 370- 
770nt. The majority of fragments outside the target range were suc-
cessfully removed (Appendix 1, Fig. A1.4, A 1.5). The MiSeq runs 
generated a total of 6,870,208 paired raw reads for the 29 samples 
(Table S4, “samples”). Sequence quality decreased with increasing read 
length (Table S4, “run I-III”). The quality of the R2 reads started to 
decline below a Phred quality score of 20 from ca 260nt read length 
(Table S4, “mean quality scores”). The number of reads per sample 
ranged from 98,754 for A. laxum var. latipetalum Bañares & M.Marrero 
to 587,377 for M. icterica BG Bonn with an average of 236,903 reads per 
sample. Demultiplexed raw data is available at the NCBI Sequence Read 
Archive in BioProject PRJNA642981. 

3.2. ISC and BSC threshold selection 

In general, the plots of the selected metrics showed the expected 
trends and met the requirements (Fig. 3 and S1.B and S1.C). For the ISC 
metrics, however, the indicators were not as distinct as expected. The 
transition zones of the metrics were averaged to consensus CTs for the 
diploid and tetraploid samples, respectively (Supplementary Table S8). 

For the ISC of diploid samples (Fig. 3a and S1.B, “ISC 2n”), the onset 
of the undermerging area was initiated by an abrupt increase in the 
number of clusters at CT 0.95, which was indicated by a compression of 
the third quartile (Q3) for the CTs 0.93 and 0.94 and a simultaneous 
increasing slope intensity in the scatter plots (Fig. 3a and S1.B, “clusters 
total”, transition zone: 0.93–0.94). Allelic variation was highest in the 
transition zone of 0.92–0.95 and started to decrease strongly with 
increasing sample coverage (Fig. 3a and S1B, “heterozygosity”). The 
peak CT for heterozygosity was 0.92 (transition zone: 0.92–0.95) while 
the paralog peak was 0.88 (transition zone: 0.88–0.95). These maxima 
were preceded by irregular jumps of adjacent medians and an intensity 
change of the slopes (Fig. S1.B). This area was enclosed by the transition 

zone of the average read depth per cluster trend, which was indicated by 
an increasing Q3 compression and a steady slope shift (Fig. 3a, Fig. S1.B, 
“avg. depth total”, transition zone: 0.92–0.95). The CTs within the 
described transition zones were averaged to a consensus CT of 0.93 
(Table S8, “ISC consensus CT”). 

For the ISC of tetraploid samples (Fig. 3b and S1.C, “ISC 4n”), 
undermerging was initiated by a Q3 compression within the transition 
zone of the number of clusters and increased in slope from CT 0.94 on 
(Fig. 3b and S1C, “clusters total”, transition zone: 0.92–0.93), while 
allelic variation also started to decline steeply with increasing CTs 
(Fig. 3b and S1.C, “heterozygosity”, peak at 0.94, transition zone: 
0.89–0.94). The transition zone of the average depth per cluster showed 
a steadily declining trend, a few slight median jumps and an increasing 
Q2 compression (Fig. 3b and S1.C, “avg. depth total”, transition zone: 
0.89–0.92). The transition zone of filtered paralogs showed a prominent 
median jump and a moderate slope decline towards the undermerging 
area (Fig. 3b and S1.C, “filtered by maxH”, peak at 0.90, transition zone: 
0.90–0.92). The averaged consensus CT was 0.91 (Table S8, “ISC 
consensus CT”). 

The scatter plots of the ISC metrics showed that some samples can 
have a larger effect on the overall trend of a metric than others. For 
instance, the sample “A_tort_RIII_A36_J49” (A. tortuosum subsp. tortuo-
sum) showed one of the lowest average cluster depths (“avg. depth 
total”) while a high number of clusters (“clusters total”) was found 
(Fig. S1.B). It also showed the highest amount of filtered paralogs 
(“filtered by maxH”) and a two times higher heterozygosity than the 
other diploid samples, although flow cytometry confirmed its diploid 
status (Table S1). The tetraploids also showed some samples that were 
clearly different from the others (Figure S1.C). 

For the BSC threshold selection (Fig. 3c), the undermerging area was 
indicated by the steady increase in retained loci while the sequence 
variation (VAR) started to decrease at CT 0.92. At this point, the miss-
ingness of the assembly matrix was still low before it increased abruptly 
starting at CT 0.92. According to McCartney-Melstad et al. (2019) and 
Mastretta-Yanes et al., (2015), a suitable CT is right before the decrease 
in sequence variation and the steep increase in missingness while the 
sample coverage (retained loci) still increases, at CT 0.91. The hockey- 
stick signal was identified by the first positive swing of the “blade” 
following the NPL minimum (Fig. 3c, “new polymorphic loci”, Paris 
et al., 2017). This upward swing was in the transition of the CTs 91/90 
that corresponds to a CT of 0.91 (Table S8, “NPL”) and thus supports the 
other requirements. We selected 0.91 as BSC threshold. 

3.3. ipyrad assembly output 

The average total read depth (avg_depth_total) for the diploid and 
tetraploid samples was 6.21 (±2.17) at CT 0.93 and 5.55 (±1.80) at CT 
0.91, respectively (Supplementary Table S9, “ISC 2n”, “ISC 4n”). After 

Table 1 
The properties of the unfiltered “raw” assembly, the “cleansed” dataset, the datasets selected by locus filtering and their length truncated variants.  

dataset raw cleansed int_251-500 int_301-450 int_251-500_short int_301-450_short 

loci 3,818 3,225 2,788 1,599 2,788 1,599 
VAR total 71,691 68,490 56,448 33,480 18,590 10,625 
VAR per locus 18.78 (±16.69) 21.24 (±16.82) 20.24 (±15.70) 20.94 (±16.15) 6.67 (±5.65) 6.65 (±5.63) 
SNPs total 36,413 33,261 26,533 15,673 8,779 5,040 
SNPs per locus 9.54 (±5.25) 10.31 (±9.89) 9.51 (±8.66) 9.80 (±8.86) 3.15 (±3.17) 3.15 (±3.16) 
PIS total 35,278 35,229 29,915 17,807 9,811 5,585 
PIS per locus 9.24 (±10.73) 10.92 (±10.86) 10.73 (±10.67) 11.14 (±11.05) 3.52 (±3.93) 3.49 (±3.91) 
unlinked PICs total 2,723  2,220 1,287   
locus coverage 8.86 (±5.25) 9.37 (±5.45) 9.67 (±5.57) 9.96 (+-5.62) 9.67 (±5.57) 9.96 (+-5.62) 
sample coverage 1,166 (±467)  930 (±333) 549 (±204)   
missingness avg. [%] 69.79 67.69 66.66 65.64 66.66 65.64 
locus length avg. [nt] 376 (±93) 379 (±93) 360 (±70) 373 (±43) 120 (±23) 123 (±18) 

Given are the total number of loci (loci), the total and average values per locus (standard deviations in parentheses) for the number of variable sites (VAR), single 
nucleotide polymorphisms (SNPs), and parsimony informative sites (PIS), the total number of unlinked PICs as input for SVD inference, and the average locus coverage 
(samples per locus), sample coverage (loci per sample), the average proportion of missingness [%] and the average locus length [nt]. 
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Fig. 3. To determine suitable thresholds for in-sample-clustering (ISC) and between-sample-clustering (BSC), trends of several metrics tested across a CT range of 
0.81–0.99 were evaluated. For ISC threshold selection of the diploid (a) and tetraploid (b) samples, the number of clusters, the average read depth, flagged paralogs 
(filtered by maxH) and the allelic variation (heterozygosity) were recorded and plotted. Transition zones from the over- to the undermerging area containing several 
suitable CTs are shaded in grey. CTs within these zones were averaged to a consensus CT. To select a suitable threshold for clustering between samples of the merged 
ISC assemblies, the number of retained loci, the retained sequence variation (VAR), the missingness and the number of new polymorphic loci (NPL) were recorded 
(c). The “hockey stick signal” in the NPL plot, which indicates the assembly containing most accurately clustered sequence variation, is in line with the requirements 
for the other metrics. 
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applying the min_depth threshold of 10 for clustering, the majority read 
depth (avg_depth_mj) rose to 40.24 (±7.52) for the diploid and 39.22 
(±17.10) for the tetraploid samples. On average, 26,280 (±11,873) 
clusters per individual were found for the diploids and 34,436 
(±15,023) clusters per sample for the tetraploids. The average count of 
consensus reads was 2,635 (±692) for the diploid and 2,633 (±645) for 
the tetraploid samples. 

The unfiltered assembly using a BSC threshold of 0.91 comprised 
3,818 loci and 71,691 variable sites (Table 1, Fig. 2, “raw” assembly). Of 
these variable sites, 36,413 were unique SNPs and 35,278 were PIS. 92 
loci showed no variation and 581 loci contained no PIS. The dataset 
included 69.79% missingness, on average 10 unique SNPs and 9 PIS per 
locus. The retained loci had an average length of 376nt (±93) with a 
maximum locus length of 618nt (including uncalled bases and gaps). 
The majority of retained loci ranged in length from 250 to 550nt 
(Table S9, “locus coverage”). The assembly length range > 500nt 
showed a prominent gap at ca. 540-580nt, after which a denser region 
with some samples of comparatively high coverage followed, at ca 
590nt. Locus coverage per sample was fairly heterogeneous with an 
average of 1,242 (±385) and ranged from a minimum of 640 loci for 
A. laxum A29_J41 to a maximum of 2,092 loci for A. roseum A01_J02 
(Table S9, “sample coverage”). The two outgroup samples contained 127 
(M. icterica M30_N36) and 155 loci (M. icterica BG Bonn) in the final 
assembly. The BLAST results showed that our dataset contained 21 loci 
(118 SNPs and 66 PIS) with identities of 78.5–100% with the reference 
plastomes. After removing non-parsimony-informative loci and cp loci, 
the dataset contained 3,225 loci with an average of 67.69% missing 
data. Each locus contained on average 10 SNPs and 11 PIS and had an 
average length of 379nt (±93) (Table 1, “cleansed”, Fig. 2c, “cp loci + 0- 
PIS loci removal”). 

3.4. Initial inference of the raw dataset and clade definition 

Phylogenetic inference of the ipyrad “raw” assembly resulted in 
incongruent topologies (Table 2, Fig. S2). CA-ML (Fig. S2.A) and CB-SM 
(Fig. S2.B) yielded unsupported backbones, while the SVD reconstruc-
tion was fully supported (Fig. S2.C). All trees showed five well supported 
main clades: clade 1 comprised A. laxum, A. pachycaulon subsp. parvi-
florum and A. palmense, clade 2 included two subspecies of A. pachy-
caulon, subsp. immaculatum and subsp. pachycaulon, clade 3 was formed 
by three species from Madeira (A. villosum, A. dumosum and 
A. divaricatum), clade 4 comprised both subspecies of A. tortuosum and 

clade 5 comprised all remaining taxa (A. roseum, A. punctatum, 
A. bituminosum, A. porphyrogenetos, A. brevipetalum, A. bollei and 
A. parlatorei) as well as two subspecies of A. pachycaulon, i.e., 
A. pachycaulon subsp. praetermissum and subsp. gonzalezhernandezii. 
Relationships among clades was not resolved due to a lack of reliable BS 
support among reconstructions. 

3.5. Locus filtering 

The 3,225 loci of the “cleansed” dataset (Table 1, Fig. 2c) were first 
filtered respecting the locus coverage (minimum number of samples 
required), the locus variability (VAR/locus length/number of samples) 
and locus length intervals by 50nt steps. The properties of the resulting 
sub-datasets were recorded and phylogenies were inferred using CB-SM 
(see 3.5.1, Table S6, Supplementary Figure S3, all tree files available at 
Mendeley, https://doi.org/10.17632/yb6fd93dbw.1). For the second 
locus filtering, in addition to the length interval sub-datasets, the loci 
were filtered requiring an increasing, cumulative maximum length 
(“max length”) and subjected to phylogenetic inference using CA-ML 
and CB-SM (see 3.5.2, Table S7, Supplementary Figure S4, all tree files 
available at Mendeley, https://doi.org/10.17632/yb6fd93dbw.1). 

3.5.1. Locus filtering by coverage, variability, length intervals and dataset 
selection based on average missingness 

We created six “min samples” sub-datasets by increments of four 
(Fig. 4a, Table S6, Fig. S3). The locus count and sequence variation 
(total) decreased as the number of samples increased (Fig. S3.A1 and S3. 
A4). The average number of SNPs per locus remained nearly constant 
across datasets, whereas the number of PIS per locus increased propor-
tionately with VAR/locus until the “min_samples_16” dataset and then 
remained constant when increasing the parameter (Fig. S3.A4 and S3. 
B1). As expected, missingness declined with increasing number of 
samples (Fig. S3.B1 and S3.C1). The average locus length was constant 
across the datasets (Fig. S3.B1 and S3.C4). The branch support values of 
the CB-SM phylogenies showed a steady, slightly decreasing pattern 
across the datasets (Fig. S3.D1 and S3.D2). The backbone and within 
clade support values were around 80 and dropped by ca ten points with 
the “min_samples_24 dataset”. The average clade branch support was 
close to 100 in all datasets. 

Seven sub-datasets were filtered for the “min var” parameter (Fig. 4b, 
Table S6, Fig. S3). The number of loci and sequence variation (total) 
decreased with increasing minimum variability (Fig. S3.A2 and S3.A5). 

Table 2 
Bootstrap support values and concordance factor values and differences of the inferred datasets using CA-ML, CB-SM and SVD.  

inference method CA-ML CB-SM SVD 

dataset raw int_251-500 int_301-450 raw int_251-500 int_301-450 raw int_251-500 int_301-450 
BS backbone 

branches 
86.80 99.20 99.20 83.06 90.14 96.70 100 100 100 

BS clade branches 94.80 100 99.60 99.92 99.98 99.08 100 100 100 
BS within clade 

branches 
93.71 95.29 94.41 80.25 83.92 83.94 100 100 100 

BS all branches 92.63 96.89 96.26 84.41 88.05 89.10 100 100 100 
CF clade 1 44.4; 69.2; 

24.8 
44.5; 68.8; 
24.4 

46.7; 69.4; 
22.7 

45.4; 69.1; 
23.8 

45.0; 68.0; 
23.0 

47.9; 68.7; 
20.7 

45.6; 70.0; 
24.4 

44.5; 69.0; 
24.6 

45.1; 61.3; 
16.2 

CF clade 2 + 3 48.1; 62.3; 
14.2 

48.7; 62.3; 
13.6 

50.0; 58.5; 
8.5 

42.6; 72.4; 
29.8 

43.1; 72.8; 
29.7 

44.6; 70.0; 
25.4 

43.2; 72.1; 
28.8 

41.8; 71.7; 
29.9 

43.1; 73.7; 
30.6 

CF clade 4 40.1; 64.1; 
24.0 

40.5; 64.5; 
24.1 

42.5; 66.1; 
23.6 

36.4; 60.1; 
23.7 

40.9; 65.4; 
24.5 

42.5; 65.8; 
23.3 

37.6; 54.4; 
16.8 

40.9; 63.8; 
22.9 

36.6; 59.1; 
22.6 

CF clade 5 17.4; 57.8; 
40.5 

17.5; 57.8; 
40.3 

17.4; 58.4; 
41.0 

16.1; 59.8; 
43.7 

18.9; 61.0; 
42.1 

19.9; 61.5; 
41.6 

18.7; 60.8; 
42.1 

18.4; 61.7; 
43.3 

17.3; 60.4; 
43.1 

CF clade branches 56.2; 83.3; 
27.1 

55.9; 83.2; 
27.3 

58.7; 81.7; 
22.9 

51.5; 80.8; 
29.3 

55.8; 81.5; 
25.7 

59.3; 80.2; 
20.9 

57.6; 83.2; 
25.6 

54.9; 81.7; 
26.8 

53.2; 79.2; 
26.1 

CF backbone 
branches 

58.6; 75.9; 
17.3 

55.9; 69.5; 
13.6 

57.9; 71.2; 
13.3 

55.0; 68.1; 
13.1 

55.9; 69.6; 
13.7 

57.9; 71.6; 
13.6 

49.1; 62.7; 
13.6 

49.9; 66.7; 
16.7 

48.9; 64.8; 
15.9 

Given are the average BS support values (sectional and total) and the average gene (gCF) and site concordance factor (sCF) values (of the within clade branches, the 
clade branches and backbone branches) of the inferred datasets (“raw”, “int_251-500′′, ”int_301-450′′, “int_251-500_short”, “int_301-450_short”) using CA-ML, CB-SM 
and SVD. The average concordance factor (CF) values are shown in this order: gCF; sCF; gCF-sCF-difference. 
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In terms of the sequence variation (VAR) total and per locus, the ratio of 
SNPs to PIS shifted towards a higher SNPs proportion with increasing 
required minimum variability (Fig. S3.A5 and S3.B2) and missingness 
increased as well (Fig. S3.B2 and S3.C2). The average locus length 
decreased slightly with increasing variability required, with the “min_-
var_300” sub-dataset showing a clear shift towards shorter loci (Fig. S3. 
B5 and S3.C5). The BS support values showed a decreasing trend 
(Fig. S3.D2). The tree topologies received varying support across the 
sub-datasets. The backbone branches were supported highest for the 
“min_var_075” and “min_var_100” datasets, while the clade and within 
clade branches had highest support values in the “min_var_001, 025, 
050” datasets. The average branch support decreased with increasing 
missingness (Fig. S3.D5). 

The properties and resulting support values of the eight length 

interval datasets showed irregular trends (Fig. 4c, Table S6, Fig. S3). The 
amount of loci and sequence variation total (excluding the first sub- 
dataset containing only 72 loci) dropped from the highest value at 
“int_251-300” to the adjacent dataset, then rose and declined moder-
ately until the next sharp decline from “int_451-500” to “int_501-550” 
(Fig. S3.A3 and S3.A6). The average sequence variation per locus was 
rising with increasing locus length. The proportions of SNPs and PIS in 
sequence variation (VAR) shifted towards a higher proportion of 
parsimony-uninformative sequence variation for the datasets “int_min- 
250” and “int_551-max”, respectively (Fig. S3.B3). The missingness had 
a slightly convex trend with maxima for the flanking datasets (Fig. S3.B6 
and S3.C3). The steadily increasing trend of the locus length showed 
unexpected averages for the two datasets containing the longest loci 
(Table S6, Fig. S3.B6 and S3.C6), matching the uneven locus length 

Fig. 4. The loci of the „cleansed” assembly were rearranged into sub-datasets based on the minimum number of samples required (a), the minimum variability 
required (b) and locus length intervals (c). For each sub-dataset, properties such as the number of retained loci (upper plots, purple line with data points), sequence 
variation (orange = VAR, green = SNPs, yellow = PIS), the average missingness (middle plots, purple line with data points) and average locus length (orange line) 
were recorded. The average BS support values of the resulting CB-SM trees are given in total (bottom plots, green line with data points) and for the three sections 
(purple = backbone branches, orange = clade branches, yellow = within clade branches). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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distribution of the “raw” assembly (Table S9, “locus length distribution” 
and “locus coverage”). The resulting branch support values showed 
contrasting patterns (Fig. S3.D3 and S3.D6). The overall trend was 
shaped concavely. The backbone support initially increased to a 
maximum at “int_401-450” and then decreased with increasing locus 
length. The average clade support values were highest at “int_251-300”, 
“int_351-400” and “int_451-500”. The within clade branches were sup-
ported highest by the “int_351-400” sub-dataset, embedded in a 
descending trend towards the dataset edges. 

Regarding the “min_samples” and the “min_var” datasets, the results 
were as expected and consistent with findings of previous studies (e.g. 
Chen et al., 2015; Huang and Knowles, 2016; Eaton et al., 2017; Molloy 
and Warnow, 2018,). For both parameters, the overall support 
decreased with increasing requirements, likely due to the simultaneous 
decline in number of loci and sequence variation. The irregular trends of 
the locus length interval datasets provided useful clues for subsequent 
dataset selection and further filtering (see 3.5.2). The trends observed 
here, together with the declining read quality (Table S4), the hetero-
geneous coverage of samples and loci, and the irregular assembly 
coverage respecting the over- and under-represented locus length ranges 
from ca. 250-280nt and ca. 540-580nt (Table S9), fit the definition of so- 
called “biased missingness” (Xi et al, 2015, 2016; Hosner et al., 2016; 
Sayyari et al, 2017; Molloy and Warnow, 2018). To reduce this impact, 
we selected the average proportion of missingness (69.58% for the 
length interval datasets) as threshold and discarded all datasets above 
this cut-off. The retained “int_251-500” dataset (Table 1, “int_251-500”) 
consisted of 2,788 loci, containing in total 56,448 (20.24 ± 15.7 on 
average) VAR, 26,533 (9.51 ± 8.66) SNPs, 29,915 (10.73 ± 10.76) PIS, 
66.66% missingness (9.67 samples/locus) and the average locus length 
was 360 (±70nt). The locus truncation to one third of the original length 
lead to a 2/3 reduction of sequence variation and locus length (Table 1, 
“int_251-500_short”). 

3.5.2. Locus filtering by length intervals and increasing maximum length 
and dataset selection based on data qualities and phylogenetic patterns 

The conspicuous trends of the length interval datasets in terms of 
SNPs/PIS ratio and missingness/locus coverage relative to the resulting 
BS support values of the species tree sections motivated further filtering 
to narrow down the extent of potential biased missingness (Table S7 and 
Fig. S4). 

For the locus length interval datasets, CA-ML showed the lowest and 
highest average BS support values for the “int_0-250” and “int_251-300” 
datasets, respectively (Fig. S4.C2 and S4.D1). The average branch sup-
port decreased steadily with increasing locus length. The three branch 
sections were irregularly supported by different sub-datasets. The 
highest count of terraced branches was found for both CA-ML and CB- 
SM for the “int_0-250” dataset (Fig. S4.D2). The second highest counts 
were recorded for the sub-datasets “int_501-550” and “int_551-max”, 
respectively. CA-ML resolved the fewest terraced branches for the 
“int_301-350” and “int_351-400” sub-datasets. The CB-SM trees showed 
the smallest counts for the “int_251-300” and “int_351-400” datasets, 
with the latter having the highest average BS support value (Fig. S4.D1 
and S4.D3). 

For the maximum length datasets, CA-ML showed the lowest 
sectional and total average BS support values for the first two sub- 
datasets (Fig. S4.C4 and S4.D2). Then, the BS support raised sharply 
for the “max_350” sub-dataset and increased steadily up to the 
maximum for the “max_500” sub-dataset. Beyond this point, there was 
no gain in branch support. The CB-SM branch support values were 
lowest for the “max_250” sub-dataset, increased slightly until the 
“max_350” sub-dataset, showed a strong gain for the “max_400” and a 
maximum value for the “max_450” sub-dataset (Fig. S4.C2 and S4.D2). 
Then, the average BS support decreased with increasing maximum locus 
length, in particular the backbone section lost support. CA-ML and CB- 
SM resolved the highest terraced branch count for the first sub-dataset 
(Fig. S4.D4). The number of terraced branches decreased to a 

minimum of two for the CA-ML trees with increasing maximum length 
required. CB-SM resolved the fewest terraced branches for the 
“max_400” sub-dataset. With the addition of loci up to 500nt length 
(“max_500”) the terraced branch count increased strongly and remained 
high up to the maximum locus length (“max_length”). 

For the final dataset selection, we classified all recorded locus 
properties of the sub-datasets and the phylogenetic patterns of the 
resulting trees into three categories, respectively (Fig. S4.E). The two 
extreme datasets of both assembly edges were either over- or under- 
represented (Table S9, “locus length distribution” and “locus 
coverage”). Those sub-datasets showed also a higher or almost equal 
ratio of SNPs to PIS relative to the average VAR per locus (Fig. 4, 
“int_datasets”, Table S7, Fig. S4.A1-A6). The average missingness was 
highest for the filtering parameter edges and decreased towards the 
inner medium parameters (Fig. S4.B1-B4). The expected average locus 
lengths were met by the inner filtering parameters, while the values of 
the sub-datasets increasingly diverged towards the assembly edges 
(Fig. 4, “int_datasets”, Table S7, Fig. S4.B5 and S4.B6). Both CA-ML and 
CB-SM showed the highest sectional and total BS support values for the 
inner filtered sub-datasets, with the highest gain for the “max_350” and 
“max_450” sub-datasets (Fig. S4.C1-C4 and S4.D1-D2). The BS support 
values of the backbone section profited most within this locus length 
range. Both approaches resolved the highest number of terraced 
branches for the filtering parameter edges (Fig. S4.D3-4). The terraced 
branch count decreased with increasing maximum locus length and 
increased again strongly beyond a locus length of 450nt for the CB-SM 
trees. With this locus length also the BS support values started 
decreasing steadily (Fig. S4.D2 and S4.D4). In summary, the locus 
properties and phylogenetic patterns associated with non-randomly 
distributed missingness or biased data were strongest at the filtering 
parameter edges, while the length ranges from 300 to 450nt appeared to 
be less affected (Fig. S4.E). The selected “int_301-450” dataset (Table 1) 
consisted of 1,599 loci of an average length of 373nt (±43nt), containing 
15,673 SNPs (avg. 9.82), 17,808 PIS (avg. 11.24) and 65.56% miss-
ingness. Truncation resulted in a 2/3 reduction of locus properties 
(Table 1, “int_301-450_short”). 

3.6. Phylogenetic inference 

We used three datasets for comparative phylogenetic inference 
(Table 1, Fig. 2c and 2d). The 3,818 loci of the “raw” assembly were used 
for initial inference and clade definition (see 3.4). We removed both cp 
and non-informative loci from this dataset. The retained 3,225 loci of the 
“cleansed” dataset were the input for the locus filtering approach (see 
2.5 and 3.5). The first locus filtering by coverage, variability and length 
intervals resulted in the “int_251-500” dataset (see 2.5.1 and 3.5.1). The 
second locus filtering was intended to reduce the presumed biased 
phylogenetic signal by using phylogenetic patterns relative to the un-
derlying sub-dataset qualities to detect impacted assembly areas (see 
2.5.2 and 3.5.2). This approach yielded the “int_301-450” dataset. The 
filtering steps reduced the number of loci by 58% and the amount of PIS 
by 50% (Table 1, “raw” compared to “int_301-450”). Sequence variation 
and locus coverage increased slightly while the average missingness 
decreased by 4%. Loci-per-sample coverage decreased from an average 
of 1,166 to 549 loci while sample-per-locus coverage became more 
homogenous (Table S9, “sample coverage”). Hence, we assumed the 
“raw” assembly to contain the most, the “int_251-500” dataset to contain 
less, and the “int_301-450” dataset to contain the least biased phyloge-
netic signal. Filtering parsimony informative characters (unlinked PICs) 
resulted in three datasets for the SVD analyses (Table 1). The loci of the 
“raw” assembly were truncated to one third of their original length, re- 
arranged respecting the locus filtering results and species relationships 
were inferred with CA-ML and CB-SM to compare potential performance 
differences in terms of locus length (Table 1, “short”, Fig. 2c and 2d). 
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3.6.1. Comparative phylogenetic inference of the un-/filtered datasets 
For the “raw” datasets, CA-ML (Fig. S2.A) and CB-SM (Fig. S2.B) 

resolved incongruent and weakly supported backbone topologies. The 
CA-ML tree showed an unresolved relationship between the clades 2, 3 
and 4. CB-SM inference resulted in an unresolved relationship of clade 1 
to clades 2, 3 and 4, with low support and low concordance factor 
values. The SVD tree (Fig. S2.C) showed full support for a third topology. 
However, the concordance factor values for the relationship of clade 1 to 
clade 5 were low. The within clade topology differed among all 
reconstructions. 

For the “int_251-500” dataset, CA-ML (Supplementary Figure S5.A) 
and CB-SM inferences (Fig. S5.B) resolved congruent backbone topol-
ogies, however, for CB-SM the relationships of clades 2 + 3 + 4 to clade 
5 lacked support. The concordance factor values increased compared to 
the “raw” dataset. The SVD tree (Fig. S5.C) showed a maximally sup-
ported conflicting topology with low concordance factor values for the 
relationship of clade 2 to clades 1 + 3 + 4. The within clade topology 
differed among all reconstructions. 

For the “int_301-450” dataset, CA-ML (Supplementary Figure S6.A) 
and CB-SM (Fig. S6.B) inference resulted in a well-supported, congruent 
backbone topology (Fig. 5). Concordance factor values for the backbone 
and clade branches were similar. Again, the SVD tree (Fig. S6.C) showed 
a maximally supported conflicting topology but low concordance factor 
values for the relationship of clade 2 to clades 1 + 3 + 4. 

3.6.2. gCF and sCF values obtained with IQ-Tree 
Dataset reduction with respect to the exclusion of potentially biased 

assembly areas, clearly showed an improvement regarding the concor-
dance factor values and differences for the CB-SM reconstructions 
(Table 2). The factor difference decreased for all within clade branches 
and clade branches. The factor values of the clades 1, 2, 3, and 5 
decreased stronger compared to clade 4. The gCF value of the clade 
branches increased by more than 8% compared to the unreduced data-
set, while the sCF value decreased slightly. Interestingly, the factor 
values of the backbone branches increased slightly while the difference 
increased slightly as well. 

Fig. 5. The CA-ML (a) and CB-SM (b) phylogenies of the “int_301-450” dataset. Bootstrap support, gene and site concordance factor values are given above branches. 
Clades are indicated by the encircled numbers 1–5. Boxes shaded in light and dark gray indicate diploid and tetraploid samples, respectively. The sample 
A. porphyrogennetos A12_J16 showed an intermediate genome size and was treated as tetraploid (black box). 
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Concordance factors of CA-ML inference showed a similar pattern 
compared to CB-SM. Overall, the factor values increased with increasing 
dataset reduction. However, the effect was less pronounced compared to 
CB-SM and clade 5 even showed an increased factor difference. Notably, 
the effect of the factor differences for the clade branches was smaller 
while for the backbone branches it was larger, compared to the CB-SM 
reconstruction. 

In general, the factor effects of the SVD reconstructions were in 
strong contrast to CB-SM and CA-ML. The SVD factor values were lower 
compared to CB-SM and CA-ML, and the factor differences raised for the 
clade and the backbone branches. For the within ancestral branches of 
clade 2 + 3 and all descendant relationships, the factor difference 
decreased strongly. 

In terms of the resulting BS support values, data reduction had the 
strongest effect on the backbone branches with an increase in support 
by ~ 13% for CA-ML and ~ 16% for CB-SM (Table 2). Still, the gCF and 
sCF values suggest alternative topologies for the relationship of clades 2 
+ 3 + 4 to clade 5. 

3.6.3. Phylogenetic inference of the truncated locus datasets 
Inference of the truncated datasets using CA-ML (Supplementary 

Figure S7.A and S7.B) and CB-SM (Fig. S7.C and S7.D) resulted in 
alternative topologies compared to the full-length datasets, while also 
exhibiting distinctly lower concordance factor values and larger factor 
differences (Supplementary Table S10) or insufficient BS support for the 
backbone section. The BS support values decreased with decreasing 
locus length and the decrease was strongest in the backbone branches. 
The concordance factor values were mostly lower compared to the full- 
length datasets and the factor difference for the clade and backbone 
branches increased clearly for all reconstructions. 

4. Discussion 

Modification of several modules of the RADseq toolbox, inspired by 
GBS (Elshire et al., 2011) and ddRADseq (Peterson et al., 2012), has 
enabled a strong reduction of the number of targeted fragments. In 
addition, employing the maximum capacity for sequencing resulted in 
an extended locus length of up to 618nt. The CT selection approach 
enabled an informed selection of ISC/BSC thresholds for homology 
assessment of assembled loci. The locus filtering approach, based on 
properties known to affect phylogenetic inference, provided the op-
portunity to observe dataset-specific trends and identify potential 
adverse properties of the sub-datasets. Additional filtering using 
phylogenetic patterns for bias detection turned out to improve overall 
resolution, in particular for CB-SM inference. Besides these positive 
outcomes, there were also many challenges whose critical consideration 
led to suggestions for further improvements. 

4.1. Lab workflow 

Compared to other studies employing a RADseq approaches for 
sample preparation (e.g. Escudero et al., 2014; de Oca et al., 2017; 
Dillenberger and Kadereit, 2017; Hamon et al., 2017; Wagner et al., 
2018; Gerschwitz-Eidt and Kadereit, 2019; Paetzold et al., 2019; Ran-
cilhac et al., 2019; Hipp et al., 2020; Karbstein et al., 2020) we increased 
the fragment length range and thus the length of assembled loci clearly 
by shifting the size selection window and fully exploiting the sequencing 
range of 300nt PE. However, the raw reads varied strongly both in 
quantity and quality across the samples, which led to a loss of locus and 
sample coverage, in particular within the higher length range targeted 
(Supplementary Table S9). This biased distribution of phylogenetic in-
formation represented a substantial challenge to data evaluation. 

Our lab workflow aims at long RAD loci and has been modified in 
three aspects: First, we included a specific size selection window ranging 
from 300 to 600nt for the resulting fragments of the utilized REases 
BamHI and KpnI. Second, barcode and common adapters were designed 

for both REase motifs to sequence all generated fragment types in 
contrast to the classic ddRADseq approach (compare Peterson et al. 
2012). Third, the lab protocol contained two size selection steps to 
ensure complete removal of fragments outside the target range. 

4.1.1. Employed REases 
The flexible RADseq toolbox allows the use of various REases of a 

wide range of qualities for complexity reduction (see also: Andrews 
et al., 2016; McKain et al., 2018; Parchman et al., 2018). Testing and 
comparing single and dual enzyme strategies with respect to the desired 
degree of reduction, or in particular a reduced fragment number and an 
extended length range, either in silico or by sequencing a trial library 
when there is no reference available, can certainly reduce mutation- 
based locus dropout and ease library prep and adapter design (see 
also: Lepais and Weir, 2014; Mora-Márquez et al. 2017; Rivera-Colón 
et al., 2021). Double-digest approaches, using two REases for digestion 
(e.g. Peterson et al., 2012), are more prone to restriction site mutation 
disruption than single-digest protocols (e.g. Elshire et al., 2011). Hence, 
they tend to yield fewer fragments than single-digest approaches which 
are therefore more easily sequenced to sufficient depth (Andrews et al., 
2016; Harvey et al., 2016; Eaton et al., 2017; McKain et al., 2018). Using 
the K. fedtschenkoi genome for in silico double-digest using BamHI and 
KpnI, we calculated about 4,400 fragments (see 2.2) and received about 
3,800 assembled loci (Table 1, “raw”). The difference of ca. 600 frag-
ments may be due to the loss of loci in the assembly range above 500nt 
(Table S9). Compared to capturing approaches, which typically produce 
loci of up to thousands of base pairs in length (e.g., McCormack et al. 
2013a; Nicholls et al., 2015) the herein obtained locus length of Ø 376nt 
and 618nt at most may seem short. Still, the resulting loci showed suf-
ficient sequence variation per locus as input for species tree estimation 
using CB-SM and were in line with approaches targeting similar length 
ranges (e.g. Hosner et al., 2016; Blom et al., 2017). 

4.1.2. Adapter design 
The design of adapters herein was based on the original GBS protocol 

to include and sequence all generated fragments (see Elshire et al., 
2011). However, this approach proved not satisfactory. It did not ac-
count for potential chimera formation and index hopping (see also: Van 
der Valk et al., 2020) and the identical flow cell binding motifs meant a 
potential reduction in sequencing yield. While in general the sequencing 
output was not influenced, the second sequencing run, containing the 
majority of samples, yielded only 50% of the maximum sequencing 
output of the MiSeq v3 kit (Table S4, “run III”). In addition, the reads 
flanked by identical cut sites introduced a further step in data processing 
and locus assembly that could be avoided as the raw data had to be 
demultiplexed twice. Considering these hurdles, we recommend to 
design each adapter type for one cutsite motif only and to use an 
indexing approach that accounts for technical bias (e.g. MacConaill 
et al., 2018; Bayona-Vásquez et al., 2019). 

4.1.3. Size selection window and fragment/locus length distribution 
The use of coalescent-based summary methods for phylogenetic 

inference requires a relatively high quality content of sequence variation 
per locus to reduce GTEE (Chou et al., 2015; Liu et al., 2015; Mirarab 
et al., 2016; Xu and Yang, 2016; Molloy and Warnow, 2018). Because 
the average amount of phylogenetic information in a neutrally evolving 
locus generally correlates with its length (Blom et al., 2017; Mirarab 
et al., 2016; Chou et al., 2015; Molloy and Warnow, 2018), we chose a 
size selection window of approximately 300-600nt (ca. 380-720nt 
segregation range including the adapter and primer length) to obtain 
longer fragments and thus more informative loci (Fig. 1, Appendix 1). 
The 2nd size selection using a ratio of 0.8 parts magnetic bead suspen-
sion to one part library suspension is particularly important as it 
removes fragment artifacts from automated fragment segregation and 
PCR (Fig. 1f, Appendix 1). Compared to a library prepared with the same 
protocol but without final purification, the precision of the fragment 
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length segregation was clearly improved (Appendix 1). The length dis-
tribution of the final assembly was overall in the range targeted by the 
lab protocol. However, the strong decline in sequencing quality of R2 
reads (Table S4, “run I-III”, “mean quality scores”) has resulted in a large 
degree of missingness in the length range of 500-600nt of assembled loci 
(Table S9, “locus length distribution”). Moreover, the quality filtering 
thresholds were set quite strictly (Table S5; Eaton and Overcast, 2020). 
This prevents assembly of erroneous sequences by discarding reads 
below a specified threshold for base and overall quality. In our dataset 
this applied especially to the R2 reads, starting at ca 260nt. Thus, a lot of 
information was lost by excluding high quality partners of low quality 
mates. Tan et al. (2019) found that declining base quality and higher 
error rates of fragments above 500nt are a general issue with multiple 
Illumina sequencing platforms and kits. 

The descriptive analysis of the filtered sub-datasets showed that 
phylogenetic information across the length intervals provided varying 
support for different sections of the resulting species trees (see 2.5.2 and 
3.5.2, Fig. 4c, Fig. S4, “length interval datasets”). Maximum support for 
all sections was covered by a locus length range of 300-450nt. Consid-
ering this and the decreasing quality of R2 reads, we recommend a size 
selection window of 300-500nt (ca. 380-620nt segregation range 
including the adapter and primer length). This might avoid locus loss 
due to the decreasing sequencing quality of the R2 reads and thereby 
achieve a more uniform assembly and evenly distributed phylogenetic 
information. However, other focal groups than Aichryson might require 
longer loci, as the retained variation per locus depends on the taxonomic 
level of interest and is very group specific. 

4.2. Data analysis 

Assembly and analysis of RADseq data is often challenged by various 
factors depending on the selected library prep and bioinformatics 
approach, and, of course, the study group itself. The Aichryson data 
shown here united just about every conceivable challenge known to 
RADseq data. The samples had varying DNA qualities and were 
sequenced in three different libraries. The output of the three 
sequencing runs differed in terms of quantity and quality. The R2 reads 
showed an unevenly distributed drop in quality starting at about 260nt 
sequencing length (Table S4). And it turned out that this dataset had not 
only a high proportion of missing data, but also of biased missingness 
across the assembly length range, impacting sample and locus coverage 
(Table S9). Despite these unfavorable circumstances, or maybe because 
of them, the detailed analyses (Fig. 2), including a CT selection and a 
locus filtering approach, provided detailed insights into the data prop-
erties and their impact on phylogenetic inference. 

4.2.1. CT selection approach 
Clustering threshold selection approaches aim at determining 

balanced CTs to establish homology while avoiding clustering of 
paralogous RADseq loci (e.g., Ilut et al., 2014; Mastretta-Yanes et al., 
2015; McKinney et al., 2017; Paris et al., 2017; McCartney-Melstad 
et al., 2019). For this purpose, assembly metrics are compared across 
a range of CTs to identify values that meet specified requirements. 
Application of such methods is becoming increasingly popular (e.g. 
Herrera and Shank, 2016; Razkin et al., 2016; Paetzold et al., 2019; 
Rancilhac et al., 2019; Karbstein et al., 2020; Wagner et al., 2020) to 
ensure the assembly of homologous loci (Shafer et al., 2017; Springer 
and Gatesy, 2018; McCartney-Melstad et al., 2019; Fernández et al., 
2020; Simion et al., 2020). Following these previously proposed criteris, 
we were able to identify areas that met the requirements in terms of 1) 
the onset of the undermerging area, in which true orthologs are sepa-
rated into paralogs (McCartney-Melstad et al., 2019), 2) an area of high 
heterozygosity with decreased clustering of paralogs (Ilut et al., 2014), 
3) a maximized sequence variation count while missingness is mini-
mized (Mastretta-Yanes et al., 2015), and 4) an increasing number of 
new polymorphic loci (NPL) indicated by the hockey stick signal (Paris 

et al., 2017). This procedure resulted in an assembly comprising 3,818 
loci, of which ~ 84% contained parsimony informative sites (Table 1). 
The loci showed on average ~ 19–21 variable sites, of which ~ 9–11 
were parsimony informative. Since these loci were found to be useful for 
CB-SM inference, we consider the here selected metrics and CT selection 
approaches in general as promising tools for an informed selection of 
thresholds during de novo assembly. Still, there are some issues that need 
to be considered: 1) The results shown herein and assumptions arising 
from them provide more empirical evidence on previous studies, how-
ever, are highly specific to our study group and do not constitute proof in 
general. Hence, simulation studies with known characteristics and 
focusing on each of these aspects are urgently required. 2) We selected 
only a few out of many more possible metrics that can be utilized to 
evaluate dataset-specific trends, such as the pairwise data missingness 
and genetic dissimilarity (McCartney-Melstad et al., 2019), the propor-
tion of heterozygous loci in a sample and allelic ratios at each locus 
(McKinney et al., 2017) or the fraction of sequence variation shared by 
specific proportions of all individuals (Paris et al., 2017). 3) The selected 
CTs for ISC and BSC are an adequate representation of a majority of loci 
but one CT cannot appropriately characterize the entire sequence 
divergence within and across samples. Various causes of sequence 
divergence among genomic regions (e.g., coding or non-coding regions, 
thus degree of sequence conservation, and biological processes such as 
hybridization, horizontal gene-transfer and ILS) lead to a normalization 
within a range of suitable CTs, which we here referred to as the “tran-
sition zone”. 4) Polyploid loci composed of greater allele numbers can 
show greater heterozygosity than loci composed of lower number of 
alleles presumably containing less sequence variation across ortholo-
gous alleles (Hirsch and Buell, 2013; Karbstein et al., 2021), and thus 
require different CTs for accurate clustering. Hence, merging of ISC 
samples of varying ploidy for BSC across all taxa leads to a clustering 
bias. 5) The resulting data, whether used for metric evaluation or in-
ferences of population structure or species relationships, are heavily 
impacted by all other parameters chosen, depend on numerous prop-
erties of the study system (e.g.: taxonomic level, genomic variation, 
utilized lab protocols, quality and quantity of data) and will affect 
downstream analysis (e.g. Huang and Knowles 2016; Eaton et al., 2017; 
Shafer et al., 2017; Crotti et al., 2019; McCartney-Melstad et al., 2019). 
6) Metric trends can be affected by heterogeneous read quality and 
quantity, as well as biological factors, such as genome size or repetitive 
regions. This presumably leads to different metric trends of individual 
samples, as seen in the scatter plots for the ISC threshold selection 
(paragraph 3.2, Supplementary Figure S1). As a consequence, the se-
lection of potential CTs gets less precise. This problem may be improved 
by re-splitting samples into groups that show similar trend intensities 
and using specific CTs for each group. Simulation studies focusing on 
potential impacts of heterogeneous sample qualities on the CT selection 
and the resulting assembly are required. Nevertheless, we consider a 
thorough evaluation of assembly metrics, as shown in this and other 
studies (e.g. Paris et al., 2017; Paetzold et al., 2019; Rancilhac et al., 
2019; McCartney-Melstad et al., 2019; Karbstein et al., 2020; Wagner 
et al., 2020), to be an improvement over simply using default settings. 

4.2.2. Locus filtering 
The impact of filtering loci regarding specific properties, such as 

length, sequence variation or missingness, prior to phylogenetic infer-
ence has been investigated by numerous studies (e.g. Chou et al., 2015; 
Liu et al., 2015; Xi et al., 2015, 2016; Hosner et al., 2016; Mirarab et al., 
2016; Huang and Knowles 2016; Sayyari et al., 2017; Molloy and 
Warnow, 2018). We confirm general trends previously observed 
regarding locus coverage and sequence variation (see 2.5.1 and 3.5.1, 
Table S6, Fig. S3). As the minimum requirements increased, the number 
of loci and sequence variation decreased (Huang and Knowles, 2016; 
Eaton et al., 2017). This information loss resulted in sharply decreasing 
BS support values of the resulting species tree estimates. This is likely a 
result of higher locus dropout in more rapidly evolving loci (for the “min 
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var” datasets). The more conserved loci are less variable but also less 
prone to mutation-induced cut-site disruption and thus show a higher 
sample coverage (for the “min samples” datasets). An interesting point is 
that the two datasets with the highest minimum variability required 
(Table S6, “min_var_200” and “min_var_300”) also showed a trend to-
ward biased locus lengths. In addition, these loci contained on average 
more missing data and a higher portion of variable sites was parsimony 
un-informative. The negative impact of this constellation of locus 
properties on the accuracy of species tree estimation has been demon-
strated by Xi et al. (2015), Hosner et al. (2016) and Lee et al. (2018). 
This constellation was also evident for the length interval datasets 
containing the shortest and longest loci at the assembly edges (Table S6 
and S7, Fig. S3 and S4). For these assembly regions, we assume that the 
declining sequencing quality of R2 reads led to biased sample and locus 
coverage, which was reflected by the prominent gap between 500 and 
600nt as well as the high number of loci in the 250-300nt length range of 
the assembly (Table S9). This kind of data bias causes high GTEE and 
artificial phylogenetic conflicts among taxa and clades, which nega-
tively affects the species tree estimation performance (Sanderson et al., 
2010, 2011, 2015; Simmons, 2012; Hosner et al., 2016; Xi et al., 2016; 
Sayyari et al., 2017; Dobrin et al., 2018). 

To reduce this effect, we first chose a controversial approach and 
filtered the loci based on average missingness, which resulted in the 
“int_251-500” dataset. Locus filtering based on missingness is generally 
not recommended because it can lead to a significant loss of information 
and thus to a performance decline of phylogenetic inference (Huang and 
Knowles 2016; Eaton et al., 2017; Molloy and Warnow, 2018; Crotti 
et al., 2019). However, it can lead to an improvement in estimation 
accuracy if the extent of biased, non-randomly distributed phylogenetic 
signal is also reduced (Xi et al., 2015, 2016; Sayyari et al., 2017; Molloy 
and Warnow, 2018). Although this first filtering and dataset selection 
resulted in a slight improvement of the data quality and the resulting BS 
support and concordance factor values, it did not yield the required data 
quality for a successful CB-SM inference. Simply choosing the average 
missingness as a cutoff value may improve the quality of loci containing 
evenly distributed phylogenetic information, but not if the bias is un-
evenly distributed across the assembly. 

To further reduce the extent of the biased assembly area, we binned 
the loci based on length, inferred CA-ML and CB-SM phylogenies for 
each sub-dataset and put resulting phylogenetic patterns in relation to 
sub-dataset properties to detect biased locus length ranges (see 2.5.2 and 
3.5.2, Table S7, Fig. S4). This approach turned out beneficial with regard 
to the selection of less biased assembly areas, suitable for CB-SM infer-
ence. The typical responses of BS support values and reconstruction of 
terraced branches confirmed the assembly’s edge regions as particularly 
biased. In these locus length regions of the assembly, either the BS 
support values collapsed or the number of terraced branches of the 
resulting topology was high. Consequently, we selected the remaining, 
presumably less biased, assembly range of 301-450nt length served as 
third dataset for comparative phylogenetic inference. While this second 
filtering and dataset selection procedure represented a drastic reduction 
of overall data quantity, it also increased data quality as indicated by the 
average sequence variation per locus, locus coverage/missingness and 
sample coverage (Table 1, Table S9). 

The second filtering approach used here to examine the influence of 
locus properties on the resulting phylogenetic reconstructions resulted 
in a dataset favorable for CB-SM inference. However, the process was 
quite tedious, and at times somewhat crude, which indicates a number of 
opportunities for further refinement in the future. 1) Loci of certain 
properties within the excluded assembly ranges are likely to be also well 
suited for CB-SM inference. We filtered the loci by their relative 
sequence variation including SNPs and PIS (see 2.5.1). However, the 
notable PIS/SNPs ratio along with the average locus coverage evident in 
the locus length filtering (Fig. S3 and S4) may be a clue to filter loci by 
information quality (Xi et al., 2015; Hosner et al., 2016; Lee et al., 2018). 
2) The bin sizes chosen for filtering locus properties might be smaller to 

enable a more accurate detection of potential trend changes respecting 
phylogenetic outcomes. 3) We calculated only one reconstruction per 
inference approach for each sub-dataset. Multiple replicates may be 
generated to identify and statistically assess potential variations. 4) We 
found overall matching trends of locus properties relative to the 
resulting phylogenetic patterns of CA-ML and CB-SM used for bias 
detection. Considering the presumably strongly biased signal scattered 
across taxa, the relative influence of technical errors and true biological 
conditions (e.g. ILS) remain difficult to assess. 5) Instead of multi-locus 
bootstrapping (Seo, 2008), the branch support might be assessed using 
Local Posterior Probability, which was shown to perform more accurate 
on locus trees with relatively high error (Sayyari and Mirarab, 2016) or 
quartet based methods to identify non-informativeness (Pease et al., 
2018). 6) Counting the terrace-like branches in the resulting trees hel-
ped to identify biased assembly areas but did not provide insight into the 
actual underlying conflicts among taxa and clades. Besides, terraced 
branches can also represent the true topology (Sanderson et al., 2011). 
To account for artificial conflicts in the data, terrace-aware phylogenetic 
inference tools can be used (Sanderson et al., 2011, 2015; Chernomor 
et al., 2016; Dobrin et al., 2018). 7) Further approaches may be tested 
comparatively to allow for a more accurate data quality assessment, 
such as filtering for fragmentary data to achieve uniform taxon coverage 
(Xi et al., 2016; Sayyari et al., 2017) or subsampling specific loci to 
establish congruence across the dataset (Chen et al., 2015; Simmons 
et al., 2016). For future projects, an automated pipeline that filters loci 
based on multiple criteria, records the properties of these bins, and 
evaluates the resulting phylogenetic patterns, thus simplifying the 
tedious filtering process, would be of great value. 

4.3. Phylogenetic inference 

Previous attempts at resolving phylogenetic relationships in Aichry-
son were mainly hampered by lack of variability in the employed regions 
(Mort et al., 2002; Fairfield et al., 2004 which failed to resolve re-
lationships at shallow taxonomic levels (e.g., Miller et al., 2003; Abey-
singhe et al., 2009; Duan et al., 2015). The application of a modified 
RADseq approach together with detailed data processing, analysis of 
filtered sub-datasets and comparative phylogenetic inference resulted in 
the first well-supported phylogeny for Aichryson. Moreover, we gained 
further insight into the performance of the tested inference methods 
with respect to underlying data properties. 

4.3.1. General trends of the CA-ML and CB-SM inference during locus 
filtering 

During locus filtering, we initially filtered the loci by variability, 
locus coverage and length intervals (see 2.5.1 and 3.5.1). Contrary to 
our expectation, we were not able to reconstruct a well-supported CB- 
SM phylogeny using this approach. Instead, we found that the BS sup-
port values of the three species tree sections responded differently to the 
underlying locus length interval datasets (Fig. 4, Table S6, Fig. S3). The 
related locus properties in terms of sequence variation and missingness, 
as well as the distribution of data across the assembly, loci, and samples 
(Table S9), indicated a data bias (Sanderson et al., 2010; Hosner et al., 
2016; Xi et al., 2016; Sayyari et al., 2017; Lee et al., 2018; Molloy and 
Warnow, 2018). 

Subsequently, we used phylogenetic patterns yielded by CA-ML and 
CB-SM inference of locus length sub-datasets to detect potentially biased 
assembly areas (see 2.5.2 and 3.5.2, Table S7, Fig. S4). CB-SM resolved 
more terraced branches than CA-ML across the tested sub-datasets, in 
particular when the datasets were small (Xi et al., 2016; Fig. S4, “length 
interval” datasets). This is likely due to the information loss inherent to 
the method, using only summary statistics of the inferred gene trees as 
input for species tree estimation (Xu and Yang, 2016). Along with this 
come the clearly lower resulting support values of the multi-locus 
bootstrapping (Seo, 2008) when applied to fragmentary data (Xi et al., 
2015, 2016; Hosner et al., 2016; Sayyari et al., 2017). The overall higher 

P. Hühn et al.                                                                                                                                                                                                                                    



Molecular Phylogenetics and Evolution 167 (2022) 107342

18

and steadily increasing BS support values with increasing dataset size 
confirm prior observations regarding CA-ML inference (Kubatko and 
Degnan, 2007; Liu et al., 2015; Minh et al. 2020a). CA-ML inference of 
the length sub-datasets seemed less sensitive or more robust to data bias 
(Xi et al., 2016; Molloy and Warnow, 2018). Still, bootstrapping over the 
concatenated matrix showed quite similar trends compared to the multi- 
locus bootstrapping employed with CB-SM. 

4.3.2. Comparative phylogenetic inference of the un-/filtered datasets 
The filtering steps meant a maximum reduction of 58% for the 

number of loci and 50% for the number of PIS, while the average 
sequence variation and coverage per locus raised, average missingness 
declined and sample coverage became more evenly distributed (Table 1, 
“raw” compared to “int_301-450”, Table S9, “sample coverage”). 

For CA-ML and CB-SM, the exclusion of presumably biased assembly 
areas, resulted in increasing statistical support while the concordance 
factor value differences decreased (Table 2, Table S10, Fig. S2, S5 and 
S6). These trends were stronger for the CB-SM inferences. The concor-
dance factor values and differences of the within clade branches 
benefited slightly while those of the clade branches benefited most from 
reduction. This was accompanied by improved factor values and dif-
ferences of the backbone branches. We suggest that the overall higher 
locus coverage and the more evenly distributed information across taxa 
(sample coverage) of the retained assembly area caused less artificial 
conflicts among clades and thus favored resolution and support of the 
backbone section (Sanderson et al., 2010, 2011; Xi et al., 2015, 2016; 
Hosner et al., 2016; Sayyari et al., 2017; Dobrin et al., 2018; Molloy and 
Warnow, 2018; Minh et al. 2020a, b). This increasing statistical support 
coincides with an increase in the number of terraced branches. For 
instance, the CA-ML and CB-SM inferences of the “raw” dataset recon-
structed a dichotomous topology for the taxa of clade 4, but there was 
insufficient statistical support for the backbone sections (Fig. S2). The 
backbone topology of the strongly reduced “int_301-450” dataset was 
well supported, but in exchange the taxa of clade 4 were reconstructed 
on terraced branches (Fig. 5 and S6). 

Phylogenetic inference of the datasets using SVD showed some 
contradictions. The lower factor values of the backbone branches for the 
alternative topologies and compared to the CA-ML and CB-SM in-
ferences (Fig. S2, S5 and S6), increasing concordance factor value dif-
ferences with increasing extent of reduction (Table 2), as well as the 
consistent maximum BS support values, suggest a random resolution due 
to limited and unevenly distributed information (Long and Kubatko, 
2018; Minh et al. 2020a, b). This is certainly in part due to the selection 
of individual PICs per locus, which we performed to meet the methods 
requirements in terms of linkage (Bryant et al., 2012; Chiffman and 
Kubatko 2014; Xu and Yang, 2016). In addition, studies comparing the 
performance of inference methods under challenging data conditions 
showed that SVD is often less accurate than CA-ML and CB-SM (Chou 
et al., 2015; Molloy and Warnow, 2018). Still, the SVD inferences 
illustrated potentially conflicting topological alternatives. 

In summary, phylogenetic inference of the three datasets (“raw”, 
“int_251-500”, and “int_301-450”) showed positive trends in terms of 
the resulting BS support values and concordance factor values with 
increasing degree of dataset reduction for CA-ML and CB-SM. The 
resulting SVD reconstructions, however, appeared to be impeded by 
information limitation and data bias. 

4.3.3. Phylogenetic inference of the truncated locus datasets 
In general, increasing locus length is associated with increasing 

phylogenetic information, lower GTEE and thus an increased accuracy 
of species tree estimation (e.g. Mirarab et al., 2014, 2016; Xi et al., 2015; 
Chou et al., 2015; Hosner et al., 2016; Xu and Yang, 2016; Blom et al., 
2017; Molloy and Warnow, 2018). We expected a decrease in locus 
length to decrease the total and average phylogenetic information per 
locus, and consequently to negatively affect performance. To test this, 
the “raw” assembly loci were truncated and used as input for CA-ML 

(Supplementary Figure S7 A and B) and CB-SM inference (Supplemen-
tary Figure S7 C and D). 

The truncated datasets showed a 2/3 reduction in phylogenetic in-
formation (Table 1, “int_251-500_short” and “int_301-450_short”), 
resulted incongruently resolved tree topologies (Fig. S7), and yielded 
decreased estimated BS support and concordance factor values, while 
the factor value differences of the clade and backbone branches 
increased strongly compared to the original datasets (Table S10). 
Therefore, we conclude that the locus length reduction had a substan-
tially negative impact on the phylogenetic inference. This is in line with 
findings by studies comparing the inference performance over varying 
locus lengths and information contents (e.g. Mirarab et al., 2014a, b, 
2016; Xi et al., 2015; Chou et al., 2015; Xu and Yang, 2016; Molloy and 
Warnow, 2018). 

However, we performed a drastic locus length reduction by 2/3, 
which resulted in an average locus length of 120/123nt (Table 1). As we 
found during locus filtering (see 2.5) and phylogenetic inference of the 
resulting datasets, an average locus length of 373nt (±43nt) in an as-
sembly range of 300-450nt yielded sufficient phylogenetic information 
per locus and in total for successful CB-SM inference. Other empirical 
studies using similar or even shorter length ranges also achieved a 
successful CB-SM inference of the assembled data (e.g. Curto et al., 
2018; Rancilhac et al., 2019). Based on our results, and as found by 
numerous studies (e.g., Gatesy and Springer, 2014; Lanier et al., 2014; 
Liu et al., 2015; Xi et al., 2015; Hosner et al., 2016; Huang and Knowles, 
2016; Blom et al., 2017; Sayyari et al., 2017; Xu and Yang, 2016; Lee 
et al., 2018), we suggest that locus quality in terms of the information 
content and its distribution across the assembly and taxa is of greater 
importance than mere locus length. Yet, this also strongly depends on 
the taxonomic level, i.e. sequence divergence, of the study group. 

4.3.4. On the accuracy of the Aichryson phylogeny 
The accuracy of the phylogenetic outcome is the suggested by the 

emerging congruence of the CA-ML and CB-SM reconstructions with 
increasing data quality. Inference of the “int_301-450” dataset yielded 
overall congruent, similarly well-supported topologies as well as similar 
concordance factor values and differences. In addition, the phylogenetic 
pattern matches the species distributions. For instance, the species 
occurring on Madeira (A. divaricatum, A. dumosum, A. villosum) and the 
two A. tortuosum subspecies occurring on the eastern Canary Islands, 
Lanzarote (subsp. tortuosum) and Fuerteventura (subsp. bethencourtia-
num), each form a monophyletic group. The polyphyletic status of the A. 
pachycaulon subspecies is also consistent with previous studies (Mort 
et al., 2002; Fairfield et al., 2004). 

However, as Goethe put it: „We know accurately only when we know 
little; with knowledge, doubt increases” (von Goethe, 2012, published 
postum). 1) Aichryson is not a model group and lacks comparable studies 
in terms of data properties (locus length, sequence variation, missing-
ness), data analysis (data assembly, locus filtering) and phylogenetic 
inference. 2) We did not statistically assess potential variation in 
phylogenetic inference of the filtered datasets using multiple replicates. 
3) The extent to which phylogenetic inference may be impacted by 
terraces due to artificial conflicts among clades arising from the data 
structure herein is unclear (Sanderson et al., 2010, 2011, 2015; Sim-
mons, 2012; Dobrin et al., 2018). 4) Although locus properties gained 
quality and sample coverage became more even, the low concordance 
factor values of some backbone branches representing the relationships 
of clades 2 + 3 + 4 to clade 5 and high concordance factor value dif-
ferences of the within clade branches of clade 5 suggest a strong conflict 
among clades and taxa, respectively (Minh et al. 2020a, b). However, we 
cannot assess whether this incongruence of information among locus 
trees is a true biological signal due to reticulate evolution or an artifact 
of the data structure. 5) In addition, the ongoing, sometimes heated 
debate over the most accurate application, analysis, and inference of a 
variety of RRL/SRS-based approaches, along with a series of compari-
sons of divergent concepts and opinions, further complicate the 
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interpretation of the results (e.g. de Queiroz and Gatesy 2007; Edwards 
et al., 2007, 2016; Kubatko and Degnan, 2007; Degnan and Rosenberg, 
2009; Knowles, 2009; Leaché and Rannala, 2011; Song et al., 2012; 
Gatesy and Springer, 2013, 2014; Springer and Gatesy 2014, 2016, 
2018; Mirarab et al., 2014b, 2016; Chou et al., 2015; Roch and Steel 
2015; Mirarab and Warnow 2015; Solís-Lemus et al., 2016; Mendes and 
Hahn, 2018; Molloy and Warnow, 2018; Bryant and Hahn, 2020; Ran-
nala et al., 2020). In particular, the inference accuracy of CA-ML in the 
presence of gene tree-species tree discordance (Degnan et al., 2006, 
Degnan and Rosenberg, 2009; Kubatko and Degnan, 2007; Knowles, 
2009; Roch and Steel, 2015; Solís-Lemus et al., 2016; Mendes and Hahn, 
2018; Bryant and Hahn, 2020) and the performance of CB-SM under 
conditions of GTEE (Springer and Gatesy, 2014, 2016; Roch and War-
now, 2015; Xi et al., 2015, 2016; Solís-Lemus et al., 2016; Xu and Yang, 
2016; Sayyari et al., 2017; Molloy and Warnow, 2018) raise concerns. 

In general, CA-ML and CB-SM are expected to yield congruent results 
under less challenging conditions of gene tree-species tree discordance 
(Edwards et al., 2007; Kubatko and Degnan, 2007; Leaché and Rannala, 
2011). Comparative studies showed that CA-ML and CB-SM performed 
equally under various levels of ILS, with CA-ML performing more ac-
curate under challenging GTEE conditions (Chou et al., 2015; Xi et al., 
2015, 2016; Mirarab et al., 2016; Sayyari et al., 2017; Molloy and 
Warnow, 2018). Moreover, inference of empirical data using both ap-
proaches generally yielded congruent results (e.g. Chiari et al., 2012; 
Hosner et al., 2016; Blom et al., 2017; Sayyari et al., 2017; Curto et al., 
2018; Rancilhac et al., 2019). The bottom line is that we cannot ulti-
mately assess the accuracy of the species tree for Aichryson, still, we 
construe the overall congruence as supporting the accuracy of the 
phylogenetic outcome. 

4.4. Conclusion 

The methodology presented in this study successfully led to a 
coalescent-based inference of our focal group Aichryson. For some, 
however, the series of approaches tested by us may be equivalent to a 
butcher making “phylogenetic sausage” (for the definition of a ”phylo-
genetic sausage“ see: Gatesy and Springer, 2014; see further: Springer 
and Gatesy, 2016, 2018; Bryant and Hahn, 2020; Fernández et al., 2020; 
Rannala et al., 2020). Admittedly, all methodological components could 
be modified and improved in many ways. The resulting data were also 
quite demanding to analyze. Still, particularly the challenging data 
structure provided the opportunity to gain further valuable insights to 
drive the development of fast and reliable RRL-SRS approaches. 1) 
Minor modifications of the RADseq toolbox regarding fragment size 
selection and sequencing range yielded a strongly reduced locus set of 
extended length. 2) Evaluation of a few metrics enabled an informed 
selection of clustering thresholds for data assembly within and across 
samples. 3) Simple descriptive statistics of the resulting assembly were 
useful for an initial assessment of the data structure. 4) Locus filtering 
greatly assisted to identify assembly areas of presumably biased locus 
and taxon coverage. 5) Comparative evaluation of phylogenetic pat-
terns, such as terrace-like branches, BS support values and concordance 
factor values highlighted the importance of data quality over mere 
quantity, in particular for the coalescent-based summary method. 

We are convinced that the combination of highly flexible RRL-SRS 
laboratory, data analysis, and inference approaches is crucial for a fast 
and reliable biodiversity exploration. Hence, we highly encourage the 
community to: 1) modify the extensive RADseq toolbox regarding an 
extended fragment length and sequencing range, 2) reduce the data 
quantity in favor of data quality, 3) utilize approaches guiding an 
informed threshold selection for accurate clustering, 4) thoroughly 
analyze and test the resulting assembly and locus properties for potential 
biases, 5) and to compare and evaluate the resulting phylogenetic trends 
using multiple inference approaches. 
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Suda, J., Kyncl, T., Jarolímová, V., 2005. Genome size variation in Macaronesian 
angiosperms: forty percent of the Canarian endemic flora completed. Pl. Syst. Evol. 
252 (3–4), 215–238. https://doi.org/10.1007/s00606-004-0280-6. 

Swofford, D.L., 2003. PAUP*. Phylogenetic analysis using parsimony (*and other 
methods), version 4.0a168. Sinauer Associates, Sunderland, Massachusetts, USA. 

Tan, G., Opitz, L., Schlapbach, R., Rehrauer, H., 2019. Long fragments achieve lower 
base quality in Illumina paired-end sequencing. Sci. Rep. 9 (1), 1–7. https://doi.org/ 
10.1038/s41598-019-39076-7. 

Uhl, C.H., 1961. The chromosomes of the Sempervivoideae (Crassulaceae). Amer. J. Bot. 
48 (2), 114–123. https://doi.org/10.1002/ajb2.1961.48.issue-210.1002/j.1537- 
2197.1961.tb11612.x. 

Vachaspati, P., Warnow, T., 2015. ASTRID: accurate species trees from internode 
distances. BMC Genomics 16 (10), 1–13. http://www.biomedcentral.com/ 
1471-2164/16/S10/S3. 

van der Valk, T., Vezzi, F., Ormestad, M., Dalén, L., Guschanski, K., 2020. Index hopping 
on the Illumina HiseqX platform and its consequences for ancient DNA studies. Mol. 
Ecol. Resour. 20 (5), 1171–1181. https://doi.org/10.1111/men.v20.510.1111/ 
1755-0998.13009. 

van Gurp, T.P., 2017. GBS Barcode Generator. http://www.deenabio.com/services/gbs 
-adapter (accessed January 2017). 

von Goethe, J.W., 2012. Maximen und reflexionen. Jazzybee Verlag Jürgen Beck, 
Altenmüster, Germany.  

Wagner, N.D., Gramlich, S., Hörandl, E., 2018. RAD sequencing resolved phylogenetic 
relationships in European shrub willows (Salix L. subg. Chamaetia and subg. Vetrix) 
and revealed multiple evolution of dwarf shrubs. Ecol Evol. 8 (16), 8243–8255. 
https://doi.org/10.1002/ece3.2018.8.issue-1610.1002/ece3.4360. 

Wagner, F., Ott, T., Schall, M., Lautenschlager, U., Vogt, R., Oberprieler, C., 2020. 
Taming the Red Bastards: Hybridisation and species delimitation in the 
Rhodanthemum arundanum-group (Compositae, Anthemideae). Mol. Phylogenet. 
Evol. 144, 106702. https://doi.org/10.1016/j.ympev.2019.106702. 

Wang, X., Ye, X., Zhao, L., Li, D., Guo, Z., Zhuang, H., 2017. Genome-wide RAD 
sequencing data provide unprecedented resolution of the phylogeny of temperate 
bamboos (Poaceae: Bambusoideae). Sci. Rep. 7, 11546. https://doi.org/10.1038/ 
s41598-017-11367-x. 

Weitemier, K., Straub, S.C.K., Cronn, R.C., Fishbein, M., Schmickl, R., McDonnell, A., 
Liston, A., 2014. Hyb-Seq: Combining target enrichment and genome skimming for 
plant phylogenomics. Appl. Plant Sci. 2 (9), 1400042. https://doi.org/10.3732/ 
apps.140004210.3732/apps.1400042.s1. 

Whitfield, J.B., Lockhart, P.J., 2007. Deciphering ancient rapid radiations. Trends Ecol. 
Evol. 22 (5), 258–265. https://doi.org/10.1016/j.tree.2007.01.012. 

P. Hühn et al.                                                                                                                                                                                                                                    

https://doi.org/10.3389/fpls.2015.00710
https://doi.org/10.3389/fpls.2015.00710
https://doi.org/10.3389/fpls.2019.01074
https://doi.org/10.3389/fpls.2019.01074
https://doi.org/10.1007/s11295-018-1251-3
https://doi.org/10.1093/oxfordjournals.molbev.a040517
https://doi.org/10.1111/2041-210X.12775
https://doi.org/10.1111/2041-210X.12775
https://doi.org/10.1002/ajb2.2018.105.issue-310.1002/ajb2.1016
https://doi.org/10.1002/ajb2.2018.105.issue-310.1002/ajb2.1016
https://doi.org/10.1371/journal.pone.0037135
https://doi.org/10.1371/journal.pone.0037135
https://doi.org/10.1016/j.ympev.2019.01.003
https://doi.org/10.1016/j.ympev.2016.05.002
http://refhub.elsevier.com/S1055-7903(21)00275-X/h0560
http://refhub.elsevier.com/S1055-7903(21)00275-X/h0560
http://refhub.elsevier.com/S1055-7903(21)00275-X/h0560
http://refhub.elsevier.com/S1055-7903(21)00275-X/h0560
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1111/men.v21.210.1111/1755-0998.13163
https://doi.org/10.1111/men.v21.210.1111/1755-0998.13163
https://doi.org/10.1016/j.tpb.2014.12.005
https://doi.org/10.1093/sysbio/syv016
https://doi.org/10.1371/journal.pone.0033394
https://doi.org/10.1371/journal.pone.0033394
https://doi.org/10.1186/1471-2148-10-155
https://doi.org/10.1186/1471-2148-10-155
https://doi.org/10.1126/science.1206357
https://doi.org/10.1093/sysbio/syv024
https://doi.org/10.1093/sysbio/syv024
https://doi.org/10.1093/molbev/msw079
https://doi.org/10.1093/molbev/msw079
https://doi.org/10.1093/molbev/msx261
https://doi.org/10.1111/2041-210X.12785
https://doi.org/10.1093/molbev/msn043
https://doi.org/10.1093/molbev/msn043
https://doi.org/10.1111/mee3.2017.8.issue-810.1111/2041-210X.12700
https://doi.org/10.1111/evo.12681
https://doi.org/10.1111/j.1096-0031.2011.00375.x
https://doi.org/10.1111/j.1096-0031.2011.00375.x
https://doi.org/10.1016/j.ympev.2015.12.013
https://doi.org/10.1093/sysbio/syt061
https://doi.org/10.1093/sysbio/syw030
https://doi.org/10.1073/pnas.1211733109
https://doi.org/10.1371/journal.pone.0049521
https://doi.org/10.1016/j.tplants.2014.02.012
https://doi.org/10.1016/j.ympev.2015.07.018
https://doi.org/10.1080/14772000.2017.1401016
https://doi.org/10.1080/14772000.2017.1401016
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1371/journal.pone.0151651
https://doi.org/10.1371/journal.pone.0151651
https://protocols.io/view/hyrad-rna-probes-preparation-and-capture-rzqd75w
https://protocols.io/view/hyrad-rna-probes-preparation-and-capture-rzqd75w
https://doi.org/10.1007/s00606-004-0280-6
https://doi.org/10.1038/s41598-019-39076-7
https://doi.org/10.1038/s41598-019-39076-7
https://doi.org/10.1002/ajb2.1961.48.issue-210.1002/j.1537-2197.1961.tb11612.x
https://doi.org/10.1002/ajb2.1961.48.issue-210.1002/j.1537-2197.1961.tb11612.x
http://www.biomedcentral.com/1471-2164/16/S10/S3
http://www.biomedcentral.com/1471-2164/16/S10/S3
https://doi.org/10.1111/men.v20.510.1111/1755-0998.13009
https://doi.org/10.1111/men.v20.510.1111/1755-0998.13009
http://www.deenabio.com/services/gbs%e2%80%90adapter
http://www.deenabio.com/services/gbs%e2%80%90adapter
http://refhub.elsevier.com/S1055-7903(21)00275-X/h0735
http://refhub.elsevier.com/S1055-7903(21)00275-X/h0735
https://doi.org/10.1002/ece3.2018.8.issue-1610.1002/ece3.4360
https://doi.org/10.1016/j.ympev.2019.106702
https://doi.org/10.1038/s41598-017-11367-x
https://doi.org/10.1038/s41598-017-11367-x
https://doi.org/10.3732/apps.140004210.3732/apps.1400042.s1
https://doi.org/10.3732/apps.140004210.3732/apps.1400042.s1
https://doi.org/10.1016/j.tree.2007.01.012


Molecular Phylogenetics and Evolution 167 (2022) 107342

23

Wu, S., Song, S., Liu, L., Edwards, S.V., 2013. Reply to Gatesy and Springer: the 
multispecies coalescent model can effectively handle recombination and gene tree 
heterogeneity. P. Natl. Acad. Sci. USA 110 (13). https://doi.org/10.1073/ 
pnas.1300129110. 

Xi, Z., Liu, L., Davis, C.C., 2015. Genes with minimal phylogenetic information are 
problematic for coalescent analyses when gene tree estimation is biased. Mol. 
Phylogenet. Evol. 92, 63–71. https://doi.org/10.1016/j.ympev.2015.06.009. 

Xi, Z., Liu, L., Davis, C.C., 2016. The impact of missing data on species tree estimation. 
Molec. Biol. Evol. 33 (3), 838–860. https://doi.org/10.1093/molbev/msv266. 

Xu, B., Yang, Z., 2016. Challenges in species tree estimation under the multispecies 
coalescent model. Genetics 204 (4), 1353–1368. https://doi.org/10.1534/ 
genetics.116.190173. 

Yang, Z., Rannala, B., 2010. Bayesian species delimitation using multilocus sequence 
data. Proc. Natl. Acad. Sci. U.S.A. 107 (20), 9264–9269. https://doi.org/10.1073/ 
pnas.0913022107. 

Yang, Z., 1996. Maximum-likelihood models for combined analyses of multiple sequence 
data. J. Mol. Evol. 42 (5), 587–596. https://doi.org/10.1007/BF02352289. 

Zhang, C., Rabiee, M., Sayyari, E., Mirarab, S., 2018. ASTRAL-III: polynomial time 
species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19, 153. 
https://doi.org/10.1186/s12859-018-2129-y. 

Zimmermann, T., Mirarab, S., Warnow, T., 2014. BBCA: Improving the scalability of* 
BEAST using random binning. BMC Genomics 15 (6), S11. https://doi.org/10.1186/ 
1471-2164-15-S6-S11. 

P. Hühn et al.                                                                                                                                                                                                                                    

https://doi.org/10.1073/pnas.1300129110
https://doi.org/10.1073/pnas.1300129110
https://doi.org/10.1016/j.ympev.2015.06.009
https://doi.org/10.1093/molbev/msv266
https://doi.org/10.1534/genetics.116.190173
https://doi.org/10.1534/genetics.116.190173
https://doi.org/10.1073/pnas.0913022107
https://doi.org/10.1073/pnas.0913022107
https://doi.org/10.1007/BF02352289
https://doi.org/10.1186/s12859-018-2129-y
https://doi.org/10.1186/1471-2164-15-S6-S11
https://doi.org/10.1186/1471-2164-15-S6-S11

	How challenging RADseq data turned out to favor coalescent-based species tree inference. A case study in Aichryson (Crassul ...
	1 Introduction
	2 Materials and methods
	2.1 Study group, sampling and DNA extraction
	2.2 In silico digestion, restriction enzyme choice and adapter design
	2.3 RADseq
	2.3.1 RADseq lab workflow
	2.3.2 Library quality assessment and sequencing

	2.4 Data assembly
	2.4.1 Raw sequence treatment
	2.4.2 ipyrad
	2.4.3 Assembly parameter settings
	2.4.4 Selection of suitable clustering thresholds for ISC and BSC
	2.4.5 Processing of the unfiltered ipyrad assembly

	2.5 Locus filtering and dataset selection
	2.5.1 Locus filtering by coverage, variability, length intervals and dataset selection based on average missingness
	2.5.2 Locus filtering by length and dataset selection based on sub-dataset properties and phylogenetic patterns
	2.5.3 Generating ‘short’ loci by locus truncation

	2.6 Phylogenetic inference
	2.6.1 Phylogenetic inference with RAxML (CA-ML)
	2.6.2 Species tree inference with ASTRAL-III (CB-SM)
	2.6.3 Svdquartets analysis (SVD)
	2.6.4 IQ-TREE analysis


	3 Results
	3.1 Final library and MiSeq output
	3.2 ISC and BSC threshold selection
	3.3 ipyrad assembly output
	3.4 Initial inference of the raw dataset and clade definition
	3.5 Locus filtering
	3.5.1 Locus filtering by coverage, variability, length intervals and dataset selection based on average missingness
	3.5.2 Locus filtering by length intervals and increasing maximum length and dataset selection based on data qualities and p ...

	3.6 Phylogenetic inference
	3.6.1 Comparative phylogenetic inference of the un-/filtered datasets
	3.6.2 gCF and sCF values obtained with IQ-Tree
	3.6.3 Phylogenetic inference of the truncated locus datasets


	4 Discussion
	4.1 Lab workflow
	4.1.1 Employed REases
	4.1.2 Adapter design
	4.1.3 Size selection window and fragment/locus length distribution

	4.2 Data analysis
	4.2.1 CT selection approach
	4.2.2 Locus filtering

	4.3 Phylogenetic inference
	4.3.1 General trends of the CA-ML and CB-SM inference during locus filtering
	4.3.2 Comparative phylogenetic inference of the un-/filtered datasets
	4.3.3 Phylogenetic inference of the truncated locus datasets
	4.3.4 On the accuracy of the Aichryson phylogeny

	4.4 Conclusion

	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Sequence data
	Appendix A Supplementary data
	References


