
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, December 2021;31: 5664–5675

https://doi.org/10.1093/cercor/bhab189
Advance Access Publication Date: 22 July 2021
Original Article

O R I G I N A L A R T I C L E

Dissociable Components of Information Encoding
in Human Perception
Diego Vidaurre 1,2,3, Radoslaw M. Cichy4,† and Mark W. Woolrich2,3,†

1Department of Clinical Medicine, Center for Functionally Integrative Neuroscience, Aarhus University,
Aarhus 8000, Denmark, 2Department of Psychiatry, University of Oxford, Oxford OX37JX, UK, 3Wellcome Trust
Center for Integrative Neuroimaging, University of Oxford, Oxford OX37JX, UK and 4Department of Education
and Psychology, Freie Universität Berlin, Berlin 14195, Germany

Address correspondence to email: dvidaurre@cfin.au.dk
†Radoslaw M. Cichy and Mark W. Woolrich have contributed equally to this work.

Abstract

Brain decoding can predict visual perception from non-invasive electrophysiological data by combining information across
multiple channels. However, decoding methods typically conflate the composite and distributed neural processes
underlying perception that are together present in the signal, making it unclear what specific aspects of the neural
computations involved in perception are reflected in this type of macroscale data. Using MEG data recorded while
participants viewed a large number of naturalistic images, we analytically decomposed the brain signal into its oscillatory
and non-oscillatory components, and used this decomposition to show that there are at least three dissociable
stimulus-specific aspects to the brain data: a slow, non-oscillatory component, reflecting the temporally stable aspect of
the stimulus representation; a global phase shift of the oscillation, reflecting the overall speed of processing of specific
stimuli; and differential patterns of phase across channels, likely reflecting stimulus-specific computations. Further, we
show that common cognitive interpretations of decoding analysis, in particular about how representations generalize
across time, can benefit from acknowledging the multicomponent nature of the signal in the study of perception.
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Introduction
In recent years, multivariate pattern analysis (MVPA) or
decoding analysis on electrophysiological data has emerged
as a widely used technique to interrogate when and where
in the brain information is processed (Haynes and Rees 2006;
Tong and Pratte 2012; Cichy et al. 2014; Grootswagers et al.
2017; Kragel et al. 2018; Vidaurre, Woolrich, et al. 2019; Carlson
et al. 2019; Takacs et al. 2020). MVPA is typically used with
the objective of maximizing the prediction of information,
so that it is not always transparent what aspects of the
data are responsible for the significant predictions. However,
electrophysiological data have diverse components, such as
ongoing oscillations with amplitude and phase modulations in
different frequencies (Steriade 2001; Buzsáki and Draguhn 2004;

Buzsáki et al. 2013), ultra-slow 1/f drifts of activity and slow
cortical potentials (Linkenkaer-Hansen et al. 2001; He 2014), non-
oscillatory changes in signal amplitude (Jones 2016; van Ede et al.
2018; Quinn et al. 2021), cross-frequency coupling (Jensen and
Colgin 2007; Canolty and Knight 2010), and high-frequency burst
events (Buzsáki and Lopez da Silva 2012; Lundqvist et al. 2016).
Data-driven decoding methods can incorporate all or some of
these elements, but it is unclear which ones are relevant and
how. Because these elements are thought to underpin distinct
brain mechanisms, knowing which of them are important for
prediction would provide important theoretical information
about human brain function.

Although we aim at addressing general principles, we here
focused on visual processing, whose various levels of processing

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/31/12/5664/6324865 by Freie U

niversitaet Berlin user on 10 January 2022

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
https://doi.org/10.1093/cercor/bhab189
http://orcid.org/0000-0002-9650-2229


Multicomponent Decoding in Human Perception Vidaurre et al. 5665

(e.g., from low-level features to the recognition of semantic
content) are known to involve frequency-specific oscillations
(Melloni et al. 2007; Kayser et al. 2012; Clarke et al. 2013, 2018;
Jensen et al. 2014). Using MEG data recorded while participants
viewed object images, and focusing on slow frequencies, we
separated task evoked responses into just two components: a
non-oscillatory (ultra-slow) and an oscillatory component. We
demonstrated the distinct contribution of these components to
the results of MVPA, that is, the decoding accuracy for predic-
tion of which image was presented to the participant. In addi-
tion, isolating the oscillatory component allowed us to extract
stimulus-locked phase information, confirming that the phase
of the oscillatory component contains critical information about
which image category is being processed by the brain (Rodriguez
et al. 1999; Sauseng and Klimesch 2008). Crucially, we showed
that stimulus-locked phase information can be predictive of the
image category in two different ways: through differences in
the latency of the response that are common across channels;
and through relative phase differences between channels, to
which single-channel analyses like event-related potentials/-
fields (ERP/F; Pfurtscheller and Lopes da Silva 1999) are blind.
We argue that these two (coexisting) phase-related features
potentially speak to different physiological mechanisms, and
that the dissociation of these components provides a more
accurate interpretation of commonly observed phenomena in
the analysis of perception—in particular with regards to how
the stimulus representations generalize or change across time
(as described, for example, using the temporal generalization
matrix approach; King and Dehaene 2014).

In summary, we show that the dissociation of these different
elements of the data provides a more accurate interpretation of
commonly observed phenomena in the analysis of perception,
providing a better understanding on how multivariate phase
information can encode different visual contents in electrophys-
iological data.

Materials and Methods
Basic Theoretical Background

Conventional MVPA and event-related potentials/fields (ERP-
s/ERFs), which represent the average pattern of the signal locked
to the presentation of the stimulus (Pfurtscheller and Lopes
da Silva 1999), are both based on assuming consistent timing
(or phase) over trials. This is because conventional MVPA uses
the same decoder over all trials at the same time-point within
each trial, and ERP/ERF approaches average over trials at the
same time-point within each trial. The most fundamental dif-
ferences between these two approaches relies on MVPA being
prediction-based (i.e., decoding-based) and, critically, multivari-
ate over channels—while ERP/ERF analysis is univariate over
channels and encoding-based (Weichwald et al. 2015).

We examined MVPA in the context of the temporal gen-
eralization matrix (TGM) approach (King and Dehaene 2014),
which extends conventional time-resolved decoding analysis.
The TGM, as estimated from magnetoencephalography (MEG) in
MVPA approaches, is widely used to assess the dynamics of neu-
ral representations. It is a T × T matrix of decoding accuracies
(where T is the number of time points in the trial), such that
one decoding model is trained per time point and tested on each
one of the time points of the trial in a cross-validation fashion.
The diagonal of the TGM reflects how well can we can decode
information time point by time point, indicating the waxing
and waning of the different stages of stimulus processing. The

off-diagonal of the TGM shows how well decoding models gen-
eralize to time points different to those where they were trained;
and, therefore, is argued to reflect the stability of the neural
code for the neural representation under study. Thus, the off-
diagonal elements of the TGM are often interpreted as being
related to memory in the most basic definition of the term;
that is, the persistency of information and meaning in the brain
for longer than an instant. Being data-driven and designed to
maximize decoding accuracy, however, the construction of the
TGM is not explicitly concerned by the idiosyncrasies of elec-
trophysiological data, for example by how exactly oscillations
relate to the prediction. This is in contrast with the extensive
body of research on the specific role of oscillations in cognition
and information representation (Buzsáki and Draguhn 2004).

Signal Processing

Data were downsampled to 250 Hz, and low-pass filtered under
10 Hz in order to narrow down the analysis on the lower fre-
quencies. We discarded higher frequencies in order to focus on
one single oscillation. Note that focusing on these aspects of the
data does not at all imply that the left-out features (e.g., higher
frequency oscillations, gamma bursts, cross-frequency interac-
tions, etc.) are not relevant for stimulus processing. Importantly,
our conclusions do not lose generality if these left-out aspects
also produce significant decoding accuracies.

For each trial and channel, we analytically separated the
signal into two uncorrelated components. The first component
was computed by applying local regression using weighted
linear least squares and a first-degree polynomial model
(parametrized to use 100 points, that is, 10% of the trial). This
yielded a slow component or trend, which we referred to as
non-oscillatory. Note that this component is not oscillatory
when considered in 1-s trials, but it could contain traces of
ultraslow oscillations in the context of the entire recording. We
then regressed out this component onto the original signal.
The residual is a detrended oscillation, which we referred to as
the oscillatory component. We used this approach to avoid the
sinusoidal assumption of Fourier analysis (Huang et al. 2009),
which might be less appropriate for the frequencies considered
here and the length of the trials (1 s). This not however a critical
step in the pipeline, and similar results were obtained with
standard Fourier-based filters (now shown).

For illustration, Figure 1A shows the original signal (below
10 Hz) and the two components for a single trial and channel,
from one subject’s MEG data. Figure 1B shows the spectral profile
of these two components averaged across channels and partici-
pants, with the oscillatory component having a dominant 6-8 Hz
frequency and the non-oscillatory component not having any
frequency peak. In order to further characterize the oscillatory
component, Figure 1C depicts the distribution of the number
of peaks (in the temporal domain) per 1-s-trial in the oscilla-
tory component, reflecting certain homogeneity across subjects.
Note that we refer to oscillatory just as the presence of peaks
and troughs, without further requirements, and with no explicit
consideration of a specific frequency (see Bullock et al. 2003;
Donoghue et al. 2020, for more strict criteria and considerations
about the oscillatory behavior of brain signals).

Methods for Standard Decoding Analysis

We used cross-validation to assess the accuracy and cross-
generalization accuracy (King and Dehaene 2014) of the
decoding for each pair of stimuli. Given a set of trials or
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Figure 1. Analytical separation of the signal into oscillatory and a non-oscillatory component. (A) Example of the components found in one trial. (B) Power of the two
components. (C) Distribution across subjects of the number of peaks per trial in the oscillatory component (i.e., number of maxima in the signal).

repetitions of the experiment, a decoder (regressor or classifier)
contains information about how the stimulus is represented
in the brain at the time that the decoder was estimated.
Mathematically it can be represented as a function f (xt, yt),
which predicts the stimulus yt from the data xt at time point
t. Having standardized the data separately for each trial, we
used L2-penalized linear regression (usually referred to as “ridge
regression”; Friedman et al. 2001) as a base decoder, where the
predicted variable was encoded as −1 or +1, and we selected
the regularization parameter using a nested cross-validation
loop. Although logistic regression is more adequate to deal
with binary classification, we opted for L2-penalized regression
because of its lower computational cost, given the high number
of stimuli pairs. Note also that standard linear regression, which
is intimately related to L2-penalized linear regression (since
they both minimize the sum-of-squared errors), is equivalent
to linear discriminant analysis insofar as the proportions of the
classes are equal, as is our case (Friedman et al. 2001).

Temporally-Unconstrained Decoding Analysis

The principles underlying Temporal Unconstrained Decoding
Analysis (TUDA) and standard decoding are similar, except that
TUDA uses fewer decoding models (fewer regression parame-
ters) and, in exchange, has a new set of parameters that cap-
ture when the decoders activate over time on a trial-by-trial
basis. Therefore, the main conceptual difference is that TUDA
accounts for between-trial variability in stimulus processing,
which standard decoding assumes fixed.

Let us assume that we can represent how the brain encodes
information using a set of K decoders, that is, functions fkthat

can predict with certain accuracy the value of the perceived
stimuli given the brain data. We will also assume that at any
given time point of the experiment, there is only one “active”
decoder; or, in other words, that every time point was used to
train one and only one decoder fk. For convenience, let us define
an indicator variable γtnk, such that γtnk = 1 if the k-th decoder is
active at time point t and trial n, and γtnk = 0 otherwise.

For standard decoding, the basic premise is that γtnk has the
same value (either 0 or 1) for all trials n = 1 . . . N. Also, typically,
there is a different decoder for each time point t = 1 . . . T, where
T is number of time points in each trial. Hence, there are K = T
decoders for standard decoding in total.

In the TUDA approach, the key idea is to relax the assump-
tion that γtnk has the same value for all trials. In exchange,
the number of decoders is considerably lower than with stan-
dard decoding (i.e., K is much lower than T), so that we are
trading temporal flexibility for spatial parameters. While the
estimations of the decoders in standard decoding are decoupled
from each other, TUDA is a unitary Bayesian (generative) model
that includes the regression parameters of the K decoders, the
parameters γtnk, and a transition probability matrix M containing
the probabilities of transitioning from one decoder to another
within the trials. Similarly to the standard decoding approach
described above, the base decoder used for TUDA is a regularized
regression model, which makes the results comparable between
the two approaches. All the elements of the TUDA model are
estimated using variational Bayesian inference (Vidaurre et al.
2016; Vidaurre, Abeysuriya, et al. 2018b).

Although this model was already presented previously
(Vidaurre, Myers, et al. 2019), here we applied three modifi-
cation to improve performance and avoid overfitting. Indeed,
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overfitting can be a problem of this model if some decoders
specialize too much in certain stimulus values. For example,
in the hypothetical case that there is an overall shift in
the signal when face stimuli are presented as opposed to
inanimate objects, there would be the risk that a subset of
the decoders takes all time points for “face” trials (by having
overall higher regressor parameters), while a separate subset
of the decoders takes the other trials (by having overall lower
regressor parameters). This degenerate solution is of course not
useful to interrogate the cascade of stimulus processing. The
improvements we have introduced in this paper are:

1. The decoders are forced to activate in sequence, so that every
trial starts with the first decoder (k = 1) and finishes with the
last decoder (k = K).

2. The decoders are forbidden to reach out too far in the trial
from their mean activation point (k/T). In particular, when
the decoders are allowed to be active is given by the matrix
shown in Supplementary Figure 7.

3. To avoid the aforementioned effect, we constrained the esti-
mation of the decoder parameters so that for all decoders the
regression parameters sum up to the same value.

Because the inference of this model can take a bit longer
than a standard decoder, we applied TUDA on image “supra”-
categories: to whether the image is an animate being, and the
size of the represented object. This way, we could also use all
trials in the estimation. Also, for computational efficiency, we
conducted PCA on the data so that the model was trained on
the first 116 principal components (explaining at least 98% of
the variance per subject).

Quantifying Phase-Locking

Given that the distribution of phase across trials in the absence
of stimuli is random, we can describe phase-resetting, for each
time point after stimulus presentation, as how concentrated
is the across-trials distribution of phases at a specific angle.
This is commonly measured in practice using the Phase

Locking Factor (PLF):PLFtj = 1
N

∣
∣
∣
∑N

n=1 ei ϕtnj
∣
∣
∣,where ϕtnj is the

instantaneous phase of trial n at time point t for channel j
(Tallon-Baudry et al. 1997).

Permutation Testing

We used permutation testing for both testing the latency of
processing and the relative phase between image categories. To
test the latency of processing, we took the decoding time courses
γ, which is a 3-D array of dimension T × N × K, where N is the
number of trials. For each state (from the second to the last;
note that states activate always in a sequence), we collected
the exact time at which that state became active. Note that
this is not possible for standard decoding, where timings are
assumed equal for all trials. We then used permutation testing
on the difference in timing between the two types of stimuli
(e.g., animate vs. inanimate, or big vs. small). Specifically, we
generated surrogated data by permuting the stimulus labels,
such that the P-value corresponds to the proportion of permuted
instances of the data where the difference in timing between
the two types of stimuli was higher than in the unpermuted
data. If this test turns out to be significant, that would mean that
there are different speeds of processing for each image category.
This was done for each of the subjects and each of the (K-1)
states separately (excluding the first state, which always starts

at the first time point of the trial). Tests were combined into
a group-level P-value using the non-parametric combination
algorithm (NPC—Pesarin and Salmaso 2010; Vidaurre, Woolrich,
et al. 2019b).

Now, to test if there are cross-channel differences in the
relative phase between image categories, we need to factor out
the differences in global latency (which were assessed in the
previous test). Only then, we will be able to test if the nature of
the phase trajectories (i.e., the relative phase between channels
at each time point) is distinct across image categories above and
beyond how fast these trajectories traverse. We do this by using
the temporal realignment provided by the activation times of the
decoders, defined by γtnk; these were used as data-driven time
windows containing quasi-stationary stages of processing, that
is, with a quasi-stable differential phase pattern. Now, for each
of the decoders (i.e., within the decoder-specific time windows),
we tested whether the within-class PLF was stronger than the
between-classes PLF. We tested this using permutation testing,
using, as a base statistic, the PLF across trials for one class plus
the PLF across trials for the other class (This sum will be max-
imized when within-class phase locking dominates between-
class phase locking.) By summing this value across channels,
we obtained subject-level base statistics; by summing across
subjects and channels, we obtained a group-level base statistic.
As before, we generated surrogated instances of the data by
permuting the stimulus labels, computing P-values as the pro-
portion of permutations where the described base statistic was
higher than in the unpermuted data. In summary, if phase lock-
ing was found to be significantly more consistent within image
categories than in general, that would suggest distinct relative
phasic patterns across channels for each stimulus condition.

Code Availability
The custom code to reproduce the analysis can be found in the
first authors Github personal site. The code for running TUDA
can be found in https://github.com/OHBA-analysis/HMM-MAR.

Results
We used one of the magnetoencephalography (MEG) data sets
presented in Cichy et al. (2016), where 118 different image cate-
gories were presented 30 times each to 15 subjects. Presentation
lasted 500 ms, and trials were ∼1-s long. The multi-channel
sensor-space data, epoched around the presentation of each
visual stimulus, can be used to train a decoder to predict which
visual image is being presented (Cichy et al. 2016).

We reasoned that different aspects of decoding accuracy may
separately emerge from different components of the evoked
responses. Therefore, we analytically extracted two uncorre-
lated components from the data: an oscillatory component (with
a dominant theta frequency at 6–8 Hz), and a slower, non-
oscillatory component (which could be related to very slow
oscillations in the context of the entire recording, but not at the
single-trial level); see section Materials and Methods for details
on the preprocessing and organization of the data, as well as on
the decoding methods. See also Figure 1 for an illustration of the
separated components. Importantly, even though we focused on
a single oscillatory pattern at <10 Hz (predominantly in the theta
band; Kayser et al. 2012) in order to convey the messages of
the paper more clearly, this does not mean that higher frequen-
cies are not relevant for visual processing; see Supplementary
Results for additional analyses on >10-Hz frequencies.
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Figure 2. Different types of evoked response differences that can be used by decoding. (A) In the univariate setting, evoked response differences could occur either
in phase or in amplitude. (B) In the multivariate setting, differences in phase could be either global (the phase shift is the same across all channels), or relative (i.e.,
different, between channels). Arrows represent phase differences in phase-specific panels.

Oscillations Can Theoretically Contain Different Types
of Stimulus-Specific Information

When looking at the oscillatory component, both phase and
amplitude modulations can cause differences that can in princi-
ple be used by MVPA, when applied time point by time point and
across trials on the brain signals. We demonstrate schematically
different ways by which an oscillatory component might contain
stimulus-specific information, either using single MEG channels
at a time, or using multiple channels (i.e., multivariate decoding).
This forms the theoretical basis for our subsequent analyses
using MVPA on phase in empirical data.

Figure 2A illustrates three ways in which differences in
evoked responses could cause changes in decoding accuracy
between experimental conditions (i.e., here object images) at
the single-channel level. The evoked responses (i.e., the ERP/F)
for a single channel are depicted for two different stimuli
in black and grey. These differences, examined at two time
points marked as vertical lines (separated according to the
period of the oscillation), and interpreted as differences in
decoding regression coefficients (β), can either be a phase
modulation or an amplitude modulation. When the difference
is a phase modulation (top panel), the two stimuli can be

distinguished as the black stimulus evokes an earlier response.
As shown in the panels, β would have opposite signs between
the two time points, which, as we will discuss, is relevant
in interpreting decoding accuracy. When the difference is an
amplitude modulation, two different possibilities exist. The first
possibility (middle panel) is a decrease in power, such that β

would again have opposite signs between the two marked time
points. The second possibility (bottom panel) is an additive shift
in the signal, which does not cause a sign inversion between
the two time points. Therefore, when considered univariately,
changes between stimuli in either the phase or amplitude of
their evoked responses can be used for decoding.

Assuming for simplicity that all channels share the same
kind of evoked response (for example having the same sign),
Figure 2B illustrates two ways in which phase differences in
evoked responses could manifest in decoding accuracy at the
multi-channel level. The horizontal arrows reflect the phase dif-
ference between the two stimuli. In one type, the latency of the
response is different between the stimuli, such that the phase
modulation occurs earlier for some stimuli than for others;
critically, this delay is global, that is, consistent across channels
(Fig. 2B, left panel—where all arrows have the same length and
orientation). In the other type, it is the relative differences in
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phase between channels that discriminates between stimuli
(Fig. 2B, right panel—where arrows have different lengths and
orientations), without necessarily being a global temporal shift
that is common to all channels (i.e., the arrows could sum up to
zero across channels).

These two different multivariate patterns may afford very
different physiological interpretations. The first type of multi-
variate phase modulations would speak to systematic differ-
ences in the timing of information processing; for example, if
images of animate beings take less time to process in the brain,
then the cascade of stimulus processing would progress faster
and that would bring about a change in the time course of
the decoding accuracy. The second type of multivariate phase
modulations would instead refer to differential phasic patterns
between the image categories above and beyond their speed of
processing, which could be related to detectable differences in
the neural coding of the images. For some information about
whether or not standard MVPA can distinguish between these
two types of phase modulation, see the Supplementary Results
(Supplementary Fig. 1).

Relative Versus Global Phase Differences between
Stimuli: Is it Just Processing Speed?

On this theoretical basis, we now ask in empirical data: what
is the specific nature of the multivariate phase modulation that
allows an effective discrimination between stimuli? Is it that the
global latency of the response (i.e., common over all sensors) is
different between experimental conditions (i.e., stimuli), such
that phase-locking occurs a bit earlier for some stimuli than
for others and the delay is approximately consistent across
channels (Case 1, as in Fig. 2B, left). Or is it that the relative
phase between channels is discriminant between experimen-
tal conditions (Case 2, as in Fig. 2B, right), without necessarily
being a global all-channel temporal shift? To differentiate these
two possibilities, we used a method that can account for the
global differences in the timing of the evoked responses: the
Temporally Unconstrained Decoding Analysis (TUDA) approach
presented in Vidaurre, Myers, et al. (2019).

In brief, TUDA is a (Bayesian) generative model consisting of
a number of decoding models (either classifiers or regressors)
together with a data-driven estimation of when each decoding
model should be used at each time-point within each trial,
that is, the time courses of each decoding model (see section
Materials and Methods). The critical feature of TUDA is that the
temporal activation of each decoder can be different between
trials. Hence, unlike standard decoding, TUDA can effectively
accommodate between-trial temporal differences in the stim-
ulus processing cascade. Crucially, these differences are global
by definition. By modeling the global differences in the timing
of the responses explicitly, TUDA can be used here to separate
global from relative differences.

For simplicity and computational efficiency, we trained the
model on two supra-level categories into which the stimulus
set could be grouped: the size of the stimulus (Size: small,
medium, or large), and whether the image corresponds to an
animate being (Animacy: yes or no). This way, we could estimate
the parameters of the model using all the data for the 118
images and avoided the computational burden of inferring the
model parameters for image pair. We set TUDA to use eight
different decoders and applied it to the oscillatory component
of the signal (see Fig. 1). Figure 3A shows, for one subject, the
progression over the time within each trial of the decoders for

Size and Animacy, where, for clarity, the trials were ordered
according to the first principal component of the decoders’
activation time courses. At the bottom of the panel, the cross-
trial average and standard deviation of each decoder’s timing of
activation is shown. To verify the ability of TUDA and standard
decoding to fit the data, we generated surrogated models to
assess when TUDA and standard decoding reached a significant
prediction, by simply permuting the labels of the stimuli and
rerunning the models. As shown in Figure 3B for one subject (see
Supplementary Fig. 2 for all subjects), both TUDA and standard
decoding exhibited a larger accuracy than that of the surrogated
data. For reference, the bottom panel of Figure 3B depicts the
average explained variance across subjects. Note that TUDA had
only 8 decoders as opposed to the 250 for standard decoding (i.e.,
one per time point).

TUDA provides a time-course of each decoding model,
which captures when each decoding model should be used
at each time-point within each trial. By construction, any
global (common to all sensors) delays in phase locking that
discriminate between stimuli (Case 1—Fig. 2B, left) will be
captured by these trial-specific (thus, image-category-specific)
decoding model time courses (Fig. 3A). To verify this, we used
permutation testing (i.e., by permuting the labels across trials)
to see if differences in when the decoding models start their
activation is predictive of Size and Animacy (hypotheses HI and
HII in Fig. 3C). This yielded one P-value per subject, decoding
model and pair of image categories. Figure 3C confirms the
existence of global phasic differences between the image
categories (Case 1); see section Materials and Methods. Using
the non-parametric combination algorithm (Vidaurre, Woolrich,
et al. 2019b; see section Materials and Methods), the bottom
of the panel shows an aggregation of tests into group-level
P-values, with one P-value per state. The results are highly
significant at the group level.

Once the global delays are accounted for by the decoding
model time courses in TUDA, all that remains in the TUDA’s
decoding models that is explanatory of the perceived stimu-
lus is the relative phase differences between image categories
(Case 2: Fig. 2B, left). Therefore, the fact that TUDA’s decoding
models are able to discriminate successfully is evidence of the
existence of “relative” phase differences. To further confirm the
importance of relative differences between categories, we also
asked whether phase is more consistent within image categories
than it is across image categories “during” the time that each
decoder is active. For example, for the time points when Decoder
2 is active, we asked if phase locking is significantly higher
within category than between category. If the answer is positive,
this would confirm the existence of differential phase patterns
between the image categories above and beyond their speed
of processing. To quantify phase locking, we used the Phase
Locking Factor (PLF; Tallon-Baudry et al. 1997), which measures,
for any given time point, how similar for each channel are the
values of the phase across trials within a certain frequency band
(see section Materials and Methods). We again used permutation
testing to assess, for each decoder (i.e., for the time points
where each decoder is active), whether PLF was higher within
than between image categories. In this second type of test,
Hypotheses HIII and HIV correspond respectively to Size and
Animacy, with one test per subject, decoder and pair of image
categories. Figure 3C shows that more than half of the P-values
are significant for both conditions, with a median P-value of
<0.01 for Animacy. Again, the results are highly significant at
the group level.
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Figure 3. Phasic differences between stimuli in the oscillatory component can be due to 1) global differences in how fast the information is processed for each category,
and 2) relative phasic differences between channels. (A) TUDA reveals between-trial temporal differences in stimulus processing; the matrices reflect the temporal
occupancy of each decoding model for the two considered decoding problems. (B) Top panel: both TUDA and standard decoding exhibit significant decoding accuracy
in discriminating animacy and size for a representative subject; statistical significance is given when the accuracy curve is higher than any of the (1000) permutations,

represented in lighter colors. Bottom panels depict the average decoding accuracy across subjects. (C) Top: Manhattan plot showing P-values for the hypotheses of
whether global latency is different between stimuli (size, HI; animacy, HII), and whether relative latency is different between image categories (size, HIII; animacy, HIV);
each dot corresponds to one statistical test for one subject, decoder and pair of category values (e.g., small vs. large); the colored boxes represents the area containing

95, 87.5, 75 and 50% (from lighter to darker) of the P-values, respectively, with a wider horizontal bar highlighting the median (50%). Bottom: group-level tests; note
that HI and HII were not tested for the first decoder, since it always activates at the start of the trial.

In summary, these results suggest the existence of significant
phase differences between stimuli at two different levels, which
speak to two different physiological mechanisms: global shifts in
phase, attributed to the stimuli having diverse processing laten-
cies; and relative phase differences, attributed to the existence
of stimulus-specific, multivariate phase configurations. See the
Supplementary Results for more information about the relation
of these results to other concepts, such as spatially local-versus-
global synchronization, inter-trial phase coherence, and inter-
regional phase coupling.

Decoding Accuracy Emerges from both Oscillatory
and Non-Oscillatory Components

So far, we have shown that the phase of the oscillatory compo-
nent can carry different types of information about the stimuli.
We now consider the extent to which there is distinct and com-
plementary information available between the oscillatory and
the non-oscillatory components. Furthermore, we show how
some of the most prominent phenomena commonly observed
in decoding analysis can parsimoniously be explained by

accounting for the separate contributions of these two com-
ponents. To investigate this point, we used the temporal
generalization matrix (TGM; see section Materials and Methods).
The TGM extends conventional decoding that characterizes
neural representations for each time point independently by
elucidating how neural representations change or persist across
time (King and Dehaene 2014). Given that this analysis is
computationally faster than TUDA, we computed a TGM for
each pair of images (i.e., 13 806 pairs), averaging across pairs.

Figure 4A shows (for one representative subject) the TGM for
the original signal, the non-oscillatory component, the oscil-
latory component, and the power envelope of the oscillatory
component (i.e., with no phase information). For ease of compar-
ison, Supplementary Figure 3 shows, for each pair of images, the
time-resolved decoding accuracy (i.e., the diagonal of the TGM)
for one subject and on average; see Supplementary Figure 4
shows the group-average TGMs. The original signal’s decod-
ing accuracy reflects a mixture from the decoding accuracy of
the non-oscillatory and the oscillatory components: a linear
regression model (done separately for each subject) can pre-
dict the original signal’s TGM from the non-oscillatory and the
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Figure 4. Non-oscillatory and oscillatory activity have a complementary contribution to MVPA accuracy. (A) TGMs for the original signal, for the non-oscillatory
component, for the oscillatory component, and for the power of the oscillatory component. (B) TGM’s diagonal and TGM’s off-diagonal decoding accuracies of the
non-oscillatory component versus oscillatory component. The oscillatory component dominates the diagonal and the non-oscillatory component dominates the off-
diagonal of the TGM, indicating that the cross-generalization decoding accuracy is fundamentally based on the non-oscillatory component, whereas time point by time

point decoding accuracy (i.e., the diagonal) is a mixture of both the non-oscillatory and the oscillatory components, but with a larger contribution from the oscillatory
component.

oscillatory component TGMs with 67% of explained variance on
average across subjects. When using only the non-oscillatory,
the explained variance was 9%; and when using only the oscil-
latory component, it was 59%. This suggests that both compo-
nents are relevant for decoding in a complementary manner.
Importantly, a model including the non-oscillatory component
TGM, the oscillatory component TGM, and the power TGMs
explains on average 7% more variance of the original signal
TGM than a model that only includes non-oscillatory and power
(P < 0.001 for all subject tests; permutation testing), which is a
percentage decrement of 12%. This highlights the importance
of phase in decoding analysis. Expanding on this, in Supple-
mentary Results (Supplementary Fig. 5) we provide empirical
evidence on the stimulus-specificity of phase-locking, as well as
complementary decoding results on higher (>10 Hz) frequencies
(Supplementary Fig. 6).

Figure 4B shows that the contribution the TGM’s diagonal is
higher for the oscillatory component, but it does not generalize
well over time. In contrast, the non-oscillatory component
generalizes well over time, contributing more strongly to what
is sometimes interpreted as the continuity in time of the neural
representation. Specifically, the top panel of Figure 4B highlights
that time points of high prediction accuracy in the TGM’s
diagonal are supported by both the non-oscillatory and the oscil-
latory components, with a larger contribution of the oscillatory
component (P-value < 0.001; permutation testing). The bottom
panel suggests that cross-generalizing decoding accuracy (i.e.,
the accuracy that is away from the diagonal) is higher for

the non-oscillatory component (P-value = 0.0182; permutation
testing). Altogether, this analysis indicates that the non-
oscillatory and the oscillatory component contribute to the
overall TGM pattern in a complementary way.

Other features of the TGM can be explained by considering
the non-oscillatory and the oscillatory component separately.
For example, a common pattern observed in decoding analysis
is a worse-than-average rebound in decoding accuracy as we get
away from the diagonal of the TGM (King and Dehaene 2014).
Figure 5A depicts the oscillation-based TGM within the 0.04–0.4 s
interval (left) for one example subject. The right panel represents
a section of the matrix at a time point of approximately 200 ms
and orthogonal to the timeline. Accuracy peaks at the diagonal
and suffers a steep decrement below baseline at time points
25–75 ms away from the peak. This is consistent with the time
occupied by half a cycle of a theta oscillation. We argue that this
phenomenon may come about from the oscillatory component
with no contribution from the non-oscillatory component. As
demonstrated above schematically (top two panels of Fig. 2A), a
rebound in decoding accuracy can come about through either a
phase and/or an amplitude modulation causing a sign inversion
in the differences in decoding regression coefficients between
two time points. Therefore, certain patterns in the oscillatory
component—but not in the non-oscillatory—can cause worse
than baseline accuracy in the decoding.

Another common pattern observed in decoding analysis is
a stronger generalization in regions of the TGM that stem,
vertically and horizontally after brief period of depression, from
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Figure 5. Interpretation of the TGM based on the separation between the oscillatory and non-oscillatory components. (A) The worse-than-average rebound relates to
the oscillatory component. On the left, zoomed-in version of the oscillation-based TGM, within the 40–400 ms interval; on the right, a section of the TGM at ∼200 ms.
Result shown for one exemplary subject. (B) The stronger generalization at t = 150 ms is due to the combined effect of the non-oscillatory and oscillatory components
(see main text). Result shown at the group level.

the time points of maximum accuracy in the diagonal—as indi-
cated (at the group level) as rounded boxes in the top left panel of
Figure 5B. This phenomenon is sometimes interpreted as reac-
tivation of a neuronal representation (King and Dehaene 2014).
Instead, here we demonstrate that this phenomenon can parsi-
moniously be explained by an account of how decoding accuracy
provided by the non-oscillatory component and the oscillatory-
based phenomenon described in Figure 5A combine. In particu-
lar, we observe that 1) the initial depression of accuracy is caused
by the peaks and troughs of the oscillatory component (Fig. 5A);
and that 2) once such depression is passed, the reactivation is
due to the fact that the non-oscillatory component’s accuracy
takes longer to decay than it takes the oscillatory component’s
accuracy to come back to baseline. This is shown quantitatively
by regressing the non-oscillatory and oscillatory components’
accuracies onto the original signal’s accuracy, the prediction of
which is shown as a dotted line in the right panels of Figure 5B
(explained variance is 96.5 and 97.7%, respectively). Note that

the non-oscillatory component’s generalized accuracy has its
maximum later than 150 ms (i.e., it does better in subsequent
time points than at the time point when it was trained); this
is only due to the fact that this component’s relevance in the
decoding occurs altogether later in the trial. Further note that
this reactivation does not manifest in the non-oscillatory and
oscillatory components alone (Fig. 4A), since it is the interaction
of both which brings about this effect.

In summary, the key features of the TGM can be parsimo-
niously explained to a large extent when considering the oscil-
latory and non-oscillatory components separately, which should
be taken into account when interpreting MVPA results.

Discussion
In this paper, we have shown that two dissociable phase-related
mechanisms can bring about decoding accuracy in MVPA on
electrophysiological data: on the one hand, there are differences
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in the latency of processing, related to the possibility that some
images are processed quicker than others; on the other hand,
there are differential patterns of phase across channels, which
can be attributed to the specifics of each neural representa-
tion. These two types of effects may speak to distinct neural
phenomena affording very different cognitive interpretations.
Importantly, their relative influence can determine how MVPA
can be used in different scientific contexts. For example, when
the timing of the response is uncertain as is the case with
imagery (given the lack of an external trigger), MVPA likely needs
to rely on relative phase differences given that global phase
differences are difficult to control for. The fact that decoding
has been applied in this setting successfully (Dijkstra et al. 2020;
Xie et al. 2020) brings additional evidence of the existence of
such relative phase differences in visual processing as measured
by MEG. In cases where the spatial resolution of MEG might
be insufficient to capture fine-grained relative differences, the
global differences could be the only driver of a successful pre-
diction. For example, this could be the case in pain processing,
where a large part of the relevant signal originates from deep
regions that are harder to access by non-invasive electrophysi-
ological modalities (Tracey and Mantyh 2007). As shown in the
Supplementary Results, an integrative approach that combines
all channels, trials and time points in one model is an efficient
and direct way of disambiguating these differences than time
point by time point MVPA.

Furthermore, by breaking the signal into its oscillatory
and non-oscillatory constituents, we found that the patterns
of decoding accuracy in MVPA electrophysiological studies
commonly observed in the literature can be well explained from
the distinct contributions of these components, showing that
the interpretation of these patterns may be misleading if we
do not account for these distinct contributions. For example,
certain patterns observed in the TGM are often interpreted as
reactivation of mental representations, without considering
that these patterns might arise from basic properties of the
signal. While the cognitive interpretation is not necessarily
incorrect, we suggest that more robust interpretations will
emerge from embracing the complexity of the signal and
dissecting how its fundamental properties relate to cognition.
Although not investigated here (since TUDA was run here
only on the oscillatory component), TUDA might also exhibit
caveats when the different signal components are presented in a
conflated manner. These analyses also stressed the importance
of multivariate over purely univariate analyses, supporting the
claim that the former are better able to account for systemic
nature of the nervous system (Kragel et al. 2018).

We note that the scope of our conclusions covers MVPA
applied in a time-resolved manner (time point by time point)
on electrophysiological data, but not necessarily on neuroimag-
ing data. We also note that the analysis performed here was
by no means intended to be exhaustive in accounting for all
the different features contained in the data. For simplicity, we
removed all information content above 10 Hz, thereby disregard-
ing higher frequencies such as those in the gamma band, which
has purportedly a critical role in cognition (Herrmann et al. 2004).
Nor did we look at the how the interaction between the non-
oscillatory and the oscillatory components can predict the per-
ceived stimulus. Importantly, our conclusions stand regardless
of the fact that other aspects in the signal (such as >10-Hz
frequencies) also carry information about the stimulus. Future
investigations will be needed to understand the role of these
other components. As in all analyses, there are to some extent

arbitrary choices made in our analyses. This includes the choice
of decoder, choosing 8 decoders in TUDA, or performing the
decomposition of the signal into oscillatory and non-oscillatory
components using local regression. In future applications it
may be beneficial to optimize some of these choices, for exam-
ple, using cross-validation. Although we did not do this here,
the default modeling choices we used were, however, able to
describe the data sufficiently well in order to answer our specific
questions.

An important open question about the mechanistic under-
pinnings of stimulus processing is whether the stimulus-
specific evoked activity is caused by a reorganization of the
ongoing phasic trajectories (i.e., through phase resetting) or
is otherwise generated independently of the ongoing phase.
Whereas we showed here that there is information contained
in the patterns of phase-locking across trials, this does not
necessarily imply the existence of phase-resetting (Shah
et al. 2004; Mäkinen et al. 2005; Mazaheri and Jensen 2006).
Distinguishing between these two cases is not obvious in non-
invasive electrophysiological data (Sauseng et al. 2007), and, at
the bare minimum, requires a sufficient baseline period that we
lack here. We however speculate that, most likely, the observed
effects will not be purely caused by neither phase-resetting
nor a separate event-related activation, but instead be some
mixture of both, with proportions that depend on the brain
region and the type of stimulus (Fell et al. 2004). It is also possible
that phase-resetting occurs, but studies focused on univariate
analysis could not find it, simply because the effect relies on
subtle differences across channels that can only be identified
using a multivariate approach.

More broadly, there is the more general question of how
the whole-brain ongoing (pre-stimulus) phase configuration of
the brain in slow frequencies influences stimulus processing
at higher frequencies. Previously, we showed that there exist
reliable whole-brain patterns of phase coherence in theta and
alpha at rest (Vidaurre, Hunt, et al. 2018), and that these con-
figurations hold some relation to gamma frequency stimulus
responses (Hirschmann et al. 2019). Considering these and other
many studies about the influence of the low frequency ranges
on diverse aspects of cognition (Monto et al. 2008; He 2014; Baria
et al. 2017) and the different ways that ongoing brain states
modulate neural responses (Podvalny et al. 2019; McCormick
et al. 2020), it is clear that part of the large variability observed in
the neural responses could be explained by the ongoing, large-
scale network activity and concurrent phase trajectories, and
that accounting by these factors could arguably improve the
capacity of MVPA to produce successful predictions.

Conclusion
In the last decade, brain decoding models have emerged as
powerful tools to predict mental constructs from electrophys-
iological measurements of human brains. The fact that these
models are able to obtain significant predictions from non-
invasive data suggests that macroscale brain activity reflects
aspects of stimulus-specific computations at some level in the
brain. However, the power in prediction has come at the expense
of explanation: the statistical methods employed leave open
what it is about the data that allows the successful prediction,
and thus miss crucial information for theory building. Here, we
propose that macroscale brain signals contain stimulus-specific
information at various different levels: in the differences of
the latency of response between image categories; in relative
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difference of phase between channels; and in the non-
oscillatory, stable component of the signal. We argue that
in dissociating these components and understanding their
potential hierarchical organization may open new routes to
understand the multifaceted aspects of information processing
in the brain.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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