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Quantifying the effect of genetic, 
environmental and individual 
demographic stochastic variability 
for population dynamics 
in Plantago lanceolata
Ulrich K. Steiner1*, Shripad Tuljapurkar2 & Deborah A. Roach3

Simple demographic events, the survival and reproduction of individuals, drive population dynamics. 
These demographic events are influenced by genetic and environmental parameters, and are 
the focus of many evolutionary and ecological investigations that aim to predict and understand 
population change. However, such a focus often neglects the stochastic events that individuals 
experience throughout their lives. These stochastic events also influence survival and reproduction 
and thereby evolutionary and ecological dynamics. Here, we illustrate the influence of such non-
selective demographic variability on population dynamics using population projection models of an 
experimental population of Plantago lanceolata. Our analysis shows that the variability in survival 
and reproduction among individuals is largely due to demographic stochastic variation with only 
modest effects of differences in environment, genes, and their interaction. Common expectations of 
population growth, based on expected lifetime reproduction and generation time, can be misleading 
when demographic stochastic variation is large. Large demographic stochastic variation exhibited 
within genotypes can lower population growth and slow evolutionary adaptive dynamics. Our 
results accompany recent investigations that call for more focus on stochastic variation in fitness 
components, such as survival, reproduction, and functional traits, rather than dismissal of this 
variation as uninformative noise.

Population dynamics are driven by simple demographic events, the survival and reproduction of individuals 
in a population1. To understand and forecast such dynamics, it is important to quantify the sources of vari-
ability in demographic fates. Individual variability in survival and reproduction has been ascribed to genetic 
variability, environmental stochasticity, and demographic stochasticity2–4, but these causes of variation may be 
selective or non-selective (i.e., neutral)5. “Genetic variability” includes additive genetic variance, non-additive 
genetic variance (dominance and epistasis) and genotype-environment interactions (phenotypic plasticity). 
“Environmental stochasticity” usually includes temporal fluctuations affecting all individuals in a population, 
but might not include differences below the population level, e.g., as caused by temporal or spatial environmental 
differences within the population2,6. Additionally, where genotypes are not known, environmental stochastic-
ity frequently includes genotype-environment interactions2. “Demographic stochasticity” is defined by Lande 
et al. (2003) and Melbourne and Hastings (2008) as the result of independent chance events, e.g., individuals 
with identical reproductive and survival rates may differ in how many offspring they produce or how long they 
live. Demographic stochasticity has also been used to describe demographic heterogeneity, when individuals 
have distinct probability distributions for reproduction and survival6. Such differences can be fixed at birth or 
can change dynamically during the life course7, and may in turn be influenced by genetic differences, maternal 
differences or chance6. The amount of demographic stochasticity can be estimated by calculating demographic 
variance8, a quantity that has earlier been called individual stochasticity9, and dynamic heterogeneity7,10. In 
spite of these ambiguities, we know that including or excluding different types of variation, and not accurately 
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differentiating among selective and non-selective causes of variation, can substantially affect ecological and 
evolutionary dynamics and forecasting6,8,10–12.

Here we consider only two sources of selective variation: genetic variation (additive and non-additive), and 
variance in phenotypic plasticity (we ignore neutral genetic variation). Hereafter we call these, respectively, 
genotypic (G) variation and genotype-by-environment (GxE) variation. We also consider three sources of non-
selective variation. Firstly, environmental variation that affects every individual’s vital rates (often defined as 
environmental stochasticity). Secondly, non-selective demographic variation, stochastic demographic processes 
that determine the reproduction and survival of an individual and are selectively neutral7,9,10,12,13. Finally, we 
consider non-selective variation that is true noise due to, e.g., non-selective measurement error, data processing 
error, or hidden and/or uncontrolled experimental conditions.

To decompose the five sources of variability among individuals in survival and reproduction in nature, an 
ideal experiment would track many individuals with known genotypes over their lives, with the environment 
perfectly known, and no measurement or processing errors. Of course, such ideal conditions cannot exist. To 
approach such conditions an increasing number of studies have followed marked and genotyped (pedigree) 
individuals in the wild14–18. Many of such studies lack the large numbers of individuals needed to reveal causa-
tion beyond interpreting a simple correlation between the environment, the genotype, and an individual fitness 
component19. The limited population sizes and small numbers within pedigrees or genotypes leads to biased 
correlations and variance decomposition20.

Here, as an illustrative example, we analyze data from an experiment in which large numbers of seedlings of 
the common ribwort plantain, Plantago lanceolata, from multiple experimental crosses, were planted in a multiple 
cohort design and individuals were followed until death (Appendix Sketch). To this end we have many individu-
als of the same genotype (known crosses) that experience similar environments among years. To decompose 
the variability in survival and reproduction among individuals we used a matrix model approach to analyze 
genotype-environment specific population dynamics. For each year-sire combination, we constructed a stage-
structured matrix model and computed macroscopic demographic parameters (population growth rate, genera-
tion time, average lifetime reproduction, life expectancy), and the variance in lifespan and lifetime reproduction. 
We quantified genotypic variation (G) in lifespan and reproduction by estimating the variance among the 16 
sires used for the crosses. We computed the contribution of the genotype by environment interaction (GxE) by 
the variance among year-sire combinations. We used the variation among the six years to determine the non-
selective environmental variation (E), and the variation among 17 spatial blocks to determine small-scale spatial 
environmental variation. The non-selective demographic variation was estimated directly from the matrix model 
for any year-sire class that went beyond the expected (mean) growth10,21. We assumed that this additional variance 
in growth was directly or indirectly related to the differences in survival and reproduction among individuals. 
Previous approaches have inferred the non-selective demographic variation from the residual variances of linear 
models as for instance done in most quantitative genetic models. Our approach differs in directly estimating the 
non-selective demographic variation in survival and reproduction from the models, which was possible due to 
the stochastic nature of these stage-structured models10,21. In applying this approach, we reached our aim which 
was to disentangle the genetic, environmental and demographic causes of variability among individuals in 
reproduction and survival and thereby identify drivers of population dynamics.

We found that, despite substantial fluctuation in survival and reproduction among years, the non-selective 
demographic (i.e. stochastic) variation explained substantially more variation in survival and reproduction 
compared to the joint effect of the environment (non-selective environmental variation), the genes (G), and their 
interactions (GxE). We use these results to illustrate the influence that chance among individuals has on ecologi-
cal and evolutionary population dynamics. We briefly discuss the advantages of our approach over alternative 
approaches, such as mixed effect models, that do not directly estimate or link to such demographic parameters. 
Our results highlight the challenge of distinguishing between adaptive genetic variability and neutral variation 
in evolutionary ecology, population biology, and demographic studies in the field.

Results
The overall population growth rate λ was high, at 7.61, the cohort generation time Tc was 2.78 years, the reproduc-
tive value R0 was 20.0 expected seedlings recruited, the average lifespan was 2.67 years, the variance in lifespan 
was 6.32 years2, the average lifetime reproduction was 0.421 inflorescences (reproductive stalks), and the variance 
in reproduction was 1.42 inflorescences2. Our findings are consistent with previous studies with this data17,22–24.

Variance decomposition of lifespan and reproduction.  Contributions to the total variance in lifes-
pan and reproduction among individuals showed that only a small fraction (~ 0.5–1%) is explained by addi-
tive genetic (sire [G]) effects (Table 1). Non-selective environmental variability among years (E) explained little 
variance (2.5–4.6%) in reproduction and ~ 25% of the variance in lifespan. A small fraction of the variation is 
explained by the genotype-by-environment (year-sire [G*E]) interactions (4.6% to 6.7%) (see also24). The largest 
fraction of the variance is associated with unexplained variability in size within years and with sires that goes 
beyond expected size-specific reproduction or survival. We argue that most of the variation in survival and 
reproduction was caused by non-selective demographic processes.

We initially focused on variability among years, but geographic variation, even at a small scale, might influ-
ence survival and/or reproduction. To test for small-scale spatial variation, we included the 17 blocks as a ran-
dom variable when estimating the regressions for each model. Counter to expectations, variability for lifespan 
slightly increased when accounting for spatial block differences (Table 1). Variability in reproduction doubled 
when accounting for block differences compared to the initial model with no spatial component (Table 1). 
Further, and again counter to expectations, there was no increase in genetic (sire) or environmental (among 
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year) contribution, after correcting for spatial environmental differences (Table 1). We also evaluated small-
scale microsite variability using smaller units of 64 plots, but our results (not shown) were no different from the 
analysis with the 17 larger blocks.

Our study clearly shows the importance of variability among individuals within each genotype-by-envi-
ronment (sire-by-year) class, which is a new finding from these data. These results show how key demographic 
parameters vary among models parameterized for different years and genotype combinations. Specifically, 
expected population growth rate λ varied substantially among years (Fig. 1A); generation time, Tc, was relatively 
short in the first three years compared to the remaining years of the study (Fig. 1C), as was net reproductive rate 
R0 (Fig. 1E), average lifespan (Fig. 1G), and expected reproduction (Fig. 1I). Additionally, offspring of different 
sires differed substantially in population growth rate λ (Fig. 1B), generation time, Tc, differed slightly less among 
sires (Fig. 1D), and net reproductive rate, R0 varied tremendously among sires (Fig. 1F). Lifespan varied to a 
lesser degree (Fig. 1H) compared to expected reproduction (Fig. 1J).

Discussion
We have used a plant dataset to illustrate the importance of non-selective demographic processes on population 
dynamics. We analyzed fitness components and overall fitness, λ, by using experimental data to parameterize 
stage-structured matrix population models for each distinct gene-environment combination. Our approach 
allowed us to examine genetic, environmental and stochastic variation in survival and reproduction. We found 
that selective variation, genetic (G) and genotype-environmental (GxE) variation makes a small contribution to 
total variance in survival and reproduction, as does non-selective environmental variation, whereas non-selective 
demographic variation is very large. The design and richness of this data set allowed us to extend previous ana-
lytical approaches25,26. The important features of the data that made our analyses possible included the detailed 
demographic information on many marked and mapped individuals stemming from a small number of genotypes 
(sires). The precise marking and mapping resulted in negligible detection and measurement errors, for leaf counts, 
inflorescence counts and survival, for each individual plant. Additionally, the experimental design excluded 
within-species density dependence, because the spacing among the planted individuals was large enough to 
avoid direct competition. Natural recruitment from the experimental plants was not allowed thus there was no 
increase in within species density over time.

To critically examine our claim that the dominant source of variance in fitness components is non-selective 
demographic variability, we analyzed two alternative sources of variation, the micro-site environment and genet-
ics. With respect to the environment, the randomized block planting design was used to minimize small-scale 
environmental influences in a field setting where spatial environmental differences among individuals cannot be 
completely avoided. If such differences contributed to major variation among individuals, we would expect non-
selective stochastic variability in fitness components to decrease substantially after we accounted for small scale 
geographic differences (blocks) in our models, while the relative genetic (sire) and among-year environmental 
contributions would increase. But accounting for the blocks, or even for smaller spatial scale environmental 
differences of 64 sections of the 70 m * 35 m field site (results not shown), did not reduce the overall variability 
in fitness components as expected. Moreover, the relative genetic and among year environmental contributions 
did not systematically increase, as expected (Table 1). We cannot completely exclude that even finer scaled envi-
ronmental differences might influence survival and reproduction among individuals within this population but 
without additional experimentation this source of variation cannot be clearly identified. Moreover, non-selective 
demographic processes do contribute much of the variability in fitness components.

Genetic variability may also contribute to fitness variability among individuals in this non-clonal species. To 
include this source of variation, our primary analyses accounted for the effects of the dam. Another approach 
is to reverse the genetic focus by swapping dams and sires, i.e., assess dam effect while correcting for sires as 
random effects. When we did this analysis, our results do not change qualitatively (analysis not shown). Our 
low estimates of additive genetic (sire) and gene-by-environment contributions suggest that additional genetic 
differences among individuals stemming from the same sire cannot account for much of the unexplained vari-
ability in survival and reproduction.

Our models estimated a very high overall population growth rate λ of 7.42, which is obviously unrealistic for 
any natural population (see similar estimates from a deterministic life table response experiment (LTRE) analysis 

Table 1.   Variance and the variance decomposition into genetics (sire), environment (variability among 
years), gene x environment interactions, and non-selective stochastic demographic variation for lifespan, 
and reproduction for two sets of models, (i) overall model without accounting for any spatial environmental 
variability, (ii) accounting for 17 blocks of the study field.

Overall model Block corrected

Lifespan (years) Reprod. (inflorescence) Lifespan(years) Reprod. (inflorescence)

Absolute variances 6.32 1.42 6.87 2.83

Fractions of the variance decomposition

Genetics (sire) 0.008 0.011 0.0075 0.0045

Environment (year) 0.245 0.046 0.250 0.025

GxE 0.067 0.064 0.065 0.046

Stochastic 0.680 0.878 0.678 0.925
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Figure 1.   Differences in population growth rate λ (A, B), cohort generation time TC (C, D), net reproductive 
rate R0 [expected number of seedlings recruited] (E, F), life expectancy (G, H), and expected reproduction 
[expected number of inflorescences] (I, J) among years (A, C, E, G, I) and sires (B, D, F, H, J). The most left bar 
depicts the value across all years or sires, weighted by the individuals within each year-sire combination. For 
life expectancy and reproduction (G, H, I, J) we plotted the mean + Stdev. This standard deviation comes from 
unexplained variability in size within years and sires that is not related to either reproduction or survival, we 
argue here that this variability is largely due to non-selective variation among individuals sharing the same sire 
and environment (year). See also Table 2, Appendix S110,21.
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of the same experimental population in Shefferson and Roach (2012)). Because of the high accuracy in tracking 
individuals, their survival and the number of inflorescences, we believe this high estimate comes from ignoring 
losses in the transition from seed to established seedling. Seed predation27 and intraspecific density regulation 
were excluded in the experiments and would lower recruitment into the population and population growth. 
Irrespective of the exact cause for the high estimate of population growth rate, our main result that decomposed 
variability into genetic, environmental, and stochastic components should not be qualitatively affected (Online 
Appendix Fig. S3, Table S1).

To highlight how influential the within year-sire variation in survival and reproduction are for evolutionary 
population dynamics we an closely examine some specific findings. Variability in the population growth rate λ 
among sires (Fig. 1B) is less extreme compared to the variability among environments (years; see Fig. 1A). The 
sires that would be expected to go extinct first (Fig. 1B, sire 2, 9, & 16), are the ones that have low reproductive 
rates (Fig. 1F) and tend to have fast life histories28, i.e. low cohort generation time (Fig. 1D). However, these 
patterns require closer examination: Sire 7 has the highest expected reproduction, with a mean lifespan and a 
generation time that does not differ much from the population average. One would therefore expect sire 7 to 
have high fitness (λ)21, but this expectation does not hold because reproduction varies substantially within the 
sires’ offspring (Fig. 1J). These results caution us not to interpret demographic parameters in isolation, at least 
when making evolutionary ecological predictions.

Despite the dominating influence of non-selective demographic effects, environmental variation among years 
was strong. During the course of the six years analyzed in this study, there were three years of high mortality 
and decreased λ, which suggests stressful environmental conditions (2003–2005) (Roach et al. 2009)(Fig. 1A). 
Generation time and net reproductive rate R0 indicate fast life histories with short expected lives and low expected 
lifetime reproduction (Fig. 1). Interestingly, there were no carryover effects of the stress in these years, with 
respect to survival and reproduction (see also little shift in size distribution across the years Online Appendix 
Fig. S2). This lack of carryover is particularly interesting given that small, and in particular small, old, individuals 
died at high rates during this stressful time23.

Our estimates of the relative size of additive genetic variation might be considered small, but a low additive 
genetic contribution to the total variability in survival and reproduction among individuals is not surprising from 
a population genetics perspective or basic evolutionary theory29–31. Indeed, many studies of natural populations 
find low estimates of heritabilities for fitness components32–37. Given low heritabilities, and the sample sizes (per 
genotype) typically found in ecological studies, detecting any evolutionary change within the time scale of such 
studies will be challenging10. Our low estimates of additive genetic variation do not mean that the variability is 
evolutionary unimportant but rather, that selective changes will be slow and genetic drift enhanced, particularly 
in populations with long or complex life cycles10,19,38,39.

Our estimates of the amount of non-selective demographic variation are consistent with what has been found 
for fitness components in individuals of model organisms raised in the lab under highly controlled conditions. 
Even among isogenic individuals under lab conditions the coefficient of variation (CV) of the stochastic demo-
graphic component ranges between 0.24 to 1.33 in lifespan (Caenorhabditis elegans 0.24–0.3440,41, Caenorhabditis 
briggsae 0.31–0.5142, Saccharomyces cerevisiae (0.37)43, Escherichia coli 0.4–0.644,45). Less controlled studies that 
include individuals with more genetic variation do not differ much from these patterns in the CV for lifespan, 
for example in laboratory reared mice (0.19–0.71)41 or Drosophila melanogaster 5.98–13.4846. These values are 
in the range of the values we detect here: CV 0.96 for lifespan, and 3.97 for reproduction (non-block corrected 
estimates). Such estimates are also well within the range of variability in lifespan and reproduction of other 
natural populations, even though the decomposition into non-selective stochastic components is often not pos-
sible under less controlled conditions7,13.

The example we present here concerns one population of a perennial plant species but might be more general. 
With respect to growth form and demography, Plantago lanceolata is typical of all herbaceous plant species that 
includes perennials such as this species, and annual species. Unfortunately, very few demographic studies have 
been done with other plant species (but see47 for a review of life history trade-offs and senescence in other her-
baceous plants). Beyond herbaceous species, the results in this study, are consistent with a long-term study with 
Fumana procumbens, a perennial dwarf shrub, that shows large environmental effects on age-and size-dependent 
survival and reproduction48.

The large variability in fitness components among individuals that cannot be explained by genetics or the 
environment remains a mystery if not considered in the context of non-selective stochasticity. Various approaches 
support such understanding and provide similar estimates on variance from a range of studies conducted in the 
field18,49–51. Analyses based on exceptionally deep pedigree and applying the principle of individual reproductive 
value, show that less than half of the variation among the individuals genetic contribution to the next generation, 
can be explained by individual lifetime fitness, comprising lifespan, lifetime reproductive success, and projected 
growth rate18. This estimate still biases stochastic contributions low, because selective and neutral genetic vari-
ation cannot be fully decomposed. Other studies support the idea that stochastic events play a major role at all 
levels, from stochastic gene expression, to the protein level, to the cell and organismal organization level, and 
these studies range from relatively simple organisms such as bacteria to complex ones such as mammals52–58. 
As population genetics has long recognized, such variability in individual fates means that stochastic effects 
are larger in small populations. The combined effect of the individual variability we discuss here and the actual 
population size is measured by the effective population size31,59,60.

Our approach differs from previous models that estimate non-selective demographic variability61,62 by includ-
ing stages and not just age. In previous models, demographic variability has been estimated as the variance and 
covariance in survival and fertility within an age class, but these models do not provide a mechanism to correlate 
performance across ages because age classes are assumed to be independent. Further, these models do not con-
sider cohorts, which then makes it impossible to compute life history traits such as an individuals’ age at death, 
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or lifetime reproductive success. This limitation thus makes alternative models less applicable for assessing life 
history tradeoffs, such as the fundamental tradeoff between survival and reproduction63. Additionally, previous 
models have included approximations for stochastic dynamics (transient dynamics), whereas the models pre-
sented here are deterministic. Excluding stage dynamics (here size as stage) would lead to very different estimates 
of non-selective demographic variability, because in our model the stage dynamic is one of the main processes 
generating variance and is crucial for the computation of the correlation between growth, survival and reproduc-
tion within and among ages (the latter through the Markovian structure of the model). Such stage dynamics thus 
allow us to compute the non-selective stochasticity we were mainly concerned with, and thereby account for the 
importance of quantitative trait dynamics for life histories. Our focus on individual measures also recognizes 
the central role that individuals play in demographic and population changes, including fundamental tradeoffs 
and covariances between longevity and lifetime reproduction1,63. Here, we have shown that variation driven by 
stochastic demographic processes can be precisely quantified by a structured matrix model, and this approach 
provides us with a better understanding of population dynamic processes, including the effect of stochastic events 
on population growth and other fitness related demographic parameters.

In ecology and conservation biology, the role of stochastic demographic processes has been mostly investi-
gated for population extinction processes rather than evolutionary ecological processes2,64,65, but see more recent 
work18,50,61,66. Ecological models provide insight into the effects of stochastic environmental variation on vital 
rates, but surmise that stochastic demographic variation is of little importance because, as long as the popula-
tions are not very small, extinction is not influenced by such processes2. However, in the context of evolutionary 
dynamics, the adaptive potential to respond to climate change can be substantially influenced by large amounts 
of stochastic demographic variation and may in the long run influence extinction even in large populations10,38. 
The data used here is a single illustrative example that shows that large within year-sire variation in reproduction 
does not lead to high expected growth rates of these sires. It highlights, that even in large populations, evolution-
ary population dynamics, and consequently long run extinction, can be influenced by such neutral variation.

Conclusions
Historically, unexplained variation (residual error) has often been interpreted as a lack of knowledge of underly-
ing causes, measurement error, and/or limited control of the conditions under which experiments are conducted. 
Recent studies have been devoted to determining the impact of stochastic events on variation at the molecular, 
cellular and organismal level. At each of these levels substantial evidence suggests that stochasticity plays an 
important role18,44,49,51–57,67. In some circumstances the cause of the “stochastic” outcome can be tracked down to a 
mechanistic cause at a lower level, but this mechanistic cause may be triggered by other stochastic events. If such 
cascading stochastic (snowball) events play a major role in determining demographic variation, then variability 
in fitness components must be seen as neutral and not driven by the environmental or genetic variability among 
individuals. Controversial discussions about neutral theories, in molecular evolution or community ecology, also 
highlight the idea that these processes are ubiquitous, at many different levels, but are not easy to quantify68–70.

We have shown that large amounts of variability in fitness components among individuals in this study are 
likely due to stochastic demographic processes and such neutral variability has significant effects on popula-
tion dynamics and demographic parameters. Our understanding of this type of variability and its impact on 
the evolution of phenotypic variability is limited and we call for more attention to and focus on understanding 
such variation. These neutral processes have ecological and evolutionary consequences, but neither our current 
theories nor our empirical understanding are sufficient to explain their evolution and maintenance.

Materials and methods
Plantago lanceolata is a widely distributed short-lived perennial herb. In the experimental field site, located at 
the Shadwell Preserve of the Jefferson Monticello Foundation, Shadwell, Virginia, USA, this species maintains a 
basal rosette of 1 to ~ 240 leaves (mean 12.5 ± 11.53 SD). It germinates both fall and spring and remains green all 
year, thus individuals can be easily followed for size (number of leaves) and survival throughout the year. Seeds 
for this study were produced from crosses with parental individuals that had been randomly collected from the 
70 m * 35 m field site. Parental genotypes were crossed using a modified North Carolina II design71. Here we 
used crosses that consisted of four sires crossed to each of two dams resulting in eight sire-dam combinations 
and 200 offspring from each. This was repeated for five unique sets of sires and dams (20 sires, 10 dams), 40 
sire-dam combinations and 8000 individual offspring. In the analysis reported here, we used individuals from 
the 32 crosses with the largest replication22. This design was used for cohorts 1 and 2 (planted in years 2000 
and 2001) and one-half of the total number of individuals per cross was used for cohorts 3 and 4 (both planted 
in year 2002, spring and fall respectively, and for this analysis these cohorts were classified in the same age 
class). All cohorts had the same genetic structure when initially planted. Further details of the planting design 
and protocol are reported elsewhere22. The analysis reported here began with the data collected in 2003 when 
6913 individuals from these 32 crosses had survived. At this time, the number of individuals per cross, across 
cohorts, ranged from 283 to 376, and spatially these individuals were distributed across 17 randomized blocks 
and 64 plots. The matrix models constructed here use size (number of leaves) and survival data (censused and 
recorded in May/June each year) from 2003–2008. In total, there were 14,082 events where size and survival 
in consecutive years was known. Data collected prior to 2003 was excluded because not all cohorts had been 
established before this period.

Size structured matrix models.  The analyses are based on discrete time (Markovian) size-structured 
matrix population models with number of leaves (size) as the stage character and the number of reproductive 
stalks (inflorescences) as a measure of reproduction. Vital rates (growth, survival and fertility), were estimated 
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using regression models (see below) as is normally done for integral projection models (IPM)72, except that here 
we used the regressions to parameterize discrete size structured matrix models26. The stage structure consisted 
of 100 size classes (one for each number of leaves between 1 and 100 +).

For each year-sire combination (6 years [2003–2008] and 16 sires, each sire crossed with two dams) we fit one 
model with size as the stage characteristic (Online Appendix Fig. S1). From each of these year-sire specific models 
we directly computed: population growth rate λ, generation time Tc, net reproductive rate R0 (number of seedlings 
produced), expected reproduction (expected number of inflorescences produced) and variance in reproduction 
(variance in number of inflorescences produced) among year-sire individuals within the year-sire combination 
(non-selective demographic variation in reproduction), and life expectancy and variance in lifespan among year-
sire individuals (non-selective demographic variation in survival within the year-sire combination)21,73 (Table 2).

Data analysis.  For each model (i.e., year-sire combination), four regression functions were fit describing the 
relationship between the individual’s a) current size and survival, i.e. size-specific survival function; b) current 
size and size at time t + 1, i.e. size-specific expected growth and the variance in size-specific growth among indi-
viduals; c) current size and reproduction; i.e. the size-specific probability of producing at least one inflorescence; 
and d) current size and number of inflorescences given that at least one inflorescence was produced, i.e. size-spe-
cific production of inflorescences (Online Appendix Fig. S1). In the final two years (2007 and 2008) one sire had 
too few surviving individuals (N = 24 and N = 9) to fit meaningful functions; we thus excluded these two years 
for this sire (# 16), which left us with 94 models (16 sires * 6 focal years; equals 96 minus the two years for sire 
#16). To estimate the non-selective environmental variance across all years and the additive genetic variance (G) 
across all sires, we used the demographic parameters from these 94 year-sire specific models weighted according 
to the number of individuals in each year-sire combination, i.e. year-sire combinations that had more individuals 
contributed more to the weighted variances across all years or sires than those with fewer individuals.

All functions were fit to square root transformed size measures to improve normality in residuals. For the 
survival and the reproduction functions, a binomial model with a linear and quadratic term for size was used 
(see example Fig. S1a and c). A Poisson distributed model structure with a linear and quadratic term for size 
was used for the number of inflorescences (see example Fig. S1d), and for the growth function a Gaussian linear 
model was used (see example Fig. S1b). It should be noted that around these size-specific functions there is vari-
ance in the realized individual outcomes and among the year-sire specific functions. It is these two sources of 
variance that are core to our approach to decompose variance contributions10. Because of the limited number of 
very large individuals, we binned all individuals ≥ 100 leaves (per year-sire combination) into one size class and 
binned all individuals with ≥ 30 inflorescences (per year-sire combination) into one reproduction class. When 
estimating function parameters, we included the dams as a random (intercept) effect to account for potential 
differences among dams.

To build full population matrixes Xgy , for sire (g) in year (y) , we made assumptions regarding recruitment. 
The field experiment did not allow direct recruitment of seedlings into the study site, thus did not have sire 

Table 2.   Notation and equations. Details and proofs of equations are found elsewhere21,73.

Description Equation Notes

et Vector of zeros with a 1 at position t

eT Vector of ones, superscript T denote transpose

Identity matrix I

Stage transition matrix P Includes survival and stage changes

Stage duration matrix N = (I− P)−1 Elements quantify the expected time spent in each stage 
conditional on the birth stage

Mean Lifespan exL = eT ∗ I ∗ N ∗ et

exLsq = eT ∗ I ∗ (2N − I) ∗ I ∗N ∗ et

Variance in lifespan VarL = exLsq− (exL)2

Fertility matrix F

F̂ = diag(F) Diagonal elements of fertility matrix

Expected reproduction exR = et
T
∗ F ∗N ∗ et

exRsq = et
T
∗ F ∗ (2N − I) ∗ F̂ ∗N ∗ et

Variance in reproduction VarexR = exRsq− (exR)2

Population growth rate λ = dominant Eigenvalue of X , with population projection 
matrix X = (F+ P)

Cohort generation matrix Ac = F ∗N

Net reproductive rate R0 = dominantEigenvalueofAc

Right eigenvector corresponding to dominant eigenvalue 
of Ac

cυ , normalized so to sum of components = 1

Left eigenvector corresponding to dominant eigenvalue 
of Ac

dυ , normalized so to ( dυ, cυ) = 1

Cohort generation time Tc = (dυT
∗N ∗ cυ)/(dυT

∗ cυ)
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(g) specific recruitment rates xyg (k, z) where an individual of size (z) in year 
(
y
)
 contributes to the recruited 

individuals at size (stage) k at time t + 1. For recruitment we used probability estimates from a separate study of 
seeds planted directly into the same field (Shefferson & Roach 2012). The probability of seedling establishment 
(0.1035) was computed from the germination rate of 0.69 and the seed to seedling survival rate of 0.15 (see 
robustness to assumptions about seedling establishment Online Appendix Table S1, Fig. S3). We estimated the 
age-specific fecundity as the number of inflorescence spikes produced by an individual. As we did not have exact 
seed numbers for each inflorescence, except for a small fraction of the plants included in this analysis, additional 
variation in seed mass and seed number across inflorescences could occur (see below for year specific estimates 
of variance in seed numbers). Our method to estimate fecundity from inflorescence numbers has been used for 
several other earlier studies with this species and it has a high correlation with total seed number. To account 
for differences among years in number of seeds produced per inflorescence, we took the mean number of seeds 
counted from approximately 150 randomly selected inflorescences each year. Mean number of seeds per inflo-
rescence (± 1 SE): year 2003, 70.72 ± 2.83; year 2004, 52.83 ± 2.69; year 2005, 42.5 ± 2.43; year 2006, 42.07 ± 2.28; 
year 2007, 50.86 ± 1.82; year 2008, 27.84 ± 2.09. For the seed to seedling size distribution, we assumed that these 
were equal across years and sires.

To test for potential effects of small-scale environmental differences throughout the 70 m * 35 m experimental 
field we corrected for variance among 17 blocks, small-scale geographic units across the experimental field. In 
this set of analyses we included one additional random effect, the block (N = 17), for estimating the size depend-
ent regression functions for each model (year-sire combination). Comparing the two sets of analyses (with and 
without correcting for variance associated to the blocks) provided insights on micro-climatic and small-scale 
environmental effects throughout the experimental field.

The four regression function parameters (Fig. S1) together with the number of seeds per inflorescence, the 
probability of seedling establishment, and the seedling size distribution were used to compute two 100*100 
matrixes (100 size classes) for each year-sire combination. One matrix, the transition matrix P (Table 2) contained 
survival rates and expected growth (change in number of leaves) and the variance around that expected growth, 
i.e. the probability of transitioning from a given size at time t to size at time t + 1. The column sums of this matrix 
P are smaller than 1 and are equal to the survival rates of individuals at a given size at time t. The other matrix, 
the fertility matrix F (Table 2), contained size-specific reproduction and recruitment rates, i.e. the probability of 
reproducing inflorescences with a yearly specific number of seeds, that then yields the recruitment of seedlings 
into the population depending on the current size at time t. We limited the maximum survival probability of 
any size to 0.95 (the results are robust to this assumption). The computation of the functions and the matrixes 
were done in program R74.

Each pair of matrices was used to compute: (i) population growth rate λ, (ii) cohort generation time, Tc, 
(iii) net reproductive rate R0 (expected number of seedlings recruited), (iv) mean lifespan, (v) variance in lifes-
pan, (vi) mean reproduction (number of inflorescences), and (vii) variance in reproduction for each year-sire 
combination21,73 (Table 2). The stochastic properties of these matrix models allowed us to directly compute the 
expected variances in survival and reproduction. The stage duration matrix73, N, (a.k.a. the fundamental matrix, 
see Caswell (2009)), was used to estimate the mean and variance in lifespan and reproduction for each year-
sire combination10. The elements of this matrix quantify the expected time an individual spends in each stage 
conditional on the individual’s birth stage (Table 2)10,21,73.

Our models are based on year and sire, not age or cohort, because we found that size-distributions did not 
shift along with age-structure during the study (Online Appendix Fig. S2). Models that included only age and 
year, or age and sires (not shown) did not lead to qualitatively different results. Previous studies using this 
data17,22–24 revealed that survival dropped significantly in 2003 for all cohorts or ages22. A model comprising age-
and-year-and-sire combinations could not be fit here because of lack of sample size; moreover, such a complex 
model would be difficult to interpret biologically.

We use matrix models to decompose the variability in survival and reproduction among individuals, which 
is in contrast to mixed effect models, GLMs, ANOVA, or similar approaches that are often used for a decom-
position of the total variances, into the genetics, the environment (year), G x E, and the unexplained residual 
components75. These latter approaches produce biased estimates for various reasons. First, when estimates of 
genetic and environmental variance are based on low numbers of individuals within the same year or individuals 
that are closely related, such models are anticonservative and underestimate the stochastic component20. Our 
analyses are less affected by such effects because of larger within year-sire numbers. Second, for a multiple cohort 
study such as ours with fewer cohorts than age classes, a mixed effect model would underestimate variance in 
mortality because of the limited age-structure in a given year, which is a general problem in many studies track-
ing known-aged marked individuals, whereas variance in reproduction would be more accurately estimated (see 
Online Appendix Table S2). Third, a multitude of mixed models can be fitted with results that are often highly 
sensitive to factor combinations (see Online Appendix Table S2).

Our matrix models include aspects of mixed effect models, but we do not include individual as random effects 
because our objective was to combine information about different life history traits and demographic rates. Our 
approach provides a direct link between survival probabilities and growth trajectories and we can easily combine 
different distributions (e.g. binomial for the probability to reproduce, Poisson for the number of inflorescences). 
The flexibility to combine information across models (e.g. survival and reproduction) is particularly challenging 
when using mixed effect models, though see developments in MCMCglmm76. Our approach made it possible to 
estimate, for each year-sire combination, a size structured matrix model that provides direct calculation of the 
non-selective demographic variation for each model10,21,73.
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