
Received 23 June 2021; revised 29 September 2021; accepted 26 October 2021. Date of current version 22 November 2021.

Digital Object Identifier 10.1109/OJCAS.2021.3124995

Rate-Distortion Optimized Encoding for
Deep Image Compression

MICHAEL SCHÄFER 1, SOPHIE PIENTKA 1, JONATHAN PFAFF 1, HEIKO SCHWARZ 1,2,3,
DETLEV MARPE 1 (Fellow, IEEE), AND THOMAS WIEGAND 1,2,4 (Fellow, IEEE)

1Video Communication and Applications Department, Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, 10587 Berlin, Germany

2Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, 10587 Berlin, Germany

3Department of Mathematics and Computer Science, Free University of Berlin, 14195 Berlin, Germany

4Department of Electrical Engineering and Computer Science, Berlin Institute of Technology, 10623 Berlin, Germany
This article was recommended by Associate Editor M. Cagnazzo.

CORRESPONDING AUTHOR: M. SCHÄFER (e-mail: michael.schaefer@hhi.fraunhofer.de)

ABSTRACT Deep-learned variational auto-encoders (VAE) have shown remarkable capabilities for lossy
image compression. These neural networks typically employ non-linear convolutional layers for finding
a compressible representation of the input image. Advanced techniques such as vector quantization,
context-adaptive arithmetic coding and variable-rate compression have been implemented in these auto-
encoders. Notably, these networks rely on an end-to-end approach, which fundamentally differs from
hybrid, block-based video coding systems. Therefore, signal-dependent encoder optimizations have not
been thoroughly investigated for VAEs yet. However, rate-distortion optimized encoding heavily determines
the compression performance of state-of-the-art video codecs. Designing such optimizations for non-linear,
multi-layered networks requires to understand the relationship between the quantization, the bit allocation
of the features and the distortion. Therefore, this paper examines the rate-distortion performance of a
variable-rate VAE. In particular, one demonstrates that the trained encoder network typically finds features
with a near-optimal bit allocation across the channels. Furthermore, one approximates the relationship
between distortion and quantization by a higher-order polynomial, whose coefficients can be robustly
estimated. Based on these considerations, the authors investigate an encoding algorithm for the Lagrange
optimization, which significantly improves the coding efficiency.

INDEX TERMS Deep image compression, variational auto-encoders, rate-distortion optimized encoding,
non-linear transform coding.

I. INTRODUCTION

THERE is a seemingly endless variety of multimedia
communication in today’s world. Tailor-made solutions

for high-resolution streaming, video conferencing and the
storage of digital images have become easily accessi-
ble to both consumers and companies. Invisible to most
users, lossy compression is at the heart of these appli-
cations because bandwidth capacities are a limiting con-
straint. Therefore, image and video coding technologies
are capable of efficiently compressing the content at the
cost of transmitting a slightly distorted version of the
original.

Cutting-edge video codecs like High Efficiency Video
Coding (HEVC) [1], [2], [3] and Versatile Video Coding
(VVC) [4], [5], [6] employ a hybrid, block-based approach
for this task. First, each frame is partitioned into blocks
and for each block, a prediction signal is generated by
using either intra-picture prediction or motion-compensated
prediction. The prediction residual is then transformed,
quantized and entropy-coded using adaptive context models.
A key to exploit the compression efficiency of

hybrid video coding systems is rate-distortion optimized
encoding; [7], [8]. Given a maximum budget of bits R∗, the
encoder evaluates the impact of different coding decisions
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such as block partitions, prediction modes and transform
coefficient levels on the resulting distortion d. These cod-
ing decisions are encoded in a bitstream with bitrate R. The
goal is to find a bitstream, which transmits the input image
with minimal distortion and below the given rate budget R∗.
Directly solving this minimization task is unfeasible, due to
the sheer number of possible combinations of coding deci-
sions. Instead, the encoder evaluates promising options by
comparing their Lagrangian cost

min(d + λR), (1)

where λ > 0 is the Lagrange parameter, which depends on
R∗; [9]. In general, the quantization has a strong impact on
the Lagrangian cost (1). For instance, the impact of different
quantizers on d and R is well-known for linear, orthogo-
nal transforms; [10], [11]. Consequently, there are several
algorithms for selecting the quantization indices of scalar
quantization of a transform block; [12], [13]. Furthermore,
the performance capabilities of rate-distortion optimized
quantization for HEVC have been investigated in [14]. In
VVC, the encoder may choose between scalar quantization
of transform coefficients and a low-complexity variant of
vector quantization, which yields additional coding efficiency
improvements; [15], [16]. Here, two different quantizers are
applicable and the possible transitions between them are
represented by a trellis. A suitable sequence of quantization
indices can be found by applying the Viterbi algorithm [17].
In summary, the signal-dependent Lagrange optimization on
the encoder side is crucial to the performance of image and
video coding.
Besides the aforementioned existing video codecs, there

have been promising advances in using variational auto-
encoders (VAE) for end-to-end still image compression.
These VAEs can be characterized as non-linear trans-
form coding and are typically designed as artificial neural
networks, which are trained on large sets of data; [18], [19].
Ballé et al. have made several contributions concerning the
overall architecture, the choice of activation functions, and
the design of a proper entropy model for the quantized
features; [20], [21], [22]. Furthermore, Agustsson et al.
investigate the effects of using soft quantizers on the
performance of image compression networks; [23]. Different
conditional probability models for the features have been
investigated in [24], [25], [26], where the latter two ones
are closely related to the works of Ballé. Remarkably, these
auto-encoders are able to keep up with the compression
efficiency of HEVC in an RGB-setting for still image com-
pression. Subsequently, the authors of [27] have built a
compression system using multi-scale convolutions, thereby
separating the features into high and low frequency parts.
In [28], the effectiveness of using trellis-coded quantization
over uniform scalar quantization is demonstrated for deep-
learned image compression. In [29], [30], the authors trained
modulating networks for scaling the features according to
the Lagrange parameter. These auto-encoders are capable of

achieving multiple points on the operational rate-distortion
curve.

II. MOTIVATION
In the context of deep-learned image compression systems,
signal-dependent encoder optimizations have not been deeply
researched yet. The authors of [31] demonstrated that
the coding efficiency of a VAE is improved significantly
by considering the quantized features as possible coding
options and exhaustively testing different quantization lev-
els. Still, a major obstacle is understanding the impact
of the quantization due to the multi-layered, non-linear,
non-orthogonal decoder network. Furthermore, given the
decoder network and the original image, the non-quantized
features do not necessarily minimize the distortion in the
sample domain, not even locally. This is a major contrast
to the orthogonal transforms, which are used in conven-
tional video codecs. Here, the distortion in the sample
domain is equal to the quantization error of the trans-
form coefficients and the original samples can be recovered
from the non-quantized coefficients, disregarding perturba-
tions due to fixed-point arithmetics. Hence, the aim of this
paper is to consider possible approaches for rate-distortion
optimized encoding in deep-learned end-to-end compression
systems. First, one introduces a network architecture, which
is capable of achieving different rate-distortion trade-offs
by suitably adapting the quantization step size. During the
training stage, the network parameters are updated with
respect to different Lagrange costs simultaneously. Here,
one ensures that the encoder-determined features are capa-
ble of almost perfectly reconstructing the original image
by optimizing with respect to a sufficiently small Lagrange
parameter. This proves to be critical for designing a rate-
distortion optimization algorithm: when the non-quantized
features are close to local minimum of the distortion, the
impact of altering the quantization levels of the features
can be reasonably estimated by a higher-order polynomial.
Furthermore, by avoiding the use of an auto-regressive
network at the arithmetic coding stage, changing the quan-
tization index of a single feature entry does not alter the
probability estimation of the remaining ones which is ben-
eficial for maneuvering the allocation of bits across the
feature channels. Given such a variational auto-encoder,
the authors demonstrate that the encoder-determined fea-
tures typically inherit a near-optimal allocation of bits
across the channels for high rates. From these considera-
tions, one derives an algorithm for refining the encoder-
determined features and effectively reducing the Lagrangian
cost (1).
The rest of the paper is organized as follows. Section III

presents the auto-encoder architecture and the training
details. The following Section IV investigates the rela-
tionship between the quantization, bitrate and distortion.
Using this information, the authors propose an algorithm
for rate-distortion optimized encoding. Section V provides
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FIGURE 1. Flow chart of the proposed VAE-based image coding process. Note that each of the networks in (2) and (3) consists of three multi-scale convolutional layers. The
subscripts H, M , L refer to high, middle and low resolution components of the latents z and y . Here, the quantization step size � of the features is variable while the hyper priors
are rounded off to the closest integer. The parameters (μ̂, σ̂ ) of the feature probability model are estimated from the transmitted side information.

the experimental results. Finally, the findings are discussed
in Section VI the paper concludes with Section VII.

III. ARCHITECTURE AND TRAINING FOR
VARIABLE-RATE END-TO-END IMAGE COMPRESSION
Conventional video codecs are capable of quality-scaling:
given a fixed decoder and bitstream syntax, the encoder is
able to produce bitstreams for specific target bitrates and
reconstruction qualities. Contrarily, most trained end-to-end
compression systems have different sets of coefficients for
each point on the operational rate-distortion curve. Another
problem concerns how the encoder determines the features,
especially when the network is trained with respect to a low
reconstruction quality. Given the decoder of such a compres-
sion system, the encoder-determined, non-quantized features
typically do not minimize the distortion with respect to the
input image. The impact of altering the quantization levels
is hard to estimate without knowing if the current features
are far or close to such a distortion minimum. As a conse-
quence, it becomes difficult to design a suitable algorithm
for rate-distortion optimized encoding. The authors avoid this
problem by using a suitable rate-distortion loss term during
the training of the proposed auto-encoder. For simplicity, the
authors restrict themselves to using luma-only input images
for which the computation of the bitrate and distortion is
unambiguous.

A. OVERVIEW OF THE IMAGE COMPRESSION PROCESS
Variational auto-encoders for image compression are com-
posed of different convolutional neural networks where each
one carries out a specific task of the conventional coding pro-
cess. First, the network Enc encodes the input x ∈ R

H×W×1

into a set of features to transmit. After uniformly quantizing
each entry with step size � > 0, the resulting symbols are
written into the bitstream. At the decoder side, the symbols

are parsed and another network Dec reconstructs the image
as

z = Enc(x),

ẑ(�) = � ·
⌊
z
�

+ 1
2

⌋
,

x̂ = Dec(ẑ).

⎫⎪⎪⎬
⎪⎪⎭

(2)

For coding the symbols, one defines a parametrized entropy
model by assuming a normal distribution of the features
z ∼ N (μ, σ 2). Thus, a hyper system with its own encoder
Enc′ extracts side information from the features, which is
also transmitted. Prior to decoding the quantized features,
the hyper decoder Dec′ determines the necessary estimates
(μ̂, σ̂ ) as

y = Enc′(z),
ŷ = �y+ 1

2�,(
μ̂, σ̂

) = Dec′(ŷ).

⎫⎪⎬
⎪⎭

(3)

The entire image coding process is depicted in Figure 1.
An important aspect of this work is the use of multi-

scale convolutional layers for representing the features and
the side information at different resolutions; see [31]. The
authors of [27] have demonstrated the positive impact of
octave convolutions instead of regular ones on the compres-
sion efficiency of a VAE-based image codec. The benefit of
this representation is that differently scaled components of
the features are capable of capturing image details at differ-
ent resolutions of the input. Furthermore, when a variable
but uniform quantization step size is used, its impact on the
individual components differs, depending on the magnitude
of the feature entries in each component. Other approaches
for variable-rate compression such as [29] use an additional
neural network which scales each individual feature entry
depending on the target bitrate. Hence, one also aims at
exploiting the multi-scale representation of the features for
avoiding the use of such a re-scaling network.
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Concerning the conditional probability model for coding
the features, we avoid using an auto-regressive network as
in [25] and [31]. This simplification is beneficial for con-
trolling the impact of the quantization on the number of bits
to be transmitted. Note that the individual feature entries
are assumed to be normally distributed and stochastically
independent. Given that the side information is fixed, chang-
ing the quantization index of a single entry does not affect
the estimated probabilities of the remaining features. As a
consequence, the features can be decoded in an arbitrarily
chosen but fixed scan order. Contrarily, in the aforemen-
tioned works [25] and [31], the feature probabilities in a
certain spatial neighborhood and across all channels must
be re-computed when the quantization index of a single
entry is changed. This backwards-dependency of the prob-
abilities turned out to be a major obstacle for adapting the
quantization step size with regard to the bitrate.
Therefore, in this paper, the probability of a single feature

entry Pẑ(ẑl) is estimated via the cumulative distribution
function with parameters (μ̂l, σ̂l). Thus, one writes this
function as

Pz
(
ẑl;

(
μ̂l, σ̂l

))
:= 1

2

[
1 + erf

(
ẑl + t − μ̂l√

2σ̂l

)]�
2

− �
2

. (4)

Here, l = (l0, (l1, l2, l3)) denotes a multi-index as follows:

• l0 ∈ {0, 1, 2} refers to the component (0 denoting the
high, 1 the middle, and 2 the low resolution),

• l1 is the channel index within this component l0,
• l2 is the vertical coordinate in channel l1,
• l3 is the horizontal coordinate in channel l1.

Finally, for transmitting the side information, a fully con-
nected neural network Py(·, φ) approximates the true prob-
ability Pŷ; see Appendix in [22]. The parameters φ are
optimized during the training stage and remain constant
afterwards.

B. ARCHITECTURE OF THE VARIATIONAL
AUTO-ENCODER
As stated in the previous subsection, the variational auto-
encoder investigated in this paper mainly consists of multi-
scale convolutional layers. In particular, Table 1 summarizes
the architecture of the encoder and decoder networks in (2)
and (3). Starting with the input image x, the encoder network
determines the features as

z = EncN−1 ◦ · · · ◦ Enc0(x),

z ∈ R
w×h×c0

⊕
R

w
2 × h

2 ×c1
⊕

R
w
4 × h

4 ×c2,

where Table 1 states the composition of the output channels
in each layer. Thus, one uses channel sizes (c0, c1, c2) =
(192, 48, 16) with spatial dimensions (w, h) = (W/8,H/8)

depending on the input image size. Next, for each multi-scale
layer Encn, one defines the following functions:

• fn,H→H, fn,M→M, fn,L→L, which are convolutional layers
with kernels and downsampling rates as in Table 1,

TABLE 1. The VAE architecture: Each row denotes a multi-scale convolutional layer.
“Kernel” shows the dimensions of the convolution kernels and the down (↓) - or up (↑)
- sampling rate along each spatial axis. “In” and “Out” denote the channels summed
over all components. “H”, “M” and “L” state the number of output channels per
component. “Act” states the activations, (I)GDN stands for (inverse) generalized
divisive normalization; [20]. The number of features is (3 + 13

64 )HW .

• fn,H→M, fn,M→L are 5×5, which are convolutional layers
with constant spatial downsampling rate 2,

• fn,M→H, fn,L→M are 5 × 5, which are transposed convo-
lutional layers with constant upsampling rate 2.

Note that each single convolutional layer fn employs an acti-
vation function according to Encn in Table 1. The encoder
network computes the features from the input image as
follows. Since the original image consists of a single chan-
nel at a specific resolution, the first layer constructs a
three-component multi-channel output as

z1 = Enc0(x) =
⎛
⎝

f0,H→H(x)
f0,H→M

(
z1,H

)
f0,M→L

(
z1,M

)

⎞
⎠ =

⎛
⎝
z1,H

z1,M

z1,L

⎞
⎠.

Subsequently, each multi-scale convolutional layer updates
the individual components separately from one another.
Then, the updated components are re-sampled as needed
and added accordingly. Hence, the outputs zn+1 = Encn(zn)
are computed as

zn+1 =

⎛
⎜⎜⎝

fn,H→H
(
zn,H

) + fn,M→H
(
fn,M→M

(
zn,M

))
fn,M→M

(
zn,M

) + 1
2

(
fn,H→M

(
fn,H→H

(
zn,H

))
+ fn,L→M

(
fn,L→L

(
zn,L

)))
fn,L→L

(
zn,L

) + fn,M→L
(
fn,M→M

(
zn,M

))

⎞
⎟⎟⎠.

The process is also illustrated in Figure 2.
Note that the decoder network and the hyper networks are

constructed in a similar manner. For instance, the decoder
computes the reconstruction from the quantized features as

xN := ẑ, x0 = Dec1 ◦ · · · ◦ DecN(xN),

where the outputs xn−1 = Decn(xn) are computed as

xn−1 =

⎛
⎜⎜⎝

gn,H→H
(
xn,H

) + gn,M→H
(
gn,M→M

(
xn,M

))
gn,M→M

(
xn,M

) + 1
2

(
gn,H→M

(
gn,H→H

(
xn,H

))
+ gn,L→M

(
gn,L→L

(
xn,L

)))
gn,L→L

(
xn,L

) + gn,M→L
(
gn,M→M

(
xn,M

))

⎞
⎟⎟⎠.
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FIGURE 2. The computation of zn+1 via the multi-scale convolutional layer. Note
that each colored arrow denotes a convolutional layer with an activation function
applied to its outputs.

Here, the maps gn,H→H, gn,M→M, gn,L→L are transposed con-
volutional layers with upsampling rates and activations as
stated in Table 1. Note that the final decoder layer Dec1 is
computed as in [31, Sec. 2.2]. The reconstruction is defined
as the high-resolution component from the final layer output,
i.e.,

x0 =
⎛
⎝
x0,H

x0,M

x0,L

⎞
⎠, x̂ := x0,H .

C. TRAINING DETAILS
The training algorithm requires a differentiable version of
the Lagrangian cost (1). As in [21], one introduces noisy
versions of the features and side information as

n ∼ U
(

−1

2
,

1

2

)
, z̃(�) = z+ � · n, ỹ = y+ n, (5)

for avoiding zero gradients due to the hard quantization.
Further, let MSE(·, ·) denote the mean squared error between
original and reconstruction as

MSE
(
x, x̂

)
:= 1

HW

H−1∑
i=0

W−1∑
j=0

(
xi,j,0 − x̂i,j,0

)2
.

Next, one defines the following loss terms

d = d(z,�) = MSE(x, Dec(z̃(�))), (6)

R = R(z,�) = 1

HW

∑
l

− log2 Pz
(
z̃l(�); (

μ̂l, σ̂l
))

, (7)

R′ = R′(y) = 1

HW

∑
k

− log2 Py(ỹk;φ), (8)

where l and k are multi-indices as in (4). Using a pair of
Lagrange parameters (λ1, λ2) and scalar weights (κ1, κ2),
the training objective then becomes

minE

[
2∑
i=1

κi
(
d + λi(R+ R′)

)]
. (9)

Note that (6) and (7) are both differentiable with respect to
�. For choosing the appropriate weights, one picks λ1 = 128
and λ2 = 512 and trains two separate VAEs with respect
to the individual costs and constant uniform quantization.
Then, one chooses weights such that the weighted training
cost κ1(d+λ1(R+R′)) of the first network is approximately
as large as the weighted training cost κ2(d+λ2(R+R′)) of the
second network. Then, one trains a third, single VAE by set-
ting κ1, κ2 to these determined values. For the optimization
of (9), instead of training a modulating network for scaling
the layer outputs as in [29], one fixes �1 = 1 = const and
optimizes the step size �2 jointly with the network parame-
ters. Consequently, the impact of each example with respect
to both Lagrange costs is taken into account at each update
step during the optimization.
Using middle-resolution images from ImageNet [32] as

training data, one performs stochastic gradient descent over
256×256 patches of the luma component. Furthermore, one
sets the batch size to 8 and processed 2500 batches per train-
ing epoch. The step size for the Adam optimizer [33] was
set as αj = 10−4 ·1.13−j, where j = 0, . . . , 19 was increased
if the training loss saturated after finishing an epoch. Finally,
the authors have checked that the average compression
performance of the resulting auto-encoder is competitive
against a set of auto-encoders, which were separately opti-
mized over parameters λ ∈ {128, 256, 512, 1024, 2048}; see
Section V for further details. The training procedure can be
adapted to different pairs (λ1, λ2), where an optimization
with respect to high bitrates and high reconstruction quality
should be ensured. In particular, one observes that setting the
Lagrangian parameters too large leads to a poor performance
of the resulting VAE for higher bitrates. Furthermore, these
VAEs are hardly capable of achieving higher reconstruction
qualities, even when the features are un-quantized. On the
other hand, the best results were accomplished when at least
one summand in the training objective (9) rewards a high
reconstruction quality (i.e., PSNR > 40).

IV. RATE-DISTORTION OPTIMIZED ENCODING
The purpose of this section is to investigate the impact of
changing the quantization indices of the features on the
resulting rate-distortion performance. For this, one uses a
fixed VAE-based image codec whose exact architecture is
described in Sections III-A and III-B. The weights of this
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VAE are optimized with respect to (9) where the train-
ing procedure is carried out as explained in Section III-C.
Most importantly, the described VAE is able to continu-
ously achieve different rate-distortion trade-offs by adapting
the quantization step size accordingly. Given such an image
compression system, one may consider the following set of
quantization indices

w ∈ Z
w×h×c0

⊕
Z

w
2 × h

2 ×c1
⊕

Z
w
4 × h

4 ×c2 .

Provided that the side information ŷ and the parame-
ters Dec′(ŷ) = (μ̂, σ̂ ) are fixed, the resulting bitrate and
distortion can be expressed as

d(� · w) = MSE(x, Dec(� · w)), (10)

R(� · w) = 1

HW

∑
l

Rl
(
� · wl;

(
μ̂l, σ̂l

))
, (11)

with a variable quantization step size � > 0. The
minimization task then becomes

min
w,�

(
d(� · w) + λ

(
R′ + R(� · w)

))
, (12)

where R′ is the constant bitrate of the side information (8).
Note that the encoder Enc typically does not find a global
solution of (12). In [31], an algorithm for improving the cod-
ing efficiency of an auto-encoder was proposed, which can
be characterized as an input-dependent encoder optimization.
The algorithm exhaustively tries promising candidates in a
neighborhood around the network-determined features and
avoids multiple decoder executions by pre-estimating the
distortion by a higher-order polynomial. The approach is
similar to fast-search methods in modern video codecs,
where the impact of different coding options on d and
R is well-understood. The following subsections provide a
thorough investigation of the rate-distortion performance of
the proposed auto-encoder. The goal is to understand the
impact of signal-dependent encoder optimizations on the
rate-distortion performance.

A. ROBUST ESTIMATION OF THE DISTORTION
In [31], a distortion estimate for VAEs was derived from
a Taylor approximation of the following auxiliary function
with features z and the approximation error h as

ε(h) := MSE(Dec(z), Dec(z+ h)),

where z is expected to be close to a local minimum of

MSE(x, Dec(z)).

As ε(0) = 0 is clearly a minimum, the gradi-
ent therefore is ∇ε(0) = 0 and the impact of dis-
placements h on ε can be approximated by a multi-
variate polynomial of order two or higher. Let z =
(z(0,0), . . . , z(0,c0−1), . . . , z(2,0), . . . , z(2,c2−1)) denote the c
feature channels, i.e.,

z(i,0), . . . , z(i,ci−1) ∈ R

h
2i

× w
2i .

FIGURE 3. Relationship of single-channel feature displacements and the distortion
in selected channels. The blue dots are evaluations (||h||2, ε(h)) on the Imagenet data,
the red line is the fitted polynomial (13). The black line was fitted to the Kodak data.

FIGURE 4. Coefficients γ
(i ,j)
1 and γ

(i ,j)
2 were determined on a subset of the

Imagenet data. Here, the first 192 coefficients belong to the H-component, the next 48
coefficients to the M-component and the last 16 coefficients to the L-component.

Similarly, one writes the displacement per component and
channel as

h =
(
h(0,0), . . . , h(0,c0−1), . . . , h(2,0), . . . , h(2,c2−1)

)
.

Given a randomly chosen subset of the Imagenet data and
the Kodak set, one evaluates ε(h) for different single-channel
displacements and compared the results; see Figure 3.
Given the data, one finds that ε(h) can be approximated
robustly by a radial polynomial as in [31]. In particular, the
approximation of ε becomes

ε(h) ≈
2∑
i=0

ci−1∑
j=0

(
γ

(i,j)
1

∥∥∥h(i,j)
∥∥∥

2 + γ
(i,j)
2

∥∥∥h(i,j)
∥∥∥

4
)

, (13)

where || · || denotes the Euclidean norm and γ
(i,j)
1  γ

(i,j)
2

holds, see Figure 4.
The authors point out that although the values γ

(i,j)
2 are

close to zero, the fourth power of the quantization error in
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the feature domain can become quite large. Hence, the corre-
sponding term in the polynomial still affects the outcome of
the approximation, in particular for larger quantization step
sizes. In particular, the authors have tested to fit a quadratic
polynomial for approximating the distortion, thus omitting
the latter summands from (13). This has led to less accurate
pre-estimates of the sample distortion from the approxima-
tion error in the feature domain, which proves non-beneficial
for finding promising quantization indices in terms of the
rate-distortion cost.
Next, with ẑ = z+ h, the triangle inequality yields

d
(
ẑ
)
� d(z) + ε(h). (14)

Here, the upper bound is used for estimating d(ẑ). Note that
d(z) is not zero, contrary to the situation in conventional
codecs where orthogonal transforms are used. Since the dis-
placement h directly depends on �, one can also determine
a high-rate approximation of the average distortion as

d
(
ẑ
) ≈ d(z) + γ̂1�

2 + γ̂2�
4, (15)

where γ̂1, γ̂2 are determined in the same way as the param-
eters in (13). Finally, the estimate (14) can be improved
by determining a local minimum zmin of the un-quantized
reconstruction error, which therefore satisfies

d(zmin) ≤ d(� · w). (16)

As a consequence, there is a neighborhood of zmin, in which
the lower bound (16) holds.

B. MODELING THE RELATIONSHIP BETWEEN
DISTORTION AND BITRATE
Given a budget of R∗ bits, the goal is to optimally spend
this budget across the features such that the distortion is
minimized. Solving this allocation problem requires to under-
stand the functional relationship between the bitrate in each
channel and the resulting distortion. Furthermore, a suit-
able model for the distortion-rate function helps to better
assess the bit allocation of the encoder-determined features
before the optimization. As both functions d and R depend on
the coding options and the quantization, one approximates
the distortion by the sum of the following distortion-rate
functions

d(� · w) ≈
2∑
i=0

ci−1∑
j=0

di,j
(
Ri,j

)
. (17)

Here, Ri,j denotes the bitrate in the j-th channel of the i-th
component and equals the sum of cross entropies over all
spatial positions. Note that the rates Ri,j are additive since
the features are coded without context adaption. One can
expect similarly-behaving distortion-rate functions in a single
channel due to using convolutional layers. By using an ansatz
from [7], one can parametrize the expression (17) by the
following family of convex functions

di,j
(
Ri,j

) = α2 exp
(−βRi,j

)
. (18)

FIGURE 5. The blue dots denote evaluations (d , R) with variable � ∈ (0.8,1.2) in the
channels with the highest rate for the image Kodak14. The step size � = 1 is fixed in
the remaining channels. The red curves (18) were fitted to each channel.

For scalar quantizers, the rate-distortion function is known
for high rates; [10], [34]. In particular, when the distortion is
measured as MSE, one has β = 2 ln 2 = const according to
the classical quantization theory. For the sake of complete-
ness, note that vector quantization is capable of achieving
rates closer to the theoretical lower bound of lossy coding
than uniform scalar quantizers at the same distortion level.
Next, the coefficients α, β ∈ R in (18) are determined

channel-wise by evaluating (10) and (11) with variable step
sizes � ∈ (0,�max) on a luma-only version of the Kodak
set [35]. Here, one observes that the fitted coefficients β

are quite different from channel to channel but in the same
order of magnitude. The values of α also differ in each
channel. The expressions (17) and (18) approximate the dis-
tortion well at high rates which was experimentally verified.
Figure 5 demonstrates this for a sample image from the
Kodak set.

C. EQUAL-SLOPE CONDITION AND STEP SIZE
SELECTION
By using the considerations from the previous subsection,
one is able to state a condition for the optimal allocation
of bits across the feature channels. First, minima of the
Lagrangian cost (12) are expected to occur when all partial
derivatives ∂/∂Ri,j are zero, i.e.,

∂di,j
∂Ri,j

(
Ri,j

) = −λ. (19)

This condition for the optimal allocation of bits is referred
to as equal-slope condition; [10], [11]. By using expres-
sion (18), the partial derivatives in (19) are computed
as

∂di,j
∂Ri,j

(
Ri,j

) ≈ −α2β exp
(−βRi,j

)
. (20)
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FIGURE 6. The blue dots denote the slope values (20) versus the bitrate R(ẑ(�))
with step size � = 1 in each channel. The resulting slopes of the high-rate channels
remain on a plateau in each image.

Since Ri,j = Ri,j(ẑ(�)) holds, one can evaluate the slopes
(20) for different quantizations of a fixed feature represen-
tation. Figure 6 demonstrates that the bit allocation of the
encoder-determined features ẑ is close to the optimal con-
dition (19), especially for the high-rate channels. Since the
values of β vary channel-wise (see Section IV-B), the equal-
slope condition does not imply that the scalar quantizers in
the different channels operate at the same distortion like in
conventional codecs, i.e., di,j(Ri,j) �= const holds here.
Analogously to (18), one models the rate-distortion func-

tion of the compression networks for high rates as

R(� · w) ≈ R(d) = 1

β
ln

(
α2

d

)
. (21)

By again combining with the Lagrangian cost (12), a
minimum is expected where the derivative ∂/∂d is zero,
i.e.,

∂R

∂d
(d) = − 1

βd
= −1

λ
⇐⇒ λ = βd. (22)

Hence, the distortion grows linearly with the Lagrange
parameter. Therefore, using (15) as a high-rate approxima-
tion of the distortion yields a simple method for adapting
the quantization step size � accordingly.

D. AN ALGORITHM FOR RATE-DISTORTION OPTIMIZED
ENCODING
Using the considerations from Sections IV-A and IV-B, one
derives the following Algorithm 1 for optimizing the rate-
distortion trade-off (11). Given the Lagrange parameter λ

and the initialization z = Enc(x), the bit allocation across
the channels is typically close to the optimal condition (19)
for a suitably chosen step size �(λ), at least for higher rates.
Then, the minimum is initialized as w = z and the current

Algorithm 1: Fast Rate-Distortion Optimization for
Variable-Rate Auto-Encoders
Result: w∗
Given: x, z, ŷ,R′, {(γ (i,j)

1 , γ
(i,j)
2 )}, λ;

(μ̂, σ̂ ) = Dec′(ŷ) via (3);
Pick � := �(λ);
Set w := z,w∗ := ŵ(�), h∗ := w− w∗;
R∗ = R(w∗, (μ̂, σ̂ )), d∗ = d(w∗) via (10),(11);
J∗ := d∗ + λ(R∗ + R′);
for each feature position l do

Set cand = {μ̂l,wl − �,wl + �};
R∗
l = Rl(w∗

l , (μ̂l, σ̂l)) via (11);
ε∗ = ε(h∗) via (13);
for k = 0, 1, 2 do

Set wl := cand [k],wk := ŵ(�), hk := w− wk;
Rkl = Rl(wkl , (μ̂l, σ̂l)) via (11);
Rk := R∗ − R∗

l + Rkl ;
εk = ε(hk); dk := d∗ − ε∗ + εk via (13);
if dk + λ(Rk + R′) < J∗ then

dk = d(wk) via (10);
if di + λ(Ri + R′) = Ji < J∗ then

Set w∗ := wk, d∗ := dk,R∗ := Rk, J∗ :=
Jk, h∗ := hkε∗ := εk,R∗

l := Rkl ;
end

end
end

end

rate and distortion of w∗ = ŵ(�) are computed. Furthermore,
one computes the approximation error as h∗ = w − w∗.
Next, proceed for each multi-index position l in the feature
representation of w∗ as follows:

1) Compute the bitrate of the feature entry w∗
l and the

auxiliary value ε∗ = ε(h∗).
2) Set the quantization index candidates cand = {μ̂l,wl−

�,wl + �}, i.e., the upper and lower neighbor-
ing quantization levels of w∗

l , and μ̂l, and do for
k = 0, 1, 2:

a) Set wl := cand [k],wk := ŵ(�) and compute the
updated bitrate.

b) Set hk = w− wk, compute the updated auxiliary
value εk := ε(hk)

c) Pre-estimate the distortion by using (13) with the
values εk and ε∗.

d) When the pre-estimated rate-distortion cost is
lower than the current minimum, compute
the actual distortion by executing the decoder
network with input wk and re-set everything,
when the rate-distortion cost is less than the
current minimum.

Most importantly, the distortion is pre-estimated by (13)
for avoiding the execution of the decoder network for less-
promising feature candidates. Remember that the algorithm
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disregards the dependency of the entropy parameters from
the features, see (3). Instead, the features are optimized with
respect to a fixed probability distribution N (μ̂, σ̂ 2), which
is transmitted lossless by the hyper system. Finally note that
the initial value z can be replaced by determining a local
minimum zmin via gradient descent prior to the Lagrange
optimization.

E. PRE-PROCESSING THE FEATURES BEFORE THE
OPTIMIZATION
In Sections IV-A and IV-D, it is suggested to replace the
initial value z by a local minimum of the un-quantized
reconstruction error. The motivation behind this is that the
distortion can be estimated more precisely in a neighborhood
of such a minimum. Ideally, increasing the quantization error
in the feature domain should lead to an increased error in
the sample domain. This would be case if the networks
were entirely linear, for instance. From the considerations
in Section IV-A, the initial value zmin itself does not pro-
vide a more efficient compression of the image (in fact, the
Lagrange cost (12) slighlty increases), but the optimization
might benefit from this because the distortion is estimated
more accurately.
Another way of pre-processing the features can be derived

by considering how the encoder network is optimized. Note
that the training loss (9) takes into account the rate-distortion
cost of the noisy features instead of the quantized ones.
Furthermore, the loss is computed with respect to different
Lagrange parameters using batches of example patches as
input. As the updates of the encoder and decoder are com-
puted by minimizing the expected value of the batch cost, one
and the same network is supposed to generate compressible
features for different resolutions and types of image con-
tent. Hence, when a particular image and a fixed decoder is
given, the encoder-determined features are not necessarily a
minimum of the following optimization problem

min
z

(
d(z̃(�)) + λ

(
R′ + R(z̃(�))

))
. (23)

Note that the actual rate-distortion cost of a minimum z∗
of (23) is not necessarily below the cost of the original
features z. On the other hand, during the training stage, one
considers the training loss of the noisy features as a suitable
replacement of the actual rate-distortion cost.
Hence, the outcome of Algorithm 1 might improve by

determining a local minimum z∗ of the noisy cost (23) and
using it as initial value instead of the encoder-determined
features z. Furthermore, one finds that such a local minimum
can be determined with modest computational complexity
via gradient descent. Here, one initializes with the original
features z and computes the step size factor of the gradient at
each iteration by a back-tracking line search. The number of
iterations is limited to 20, where the optimization is aborted
prematurely when the cost improvement is below 10−5.

V. EXPERIMENTS
As baseline, the auto-encoder designed and optimized as
in Section III was evaluated on the entire Kodak set [35]
with luma-only versions of the images. For comparison, the
authors have trained another auto-encoder whose architecture
is similar to the one proposed in [25]. Furthermore, this
section presents results from [31] with and without encoder
optimizations.
Next, the authors have combined the baseline auto-encoder

with Algorithm 1 (“fast RDO”), where one computes the
final bitrate by arithmetically coding the output w∗ and
counting the bits; [36]. The authors have further tested
Algorithm 1 with the alternative initialization zmin (“dist.-opt.
init value”), which was determined by applying a gradient
descent with line search to the un-quantized reconstruction
error MSE(x, Dec(z)) with 100 iterations. In the same fash-
ion, a local minimum of the noisy cost z∗ (“RD.-opt. init
value”), which was determined as stated in Section IV-E, was
tested as alternative initial value. Finally, one assesses the
performance of the fast RDO algorithm by actually comput-
ing the Lagrangian cost of each quantization value candidate
in Algorithm 1 instead of pre-estimating the distortion (“full
RDO”). The reconstruction quality in all experiments is
stated as Peaked-Signal-to-Noise Ratio (PSNR), although
it is not well-suited for assessing perceptual image qual-
ity. However, it is a standard measure for comparing the
efficiency of different image compression methods. In the
Appendix, the authors further report individual rate-distortion
curves of selected images from the Kodak set.

A. RESULTS WITHOUT ENCODER OPTIMIZATIONS
The baseline auto-encoder and the two benchmarks have sim-
ilar designs. Assuming a normal distribution of the features,
these networks apply a hyper system, which estimates the
Gaussian parameters for each feature entry. The architecture
in [31] practically employs the same architecture as from
Section III except additionally applying a context-adaptive
network for estimating the Gaussian parameters. The same
network is used in [25], where it is introduced as auto-
regressive context model. Here, the authors have adapted
the architecture by setting number of output channels to 205
and using three layers on the encoder and decoder side.
Thereby, the number of features almost remains constant
across the different network architectures. The blue and yel-
low rate-distortion curves in Figure 7 demonstrate that [31]
consistently outperforms the architecture from [25] for luma-
only content. Hence, this demonstrates the benefit of using
multi-scale convolutional layers. Furthermore, the red rate-
distortion curve of the proposed VAE shows that using such
layers overcompensates the loss in coding efficiency from
omitting the auto-regressive network from the coding stage.
Note that this curve is obtained by only adapting the step
size � to the Lagrange parameter, instead of training separate
coefficients as in the quoted works.

VOLUME 2, 2021 641



SCHÄFER et al.: RATE-DISTORTION OPTIMIZED ENCODING FOR DEEP IMAGE COMPRESSION

FIGURE 7. Averaged rate-distortion curves of the Kodak set (luma-only). The
average PSNR is computed from the average MSE across the images. The red dashed
curve denotes the variable-rate VAE from Section III. The yellow curve refers to a VAE
similar to [25] with 205 output channels and three encoder layers. The blue dashed
curve is generated by using the VAE from [31].

FIGURE 8. Averaged rate-distortion curves of the Kodak set (luma-only). The
average PSNR is computed from the average MSE across the images. The red dashed
curve denotes the variable-rate VAE from Section III. The black solid curve is
generated by applying Algorithm 1 (“fast RDO”) to the features. The violet dot is
generated by using zmin at the highest rate. The yellow dot is generated by using z∗
at the highest rate. The blue dashed and green solid curve are results by using the
VAE from [31] with and without the fast RDO algorithm.

B. RESULTS WITH ENCODER OPTIMIZATIONS
Using the baseline auto-encoder, the authors have evaluated
the impact of Algorithm 1 on the rate-distortion performance;
see Figure 8. According to Table 2, the improvement of
the proposed variable-rate VAE in terms of the Bjøntegaard-
Delta bit rate (BD-rate) [37] due to using Algorithm 1 ranges

TABLE 2. BD-rate savings due to applying Algorithm 1 to the features of the
variable-rate VAE from Section III. Note that the stated savings were accomplished
using one and the same decoder. “Index” states image index within the Kodak set.
“Y in %” states the BD-rate saving in the luma component.

from −2.4% to −7.0%. In comparison to [31], the com-
pression efficiency of the un-optimized variable-rate VAE
is lower than the un-optimized VAE from the quoted ref-
erence, mainly due to not using an auto-regressive context
adaption of the feature probabilities and a single network for
all Lagrange parameters (compare the red and blue curves).
However, the rate-distortion performance of the variable-
rate VAE keeps up with the results from [31] except for the
highest reconstruction quality (compare the black and green
curves), when both VAE architectures are combined with the
fast RDO algorithm for optimizing the quantization of the
encoder-determined features. As described in Section IV-E,
Algorithm 1 is tested with different initial values. These
initializations are derived from the encoder-determined fea-
tures by applying a gradient descent with respect to either
the non-quantized distortion or a smooth version of the
Lagrangian cost. However, one observes that pre-processing
the initial value does not significantly change the outcome
of Algorithm 1 except for the highest reconstruction quality.
Hence, the authors have plotted the impact of pre-processing
the initial value for the operational point with the highest
rate. Here, the use of the initialization zmin instead of z
consistently leads to a higher reconstruction quality with
moderate increase of the bitrate (see the violet dot). Also,
the replacement of z by z∗ in Algorithm 1 does not sig-
nificantly alter the resulting bitrate, but increases the PSNR
value moderately by 0.2 (see the yellow dot). Figures 10–15
further present individual rate-distortion curves for selected
images from the Kodak set (see Appendix). Here, one
considers the results from exhaustively testing each fea-
ture candidate (“full RDO”) as an upper performance limit
of the proposed encoder optimizations. The fast RDO
algorithm closely approaches this upper limit of the rate-
distortion performance for both the auto-encoder network
from [31] (compare the green and orange curves) and the
present variable-rate network (compare the black and brown
curves).
Note that exhaustively testing each candidate requires

about 10HW decoder network executions. This accounts for
roughly 3.9 million executions for a Kodak image of size
756×512. In contrast to this, Table 3 states that Algorithm 1
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TABLE 3. The statistics of Algorithm 1 for different λ values. “Init.” shows the initial
value. “Num. dec.” states the number of decoder executions. “cand[k]” states how
often the k -th candidate was selected. The top number in each cell denotes the mean
and the bottom one the standard deviation, taken over the Kodak set.

consistently performs 100 to 400 times less decoder exe-
cutions while providing significant coding gain against the
un-optimized features. Here, the total number of decoder
executions consistently decreases for larger Lagrange param-
eters. This hints towards a bias of the distortion estimation:
for large Lagrange parameters, the quantization error in the
feature domain also increases, and the inequality (14) appar-
ently estimates the resulting distortion in the sample domain
too large. As a consequence, more candidates are excluded
in Algorithm 1. Interestingly, the percentage of successfully
selected candidates from these tests consistently increases,
from roughly 19% for the highest reconstruction quality to
37% for the lowest quality. Here, the increase is mainly
caused by more frequently selecting the mean value can-
didate cand [0], which explains the steady decrease of the
bitrate after the optimization. The algorithm mainly tar-
gets at decreasing the bitrate as much as possible without
severely deteriorating the image quality. Finally, note that
replacing the initial value z with zmin increases the per-
centage of successfully selected candidates at roughly 40%,
see Table 3.
Specifically, the mean value candidate is consistently

selected one out of three times, when the features are dis-
placed towards a local minimum of the distortion prior
to the actual rate-distortion optimization. When the ini-
tial value z is replaced with z∗, the percentage of suc-
cessfully selected candidates drops to roughly 14% for
the highest reconstruction quality, while the total num-
ber of tests significantly increases. In other words, more

decoder evaluations are carried out and less successful can-
didates are found in this case. Note that the algorithm
still checks each individual feature position, even when
z∗ was optimized with respect to a smooth version of
the rate-distortion trade-off. It appears that checking differ-
ent quantization indices at already altered feature positions
is superfluous in most cases. However, one observes that
only checking the non-altered positions in Algorithm 1
leads to a worsened outcome compared to checking all
positions. The computation of the initial values z∗ and
zmin only requires a few iterations of gradient descent.
Hence, the pre-processing step itself does not substantially
contribute to the total complexity of the rate-distortion
optimization.

VI. DISCUSSION
The present work extends the results from [31] by putting
them in perspective with the rate-distortion theory from
image and video coding. Here, the proposed image compres-
sion system was trained by jointly optimizing with respect to
specific Lagrange parameters. This technique did not only
ensure that the resulting network is capable of efficiently
compressing images at different rates. For investigating the
potential of rate-distortion optimized encoding, it has proven
beneficial that the network can steadily navigate the rate-
distortion curve. Although there is a lot of remarkable work
on the capabilities of vector quantizers for both conventional
and learned image coding, the presented results demon-
strate that the coding efficiency can still be improved by
rather simple signal processing methods. The methods in
Sections IV-A and IV-B mainly rely on suitable approxi-
mations of the bitrate and the distortion for uniform scalar
quantizers. However, these approximations enable the imple-
mentation of Algorithm 1, which significantly improves the
coding efficiency of the proposed image compression system.
From the perspective of the deep learning stage, it seems
interesting that the optimized encoder network is capable of
finding a near-optimal allocation of bits across the feature
channels for a variety of different images. This is somehow
unexpected because this condition is not explicitly stated in
the training loss. Nonetheless, the presented results motivate
further research on the potential of signal-dependent encoder
optimizations.
Finally, the authors compare the rate-distortion

performance of the investigated VAE-based image
codec against several state-of-the-art-benchmarks. Fair
comparisons are difficult to achieve since the majority of
learning-based image compression networks is optimized
for RGB content. Thus, we have encoded luma-only
Kodak images using the reference software implementations
of the latest video coding standards HEVC (HM-16.9,
see [38]) and VVC (VTM-14.0, see [39]). Figure 9
suggests that HEVC (yellow curve) slightly outperforms
our RD-optimized variable-rate VAE (black curve) for
high rates and significantly does so for low rates. Hence,
as expected, the compression efficiency of VVC (violet
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FIGURE 9. Averaged rate-distortion curves of the Kodak set (luma-only). The
average PSNR is computed from the average MSE across the images. The black solid
curve is generated by combining Algorithm 1 (“fast RDO”) with the variable-rate VAE
from Section III. The yellow line is generated by using the HEVC Test Model (HM-16.9);
see [38]. The violet line is generated by using VVC Test Model (VTM-14.0); see [39]. The
red curve are results published in [25]. The orange curve are results published in [26].

FIGURE 10. Rate-distortion curve of Kodak image 01 (Y).

curve) clearly surpasses the variable-rate VAE, regardless
of the rate-distortion optimization. Furthermore, the authors
of [25], [26] report luma-only results on the Kodak set using
VAEs whose architectures are similar to the one in this paper
(red and orange curve). Notably, both references optimize
distinct networks for each point on the rate-distortion curve,
and each network employs a different context-adaptive
probability model for coding the features. On the other
hand, theses networks use conventional convolutional layers
and do not employ rate-distortion optimized quantization.
In terms of rate-distortion performance, the variable-rate

FIGURE 11. Rate-distortion curve of Kodak image 02 (Y).

FIGURE 12. Rate-distortion curve of Kodak image 03 (Y).

VAE in this paper is competitive against both benchmarks.
While [26] performs exceedingly well for lower bitrates
(even better than HEVC), the variable-rate VAE has higher
compression efficiency than both benchmarks for high rates
larger than 1.0 bpp.
With respect to the computational complexity, there are

several aspects to consider. It is clear that auto-regressive
networks for coding the features are less practical because
they require a fixed scan order. However, in this work,
the majority of the computational burden comes from
the more complex encoding process, which can be
handled by massive hardware and parallelization tech-
niques. Most importantly, the number of multiplications
carried out by the networks themselves has increased
strongly due to the use of multi-scale layers. Beyond
optimizing the network architecture and improving the
encoding process, constraining the decoding complex-
ity remains a difficult task in learning-based image
compression.

VII. CONCLUSION
This paper has investigated the rate-distortion performance of
deep-learned end-to-end image compression networks. The
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FIGURE 13. Rate-distortion curve of Kodak image 04 (Y).

FIGURE 14. Rate-distortion curve of Kodak image 05 (Y).

FIGURE 15. Rate-distortion curve of Kodak image 06 (Y).

training of such a network can be designed such that the
impact of the quantization on the distortion and the bitrate
can be estimated using conventional signal processing meth-
ods. In particular, the encoder in such a compression system
is capable of finding a suitable allocation of bits across
the feature channels. Furthermore, the quantization error in
the individual channels can be used for estimating the dis-
tortion without necessarily executing the decoder network.

Given a performant network architecture, the proposed algo-
rithm for optimizing the quantization of the features greatly
improves the coding efficiency. Nonetheless, the approach
is applicable to any deep-learned image compression
network.

APPENDIX
Figures 10 to 15 show the rate-distortion curves for each
Kodak image and different encoding methods.
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