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Secret sharing is a multiparty cryptographic primitive that can be applied to a network of partially dis-
trustful parties for encrypting data that is both sensitive (it must remain secure) and important (it must not
be lost or destroyed). When sharing classical secrets (as opposed to quantum states), one can distinguish
between protocols that leverage bipartite quantum key distribution (QKD) and those that exploit multipar-
tite entanglement. The latter class are known to be vulnerable to so-called participant attacks and, while
progress has been made recently, there is currently no analysis that quantifies their performance in the
composable, finite-size regime, which has become the gold standard for QKD security. Given this—and
the fact that distributing multipartite entanglement is typically challenging—one might well ask is there
any virtue in pursuing multipartite entanglement-based schemes? Here, we answer this question in the
affirmative for a class of secret-sharing protocols based on continuous-variable graph states. We establish
security in a composable framework and identify a network topology, specifically a bottleneck network of
lossy channels, and parameter regimes within the reach of present-day experiments for which a multipar-
tite scheme outperforms the corresponding QKD-based method in the asymptotic and finite-size setting.
Finally, we establish experimental parameters where the multipartite schemes outperform any possible
QKD-based protocol. This is one of the first concrete compelling examples of multipartite entangled
resources achieving a genuine advantage over point-to-point protocols for quantum communication and

represents a rigorous, operational benchmark to assess the usefulness of such resources.
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I. INTRODUCTION

The desire to reliably store important information seems
at odds with the desire to keep that information secret. A
reasonable strategy to achieve reliability would be to gen-
erate many redundant copies of the information. However,
this strategy clearly increases danger of a security breach
as each copy is a new target for unauthorized access. An
elegant solution to this quandary is given by secret shar-
ing. These are protocols in which the secret is divided
into pieces or shares by a dealer and distributed amongst
several players such that some authorized subsets can per-
fectly reconstruct the secret but all other subsets gain no
information whatsoever. The set of authorized subsets of a
scheme is called the access structure.
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In such a scheme, any unauthorized set of shares may
be destroyed without the secret being lost and any unau-
thorized set may be hacked without any information being
leaked. Secret sharing can be used in many practical sit-
uations to ensure that only a sufficiently large collection
of agents can authorize some action, with examples rang-
ing from approving an expense account to ordering a
military strike. Other applications include managing cryp-
tographic keys, decentralized voting, and as a primitive for
secure multiparty computation. In the most common form
of access structure, the dealer selects a threshold size for
authorized subsets. An (n, k)-threshold scheme involves n
players of which any & players can collaborate to recon-
struct the secret, whilst any (k£ — 1) subset remains totally
ignorant.

The concept of secret sharing has been independently
conceived in a classical setting by Blakley [1] and Shamir
[2]. However, these schemes assume that the only infor-
mation received by any player is their intended share and
thus they cannot be proved secure against the possibil-
ity that members of an unauthorized set are eavesdrop-
ping upon an authorized set. This problem can be solved
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using techniques from quantum cryptography. In the first
place one could simply establish quantum key distribu-
tion (QKD) links between the dealer and each player in
parallel [3]. Once a secret key has been established then
Shamir’s scheme can be safely implemented [4]. The secu-
rity of such schemes then follows immediately from QKD
security proofs, and such schemes have already seen exper-
imental implementation [5,6]. We refer to these schemes of
bipartite quantum secret sharing as BOSS.

An alternative method, due to Hillery, Buzek, and
Berthiaume (HBB), is for the dealer (Alice) to create a
multipartite entangled state distributed amongst the players
[4]. This proposal utilized Greenberger-Horne-Zeilinger
(GHZ) states to implement an (#, n)-threshold scheme and
an extensive body of follow up work has since appeared
[7—10]. A particularly interesting variant has been the work
of Schmid et al., which does not require multipartite entan-
glement, but instead transmits a quantum state between all
participants who each perform a random operation [11].
These should not be confused with the protocols, some-
times called quantum state sharing, where the secret to
be shared is a quantum state [12,13]. Crucially, almost
immediately following the original HBB paper, it has been
pointed out that these protocols are vulnerable to so-called
participant attacks [7,8] and the security of these schemes
could not be rigorously established.

Subsequently, several works [14—17] have identified
graph states [18] as a valuable resource for secret shar-
ing (with classical and quantum secrets), which allow
for more general (u, k)-threshold schemes and highlight
an elegant connection between secret sharing and error-
correction codes. This setting is conceptually interesting.
At the same time, it has become more technologically plau-
sible. Substantial theoretical progress has also been made
on how to distribute graph states in multipartite quan-
tum networks [19,20]. Whilst these proposals have com-
prehensively answered the questions of how secrets can
be successfully reconstructed by the authorized subsets,
the security analysis against dishonest parties remained
unsatisfactory because the problem of participant attacks
remained unsolved.

In contrast to QKD where the dishonest party is com-
pletely shut out of the parameter estimation process, secret
sharing typically includes all players in the certification
procedure. This opens up loopholes regarding the order
in which information (measurement bases and outcomes)
is announced that can be exploited by dishonest players
to avoid detection. Thus, while many experimental imple-
mentations have appeared [11,21-32], they have all only
been analyzed either under various assumptions (e.g., per-
fect state transmission, asymptotically many rounds or in
some cases specific eavesdropping strategies) or restric-
tions upon the players and the eavesdropper and none were
shown to be secure against arbitrary participant attacks.
We note that some works on sharing entangled quantum

states do rigorously address the participant attack [33,34],
but only by utilizing a pre-existing secret-sharing proto-
col for classical strings. This is reasonable when the goal
is to leverage the security of classical BQSS to ultimately
share a quantum state, but would be redundant for sharing
classical secrets, which is our primary concern here.

The problem has finally been resolved, at least in the
asymptotic limit of infinitely long key exchange, first by
Kogias et al. [35] in the context of continuous-variable
(CV) graph states [36-—39] and later by Williams et al.
[40] for discrete-variable (DV) GHZ states, where the lat-
ter also has carried out a proof-of-principle demonstration.
Using different methods, both works manage to reduce the
problem to essentially a minimization over bipartite sce-
narios where tools from QKD analysis can be applied, but
without leaving any room for participant attacks. Follow
up works has extended [40] to the CV regime [41] and
included a finite statistical analysis under the assumption
of Gaussian collective attacks [42]. Importantly, none of
these works give any instances where a genuinely mul-
tipartite approach results in any improvement in perfor-
mance, in fact in Ref. [35] it is shown that their multipartite
entangled protocol is strictly inferior to BQSS over the
networks they consider.

This gives rise to a most pressing situation: The vision
of quantum networks [43—46], with notions of a quan-
tum internet in mind, seems to suggest that a wealth of
new multipartite protocols based on multipartite entangle-
ment opens up. Yet, at the same time it seems excessively
difficult to identify schemes that actually obtain an advan-
tage based on the availability of multipartite entangled
states under realistic conditions. This obstacle is largely
overcome here.

In the following, we first explain the differing analyses
of Refs. [35,40], and quantitatively improve upon the rates
calculated in the former work. We then lift the analysis
to consider arbitrary attacks in the composable, finite-size
regime. Composable security is a particularly stringent
notion of security in which the protocol remains secure
even if arbitrarily composed with other instances of the
same or other protocols. To be in the finite-size regime also
seems a practical necessity given that asymptotic settings
usually refer to extremely long sequences of key exchange.

Finally, we turn to the main contribution of this paper,
which is to evaluate performance over bottleneck networks
of lossy channels and demonstrate a genuine quantita-
tive advantage for protocols exploiting multipartite entan-
glement in CV graph states. In the limit of asymptotic
key rates, we show an unconditional advantage, in the
sense of outperforming the so-called Pirandola-Laurenza-
Ottaviani-Banchi (PLOB) bound, which represents the
ultimate limit on point-to-point QKD protocols [47]. For
large but finite squeezing the multipartite scheme can
outperform the PLOB bound for a transmission radius
of up to 4 km of optical fiber. We model a realistic
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multipartite experiment and find that even in the compos-
able, finite-size regime an advantage exists over a CVQKD
scheme with the same resources. This represents—once
again—a rare concrete example of a multipartite entangle-
ment advantage for quantum cryptography over realistic
networks.

II. SECURITY OF SECRET SHARING

The idea of sharing a classical secret with quantum tech-
nology is to distribute a random key that has precisely
the desired access structure, and then encrypt that actual
secret via a one-time pad encoding. In fact, like standard
QKD, this protocol technically carries out key expansion
rather than distribution since a small amount of preshared
key must already exist to authenticate any public commu-
nication and to carry out privacy amplification. Consider
an (n, k)-threshold scheme where, in each round of the
protocol, a multipartite entangled state is shared between
n players (B, ...,B,) and a dealer, Alice, who measures
her part of the state in one of two conjugate bases. Mea-
surements in one basis will be used to form a secret key
while the others will be publicly disclosed and used for
certification. Typically this is done asymmetrically with p,
the probability for a certification round, satisfying p < %
To process her measurement outcomes into a secret key
with the desired access structure, Alice must determine two
parameters: On the one hand, this is the amount of privacy
amplification required such that the key appears random to
any (k — 1) subset who might be in league with the eaves-
dropper. On the other hand, this is the amount of error
reconciliation information she must transmit to ensure any
authorized k-party subset can reconstruct the secret key. To
this end, we need to define the following sets: The set of
all players (Bobs)

B ={B1,Bs,...,B,}; (1)
the set of all authorized or trusted subsets of k players 7 =
(T, Ty,..., T(Z)} where, e.g.,

T\ ={B1,By,..., B}, (2)

and so on; the set of all unauthorized or untrusted subsets
of (k— 1) playersUd = {U;, Us, ..., U(kfl)} where, e.g.,

Ui ={B1,Ba,...,Bx1}, 3)
and so on. To determine the extractable key, Alice must
take worst-case estimates for the secrecy over the (kfl)

unauthorized subsets and for the correctness over the (})
authorized subsets (Fig. 1).

Moreover, Alice must do this in a way that prevents
any participant attacks, which typically exploit the order
in which certification information (measurement bases and

max €z
@
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max €,

a . .
oo (). -
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FIG. 1. Security analysis for an (n,n — 1)-threshold scheme.
The performance of the scheme is assessed by taking the worse-
case values of the failure parameters (see Definition 1) for both
secrecy €, and the correctness €.. For a general (n, k) scheme,
€, 1s maximized with respect to all for the (kf l) possible unau-
thorized subsets of players who might be collaborating with the
eavesdropper and €. is maximized with respect to the (}) autho-
rized subsets who may wish to later collaborate to reconstruct the
secret.

outcomes) is announced by the players. This is the criti-
cal point where the security of most previous multipartite
schemes can be completely broken. Note that in QKD
protocols, the measurement bases can in principle be estab-
lished beforehand for an L round scheme at the cost of
approximately Lh;(p) extra bits of preshared key where
h; is the binary entropy function. However, such a scheme
is a priori forbidden for a secret-sharing scheme as it is
crucial that the potentially dishonest players do not know
ahead of time which rounds will be used for certification.
For example, the original HBB protocol attempts to
certify a GHZ-state scheme by having the players ran-
domly switch between measuring in the Pauli X or Y
basis and then verifying that measurement combinations
corresponding to GHZ stabilizers behave as expected [4].
However, if measurement bases are announced first and
a dishonest player (Bob) knows that he will be the last
to make an announcement, he can cheat perfectly as fol-
lows [7]. In the transmission phase Bob intercepts all of
the GHZ photons sent by Alice and instead establishes
bipartite maximally entangled states between himself and
the other players. Once all other players announce their
measurement basis, Bob measures his maximally entan-
gled pairs and also immediately learns all other players’
measurement outcomes. Finally, he can use his knowledge
announced bases to ensure the round is only kept if Alice
measures in a basis of Bob’s choosing. For example, if all
other players announce the X basis, Bob knows if he also
announces X then the round will only be kept if Alice also
measures X since only that choice corresponds to a GHZ
stabilizer. Bob now measures his intercepted GHZ parti-
cles and perfectly learns Alice’s X measurement outcome
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and, along with his knowledge of the other players’ out-
comes, can calculate what he should announce in order to
perfectly recreate the GHZ correlations. Thus, the scheme
is completely broken but Bob remains undetected. Other
attacks are also possible if measurement outcomes rather
than bases are announced first [7].

Two solutions to this problem have emerged. One strat-
egy is to test each potential unauthorized subset by simply
excluding all players in that subset from the certification
process [35]. The other is to have the dealer randomly
select an unauthorized subset that is included in the certifi-
cation test but forced to make all their announcements first.
This essentially reduces each test to a QKD protocol with
an untrusted source [40]. One way to enforce this ordering
would be to instruct members of the complementary set C;
to withhold their announcements until they have received
that rounds’ results from the corresponding U;. Note that
the protocol of Ref. [40] therefore comes with additional
classical communication overheads.

The two strategies cannot easily be compared in general.
Whilst the technique of Ref. [35] is simpler, it will always
obtain lower correlations between Alice and any given
subset as it does not make use of the announced results
from untrusted parties. For example, while this method has
been shown to predict positive rates for CV graph states it
always results in a zero key rate if applied to the original
HBB protocol. This stems from the fact that, for a GHZ
state, tracing out even a single party results in completely
uncorrelated noise in either the Pauli X or Y bases of the
other participants.

On the other hand, the proof of Ref. [40] can be applied
to a HBB-type protocol but requires (" ) different datasets
for parameter estimation (one for each U; announcing
first), meaning that much more data must be sacrificed for
certification. Moreover, this latter protocol stipulates that
the bases be chosen symmetrically (i.e., p = 1/2), which
halves the achievable rate and it is also necessary to acquire
certification measurements in both bases, further driving
down performance. We show later that these restrictions
are indeed mandatory for security to be maintained.

For a general protocol with arbitrary players and includ-
ing finite-size effects it is possible that there are instances
where the approach of Ref. [40] could prove superior.
However, for the case we consider in Fig. 2, namely three
parties utilizing a bottleneck network, the reduction of the
key rate by a factor of 1/2 already precludes any possible
advantage for the multipartite entangled scheme. There-
fore, we instead use the protocol of Ref. [35] as our starting
point for the remainder of this work. Further discussion of
the security, potential drawbacks and applications for the
work of Williams ef al. can be found in Appendix D.

Protocol 1 (Entanglement-based secret sharing). An
(n, k,m, t,p) protocol for entanglement-based secret shar-
ing involves the following steps:

FIG. 2. A tripartite quantum-communication scenario between
a dealer, here player 4, and two other players, B; and B,. This
quantum network with a central router A, which is able to
produce and entangle qumodes, exemplifies a network with a
bottleneck. The CV graph state used in the multipartite entan-
glement QSS protocol, can be distributed in a single network use
(i.e., each channel transmits a single qumode only), while (n — 1)
uses of the network are necessary in the BQSS protocol.

1. The dealer (Alice) establishes sets of preshared
keys: a bipartite key with each player to authenti-
cate classical communication channels and a joint
key that satisfies the intended (n, k)-threshold access
structure as a seed for privacy amplification.

2. An (n+ l)-partite entangled state is distributed
amongst players and the dealer (Alice) through
untrusted quantum channels.

3. Alice measures her part of the state in one of
two noncommuting bases, X and P with proba-
bility p and 1 — p, respectively. We denote the
key-generation measurement X and the certification
measurement P.

4. Ifthe players are honest they also randomly choose
between the measuring X and P on their systems
according to the same probability. If they are dis-
honest, nothing is assumed about their actions at
this point. We denote the ith authorized set of k play-
ers as T;, the jth unauthorized subset of k — 1 play-
ers as U; and the corresponding complementary
subset of n — k + 1 players as C;.

5. Following Ref. [35], all players amnounce their
measurement bases for all rounds in any order. If
the announced values of any of the T; or C; are con-
sistent with Alice’s measurement choice this round
is kept. Depending upon the correlation measure
to be employed, Alice may designate only P mea-
surements for disclosure, or she may also select a
random subset of her X basis rounds. This pro-
cess is repeated until Alice has designated m rounds
to be used for key generation and t rounds for
parameter estimation. Using this single parameter-
estimation dataset. Alice computes a correlation
measure between herself and each complementary
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subset, C;. In any given computation Alice simply
ignores all announcements from any player in the
corresponding unauthorized set U;. If the correla-
tions are below a certain level, the protocol aborts.
Depending upon protocol specifics there may also
be other checks carried out (e.g., an energy test or
a decoy-state analysis), which, if failed, will also
cause the protocol to abort.

6. If the test passes, this results in correlated vari-
ables (XA,XB,-), which describe the measurements
of Alice and each of the authorized subsets. Alice
proceeds with error reconciliation, which leaks a
maximum of Lgc bits of information and privacy
amplification utilizing two-universal hashing. The
correctness of error reconciliation is verified with
a check that involves announcing a further hash of
length log, €. bits computed with a preshared seed.
If this check also does not abort this results in a
final keys of length | (SA, SBI.) for Alice and each
authorized subset.

We can now formally state our definitions for secret
sharing in the composably secure framework established
for QKD [48-50]. Let ppass be the probability that the
protocol does not abort and define the joint state (con-
ditioned on passing) between the register of Alice’s final
key and the j th untrusted subset in collaboration with the
eavesdropper as the classical-quantum state,

PSE = ZP(SA) I84) (841 ® Pfgfyj, 4)

S4

where the sum is over all possible /-bit strings that could
make up the key and p}sﬁ‘UJ, is the state of Eve and the jth

unauthorized subset given a certain value of the key.

Definition 1 (Notions of secret-sharing schemes). A
secret-sharing scheme as defined in Protocol 1 that outputs
a state of the form Eq. (4) is

(a) €. correctif

max {Pr[S, # Sg,1} < e, )

and

(b) € secret if

IleaX {ppassD ()OSAEa TS, ® O'EUJ')} =€, (6)

where D(-,-) is the trace distance and ts, is the
uniform (i.e., maximally mixed) state over S 4.

A protocol is ideal if it satisfies €. = €;, =0, and it is
called €. secure if €soc = €. + €. This means that there

is no device or procedure that can distinguish between
the actual protocol and an ideal protocol with probability
higher than €.

If we define €} as the amount of error correction needed
for the ith authorized subset it can be shown using results
from the QKD literature [49,51], that a key of length

; 1
l:HGin(XA|E,U-)—ch—10g2—2+2, @)
€c€

m
1

that is €. correct and ¢, secret against the j th unauthorized
subset where H:. (X4|E,U;) is the conditional smooth
min-entropy evaluated over the state given in Eq. (4) and €
and € are positive constants proportional to €,, which can
be optimized over. The necessary results have also been
proven for infinite-dimensional systems, which we require
here [52,53]. Considering Definition 1, the extractable

amount of key for secure secret sharing is then

— min H¢
l—n}mHmin

, 1
(X4|E, U;) — max £y — log, e +2. (8)

c+1

A standard figure of merit for a cryptographic protocol is
the secure fraction //L—the ratio of secure output bits to
the number of attempted channel or network uses.

The choice of error reconciliation code fixes €5 with
respect to €. so the major remaining task is lower bound-
ing H:, (X4|E,U;) for a given €, from the data gath-
ered during parameter estimation. This is the crucial step
where a mistake could create vulnerabilities to participant
attacks. A commonly used tool for this task is an entropic
uncertainty relation for the observables X4 and P4.

Without loss of generality, the overall state can taken
to be pure (pavjcie = "I’AUjC_,E)(\UAch_,ED- In this case,
it has been shown that the following entropic uncertainty
relation holds for the m-round state used for key generation
[52,53],

H€

min (XZ“E’ l]]) +H€

cax (PI1G) = m q(X,Py),  (9)
where the constant ¢(X4, P4) quantifies the complemen-
tarity of the two measurement bases and we have added
superscripts to Alice’s variables to emphasize that we are
referring to the m rounds to be used for key generation.
This result would appear to immediately solve our problem
in that it can be rearranged to lower bound the quantity of
interest, M. (XZ”E Uj), in terms of correlations between
Alice and the trusted subset C;. Importantly however, rela-
tions like this are counterfactual in that they describe two
hypothetical situations (Alice measuring either X, or Py)
only one of which can actually happen. Thus we do not
directly have access to the correlations between P’} and C;
that appear in Eq. (9), as all m of these rounds are in fact
measured by Alice in the X4 basis.
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Instead, we have the strings PZ and ng arising from

the # rounds announced during parameter estimation. Note
that, in general, we have #; < t. This is because any one
of the 7 total parameter estimation rounds might only be
useful for estimating correlations with the complementary
subset C; but not with some other subset Cj. Crucially,
provided that the parameter-estimation rounds were truly
selected at random, then this is a standard problem in
random sampling without replacement. We can apply the
result of Serfling [54] to bound the correlations would have
been counterfactually observed between P’/ and P’gj , given

the actually observed correlations between PZ and PZ/_. It

is then possible to bound the min entropy [52,53]. How-
ever, this is only valid for genuinely random sampling and
it is precisely this condition that is violated by the par-
ticipant attacks outlined previously where the parameter-
estimation process involves all players simultaneously,
including the potentially dishonest ones.

Recall that in the example participant attack on the HBB
protocol, dishonest Bob learns the measurement bases of
the other players before making his own announcement.
He could then choose his announced basis to determinis-
tically ensure that this particular round will only be kept
if Alice measured in a particular basis. If the certification
measurement is fixed to be P4, this means dishonest Bob
can control the sampling procedure such that the correla-

tions between PZ and PZ/, are not valid as a fair sample
to estimate those between the counterfactual P” and P’g/,.

Note that this loophole would still exist even dishonest Bob
was forced to announce first if it was still the case that all
certification measurements made in the P4 basis. This is
why in the protocol of Williams et al., which includes all
players in the certification step, it is mandatory that bases
be chosen symmetrically and a random subset of each basis
is used to certify the secrecy of the other.

In Protocol 1, whether a round is kept for any fixed value
ofj is determined solely by the bases of Alice and the com-
plementary set C; so this problem is automatically avoided
and the relation in Eq. (9) can be successfully utilized.
Specifically, it can be shown that if a correlation mea-
sured defined for two m-length strings (X, Y) as d(X,Y) :=
(1/m) Y7, IX = Y|; is greater than some threshold, dj,
then H¢ (Pfj | C,) can be upper bounded. Using Serfling’s

max
bound the observed correlations d(Ptj , P%j_ ) can be used to
estimate a d that would have been satisfied by d(P’}, PZ;, ).
The same arguments apply for other quantities obtained
during parameter estimation, such as a covariance matrix.
Up until this point, these arguments can be applied
to either a DV or CV realization of Protocol 1. How-
ever, there are still several issues that need to be dealt
with in order to evaluate the secure fraction for a realistic
CV protocol where the conjugate bases are approximate
quadrature measurements made via homodyne detection.

Two primary issues are that real quadrature measure-
ments have a finite resolution (§x,dp) and a finite range
([—Mx, Mx],[—Mp, Mp]). The first problem can be dealt
with evaluating the complementarity constant in Eq. (9)
for a coarse-grained observable that accounts for the finite
resolution and the second by introducing an additional test
to the protocol where the dealer taps off a small portion of
the their incoming light with a beam splitter of transmis-
sion 1 and makes an estimate of the input energy, either
via heterodyne [53] or direct [55] detection. The protocol is
aborted if too large a value is observed, which ensures that
the energy of the input state is appropriate for the range of
the detectors being used. Following the previous CVQKD
literature [52,53], showing that, given a correlation thresh-
old |, passed by the set C; and an energy threshold &, an
(es + €.)-secure secret string can be extracted of length,

| = m{q(&g,&?) - mjaXIOg2 [y (d{) + M)] }

— max e — logy 5— +2, (10)

2
€7€c

where

y() = (1+ 1+t2><ﬁ>, (11)

and p is a complicated constant that depends upon the
thresholds (dy, o), block sizes (m, ), security parameters
(€5, €c), and detection parameters (oxp, Mxp,7n). A full
security proof is given in Appendix B. The entropic uncer-
tainty relation in Eq. (9) is presently the only known tech-
nique for the composable finite-size analysis of homodyne-
based protocols, but it is known not to be tight in typical
QKD scenarios [53,56,57] leading to overly pessimistic
predictions.

We can also calculate simpler, idealized rates in the
limit of infinitely many rounds and perfect detection and
information reconciliation. Here, it has been shown that so-
called collective attacks—where the malicious parties act
in an independent and identically distributed (IID) man-
ner—are optimal [58]. We first evaluate the secure fraction
in Eq. (8) directly where the min-entropy limits to the von
Neumann entropy via the asymptotic equipartition theorem
lim,,,—, o0 H53 (XY |E, Uj) = mS(Xy|E, U;) where

SCXUIE, Up) = HX4) + Y p(ca)S(piy,) — SE, Up),
X4
(12)

is the conditional von Neumann entropy of X, given the
quantum system E, U; with H(X) = — )" p(x)log, p(x)
and S(p) = —tr (,0 log, ,0) the Shannon and von Neumann
entropies, respectively. Then, with perfect error reconcil-
iation, we have that the amount of leaked information

040339-6



SHARING CLASSICAL SECRETS...

PRX QUANTUM 2, 040339 (2021)

during reconciliation with a trusted subset becomes £, =
mH (X4|Xr;). Finally, in the asymptotic limit only a negli-
gible amount of data needs to be sacrificed for parameter
estimation so we have that p — 1 and thus m — L. In this
limit, we recover the expected asymptotic formulas

Kss := lim —
s = T
= minS(Xy|E, U;) — max H(X,4|Xr,),
Jj i

=min/(X, : X7) —max x (X, : E,U)), (13)
i J

where in the third line we rewrite the key rate in terms of
the mutual information

IXy:Y):=HWX)—-HX]|Y), (14)
and the Holevo quantity
XXy :E):=S(E) =Y pc)SERy).  (15)

X4

These asymptotic results have been derived in Ref. [35],
however, the manner in which they go on to bound these
quantities is unnecessarily pessimistic. This is because
they also utilize an entropic uncertainty relation for ideal
quadrature measurements following the results for one-
sided device independent (1SDI) CVQKD in Ref. [56].
The authors of Ref. [35] go on to describe the 1SDI nature
of their proof as being crucial for protection against par-
ticipant attacks. However, as we have explained above
the essential ingredient in their security proof is actually
that there is always some part of the parameter-estimation
process where each possible untrusted subset is excluded.
Within a given check, it is perfectly safe to assume that the
trusted parties have well-characterized devices and there-
fore a 1SDI protocol is not mandatory. Instead, in the
asymptotic regime, where collective attacks are known to
be optimal [58], we are free to use the results from Refs.
[59,60] based on Gaussian extremality to obtain tighter
rates. Note that to apply these methods it is necessary to
reconstruct an entire covariance matrix rather than just
a correlation measure. The fact that we first reduced the
security of our multipartite protocol to a minimization over
bipartite protocols is critical here. The Gaussian extremal-
ity results have only been proven to hold in a bipartite
setting, so it has been crucial that we first made this
reduction and in order to apply them.

III. NETWORK CODING ADVANTAGE IN
BOTTLENECK NETWORKS

Recent work has seen a substantial interest in notions of
network coding and multipartite entanglement for quantum

communication, aimed at understanding in what way mul-
tipartite schemes may outperform point-to-point schemes.
Indeed, important steps have been taken, in particular, on
how multipartite states can be distributed and manipulated
[19,61-64]. This is largely motivated by recent experi-
mental and technological developments [65,66] that render
ideas of quantum networks and the quantum internet plau-
sible [43,67]. At the same time, it seems less clear how to
arrive at a setting in which there is a genuine quantifiable
network coding advantage over point-to-point schemes.

In this section, we make an affirmative claim of a net-
work coding advantage in a CV bottleneck network. At
the heart of the protocol devised is the concept of a CV
graph state, the continuous-variable analog of a graph
state. In the canonical construction (see Appendix A) each
node of the graph is initialized in a squeezed vacuum state
and each edge corresponds to an entangling gate that also
requires active squeezing. The first work to show a con-
crete performance enhancement when using multipartite
entanglement for cryptography [62] has focused on confer-
ence key agreement (CKA) sometimes called NQKD [68].
In a CKA protocol all players are assumed to be honest
and the goal is for the dealer to establish a key that can be
reconstructed by each player individually. In Ref. [62], the
authors have considered a network featuring a bottleneck
where the dealer, Alice, is separated from the other players,
by a central hub H, with the ability to carry out entan-
gling gates. Each player is connected to H by a quantum
channel.

For the case of perfect channels, a bipartite scheme for
either CKA or QSS would require » network uses to con-
duct a QKD protocol with each Bob, but for a multipartite
entanglement-based scheme only one use would be nec-
essary. In Ref. [62], the authors analyzed a GHZ state
protocol and found an entanglement advantage persisted in
the presence of depolarizing noise in both the channels and
entangling gates provided the noise was sufficiently small.
However, this work considered the rather unrealistic case
of perfect state transmission, i.e., for lossless channels.

Here, we consider CV QSS over a bottleneck net-
work for the simplest nontrivial scenario with n = 2 Bobs
(Fig. 2). To map out the ultimate limits to performance
advantage in this scenario we first present asymptotic
key rates using finite squeezing for the graph states but
with all other parameters being ideal. The links are mod-
eled as pure-loss channels, which are an excellent first
approximation to a fiber-optic network.

There are several considerations that are specific to the
fact that this is the CV protocol. The first is that there are
two different ways for the entangled state to be distributed
across the bottleneck network, although both require only
a single network use. The hub can simply create an entan-
gled state and send one mode to each player (hub out) or,
alternatively, one player could create a two-mode graph
state and send one halfto H where it will be entangled with
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a third mode and then distributed amongst the remaining
players (player in). For a DV protocol, a pure-loss chan-
nel effects only the probability of photon arrival and the
two methods would yield identical states with the same
transmission probabilities. However, for the CV case the
entangling gates do not commute with the lossy channels
and a different entangled state is distributed depending
upon which network coding method is employed. Note
that the method where the initial entangled state is cre-
ated at the central hub substantially more practical as it can
be achieved using only offline squeezing. In other words,
the required entangled state can be made beginning with
three squeezed vacuum modes that are passed through an
appropriate linear optical unitary.

The second CV-specific point is that, for similar reasons,
with a player-in strategy it matters whether the player who
initially transmits the state is the dealer (who is the ref-
erence player in the sense it is their measurements that
will make up the secret key) or one of the Bobs. This
is essentially the same asymmetry observed in CVQKD
where one finds different key rates for so-called direct and
reverse reconciliation [69]. A similar effect occurs even
with a hub-out strategy if the hub prepares an asymmet-
ric graph state (e.g., a line graph as opposed to a fully
symmetric graph). Third, for a fixed, finite amount of avail-
able squeezing there is in fact a whole family of CV graph
states where the squeezing is divided between the initial
squeezed vacuum states and the CPHASE gates that create
the graph state. This should be optimized over for a given
secret-sharing protocol. Lastly, CV graph states generally
have asymmetric quadrature correlations and therefore it is
crucial to make an optimal choice for which quadrature is
encoded with the key and which is used as the check. This
optimal choice is dictated by the correlation structure of the
graph state (see Appendix 1 for a detailed explanation).

Since offline squeezing is much more practical with
present technology, here we consider only a hub-out strat-
egy, where a three-mode line graph is created to implement
a (2,2)-threshold scheme over a bottleneck network of
lossy fiber-optical channels. For the squeezing resource we
assume an initial available squeezing of 15 dB correspond-
ing to the state-of-the-art values for measured vacuum
squeezing [70]. The term measured squeezing refers to
the fact that the actual squeezing generated by state-of-
the-art nonlinear processes is typically much higher (>20
dB) but due to system losses the real output is a slightly
mixed state, which produces a smaller measured squeez-
ing. We model this setup in detail later, but for now,
we approximate the output as a pure state but with a
degree of squeezing limited to the measured value. Given
a maximum initial, offline squeezing value, one can use
the Bloch-Messiah decomposition to construct a family
of approximate graph states where there is a freedom to
divide this squeezing “budget” between the entangling
gates and the initial squeezed vacuum states that would

6 T
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Secret key (bits/network use)
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FIG. 3. Comparison of secret sharing rates as a function of
transmission radius for a symmetric lossy bottleneck network
between entanglement-based protocols (solid lines), the cor-
responding CVQKD-based protocol based on squeezed states
(dashed yellow), coherent states (dashed purple), or the best
possible bipartite point-to-point protocol (dashed black). The
maximum available squeezing is 15 dB and the graph-state
generation process is optimized with respect to this limit.

appear in the equivalent canonical construction. For all
key rates plotted here we optimize over this choice (see
Appendix 1 for details).

For simplicity, we consider a symmetric network with
the players situated at an identical distance from the cen-
tral hub such that 7y =T, = 7>, = T. In Fig. 3, we plot
the secret-sharing rate given by Eq. (13) as a function of
the distance in kilometres, d, which is related to the trans-
mission via T = 1079929, A multipartite entangled strategy
also enjoys a qualitative advantage over any QKD-based
implementation in that the dealer, can in fact be chosen
after the quantum states have been distributed. However,
the choice of dealer will effect the performance. For a
three-mode line graph there are two possible configu-
rations depending on whether the dealer possesses the
middle mode or one of the edge modes (due to the symme-
try of our network the two edge modes result in identical
rates). Interestingly, we see that for all transmissions it is
favorable for the dealer to be sent the middle node in the
chain.

Turning to the comparison with BQSS, we can straight-
forwardly compute a benchmark [71] by evaluating the
secret-sharing rate for a scheme based upon a bipartite
CVQKD protocol between the dealer and each player with
the same squeezing resources, and then dividing by the
number of additional network uses required. The asymp-
totic rate of an (n,n) scheme over the same symmetric
bottleneck network is then
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o1
Kpqss = [nin ;[I(XA 1 Xp) — xXy 1 EB/B)].  (16)

Note that we can compute the key rate for more than
one Gaussian CVQKD protocol. The two natural choices
are as follows: (i) the optimal protocol where Alice
sends Gaussian-modulated squeezed states (or equiva-
lently homodynes one half of a two-mode squeezed vac-
uum) and Bob’s homodyne detect; the protocol where
Alice sends Gaussian-modulated coherent states and Bob’s
homodyne detect. This latter protocol is less loss toler-
ant, but requires no squeezing and is thus very cheap,
robust, and often favored in field implementations so we
also include it as a comparison. All key rates are computed
in Appendix C 1.

In Fig. 3, it can be seen that graph-state secret sharing
achieves a higher secure rate for short distances, outper-
forming the corresponding squeezed-state BQSS protocol
up until a transmission radius of over 3 km and the
coherent-state protocol till 7 km (meaning the parties could
be as far away as 7 and 14 km, respectively). For an
even more dramatic illustration of the potential benefits of
multipartite entanglement,

Kprop = —1/2log, (1 - T%). (17)

This represents the maximum possible rate for any QKD-
based secret-sharing protocol over the same network, even
including unlimited squeezing or input energy. Remark-
ably, an entanglement-based protocol with finite squeezing
can outperform even this benchmark for a transmission
radius of up to approximately 2.5 km.

The relative performance of the multipartite protocol,
being superior for low environmental degradation but infe-
rior for higher transmission losses, is consistent with pre-
vious work [62] and can be understood as follows. For
BQSS schemes, there is only ever one channel in use for
a single QKD protocol, which is then leveraged into the
full QSS protocol. In the multipartite, the malicious parties
can collect information from all channels simultaneously,
which leads to much worse performance as the loss of the
individual network links grows higher. This is why the
multipartite advantage vanishes when the loss is above a
certain threshold.

We further investigate the parameter regimes where our
multipartite strategy enjoys and advantage over the var-
ious bipartite benchmarks in Fig. 4 by mapping out the
contours of squeezing and transmission radius for which
the key rates coincide. Firstly, these curves show that for
this bottleneck scenario, QSS protocols are only superior
for intracity networks with a radii of 3—6 km. On the other
hand, whilst beating the ultimate PLOB limit requires at
least 12.5 dB of squeezing or more, values of around 6 dB
are sufficient to surpass the comparable CVQKD protocols

25

= = QKD
= = QKD-coh
PLOB

20¢

—_
o1

Squeezing (dB)

—_
o

Distance (km)

FIG. 4. Asymptotic advantage region for entanglement-based
secret sharing. For the network given in Fig. 2 our entanglement-
based protocol outperforms an optimal, infinite energy bipartite
QKD-based protocol for all values of initial squeezing and trans-
mission radius above the solid black line. The advantage region
compared to a squeezed- (dashed red) and coherent- (dashed
blue) state CVQKD protocol with the same energy or squeezing
resources is also shown.

based on squeezed or coherent states up to radii of 2 and 4
km, respectively.

Crucially, protocols utilizing Gaussian CV entangle-
ment are deterministic and run at the same raw clock
speed as standard CVQKD methods. This means that these
advantages will directly hold in terms of secret bits per
second. This is in contrast with most optical DV GHZ
experiments where the nondeterministic nature of the state
creation process means that generation rates fall substan-
tially as the number of parties grows beyond the bipartite
case. This means that for current DV implementations that
an advantage “per channel use” will not necessarily mani-
fest as an advantage “per time.” Motivated by this potential
for a real advantage with current CV systems we now ana-
lyze an implementation with realistic, present-day devices
in a composable, finite-size setting.

Firstly, we consider imperfect reconciliation effi-
ciency such that the amount of information leakage
becomes ¢ir = H(Xy) — BI(X4 : Xp) where 8 < 1 quan-
tifies the fraction ideal Shannon-limited mutual informa-
tion achieved by a given error-correction code. Secondly,
for homodyne protocols the only known composable secu-
rity proofs rely on entropic uncertainty relations that, as
mentioned before, are provably not tight. Thirdly, real
fiber-optic channels are not exactly pure-loss channels, and
instead exhibit a small amount of excess thermal noise.
Finally, as well as accounting for the finite dynamic range
and detector resolution we also model realistic imper-
fections in the state generation including cavity escape
losses, finite detector efficiency and losses coupling into
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FIG. 5. Comparison of (e, + €.)-secure secret-sharing rates as

a function of transmission radius for a symmetric bottleneck net-
work of thermal-loss fiber channels between entanglement-based
protocols (solid lines), the corresponding CVQKD-based proto-
col based on squeezed states (dashed lines) for block sizes of 102
(blue) and 10° (red). Other parameters are the following: €, =
€. = 107?; reconciliation efficiency g = 0.98 [72]; escape effi-
ciency nes = 0.99, detector efficiency ny = 0.99, inferred pure
squeezing 23.3 dB [70]; fiber coupling efficiency 0.95 [73];
transmission 7 = 1079927, excess noise £ = 0.002 [74], detector
resolution 8x = 0.1, 8p = 0.4 and range Mp;x = 25 [73], energy
test parameters, 7, = 0.99, o = 28; security proof constants €; =
4 x 1071 €; =4 x 10720, the probability of a key-generation
round, p, is numerically optimized. The PLOB bound of a
optimal bipartite protocol including transmission and experimen-
tal losses but with otherwise perfect equipment is also plotted
(dashed black).

the transmission fiber. All values are taken from reported
experimental demonstrations and a full description of the
model can be found in Appendix A 4.

To make a fair comparison with a BQSS protocol, we
also compute the composable finite-size CVQKD key rate
for an implementation with the same level of available
squeezing and experimental imperfections. It is important
to emphasize that, even when fairly allocating resources
in this way, it is not immediately obvious that the multi-
partite advantage will survive. A CVQKD protocol can be
made more efficient (it is possible to avoid losing rounds
due to basis mismatch via preshared key) and even with
identical noise levels for squeezers, fiber couplers etc., a
QKD-based implementation uses fewer devices in total
and hence introduces less noise. A detailed explanation of
the comparisons and calculation of the QKD-based secret
fraction is given in Appendix 2. Lastly, although it is
arguably unfair to compare these finite-sized results to the
asymptotic PLOB bound, we nevertheless include it as
an instructive upper bound the best performance possible
for BQSS. As well as infinite communication rounds, the

standard PLOB bound holds in the limit of perfect devices.
To make a fairer comparison and more accurately high-
light the advantage of multipartite entanglement, we make
one modification towards realism in the PLOB bound by
setting the loss equal to the total effective loss in the real-
istic implementation. In other words, in Fig. 5 we assume
that the losses from fiber coupling, squeezing cavity, and
detectors are unavoidable and the PLOB bound is evalu-
ated via Eq. (17) but with a transmission of 7 (7 Nalls)>
instead of 72. This still corresponds to a protocol with
perfect reconciliation efficiency, detector range and resolu-
tion, an absence of any excess noise and infinite encoding
energy and so can be taken to be an optimistic upper bound
for the performance of a BQSS scheme.

In Fig. 5, we find that a realistic, finite-size, multi-
partite secret-sharing scheme can no longer surpass the
PLOB bound. This is perhaps unsurprising as the PLOB
bound is an inherently asymptotic result. The loss of per-
formance due to finite-size effects in our secret-sharing
protocol in comparison to standard QKD is discussed in
more detail in Appendix C. However, when making the
more reasonable comparison to the equivalent realistic
BQSS protocol, we see that for sufficiently large block
sizes of m = 10'? there is a quantitative advantage for a
transmission radius of up to 2.5 km. A lesser advantage
persists for shorter block sizes, but we see that for m = 10°
the advantage is much smaller and the region is only up to
around 1.5 km.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have provided a security proof
for an important multipartite quantum communication
scheme: A (n, k)-threshold scheme for sharing classical
secrets with multipartite entanglement in the composable,
finite-sized setting. This protocol is secure against gen-
eral quantum attacks, including participant attacks. When
applied to the original secret sharing scheme the proof
never certifies a positive key rate but a CV scheme
based on Gaussian graph states shows robust perfor-
mance. Moreover, we showed that for the specific exam-
ple of a (2,2) scheme implemented over a three-party
bottleneck fiber-optic network, the multipartite scheme
exhibits superior performance for intracity transmission
distances.

In the limit of a large number of communication rounds,
this scheme outperforms not only a bipartite protocol
based upon a CVQKD protocol with the same squeez-
ing resources, but even surpasses implementation-agnostic
and overly optimistic bounds. Indeed, it even outperforms
the PLOB bound, which represents the ultimate limit for
any point-to-point private communication. Perhaps most
importantly, we show that an advantage persists even in
the finite-sized regime for a implementation modeled on
existing, state-of-the-art squeezing experiments. It is worth
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noting that in the advantage regime the key rates are also
always greater than 1 bit per channel use, therefore auto-
matically also outperforming recent advances in so-called
twin-field QKD [75], which can also break the PLOB
bound. A demonstration of this proposal, which should be
possible with present-day technology, would represent a
watershed demonstration of a quantitative advantage for
multipartite entanglement-based quantum communication
using realistic channels.

There are several avenues for future research opened
up by this work. Perhaps the most pressing open question
is a thorough investigation of how this scheme scales to
larger numbers of players over more complicated network
topologies (e.g., a butterfly network). Also, for reasons of
practicality, in this work we focused only on implementa-
tions using offline squeezing but preliminary results sug-
gest that performance could be improved if inline squeez-
ing resources were to become readily available. There is
also an in-principle qualitative advantage to entanglement-
based secret sharing, which is that the identity of the dealer
can be chosen after state distribution, albeit at the price of
reduced performance. A further interesting direction is the
extent to which other quantum coding techniques such as
local complementation [19] can be used to ameliorate this
problem and fully exploit this added flexibility [76].

Whilst our results indicate implementations with near-
term technology will only be feasible over metropoli-
tan distances, in future, sophisticated quantum networks
[44] that include repeater stations [77—82] or ones build-
ing on fault-tolerant protocols [83,84] may render a
multipartite advantage achievable over much longer dis-
tances.

Although this proof fails to give positive key rates
when applied to the original HBB proposal with GHZ
states, variants of this scheme could still demonstrate use-
ful performance via our proof method [85]. On a broader
perspective, it is the hope that this work stimulates further
studies of protocols making use of multipartite entangled
resources that achieve a genuine advantage over point-
to-point protocols, providing further perspective to the
field of quantum communication beyond point-to-point
schemes.
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APPENDIX A: SECRET-SHARING RATES WITH
CV GRAPH STATES

In this section, we review the formalism of bosonic
Gaussian states as it is needed to describe the protocols
considered here and also detail the noise models used.

1. Preliminaries

Although Gaussian states are supported on infinite-
dimensional Hilbert spaces, they can be completely
described by a finite number of parameters, namely their
first and second moments. Similarly, Gaussian operations
can be compactly captured by symplectic transformations.
For a detailed discussion the reader should consult Refs.
[86,87].

A bosonic system can be described in terms of appropri-
ate creation and annihilation operators. For an N-mode
system it can be convenient to group these into vectors

A

a:=(ay,...,ay)", (A1)

with the creation operators being the Hermitian conju-
gates of these operators. Such systems can equivalently
be represented by the quadrature operators defined by
ay := 1 (% +ipx) for k= 1,...,N, or equivalently

Ro=ap+ay,  pei= iy, — a), (A2)
which for an N-mode system we can write as
Fi=&,p1,. . NP0 (A3)

Note that by choosing these particular prefactors linking
the quadrature operators to the annihilation and creation
operators we are setting h = 2, which corresponds to
[)?, ﬁ] = 2i and will ensure that the vacuum variance is
normalized to 1. The symplectic form associated with the
ordering defined by Eq. (A3) is

N
0 1
Q= o, a=<_1 0)'
k=1

One can also use a different operator ordering convention
and define a vector of quadrature operators,

-

p=i,...

The symplectic form reflecting the canonical commutation
relations takes in this convention the form

_ 0 —Iy
w—Z(IN 0).

(A4)

) ; (AS)

> >

X=&,...,xn)7, N7 (A6)

(A7)
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The two conventions are naturally related by an appropri-
ate permutation operation. For most of this work we use
the convention in Eq. (A3), however, sometimes it can be
more convenient to adopt Eq. (A5) and it will be made
clear when this is done.
An arbitrary N-mode Gaussian state o can be com-
pletely specified by a vector of first moments,
r:= (F) = Tr(¥p), (A8)
the displacements in phase space, and a covariance matrix

(CM) that captures the second moments. This covariance
matrix I' has entries

A
l",»J = 5({AF,,AFJ}) (A9)
Covariance matrices of multipartite systems, which we
label with subscripts, can be written in a convenient block
form. For example, an arbitrary tripartite system of a state

pa.p,c can be written as

Iy Cup Cuc
Clz; Tz Cpe
CAT,C Csz,c Te

Typc= (A10)

Tracing out a subsystem simply corresponds to discard-
ing the appropriate part of the total CM and considering
a principle submatrix, so that, for example, the CM of the
reduced state p4 c = trg(p4.5,c) is given by

I Iy Cyc
A,C — C:;,C rC .

Measuring out a quantum subsystem via a homodyne
detection is given by the appropriate Schur complement
[88-90]. In the above situation if, instead of being traced
out, the mode B is measured in the x quadrature, the
conditional CM is given by

(All)

Ticpy = Lac— CXTX)M CT, (A12)

where MP denotes the Moore-Penrose matrix inverse,

CT = (C45Cp),
is the total correlation matrix between B and the joint
A, C system, and X = diag(1, 0) [for a p measurement we

would instead use P = diag(0, 1)]. The conditional first
moment is given by
ey = rac + C XXM (m —rp), (A13)

where m = diag(xp, 0) is the measurement vector where
the nonzero entries are Bob’s measurement outcomes (in

this case in the X quadrature). The analogous result holds
for conditioning on a p measurement.

An arbitrary Gaussian unitary can be compactly rep-
resented by matrix from the real symplectic group S €
Sp (2N, R) so a real matrix satisfying

SQST =Q, (A14)
and a vector d € R?V that together define a correspond-
ing affine transformations of the first moments and a
symplectic transformation of the CM given by

r—Sr+d, T~ Srs™. (A15)
The specific Gaussian operations we require for our cal-
culations are single-mode squeezing operations in the X
quadrature with squeezing parameter » > 0

e 0
S(r) = ( 0 er>, (Al6)
and a beam splitter with transmissivity T € [0, 1]
mz 1— T12>
BS(7) = , Al7
(I (_T?ﬁZVJﬁZ (A7)

where I, is the 2 x 2 identity matrix. Finally, we require a
two-mode entangling gate sometimes called a CPHASE gate
or a CZ gate by analogy with qubit systems. A CZ gate gate
of strength g is described by the symplectic matrix

1 0 0 O
1 0

czZo=1y 0 1 o (AI8)
0 0 1

For one- and two-mode operations acting on larger mul-
timode systems, we use subscripts to denote the target
modes, and the necessary padding with identity matri-
ces defined implicitly as appropriate, e.g., a single-mode
squeezing on mode 4 of a joint 4, B system would give
rise to

e—r

o= (40 )= ¢
0

where 0 is a 2 x 2 matrix of zeroes. Similarly, a beam-
splitter operation between modes 4 and B of a three-mode
system would be written as

., (A19)

oo N o
o~ oo
—_—o oo

BS(1) 0) . (A20)

BSA,B(D = ( 0 12
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2. CV graph states

Equipped with this framework, we can state the
definition of CV graph states [36-38] as continuous
analogs of graph states [18,91] as instances of stabilizer
states. At the heart of the concept of a CV graph state is an
adjacency matrix

A=AT, (A21)
of a weighted graph having zero entries for pairs of modes
that are not connected and a positive value for pairs of
modes that are connected. By convention, each mode is
initialized in a p-squeezed vacuum state and the adjacency
matrix of a weighted graph captures the interaction pat-
tern. The role of the adjacency matrix in state generation is
most apparent if we switch to the ordering convention of
Eq. (AS5). The symplectic transformation implementing an
imperfect CV graph state in this convention is

é_ 1y 1y e "1y 0
T\VA 1y 0 ey )’

where r parameterizes the initial squeezing and the tilde is
to emphasize that this matrix is written in a different order-
ing convention. It takes a moment of thought that these
matrices satisfy S € Sp(2N,R). These are imperfect CV
graph states [38,39], and become infinite energy improper
quantum states in the limit » — oco. Such imperfect CV
graph states are at the heart of our formalism. Another
useful way to conceptualize CV graph states are via their
nullifiers, which are a collection of N multimode observ-
ables defined uniquely for a given adjacency matrix by the
equations,

(A22)

A A

n=p—Ax, (A23)
where we are again using the definitions in Eq. (AS).
One way to understand the correlation structure of these
graph states is to think that the original squeezing is now
distributed in a nonlocal observable made up of quadra-
tures from the various nodes of the graph state. The per-
fect graph state arising from infinite squeezing, therefore,
results in maximum correlation and it is straightforward to
show that [37,38]

lim n = 0.
r—00

(A24)

This will become useful later when choosing the optimal
secret-sharing strategy.

The canonical method to realize a given graph state
[Fig. 6(i1)] is to implement a Cz gate for each edge in
the graph. The weight of each edge corresponds to the
strength, g, of the entangling gate as per Eq. (AlS).
Note that a perfect graph state emerges by taking the
infinite squeezing limit in the initial squeezed vacuum

states as distinct from the taking the limit of infinite
weight of the entangling gates. Taking the limit g — oo
in the €z gates would not correspond to a perfect graph
state. The tripartite line graph we use can therefore be
written

Gy = CZp(g) - CZ,p(g) - Sc(—r) - Sp(—=r1S,(—1).
(A25)

Finally, a more practical construction is to prepare the
graph state via offline squeezing [36]. This is done via
the Bloch-Messiah decomposition, which allows an arbi-
trary Gaussian unitary to be decomposed into a passive,
linear-optical interferometer followed by a single-mode
squeezing operations and a second passive interferom-
eter [92,93]. When starting from vacuum state, as we
are here, the first interferometer can be ignored and an
arbitrary graph state can be prepared as per Fig. 6(iii)
by a layer of single-mode squeezers and a final passive
unitary. The squeezers in the Bloch-Messiah composi-
tion will necessarily be stronger than the initial squeez-
ers in the canonical construction since they must also
incorporate the squeezing that would go into generat-
ing the Cz operations. Following Ref. [93], we obtain
the following decomposition for the graph state given
by (A25):

Ggioch = L - S4(—ry) - Sp(—=7p) - S4(—rp), (A26)

where ry =r,

rp =rc = IOg [% (\/(2g2+ 1)€2r+e_2r—2

+ \/(Zgz +1)e¥ +e 2+ 2)] ,

(A27)

and L is the symplectic transform of the passive inter-
ferometer. This can be obtained by essentially carrying
out a series of singular value and eigenvalue decompo-
sitions of the symplectic transform describing the canon-
ical generation of the target graph state. These can be
readily obtained via a mathematical software package
and it can also be checked that these procedures satisfy
Ggioch - Gjjoe, = Gr - G| as required. To further simplify
experimental implementation this linear optical unitary
can further be simplified into a network of beam split-
ters and phase shifters via the Reck [94] or Clements [95]
decomposition.

3. Bottleneck networks

We now turn to bottleneck quantum-communication
networks. Indeed, using the tools in the previous section
we can now fully describe a secret-sharing protocol using
Gaussian graph states over Gaussian channels, which are

040339-13



NATHAN WALK and JENS EISERT

PRX QUANTUM 2, 040339 (2021)

i
s -"

(ii)

Ccz

cz

(i)
L

FIG. 6. (i) Graphical representation of a tripartite line graph.
(i1) Canonical generation method, where each graph vertex is ini-
tialized in a squeezed vacuum state and each edge is created via a
Cz gate. (iii) Practical generation via offline squeezing. Here the
squeezers, S’, will generally be stronger than those appearing in
the canonical construction in (ii).

—

an excellent model for fiber-optic transmission. For the
purposes of the discussion in this section it is sufficient
to consider the case where the sources and detectors are
ideal and the only decoherence comes from the lossy chan-
nels themselves. This means the total system will be made
up of six modes all initialized in the vacuum state. Three
modes will be for the tripartite graph state and three addi-
tional modes V4, Vg, V¢ that will model the corresponding
loss channels.

When communicating over a bottleneck network the
first noteworthy point is that there are two, inequiva-
lent, network coding strategies that could be employed
(Fig. 7) to distribute a line graph. The first of these, which
we previously denoted the player-in strategy, is where
one player first makes a two-mode graph state, which is
sent to the hub. There it is entangled with a third mode
and then all modes are distributed to the corresponding
players. The symplectic matrix representing the distribu-
tion of the tripartite line graph over a lossy, bottleneck
network is

N; =BScy.(Tc) - BS y, (Ty) - CZLp c(g)BS,7,(Ty)
- CZ4p(g) - Sc(=r)Sp(—r) - S4(—r). (A28)
The second strategy hub-out strategy involves the creation
of the line graph directly at the hub and then distribu-

tion. The symplectic matrix for the line graph in a hub-out
strategy is

Nig = BScy.(Tc) - BSpy,(Ty) - BS,v, (T4)CZLp c(g)
- CZ43(g) - Sc(=7) - Sp(=1)Sy(=r). (A29)

Hub transmission

Player transmission

FIG. 7. Different strategies for distributing graph states
through a bottleneck network. The player-in strategy (left) is a
two-step process: (i) Alice makes a two-mode graph state and
transmits one mode to the hub; (ii) the hub entangles this with a
third mode, creating a tripartite graph state, and sends one mode
to Bob and the other to Charlie. In the hub-out strategy (right),
the hub creates the tripartite graph state directly and transmits
one mode to each player in a single step. Unlike the player-in
strategy this method can distribute a triangle graph (top) as well
as a line (bottom).

Since loss channels and the entangling gates do not com-
mute, these strategies will result in two different states, as
can be readily verified by comparing N; and N;g. Prac-
tically speaking, there is a significant difference between
the two strategies as only in the hub-out case are all three
modes in the one location such that we can make use of the
simple, offline squeezing preparation method of Fig. 6(iii).
For this reason, we consider only this strategy for the
remainder of the work, but it would be interesting to see
what, if any, advantages emerge from the player-in strategy
enabled by inline squeezing.

When distributing a line graph, there will be two further
possibilities, namely whether the player who is to be the

TABLE I. Parameters for the realistic experimental model.
Symbol Value Description
Nes 0.99 [70] Escape efficiency
ny 0.95 [73] Fiber coupling efficiency
Nd 0.99 [70] Detector efficiency
r 2.68 (23.3 dB) [70] Inferred squeezing
T 10~0-02d0km) Fiber-optic transmission
& 0.002 [74] Excess noise

040339-14



SHARING CLASSICAL SECRETS...

PRX QUANTUM 2, 040339 (2021)

FIG. 8. Schematic of realistic experimental implementation.
Various imperfections are modeled as loss channels with the
ground symbol representing lost modes that will be attributed to
the dishonest parties.

dealer is sent one of the edge nodes of the line or the mid-
dle node. Both these possibilities were considered in Fig. 3
where we see that the optimal choice is for the dealer to be
the middle node. Note that in Eq. (A29) we have uniquely
defined Bob as being the recipient of the central node and
hence the optimal dealer. It is also worth noting that with
the hub-out strategy it is equally possible to prepare a trian-
gle graph as it is a line graph, however, our investigations
show that this is suboptimal with respect to the properly
chosen line graph.

4. Modeling an experimental implementation

Whereas our initial, idealized calculations assumed
perfect state generation, measurement, and transmission
through pure lossy channels, in this section we model a
more realistic implementation based on past experiments
in the literature. A summary of the relevant parameters and
their values is given in Table I and a schematic of the setup
is sketched in Fig. 8.

Turning first to the state generation process, we now
consider a finite escape efficiency for the squeezing cavi-
ties and a finite coupling efficiency into the optical fiber,
which are well modeled by beam splitters of transmis-
sion, nes and 7y, respectively, mixing the incoming mode
with vacuum modes. For simplicity we are taking each
squeezer to be identical, which means the symmetric loss
for the escape efficiency, which occurs immediately after

squeezing can be commuted through the interferometer in
the Bloch-Messiah decomposition and combined with the
coupling efficiency into a single beam splitter of trans-
mission 1. = nes7)y . For our calculations we need to infer
the initial pure squeezing in Ref. [70]. There a combined
total loss of ny = 0.975 is reported along with a measured
squeezing of 15.3 dB or equivalently a measured squeezed
quadrature variance of ¥V, = 10713319, We can obtain
quadrature variance before the loss by inverting Vy =
Mot Vr + 1 — 1o and finally we find the inferred squeezing
parameter of » = — log(V,)/2 = 2.68 or equivalently 23.3
dB.

Secondly, fiber-optic transmission cannot be completely
captured by a pure-loss channel. In reality, transmission
will induce a small but nonzero excess thermal (and thus
Gaussian) noise. This thermal-loss channel can be well
modeled as a beam splitter of transmission 7 that, instead
of mixing the incoming mode with vacuum, combines it
with a Gaussian thermal state of variance 1 + £. Thirdly,
the homodyne detectors will have a finite efficiency, which
can also be modeled by a lossy beam splitter of transmis-
sion 7ny. Finally, for the purposes of the security proof it
is necessary to tap off a small amount of the dealers mode
for an energy test. This is done via a another beam splitter
of transmission 7, that reflected a small amount of light to
a heterodyne detector (simultaneous measurement of both
quadratures) whilst the transmitted mode is homodyned.

In total this will be a 13-mode system, four of which
belong to the players (4, B, and C for the protocol and B,
for Bob’s energy test) and the rest, which will be attributed
to the malicious parties. All are initialized as vacuum states
except for the three modes modeling the thermal-loss chan-
nel, which are initialized in a thermal state with variance
1 4+ &£. We label these thermal modes E 4, E, E¢ as they are
assumed to be purified by the eavesdropper. The six vac-
uum modes that are modeling the various losses are labeled
Vi,...,Vs. Here we take all detector and coupling efficien-
cies to be equal. In this notation, the entire realistic model
is given by the transform,

Nexp = BSc,y, (na) - BSp,y5(na) - BS.4,y,(na) - BSpp,(Te) - BS£.(Tc) - BS,£,(Tp)
x BS,£,(T4) - BScr,(ne) - BSpy, (c) - BS4p, () - CZy3(g)

X CZp,c(g) - Sc(=r) - Sp(=r) - S4(=r),

which is precisely reflecting the circuit shown in Fig. 8. The final covariance matrix is given by

FA,B,C = Nexp -NI

exp

T
=1Cis

(A30)

Iy Cup Cyc
Iy Cpel, (A31)

CAT,C CI?,C Ic
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APPENDIX B: SECURITY ANALYSIS FOR CV
SECRET SHARING

We now present the details of how the secret frac-
tion in Eq. (10) is derived. Essentially, we generalize the
proof of Ref. [35] to the composable, finite-size setting
using CVQKD results [52,96], which make use of entropic
uncertainty relations for the conditional quantum smooth
min and max entropies [53,97], which are defined as fol-
lows. 