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Secret sharing is a multiparty cryptographic primitive that can be applied to a network of partially dis-
trustful parties for encrypting data that is both sensitive (it must remain secure) and important (it must not
be lost or destroyed). When sharing classical secrets (as opposed to quantum states), one can distinguish
between protocols that leverage bipartite quantum key distribution (QKD) and those that exploit multipar-
tite entanglement. The latter class are known to be vulnerable to so-called participant attacks and, while
progress has been made recently, there is currently no analysis that quantifies their performance in the
composable, finite-size regime, which has become the gold standard for QKD security. Given this—and
the fact that distributing multipartite entanglement is typically challenging—one might well ask is there
any virtue in pursuing multipartite entanglement-based schemes? Here, we answer this question in the
affirmative for a class of secret-sharing protocols based on continuous-variable graph states. We establish
security in a composable framework and identify a network topology, specifically a bottleneck network of
lossy channels, and parameter regimes within the reach of present-day experiments for which a multipar-
tite scheme outperforms the corresponding QKD-based method in the asymptotic and finite-size setting.
Finally, we establish experimental parameters where the multipartite schemes outperform any possible
QKD-based protocol. This is one of the first concrete compelling examples of multipartite entangled
resources achieving a genuine advantage over point-to-point protocols for quantum communication and
represents a rigorous, operational benchmark to assess the usefulness of such resources.
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I. INTRODUCTION

The desire to reliably store important information seems
at odds with the desire to keep that information secret. A
reasonable strategy to achieve reliability would be to gen-
erate many redundant copies of the information. However,
this strategy clearly increases danger of a security breach
as each copy is a new target for unauthorized access. An
elegant solution to this quandary is given by secret shar-
ing. These are protocols in which the secret is divided
into pieces or shares by a dealer and distributed amongst
several players such that some authorized subsets can per-
fectly reconstruct the secret but all other subsets gain no
information whatsoever. The set of authorized subsets of a
scheme is called the access structure.
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In such a scheme, any unauthorized set of shares may
be destroyed without the secret being lost and any unau-
thorized set may be hacked without any information being
leaked. Secret sharing can be used in many practical sit-
uations to ensure that only a sufficiently large collection
of agents can authorize some action, with examples rang-
ing from approving an expense account to ordering a
military strike. Other applications include managing cryp-
tographic keys, decentralized voting, and as a primitive for
secure multiparty computation. In the most common form
of access structure, the dealer selects a threshold size for
authorized subsets. An (n, k)-threshold scheme involves n
players of which any k players can collaborate to recon-
struct the secret, whilst any (k − 1) subset remains totally
ignorant.

The concept of secret sharing has been independently
conceived in a classical setting by Blakley [1] and Shamir
[2]. However, these schemes assume that the only infor-
mation received by any player is their intended share and
thus they cannot be proved secure against the possibil-
ity that members of an unauthorized set are eavesdrop-
ping upon an authorized set. This problem can be solved
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using techniques from quantum cryptography. In the first
place one could simply establish quantum key distribu-
tion (QKD) links between the dealer and each player in
parallel [3]. Once a secret key has been established then
Shamir’s scheme can be safely implemented [4]. The secu-
rity of such schemes then follows immediately from QKD
security proofs, and such schemes have already seen exper-
imental implementation [5,6]. We refer to these schemes of
bipartite quantum secret sharing as BQSS.

An alternative method, due to Hillery, Buzek, and
Berthiaume (HBB), is for the dealer (Alice) to create a
multipartite entangled state distributed amongst the players
[4]. This proposal utilized Greenberger-Horne-Zeilinger
(GHZ) states to implement an (n, n)-threshold scheme and
an extensive body of follow up work has since appeared
[7–10]. A particularly interesting variant has been the work
of Schmid et al., which does not require multipartite entan-
glement, but instead transmits a quantum state between all
participants who each perform a random operation [11].
These should not be confused with the protocols, some-
times called quantum state sharing, where the secret to
be shared is a quantum state [12,13]. Crucially, almost
immediately following the original HBB paper, it has been
pointed out that these protocols are vulnerable to so-called
participant attacks [7,8] and the security of these schemes
could not be rigorously established.

Subsequently, several works [14–17] have identified
graph states [18] as a valuable resource for secret shar-
ing (with classical and quantum secrets), which allow
for more general (n, k)-threshold schemes and highlight
an elegant connection between secret sharing and error-
correction codes. This setting is conceptually interesting.
At the same time, it has become more technologically plau-
sible. Substantial theoretical progress has also been made
on how to distribute graph states in multipartite quan-
tum networks [19,20]. Whilst these proposals have com-
prehensively answered the questions of how secrets can
be successfully reconstructed by the authorized subsets,
the security analysis against dishonest parties remained
unsatisfactory because the problem of participant attacks
remained unsolved.

In contrast to QKD where the dishonest party is com-
pletely shut out of the parameter estimation process, secret
sharing typically includes all players in the certification
procedure. This opens up loopholes regarding the order
in which information (measurement bases and outcomes)
is announced that can be exploited by dishonest players
to avoid detection. Thus, while many experimental imple-
mentations have appeared [11,21–32], they have all only
been analyzed either under various assumptions (e.g., per-
fect state transmission, asymptotically many rounds or in
some cases specific eavesdropping strategies) or restric-
tions upon the players and the eavesdropper and none were
shown to be secure against arbitrary participant attacks.
We note that some works on sharing entangled quantum

states do rigorously address the participant attack [33,34],
but only by utilizing a pre-existing secret-sharing proto-
col for classical strings. This is reasonable when the goal
is to leverage the security of classical BQSS to ultimately
share a quantum state, but would be redundant for sharing
classical secrets, which is our primary concern here.

The problem has finally been resolved, at least in the
asymptotic limit of infinitely long key exchange, first by
Kogias et al. [35] in the context of continuous-variable
(CV) graph states [36–39] and later by Williams et al.
[40] for discrete-variable (DV) GHZ states, where the lat-
ter also has carried out a proof-of-principle demonstration.
Using different methods, both works manage to reduce the
problem to essentially a minimization over bipartite sce-
narios where tools from QKD analysis can be applied, but
without leaving any room for participant attacks. Follow
up works has extended [40] to the CV regime [41] and
included a finite statistical analysis under the assumption
of Gaussian collective attacks [42]. Importantly, none of
these works give any instances where a genuinely mul-
tipartite approach results in any improvement in perfor-
mance, in fact in Ref. [35] it is shown that their multipartite
entangled protocol is strictly inferior to BQSS over the
networks they consider.

This gives rise to a most pressing situation: The vision
of quantum networks [43–46], with notions of a quan-
tum internet in mind, seems to suggest that a wealth of
new multipartite protocols based on multipartite entangle-
ment opens up. Yet, at the same time it seems excessively
difficult to identify schemes that actually obtain an advan-
tage based on the availability of multipartite entangled
states under realistic conditions. This obstacle is largely
overcome here.

In the following, we first explain the differing analyses
of Refs. [35,40], and quantitatively improve upon the rates
calculated in the former work. We then lift the analysis
to consider arbitrary attacks in the composable, finite-size
regime. Composable security is a particularly stringent
notion of security in which the protocol remains secure
even if arbitrarily composed with other instances of the
same or other protocols. To be in the finite-size regime also
seems a practical necessity given that asymptotic settings
usually refer to extremely long sequences of key exchange.

Finally, we turn to the main contribution of this paper,
which is to evaluate performance over bottleneck networks
of lossy channels and demonstrate a genuine quantita-
tive advantage for protocols exploiting multipartite entan-
glement in CV graph states. In the limit of asymptotic
key rates, we show an unconditional advantage, in the
sense of outperforming the so-called Pirandola-Laurenza-
Ottaviani-Banchi (PLOB) bound, which represents the
ultimate limit on point-to-point QKD protocols [47]. For
large but finite squeezing the multipartite scheme can
outperform the PLOB bound for a transmission radius
of up to 4 km of optical fiber. We model a realistic
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multipartite experiment and find that even in the compos-
able, finite-size regime an advantage exists over a CVQKD
scheme with the same resources. This represents—once
again—a rare concrete example of a multipartite entangle-
ment advantage for quantum cryptography over realistic
networks.

II. SECURITY OF SECRET SHARING

The idea of sharing a classical secret with quantum tech-
nology is to distribute a random key that has precisely
the desired access structure, and then encrypt that actual
secret via a one-time pad encoding. In fact, like standard
QKD, this protocol technically carries out key expansion
rather than distribution since a small amount of preshared
key must already exist to authenticate any public commu-
nication and to carry out privacy amplification. Consider
an (n, k)-threshold scheme where, in each round of the
protocol, a multipartite entangled state is shared between
n players (B1, . . . , Bn) and a dealer, Alice, who measures
her part of the state in one of two conjugate bases. Mea-
surements in one basis will be used to form a secret key
while the others will be publicly disclosed and used for
certification. Typically this is done asymmetrically with p ,
the probability for a certification round, satisfying p ≤ 1

2 .
To process her measurement outcomes into a secret key
with the desired access structure, Alice must determine two
parameters: On the one hand, this is the amount of privacy
amplification required such that the key appears random to
any (k − 1) subset who might be in league with the eaves-
dropper. On the other hand, this is the amount of error
reconciliation information she must transmit to ensure any
authorized k-party subset can reconstruct the secret key. To
this end, we need to define the following sets: The set of
all players (Bobs)

B = {B1, B2, . . . , Bn}; (1)

the set of all authorized or trusted subsets of k players T =
{T1, T2, . . . , T(n

k)
} where, e.g.,

T1 = {B1, B2, . . . , Bk}, (2)

and so on; the set of all unauthorized or untrusted subsets
of (k − 1) players U = {U1, U2, . . . , U( n

k−1)
} where, e.g.,

U1 = {B1, B2, . . . , Bk−1}, (3)

and so on. To determine the extractable key, Alice must
take worst-case estimates for the secrecy over the

( n
k−1

)

unauthorized subsets and for the correctness over the
(n

k

)

authorized subsets (Fig. 1).
Moreover, Alice must do this in a way that prevents

any participant attacks, which typically exploit the order
in which certification information (measurement bases and
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FIG. 1. Security analysis for an (n, n − 1)-threshold scheme.
The performance of the scheme is assessed by taking the worse-
case values of the failure parameters (see Definition 1) for both
secrecy εs and the correctness εc. For a general (n, k) scheme,
εs is maximized with respect to all for the

( n
k−1

)
possible unau-

thorized subsets of players who might be collaborating with the
eavesdropper and εc is maximized with respect to the

(n
k

)
autho-

rized subsets who may wish to later collaborate to reconstruct the
secret.

outcomes) is announced by the players. This is the criti-
cal point where the security of most previous multipartite
schemes can be completely broken. Note that in QKD
protocols, the measurement bases can in principle be estab-
lished beforehand for an L round scheme at the cost of
approximately Lh2(p) extra bits of preshared key where
h2 is the binary entropy function. However, such a scheme
is a priori forbidden for a secret-sharing scheme as it is
crucial that the potentially dishonest players do not know
ahead of time which rounds will be used for certification.

For example, the original HBB protocol attempts to
certify a GHZ-state scheme by having the players ran-
domly switch between measuring in the Pauli X or Y
basis and then verifying that measurement combinations
corresponding to GHZ stabilizers behave as expected [4].
However, if measurement bases are announced first and
a dishonest player (Bob) knows that he will be the last
to make an announcement, he can cheat perfectly as fol-
lows [7]. In the transmission phase Bob intercepts all of
the GHZ photons sent by Alice and instead establishes
bipartite maximally entangled states between himself and
the other players. Once all other players announce their
measurement basis, Bob measures his maximally entan-
gled pairs and also immediately learns all other players’
measurement outcomes. Finally, he can use his knowledge
announced bases to ensure the round is only kept if Alice
measures in a basis of Bob’s choosing. For example, if all
other players announce the X basis, Bob knows if he also
announces X then the round will only be kept if Alice also
measures X since only that choice corresponds to a GHZ
stabilizer. Bob now measures his intercepted GHZ parti-
cles and perfectly learns Alice’s X measurement outcome
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and, along with his knowledge of the other players’ out-
comes, can calculate what he should announce in order to
perfectly recreate the GHZ correlations. Thus, the scheme
is completely broken but Bob remains undetected. Other
attacks are also possible if measurement outcomes rather
than bases are announced first [7].

Two solutions to this problem have emerged. One strat-
egy is to test each potential unauthorized subset by simply
excluding all players in that subset from the certification
process [35]. The other is to have the dealer randomly
select an unauthorized subset that is included in the certifi-
cation test but forced to make all their announcements first.
This essentially reduces each test to a QKD protocol with
an untrusted source [40]. One way to enforce this ordering
would be to instruct members of the complementary set Cj
to withhold their announcements until they have received
that rounds’ results from the corresponding Uj . Note that
the protocol of Ref. [40] therefore comes with additional
classical communication overheads.

The two strategies cannot easily be compared in general.
Whilst the technique of Ref. [35] is simpler, it will always
obtain lower correlations between Alice and any given
subset as it does not make use of the announced results
from untrusted parties. For example, while this method has
been shown to predict positive rates for CV graph states it
always results in a zero key rate if applied to the original
HBB protocol. This stems from the fact that, for a GHZ
state, tracing out even a single party results in completely
uncorrelated noise in either the Pauli X or Y bases of the
other participants.

On the other hand, the proof of Ref. [40] can be applied
to a HBB-type protocol but requires

( n
k−1

)
different datasets

for parameter estimation (one for each Uj announcing
first), meaning that much more data must be sacrificed for
certification. Moreover, this latter protocol stipulates that
the bases be chosen symmetrically (i.e., p = 1/2), which
halves the achievable rate and it is also necessary to acquire
certification measurements in both bases, further driving
down performance. We show later that these restrictions
are indeed mandatory for security to be maintained.

For a general protocol with arbitrary players and includ-
ing finite-size effects it is possible that there are instances
where the approach of Ref. [40] could prove superior.
However, for the case we consider in Fig. 2, namely three
parties utilizing a bottleneck network, the reduction of the
key rate by a factor of 1/2 already precludes any possible
advantage for the multipartite entangled scheme. There-
fore, we instead use the protocol of Ref. [35] as our starting
point for the remainder of this work. Further discussion of
the security, potential drawbacks and applications for the
work of Williams et al. can be found in Appendix D.

Protocol 1 (Entanglement-based secret sharing). An
(n, k, m, t, p) protocol for entanglement-based secret shar-
ing involves the following steps:

B1 B2

A

H

TA

T1 T2

FIG. 2. A tripartite quantum-communication scenario between
a dealer, here player A, and two other players, B1 and B2. This
quantum network with a central router H , which is able to
produce and entangle qumodes, exemplifies a network with a
bottleneck. The CV graph state used in the multipartite entan-
glement QSS protocol, can be distributed in a single network use
(i.e., each channel transmits a single qumode only), while (n − 1)

uses of the network are necessary in the BQSS protocol.

1. The dealer (Alice) establishes sets of preshared
keys: a bipartite key with each player to authenti-
cate classical communication channels and a joint
key that satisfies the intended (n, k)-threshold access
structure as a seed for privacy amplification.

2. An (n + 1)-partite entangled state is distributed
amongst players and the dealer (Alice) through
untrusted quantum channels.

3. Alice measures her part of the state in one of
two noncommuting bases, X and P with proba-
bility p and 1 − p, respectively. We denote the
key-generation measurement X and the certification
measurement P.

4. If the players are honest they also randomly choose
between the measuring X and P on their systems
according to the same probability. If they are dis-
honest, nothing is assumed about their actions at
this point. We denote the ith authorized set of k play-
ers as Ti, the j th unauthorized subset of k − 1 play-
ers as Uj and the corresponding complementary
subset of n − k + 1 players as Cj .

5. Following Ref. [35], all players announce their
measurement bases for all rounds in any order. If
the announced values of any of the Ti or Cj are con-
sistent with Alice’s measurement choice this round
is kept. Depending upon the correlation measure
to be employed, Alice may designate only P mea-
surements for disclosure, or she may also select a
random subset of her X basis rounds. This pro-
cess is repeated until Alice has designated m rounds
to be used for key generation and t rounds for
parameter estimation. Using this single parameter-
estimation dataset. Alice computes a correlation
measure between herself and each complementary
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subset, Cj . In any given computation Alice simply
ignores all announcements from any player in the
corresponding unauthorized set Uj . If the correla-
tions are below a certain level, the protocol aborts.
Depending upon protocol specifics there may also
be other checks carried out (e.g., an energy test or
a decoy-state analysis), which, if failed, will also
cause the protocol to abort.

6. If the test passes, this results in correlated vari-
ables

(
XA, XBi

)
, which describe the measurements

of Alice and each of the authorized subsets. Alice
proceeds with error reconciliation, which leaks a
maximum of �EC bits of information and privacy
amplification utilizing two-universal hashing. The
correctness of error reconciliation is verified with
a check that involves announcing a further hash of
length log2 εc bits computed with a preshared seed.
If this check also does not abort this results in a
final keys of length l

(
SA, SBi

)
for Alice and each

authorized subset.

We can now formally state our definitions for secret
sharing in the composably secure framework established
for QKD [48–50]. Let ppass be the probability that the
protocol does not abort and define the joint state (con-
ditioned on passing) between the register of Alice’s final
key and the j th untrusted subset in collaboration with the
eavesdropper as the classical-quantum state,

ρSAE =
∑

sA

p(sA) |sA〉 〈sA| ⊗ ρ
sA
E,Uj

, (4)

where the sum is over all possible l-bit strings that could
make up the key and ρ

sA
E,Uj

is the state of Eve and the j th
unauthorized subset given a certain value of the key.

Definition 1 (Notions of secret-sharing schemes). A
secret-sharing scheme as defined in Protocol 1 that outputs
a state of the form Eq. (4) is

(a) εc correct if

max
i

{
Pr[SA �= SBi]

} ≤ εc, (5)

and
(b) εs secret if

max
j

{
ppassD

(
ρSAE , τSA ⊗ σEUj

)} ≤ εs, (6)

where D(·, ·) is the trace distance and τSA is the
uniform (i.e., maximally mixed) state over SA.

A protocol is ideal if it satisfies εc = εs = 0, and it is
called εsec secure if εsec = εc + εs. This means that there

is no device or procedure that can distinguish between
the actual protocol and an ideal protocol with probability
higher than εsec.

If we define �i
EC as the amount of error correction needed

for the ith authorized subset it can be shown using results
from the QKD literature [49,51], that a key of length

l = H ε
min(XA|E, Uj ) − �i

EC − log2
1

εcε
2
1

+ 2, (7)

that is εc correct and εs secret against the j th unauthorized
subset where H ε

min(XA|E, Uj ) is the conditional smooth
min-entropy evaluated over the state given in Eq. (4) and ε

and ε1 are positive constants proportional to εs, which can
be optimized over. The necessary results have also been
proven for infinite-dimensional systems, which we require
here [52,53]. Considering Definition 1, the extractable
amount of key for secure secret sharing is then

l = min
j

H ε
min(XA|E, Uj ) − max

i
�i

EC − log2
1

εcε
2
1

+ 2. (8)

A standard figure of merit for a cryptographic protocol is
the secure fraction l/L—the ratio of secure output bits to
the number of attempted channel or network uses.

The choice of error reconciliation code fixes �i
EC with

respect to εc so the major remaining task is lower bound-
ing H ε

min(XA|E, Uj ) for a given εs from the data gath-
ered during parameter estimation. This is the crucial step
where a mistake could create vulnerabilities to participant
attacks. A commonly used tool for this task is an entropic
uncertainty relation for the observables XA and PA.

Without loss of generality, the overall state can taken
to be pure (ρAUj Cj E = ∣∣�AUj Cj E

〉 〈
�AUj Cj E

∣∣). In this case,
it has been shown that the following entropic uncertainty
relation holds for the m-round state used for key generation
[52,53],

H ε
min

(
Xm

A |E, Uj
)+ H ε

max

(
Pm

A |Cj
)
� m q(XA, PA), (9)

where the constant q(XA, PA) quantifies the complemen-
tarity of the two measurement bases and we have added
superscripts to Alice’s variables to emphasize that we are
referring to the m rounds to be used for key generation.
This result would appear to immediately solve our problem
in that it can be rearranged to lower bound the quantity of
interest, H ε

min

(
Xm

A |EUj
)
, in terms of correlations between

Alice and the trusted subset Cj . Importantly however, rela-
tions like this are counterfactual in that they describe two
hypothetical situations (Alice measuring either XA or PA)
only one of which can actually happen. Thus we do not
directly have access to the correlations between Pm

A and Cj
that appear in Eq. (9), as all m of these rounds are in fact
measured by Alice in the XA basis.
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Instead, we have the strings P
tj
A and P

tj
Cj

arising from
the t rounds announced during parameter estimation. Note
that, in general, we have tj < t. This is because any one
of the t total parameter estimation rounds might only be
useful for estimating correlations with the complementary
subset Cj but not with some other subset Ck. Crucially,
provided that the parameter-estimation rounds were truly
selected at random, then this is a standard problem in
random sampling without replacement. We can apply the
result of Serfling [54] to bound the correlations would have
been counterfactually observed between Pm

A and Pm
Cj

, given

the actually observed correlations between P
tj
A and P

tj
Cj

. It
is then possible to bound the min entropy [52,53]. How-
ever, this is only valid for genuinely random sampling and
it is precisely this condition that is violated by the par-
ticipant attacks outlined previously where the parameter-
estimation process involves all players simultaneously,
including the potentially dishonest ones.

Recall that in the example participant attack on the HBB
protocol, dishonest Bob learns the measurement bases of
the other players before making his own announcement.
He could then choose his announced basis to determinis-
tically ensure that this particular round will only be kept
if Alice measured in a particular basis. If the certification
measurement is fixed to be PA, this means dishonest Bob
can control the sampling procedure such that the correla-
tions between P

tj
A and P

tj
Cj

are not valid as a fair sample
to estimate those between the counterfactual Pm

A and Pm
Cj

.
Note that this loophole would still exist even dishonest Bob
was forced to announce first if it was still the case that all
certification measurements made in the PA basis. This is
why in the protocol of Williams et al., which includes all
players in the certification step, it is mandatory that bases
be chosen symmetrically and a random subset of each basis
is used to certify the secrecy of the other.

In Protocol 1, whether a round is kept for any fixed value
of j is determined solely by the bases of Alice and the com-
plementary set Cj so this problem is automatically avoided
and the relation in Eq. (9) can be successfully utilized.
Specifically, it can be shown that if a correlation mea-
sured defined for two m-length strings (X, Y) as d(X, Y) :=
(1/m)

∑m
i=1 |X − Y|i is greater than some threshold, d0,

then H ε
max

(
Pm

A |Cj
)

can be upper bounded. Using Serfling’s
bound the observed correlations d(P

tj
A , P

tj
Cj

) can be used to
estimate a d0 that would have been satisfied by d(Pm

A , Pm
Cj

).
The same arguments apply for other quantities obtained
during parameter estimation, such as a covariance matrix.

Up until this point, these arguments can be applied
to either a DV or CV realization of Protocol 1. How-
ever, there are still several issues that need to be dealt
with in order to evaluate the secure fraction for a realistic
CV protocol where the conjugate bases are approximate
quadrature measurements made via homodyne detection.

Two primary issues are that real quadrature measure-
ments have a finite resolution (δX, δP) and a finite range
([−MX, MX], [−MP, MP]). The first problem can be dealt
with evaluating the complementarity constant in Eq. (9)
for a coarse-grained observable that accounts for the finite
resolution and the second by introducing an additional test
to the protocol where the dealer taps off a small portion of
the their incoming light with a beam splitter of transmis-
sion η and makes an estimate of the input energy, either
via heterodyne [53] or direct [55] detection. The protocol is
aborted if too large a value is observed, which ensures that
the energy of the input state is appropriate for the range of
the detectors being used. Following the previous CVQKD
literature [52,53], showing that, given a correlation thresh-
old dj

0 passed by the set Cj and an energy threshold α, an
(εs + εc)-secure secret string can be extracted of length,

l = m
{

q(δX, δP) − max
j

log2

[
γ
(

dj
0 + μ

)]}

− max
i

�i
EC − log2

1
ε2

1εc
+ 2, (10)

where

γ (t) =
(

t +
√

1 + t2
)( t√

1 + t2 − 1

)t

, (11)

and μ is a complicated constant that depends upon the
thresholds (d0, α), block sizes (m, t), security parameters
(εs, εc), and detection parameters (δX,P, MX,P, η). A full
security proof is given in Appendix B. The entropic uncer-
tainty relation in Eq. (9) is presently the only known tech-
nique for the composable finite-size analysis of homodyne-
based protocols, but it is known not to be tight in typical
QKD scenarios [53,56,57] leading to overly pessimistic
predictions.

We can also calculate simpler, idealized rates in the
limit of infinitely many rounds and perfect detection and
information reconciliation. Here, it has been shown that so-
called collective attacks—where the malicious parties act
in an independent and identically distributed (IID) man-
ner—are optimal [58]. We first evaluate the secure fraction
in Eq. (8) directly where the min-entropy limits to the von
Neumann entropy via the asymptotic equipartition theorem
limm→∞ H ε

min(X
m
A |E, Uj ) = mS(XA|E, Uj ) where

S(XA|E, Uj ) = H(XA) +
∑

xA

p(xA)S(ρ
xA
E,Uj

) − S(E, Uj ),

(12)

is the conditional von Neumann entropy of XA given the
quantum system E, Uj with H(X ) = −∑x p(x) log2 p(x)
and S(ρ) = −tr

(
ρ log2 ρ

)
the Shannon and von Neumann

entropies, respectively. Then, with perfect error reconcil-
iation, we have that the amount of leaked information
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during reconciliation with a trusted subset becomes �i
EC =

mH(XA|XTi). Finally, in the asymptotic limit only a negli-
gible amount of data needs to be sacrificed for parameter
estimation so we have that p → 1 and thus m → L. In this
limit, we recover the expected asymptotic formulas

KSS := lim
L→∞

l
L

,

= min
j

S(XA|E, Uj ) − max
i

H(XA|XTi),

= min
i

I(XA : XTi) − max
j

χ(XA : E, Uj ), (13)

where in the third line we rewrite the key rate in terms of
the mutual information

I(XA : Y) := H(X ) − H(X |Y), (14)

and the Holevo quantity

χ(XA : E) := S(E) −
∑

xA

p(xA)S(E|xA). (15)

These asymptotic results have been derived in Ref. [35],
however, the manner in which they go on to bound these
quantities is unnecessarily pessimistic. This is because
they also utilize an entropic uncertainty relation for ideal
quadrature measurements following the results for one-
sided device independent (1SDI) CVQKD in Ref. [56].
The authors of Ref. [35] go on to describe the 1SDI nature
of their proof as being crucial for protection against par-
ticipant attacks. However, as we have explained above
the essential ingredient in their security proof is actually
that there is always some part of the parameter-estimation
process where each possible untrusted subset is excluded.
Within a given check, it is perfectly safe to assume that the
trusted parties have well-characterized devices and there-
fore a 1SDI protocol is not mandatory. Instead, in the
asymptotic regime, where collective attacks are known to
be optimal [58], we are free to use the results from Refs.
[59,60] based on Gaussian extremality to obtain tighter
rates. Note that to apply these methods it is necessary to
reconstruct an entire covariance matrix rather than just
a correlation measure. The fact that we first reduced the
security of our multipartite protocol to a minimization over
bipartite protocols is critical here. The Gaussian extremal-
ity results have only been proven to hold in a bipartite
setting, so it has been crucial that we first made this
reduction and in order to apply them.

III. NETWORK CODING ADVANTAGE IN
BOTTLENECK NETWORKS

Recent work has seen a substantial interest in notions of
network coding and multipartite entanglement for quantum

communication, aimed at understanding in what way mul-
tipartite schemes may outperform point-to-point schemes.
Indeed, important steps have been taken, in particular, on
how multipartite states can be distributed and manipulated
[19,61–64]. This is largely motivated by recent experi-
mental and technological developments [65,66] that render
ideas of quantum networks and the quantum internet plau-
sible [43,67]. At the same time, it seems less clear how to
arrive at a setting in which there is a genuine quantifiable
network coding advantage over point-to-point schemes.

In this section, we make an affirmative claim of a net-
work coding advantage in a CV bottleneck network. At
the heart of the protocol devised is the concept of a CV
graph state, the continuous-variable analog of a graph
state. In the canonical construction (see Appendix A) each
node of the graph is initialized in a squeezed vacuum state
and each edge corresponds to an entangling gate that also
requires active squeezing. The first work to show a con-
crete performance enhancement when using multipartite
entanglement for cryptography [62] has focused on confer-
ence key agreement (CKA) sometimes called NQKD [68].
In a CKA protocol all players are assumed to be honest
and the goal is for the dealer to establish a key that can be
reconstructed by each player individually. In Ref. [62], the
authors have considered a network featuring a bottleneck
where the dealer, Alice, is separated from the other players,
by a central hub H , with the ability to carry out entan-
gling gates. Each player is connected to H by a quantum
channel.

For the case of perfect channels, a bipartite scheme for
either CKA or QSS would require n network uses to con-
duct a QKD protocol with each Bob, but for a multipartite
entanglement-based scheme only one use would be nec-
essary. In Ref. [62], the authors analyzed a GHZ state
protocol and found an entanglement advantage persisted in
the presence of depolarizing noise in both the channels and
entangling gates provided the noise was sufficiently small.
However, this work considered the rather unrealistic case
of perfect state transmission, i.e., for lossless channels.

Here, we consider CV QSS over a bottleneck net-
work for the simplest nontrivial scenario with n = 2 Bobs
(Fig. 2). To map out the ultimate limits to performance
advantage in this scenario we first present asymptotic
key rates using finite squeezing for the graph states but
with all other parameters being ideal. The links are mod-
eled as pure-loss channels, which are an excellent first
approximation to a fiber-optic network.

There are several considerations that are specific to the
fact that this is the CV protocol. The first is that there are
two different ways for the entangled state to be distributed
across the bottleneck network, although both require only
a single network use. The hub can simply create an entan-
gled state and send one mode to each player (hub out) or,
alternatively, one player could create a two-mode graph
state and send one half to H where it will be entangled with
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a third mode and then distributed amongst the remaining
players (player in). For a DV protocol, a pure-loss chan-
nel effects only the probability of photon arrival and the
two methods would yield identical states with the same
transmission probabilities. However, for the CV case the
entangling gates do not commute with the lossy channels
and a different entangled state is distributed depending
upon which network coding method is employed. Note
that the method where the initial entangled state is cre-
ated at the central hub substantially more practical as it can
be achieved using only offline squeezing. In other words,
the required entangled state can be made beginning with
three squeezed vacuum modes that are passed through an
appropriate linear optical unitary.

The second CV-specific point is that, for similar reasons,
with a player-in strategy it matters whether the player who
initially transmits the state is the dealer (who is the ref-
erence player in the sense it is their measurements that
will make up the secret key) or one of the Bobs. This
is essentially the same asymmetry observed in CVQKD
where one finds different key rates for so-called direct and
reverse reconciliation [69]. A similar effect occurs even
with a hub-out strategy if the hub prepares an asymmet-
ric graph state (e.g., a line graph as opposed to a fully
symmetric graph). Third, for a fixed, finite amount of avail-
able squeezing there is in fact a whole family of CV graph
states where the squeezing is divided between the initial
squeezed vacuum states and the CPHASE gates that create
the graph state. This should be optimized over for a given
secret-sharing protocol. Lastly, CV graph states generally
have asymmetric quadrature correlations and therefore it is
crucial to make an optimal choice for which quadrature is
encoded with the key and which is used as the check. This
optimal choice is dictated by the correlation structure of the
graph state (see Appendix 1 for a detailed explanation).

Since offline squeezing is much more practical with
present technology, here we consider only a hub-out strat-
egy, where a three-mode line graph is created to implement
a (2, 2)-threshold scheme over a bottleneck network of
lossy fiber-optical channels. For the squeezing resource we
assume an initial available squeezing of 15 dB correspond-
ing to the state-of-the-art values for measured vacuum
squeezing [70]. The term measured squeezing refers to
the fact that the actual squeezing generated by state-of-
the-art nonlinear processes is typically much higher (>20
dB) but due to system losses the real output is a slightly
mixed state, which produces a smaller measured squeez-
ing. We model this setup in detail later, but for now,
we approximate the output as a pure state but with a
degree of squeezing limited to the measured value. Given
a maximum initial, offline squeezing value, one can use
the Bloch-Messiah decomposition to construct a family
of approximate graph states where there is a freedom to
divide this squeezing “budget” between the entangling
gates and the initial squeezed vacuum states that would
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FIG. 3. Comparison of secret sharing rates as a function of
transmission radius for a symmetric lossy bottleneck network
between entanglement-based protocols (solid lines), the cor-
responding CVQKD-based protocol based on squeezed states
(dashed yellow), coherent states (dashed purple), or the best
possible bipartite point-to-point protocol (dashed black). The
maximum available squeezing is 15 dB and the graph-state
generation process is optimized with respect to this limit.

appear in the equivalent canonical construction. For all
key rates plotted here we optimize over this choice (see
Appendix 1 for details).

For simplicity, we consider a symmetric network with
the players situated at an identical distance from the cen-
tral hub such that TA = T1 = T2 = T. In Fig. 3, we plot
the secret-sharing rate given by Eq. (13) as a function of
the distance in kilometres, d, which is related to the trans-
mission via T = 10−0.02d. A multipartite entangled strategy
also enjoys a qualitative advantage over any QKD-based
implementation in that the dealer, can in fact be chosen
after the quantum states have been distributed. However,
the choice of dealer will effect the performance. For a
three-mode line graph there are two possible configu-
rations depending on whether the dealer possesses the
middle mode or one of the edge modes (due to the symme-
try of our network the two edge modes result in identical
rates). Interestingly, we see that for all transmissions it is
favorable for the dealer to be sent the middle node in the
chain.

Turning to the comparison with BQSS, we can straight-
forwardly compute a benchmark [71] by evaluating the
secret-sharing rate for a scheme based upon a bipartite
CVQKD protocol between the dealer and each player with
the same squeezing resources, and then dividing by the
number of additional network uses required. The asymp-
totic rate of an (n, n) scheme over the same symmetric
bottleneck network is then
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KBQSS = min
Bi∈B

1
n

[I(XA : XBi) − χ(XA : EB/Bi)]. (16)

Note that we can compute the key rate for more than
one Gaussian CVQKD protocol. The two natural choices
are as follows: (i) the optimal protocol where Alice
sends Gaussian-modulated squeezed states (or equiva-
lently homodynes one half of a two-mode squeezed vac-
uum) and Bob’s homodyne detect; the protocol where
Alice sends Gaussian-modulated coherent states and Bob’s
homodyne detect. This latter protocol is less loss toler-
ant, but requires no squeezing and is thus very cheap,
robust, and often favored in field implementations so we
also include it as a comparison. All key rates are computed
in Appendix C 1.

In Fig. 3, it can be seen that graph-state secret sharing
achieves a higher secure rate for short distances, outper-
forming the corresponding squeezed-state BQSS protocol
up until a transmission radius of over 3 km and the
coherent-state protocol till 7 km (meaning the parties could
be as far away as 7 and 14 km, respectively). For an
even more dramatic illustration of the potential benefits of
multipartite entanglement,

KPLOB = −1/2 log2
(
1 − T2) . (17)

This represents the maximum possible rate for any QKD-
based secret-sharing protocol over the same network, even
including unlimited squeezing or input energy. Remark-
ably, an entanglement-based protocol with finite squeezing
can outperform even this benchmark for a transmission
radius of up to approximately 2.5 km.

The relative performance of the multipartite protocol,
being superior for low environmental degradation but infe-
rior for higher transmission losses, is consistent with pre-
vious work [62] and can be understood as follows. For
BQSS schemes, there is only ever one channel in use for
a single QKD protocol, which is then leveraged into the
full QSS protocol. In the multipartite, the malicious parties
can collect information from all channels simultaneously,
which leads to much worse performance as the loss of the
individual network links grows higher. This is why the
multipartite advantage vanishes when the loss is above a
certain threshold.

We further investigate the parameter regimes where our
multipartite strategy enjoys and advantage over the var-
ious bipartite benchmarks in Fig. 4 by mapping out the
contours of squeezing and transmission radius for which
the key rates coincide. Firstly, these curves show that for
this bottleneck scenario, QSS protocols are only superior
for intracity networks with a radii of 3–6 km. On the other
hand, whilst beating the ultimate PLOB limit requires at
least 12.5 dB of squeezing or more, values of around 6 dB
are sufficient to surpass the comparable CVQKD protocols
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FIG. 4. Asymptotic advantage region for entanglement-based
secret sharing. For the network given in Fig. 2 our entanglement-
based protocol outperforms an optimal, infinite energy bipartite
QKD-based protocol for all values of initial squeezing and trans-
mission radius above the solid black line. The advantage region
compared to a squeezed- (dashed red) and coherent- (dashed
blue) state CVQKD protocol with the same energy or squeezing
resources is also shown.

based on squeezed or coherent states up to radii of 2 and 4
km, respectively.

Crucially, protocols utilizing Gaussian CV entangle-
ment are deterministic and run at the same raw clock
speed as standard CVQKD methods. This means that these
advantages will directly hold in terms of secret bits per
second. This is in contrast with most optical DV GHZ
experiments where the nondeterministic nature of the state
creation process means that generation rates fall substan-
tially as the number of parties grows beyond the bipartite
case. This means that for current DV implementations that
an advantage “per channel use” will not necessarily mani-
fest as an advantage “per time.” Motivated by this potential
for a real advantage with current CV systems we now ana-
lyze an implementation with realistic, present-day devices
in a composable, finite-size setting.

Firstly, we consider imperfect reconciliation effi-
ciency such that the amount of information leakage
becomes �IR = H(XA) − βI(XA : XB) where β ≤ 1 quan-
tifies the fraction ideal Shannon-limited mutual informa-
tion achieved by a given error-correction code. Secondly,
for homodyne protocols the only known composable secu-
rity proofs rely on entropic uncertainty relations that, as
mentioned before, are provably not tight. Thirdly, real
fiber-optic channels are not exactly pure-loss channels, and
instead exhibit a small amount of excess thermal noise.
Finally, as well as accounting for the finite dynamic range
and detector resolution we also model realistic imper-
fections in the state generation including cavity escape
losses, finite detector efficiency and losses coupling into
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FIG. 5. Comparison of (εs + εc)-secure secret-sharing rates as
a function of transmission radius for a symmetric bottleneck net-
work of thermal-loss fiber channels between entanglement-based
protocols (solid lines), the corresponding CVQKD-based proto-
col based on squeezed states (dashed lines) for block sizes of 1012

(blue) and 109 (red). Other parameters are the following: εs =
εc = 10−9; reconciliation efficiency β = 0.98 [72]; escape effi-
ciency ηes = 0.99, detector efficiency ηd = 0.99, inferred pure
squeezing 23.3 dB [70]; fiber coupling efficiency 0.95 [73];
transmission T = 10−0.02d, excess noise ξ = 0.002 [74], detector
resolution δX = 0.1, δP = 0.4 and range MP/X = 25 [73], energy
test parameters, Te = 0.99, α = 28; security proof constants ε1 =
4 × 10−11, ε2 = 4 × 10−20, the probability of a key-generation
round, p , is numerically optimized. The PLOB bound of a
optimal bipartite protocol including transmission and experimen-
tal losses but with otherwise perfect equipment is also plotted
(dashed black).

the transmission fiber. All values are taken from reported
experimental demonstrations and a full description of the
model can be found in Appendix A 4.

To make a fair comparison with a BQSS protocol, we
also compute the composable finite-size CVQKD key rate
for an implementation with the same level of available
squeezing and experimental imperfections. It is important
to emphasize that, even when fairly allocating resources
in this way, it is not immediately obvious that the multi-
partite advantage will survive. A CVQKD protocol can be
made more efficient (it is possible to avoid losing rounds
due to basis mismatch via preshared key) and even with
identical noise levels for squeezers, fiber couplers etc., a
QKD-based implementation uses fewer devices in total
and hence introduces less noise. A detailed explanation of
the comparisons and calculation of the QKD-based secret
fraction is given in Appendix 2. Lastly, although it is
arguably unfair to compare these finite-sized results to the
asymptotic PLOB bound, we nevertheless include it as
an instructive upper bound the best performance possible
for BQSS. As well as infinite communication rounds, the

standard PLOB bound holds in the limit of perfect devices.
To make a fairer comparison and more accurately high-
light the advantage of multipartite entanglement, we make
one modification towards realism in the PLOB bound by
setting the loss equal to the total effective loss in the real-
istic implementation. In other words, in Fig. 5 we assume
that the losses from fiber coupling, squeezing cavity, and
detectors are unavoidable and the PLOB bound is evalu-
ated via Eq. (17) but with a transmission of ηf (Tηdηs)

2

instead of T2. This still corresponds to a protocol with
perfect reconciliation efficiency, detector range and resolu-
tion, an absence of any excess noise and infinite encoding
energy and so can be taken to be an optimistic upper bound
for the performance of a BQSS scheme.

In Fig. 5, we find that a realistic, finite-size, multi-
partite secret-sharing scheme can no longer surpass the
PLOB bound. This is perhaps unsurprising as the PLOB
bound is an inherently asymptotic result. The loss of per-
formance due to finite-size effects in our secret-sharing
protocol in comparison to standard QKD is discussed in
more detail in Appendix C. However, when making the
more reasonable comparison to the equivalent realistic
BQSS protocol, we see that for sufficiently large block
sizes of m = 1012 there is a quantitative advantage for a
transmission radius of up to 2.5 km. A lesser advantage
persists for shorter block sizes, but we see that for m = 109

the advantage is much smaller and the region is only up to
around 1.5 km.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have provided a security proof
for an important multipartite quantum communication
scheme: A (n, k)-threshold scheme for sharing classical
secrets with multipartite entanglement in the composable,
finite-sized setting. This protocol is secure against gen-
eral quantum attacks, including participant attacks. When
applied to the original secret sharing scheme the proof
never certifies a positive key rate but a CV scheme
based on Gaussian graph states shows robust perfor-
mance. Moreover, we showed that for the specific exam-
ple of a (2, 2) scheme implemented over a three-party
bottleneck fiber-optic network, the multipartite scheme
exhibits superior performance for intracity transmission
distances.

In the limit of a large number of communication rounds,
this scheme outperforms not only a bipartite protocol
based upon a CVQKD protocol with the same squeez-
ing resources, but even surpasses implementation-agnostic
and overly optimistic bounds. Indeed, it even outperforms
the PLOB bound, which represents the ultimate limit for
any point-to-point private communication. Perhaps most
importantly, we show that an advantage persists even in
the finite-sized regime for a implementation modeled on
existing, state-of-the-art squeezing experiments. It is worth
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noting that in the advantage regime the key rates are also
always greater than 1 bit per channel use, therefore auto-
matically also outperforming recent advances in so-called
twin-field QKD [75], which can also break the PLOB
bound. A demonstration of this proposal, which should be
possible with present-day technology, would represent a
watershed demonstration of a quantitative advantage for
multipartite entanglement-based quantum communication
using realistic channels.

There are several avenues for future research opened
up by this work. Perhaps the most pressing open question
is a thorough investigation of how this scheme scales to
larger numbers of players over more complicated network
topologies (e.g., a butterfly network). Also, for reasons of
practicality, in this work we focused only on implementa-
tions using offline squeezing but preliminary results sug-
gest that performance could be improved if inline squeez-
ing resources were to become readily available. There is
also an in-principle qualitative advantage to entanglement-
based secret sharing, which is that the identity of the dealer
can be chosen after state distribution, albeit at the price of
reduced performance. A further interesting direction is the
extent to which other quantum coding techniques such as
local complementation [19] can be used to ameliorate this
problem and fully exploit this added flexibility [76].

Whilst our results indicate implementations with near-
term technology will only be feasible over metropoli-
tan distances, in future, sophisticated quantum networks
[44] that include repeater stations [77–82] or ones build-
ing on fault-tolerant protocols [83,84] may render a
multipartite advantage achievable over much longer dis-
tances.

Although this proof fails to give positive key rates
when applied to the original HBB proposal with GHZ
states, variants of this scheme could still demonstrate use-
ful performance via our proof method [85]. On a broader
perspective, it is the hope that this work stimulates further
studies of protocols making use of multipartite entangled
resources that achieve a genuine advantage over point-
to-point protocols, providing further perspective to the
field of quantum communication beyond point-to-point
schemes.

ACKNOWLEDGMENTS

The authors thank M.J. Hoban, J. Memmen, and H.M.
Chrzanowski for helpful discussions and careful proof-
reading. N.W. acknowledges funding from the European
Unions Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie Grant Agreement No.
750905. Both N.W. and J.E. thank the Q.Link.X from
the BMBF in Germany and the DFG priority program
“Compressed Sensing in Information Processing—Phase
2 (CoSIP2)” for support.

APPENDIX A: SECRET-SHARING RATES WITH
CV GRAPH STATES

In this section, we review the formalism of bosonic
Gaussian states as it is needed to describe the protocols
considered here and also detail the noise models used.

1. Preliminaries

Although Gaussian states are supported on infinite-
dimensional Hilbert spaces, they can be completely
described by a finite number of parameters, namely their
first and second moments. Similarly, Gaussian operations
can be compactly captured by symplectic transformations.
For a detailed discussion the reader should consult Refs.
[86,87].

A bosonic system can be described in terms of appropri-
ate creation and annihilation operators. For an N -mode
system it can be convenient to group these into vectors

â := (
â1, . . . , âN

)ᵀ , (A1)

with the creation operators being the Hermitian conju-
gates of these operators. Such systems can equivalently
be represented by the quadrature operators defined by
âk := 1

2

(
x̂k + ip̂k

)
for k = 1, . . . , N , or equivalently

x̂k := âk + â†
k , p̂k := i(â†

k − âk), (A2)

which for an N -mode system we can write as

r̂ := (x̂1, p̂1, . . . , x̂N , p̂N )ᵀ. (A3)

Note that by choosing these particular prefactors linking
the quadrature operators to the annihilation and creation
operators we are setting � = 2, which corresponds to[
x̂, p̂

] = 2i and will ensure that the vacuum variance is
normalized to 1. The symplectic form associated with the
ordering defined by Eq. (A3) is

� =
N⊕

k=1

σ , σ =
(

0 1
−1 0

)
. (A4)

One can also use a different operator ordering convention
and define a vector of quadrature operators,

q̂ :=
(

x̂
p̂

)
, (A5)

where

x̂ = (x̂1, . . . , x̂N )ᵀ, p̂ = (p̂1, . . . , p̂N )ᵀ. (A6)

The symplectic form reflecting the canonical commutation
relations takes in this convention the form

ω = 2
(

0 −IN
IN 0

)
. (A7)
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The two conventions are naturally related by an appropri-
ate permutation operation. For most of this work we use
the convention in Eq. (A3), however, sometimes it can be
more convenient to adopt Eq. (A5) and it will be made
clear when this is done.

An arbitrary N -mode Gaussian state ρ̂ can be com-
pletely specified by a vector of first moments,

r := 〈r̂〉 = Tr(r̂ρ̂), (A8)

the displacements in phase space, and a covariance matrix
(CM) that captures the second moments. This covariance
matrix � has entries

�i,j := 1
2
〈{

�r̂i, �r̂j
}〉

. (A9)

Covariance matrices of multipartite systems, which we
label with subscripts, can be written in a convenient block
form. For example, an arbitrary tripartite system of a state
ρ̂A,B,C can be written as

�A,B,C =
⎛

⎝
�A CA,B CA,C

Cᵀ
A,B �B CB,C

Cᵀ
A,C Cᵀ

B,C �C

⎞

⎠ . (A10)

Tracing out a subsystem simply corresponds to discard-
ing the appropriate part of the total CM and considering
a principle submatrix, so that, for example, the CM of the
reduced state ρ̂A,C = trB(ρ̂A,B,C) is given by

�A,C =
(

�A CA,C
Cᵀ

A,C �C

)
. (A11)

Measuring out a quantum subsystem via a homodyne
detection is given by the appropriate Schur complement
[88–90]. In the above situation if, instead of being traced
out, the mode B is measured in the x̂ quadrature, the
conditional CM is given by

�A,C|xB = �A,C − C (X�BX)MP Cᵀ, (A12)

where MP denotes the Moore-Penrose matrix inverse,

Cᵀ = (
CA,BCB,C

)
,

is the total correlation matrix between B and the joint
A, C system, and X = diag(1, 0) [for a p̂ measurement we
would instead use P = diag(0, 1)]. The conditional first
moment is given by

rA,C|xB = rA,C + C (X�BX)MP (m − rB), (A13)

where m = diag(xB, 0) is the measurement vector where
the nonzero entries are Bob’s measurement outcomes (in

this case in the x̂ quadrature). The analogous result holds
for conditioning on a p̂ measurement.

An arbitrary Gaussian unitary can be compactly rep-
resented by matrix from the real symplectic group S ∈
Sp(2N , R) so a real matrix satisfying

S�Sᵀ = �, (A14)

and a vector d ∈ R
2N that together define a correspond-

ing affine transformations of the first moments and a
symplectic transformation of the CM given by

r �→ Sr + d, � �→ S�ST. (A15)

The specific Gaussian operations we require for our cal-
culations are single-mode squeezing operations in the x̂
quadrature with squeezing parameter r > 0

S(r) =
(

e−r 0
0 er

)
, (A16)

and a beam splitter with transmissivity T ∈ [0, 1]

BS(T) =
( √

TI2
√

1 − TI2

−√
1 − TI2

√
TI2

)
, (A17)

where I2 is the 2 × 2 identity matrix. Finally, we require a
two-mode entangling gate sometimes called a CPHASE gate
or a CZ gate by analogy with qubit systems. A CZ gate gate
of strength g is described by the symplectic matrix

CZ(g) =

⎛

⎜
⎝

1 0 0 0
0 1 g 0
0 0 1 0
g 0 0 1

⎞

⎟
⎠ . (A18)

For one- and two-mode operations acting on larger mul-
timode systems, we use subscripts to denote the target
modes, and the necessary padding with identity matri-
ces defined implicitly as appropriate, e.g., a single-mode
squeezing on mode A of a joint A, B system would give
rise to

SA(r) =
(

SA(r) 0
0 I2

)
=

⎛

⎜
⎝

e−r 0 0 0
0 er 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎠ , (A19)

where 0 is a 2 × 2 matrix of zeroes. Similarly, a beam-
splitter operation between modes A and B of a three-mode
system would be written as

BSA,B(T) =
(

BS(T) 0
0 I2

)
. (A20)
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2. CV graph states

Equipped with this framework, we can state the
definition of CV graph states [36–38] as continuous
analogs of graph states [18,91] as instances of stabilizer
states. At the heart of the concept of a CV graph state is an
adjacency matrix

A = Aᵀ, (A21)

of a weighted graph having zero entries for pairs of modes
that are not connected and a positive value for pairs of
modes that are connected. By convention, each mode is
initialized in a p-squeezed vacuum state and the adjacency
matrix of a weighted graph captures the interaction pat-
tern. The role of the adjacency matrix in state generation is
most apparent if we switch to the ordering convention of
Eq. (A5). The symplectic transformation implementing an
imperfect CV graph state in this convention is

G̃ =
(

1N 1N
A 1N

)(
e−r1N 0

0 er1N

)
, (A22)

where r parameterizes the initial squeezing and the tilde is
to emphasize that this matrix is written in a different order-
ing convention. It takes a moment of thought that these
matrices satisfy S ∈ Sp(2N , R). These are imperfect CV
graph states [38,39], and become infinite energy improper
quantum states in the limit r → ∞. Such imperfect CV
graph states are at the heart of our formalism. Another
useful way to conceptualize CV graph states are via their
nullifiers, which are a collection of N multimode observ-
ables defined uniquely for a given adjacency matrix by the
equations,

n̂ = p̂ − Ax̂, (A23)

where we are again using the definitions in Eq. (A5).
One way to understand the correlation structure of these
graph states is to think that the original squeezing is now
distributed in a nonlocal observable made up of quadra-
tures from the various nodes of the graph state. The per-
fect graph state arising from infinite squeezing, therefore,
results in maximum correlation and it is straightforward to
show that [37,38]

lim
r→∞ n = 0. (A24)

This will become useful later when choosing the optimal
secret-sharing strategy.

The canonical method to realize a given graph state
[Fig. 6(ii)] is to implement a CZ gate for each edge in
the graph. The weight of each edge corresponds to the
strength, g, of the entangling gate as per Eq. (A18).
Note that a perfect graph state emerges by taking the
infinite squeezing limit in the initial squeezed vacuum

states as distinct from the taking the limit of infinite
weight of the entangling gates. Taking the limit g → ∞
in the CZ gates would not correspond to a perfect graph
state. The tripartite line graph we use can therefore be
written

GL = CZB,C(g) · CZA,B(g) · SC(−r) · SB(−r)SA(−r).
(A25)

Finally, a more practical construction is to prepare the
graph state via offline squeezing [36]. This is done via
the Bloch-Messiah decomposition, which allows an arbi-
trary Gaussian unitary to be decomposed into a passive,
linear-optical interferometer followed by a single-mode
squeezing operations and a second passive interferom-
eter [92,93]. When starting from vacuum state, as we
are here, the first interferometer can be ignored and an
arbitrary graph state can be prepared as per Fig. 6(iii)
by a layer of single-mode squeezers and a final passive
unitary. The squeezers in the Bloch-Messiah composi-
tion will necessarily be stronger than the initial squeez-
ers in the canonical construction since they must also
incorporate the squeezing that would go into generat-
ing the CZ operations. Following Ref. [93], we obtain
the following decomposition for the graph state given
by (A25):

GBloch = L · SA(−rA) · SB(−rB) · SA(−rB), (A26)

where rA = r,

rB = rC = log
[

1
2

(√(
2g2 + 1

)
e2r + e−2r − 2

+
√(

2g2 + 1
)

e2r + e−2r + 2
)]

, (A27)

and L is the symplectic transform of the passive inter-
ferometer. This can be obtained by essentially carrying
out a series of singular value and eigenvalue decompo-
sitions of the symplectic transform describing the canon-
ical generation of the target graph state. These can be
readily obtained via a mathematical software package
and it can also be checked that these procedures satisfy
GBloch · Gᵀ

Bloch = GL · Gᵀ
L as required. To further simplify

experimental implementation this linear optical unitary
can further be simplified into a network of beam split-
ters and phase shifters via the Reck [94] or Clements [95]
decomposition.

3. Bottleneck networks

We now turn to bottleneck quantum-communication
networks. Indeed, using the tools in the previous section
we can now fully describe a secret-sharing protocol using
Gaussian graph states over Gaussian channels, which are
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CZ

CZ

S

S

S

L

(i)

(ii)

(iii) S ¢

S ¢

S ¢

FIG. 6. (i) Graphical representation of a tripartite line graph.
(ii) Canonical generation method, where each graph vertex is ini-
tialized in a squeezed vacuum state and each edge is created via a
CZ gate. (iii) Practical generation via offline squeezing. Here the
squeezers, S′, will generally be stronger than those appearing in
the canonical construction in (ii).

an excellent model for fiber-optic transmission. For the
purposes of the discussion in this section it is sufficient
to consider the case where the sources and detectors are
ideal and the only decoherence comes from the lossy chan-
nels themselves. This means the total system will be made
up of six modes all initialized in the vacuum state. Three
modes will be for the tripartite graph state and three addi-
tional modes VA, VB, VC that will model the corresponding
loss channels.

When communicating over a bottleneck network the
first noteworthy point is that there are two, inequiva-
lent, network coding strategies that could be employed
(Fig. 7) to distribute a line graph. The first of these, which
we previously denoted the player-in strategy, is where
one player first makes a two-mode graph state, which is
sent to the hub. There it is entangled with a third mode
and then all modes are distributed to the corresponding
players. The symplectic matrix representing the distribu-
tion of the tripartite line graph over a lossy, bottleneck
network is

NL = BSC,VC(TC) · BSB,VB(TA) · CZB,C(g)BSA,VA(TA)

· CZA,B(g) · SC(−r)SB(−r) · SA(−r). (A28)

The second strategy hub-out strategy involves the creation
of the line graph directly at the hub and then distribu-
tion. The symplectic matrix for the line graph in a hub-out
strategy is

NLH = BSC,VC(TC) · BSB,VB(TA) · BSA,VA(TA)CZB,C(g)

· CZA,B(g) · SC(−r) · SB(−r)SA(−r). (A29)

A

C B

H

C

A

BC

Player transmission

H

Hub transmission

(i)

(ii)

A

H

TA TA

TB TC

TB TC

C B

A

H

TA

TB TC

B

FIG. 7. Different strategies for distributing graph states
through a bottleneck network. The player-in strategy (left) is a
two-step process: (i) Alice makes a two-mode graph state and
transmits one mode to the hub; (ii) the hub entangles this with a
third mode, creating a tripartite graph state, and sends one mode
to Bob and the other to Charlie. In the hub-out strategy (right),
the hub creates the tripartite graph state directly and transmits
one mode to each player in a single step. Unlike the player-in
strategy this method can distribute a triangle graph (top) as well
as a line (bottom).

Since loss channels and the entangling gates do not com-
mute, these strategies will result in two different states, as
can be readily verified by comparing NL and NLH . Prac-
tically speaking, there is a significant difference between
the two strategies as only in the hub-out case are all three
modes in the one location such that we can make use of the
simple, offline squeezing preparation method of Fig. 6(iii).
For this reason, we consider only this strategy for the
remainder of the work, but it would be interesting to see
what, if any, advantages emerge from the player-in strategy
enabled by inline squeezing.

When distributing a line graph, there will be two further
possibilities, namely whether the player who is to be the

TABLE I. Parameters for the realistic experimental model.

Symbol Value Description

ηes 0.99 [70] Escape efficiency
ηf 0.95 [73] Fiber coupling efficiency
ηd 0.99 [70] Detector efficiency
r 2.68 (23.3 dB) [70] Inferred squeezing
T 10−0.02d(km) Fiber-optic transmission
ξ 0.002 [74] Excess noise
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FIG. 8. Schematic of realistic experimental implementation.
Various imperfections are modeled as loss channels with the
ground symbol representing lost modes that will be attributed to
the dishonest parties.

dealer is sent one of the edge nodes of the line or the mid-
dle node. Both these possibilities were considered in Fig. 3
where we see that the optimal choice is for the dealer to be
the middle node. Note that in Eq. (A29) we have uniquely
defined Bob as being the recipient of the central node and
hence the optimal dealer. It is also worth noting that with
the hub-out strategy it is equally possible to prepare a trian-
gle graph as it is a line graph, however, our investigations
show that this is suboptimal with respect to the properly
chosen line graph.

4. Modeling an experimental implementation

Whereas our initial, idealized calculations assumed
perfect state generation, measurement, and transmission
through pure lossy channels, in this section we model a
more realistic implementation based on past experiments
in the literature. A summary of the relevant parameters and
their values is given in Table I and a schematic of the setup
is sketched in Fig. 8.

Turning first to the state generation process, we now
consider a finite escape efficiency for the squeezing cavi-
ties and a finite coupling efficiency into the optical fiber,
which are well modeled by beam splitters of transmis-
sion, ηes and ηf , respectively, mixing the incoming mode
with vacuum modes. For simplicity we are taking each
squeezer to be identical, which means the symmetric loss
for the escape efficiency, which occurs immediately after

squeezing can be commuted through the interferometer in
the Bloch-Messiah decomposition and combined with the
coupling efficiency into a single beam splitter of trans-
mission ηc = ηesηf . For our calculations we need to infer
the initial pure squeezing in Ref. [70]. There a combined
total loss of ηtot = 0.975 is reported along with a measured
squeezing of 15.3 dB or equivalently a measured squeezed
quadrature variance of Vs = 10−15.3/10. We can obtain
quadrature variance before the loss by inverting Vs =
ηtotVr + 1 − ηtot and finally we find the inferred squeezing
parameter of r = − log(Vr)/2 = 2.68 or equivalently 23.3
dB.

Secondly, fiber-optic transmission cannot be completely
captured by a pure-loss channel. In reality, transmission
will induce a small but nonzero excess thermal (and thus
Gaussian) noise. This thermal-loss channel can be well
modeled as a beam splitter of transmission T that, instead
of mixing the incoming mode with vacuum, combines it
with a Gaussian thermal state of variance 1 + ξ . Thirdly,
the homodyne detectors will have a finite efficiency, which
can also be modeled by a lossy beam splitter of transmis-
sion ηd. Finally, for the purposes of the security proof it
is necessary to tap off a small amount of the dealers mode
for an energy test. This is done via a another beam splitter
of transmission Te that reflected a small amount of light to
a heterodyne detector (simultaneous measurement of both
quadratures) whilst the transmitted mode is homodyned.

In total this will be a 13-mode system, four of which
belong to the players (A, B, and C for the protocol and Be
for Bob’s energy test) and the rest, which will be attributed
to the malicious parties. All are initialized as vacuum states
except for the three modes modeling the thermal-loss chan-
nel, which are initialized in a thermal state with variance
1 + ξ . We label these thermal modes EA, EB, EC as they are
assumed to be purified by the eavesdropper. The six vac-
uum modes that are modeling the various losses are labeled
V1, . . . , V6. Here we take all detector and coupling efficien-
cies to be equal. In this notation, the entire realistic model
is given by the transform,

Nexp = BSC,V6(ηd) · BSB,V5(ηd) · BSA,V4(ηd) · BSB,Be(Te) · BSA,EC(TC) · BSA,EB(TB)

× BSA,EA(TA) · BSC,V3(ηc) · BSB,V2(ηc) · BSA,V1(ηc) · CZA,B(g)

× CZB,C(g) · SC(−r) · SB(−r) · SA(−r), (A30)

which is precisely reflecting the circuit shown in Fig. 8. The final covariance matrix is given by

�A,B,C = Nexp · Nᵀ
exp =

⎛

⎝
�A CA,B CA,C

Cᵀ
A,B �B CB,C

Cᵀ
A,C Cᵀ

B,C �C

⎞

⎠ , (A31)
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with

�A =
(

ηd
[
e2rTAηc − TA (ξA + ηc) + ξA

]+ 1 0
0 TAηd

[
ηc
(
g2e2r + e−2r − 1

)− ξA
]+ ξAηd + 1

)
,

�B =
(

ηdTe
[
e2rTBηc − TB (ξB + ηc) + ξB

]+ 1 0
0 ηdTe

[
TBηc

(
2g2e2r + e−2r − 1

)+ ξB − ξBTB
]+ 1

)
,

�C =
(

ηd
[
e2rηcTC − TC (ηc + ξC) + ξC

]+ 1 0
0 TCηd

[
ηc
(
g2e2r + e−2r − 1

)− ξC
]+ ξCηd + 1

)
,

CA,B =
(

0 ge2rηcηd
√

Te
√

TATB
ge2rηcηd

√
Te

√
TATB 0

)
,

CA,C =
(

0 0
0 g2e2rηcηd

√
TATC

)
,

CB,C =
(

0 ge2rηcηd
√

Te
√

TBTC
ge2rηcηd

√
Te

√
TBTC 0

)
.

(A32)

APPENDIX B: SECURITY ANALYSIS FOR CV
SECRET SHARING

We now present the details of how the secret frac-
tion in Eq. (10) is derived. Essentially, we generalize the
proof of Ref. [35] to the composable, finite-size setting
using CVQKD results [52,96], which make use of entropic
uncertainty relations for the conditional quantum smooth
min and max entropies [53,97], which are defined as fol-
lows. Consider the classical-quantum state of the kind
describing the raw measurement registry of the dealer,
Alice, and a malicious adversary Eve,

ρXAE =
∑

xA

pxA |xA〉 〈xA| ⊗ ρ
xA
E . (B1)

This is the quantum state that is transformed via hashing
into the final output described by Eq. (4). For such a state
the conditional quantum min entropy is defined as

Hmin(XA|E)ρXAE = − log

(

sup
{ExA }

∑

xA

pxA trExAρ
xA
E

)

,

where the supremum is taken over all of Eve’s possi-
ble measurement strategies, i.e., her possible POVM’s
described by operators {ExA}. The corresponding condi-
tional max entropy is defined as

Hmax(XA|E)ρXAE = 2 log

(

sup
σE

∑

xA

F(pXAρ
XA
E , σE)

)

.

The smooth versions of these quantities are then given by

H ε
min(XA|E)ρXAE = sup

ρ̃XAE

Hmin(XA|E)ρ̃XAE ,

H ε
max(XA|E)ρXAE = inf

ρ̃XAE
Hmax(XA|E)ρ̃XAE ,

(B2)

where the supremum and infimum are taken over quantum
states that are ε close in the purified distance

P(ρ, σ)2 = 1 − F2(ρ, σ), (B3)

where F(ρ, σ) denotes the standard fidelity between ρ and
σ . We can now state a crucial result in quantum cryp-
tography, the leftover hashing lemma with quantum side
information [51,52,96,98].

Lemma 1 (Leftover Hashing lemma). Let ρXAE be a
quantum state of the form Eq. (B1) where XA is defined
over a a discrete-valued and finite alphabet, E is a finite or
infinite dimensional system, and R is a register containing
the classical information learnt by Eve during information
reconciliation. If Alice applies a hashing function, drawn
at random from a family of two-universal hash functions
that maps XA to SA and generates a string of length l, then
for any ε > 0

D
(
ρSAE , τSA ⊗ σE

) ≤
√

2l−Hε
min(XA|E,R)−2 + 2ε, (B4)

where H ε
min(XA|E, R) is the conditional smooth min

entropy of the raw measurement data given Eve’s quantum
system and the information reconciliation leakage.

Equipped with these tools, we can undertake the security
analysis. First, we formalize the arguments behind Eqs. (7)
and (8).

040339-16



SHARING CLASSICAL SECRETS. . . PRX QUANTUM 2, 040339 (2021)

Theorem 1 (Security of (n, k)-threshold secret sharing).
For an (n, k)-threshold secret-sharing protocol as defined
in Protocol 1 with trusted and untrusted subsets Ti ∈ T
and Uj ∈ U , respectively, let �i

EC be the amount of error
reconciliation information that would be necessary for the
trusted subset Ti and set �EC = maxi �

i
EC. A string of length

� can be extracted that is (εs + εc) secure according to
Definition 1 provided that

l = min
j

H ε
min(XA|E, Uj ) − �i

EC − log2
1

εcε
2
1

+ 2. (B5)

Proof. The correctness follows straightforwardly from the
properties of two-universal hashing as shown in Refs.
[48,49]. In step 6 of Protocol 1, the dealer computes a
hash of length − log2 εc chosen uniformly at random from
a family of two-universal hashing functions and transmits
the output and the chosen hash function to all players.
When any trusted subset Ti go to reconstruct the secret they
first apply the error-correction information, �EC, to correct
their joint estimate of Alice’s string and then use this to
evaluate the transmitted hash function. If this is identical
to Alice’s transmitted hash they proceed, otherwise they
abort. The necessary correctness is now guaranteed since,
by definition, the probability that the two hashes coincide
if there was an error (i.e., if the reconstructed string dif-
fers from Alice’s string) is at most 2
log2 εc� ≤ εc. In order
to actually compute the achievable performance we ulti-
mately need to quantify how large �i

EC must be in order
for a given subset to successfully correct their string and
pass the correctness check with high probability and we
explain this in the next section. However, for the purposes
of the security proof, however, �i

EC is chosen, passing the
hashing check ensured the εc correctness of the conditional
output. Moreover, taking the worst over all Ti ensures the
correctness holds for all trusted subsets, thereby satisfying
the correctness condition in Definition 1. In the worst case
where Eve learns one bit of the key for every bit announced
during error reconciliation we have that

min
i

H ε
min(XA|E, Uj , Ri) ≥ H ε

min(XA|E, Uj )

− max
i

�i
EC − log2

1
εc

. (B6)

The secrecy is a straightforward consequence of the left-
over hashing lemma. Considering Eq. (B4) and redefin-
ing the eavesdropper system to include the j th untrusted
subset, Uj , we can see that by choosing

l = H ε
min(XA|E, Uj , R) + 2 − 2 log

ppass

ε1
, (B7)

for some ε1 > 0 then the right-hand side becomes
ε1/ppass + 2ε. Choosing ε = (εs − ε1)/(2ppass) and substi-
tuting in Eq. (B4) gives

D
(
ρSAEUj , τSA ⊗ σEUj

) ≤ εs

ppass
. (B8)

Putting this together and using the fact that log2 ppass < 0
means that for the unauthorized subset Uj a hashing to a
key of length

l = H ε
min(XA|E, Uj ) − max

i
�i

EC − log2
1

εcε
2
1

+ 2, (B9)

will ensure that

ppassD
(
ρSAEUj , τSA ⊗ σEUj

) ≤ εs. (B10)

If the length is chosen by taking the minimum of
H ε

min(XA|E, Uj ) over all untrusted subsets then the secrecy
condition in Definition 1 is immediately satisfied, which
completes the proof. �

All that remains is to find a way to bound the min
entropy for each Uj , whilst avoiding any participant
attacks. The key insight is that, for any fixed Uj , the crypto-
graphic situation is identical to a QKD protocol where the
roles of Eve and Bob are played by Uj the corresponding
complementary set Cj . Security for a realistic CV proto-
col can then be established via the results of Furrer [96].
Protection against participant attacks is now guaranteed
since the parameter-estimation steps exclude the untrusted
subset so there is no opportunity for them to cheat by
manipulating the observed statistics as suggested in Ref.
[7]. For completeness we state the necessary theorem in
full and sketch the proof, highlighting the point at which
the standard participant attacks would occur in a less care-
ful analysis. For a full proof, we refer the reader to Ref.
[96].

Theorem 2 (Adapted from Ref. [96]). For an (n, k, m, t, p)
secret-sharing protocol as defined in Protocol 1, car-
ried out with coarse-grained quadrature measurements of
resolution δX,P and maximum value M, the conditional
smooth min entropy H ε

min(XA|E, Uj ) of the subset Uj in
collaboration with Eve, conditioned on passing a corre-
lation threshold dj

0 with the complementary set Cj and an
additional (Te, α) is lower bounded by

m
{

log2

(
1

c(δX, δP)

)
− max

j
log2

[
γ
(

dj
0 + μ

)]}
,

(B11)

where

γ (d) =
(

d +
√

1 + d2
)( d√

1 + d2 − 1

)d

, (B12)
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and

μ =
√

2 log2 ε−1
μ

Nσ∗
t
√

m
+ 4(M/δ) log2 ε−1

μ

3
N
mt

, (B13)

with

σ 2
∗ = tj

N

(
VPE

d − tj
N

d2
0

)
+ m

N

(
VPE

A + VPE
B + 2

v

δ2
P

)
,

(B14)

for the smallest v for which

εμ =
(
εs − ε1 − 2

√
2m�(M , Te, α)

)2

− 2 exp

(

−2(v/M 2)2 mt2j
(N )(tj + 1)

)

, (B15)

is positive and εs − ε1 − 2
√

2m�(M , Te, α) > 0 also holds
(if either of these positivity conditions cannot be satisfied,
the secret fraction is actually zero). Here N = m + tj , VPE

PA

and VPE
PB

are the observed variances of the P measurements
used for parameter estimation, VPE

d is the variance of their
absolute difference |PA − PB| and

�(M , Te, α) :=
√

1 + λ + √
1 + λ−1

2
exp

×
(

− (ζM − α)2

T(1 + λ)/2

)
, (B16)

with ζ = √
(1 − T)/(2T) and λ = [(2T − 1)/T]2.

Proof sketch: For a single fixed Uj and corresponding
Cj , Protocol 1 becomes identical to the CVQKD protocol
of Ref. [96] if we identify the systems Cj := B as sin-
gle entity, Bob, and Uj E := E as a single adversary Eve.
We can apply the CVQKD proof, which we now sketch.
The basic idea is to use an entropic uncertainty relation
(EUR) for the smooth min and max entropies. For realistic
measurements with a finite range, the corresponding EUR
becomes trivial. However, for a sufficiently tight upper
bound on the energy of the incoming state, the resultant
smooth min and max entropies can be rigorously related
to those of an ideal, infinite range, measurement for which
there is a useful EUR. Such an upper bound is precisely
what is achieved by the additional energy test carried out
via heterodyne detection. Statistical deviation bounds can
then be applied to turn the observed correlations in the cer-
tification basis into a guarantee for the smooth min entropy
of the key-generation measurements.

Step 1. Entropic uncertainty relation. A realistic quadra-
ture measurement with a resolution δ and finite detec-
tion window [−M , M ] can be represented as a series of

projections in the corresponding basis onto intervals

I1 = (−∞, −M + δ],

Ik = (−M + (k − 1)δ, −M + kδ],

I2M/δ = (M − δ, ∞),

(B17)

with k = 2, . . . , 2M/δ − 1 and where the finite range is
captured by the semi-infinite end bins. The measurement
XA = {EXA

i } is given by measurement operators

EXA
i =

∫

Ii

qA |qA〉 〈qA| dqA, qA ∈ {xA, pA}, (B18)

where the intervals are defined according to Eq. (B17)
with resolutions δX. The measurements PB = {EPB

i } etc. are
defined analogously. We allow δP and δX to differ but for
simplicity assume that each quadrature resolution is sym-
metric for all parties and we take the range M to be the
same for all measurements.

By contrast, infinite-range measurements (X̃, P̃) with the
same resolution would be described by the projections onto
the intervals

Ĩk = (M + (k − 1)δ, −M + kδ], k ∈ Z. (B19)

These infinite range measurements can be shown to give
rise to the following EUR for a joint state vector |�ABE〉,

H ε
min

(
X̃

key
A |E

)
� mq(X̃, P̃) − H ε

max

(
P̃

key
A |B

)
, (B20)

where we make the number of measurements m—and the
fact that we are specifically interested in the X measure-
ments that are used to generate a secret key—explicit. For
this setup, it has been shown that [53,98]

q(X̃, P̃) = − log2

[
δXδP

2π
· S(1)

0

(
1,

δXδP

4

)2
]

, (B21)

with S(1)
n (·, u) the radial prolate spheroidal wave function

of the first kind. Since q(X̃A, P̃A) is positive, for sufficiently
good P̃ correlations between Alice and Bob this will give
a useful bound on the conditional min entropy. Unfortu-
nately, for finite measurements the semi-infinite end bins
have significant overlap and we find that q(XA, PA) ≈ 0
and the EUR becomes trivial. Intuitively, we would expect
that for states that have a support lying almost entirely
inside the range [−M , M ] in both quadratures that the
difference between using a finite or infinite range detec-
tor should be operationally negligible for all quantities,
including the smoothed entropies. This intuition can be
made rigorous if we have a bound on the purification
distance, which appears in the definitions in Eq. (B2),
between the postmeasurement states, that would arise from
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finite or infinite range measurements. Concretely, given a
promise that

P
(
ρXABE , ρX̃ABE

)
≤ ε̃,

P
(
ρPABE , ρP̃ABE

)
≤ ε̃,

(B22)

it can be shown that

H ε
min (XA|E) ≥ H ε−ε̃

min

(
X̃ A|E

)
,

H ε
max

(
P̃A|E

)
≤ H ε−ε̃

max (PA|E) .
(B23)

In combination with Eq. (B20) this yields

H ε
min

(
Xkey

A |E
)

� mq(X̃, P̃) − H ε−2ε̃
max

(
Pkey

A |B
)

. (B24)

This is now the kind of relationship we intend to find,
where the entropies of the realistic measurements (X, P)
are related to one another and the positive, and hence use-
ful, entropic constant of the infinite-range measurements
(X̃, P̃). Next we require a way to bound ε̃.

Step 2. Energy test. Using a beam splitter with known
transmission Te to mix the incoming state with a trusted
vacuum mode it is possible to tap off a small amount of the
incoming light for analysis. Our goal is to bound the puri-
fied distance between states measured with either finite, or
infinite range measurements as per Eq. (B23). Unsurpris-
ingly, it turns out this quantity can be bounded as long as
we have a restriction on the probability that a detection
outside the range [−M , M ] would ever occur during the
protocol. Concretely, it can be shown that for a protocol
with a total of N rounds that

P
(
ρXABE , ρX̃ABE

)2
� 1 − Pr [∧i {|qi| � M } | ρAmBmE]2,

where {|qi| � M } denotes the event that the absolute value
of a continuous x̂-quadrature measurement of Alice’s ith
mode is smaller than M and a corresponding result for
P
(
ρPABE , ρP̃ABE

)
. This probability can be estimated from

the tapped off beam. Since we would like to bound the
probability for both quadratures it is necessary to per-
form a heterodyne detection—mixing the tapped off light
with a further vacuum mode on a balanced beam splitter
and then measuring the x quadrature on one output and
p̂ on the other. We say that the energy test is passed if,
for all rounds, neither quadrature value exceeded some
threshold α. Defining ppass as the probability of passing
the test it can be shown that, conditioned on passing, both

P
(
ρXAE , ρX̃AE

)
and P

(
ρPBE , ρX̃BE

)
are less than ε̃ with

ε̃2 = 2m�(M , Te, α)

ppass
, (B25)

where the function � : R+ × R+ × R+ → R+ is given
by Eq. (B16).

Step 3. Statistical bounds on the max entropy. As
mentioned before, EUR describes a counterfactual situa-
tion. For example, in our case, Eq. (B24) lower bounds
H ε

min(X
key
A |E), Eve’s smooth min entropy regarding Alice’s

m key-generation measurements, and H ε−2ε̃
max (Pkey

A |B), the
max entropy of Bob regarding Alice’s measurements if she
had instead chosen to measure with P for those rounds.
Strictly speaking, we have no direct access to this latter
quantity since, by definition, Alice measures with X rather
than P for those rounds. What we have instead are the
strings PPE

A and PPE
B arising from the t parameter estimation

rounds where Alice and Bob both measured in P. How-
ever, provided these rounds were chosen randomly, then
these observed correlations can be used to give a rigorous,
probabilistic bound on what the correlations between Pkey

A

and Pkey
B would have been. These can in turn bound Bob’s

max entropy in Eq. (B24).
This is the precise point at which the potential for par-

ticipant attacks formally enters in the security analysis.
The situation we find ourselves in is the so-called sam-
pling without replacement scenario and there is an entire
machinery of large deviation bounds that use the observed
statistics of a randomly chosen sample to probabilistically
bound the behavior of the remaining population. How-
ever, all of these results are only valid in the case that
the tj parameter estimation rounds were truly chosen at
random and constitute a fair sample. In a QKD protocol,
or equivalently for a known, fixed untrusted subset of a
secret-sharing protocol then this condition is automatically
satisfied since the probability of a round being used for
parameter estimation is determined solely by Alice (equiv-
alently the dealer) and Bob (equivalently the complemen-
tary subset) who are trusted by definition. As explained
earlier, Theorem B5 shows that by minimizing the key rate
over all such tests, security of the overall threshold scheme
is guaranteed. This is in contrast to the original HBB
scheme [4] where every check round is dependent on the
basis choice of all players, thereby always including par-
ties who by definition cannot be trusted. Deviation bounds
are therefore not valid and security cannot be established.
Indeed, it is precisely this problem of malicious partici-
pants biasing the parameter-estimation statistics that has
been exploited in the original works demonstrating attacks
that can compromise or completely break the security of
the HBB scheme [7,8].

For the purposes of this theorem, the selection of rounds
is determined solely by parties that can be assumed honest
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and so fair sampling is assured and we can proceed. The
first tool is the result that for any ε, provided

Pr[d(Pkey
A , Pkey

B ) > dkey] ≤ ε2, (B26)

it can be shown that [52]

H ε
max(P

key
A |B) < m log2[γ (dkey)], (B27)

with γ : R → R being given by Eq. (B12). Obtaining a
bound such as Eq. (B26) can be achieved using large devi-
ation bounds. Recall that the parameter-estimation test is
only passed if the strings generated in the tj parameter-
estimation rounds satisfy

d(PPE
A , PPE

B ) ≤ d0. (B28)

Denoting (Ptot
A , Ptot

B ) as the total results from all N = m + tj
rounds it must be the case that

Ndtot = mdkey + tj d0, (B29)

where dtot = d
(
Ptot

A , Ptot
B

)
is the total distance over all

rounds.
Hoeffding’s application of Bernstein’s inequality to the

replacement without sampling case can then be used with
Eq. (B29) to show that

Pr
[
dkey � d0 + μ|σ ] � εμ, (B30)

with

εμ = exp
(

− nμ2(tj /N )2

2σ 2 + 2μ(tj /N )(M/δP)/3

)
, (B31)

where we have conditioned on knowing the average vari-
ance of the total population, σ 2 = (1/N )

∑N
i=1 |Ptot

A −
Ptot

B |2 − d2
tot. However, σ itself also needs to be bounded

from the observed statistics. We show this calculation in
some more detail as we both slightly improve on, and
correct some small errors in Ref. [96]. We have that

σ 2 = 1
N

N∑

i=1

|Ptot
A − Ptot

B |2 − d2
tot

= 1
N

⎛

⎝
tj∑

i=1

|PPE
A − PPE

B |2 +
m∑

i=1

|Pkey
A − Pkey

B |2
⎞

⎠

−
(

tj
N

d0

)2

−
(m

N
dkey

)2
− 2mt

N 2 d0dkey, (B32)

where we have split up the sum and have used Eq. (B29).
We can drop the last two negative terms involving dkey and

recalling that

VPE
d = 1

tj

tj∑

i=1

|PPE
A − PPE

B |2,

VPE
A = 1

tj

tj∑

i=1

|PPE
A |2, VPE

B = 1
tj

tj∑

i=1

|PPE
B |2,

Vkey
A = 1

m

m∑

i=1

|Pkey
A |2, Vkey

B = 1
m

m∑

i=1

|Pkey
B |2,

we have that

σ 2 ≤ tj
N

VPE
d + 1

N

m∑

i=1

|Pkey
A |2 + 1

N

m∑

i=1

|Pkey
B |2 −

(
tj
N

d0

)2

= tj
N

(
VPE

d − tj
N

d2
0

)
+ m

N

(
Vkey

A + Vkey
B

)
, (B33)

where in the first inequality we also have used that |x −
y|2 ≤ |x|2 + |y|2. Although Vkey

A and Vkey
B are not directly

observed they can be constrained via Serfling’s bound [54],
which can be used to show that

Pr
[

Vkey
A � VPE

A + v

δ2
P

]
� εv , (B34)

where

εv = exp

( −2v2mt2j
M 4(m + t)(tj + 1)

)

, (B35)

with the analogous result holding for Vkey
A . This means that

σ is upper bounded by σ ∗ as given in Eq. (B14) except
with probability 2εv . In total, we have that

Pr
[
dkey � d0 + μ

]
� εμ + 2εv . (B36)

Applying Eqs. (B27) to (B24), we see that to bound the
max entropy and hence the final key length we require,

(εμ + 2εv)
2 = εs − ε1

2ppass
− 2ε̃, (B37)

where .̃ is given by Eq. (B25). This is precisely equivalent
to Eq. (B15), though we must always ensure that the rhs
is positive and εμ are positive. Solving Eq. (B31) for the
necessary μ gives Eq. (B13), which completes the proof.

APPENDIX C: EVALUATING THE SECRET
FRACTION

In this section, we explain how to evaluate Eqs. (13)
and (10), as well as the relevant QKD comparisons shown
in Figs. 3–5. We also present some additional key-rate
results and also the values of the parameters that have been
optimized over to produce the figures.
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1. Idealized, asymptotic results

In the main text, we briefly explained how the standard
asymptotic key rate arises from the composably finite-
sized secret fraction in the limit of infinitely long key
exchange and perfect equipment. To recapitulate, starting
from Eq. (8) we can write the secret fraction for a fixed Ti
and Uj as

l
L

= 1
L

(
H ε

min(X
m
A |E, Uj ) − �i

EC − log2
1

εcε
2
1

+ 2
)

.

In the asymptotic limit, is has been shown that collec-
tive eavesdropping attacks are optimal [58], hence we can
assume that the state is of the form ρ⊗m

ABE . Then, the asymp-
totic equipartition theorem for infinite dimensions states
that,

lim
m→∞

1
m

H ε
min(X

m
A |E, Uj ) = S(XA|E, Uj ), (C1)

where S(XA|E, Uj ) is the conditional von Neumann
entropy of Alice’s measurement XA given EUj defined
in Eq. (12). Shannon’s noisy coding theorem says that
asymptotically, since we are free to assume a IID structure
in the worst case, with ideal error reconciliation we have
that

�i
EC = mH(XA|XTi). (C2)

A critical point is the value of m, t, and tj . If the probability
for measuring in the key quadrature is p then, asymp-
totically, for an (n, n)-threshold protocol we would have
that

m = pn+1L, tj = (1 − p)2L. (C3)

This is because for a valid key-generation round we need
all three parties to measure in the key basis, and to be
a useful parameter-estimation round both the dealer and
all players in one of the complementary subsets, Cj , must
have chosen the check basis. For an (n, n) scheme each Uj
has n − 1 players so each Cj consists of just one player.
This means that the total number of valid parameter-
estimation rounds in the probability that the dealer and at
least one player both measure in the check basis yielding

t = (1 − p)(1 − pn−1)L. (C4)

Thus a total of N = m + t rounds out of the total L rounds
are used for either key generation or parameter estima-
tion with the remaining rounds discarded. However, in the
asymptotic limit the protocol becomes arbitrarily efficient.
In the limit of infinite data then we can still acquire perfect
parameter-estimation statistics by sacrificing an arbitrar-
ily small proportion of data since for any p in the limit

L → ∞ both m and t also tend to infinity. Thus we can
take the limit p → 1, which in turn means m → L. Taken
together, this gives

lim
L→∞

l
L

= S(XA|XE , Uj ) − H(XA|XTi),

= I(XA : XTi) − χ(XA : E, Uj ), (C5)

where in the second line we use the mutual information

I(XA : Y) := H(X ) − H(X |Y), (C6)

and the Holevo quantity

χ(XA : E) := S(E) −
∑

xA

p(xA)S(E|xA), (C7)

to rewrite in the form more commonly found in the
CVQKD literature. We can see this analysis is tight since
this expression coincides with the asymptotically optimal
Devetak-Winter rate [99]. The secret-sharing rate can then
be calculated by taking the worst case for Ti and Uj , which
in fact recovers Eq. (13).

To evaluate Eq. (C7), it suffices to recall that, by
definition, the joint state vector

∣∣�ACj Uj E
〉
represents a pure

quantum state, which means we know that S(E, Uj ) =
S(A, Cj ) and S(E, Uj |xA) = S(Cj |xA). Computing these
expressions can be dramatically simplified by first not-
ing that, for ideal measurement devices making perfect
quadrature measurements the entire protocol, including
the conditional states would be perfectly Gaussian in the
absence of an eavesdropper. Secondly, it has been shown
that, asymptotically, it is optimal for an eavesdropper that
the final state also be Gaussian [59,60]. In combination,
this with the fact that, asymptotically, it has been shown
that the Gaussian attacks are optimal and we can safely
assume that the final state is entirely Gaussian. In this case
the von Neumann entropy is solely a function of the rele-
vant covariance matrix [86]. For an N -mode state on can
then write

S(ρ) = S(�) =
N∑

i=1

g(λi), (C8)

where g : [0, ∞) → [0, ∞) is defined as

g(x) =
(

x + 1
2

)
log2

(
x + 1

2

)
−
(

x − 1
2

)
log2

(
x − 1

2

)
,

and where the {λk} again are the symplectic eigenvalues of
the corresponding covariance matrix �, which are defined
by the (singly counted) eigenvalues of the matrix |i��|.

Note that this is different from the strategy adopted by
Ref. [35], where they instead bounded the malicious par-
ties information (or equivalently their conditional entropy)

040339-21



NATHAN WALK and JENS EISERT PRX QUANTUM 2, 040339 (2021)

via and EUR for the asymptotic von Neumann entropies
and ideal quadrature measurements [53]

S(XA|E, Uj ) + S(PA|Cj ) ≥ 1
2π

. (C9)

This approach could be thought of as first applying the
finite-size min- and max-entropy EUR of Eq. (9), which
holds without any assumptions and then taking the asymp-
totic limit and invoking the asymptotic optimality of col-
lective attacks. However, as explained in the main text, this
is unnecessary and will result in pessimistic estimates of
the key rate due the looseness of the EUR in the relevant
case [57,96]. Therefore, in the asymptotic setting the key
rates for secret sharing in this work are higher than those
found in Ref. [35].

Turning to our concrete situation of a (2, 2) scheme
using hub-out transmission over a lossy bottleneck net-
work, we can now compute everything given the output
CM. For an ideal system, where the only imperfections are
the losses from the channel transmission the final CM is
given by

�A,B,C = NLH · Nᵀ
LH , (C10)

with NLH given by Eq. (A29). Equivalently, one could take
Eq. (A32) in the limit of perfect implementation (ηd =
ηc = Te = 1, ξ = 0). For example, assuming an honest
Bob and Alice encoding her key in the x̂ basis, the Holevo
information of a dishonest Charlie collaborating with Eve
is

χ(XA : EC) = S(AB) − S(B|xA). (C11)

The CM �A,B is simply the appropriate submatrix of Eq.
(C10) and the conditional CM �B|xA can be obtained from
�A,B via the Schur complements in Eq. (A12). Notice that,
in comparison to Eq. (C7), there is now no sum over xA.
This is because the conditional CM is independent of the
actual value of xA.

For Gaussian distributions the mutual information
between Alice’s x̂ measurement and Bob’s p̂ is given by

I(XA : PB) = 1
2

log2

(
VXA

VXA|PB

)
, (C12)

where VXA and VXA|PB are given by the first entry of �A
and �A|pB , respectively. To get the secret-sharing rate we
have to carry out the same computation for an untrusted
Bob and a trusted Charlie and take the minimum to obtain
the secret-sharing rate.

Although the secret-sharing rate must be minimized
over the subsets, it is permitted (and indeed essential) to
maximize the rate over the choice for which basis is used
for key generation and which for certification. One might

well ask, in the above calculation, why did we choose
to have Bob make his guess of XA by measuring his p̂
quadrature? For that matter, why did we choose to have
Alice encode in x̂? The answer to both lies in the correla-
tion structure of the underlying graph state. This is nicely
captured by the nullifiers of the graph state defined in Eq.
(A23), which allow us to read off Alice’s optimal encoding
choice and also Bob and Charlie’s correct measurement
given Alice’s choice. Here the stabilizers are given by

n =
⎛

⎝
x̂A + p̂B − x̂C

p̂A + x̂B
p̂C − x̂B

⎞

⎠ . (C13)

From this we can immediately read off that the optimal
choice for Alice is to encode her key in x̂A, because it
is correlated with variables of Bob and Charlie that are
themselves not correlated. To satisfy the structure of a
secret-sharing protocol, it must be the case that the key is
encoded in a variable that is much more correlated with a
collaborative, joint variable of an authorized k subset (here
Bob and Charlie together) than it is for any k − 1 subset (in
this case, either Bob or Charlie individually). If Alice had
chosen to encode in p̂A then the second nullifier tells us
her key would be well correlated with x̂B. The third nul-
lifer tells us that, since x̂B is correlated with p̂C then p̂A is
correlated with p̂C also. But this is precisely the problem!
If x̂B and p̂C are correlated then the amount of information
that Bob and Charlie have about p̂A is almost identical to
the amount either of them have individually, which makes
secret sharing impossible. In contrast, because p̂B and x̂C
are not correlated then a joint variable based on the combi-
nation of Bob and Charlie’s measurements will be much
more correlated with x̂A than either would be individu-
ally, which is exactly what we require. By the same logic
if Bob were the dealer he should encode the secret in
p̂B and Charlie should use x̂C. Given an encoding choice
the nullifiers also immediately define which of the vari-
able players will be correlated with the key-generation and
check measurements of the dealer.

Now that we know how to choose the key-generation
and certification measurements for a given choice of
dealer, we turn to the question of the optimal choice of
dealer. It turns out that for this case a positive secret-
sharing rate can be obtained for any choice of dealer. This
is an attractive feature because, in principle, the states
could be distributed and measured and the dealer chosen
later on. However, assuming that the dealer is know before-
hand, the asymmetry of the line graph means that there is
an optimal choice. By inspection, for the three-qubit line
graph and symmetric transmission losses the correlations
are identical for whoever is sent one of the two “ends”
of the line graph. However, the participant who receives
the middle node observes different correlations. These two
possibilities were addressed in Fig. 3 from which we see
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that the optimal situation is where the dealer is given the
middle node of the graph. Due to the alphabetic ordering
convention, in our work the middle node is always given
to Bob, so from now on make the optimal choice and des-
ignate Bob as the dealer. Finally, note that when the dealer
is in the middle node then, by construction, for the case
considered here the secret-sharing rate is identical regard-
less of which of the two “end” players (Alice or Charlie) is
untrusted meaning the maximization of the Holevo infor-
mation in Eq. (13) becomes redundant. However, if the
dealer is an end node, the correlations are not identical and
the maximization must be checked explicitly.

The final ingredient in evaluating the secret-sharing rate
is the allocation of squeezing resources. In order to make
a fair, finite-squeezing comparison with a CVQKD proto-
col we fix a maximum squeezing parameter rmax that can
be achieved. If we considered making the graph states via
the canonical process of implementing CZ gates (which
also require squeezing to implement) between already-
squeezed states it is unclear how to easily constrain the
CZ gain g and the initial squeezing r to satisfy our over-
all constraint. However, when using the Bloch-Messiah
decomposition, which is in any case much more practical,
this is straightforward. In this implementation, a canonical
graph state of initial squeezing r and CZ gain g is decom-
posed into a set of single-mode squeezers with parameters
rA, rB, and rC given by Eq. (A27). Now we simply con-
strain the largest of these to be less than rmax and then
optimize Eq. (13) over the achievable combinations of
effective r and g for each transmission. The optimal choice
of 0 ≤ r ≤ rmax for the curves in Fig. 3 is shown in Fig. 9.
We see that for the this case, with rmax ≈ 1.76, the optimal
effective r starts at just under half the maximum value and
then declines with increasing losses before flattening out.
Interestingly, there is a slightly different optimal choice
depending upon whether the dealer is in the middle (Bob)
or the edge (Alice and Charlie) of the graph.

Finally, we turn the the benchmark comparisons. For
the PLOB bound we need only the effective transmission
between Alice the players (this is the same since the net-
work is symmetric), which is given by T2. Substituting this
in the result of Ref. [47] and recalling that the rate must be
halved since two network uses are required for a single
secret-sharing round gives Eq. (17). The CVQKD curves
in Fig. 3 have been calculated by having the dealer create a
two-mode squeezed vacuum state with squeezing given by
rmax > 0, which is then transmitted through a lossy channel
of transmission T2 again modeled by beam-splitter mix-
ing in a vacuum mode. The evolution for state generation
and transmission between Alice Bob (also Charlie since
the situation is symmetric) is given by

NQKD
ABV = BS23(T2) · BS12(1/2) · S2(rmax) · S1(rmax).
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FIG. 9. Optimal value for the initial squeezing in the equiva-
lent canonical graph-state generation method given that the state
is actually being created by offline squeezing via the Bloch-
Messiah decomposition given in Eq. (A26). The optimal values
for the case where the middle node (red) or edge node (blue) are
the dealer (corresponding to the curves in Fig. 3) are plotted as a
function of transmission distance.

In Fig. 3, we plot two comparison protocols, one where
Alice makes a homodyne measurement (equivalently
sends squeezed states) and one where she heterodynes
(sends coherent states). Explicitly we have,

χ(XB : E) = S(AB) − S(A|xB), (C14)

for both protocols and,

I(XA : XB) = 1
2

log2

(
VXB

VXB|XA

)
, (C15)

when Alice homodynes and

I(XA : XB) = 1
2

log2

(
2VXB

VXB|XA + 1

)
, (C16)

when Alice heterodynes and introduces an extra unit of
shot noise. This CM allows the CVQKD rate of Eq. (16) to
be straightforwardly evaluated for an RR protocol where
Bob switches between quadrature measurements. The con-
ditional variances and symplectic eigenvalues to evaluate
the above expressions can be obtained from Alice and
Bob’s modes of the CM � = NQKD

ABV · NQKD
ABVᵀ and apply-

ing Eq. (A12) as necessary. Finally, the appropriate PLOB
bound is given by Eq. (17).

2. Realistic, finite-size results

Turning to evaluating the composable, finite-size secure
fraction in Eq. (10), we begin by fixing the target secrecy
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TABLE II. Parameters for realistic experimental model.

Symbol Value Description

εs 10−9 Secrecy parameter
εc 10−9 Correctness parameter
δX 0.1 Key basis resolution
δP 0.4 Check basis resolution
M 25 Detector range
ε1 4 × 10−11 Security constant
εμ 4 × 10−20 Security constant
Te 0.99 Energy test beam splitter
α 28 Energy test threshold
β 0.98 Reconciliation efficiency [72]

and correctness parameters (εs, εc). Based on our analysis
of the asymptotic case we know to designate the middle
node as the dealer and that because of the symmetry of the
situation we obtain the same secret fraction when assum-
ing either player is dishonest. For each transmission we
use the optimal choice of the effective r and g found in
the asymptotic case for graph-state generation. There are
several more parameters that can be chosen and (to some
extent) optimized over: the detector resolutions (δX, δX),
the energy test beam splitter Te, the positive constants in
the security proof (ε1, εμ), and the probability of any party
choosing to measure in the key-generation basis p .

Initial investigations showed that in the regimes of inter-
est the key rate is only weakly dependent on most of
these parameters, except for the key-generation probabil-
ity p . This is because we are interested in parameters where
the multipartite and bipartite schemes cross over, which is
when both key rates are still far above zero and with large
block sizes N = m + t. In this regime, one can have a p
close to one whilst achieving sufficiently large parameter-
estimation measurements such that any statistical errors are
small. This makes the parameters such as ε1, εμ, and Te
less critical. Hence, in our analysis we choose fixed values
for all parameters (Table II except for p , which has been
optimized over).

Given fixed values of all of the parameters, to eval-
uate the expected secret fraction we need only compute
the expected value of the distance, the second moments,
VPE

A , VPE
B , and Vd and the amount of reconciliation informa-

tion �EC. Taking Alice to be the trusted parties carrying out
parameter estimation we have,

〈
d(PPE

A , PPE
B )
〉 =

2M/δP∑

jA,kB=1

|jA − kB| Pr(jA, kB),

〈Vd〉 =
2M/δP∑

jA,kB=1

|jA − kB|2 Pr(jA, kB),

(C17)

〈
VPE

A

〉 =
2M/δP∑

jA=1

j 2
A Pr(jA, kB),

〈
VPE

B

〉 =
2M/δP∑

kB=1

k2
B Pr(jA, kB),

where the probability distribution for Alice and Bob’s
discretized measurement outcomes is given by

Pr(jA, kB) =
∫

Ij

dqA

∫

Ik

dqB Pr(qA, qB), (C18)

where the integration intervals are defined in Eq. (B17)
and Pr(qA, qB) is the underlying distribution of Alice and
Bob’s parameter-estimation variables. In the absence of
an eavesdropper all the first moments vanish so we drop
them. We write qA and qB for the parameter-estimation
variables because, depending on the graph structure, either
quadrature could have been designated for parameter esti-
mation depending upon the initial graph structure. In this
specific case, the parameter-estimation observables are p̂A
and x̂B. A final point is that the players are free to scale
their measurement results to avoid artificially underesti-
mating their correlations. For example, in an asymmetric
network where Charlie’s channel is twice as lossy as the
other players, it is clear that his measurement values will
be correspondingly “damped” and all participants should
take this into account. In this present case, given his knowl-
edge of what the communication network should be in
the absence of tampering, Bob can determine what scaling
factor he should apply to maximize his correlations with
Alice. Utilizing Eq. (A13) and the fact that prior to mea-
surement all first moments should be zero, a measurement
by Alice returning a value pA will project Bob’s mode into
a Gaussian state with mean vector

rB = CA,B(P�AP)MPdiag(pA, 0),

:= diag(a pA, 0), (C19)

for a constant a > 0. Therefore, if Alice rescales her mea-
surements by a factor of a, defining qA = apA, then this
new variable will have a distribution centered about Bob’s
measurement value and a conditional variance of

VQA|XB = VQA − 〈QAXB〉2 /VXB

= a2VPA − a2 〈PAXB〉2 /VXB = a2VPA|XB . (C20)

This leads to a joint probability distribution for this
rescaled variable of

Pr(qA, xB) = Pr(xB)Pr(qA|xB)

= e−[(qA−xB)2/2a2VPA|PB ]−(x2
A/2VXB )

2πa
√

VXBVPA|XB

. (C21)
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The expected correlations for a realistic implementation
described by the CM given by Eq. (A32). The quantity VXB

is given by the first entry of �B and direct substitution in
Eq. (C19) gives

a = ge2rηcηd
√

ξATB

ηd
[
e2rTBηc − TB (ξB + ηc) + ξB

]+ 1
. (C22)

Similarly, for the conditional variance by combining Eq. (A12) with Eq. (A32) to obtain the conditional CM �A|xB , the
first entry of which gives

VPA|XB = e−2r

ηd{TB[(e2r − 1)ηc − ξB] + ξB} + 1
([ξBηd + 1]{ξAηd[−e2r(ξA + ηc − 1)

+ g2e4rηc + ηc] + e2r} + TBηd(e2r{ξB[ξAηd(ξA + ηc − 1) − 1]

+ ηc[ξAηd(ξA + 2ηc − 1) − 1]} − ξAηcηd[ξB + ηc])

− TBηde4rηc{ξAηd[ξA + g2ξB + (g2 + 1)ηc − 1] − 1}). (C23)

With an explicit form for (qA, xB) �→ Pr(qA, xB), Eq.
(C18) can be numerically integrated and the quantities in
Eq. (C17) computed.

The last ingredient to evaluate the secret fraction are the
block sizes involved and the expected number of network
uses required to achieve them. We proceed by first fixing
the desired block size for the key generation m. For a given
value of p we expect this to take,

〈L〉= m
p3 , (C24)

network uses. The expected number of parameter estima-
tion rounds with any player should then be given by

〈
tj
〉=(1 − p)2L. (C25)

This is everything required to compute the smooth min
entropy and finally the information leakage during error
correction is well approximated by [72,96]

�EC = m[H(XB) − log2(δX) − βI(XA : XB)], (C26)

where H(XB) and I(XA : XB) are the entropy and mutual
information of the ideal Gaussian distributed variables.
This gives

�EC = m
2

[
log2

(
2πeVPB

δX

)
− β log2

(
VPB

VPB|XA,XC

)]
,

(C27)

where we are abusing notation slightly by continuing to use
δX to refer to the resolution in the key-generation basis,

while explicitly using the fact that the key-generation
basis is actually made by Bob measuring in the p̂ quadra-
ture. The necessary variances and conditional variances
are again given by Eq. (A32). For each transmission the
expected secret fraction can now be computed for the fixed
parameters of Table II and an optimized value of p , which
is shown in Fig. 10.

Turning to our benchmarks, a fair comparison with
a bipartite QKD protocol is obtained by considering an
bipartite CVQKD protocol implemented with the same
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FIG. 10. Optimal value for the probability of key generation
as a function of transmission distance for multipartite (solid) or
bipartite (dashed) protocols. Optimal curves for block sizes of
m = 1012 (blue) and m = 109 (red) are shown.
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escape, detector, and fiber coupling efficiencies and max-
imum allowed squeezing of Table I. However, this BQSS
scheme will require only two squeezers to make an EPR
state rather than the three required for the graph state. The
second difference is that we must now consider transmis-
sion through the two “arms” of the network to connect Bob
with Alice and Charlie in turn. To maximize the key rate
in this situation it is optimal to carry out a reverse rec-
onciliation (RR) protocol [69], where the players (Alice
and Charlie) transmit a quantum state to the dealer (Bob)
and then try and guess his measurement outcome. Further-
more, previous work on CVQKD with “entanglement in
the middle” has established that this is always inferior to a
standard RR protocol [100]. In our language, for carrying
out CVQKD, the hub-out strategy is always inferior.

A realistic protocol with this transmission strategy from
Alice to Bob is described by an overall evolution of a
seven-mode system (a mode for Alice and Bob, an extra
mode, Be, for Bob’s energy test, two thermal modes,
EA, EB, for the transmission through the thermal-loss net-
work from Alice to the hub and from the hub to Bob
and four vacuum modes for the detector and experimental
efficiencies for each of Bob and Alice) given by

NQKD
exp = BSB,V3(ηd) · BSA,V4(ηd) · BSB,Be(Te)

· BSB,EB(T) · BSB,EA(T) · BSB,V2(ηc)

× BSA,V1(ηs) · BSA,B(1/2) · SA(rmax) · SB(rmax).
(C28)

Note that this bipartite implementation experiences
slightly less loss than the multipartite version because
Alice’s mode can be directly detected rather than being
coupled into an optical fiber. This is why Bob’s mode
experiences an efficiency of ηc = ηf ηs whereas Alice’s
experimental efficiency is ηs.

Next, we must calculate the block sizes for a given key-
generation probability, p , which will be optimized over.
Here, we see the importance of a finite-size analysis since
the QKD protocol has a different, and strictly higher, per-
formance. This is because, in a bipartite scheme, Bob can
take his partner to be trusted and so they can agree ahead of
time on a random selection of runs to be used for parame-
ter estimation. This means, for a fixed p and desired m, the
total number parameter estimation strings is given by

〈L〉=m
p

, 〈t〉 =(1 − p)L. (C29)

In this sense, the QKD scheme is always more efficient as
there are not wasted rounds due to basis mismatch. The
penalty for this is that the participants will need to refresh
the extra pool of preshared key of length h2(p)L bits to use
for choosing the parameter-estimation rounds in the next
run of the protocol. This means the length of secret key for

the CVQKD protocol is given by

�QKD = 1
2

(
H ε

min(X
m
B |E) − �EC − log2

1
εcε

2
1

+ 2 − h2(p)L
)

.

(C30)

With the protocol parameters fixed to be the same as in
Table II and given target m, the block sizes are given by
Eq. (C29) and all the necessary correlations to compute
the expected values of the parameter-estimation quantities
in Eq. (C17) can be obtained from the first two modes of
the global CM � = NQKD

exp · NQKDᵀ
exp . These are then used

to lower bound the min entropy via Eq. (B11) and the
information leakage in Eq. (C27), which gives the secret
fraction. To make the curves in Fig. 5 the key-generation
probability has been optimized over and the resulting opti-
mal probability for the CVQKD protocol is shown in
Fig. 10.

Finally, to make a fair comparison with the PLOB
bound, we set the total transmission to include efficiency
of the fiber coupling. This means the asymptotic PLOB
bound becomes

KPLOB = −1
2

log2
(
1 − ηf T2) . (C31)

APPENDIX D: DISCUSSION OF THE WILLIAMS
ET AL. PROTOCOL

In this section, we further discuss the alternative secu-
rity proof method of Williams et al. [40] for a variant of
the original HBB protocol. Here the multipartite state is a
DV GHZ state and the players switch between Pauli X and
Y measurements. In this work, the parameter-estimation
checks now always involve all players, which is precisely
how participant attacks entered in the first place. However,
in the protocol of Ref. [40] they are thwarted by the intro-
duction of a randomization in the order of announcements.
After all states have been transmitted, the dealer randomly
chooses a round to be disclosed for parameter estimation
and and randomly picks an untrusted subset to announce
first. As long as the players have no way to know which
rounds will be used for parameter estimation and whether
or not they will have to announce first then there is no way
for dishonest players to meddle with the statistics.

Since it is crucial that the players cannot tell a priori
whether a round will eventually be used for parameter esti-
mation or key generation, it is essential that there is no
predesignated key basis and that basis choices are made
with p = 1/2. To see why, consider the case of two players
where it has been predesignated that the dealers Y measure-
ment would be the key and their X basis used as the check.
Now, even if a dishonest player is told to announce their
basis first, the mere fact that it is a parameter-estimation
round means they still cheat the test because they know
the dealer will be measuring in the X basis. Assuming they
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have made the same attack as in Ref. [7], they now have
both particles of the original GHZ state and also one half
of an entangled pair shared with the honest player. First,
they can learn the dealers measurement perfectly by mea-
suring their GHZ particles. Secondly, the dishonest player
can announce either X (respectively, Y) and then also mea-
sure their Bell pair shared with the honest player in that
basis. The round will now only be kept if the honest player
also measured X (respectively, Y). If it is not discarded, the
dishonest player knows what values the dealer and honest
player obtained, and can thus announce the correct value
themselves.

This is why, in Ref. [40], it is stipulated bases are cho-
sen with p = 1/2 and that a portion of each basis is used
to certify key generated in the other. As explained in the
main text, this means the protocol cannot be made arbitrar-
ily efficient. Whilst the factor of 1/2 removes any possible
advantage in a (2, 2)-threshold scenario, for larger n it is
possible that this strategy could be effective and possibly
even superior. Firstly, the probability that a round is use-
ful remains at 1/2 for arbitrarily many players. Secondly,
because all players are involved in the check measurements
the correlations observed will be higher than in the strategy
pursued here where in a given check the untrusted subset
is effectively traced out.

However, the necessary amount of parameter-estimation
data now scales in the number of players. Each scenario of
a given untrusted subset announcing first must be treated as
its own QKD protocol. This means for a (n, k) scheme is
will be necessary to acquire

(n
k

)
many parameter-estimation

datasets. A detailed analysis of the best strategy for a
given finite block size and larger number of players is an
important question for future work.
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