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Abstract
Nano-Fourier-transform infrared spectroscopy (nano-FTIR) combines infrared spectroscopy
with scanning probe microscopy (SPM) techniques and enables spectroscopic imaging of
molecular and electronic properties of matter at nanometer spatial resolution. The spectroscopic
imaging can be used to derive chemical mappings, i.e. the spatial distribution of concentrations
of the species contained in a given sample. However, due to the sequential scanning principle
underlying SPM, recording the complete spectrum over a large spatial area leads to long
measurement times. Furthermore, the acquired spectrum often contains additional signals from
species and lineshape effects that are not explicitly accounted for. A compressive chemical
mapping approach is proposed for undersampled nano-FTIR data that utilizes sparsity of these
additional signals in the spectral domain. The approach combines a projection technique with
standard compressed sensing, followed by a spatially regularized regression. Using real
nano-FTIR measurements superimposed by simulated interferograms representing the chemical
mapping of the contained species, it is demonstrated that the proposed procedure performs well
even in cases in which the simulated interferograms and the sparse additional signals exhibit a
strong spectral overlap.
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1. Introduction

Photons in themid-infrared (IR) energyrange between 400 and
4000 cm−1, corresponding to wavelengths between 2.5 and
25 µm, can induce a large number of light/matter interactions.
These interactions can be exploited to gain specific informa-
tion on the chemical composition and spatial distribution of the
species contained in the sample [1]. In addition to vibrational
properties, radiation in this energy regime reveals electronic
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[2] and quantum properties [3, 4]. Therefore, mid-IR spectro-
scopic methods are widely used in different fields including
physics, material science, chemistry, biology, and medicine
[1, 5–9]. However, the achievable spatial resolution of these
optical techniques is limited by diffraction to about one half
of the wavelength [10]. This restricts IR spectral imaging to
a lateral resolution of several microns, which is often insuf-
ficient for accessing electrical, chemical, and thermal mater-
ial properties of functional nanomaterials. Furthermore, due
to the limited spatial resolution it is not possible to derive an
understanding of the interactions between molecular species
and biological matter.

To circumvent the diffraction limit when performing vibra-
tional spectroscopy, advanced scanning probe microscopy
(SPM) techniques have been developed in which SPM is com-
bined with IR spectroscopy such as IR scanning near-field
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optical microscopy (SNOM) and the photothermal induced
resonance technique [11]. These techniques enable to record
hyperspectral images (i.e. full IR spectra at each pixel) which
can be used for structural or chemical analysis [12–18]. How-
ever, recording the complete spectrum at nanometer spatial
resolution over an appreciable sample size is extremely ineffi-
cient, since data acquisition in SPM takes place in a sequential
manner. Parallel detection schemes, as known from far-field
spectroscopic imaging, do not exist. Furthermore, the still lim-
ited availability of intense broadband IR sources and the weak-
ness of near-field signal intensities to be detected mean that a
hyperspectral image can take hours to achieve a meaningful
detection sensitivity (see, e.g. [14]). However, long measure-
ment times can lead to sample and tip damage as well as to
drift artifacts. This compromise between sensitivity and meas-
urement time inhibits unfolding the potential of hyperspectral
imaging for reliably differentiating and identifying chemical
components (see, e.g. [19]).

Recently, it has been demonstrated that IR-SNOM meas-
urements can be speed up significantly by means of com-
pressed sensing techniques [15]. Compressed sensing is a
signal processing technique that enables the complete recon-
struction of a continuous signal based on a small number of
measurements. Application of compressed sensing requires
that the signal has a sparse representation with respect to
some basis [20–23]. It turns out that many natural signals or
images have such a sparse representation. Typical examples
of employed basis functions include Fourier or wavelet bases;
data-driven sparse dictionary learning methods have also been
successfully employed [24]. Compressed sensing techniques
have meanwhile been applied and even commercialized in dif-
ferent fields of physics, chemistry, and engineering (see [25]
for a recent review). In IR spectroscopy, compressed sensing
demonstrations exist for multidimensional spectroscopy [26],
as well as for conventional far-field spectroscopy [27, 28]. A
compressed FTIR approach utilizing a low-rank approxima-
tion has been presented in [29], a compressive method apply-
ing a rotating-frame transformation in [30], and an adaptive
smart sampling approach combined with matrix completion
techniques in [31].

In this work, a compressed sensing nano-Fourier-transform
infrared spectroscopy (nano-FTIR) approach is developed that
enables us to determine spatially resolved weights of spe-
cies of interest given their known spectral characteristics.
The approach accounts for signal contributions due the spe-
cies with known spectral characteristics, as well as for addi-
tional signal contributions caused, e.g. by coupling of differ-
ent excitations or simply by unknown species. Accounting for
such additional signal contributions is necessary to achieve an
accurate chemical mapping for the species of interest (see, e.g.
[14]). Within the proposed compressed sensing approach, this
additional signal contribution is assumed to have a sparse rep-
resentation in the spectral domain. In order to determine the
chemical mappings for the species of interest, a joint regres-
sion and compressed sensing approach is developed that takes
randomly subsampled nano-FTIR data as input as well as a

set of known interferograms. The capabilities of the proposed
approach are demonstrated in a proof-of-principle study using
a nano-FTIR data set [15] superimposed by simulated inter-
ferograms representing the chemical mapping of the species
contained in a sample.

Note that the approach proposed in this work differs
from the compressed sensing technique applied to nano-FTIR
developed in [15]. While in [15] the reconstruction of nano-
FTIR by compressed sensing techniques was demonstrated,
the approach in this work aims at directly determining chem-
ical mappings for species with known spectral properties from
undersampled data. Furthermore, additional signal contribu-
tions are present which can be assumed to be sparse in the
spectral domain. Note that the known spectra of the species of
interest are not required to be sparse. As a consequence, cor-
responding nano-FTIR data following the superpositionmodel
introduced in section 3 could generally not be treated by com-
pressed sensing techniques such as that used in [15].

2. Nano-FTIR

Nano-FTIR is based on scattering-type Fourier-transform IR
spectroscopy combined with an atomic force microscope.
Figure 1(a) shows a schematic diagram of the experimental
setup. The incident IR radiation is backscattered from a metal-
lic tip that scans the sample surface. The metallic tip acts as an
optical antenna which strongly confines the incident optical
field around the tip apex, resulting in a nanoscale light source
suitable for high-resolution imaging and spectroscopy. The
backscattered light is analyzed by means of a Michelson inter-
ferometer and the interferogram is recorded as a function of
the optical path difference [32, 33]. The corresponding near-
field spectrum can be obtained from a Fourier-transform of the
interferogram.

In this work, nano-FTIR data recorded at the metrology
light source electron storage ring [34] are utilized. The data
were obtained from a graphene-coated silicon carbide sur-
face modified by a mechanical indent. For a detailed descrip-
tion of the experimental setup and sample preparation, we
refer to [15]. Altogether, 1804 interferograms were recorded
on a rectangular area of 60 µm2 using a Cartesian grid with
41× 44 spatial locations. Each complex-valued interferogram
was sampled at 1024 equidistant optical path differences using
a step size of 1.56 µm. The resulting spectral resolution is
6.26 cm−1. The full nano-FTIR data set can thus be repres-
ented by a 3D data cube with dimensions of 41× 44× 1024.
Figures 1(b) and (d) show the interferogram and the corres-
ponding Fourier magnitude spectrum determined at the center
pixel. As can be seen, the spectrum is dominated by a nar-
row peak at about 900 cm−1. Similar spectra are observed at
all spatial locations, indicating the spectral sparseness of this
data set due to the phonon polariton resonance [35]. However,
the spectral peaks also exhibit some variation regarding their
magnitude and shape, as illustrated in figure 1(c), which shows
the spatial distribution of this spectral feature.
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Figure 1. Schematic plot of the experimental setup (a) and plots of nano-FTIR data obtained from a graphene-coated silicon carbide surface
((b) to (d)). (b) Shows the real part of the interferogram taken at the center of the sample area, and (d) shows the corresponding magnitude
spectrum of its Fourier transform. In (c), the spatial distribution of the peak spectral magnitude at about 900 cm−1 is depicted. The surface
size shown in (c) is 7.5 µm × 8.0 µm = 60 µm2.

3. Compressive chemical mapping

A joined regression and compressed sensing approach is
developed that enables a chemical mapping for species of
interest given their known spectral characteristics. The inter-
ferogram y(l) taken at a single spatial location as a function
of the optical path difference l (cf figure 1(a)) is modeled
as

y(l) = θ1X1(l)+ θ2X2(l)+ · · ·θpXp(l)+ S(l) , (1)

where θ1,θ2, . . . ,θp represent the sought weights, and where
the known interferograms X1(l),X2(l), . . . ,Xp(l) may also
include contributions from the substrate material. Determining
the weights θ1,θ2, . . . ,θp at different spatial locations enables a
chemical mapping in terms of the spatial weight distributions
of the species of interest. The term S(l) in equation (1) models
the additional signal contributions to the recorded interfero-
gram y(l), and S(l) is assumed to have a sparse representation
in the spectral domain. The model expressed by equation (1)
represents a joint regression and compressed sensing task for
which a two step procedure is developed that takes randomly
subsampled nano-FTIR data as input as well as a set of known
interferograms X1(l),X2(l), . . . ,Xp(l).

In section 3.1, a projection technique is applied leading to a
standard compressed sensing task whose solution provides the
sparse representation of the additional signal S(l). Section 3.2
then describes, how this sparse representation is combined
with the set of known interferograms X1(l),X2(l), . . . ,Xp(l),

leading to a linear system of equations. The solution of
this linear system, which also includes a regularization that
favors spatial smoothness, then yields an estimate of the spa-
tial distribution of the weights θ1,θ2, . . . ,θp of the species of
interest.

3.1. Evaluation of the sparse signal

The approach described in this work utilizes compressed sens-
ing techniques [20–23]. These techniques allow a continuous
signal to be reconstructed based on a small number of ran-
domly selected measurements, provided that the sought signal
is sparse with respect to some basis. Here, we assume that the
additional signal contribution (denoted as S(l) in equation (1))
has a sparse representation in the spectral domain so that com-
pressed sensing techniques can be applied for that part of the
signal. Each measured interferogram is considered as the sum
of a sparse signal and a signal due to different species with
known interferograms. A subsampled interferogram taken at a
single spatial location is modeled as

y= Xθ+Vµ, (2)

where y denotes an n× 1 vector of interferogram values, with
n being the number of randomly selected optical path differ-
ences. The term Xθ models the signal of p contained spe-
cies. The columns of the known n× p matrix X are obtained
from the corresponding interferograms X1(l),X2(l), . . . ,Xp(l),
which are evaluated at the selected optical path differences.
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The p× 1 vector θ summarizes the corresponding weights
θ1,θ2, . . . ,θp of these signals. The term Vµ in equation (2)
models the sparse signal S(l) at the selected optical path differ-
ences. The n×mmatrix V is constructed from the rows of the
m×m discrete Fourier matrix corresponding to the selected
optical path differences. The dimensionmwithm≫ n denotes
the number of optical path differences of a fully sampled inter-
ferogram. The m× 1 vector µ encodes the sparse representa-
tion; this implies that µ has only a few non-zero elements, p0,
where p0 ≪ n. The goal of the analysis is to determine the
weights θ1,θ2, . . . ,θp of the interferograms of the contained
species.

Solving equation (2) for θ and µ can be viewed as a
joint regression and compressed sensing task for which, how-
ever, no standard methods are available. In order to make
compressed sensing techniques applicable, equation (2) is
multiplied (from the left) by an (n− p)× n matrix P which
satisfies PX= 0. The choice of the matrix P is described in
appendix A. Application of the matrix P then leads to the lin-
ear model

ỹ= PVµ (3)

with ỹ= Py, where the contribution due to the known inter-
ferograms of the contained species has been removed. The
construction of the matrix P and mathematical details are
presented in appendix A.

The linear model expressed by equation (3) can be treated
as a standard compressed sensing task leading to the following
optimization problem

min
µ

∥µ∥0 subject to ỹ= PVµ, (4)

where ∥µ∥0 denotes the number of nonzero elements of the
vector µ.

While a direct solution of equation (4) is usually compu-
tationally not feasible, the compressed sensing task can often
be simplified by replacing the l0-norm with the l1 norm; this
leads to a convex optimization problem [36, 37]. Alternat-
ively, so-called ‘greedymethods’ can be applied that allow one
to determine an approximate solution in short time (see, e.g.
[20]). To this end, we have utilized the orthogonal matching
pursuit algorithm [38]. The resulting vector µ then provides a
sparse representation of the additional signal S(l) in terms of
the relevant Fourier basis functions indicated by the non-zero
elements of µ.

3.2. Chemical mapping using spatial regression

Once the method described above has been applied individu-
ally to each recorded interferogram, the resulting set of vectors
µ obtained from all spatial locations is summarized by determ-
ining the Fourier basis functions most frequently encountered
in all subsampled interferograms. Under the assumption that
the additional sparse signal is a superposition of the same sub-
set of basis functions at all spatial locations, this subset is
inferred as the p0 basis functions that appear most often in the

compressed sensing solutions at the different spatial locations.
The number p0 of relevant basis functions chosen is a com-
promise between a small p0 and a suitable representation of
the sparse signal at all spatial locations. Note that, while the
subset of basis functions is fixed in this way, their correspond-
ing weights can still vary spatially.

The selected subset of basis functions is then combined
with the known interferograms X1(l),X2(l), . . . ,Xp(l) of the
contained species in order to define a linear system of
equations that allows all measured interferograms recorded at
different spatial locations to be modeled simultaneously. The
sought weights θ1,θ2, . . . ,θp of the interferograms as well as
the weights of the selected subset of Fourier basis functions
vary spatially and could be estimated at each spatial location
individually. However, this spatial variation can be assumed
to be smooth which is exploited by fitting all weights jointly
after including an additional regularization functional that
favors their spatial smoothness. The regularization functional
is based on an intrinsic Gaussian Markov random field [39]
and is specified in appendix B. The strength of the smoothness
regularization is determined by applying an L-curve criterion
[40].

4. Results

4.1. Nano-FTIR regression data

In order to assess the effectiveness of the proposed compress-
ive chemical mapping approach, the 3D nano-FTIR data set
communicated in [15] was augmented by simulated regres-
sion components representing hypothetical contained species.
In this way, the nano-FTIRmeasurements are used here to rep-
resent a realistic signal that is sparse in the spectral domain
and includes realistic experimental noise (cf figure 1(b)). For
the regression components, three simulated magnitude spec-
tra labeled A, B, and C were generated; these spectra are
depicted in figure 2(a) with their corresponding interfero-
grams (figure 2(b)). As can be seen, the three spectra A, B,
and C exhibit different spectral overlap with respect to the
sparse spectrum, where A has the strongest spectral overlap.
Figures 2(c)–(e) show the spatial mappings of the weights
associated with each of these three interferograms.

An augmented 3D nano-FTIR data set was generated by
adding the interferograms, weighted by the local weights
according to their spatial mappings, to the nano-FTIR meas-
urement data. To test the proposed method for compressive
chemical mapping, a simulated test scenario was constructed
by considering only a subset of the whole data set. The subset
was formed by randomly selecting 20% of the samples from
the augmented data set. The random samples were selected
uniformly along the interferometer axis and within the image
plane. Before applying the proposed compressive chemical
mapping procedure, complex-valued Gaussian white noise
with a signal-to-noise ratio of 500 was added to the inter-
ferograms A, B, and C. This was done because, for real data,
these interferograms are expected to be determined by separate
measurements, e.g. by recording the interferograms using ref-
erence spectra of pure substances. During the analysis, a fixed
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Figure 2. Simulated regression components used for the assessment of the proposed approach. (a) Shows the simulated magnitude spectra
A, B, and C as well as the (normalized) sparse spectrum at the center pixel. In (b), the real parts of the corresponding interferograms are
depicted. (c), (d), and (e) Show the simulated spatial mappings of the three regression components (with the same surface size as in
figure 1(c)).

Figure 3. Reconstruction results obtained from the proposed compressive chemical mapping approach. (a) Shows the fully sampled
interferogram at the center pixel (black dots) together with the randomly subsampled data (20%) (blue stars) and the resulting
reconstruction (red line). (b) Shows the magnitude spectra corresponding to the fully sampled (black line) and reconstructed interferogram
(red line) as well as the reconstructed sparse spectral component (green line).
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Figure 4. Comparison of the spatial patterns of the Fourier magnitude at about 900 cm−1. (a) Fourier magnitude of the original
experimental data (same as figure 1(c)). (b) Fourier magnitude of the reconstructed sparse signal determined from the augmented and
randomly subsampled data (same surface size as figure 1(c)).

Figure 5. Chemical mapping results obtained from a subsampling rate of 20% (same surface size as figure 1(c). The left column ((a),
(d), and (g)) shows the true mappings of the components A, B and C, and the right column ((c), (f), and (i)) the resulting mappings obtained
from the proposed compressive chemical mapping approach. The center column ((b), (e), and (h)) shows the corresponding results from the
simple regression approach, which does not account for the sparse signals. The number above each plot indicates the relative error.

value of p0 = 50 was taken for the number of relevant Fourier
basis functions representing the sparse signal.

In addition to the proposed procedure, we also applied a
simple regression analysis to the same data; this analysis uses
the interferograms of the components A, B, and C only, ignor-
ing the presence of the sparse signal. Thus, the sparse signal
is treated as an (additional) source of error within this simple
regression approach. In order to enable a realistic comparison
of both methods, the simple regression approach also includes
a spatial smoothness regularization carried out in the sameway
as for the proposed approach.

4.2. Reconstruction and chemical mapping

The proposed procedure enables a reconstruction of the full 3D
nano-FTIR data from randomly subsampled data. In figure 3,

the results obtained from the center pixel are shown. As can be
seen, the approach yields a reliable reconstruction of the inter-
ferogram as well as of the corresponding magnitude spectrum.
The reconstruction also includes a decomposition of the data
into the regression components and the sparse signal. This is
demonstrated in figure 4 showing a high agreement between
the resulting spatial pattern of the Fourier magnitude of the
sparse signal (taken at 900 cm−1) and the corresponding pat-
tern determined for the original experimental data.

The results obtained from the chemical mappings of com-
ponents A, B, and C when using a subsampling rate of 20%
are depicted in figure 5. Figures 5(a), (d), and (g) show the
true mappings of these components, while (c), (f), and (i)
show the resulting mappings obtained from the proposed com-
pressive chemical mapping approach. Figures 5(b), (e), and (h)
show corresponding results by the simple regression approach

6



Meas. Sci. Technol. 33 (2022) 035402 G Wübbeler et al

Figure 6. Chemical mapping results for the three components A, B, and C obtained from a subsampling rate of 10% (same surface size as
figure 1(c)). The right column ((b), (d), and (f)) shows the results obtained from the proposed compressive chemical mapping approach and
the left column ((a), (c), and (e)) those obtained from the simple regression approach. The number above each plot indicates the relative
error.

Table 1. Relative errors resulting for the proposed chemical mapping approach for the components A, B, and C in dependence on the
subsampling rate.

Subsampling rate/% 50 30 20 15 10 7.5 5

Mapping A 0.14 0.16 0.17 0.20 0.28 0.49 1.58
Mapping B 0.11 0.15 0.16 0.20 0.30 0.56 1.98
Mapping C 0.09 0.13 0.13 0.15 0.21 0.41 1.36

which does not account for the sparse signals. As can be
seen, the mappings obtained from the proposed method show
a high agreement with the true mappings, whereas the original
patterns are barely visible when using the simple regression
approach. This is also demonstrated in terms of relative errors
indicated above the resulting mappings in figure 5. The relat-
ive errors have been calculated as ∥θ̂− θ∥F/∥θ∥F, where ∥ · ∥F
denotes the Frobenius norm, and where θ̂ and θ denote the
estimated and the true chemical mapping, respectively.

We also applied the proposed method to the augmented
nano-FTIR data set when a subsampling rate of only 10% is
used. The corresponding results are shown in figures 6(b), (d),
and (f). As expected, reducing the amount of data entails some
deterioration of the chemical mappings, which also exhibit
more noise when compared to the results obtained from 20%
subsampling shown in figure 5. This is also indicated by the
increased levels of relative errors. Nevertheless, the main fea-
tures of the true patterns are still clearly visible when applying
the proposed approach. In contrast, application of the simple
regression approach does not yield a reasonable result if a sub-
sampling rate of 10% is used.

In table 1, the relative errors resulting for proposed chem-
ical mapping approach for the augmented nano-FTIR data in
dependence on the subsampling rate are listed. As expected,
small relative errors are observed for large values of the sub-
sampling rate whereas for subsampling rates below 10% the
relative errors exhibit a marked increase. In addition, despite
their distinctly different spectral properties (cf figures 2(a)
and (b)), roughly the same error rates are observed for the
components A, B, and C for a given subsampling rate. Note
that the usability of small subsampling rates may also depend
on different aspects such as the sparsity of the sparse sig-
nal, the SNR, the number of the sought chemical mappings,
their line profiles as well as their spatial resolution. A detailed
analysis of the impact of these effects is referred to future
work.

5. Conclusions

Nano-FTIR spectroscopy allows for molecular imaging at
nanometer-scale resolution which can be used to derive a
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chemical mapping in terms of the spatial distribution of
concentrations of the contained species. However, the inher-
ent sequential scanning principle severely limits its applica-
tion due to long acquisition times. In order to accelerate nano-
FTIR spectroscopy, compressed sensing techniques can be
applied that require only a small number of randomly selec-
ted samples and utilize a sparsity assumption for data recon-
struction. The joint regression and compressed sensing nano-
FTIR approach developed in this work enables the chemical
mapping of species for which interferograms are available.
The approach also accounts for additional signal contributions
whose IR spectra are assumed to be sparse. The capabilities
of the proposed approach are demonstrated in terms of real
nano-FTIR measurement data augmented by simulated inter-
ferograms. It is shown that the presented approach allows for
a reliable determination of the chemical mappings even when
their corresponding IR spectra exhibit a strong spectral overlap
and blend with the sparse signal. The approach also enables a
decomposition of the data into the individual components and
the sparse signal. Future work could address the development
of a Bayesian inference procedure that treats the estimation of
the different components and the sparse signal simultaneously
in a coherent way, and which lends itself naturally to an uncer-
tainty quantification of the results.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Acknowledgment

Financial support from the Deutsche Forschungsgemeinschaft
DFG (Grants EL 492/1-1, RU 420/13-1) of this work is grate-
fully acknowledged.

Appendix A. Construction of the matrix P

Let v1, . . . ,vm denote a complex valued orthonormal basis in
Cm. Denote as V the n×m matrix with entries Vij = (vj)i,
where j= 1, . . . ,m, i ∈ {i1, . . . , in} with n<m. Consider the
model

y= Xθ+Vµ, (A.1)

where X denotes a complex-valued n× p design matrix
assumed to have rank p, i.e. the columns of X are assumed to
be linearly independent. Them× 1 complex-valued vectorµ is
sparse, with only r components being different from zero. Let
µ̃= (µi1, . . . ,µir)

T denote the vector of the non-zero compon-
ents of µ, and Ṽ= (vi1, . . . ,vir) the n× r matrix with corres-
ponding columns of V. The subscript T indicates ‘transpose’.

The goal is to reconstruct the complex-valued θ (and per-
haps µ̃) given y, X, V and the sparsity assumption about µ. A
necessary condition for the problem to be well-posed (i.e. for
θ being identifiable) is that

rank([X, Ṽ]) = p+ r . (A.2)

Application of a QR-decomposition [41] to the matrix X
yields

X= QR , (A.3)

where the n× n matrix Q is unitary, i.e. it satisfies QHQ= I,
and where the n× pmatrix R is upper triangular. The subscript
H indicates the conjugate transpose (or Hermitian transpose).
Denoting the columns of the n× n matrix Q as q1,q2, . . . ,qn,
the (n− p)× n matrix P= (qp+1, · · · ,qn)H is chosen which
satisfies PX= 0. Note that the condition PX= 0 does not
define the matrix P uniquely. The specific choice made here
can be recommended when assuming the data to be affected by
homoscedastic independent Gaussian random errors. Applic-
ation of the matrix P to (A.1) leads to

ỹ= PVµ, (A.4)

which constitutes an ordinary analysis task of compressed
sensing in terms of the transformed signal ỹ with dimension
(n− p)× 1 and the basis set given by the (n− p)×m matrix
PV. Due to the above-stated rank condition, (A.4) leaves the
non-zero components of µ identifiable, and because of (A.2),
subsequent identification of θ is possible.

Appendix B. Spatial regression and regularization

The selected subset of Fourier basis functions and the known
interferograms are fitted to the data at all spatial locations sim-
ultaneously by minimizing∑

r⃗

∥y⃗r− X⃗rθ⃗r− Ṽ⃗rµ̃⃗r∥2

+λ

(
p∑
i=1

(θ(i))HSθ(i) +
r∑

i=1

(µ̃(i))HSµ̃(i)

)
, (B.1)

where y⃗r denotes the n⃗r× 1 vector of interferogram values at
spatial position r⃗, X⃗r the n⃗r× p corresponding design matrix
for the known interferograms, Ṽ⃗r the n⃗r× r design matrix for
the selected subset of basis functions at spatial position r⃗, and
the r× 1 vector µ̃⃗r the corresponding coefficients.

The λ-term in (B.1) represents a regularization favoring
spatial smoothness. The vector θ(i) contains the ith compon-
ent of θ at all spatial positions and similarly µ̃(i). The structure
matrix S with dimension n⃗r× n⃗r is given by

Sij =


−1, i∼ j

ni, i= j

0, otherwise

. (B.2)

where i∼ j indicates that positions i and j are neighboring pos-
itions. We use a configuration with eight neighbors assigned
for interior pixels. The relationship to a Gaussian Markov ran-
dom field is that S is often utilized as a precision matrix in
an intrinsic Gaussian Markov random field [39]. Because S
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does not have full rank, the corresponding Gaussian random
field is improper. A regularization using the structure mat-
rix S favors similar values for the coefficients of neighboring
pixels. The parameter λ specifies the strength of the smooth-
ness regularization and is determined by an L-curve criterion
[40]. For the chemical mapping results presented in this work,
the magnitude of the resulting complex-valued weights θ was
taken.
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