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Abstract
Perturbations are ubiquitous in metabolism. A central tool to understand and
control their influence on metabolic networks is sensitivity analysis, which
investigates how the network responds to external perturbations. We follow here
a structural approach: the analysis is based on the network stoichiometry only
and it does not require any quantitative knowledge of the reaction rates. We
consider perturbations of reaction rates and metabolite concentrations, at equi-
librium, and we investigate the responses in the network. For general metabolic
systems, this paper focuses on the sign of the responses, that is, whether a
response is positive, negative or whether its sign depends on the parameters of
the system. In particular, we identify and describe the subnetworks that are the
main players in the sign description. These subnetworks are associated to cer-
tain kernel vectors of the stoichiometric matrix and are thus independent from
the chosen kinetics.
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1 INTRODUCTION

A typical problem in biological networks is to understand how such systems respond to perturbations. Perturbations may
be induced both by environmental as well as genetic agents, and the interest is at least twofold. Firstly, it is of interest
investigating the robustness of a system, that is, the maintenance of certain dynamical properties under the effect of
external perturbations. Secondly, and quite on the contrary, it is of interest developing strategies to influence and control
such dynamical properties by precise targeted perturbations, as many medical and pharmacological applications are based
on related concepts.1,2

Control of living matters is a very delicate task. Firstly, it is very difficult to carry out a perturbation in such fragile con-
text, even more if a perturbation must be targeted to a single network component. An interesting method of metabolism
perturbation is studied in the fundamental contribution3 by Ishii et al, where the authors perform enzyme knock-out
experiments on the central glucose metabolism of Escherichia Coli. Via a genetic modification of the cell’s DNA, the gene
responsible for producing an enzyme catalyzing a certain reaction j∗ is removed, so that the rate of the reaction j∗ is
decreased. The responses in the network, obtained experimentally, showed an intriguing pattern feature: many compo-
nents of the network did not respond, at all, and many others showed intercorrelated responses. A second more general
mathematical difficulty is the lack of precise and reliable quantitative values, as measurements are often very difficult in
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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applications. A possibility to overcome such intrinsic difficulty is the employment of qualitative approaches rather than
quantitative numerical simulations based on uncertain parameters. This raises the mathematical question, whether the
signs of the responses can be understood by the structure of the network, alone. The goal of this article is to identify the
network structures encoding the responses and thus possibly explaining the arising of the patterns. More specifically,
some of the questions this article deals with are:

1. Which reaction j∗ must be perturbed to influence the flux of a reaction j′?
2. To reach a positive influence, which should be the sign of the perturbation?
3. For a fixed perturbation, can the sign of the influence be controlled via a careful choice of the reaction rate

parameters?

In a dynamical systems context, as it is of interest of the present contribution, the following system of ordinary
differential equations (ODE) is typically considered:

ẋ = f (x) ∶= Sr(x), (1)

where x ≥ 0 is the vector of the concentrations of chemicals or metabolites, S is the stoichiometric matrix, and r(x) is the
vector of the reaction rates (kinetics). Let us consider a network at a positive equilibrium x > 0:

0 = f (x). (2)

To include external perturbations, a further 𝜀-dependence is added:

0 = f (x, 𝜀), (3)

where the perturbation 𝜀 ≥ 0 may as well be interpreted as a control term. Assume that there exists a positive equilib-
rium x(𝜀) > 0 for 𝜀 in a neighborhood of 0. The central object of sensitivity analysis are the partial derivatives of the
responsive components with respect to 𝜀, at 𝜀 = 0. The concentrations of metabolites and the reaction fluxes are natural
responsive components to be considered in a metabolic network case. The concentration response of metabolite m′ to an
𝜀-perturbation is defined as

𝛿xm′ ∶= 𝜕xm′ (𝜀)
𝜕𝜀

|
|
|
|𝜀=0

, (4)

and the flux response of reaction j′ to an 𝜀-perturbation is

Φj′ ∶=
𝜕rj′ (x(𝜀))

𝜕𝜀

|
|
|
|
𝜀=0
. (5)

Our results focus on metabolic networks as intended applications. Mathematically, equations like (1) model also
more general chemical reaction networks and even ecological and epidemiological systems. However, the choice of the
class of functions r and of the stoichiometric matrix S may be very different. In the frame of ecology, for example,4,5

studied a sensitivity matrix for ‘food webs’ and ‘flow networks’. In the frame of chemistry, several types of sensitivity anal-
ysis have been investigated, following both local and global approaches. We refer to the survey paper6 for an overview
of these methods and more detailed references. In an ODE context, Shinar and Feinberg investigated a property called
absolute concentration robustness (ACR).7-9 In the authors’ words,9 “a model biochemical system has ACR relative to a
particular bio-active molecular species if [...] the concentration of that species is the same in all of the positive steady
states that the system might admit, regardless of the overall supplies of the various network constituents”. ACR may
indicate zero sensitivity of the concentration of a certain species with respect to the other network components. How-
ever, the precise mathematical connections between ACR and zero sensitivity are still to be investigated. For a first
few attempts to establish such a bridge, see.10,11 Moreover, in Reference 12 Shinar and co-authors were able to derive
quantitative bounds on the entries of the sensitivity matrix for reaction fluxes, in a mass-action kinetics context and
for a regular class of networks. To our knowledge, only few contributions further address the signs of the sensitivity
responses.13-15
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VASSENA 4845

With a focus on metabolism and on gene knock-out experiments studied in Reference 3, Fiedler and Mochizuki16,17

started a structural sensitivity analysis of equilibria. This body of work has subsequently been enlarged by further contri-
butions.18-21 Knock-out experiments forbid the production of an enzyme, perturbing thus the rate of the corresponding
reaction. Consequently the following reaction perturbation was considered:

0 = f (x, 𝜀) = Sr𝜀(x), (6)

where r𝛆(x) = (1 + 𝜀ej∗ )r(x) and ej∗ is the j∗th unit vector in RN . (6) models a targeted perturbation of the single rate of
reaction j∗. Without specifying the kinetics, only algebraic relations between network components can be addressed. The
responses (4) and (5) have been termed algebraically nonzero, if they are nonidentically zero upon differentiation. An
algebraically nonzero response of an element p′, either a metabolite m′ or a reaction j′, to a perturbation of j∗ has been
called nonzero influence of j∗ on p′, and denoted with the notation:

j∗ ⇝ p′.

Moreover,18 proved transitivity of reaction influence:

j1 ⇝ j2 ⇝ j3 ⇒ j1 ⇝ j3.

This paper addresses for the first time in this metabolic context the question on the sign of the responses. For a reaction
perturbation of a single reaction j∗, at equilibrium, we ask

What is the sign of the responses?

We focus on flux responsesΦ, for mathematical reasons: following our approach, treating flux responses is less technical
and more intuitive, so that it is preferable as a first exposition to the topic. We have thus omitted a full analysis of the
metabolite responses 𝛿x for concision and clarity of presentation. For an attempt to the sign-analysis of 𝛿x along the lines
of the present paper, see the dissertation22.

A central concept in our approach are the Child Selections. A Child Selection J is an injective map associating to
each metabolite m a reaction j, in which the metabolite m participates as input reactant, see Definition 1 below. In
particular, a Child Selection identifies reshuffled square minors SJ of the stoichiometric matrix S, such that the ith

column of SJ is the J(mi) column of S. These minors play a crucial role in the structural description of the nonzero
response.

Let rjm indicate the partial derivative of the jth reaction rate rj with respect to the concentration of the mth metabo-
lite, that is, rjm ∶=

𝜕rj(x)
𝜕xm

. Introduced in Reference 18, the formula for the flux response (Φ)j
∗

j′ of reaction j′ to a reaction
perturbation of j∗ ≠ j′ reads

det SR ⋅ (Φ)j
∗

j′ =
∑

j∗∉J∋j′

(

𝜑

J)j∗

j′ , (7)

where the square matrix SR is the Jacobian matrix of the system (1), J are Child Selections, and
(

𝜑

J)j∗

j′ are multilinear
homogeneous monomials in the variables rjm with a coefficient that depends on certain minors of the stoichiometric
matrix S, identified via J, see (31) below. Hence, any response can be expressed as a rational function and the sign of
the flux response (Φ)j

∗

j′ depends both on the sign of the Jacobian determinant det SR and on the sign of each response

summand
(

𝜑

J)j∗

j′ . Since a structural analysis of the sign of the Jacobian det SR has already been done in Reference 23, in

this article we address the sign of the response summands
(

𝜑

J)j∗

j′ . With a natural monotonicity assumption on the kinetics,

that is, rjm > 0, addressing the sign of
(

𝜑

J)j∗

j′ as a monomial of the variables rjm means investigating the coefficient of such
monomial.

The main tool in the analysis are the Enlarged Child Selections (ECS) J ∪ j∗, for j∗ ∉ J. An ECS naturally identifies an
M × (M + 1)matrix SJ∪j∗ , where j∗ is the column M + 1 and the first M columns are identical to SJ. The two main results
of this article, contained in Section 4, fix a Child Selection J and describe the sign of

(

𝜑

J)j∗

j′ for any j′ ∈ J. Specifically,
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4846 VASSENA

Proposition 1 shows that the only relevant case is when the dimension of the kernel of SJ∪j∗ is exactly one: trivial kernels
are excluded by the dimension M × (M + 1) of SJ∪j∗ and kernels of dimension bigger than one indicate zero response
summands

(

𝜑

J)j∗

j′ , for all j′. The analysis highlights in particular the important role played by nonzero ECS kernel vectors
0 ≠ v ∈ RM+1,

SJ∪j∗v = 0, (8)

in the one-dimensional kernel situation, ker(SJ∪j∗ ) = span⟨v⟩. In this case,
The sign pattern of the entries vj holds the key to the sign pattern of the responses.
In fact, Theorem 1 states that nonzero response summands

(

𝜑

J)j∗

j′ ≠ 0 are characterized by nonzero entries vj′ ≠

0, and the mutual sign of the entries translates to the mutual sign of the response summands. That is, for j′1
and j′2,

sign(
(

𝜑

J)j∗

j′1

(

𝜑

J)j∗

j′2
) = sign(vj′1 vj′2). (9)

The determination of the absolute sign of each summand is then addressed in Theorem 2, requiring a bit of technicality
for which we refer directly to Section 4.

As corollaries of the analysis, valuable qualitative considerations can be drawn. Firstly, 4.1 shows that if a metabolite
m participates in only two reactions j1 and j2, then the responses to a perturbation j1 are identical but opposite in sign to
the responses of a perturbation of j2. Secondly, 5.1 shows with a simple counterexample that no sign-transitivity result
holds, that is,

j1
+
⇝ j2

+
⇝ j3 ⇒∕ j1

+
⇝ j3,

or any other combination of sign. To our knowledge, it is the first time that this counterintuitive feature of sign-sensitivity
is described. Thirdly, 5.3 shows that it may be possible, in (7), that the Jacobian det SR on the left hand side and the right
hand side

∑

j∗∉J∋j′
(

𝜑

J)j∗

j′ share common polynomial factors.
The article is organized as follows: the settings are presented in more detail in Section 2 (metabolic networks)

and 3 (sensitivity). The main results are contained in Section 4. Section 5 presents four examples. Section 6 briefly
discusses the case of metabolite perturbation. Section 7 concludes with the discussion. All proofs are listed in
Section 8.

2 METABOLIC NETWORKS IN MATHEMATICS

A metabolic network 𝚪 is a pair {M,E}, where M is the set of metabolites and E is the set of reactions. The cardinality
of M is M, that is, |M| = M and N is the cardinality of E, that is, |E| = N. In examples, we use capital letters A,B, ... for
metabolites and numbers 1,2,... for reactions. Letters m ∈ M and j ∈ E refers generically to metabolites and reactions,
respectively.

A reaction j is an ordered association between two positive linear combinations of metabolites:

j ∶ sj
1m1 + · · · + sj

MmM →
j

s̃j
1m1 + · · · + s̃j

MmM . (10)

The nonnegative coefficients sj
, s̃j are called stoichiometric coefficients. In metabolic networks, these stoichiometric

coefficients are integer and mostly 0 or 1. Mathematically, there is no need to impose such restriction, and we can freely
consider real sj

m, s̃
j
m ∈ R≥0.

If a metabolite m appears at the left hand side of (10) with nonzero coefficient, then we say that m is an input of reaction
j. Conversely, if m appears on the right hand side with nonzero coefficient, we call m an output of reaction j. Naturally,
metabolic systems are open systems, exchanging chemicals with the outside environment via inflows and outflows. In
this context, inflow reactions are then reactions with no inputs (sj = 0) and outflow reactions are reactions with no outputs
(s̃j = 0).
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VASSENA 4847

The M × N stoichiometric matrix S encodes all the ordered stoichiometric coefficients:

Smj ∶=
⎧

⎪

⎨

⎪
⎩

− sj
m for m input of j,

s̃j
m for m output of j,

0 if m does not participate in reaction j.

(11)

Throughout this article, we always use the notation Sj to refer to the column of the stoichiometric matrix S associated
to the reaction j. For example, in a network of four metabolites {A,B,C,D}, an outflow reaction from metabolite A is
represented as the jth column of the stoichiometric matrix S as

Sj =

j
A
B
C
D

⎛

⎜

⎜

⎜

⎜

⎜
⎝

− 1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟
⎠

. (12)

Note that stoichiometric columns associated to inflow reactions always have only negative entries. On the contrary,
columns associated to inflow reactions have only positive entries. With this construction a fixed order is assigned to each
reaction. In particular, we model a reversible reaction

j ∶ A + B ↔
j

2C (13)

simply as two irreversible reactions

j1 ∶ A + B →
j1

2C and j2 ∶ 2C →
j2

A + B. (14)

Let now x ≥ 0 be the M-vector of the concentrations of metabolites. Under the assumption that the reactor is
well-mixed, spatially homogeneous and isothermal, the dynamics x(t) of the concentrations satisfy the following system
of ODEs:

ẋ = f (x) = Sr(x), (15)

where S is the M × N stoichiometric matrix (11) and r(x) is the N-vector of the reaction rates (kinetics). We do not require
any specific form of such kinetics functions. We consider the reaction rate of inflow “feed” reactions jf , with no inputs at
all, as constant,

rjf (x) ≡ Kjf . (16)

For any other reaction j, rj(x) is a nonnegative and monotonically increasing C1 function that depends only on the
concentrations of those metabolites that are input to j:

𝜕r(x)
𝜕xm

≡ 0 ⇔ sj
m = 0. (17)

If the metabolite m is an input to the reaction j, the notation rjm indicates the positive partial derivative

rjm ∶=
𝜕rj(x)
𝜕xm

> 0. (18)
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4848 VASSENA

The monotonicity restriction is indeed satisfied by most, but not all, chemical reaction schemes. Without any
constraints on the sign of rjm, we will not be able to predict the sign of the responses, of course.

Many and fundamental questions have arisen in literature connected to the existence, uniqueness, and stability of
equilibria solutions x of (15)

0 = f (x) = Sr(x), (19)

for which we refer to the comprehensive book of Martin Feinberg.24 In this article, we assume a priori the existence of
a positive equilibrium x > 0 of (19), but we require neither its uniqueness nor its stability. In our setting, the existence
assumption characterizes the stoichiometric matrix S possessing a positive flux kernel vector r. In particular, (19) imposes
linear constraints on the reaction rate functions. Note that these constraints do not necessarily fix the precise value of
an equilibrium x, and can be considered posed a priori, so that the existence of an equilibrium is really an assumption
on the reaction rates r(x), only. However, the analysis in this paper is entirely based on the derivatives rjm of the reaction
rates, and we must issue a warning here: depending on the parametric richness of the kinetics, that is, which class of
nonlinearities we consider, the derivatives rjm may or may not be considered parametrically independent from each other
and from the linear constraints (19). For example, for polynomial mass action kinetics, the value of rj(x) and rjm(x) are
related, a priori, at any value x, and for any j and m. In contrast, Michaelis–Menten kinetics possesses enough parametric
freedom to consider the partial derivatives rjm as positive parameters, independent from (19). This argument is computed
explicitly in Reference 23 and we omit it here. We will address again this topic in the discussion Section 7.

3 SENSITIVITY SETTING

In this article we focus on perturbations of the reaction rates at a positive equilibrium x > 0. We consider the following
reaction-perturbed equation:

0 = f (x, 𝜀) = Sr𝜀(x), (20)

where r𝛆(x) = (1 + 𝜀ej∗ )r(x) and ej∗ is the j∗th unit vector in RN . The perturbation thus concerns the rate of the single
reaction j∗. At 𝜀 = 0, the Jacobian of the system is the matrix 𝜕f

𝜕x
= SR, where S is again the stoichiometric matrix and R is

the N ×M matrix of the partial derivatives rjm,

Rjm ∶=
𝜕

𝜕xm
rj(x) =

{

rjm if 𝜕rj(x)
𝜕xm
≠ 0

0 otherwise
. (21)

Under the nondegeneracy assumption, assumed throughout,

det SR ≠ 0, (22)

the implicit function theorem (IFT) guarantees the existence of a family of equilibria solutions x(𝜀),

Sr𝜀(x(𝜀)) = 0, (23)

for 𝜀 in a neighborhood of zero. We refer to Section 7 for a discussion about the standing assumption (22).
By differentiation of (23), with respect to 𝜀, we obtain

0 = S
(

ej∗ + R𝜕x(𝜀)
𝜕𝜀

)

. (24)

The concentration response of metabolite m′ to a perturbation of reaction j∗ is defined as

𝛿xj∗
m′ ∶=

𝜕xm′ (𝜀)
𝜕𝜀

|
|
|
|𝜀=0

= −[(SR)−1Sj∗ ]m′ , (25)
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VASSENA 4849

and the flux response of reaction j′ to a perturbation of reaction j∗ as

Φj∗
j′ ∶=

𝜕rj(x(𝜀))
𝜕𝜀

|
|
|
|
𝜀=0

= 𝛿j∗j′ + (R𝛿xj∗ )j′ = 𝛿j∗j′ − [R(SR)−1Sj∗ ]j′ , (26)

where 𝛿j∗j′ is the Kronecker-delta. In vector notation, (24) is then the flux balance

0 = SΦj∗
, (27)

indicating that the flux responses are kernel vectors of the stoichiometric matrix S. In Reference 18, expressions (25) and
(26) have been analyzed in terms of Child Selections, whose definition we recall here:

Definition 1 (Child Selections). A Child Selection is an injective map J ∶ M → E, which associates to every metabolite
m ∈ M a reaction j ∈ E such that m is an input metabolite of reaction j.

For simplicity of notation, j ∈ J indicates that the reaction j is in the image of the map J(M). The Jacobian determinant
of the system, det SR, can be expanded along Child Selections (Proposition 2.1 of Reference 23) as:

det SR =
∑

J
det SJ ⋅

∏

m∈M
rJ(m)m, (28)

where SJ indicates the M ×M matrix whose mth column is the J(m)th column of S. The sum runs over all possible Child
Selections. Note that the existence of a Child Selection J such that

det(SJ) ≠ 0,

characterizes det SR ≢ 0, as a function of the variables rjm. In this case, of course, det SR may still be zero for certain values
of rjm. On the other hand, det SR ≠ 0 necessarily implies the existence of a Child Selection J with det(SJ) ≠ 0. In addition,
possible zeros of det SR may hint at saddle node bifurcations of equilibria leading to multistability regions, so that it is of
interest the sign of each coefficient det SJ, in order to detect or exclude a priori the possibility of having a zero of det SR.
This is the content of the next definition.

Definition 2 (Child Selection behavior). Let J be a Child Selection. We define the behavior coefficient 𝛽(J) as

𝛽(J) ∶= sign(det SJ). (29)

Moreover, we say that J is good if 𝛽(J) = (−1)M ; J is bad if 𝛽(J) = (−1)M−1; J zero-behaves if 𝛽(J) = 0.

Consider a metabolic network admitting a positive stable equilibrium for all reaction rates. The Jacobian of such
an equilibrium has either eigenvalues with negative real part or pairs of purely imaginary eigenvalues that are complex
conjugated. The sign of a nonsingular Jacobian, then, is always

sign det SR = (−1)M ,

which is implied, via (28), if all nonzero-behaving Child Selections are good. This is why the Child Selections with this
sign have been named “good”. Conversely, a loss of stability of an equilibrium, for example via a saddle node bifurca-
tion, necessarily requires at least one bad Child Selection. Note that a Child Selection naturally identifies a subnetwork
{M, J(M)} constituted by all the metabolites m ∈ M and the reactions j ∈ J. For a given J,23 contains a network charac-
terization of the behavior coefficient 𝛽(J) based on certain cycles in the network. As a consequence of the analysis, for
example, certain classes of Child Selections, combinatorially simple, are shown to be good; for example, acyclic Child
Selections are always good.

In Reference 18, a formula for the flux response (Φ)j
∗

j′ of reaction j′ to a reaction perturbation of j∗ ≠ j′ was derived, in
Child Selection terms:

det SR ⋅ (Φ)j
∗

j′ =
∑

j∗∉J∋j′

(

𝜑

J)j∗

j′ , (30)
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4850 VASSENA

where

(

𝜑

J)j∗

j′ ∶= − det SJ⧵j′∪j∗
∏

m∈M
rJ(m)m. (31)

In (30) the sum runs over all the Child Selections J selecting the responsive reaction j′ as image of one metabolite,
but not selecting the perturbed reaction j∗. In (31), SJ⧵j′∪j∗ indicates the M ×M matrix obtained from SJ by replacing the
stoichiometric column Sj′ , associated to reaction j′, with the column Sj∗ , associated to reaction j∗.

Formula (30) implies that the sign of the response (Φ)j
∗

j′ depends on the sign of each respond summand (𝜙J)j
∗

j′ and
on the sign of the Jacobian determinant det SR. Both (𝜙J)j

∗

j′ and det SR can be abstractly seen as multilinear homogenous
polynomials in the positive variables rjm: the response (Φ)j

∗

j′ is thus a rational function of such variables. Consequently,
the last definition is concerned with the dependence of the sign of (Φ)j

∗

j′ on the values of the positive derivatives rjm.

Definition 3. A response (Φ)j
∗

j′ is called of determinate sign if its sign does not depend on the values of the positive
derivatives rjm. On the contrary, an indeterminate sign response occurs when the sign does depend on the values of rjm.

Remark 1. Definition 3 is purely algebraic and it is based only on the network structure. In particular, it is independent
from the chosen kinetics and the value of the equilibrium x. We discuss further in the discussion Section 7 how this
definition plays a role in the interpretation of the results.

4 MAIN RESULTS

We recall the Extended Child Selections J ∪ j∗ for j∗ ∉ J, and the notation SJ∪j∗ , indicating the M × (M + 1) matrix pos-
sessing j∗ as the (M + 1)th column and the first M columns identical to SJ. We are now ready to present the main
results.

The first proposition provides a necessary condition for any nonzero response summand
(

𝜑

J)j∗

j′ ≠ 0.

Proposition 1. For a response summand
(

𝜑

J)j∗

j′ , it holds:

(

𝜑

J)j∗

j′ = 0 for all j′ ⇔ dim(ker(SJ∪j∗ )) > 1. (32)

We now state the first main theorem, on the relative sign of the responses.

Theorem 1 (Relative sign of responses). Suppose dim(ker(SJ∪j∗ ))=1, and let ker SJ∪j∗ = span⟨v⟩. Then,

1. The response summand of reaction j′ is nonzero if and only if the j′th entry of v is nonzero, that is

(

𝜑

J)j∗

j′ ≠ 0 ⇔ vj′ ≠ 0. (33)

2. The mutual sign of the response summands of reactions j′1 and j′2 is given by the mutual sign of the j′1th and j′2th entries
of v, that is

sign
(

𝜑

J)j∗

j′1
sign

(

𝜑

J)j∗

j′2
= sign(vj′1 vj′2). (34)

To proceed toward the second result of the chapter, on the specific sign of each response, we recall some lin-
ear algebra concepts, first.25 Let  be any M ×M matrix with a one-dimensional kernel. Straightforwardly, T

has one-dimensional kernel too. The cofactor matrix () of  is the matrix whose entries ()mj are given
by

()mj = (−1)m+jdet∨j
∨m, (35)

where∨j
∨m indicates the (M − 1) × (M − 1)minor of, obtained by removing row m and column j. The adjugate matrix

of, Ad(), is then defined as the transpose of the cofactor matrix () of A. That is,
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VASSENA 4851

Ad()= ()T . (36)

Moreover, we have the relation

Ad() = Ad() = det IdM = 0, (37)

where IdM is the M ×M identity matrix. Let us fix a kernel vector v, which spans ker. Equalities (37) imply that there
exists a kernel vector 𝜅 = 𝜅(v) ofT , kerT = span⟨𝜅⟩, such that

Ad() = v ⋅ 𝜅T
. (38)

In particular, any entry Ad()mj of the adjugate matrix can be expressed as:

Ad()mj = (−1)m+jdet∨m
∨j = vm 𝜅j . (39)

We are now ready to state the second main Theorem 2.

Theorem 2 (Absolute sign of responses). As in Theorem 1, let us suppose dim(ker(SJ∪j∗ ))=1, and let ker SJ∪j∗ = span⟨v⟩.
There are two cases:

1. If the Child Selection J does not zero-behave, then the j∗th entry of v is nonzero, that is, vj∗ ≠ 0, and

sign
(

𝜑

J)j∗

j′ = 𝛽(J)sign(vj∗vj′ ). (40)

2. If the Child Selection J zero-behaves, then vj∗ = 0. In particular, consider ṽ ∈ RM such that ker SJ = span⟨ṽ⟩
and ṽj = vj, for any j = 1, ...,M. For the unique kernel vector 𝜅 of (SJ)T such that Ad(SJ) = ṽ ⋅ 𝜅T, we
have

sign
(

𝜑

J)j∗

j′ = −sign(vj′⟨𝜅, Sj∗
⟩). (41)

Remark 2 (self-influence). In analogy to (30),18 provided also a formula for the case of self-influence j′ = j∗. The formula
reads

det SR (Φ)j
∗

j∗ =
∑

J∌j∗
(𝜑̃J)j

∗

j∗ (42)

where the response summands (𝜑̃J)j
∗

j∗ are

(𝜑̃J)j
∗

j∗ = det SJ
∏

m∈M
rJ(m)m. (43)

From (42), it directly follows that Theorems 1 and 2 hold also for the case of self-influence j′ = j∗. In particular, for
this special case, we obtain that

sign(𝜑̃J)j
∗

j∗ = 𝛽(J). (44)

4.1 Twin sisters have opposite influence

As already noted in Reference 18, (30) implies that if a metabolite m∗ participates only in one reaction j∗,
then any flux-response (Φ)j

∗

j′ to a reaction perturbation of j∗ is a priori zero, for any reaction j′: the formula
requires in particular the existence of a Child Selection J not selecting j∗. This interesting feature has been
named
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4852 VASSENA

Here we add another take-home feature, in this flavor. Note that any ECS J ∪ j∗ contains then at least two outgoing
reactions from a metabolite m∗, one of which is j∗. We call the reaction j∗s = J(m∗) a sister of j∗. Let now J and Js be
two Child Selections such that J(m) = Js(m) for any m ≠ m∗, J(m∗) = j∗s and Js(m∗) = j∗. The matrix SJs⧵j′∪j∗s has opposite
determinant to the matrix SJ⧵j′∪j∗ . The two matrices are indeed obtainable one from the other, via a single interchange
of the columns Sj∗ and Sj∗s . The change of sign in the determinant is a well-known property of a multilinear alternating
form. This implies, a priori, that

sign
(

𝜑

J)j∗

j′ = −sign(𝜑Js)j
∗
s

j′ . (45)

Let us now further assume that any Child Selection J maps the metabolite m∗ either to a reaction j∗ or a reaction j∗s ,
only. That is, any Child Selection J is such that J(m∗) = j∗ or J(m∗) = j∗s . In this case, the statement (45) can be strengthened
to the following proposition.

Proposition 2 (Twin sisters have opposite influence). Suppose that any Child Selection J maps the metabolite m∗ either
to j∗ or to j∗s , only. Then

rj∗m∗ (Φ)j
∗

j′ = −rj∗s m∗ (Φ)j
∗
s

j′ , for any j′. (46)

In particular,

sign(Φ)j
∗

j′ = −sign(Φ)j
∗
s

j′ , for any j′. (47)

5 EXAMPLES

In this section we present four examples to illustrate our results and some consequences of our analysis. To help visual
intuition, we provide also a graphical representation, where we consider the metabolites as vertices and the reactions
as directed hyperarrows, inheriting the orientation from the reaction orientation (10). It is one common representation,
extensively used in chemistry, biology, and mathematics.

5.1 Failure of sign-transitivity of influence

Let j1, j2, j3 be three distinct reactions. The question of sign-transitivity asks whether the sign of the influence j1 ⇝ j3
follows from the signs of the influences j1 ⇝ j2, and j2 ⇝ j3. In symbols,

j1
+
⇝ j2

+
⇝ j3

?
⇒ j1

+
⇝ j3,

or any other combinations of signs. The following toy-model provides a first clear counterexample to sign-transitivity,
showing that sign-transitivity fails.

(48)
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VASSENA 4853

The network (48) is monomolecular, that is, it is composed only by monomolecular reactions j of the form

j ∶ m1 →
j

m2, (49)

where a single metabolite m1 reacts to a single metabolite m2. As clarified in Reference 23, one of the features of
monomolecular networks is that the nonsingular Jacobian determinant is always of the “good” sign

sign(det SR) = (−1)M , (50)

and thus for Example (48), sign(det SR) = (−1)4 = 1.
The positive vector r = (3r, 2r, r, r, r, 2r, 3r)T , r ∈ R

>0, is one kernel vector of the stoichiometric matrix S, hence the
associated dynamical system admits a positive equilibrium x and we can perform our sensitivity analysis. We show in
detail the following counterexample to sign-transitivity:

1
+
⇝ 3

+
⇝ 5 but 1

−
⇝ 5. (51)

Consider a perturbation of reaction 1. According to our Theorems, we have first to find Child Selections J such that
1 ∉ J. There are two of such Child Selections, only, depending on J(B):

{

J3 ∶= {J3(A) = 2; J3(B) = 3; J3(C) = 5; J3(D) = 6}
J4 ∶= {J4(A) = 2; J4(B) = 4; J4(C) = 5; J4(D) = 6}

(52)

For both Child Selections it holds:

det SJi = 1, i = 3, 4 (53)

Automatically, then, for both Extended Child Selections J3 ∪ 1 and J4 ∪ 1, we have that

dim ker SJi∪1 = 1, i = 3, 4, (54)

and thus Theorem 2, part 1, applies. Let

ker SJi∪1 = span⟨vJi⟩, i = 3, 4.

We have that

vJ3 =

1
2
3
4
5
6

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
⎣

w
−w
w
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
⎦

; vJ4 =

1
2
3
4
5
6

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
⎣

w
−w

0
w
−w

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
⎦

, for w ∈ R. (55)

Since vJ3
1 vJ3

3 > 0 and vJ4
3 = 0, we obtain that the response of reaction 3 to a perturbation of reaction 1 is positive:

(Φ)13 =
(

𝜑

J3
)1

3 +
(

𝜑

J4
)1

3 =
(

𝜑

J3
)1

3 > 0, that is 1
+
⇝ 3.

On the contrary, since vJ3
5 = 0 and vJ4

1 vJ4
5 < 0, we obtain that the response of reaction 5 to a perturbation of reaction 1 is

negative:
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4854 VASSENA

(Φ)15 =
(

𝜑

J3
)1

5 +
(

𝜑

J4
)1

5 =
(

𝜑

J4
)1

5 < 0, that is 1
−
⇝ 5.

Now consider a perturbation of reaction 3. To check that (Φ)35 > 0, consider all Child Selections J such that 3 ∉ J. Again,
we have only two of those, depending on the image of the metabolite A.

{

J1 ∶= {J1(A) = 1; J1(B) = 4; J1(C) = 5; J1(D) = 6}
J2 ∶= {J2(A) = 2; J2(B) = 4; J2(C) = 5; J2(D) = 6}

(56)

In complete analogy as above, for both Child Selections it holds:

det SJi = 1, i = 1, 2 (57)

Again, for both Extended Child Selections J1 ∪ 3 and J2 ∪ 3, we have that

dim ker SJi∪3 = 1, i = 1, 2, (58)

and again Theorem 2, part 1, applies. Let

ker SJi∪3 = span⟨vJi⟩, i = 1, 2.

Importantly note that for different Child Selections J1, J2, we have

vJ1 = vJ2
, and vJi =

1
2
3
4
5
6

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
⎣

0
0
w
−w
w
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
⎦

; for w ∈ R, i = 1, 2. (59)

Since both vJ1
3 vJ1

5 > 0 and vJ2
3 vJ2

5 > 0, we obtain that the response of reaction 5 to a perturbation of reaction 3 is positive:

(Φ)35 =
(

𝜑

J1
)3

5 +
(

𝜑

J2
)3

5 > 0, that is 3
+
⇝ 5.

In conclusion, we have showed (51). Other sign combinations follow in analogy. From the same example:

2
−
⇝ 1

−
⇝ 5, 2

+
⇝ 5.

1
+
⇝ 4

−
⇝ 5, 1

−
⇝ 5,

1
+
⇝ 4

−
⇝ 3, 1

+
⇝ 3.

2
−
⇝ 1

+
⇝ 3, 2

−
⇝ 3.,

2
−
⇝ 3

+
⇝ 5, 2

+
⇝ 5.

All remaining possible cases, including indeterminate sign responses, are easily constructible with analogous new
examples, and we omit them here.

5.2 The responses for a zero-behaving Child Selection

We exemplify Theorem 2, part 2, by considering a zero-behaving Child Selection J of a nonspecified network 𝚪 of seven
metabolites: m∗, A, B, C, D, E, F.
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VASSENA 4855

(60)

We study the response summands
(

𝜑

J)j∗

j′ of reactions j′ = J(A), J(B), J(C), J(D), J(E), J(F), to a perturbation of the dashed
reaction j∗. They are summands in the responses Φj∗

j′ , for j′ = J(A), J(B), J(C), J(D), J(E), J(F) respectively. Note that the
response summands relative to a Child Selection J are independent from the full network 𝚪.

The matrix SJ is singular, and the vector v = (0,w,w,w,−w,−w,−w)T , w ∈ R, is a kernel vector of SJ. Moreover,

dim(ker SJ) = 1 and thus ker SJ = span⟨v⟩. (61)

Now, the adjugate matrix Ad(SJ) is

Ad(SJ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
⎣

0 0 0 0 0 0 0
0 1 1 0 −1 −1 0
0 1 1 0 −1 −1 0
0 1 1 0 −1 −1 0
0 −1 −1 0 1 1 0
0 −1 −1 0 1 1 0
0 −1 −1 0 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
⎦

, (62)

and the choice 𝜅 = (0, 1
w
,

1
w
, 0,− 1

w
− 1

w
, 0)T of the kernel vector of (SJ)T satisfies

v ⋅ 𝜅T = Ad(SJ). (63)

For simplicity of computation, we can consider in particular the choice w = 1, so that v = (0, 1, 1, 1,−1,−1,−1)T and
𝜅 = (0, 1, 1, 0,−1 − 1, 0)T . Firstly we compute

−⟨𝜅, Sj∗
⟩ = −1 ⋅ −2 = +2. (64)

According to Theorem 2, the signs of the response summands
(

𝜑

J)j∗

j′ for j′ = J(A), J(B), J(C), J(D), J(E), J(F), are:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪
⎩

sign
(

𝜑

J)j∗

J(A) = sign(−⟨𝜅, Sj∗
⟩ vJ(A)) = sign(+2 ⋅ 1) > 0.

sign
(

𝜑

J)j∗

J(B) = sign(−⟨𝜅, Sj∗
⟩ vJ(B)) = sign(+2 ⋅ 1) > 0.

sign
(

𝜑

J)j∗

J(C) = sign(−⟨𝜅, Sj∗
⟩ vJ(C)) = sign(+2 ⋅ 1) > 0.

sign
(

𝜑

J)j∗

J(D) = sign(−⟨𝜅, Sj∗
⟩ vJ(D)) = sign(+2 ⋅ −1) < 0.

sign
(

𝜑

J)j∗

J(E) = sign(−⟨𝜅, Sj∗
⟩ vJ(E)) = sign(+2 ⋅ −1) < 0.

sign
(

𝜑

J)j∗

J(F) = sign(−⟨𝜅, Sj∗
⟩ vJ(F)) = sign(+2 ⋅ −1) < 0.

(65)
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4856 VASSENA

5.3 Indeterminate sign Jacobian does not imply indeterminate sign response

Definition 3 introduces the notion of determinacy for the response signs. Clearly, the same definition identically applies to
the Jacobian determinant det SR. In the context of sensitivity analysis, a natural question arises for a Jacobian of indeter-
minate sign, that is, when sign det SR depends on the values of the derivatives rjm. The question asks whether a Jacobian
of indeterminate sign automatically implies that all responses (Φ)j

∗

j′ are of indeterminate sign. In other words, for

(Φ)j
∗

j′ =

∑

j∗∉J∋j′
(

𝜑

J)j∗

j′

det SR
,

we ask whether we can exclude that the numerator and denominator switch sign at a same shared root. The answer is
negative, cancelations between numerator and denominator may occur, and there may be determinate sign responses even
in presence of an indeterminate sign Jacobian. The following example has been intentionally designed to illustrate such a
case.

(66)

A positive kernel vector of S is r = (r, r, r, 2r, 3r)T , r ∈ R
>0, hence the associated dynamical system admits a positive

equilibrium x and the network suits our analysis. There are three Child Selections.

⎧

⎪

⎨

⎪
⎩

J1 ∶= {J1(A) = 1; J1(B) = 4; J1(C) = 5}
J2 ∶= {J2(A) = 2; J2(B) = 4; J2(C) = 5}
J3 ∶= {J3(A) = 3; J3(B) = 4; J3(C) = 5}

(67)

The sign of the Jacobian determinant is indeterminate. Indeed,

det SR =
∑

J
det SJ

∏

m∈M
rJ(m)m

= det SJ1
∏

m∈M
rJ1(m)m + det SJ2

∏

m∈M
rJ2(m)m + det SJ3

∏

m∈M
rJ3(m)m

= −1 ⋅
∏

m∈M
rJ1(m)m + 1 ⋅

∏

m∈M
rJ2(m)m + 0 ⋅

∏

m∈M
rJ3(m)m

= (r2A − r1A)r4Br5C. (68)

At the parameter value r1A = r2A, det SR switches sign. Via formula (30), the flux response (Φ)34 of reaction 4 to a
perturbation of reaction 3 reads:

(Φ)34 =
∑

4∈J∌3
(

𝜑

J)3
4

det SR
= −

(

𝜑

J1
)3

4 +
(

𝜑

J2
)3

4

(r2A − r1A)r4Br5C

=
− det SJ1⧵4∪3 ∏

m∈M rJ1(m)m − det SJ2⧵4∪3 ∏
m∈M rJ2(m)m

(r2A − r1A)r4Br5C
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VASSENA 4857

=
−1 ⋅

∏

m∈M rJ1(m)m − (−1) ⋅
∏

m∈M rJ2(m)m

(r2A − r1A)r4Br5C

= (r2A − r1A)r4Br5C

(r2A − r1A)r4Br5C
= 1. (69)

This concludes that (Φ)34 ≡ 1 has determinate sign, with no dependence at all on reaction rates parameters, even if the
Jacobian det SR is of indeterminate sign.

5.4 Subnetwork patterns

The results of this paper draw attention to certain subnetworks associated to Extended Child Selections J ∪ j∗, for j∗ ∉
J, whose associated matrix SJ∪j∗ has a 1-dim kernel. It is of great importance, then, to easily identify such relevant
subnetworks.

Consider firstly Child Selections J such that

det SJ
≠ 0. (70)

Condition (70) can be characterized on a network level.23 Then, for j∗ ∉ J,

dim ker SJ∪j∗ = 1. (71)

On the other hand, we lack network characterizations of Child Selections J such that

det SJ = 0, with dim ker SJ = 1, (72)

which is an obvious necessary condition for

dim ker SJ∪j∗ = 1 with j∗ ∉ J. (73)

One attractive possibility to detect such zero-behaving Child Selections with 1-dim kernels might be to have atomic
patterns, in the following sense. Let us assume that we consider only a small, ‘atomic’, part 𝚪atm of a network 𝚪; for
example, a reversible reaction from metabolite A to metabolite B.

(74)

Above, Satm is the stoichiometric matrix of the subnetwork 𝚪atm. Note, in particular, that dim(ker Satm) = 1. Let S be
the stoichiometric matrix of the whole network 𝚪. Under our standing nondegeneracy assumption det SR ≠ 0, for the
whole network 𝚪,

Can we imply the existence of a Child Selection J for 𝚪,
such that J(A) = 1, J(B) = 2 and dim(ker SJ) = 1? (75)

This question possibly has an affirmative answer for most biological networks, so that it may still be a valid strategy
in applications. However, on a purely mathematical basis the answer to the question (75) is negative. We show this in the
following network 𝚪.
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4858 VASSENA

(76)

A positive kernel vector of S is r = (2r, r, r, r, r, r, r, 2r, r)T , r ∈ R
>0, hence the associated dynamical system admits a

positive equilibrium x and the network suits our analysis. Due to injectivity, there is only one nonzero-behaving Child
Selection ̃J, and the nondegeneracy assumption det SR ≠ 0 holds. In fact, consider the Child Selection

̃J ∶= {̃J(A) = 1; ̃J(B) = 4; ̃J(C) = 5; ̃J(D) = 6; ̃J(E) = 7}, (77)

with associated nonsingular stoichiometric matrix

(78)

hence

det SR = det S̃J
∏

m∈M
r
̃J(m)m =

∏

m∈M
r
̃J(m)m ≠ 0.

Reactions 2 and 3 and their input metabolites A and B constitute a degenerate subnetwork 𝚪atm ⊂ 𝚪whose stoichiometric
matrix Satm reads:

(79)

We show that it is not possible to extend the Child Selection {Jatm(A) = 2, Jatm(B) = 3} on 𝚪atm to a Child Selection
J23 on 𝚪 such that dim(ker SJ23) = 1. Indeed, there is only one possible Child Selection J23 of Γ with 2, 3 ∈ J23, that is:

J23 ∶= {J23(A) = 2; J23(B) = 3; J23(C) = 5; J23(D) = 6; J23(E) = 7}, (80)

with associated stoichiometric matrix

(81)

which possesses a 2-dimensional kernel, ker(SJ23) = span⟨v1
, v2

⟩ where v1 = (1, 1, 0, 0, 0)T and v2 = (1, 0, 1, 1, 0)T .
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VASSENA 4859

6 METABOLITE PERTURBATION

It may be of interest for the reader a brief discussion on metabolite perturbation, rather than reaction perturbation. This
case is extendedly treated in a dedicated paper,21 where more details can be found. This section is intended only as a brief
overview on the topic, with the aim of keeping this paper as self-contained as possible.

Within our setting, a natural possibility to include metabolite perturbations of equilibria is the following perturbed
equation (cf. (6)):

0 = Sr(x) + 𝜀em∗ . (82)

Equation 82 perturbs the metabolite m∗ by adding a constant inflow to it. Such perturbation has been considered for
example by the ecology community4,5 with the name of ‘press experiments’. Under the standing assumption det SR ≠ 0
and along the lines of Section 3, we may investigate the response 𝛿xm∗

m′ of the concentration of the metabolite m′ and the
response Φm∗

j′ of the flux of the reaction j′. We obtain the following relations:

𝛿xm∗

m′ = −((SR)−1em∗ )m′ and Φm∗

j′ = −[R(SR)−1em∗ ]j′ . (83)

Let p′ indicate m′ or j′, indistinctly. A nonzero response of p′ is called nonzero influence of m∗ on p′ and indicated by

m∗ ⇝ p′.

Note that the above equation can be interpreted as a reaction perturbation of an inflow reaction to m∗. This is confirmed
by the parallelism between responses (25), (26), and (83). Thus, mathematically, this type of metabolite perturbation is a
subcase of the more general reaction perturbation. However, it is worth mentioning two counterintuitive features of this
case. Firstly, the response of m∗ may be zero upon a perturbation of m∗ itself. That is, adding an 𝜀-inflow to m∗, the new
equilibrium may have the same concentration of metabolite m∗, thus self-influence does not always happen:

m∗ ⇝∕ m∗
.

Secondly, transitivity of influence does not hold for this case of influence:

m1 ⇝ m2 ⇝ m3 ⇒∕ m1 ⇝ m3.

The transitivity failure is not due to a discrepancy between reaction perturbation and metabolite perturbation, of course:
the failure is only due to the different algebraic structure of the metabolite response 𝛿xm compared to the flux responseΦj.

Explicit examples of both features can be found in Reference 21 and we omit them here.

7 DISCUSSION

We have addressed the sign of flux sensitivities to perturbations of the network components and identified certain kernel
vectors of the stoichiometric matrix, which encode the signs. These kernel vectors are constructed by considering a Child
Selection J and a reaction j∗ such that j∗ ∉ J. Each Extended Child Selection (ECS) J ∪ j∗ identifies a M × (M + 1) minor
SJ∪j∗ of the stoichiometric matrix. When such minor has a 1-dim kernel, its kernel is spanned by a single vector v ∈ RM+1,

ker SJ∪j∗ = span⟨v⟩.

These kernels v, which we have named ECS kernel vectors, are the precise network structures encoding the signs of the
responses, in the sense explained in Section 4. Note that, for any matrix with 1-dim kernel, the support, that is, nonzero
entries, of any nontrivial kernel vector is uniquely defined. This implies, trivially, that the support of such kernel vectors
does not properly contain the support of any other kernel vector. Such property defines what in literature has been named
elementary kernel vectors, mathematically studied by Rockafellar.26 Note also that to each ECS vector v we can naturally
associate a unique kernel vector vS ∈ RN of the full stoichiometric matrix S by considering
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4860 VASSENA

vS
j =

{

vj if j ∈ J ∪ j∗,
0 otherwise.

(84)

In this sense, ECS vectors are in particular special elementary kernel vectors of the stoichiometric matrix S. Interest-
ingly, the importance of elementary kernel vectors of the stoichiometric matrix in metabolic networks has already been
noted. Important concepts as elementary flux modes27 and elementary flux vectors28 have arisen in a different metabolic
context from the one treated in the present paper, with connections yet to be investigated in detail.

In this article we have not addressed computational issues related to computing such ECS kernel vectors. The number
of Child Selections nJ can be estimated:

nJ ≤
∏

m
nJ(m), (85)

where nJ(m) is the number of reactions j of which m is an input metabolite. The inequality is due to the injectivity
assumption in Definition 1, and the equality is thus obtained only if no two metabolites m1 and m2 are input of a same
reaction j; that is, each reaction in the network possesses only one metabolite input, for example, in monomolecular net-
works. In particular, nJ grows exponentially with the number of the metabolites m. However, an algorithm considering
each Child Selection J and each reaction j∗ ∉ J may not be the most efficient. In fact, as we found in Example 5.1, (59), to
two different Child Selections J1, J2, and a reaction j∗ ∉ J1, J2, may correspond the same single ECS kernel vector. In other
words, there may be much fewer ECS kernel vectors than Extended Child Selections. An efficient computing algorithm
would be of great help in making the results of the present paper more operative for daily analysis on real biological
networks.

Example 5.1 presented a simple counterexample to sign-transitivity of influence. With such result, the question of
transitivity of influence in metabolic networks is answered. We summarize it here, for sake of clarity. Firstly, we recall a
positive result of Reference 18 on the topic:

Theorem 3 (Brehm-Fiedler). Let p1 and p2 be elements in a metabolic network, either metabolites or reactions. Let j′ be
any reaction and m′ one of its input metabolites.

1. If p1 ⇝ m′ and j′ ⇝ p2, then p1 ⇝ p2.
2. If p1 ⇝ j′ and j′ ⇝ p2, then p1 ⇝ p2.

In Reference 21, it is proven that Theorem 3 does not extend to the metabolite case. That is,

p1 ⇝ m′ and m′ ⇝ p2, ⇒∕ p1 ⇝ p2,

and the present paper shows that no sign-transitivity result hold. That is,

p1
+
⇝ p2

+
⇝ p3 ⇒∕ p1

+
⇝ p3,

or any other combination of sign. In conclusion, Theorem 3 covers all transitivity properties and no more general result
holds.

We started this article with three questions: we discuss here answers. Theorem 1 indicates which reaction j∗ should
be perturbed to achieve an influence on j′: at least one of the ECS kernel vectors v associated to j∗ must have a
nonzero j′th entry, v′j ≠ 0. For the control of the response sign, we must distinguish determinate or indeterminate
sign. If determinate, the sign of a response is robust: it is independent from the equilibrium value x and from any
chosen kinetics. In particular, the sign is the same for all choices of reaction rates. The only naive way to control a
nonzero sign is changing the perturbation itself. For instance, Section 4.1 describes the lucky case in which any Child
Selection maps a metabolite m∗ either to j∗ or j∗s , only: the flux-responses to a perturbation of j∗ have always oppo-
site sign to the responses to a perturbation of j∗s . Hence, for a positive influence on the flux of j′, we may just choose
between perturbing j∗ or j∗s . Alternatively, we may consider a sign switch of the perturbation. Indeed, consider a nega-
tive perturbation of 𝜀̃ = −𝜀 ≤ 0: by linearity, the responses to a 𝜀̃-perturbation have opposite sign of the responses to a
𝜀-perturbation.
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VASSENA 4861

More interestingly, for a fixed perturbation, if a response (Φ)j
∗

j′ is of indeterminate sign, different values of the reaction
rates may produce different signs of (Φ)j

∗

j′ . In this sense, the control of the response sign may be possible via a careful choice
of the reaction rates, alone. However, this does strongly depend on the class of nonlinearities r, the kinetics. Metabolic
networks are usually endowed with enzymatic kinetics as, for example, Michaelis–Menten

rj(x) = aj
∏

m∈M

(

xm

(1 + bm
j xm)

)sj
m

, (86)

where sj
m is the stoichiometric coefficient of metabolite m in the reaction j, and aj and bm

j are positive parameters. The
reason for this choice is that the reactions appearing in the network only describe relations between metabolites. However,
also other chemicals may be involved, in particular enzymes. The presence of enzymes is taken in account not by the
stoichiometry of the network but indeed by choosing enzymatic kinetics rather than an elementary kinetics, such as mass
action

rj(x) = cj
∏

m∈M
xsj

m
m , (87)

where again sj
m is the stoichiometric coefficient of metabolite m in the reaction j, and cj is one single positive parame-

ter. A mathematical advantage of Michaelis-Menten over mass action is the greater richness of parameters, as #inputs+1
parameters appear in the rate of any reaction j, where #inputs indicates the number of input metabolites to reaction j. This
parametric richness has important consequences for the control of the sign of the responses. In fact, in Michaelis-Menten
(86), a careful choice of the positive parameters aj and bm

j enables us to consider, at any fixed equilibrium x, the derivatives
rjm(x) as free positive parameters, independent from each other and from the equilibrium x itself. We refer again to Refer-
ence 23 for an explicit computation of this mathematical fact. For what concerns the present paper, in the case of a kinetics
as parametrically rich as Michaelis–Menten, there always exist choices of reaction rate parameters so that a response of
indeterminate sign can be controlled to be positive, negative, or zero. For parametrically poorer kinetics, as mass action,
this freedom is missing: only one single parameter cj appears in the rate of each reaction j. Thus, for mass action, further
analysis must be performed to fully understand and possibly control the actual sign of a response of indeterminate sign.
A viable and valid strategy may be carefully choosing also the equilibrium value x, oppositely to the approach presented
in this paper, where we have considered x fixed. However, consider a metabolite m that is input to two reactions j1 and j2.
Clearly, an ‘equilibrium parameter’ xm may appear in both the mathematical expressions of the derivatives rj1m and rj2m.
Contrarily to our approach then, if the equilibrium x itself is treated as a parameter, we may not consider rj1m and rj2m as
parametrically independent, even in the Michaelis-Menten case. This indeed requires further analysis, untouched by this
article.

Throughout the article, we have assumed the nondegeneracy assumption (22)

det SR ≠ 0,

where SR is the Jacobian matrix of the system, which excludes left kernels (conserved quantities) of the stoi-
chiometric matrix S. We do not exclude that it may be mathematically possible to relax (22) to include such
case. We have not pursued this in the present paper both to a greater mathematical clarity of the content and
because the assumption (22) already allows important examples in a metabolic context, due to the omnipresence of
outflows.

Based on the implicit function theorem, the present theory appears firstly as a local theory, valid only for small per-
turbations. However, an interpolation argument proposed in Reference 18 lifts formula (30), and consequently these
sensitivity results, to account also for large perturbations, in the case of zero-versus-nonzero response analysis. Of
course, a further assumption on the existence of an equilibrium of the largely perturbed system must be added. Then
the flux responses to a large perturbation follow the same algebraic description as in the local case. In particular, the
interpolation argument works identically also for the sign analysis presented in the present paper. However, careful-
ness is strongly required here, as we can never choose the parameters independently from the equilibrium, as it is
possible locally for parametrically rich kinetics. This implies that, if the sign of a response is determinate, that is, not
depending on parameters, then the sign of the response does not depend on the amplitude of the perturbation. On the

 10991239, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5896 by Freie U

niversitaet B
erlin, W

iley O
nline L

ibrary on [19/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4862 VASSENA

contrary, in the case of a response of indeterminate sign, that is, depending on parameters, a positive response for a
small perturbation may become a negative response for a large perturbation, even for parametrically rich kinetics as
Michaelis-Menten.

In applications, the system is often considered to have a unique stable equilibrium, for any choice of reaction rates.
Under the nondegeneracy assumption (22), this requires that the Jacobian determinant det SR is of the determinate
sign

sign det SR = (−1)M , (88)

since all M eigenvalues have negative real part, or are purely imaginary complex conjugated pairs. Via expansion (28),
that is,

det SR =
∑

J
det SJ ⋅

∏

m∈M
rJ(m)m,

it is easy to see that an obvious sufficient condition for (88) is that all Child Selections are good, that is

𝛽(J) = sign det SJ
≡ (−1)M , for any J.

In particular, trivially, sign det SR = 𝛽(J), for any J. For such special but relevant case, we can express better the sign of
the response (Φ)j

∗

j′ . Indeed, via (30) we have

sign(Φ)j
∗

j′ =
sign

(
∑

j∗∉J∋j′
(

𝜑

J)j∗

j′

)

sign det SR
= 𝛽(J)sign(

∑

j∗∉J∋j′

(

𝜑

J)j∗

j′ ), (89)

but, via (40), for each J, such that j∗ ∉ J ∋ j′,

𝛽(J)sign
(

𝜑

J)j∗

j′ = 𝛽(J)𝛽(J)sign(vJ∗
j∗ vJ∗

j′ ) = sign(vJ∗
j∗ vJ∗

j′ ), (90)

where the notation vJ∗ indicates here the usual ECS kernel vector such that

SJ∪j∗vJ∗ = 0.

Clearly, then, the response (Φ)j
∗

j′ is of indeterminate sign if and only if there are two Child Selections J1 and J2, such that
j∗ ∉ J1, J2, j′ ∈ J1, J2, and the associated ECS kernel vectors vJ∗1 and vJ∗1 are such that

vJ∗1
j∗ vJ∗2

j′ < 0 < vJ∗2
j∗ vJ∗2

j′ . (91)

Interesting questions still arise in the much more challenging case of an indeterminate sign Jacobian. On
the one hand, we have showed in Example 5.3 that cancelations may occur between the numerator and the
denominator of

(Φ)j
∗

j′ =

∑

j∗∉J∋j′
(

𝜑

J)j∗

j′

det SR
,

so that an indeterminate sign of the Jacobian determinant does not a priori imply the indeterminate sign of
the responses. On the other hand, the example is artificially constructed and this quite surprising feature may
not often happen in real biological networks. Addressing and characterizing in more detail network conditions
leading to such cancelations is of great interest for future work: if cancelations are excluded, the sign of all
responses undergoes a simultaneous switch at the zero of the Jacobian, at the same bifurcation point of a possible
saddle-node bifurcation, connecting the control of the sign of the sensitivity responses to stability properties of the
equilibrium.
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VASSENA 4863

8 PROOFS

We start this section with the proof of Proposition 1.

Proof of Proposition 1. Preliminarily, note that ker(SJ∪j∗ ) ≠ ∅, since SJ∪j∗ is a M × (M + 1) matrix. Hence, the dimension
of the kernel is either 1 or greater than 1. Moreover, by Formula (31),

(

𝜑

J)j∗

j′ ≠ 0 ⇔ det(SJ⧵j′∪j∗ ) ≠ 0. (92)

Firstly, assume that dim(ker(SJ∪j∗ )) > 1.

dim(ker(SJ∪j∗ )) > 1 ⇒ ker(SJ⧵j′∪j∗ ) ≠ ø, for all j′ ∈ J

⇒
(

𝜑

J)j∗

j′ = 0, for all j′ ∈ J. (93)

Conversely, assume that dim(ker(SJ∪j∗ )) = 1. We have

dim(ker(SJ∪j∗ )) = 1 ⇒ rankSJ∪j∗ = M

⇒ ∃ det(SJ⧵j′∪j∗ ) ≠ 0 ⇒ ∃ j′ such that
(

𝜑

J)j∗

j′ ≠ 0. (94)
▪

Proof of Theorem 1. The proof is based on a careful use of Cramer’s rule. 1) We prove that

(

𝜑

J)j∗

j′ ≠ 0 ⇔ vj′ ≠ 0. (95)

The first step is to make the matrix SJ∪j∗ an invertible (M + 1) × (M + 1) matrix Nb by adding in the (M + 1)th row a
proper row vector bT , that is

Nb ∶=

[

SJ∪j∗

bT

]

. (96)

Secondly, we compute:
[

SJ∪j∗

bT

]

⋅ v =
⎡

⎢

⎢
⎣

0

⟨b, v⟩

⎤

⎥

⎥
⎦

. (97)

Above, 0 refers to the M-dimensional zero vector. Note that ⟨b, v⟩ ≠ 0, since Nb is invertible. We now apply Cramer’s
rule to the j′th entry of v and find that

(98)

The conclusion follows by noting that

vj′ ≠ 0 ⇔ det SJ⧵j′∪j∗
≠ 0 ⇔

(

𝜑

J)j∗

j′ ≠ 0. (99)
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4864 VASSENA

2) Equality (98), in particular, holds for any two vj′1 , vj′2 ≠ 0, with j′1, j
′
2 ∈ J. We can divide one equality by the other

obtaining

vj1′

vj2′
= det SJ⧵j1′∪j∗

det SJ⧵j2′∪j∗
=

(

𝜑

J)j∗

j′1
(

𝜑

J
)j∗

j′2

. (100)

Passing to the sign operator gives the desired equality. ▪

Proof of Theorem 2. Firstly, let us observe that, under the one-dimensional condition ker SJ∪j∗ = span⟨v⟩, we have

det SJ = 0 ⇔ vj∗ = 0. (101)

1) Now, let us assume det SJ ≠ 0, that is, vj∗ ≠ 0. By Cramer’s rule,

(102)

Comparison of the equalities between (98) regarding vj′ and (102) regarding vj∗ implies:

vj′

vj∗
= − det SJ⧵j′∪j∗

det SJ . (103)

Passing to the sign operator yields

sign(vj′vj∗ ) = 𝛽(J)sign
(

𝜑

J)j∗

j′ . (104)

2) The case of
(

𝜑

J)j∗

j′ = 0 is trivially proven. Indeed, by Theorem 1 case (1),

(

𝜑

J)j∗

j′ = 0 ⇔ vj′ = 0,

and thus (41) holds. Assume then
(

𝜑

J)j∗

j′ ≠ 0, and consider the (M + 1) × (M + 1) matrix

Nj′ ∶=

[

SJ∪j∗

eT
j′

]

, (105)

where ej′ indicates the j′th unit vector in RM+1. Note that

det(Nj′) = (−1)j′+M+1(−1)M−j′ det(SJ⧵j′∪j∗ ) = − det(SJ⧵j′∪j∗ ). (106)

Hence,

0 ≠ sign
(

𝜑

J)j∗

j′ = −sign det(SJ⧵j′∪j∗ ) = sign det(Nj′ ). (107)

To compute det(Nj′ ), we consider

det(Nj′ ) = det(NT
j′ ) = det

[

(SJ)T ej′

(Sj∗ )T 0

]

. (108)

Let us consider ṽ ∈ RM such that ker SJ = span⟨ṽ⟩ and ṽj = vj, for any j = 1, ...,M.
Now, for square matrices, dim coker(SJ) = dim ker(SJ). Let us choose the vector 𝜅 ∈ RM such that,
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VASSENA 4865

ker (SJ)T = span⟨𝜅⟩, (109)

and

Ad(SJ) = ṽ × 𝜅T
. (110)

Let us set 𝜅̃ = (𝜅, 0)T . Again:

NT
j′ × 𝜅̃ =

⎡

⎢

⎢
⎣

0

⟨Sj∗
, 𝜅⟩

⎤

⎥

⎥
⎦

. (111)

Let us pick an entry 𝜅i ≠ 0 and, one more time by Cramer’s, we obtain:

(112)

Above, again, (SJ)∨j′
∨i indicates the matrix with removed column j′ and row i.

Now, noting that

(−1)i+j′ det (SJ)∨j′
∨i = (AdSJ)j′i = vj′𝜅i (113)

leads to the complete chain of equalities:

sign
(

𝜑

J)j∗

j′ = −sign det(SJ⧵j′∪j∗ ) = sign det(Nj′ ) = sign det(NT
j′ )

= −sign(vj⟨Sj∗
, 𝜅⟩), (114)

which concludes our proof. ▪

Proof of Proposition 2. We have assumed that any Child Selection J contains either j∗ or j∗s , as a child reaction of m∗.
Let us pick the influence of j∗ on any j′ ≠ j∗, j∗s . Via Formula (30):

det SR ⋅ rj∗m∗ ⋅ (Φ)j
∗

j′ = −
∑

j∗∉J∋j′
det SJ∖j′∪j∗ ⋅ rj∗m∗ ⋅

∏

m∈M
rJ(m)m

= +
∑

j∗s∉̃J∋j′
det S̃J∖j′∪j∗s ⋅ rj∗s m∗

∏

m∈M
r
̃J(m)m

= − det SR ⋅ rj∗s m∗ ⋅ (Φ)j
∗
s

j′ . (115)

To check the central step above, note that any Child Selection, which does not contain j∗, must contain j∗s , the ‘twin
sister’ of j∗. Hence, with only one column swap j∗ ↔ j∗s , the matrix SJ∖j′∪j∗ , for a Child Selection J ∌ j∗ becomes the matrix
S̃J∖j′∪j∗s for a Child Selection ̃J ∌ j∗s . The step follows since the determinant is an alternating form.

Cases j∗ = j′ and j∗s = j′ follow analogously by considering Formula (42) instead. We omit the computation here. ▪
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