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Summary

We consider the following question in infinite Ramsey theory, introduced by Erdős and

Galvin [EG93] in a particular case and by DeBiasio and McKenney [DM19] in a more

general setting. Let H be a countably infinite graph. If the edges of the complete

graph on N are colored red or blue, what is the maximum value of λ such that we are

guaranteed to find a monochromatic copy of H whose vertex set has upper density at

least λ? We call this value the Ramsey density of H.

The problem of determining the Ramsey density of the infinite path was first studied

by Erdős and Galvin, and was recently solved by Corsten, DeBiasio, Lang and the

author [CDLL19]. In this thesis we study the problem of determining the Ramsey

density of arbitrary graphs H. On an intuitive level, we show that three properties of

a graph H have an effect on the Ramsey density: the chromatic number, the number

of components, and the expansion of its independent sets. We deduce the exact value

of the Ramsey density for a wide variety of graphs, including all locally finite forests,

bipartite factors, clique factors and odd cycle factors. We also determine the value of

the Ramsey density of all locally finite graphs, up to a factor of 2.

We also study a list coloring variant of the same problem. We show that there exists a

way of assigning a list of size two to every edge in the complete graph on N such that,

in every list coloring, there are monochromatic paths with density arbitrarily close to 1.
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Zusammenfassung

Wir betrachten die folgende Fragestellung aus der Ramsey-Theorie, welche von Erdős

und Galvin [EG93] in einem Spezialfall sowie von DeBiasio und McKenney [DM19]

in einem allgemeineren Kontext formuliert wurde: Es sei H ein abzählbar unendlicher

Graph. Welches ist der größtmögliche Wert λ, sodass wir, wenn die Kanten des vollständi-

gen Graphen mit Knotenmenge N jeweils entweder rot oder blau gefärbt sind, stets eine

einfarbige Kopie von H, dessen Knotenmenge eine obere asymptotische Dichte von min-

destens λ besitzt, finden können? Wir nennen diesen Wert die Ramsey-Dichte von H.

Das Problem, die Ramsey-Dichte des unendlichen Pfades zu bestimmen wurde erstmals

von Erdős und Galvin untersucht und wurde vor kurzem von Corsten, DeBiasio, Lang

und dem Autor [CDLL19] gelöst. Gegenstand der vorliegenden Dissertation ist die Bes-

timmung der Ramsey-Dichten von Graphen. Auf einer intuitiven Ebene zeigen wir, dass

drei Parameter eines Graphen die Ramsey-Dichte beeinflussen: die chromatische Zahl,

die Anzahl der Zusammenhangskomponenten sowie die Expansion seiner unabhängigen

Mengen. Wir ermitteln die exakten Werte der Ramsey-Dichte für eine Vielzahl von

Graphen, darunter alle lokal endlichen Wälder, bipartite Faktoren, Kr-Faktoren sowie

Ck-Faktoren für ungerade k. Ferner bestimmen wir den Wert der Ramsey-Dichte aller

lokal endlichen Graphen bis auf einen Faktor 2.

Darüber hinaus untersuchen wir eine Variante des oben beschriebenen Problems für

Listenfärbungen. Wir zeigen, dass es möglich ist, jeder Kante des vollständigen Graphen

mit Knotenmenge N eine Liste der Größe Zwei zuzuweisen, sodass in jeder zugehörigen

Listenfärbung monochromatische Pfade mit beliebig nah an 1 liegender Dichte existieren.
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Chapter 1

Introduction

The field of Ramsey theory studies the partitioning of discrete structures, and the pat-

terns that necessarily appear in such partitions. A typical Ramsey theory question can

be phrased in the following form: if the elements of [discrete structure] are partitioned

into a fixed number of classes in any way we want, do we always find a [substructure] in

which every element belongs to the same class?

For example, a classic result of Erdős and Szekeres [ES35] can be stated as follows: if

every edge in Kn with n =
(

2k−2
k−1

)
is colored red or blue, then the resulting graph always

contains a monochromatic copy of Kk. Here, the structure that we partition is E(Kn),

and the substructure that we look for is the set of edges in a k-clique. Observe that

we describe the partition into two classes (the class of red edges and the class of blue

edges) as a color assignment. Indeed, it is common in Ramsey theory to talk about

colorings instead of partitions, since for our purposes it is an equivalent concept. When

the partition has two classes, they are usually assigned the colors red and blue.

Although there had been some earlier results that fit into this framework, a 1929 paper

by Ramsey [Ram30] is considered a turning point in the namesake theory. While graphs

are one of the most widely studied structures in connection to Ramsey theory, over the

decades the theory has been applied to colorings of hypergraphs, arithmetic structures,

geometric spaces, function spaces or partially ordered sets, to name a few [Gra07].

When the structures studied are finite, much emphasis is often placed in quantitative

results. Consider the theorem of Erdős and Szekeres above. What is the smallest

function R(k) which can replace the n in this statement? The number R(k) is called

the k-th diagonal Ramsey number, and determining the asymptotics of these numbers is

considered one of the most important open questions in Ramsey theory, if not the most

important.

1



2 Chapter 1. Introduction

Two popular quantitative problems in Ramsey theory are the following: let F be a finite

graph. We say that a graph G has the Ramsey property for F if in every two-coloring of

E(G) there exists a monochromatic copy of F . What is the smallest number of vertices

in a graph G that is Ramsey for F? And the smallest number of edges? These numbers

are called, respectively, the Ramsey number and the size Ramsey number of F .

On the other hand, there have also been Ramsey theoretic results involving infinite

structures. Indeed, Ramsey himself proved in [Ram30] that, when the edges of an infinite

complete graph are colored using finitely many colors, there is an infinite subset of the

vertices which induces a monochromatic clique. A generalization, called the canonical

Ramsey theorem [ER50], determines the colored patterns in infinite cliques that must

necessarily appear if the family of available colors is not necessarily finite.

The analysis of the Ramsey theoretic properties of infinite sets of large cardinalities has

also attracted some attention [EH62]. But for the most part, results in infinite Ramsey

theory have been existential, rather than quantitative.

One relevant result in infinite Ramsey theory is a 1978 theorem of Rado [Rad78]. Let KN

denote the complete graph on the natural numbers. The theorem states that, whenever

the edges of KN are colored using one of k colors, there is a family Z1, Z2, . . . , Zk of

paths, one in each color, such that every vertex is contained in exactly one path.

We note at this point that, in contrast to finite paths, there are two different ways in

which an infinite path can be defined. One can define the so-called one-way infinite

path, which is the graph on N where every pair of vertices at distance 1 is joined by an

edge, or the two-way infinite path, defined similarly over Z. In this thesis, by ‘infinite

path’ we will always mean one-way infinite, and we will denote it by P∞. Nevertheless,

our results would hold equally for two-way infinite paths.

Intuitively, if the vertex set of KN is partitioned into k monochromatic paths, then one

of them must contain at least “a 1/k fraction of the vertices”. But in infinite sets, what

“proportion of the vertices” a certain subset represents can be defined in different ways,

and these definitions will not be equivalent for our purposes.

A natural measure of this proportion is the following: for a set S ⊆ N, if lim
n→∞

|S∩[n]|
n

exists, the value of this limit is called the natural density of S. This notion has the

drawback of not being defined for all subsets S ⊆ N. There are two extensions of this

measure that match the natural density whenever it is defined: upper density and lower

density.

In this thesis we will use upper density as a measure of subsets of N:
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Definition 1.1. Given a subset S ⊆ N, we define its (upper) density as

d̄(S) := lim sup
n→∞

|S ∩ [n]|
n

.

For a subgraph H ⊆ KN, we define d̄(H) := d̄(V (H)).

Because we will not use any other definition of density, we will omit the word ‘upper’.

Lower density replaces the lim sup in the definition by a lim inf. In our problem, in the

particular case of the path, choosing lower density as the measure of subgraphs results

in a rather easy problem, as Erdős and Galvin [EG93] constructed a coloring in which

every monochromatic path has lower density 0. The same coloring has maximum lower

density 0 for most of the graphs that we will see here, which is why we will not consider

this problem. For a study of similar problems involving lower density, in which the

target graph is something other than the path, see [DM19, CDM20].

Our density satisfies subadditivity: for any two subsets A,B ⊆ N, we have d̄(A ∪ B) ≤
d̄(A) + d̄(B). With this definition of density (in contrast to lower density), Rado’s theo-

rem does imply, by subadditivity, that every two-coloring of E(KN) contains a monochro-

matic path of density at least 1/2.

Erdős and Galvin [EG93] were the first to study whether one can always find an infi-

nite path with density higher than 1/2, improving the bound that can be deduced from

Rado’s theorem. They showed that, even more, every two-coloring of E(KN) contains

a monochromatic infinite path of density at least 2/3. The bound here is intriguing,

because of a similar result for finite paths: Gerencsér and Gyárfás [GG67] proved that

in every two-coloring of E(Kn) there is a path on d2n/3 + 1e vertices, and this is best

possible (both results use similar techniques, which is why they produce similar asymp-

totics). Erdős and Galvin also gave a construction of a coloring without monochromatic

paths of density higher than 8/9.

This raises the question: what is the largest value of M such that one can always

find a monochromatic infinite path with density at least M? Clearly 2/3 ≤ M ≤ 8/9.

DeBiasio and McKenney [DM19] improved the lower bound toM ≥ 3/4, and conjectured

that M = 8/9. Lo, Sanhueza-Matamala and Wang [LSMW18] further showed M ≥
(9+
√

17)/16 = 0.82019 . . . Finally, Corsten, DeBiasio, Lang and the author determined

in [CDLL19] that neither this lower bound nor Erdős and Galvin’s upper bound is tight.

They established the exact value of M , which disproves the conjecture of DeBiasio and

McKenney:

Theorem 1.2. There exists a 2-coloring of the edges of KN such that every monochro-

matic path has upper density at most (12 +
√

8)/17 = 0.87226 . . . .
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Theorem 1.3. In every 2-coloring of the edges of KN, there exists a monochromatic

path of upper density at least (12 +
√

8)/17 = 0.87226 . . . .

In this thesis we will deal with this question: what if, instead of a monochromatic infinite

path, we are looking for a monochromatic copy of some other infinite graph H? Clearly,

by Ramsey’s theorem, every two-coloring of E(KN) contains a monochromatic infinite

clique, of which H is a subgraph. But does there exist a dense monochromatic copy of

H? And if so, how dense? The definition below formalizes this question.

Definition 1.4. Let H be a countably infinite graph. The Ramsey (upper) density of

H, denoted by ρ(H), is the supremum of the values λ satisfying the following property:

in every two-coloring of E(KN) there exists a monochromatic subgraph H ′ isomorphic

to H such that d̄(H ′) ≥ λ.

Theorems 1.2 and 1.3 [CDLL19] can then be combined1 as as ρ(P∞) = (12 +
√

8)/17.

The first paper discussing this parameter for graphs other than P∞ was that of DeBi-

asio and McKenney [DM19]. Their starting point was a theorem of Elekes, Soukup,

Soukup and Szentmiklóssy [ESSS17] which, disregarding some color considerations, is

an extension of Rado’s theorem. The k-th power of the infinite path, denoted by P k∞,

is the graph on N where two vertices ij form an edge if and only if |i − j| ≤ k. Elekes

et al. proved that, in every two-coloring of E(KN), the vertex set can be partitioned

into at most 22k−1 monochromatic copies of P k∞, plus a finite set. In the particular case

k = 2, the number of monochromatic squares of paths can be reduced to 4. DeBiasio

and McKenney noted that this implies that ρ(P k∞) ≥ 2−(2k−1) and ρ(P 2
∞) = 1/4, just

like Rado’s theorem implies ρ(P∞) ≥ 1/2.

In the same paper, DeBiasio and McKenney state a conjecture that, using our notation,

can be phrased as follows:

Conjecture 1.5 ([DM19]). For every ∆ ∈ N there exists a constant c = c(∆) > 0 such

that, for every infinite graph H with maximum degree at most ∆, we have ρ(H) ≥ c.

In this thesis we will prove a number of results regarding the Ramsey density of graphs.

We will state them in Section 1.2. But before that, we will need to define some concepts

and some notation that we will use in these statements.

1Actually the theorems are slightly stronger, since ρ(P∞) = (12 +
√

8)/17 only allows one to get
arbitrarily close to (12 +

√
8)/17. This distinction is important: we will see that there exist graphs H

with ρ(H) = 0 where every two-coloring of E(KN) contains a monochromatic copy of H with positive
density.
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1.1 Definitions

We say that an infinite graph is locally finite if every vertex has finite degree.

If F is a finite graph, we denote by ω ·F the graph obtained by taking the disjoint union

of a countably infinite number of copies of F . We will call this the infinite F -factor.

Given S ⊆ V (H), we will denote by N(S) = (∪v∈SN(v))\S the set of vertices outside S

with a neighbor in S. We let µ(H,n) be the minimum value of |N(I)|, where I ⊆ V (H)

is an independent set in H of size n. Note that, if an infinite graph H is locally finite,

then it contains arbitrarily large finite independent sets, each with a finite neighborhood,

and in particular µ(H,n) is well-defined and finite. We say that a set I ⊆ V (H) is doubly

independent if both I and N(I) are independent.

Finally, we define a function f(x) which will be crucial in relating the values of ρ(H)

and |N(I)|/|I|, where I is an independent set of H. Unfortunately, there is no satisfying

intuition (at least not before seeing the proof of Theorem 1.9) for why this particular

choice of f(x), and not another, is behind the relation between these two parameters.

One can reverse engineer the definition of the function f(x) from the proof of Theorem

1.9, by checking which choice of parameters leads to the best upper bound on the Ramsey

density. The surprising part is that the same function f(x) also comes up in the analysis

of lower bounds.

Since the definition of f(x) is quite complicated and its comprehension is not essential

to the appreciation of our results, we encourage the reader to skip it for now. For the

reading of this chapter, knowing that such a function exists is sufficient. Of course, for

the reading of the proofs, the precise definition becomes necessary. Its precise definition

is used only in the proof of Theorem 1.9 (where it acts as an upper bound), in Appendix

A (where it acts as a lower bound), and in Appendix B (for properties of f(x) itself).

All other uses of f(x) treat the aforementioned as black boxes.

Definition 1.6. Let γ ∈ (−1, 1). For a continuous function g(x) : [0,+∞) → R, and

t > 0, define

Γ+
γ (g, t) = min{x : γx+ g(x) ≥ t} Γ−γ (g, t) = min{x : γx− g(x) ≥ t},

where we take the minimum of the empty set to be +∞. We define h(γ) to be the

infimum, over all 1-Lipschitz2 functions g with g(0) = 0, of

h(γ) = inf
g

lim sup
t→∞

Γ+
γ (g, t) + Γ−γ (g, t)

t
. (1.1)

2A 1-Lipschitz function is a function satisfying |g(x)− g(y)| ≤ |x− y| for every x, y in the domain.
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Figure 1.1: Plot of the function f(x) on the interval [0, 1], and the upper and lower bounds
elsewhere. The conjectured value is given in blue.

Define f : (0,+∞)→ R as

f(λ) = 1− 1

2λ
(1+λ)2h

(
λ−1
λ+1

)
+ 2λ

1+λ

.

We define f(0) = 1 and f(+∞) = 1/2 (by (1.2) below, we have lim
t→0

f(t) = 1 and

lim
t→+∞

f(t) = 1/2.)

In Appendix B we prove some properties of f(x), including the following bounds:

x+ 1

2x+ 1
≤ f(x) ≤


2x2+3x+7+2

√
x+1

4x2+4x+9
for 0 ≤ x < 3,

x+1
2x for x ≥ 3.

(1.2)

The upper bound is tight for x ∈ [0, 1], and we conjecture3 that it is tight everywhere.

Observe that f(1) = (12 +
√

8)/17 = ρ(P∞).

1.2 Results in this thesis

The first results proved in this thesis are Theorem 1.2 and Theorem 1.3. These proofs,

reproductions of the ones in [CDLL19], will make up Chapter 2. The two theorems

are implied by some of the other results in the thesis (in particular Theorem 1.11), but

nevertheless we include the proofs in order to introduce the methods that will be used

later in the thesis in a more involved context. However, this thesis is organized in such

a way that a reader who is only interested in the stronger results can skip Chapter 2

entirely.

3An extended abstract for the paper [Lam20] (on which Chapter 3 is based), published in Acta Math.
Univ. Comenianae for EUROCOMB 2019, stated this conjecture as proved. Since then, a mistake in
the proof has been found.
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In Chapter 3 and Chapter 4 we prove a number of results on the value of ρ(H) for

different types of graphs. Our goal is to compute the exact value of ρ(H) for a family

of graphs H as wide as possible, but in the process we will also build some intuition

into how ρ(H) behaves in general. One of the main takeaways from these results is

the intuition that the following three parameters have a considerable effect on the value

of ρ(H): the ratio lim inf
n→∞

µ(H,n)
n (which we will refer to as the expansion ratio of the

independent sets of H), the chromatic number of H, and the number of components

of H. The relation between these parameters and ρ(H) can be found, for example, in

Theorems 1.7, 1.9, 1.11, 3.2 and Corollary 1.18.

As a sample of these results, we will state here the main theorems from these chapters,

and the most important corollaries that can be derived from those. Some of these

results follow from even more general bounds, which we will not state here because their

statement is very involved (as an example, Theorem 3.2 is arguably the most powerful

lower bound on ρ(H) proved in this thesis, but due to the many technical details in the

statement, we will not present it here, and instead we will present consequences of this

theorem that are more ready for immediate application and easier to understand).

After that, we present the results from Chapter 5, which deals with a related problem

which combines Ramsey density and list coloring.

1.2.1 Results on locally finite graphs

The first theorem that we present gives the value of ρ(H) for every locally finite graph

H, up to a factor of 2:

Theorem 1.7. Let H be a locally finite graph.

(i) If H has infinitely many components, then ρ(H) ≥ 1/2.

(ii) If H has finitely many components:

(a) If H has infinite chromatic number, then ρ(H) = 0.

(b) If H has finite chromatic number, then

min

{
b

2(χ(H)− 1)
,
1

2

}
≤ ρ(H) ≤ min

{
b

χ(H)− 1
, 1

}
,

where b is the number of infinite components of H.

Theorem 1.7 implies Conjecture 1.5, because every graph satisfies χ(H) ≤ ∆(H) + 1:



8 Chapter 1. Introduction

Corollary 1.8. For every ∆ ∈ N, every infinite graph H with maximum degree at most

∆ has ρ(H) ≥ 1/(2∆).

Theorem 1.7 also improves the lower bound on the Ramsey density of powers of paths

given by DeBiasio and McKenney. Where for k ≥ 3 they observed that ρ(P k∞) ≥
2−(2k−1), Theorem 1.7 gives ρ(P k∞) ≥ 1/(2k), since χ(P k∞) = k+ 1. For k = 2, we match

the lower bound ρ(P 2
∞) ≥ 1/4.

The case (ii)a in Theorem 1.7 connects to a result of Corsten, DeBiasio and McKenney

[CDM20]. While we show that every locally finite graph H with finitely many com-

ponents and infinite chromatic number has ρ(H) = 0, they show that these graphs are

“2-Ramsey-dense”, as they call it (see Corollary 1.7 in their paper). This property means

that, in every two-coloring of E(KN), there exists ε > 0 and a monochromatic copy of

H with density at least ε. Of course this is not a contradiction, because there does not

exist a choice of ε that is valid for every coloring.

While no graph H is known for which the lower bound in (ii)b is tight and not equal to

1/2, the upper bound is tight, for example, in the graph b · T +Ka described in Section

3.2. It is worth pointing out that, unlike the other graphs H for which we obtain the

exact value of ρ(H) in this thesis, the value here does not depend on the function f(x):

for all a > b ≥ 1 we have ρ(b · T +Ka) = b
a−1 .

The second theorem is a general upper bound on ρ(H) that is valid for all locally finite

graphs. The importance of this theorem lies in the fact that it is sharp for a variety

of choices of H, including forests (Theorem 1.11), bipartite infinite factors (Corollary

1.14), clique factors and odd cycle factors (Corollary 1.18).

Theorem 1.9. Let H be a locally finite graph. Then

ρ(H) ≤ f
(

lim inf
n→∞

µ(H,n)

n

)
.

For bipartite graphs, there is a relatively simple condition which implies that this theo-

rem is tight:

Theorem 1.10. Let H be a locally finite bipartite graph, and let λ = lim inf
n→∞

µ(H,n)
n .

Suppose that for every λ′ > λ there exist infinitely many pairwise disjoint independent

sets I1, I2, . . . , all of the same size, with |N(Ii)|
|Ii| ≤ λ

′. Then ρ(H) = f(λ).

Intuitively, the difference between Theorem 1.9 and Theorem 1.10 is that, for each size

n, in order to have µ(H,n) ≤ k it is enough if we only have one independent size with

size n and neighborhood of size k, whereas in Theorem 1.10 we require that we have
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infinitely many independent sets with the same size. The following theorem, and the

three corollaries that follow, capture some cases in which Theorem 1.10 applies:

Theorem 1.11. Let H be a locally finite forest, or a locally finite bipartite graph in

which every orbit of the automorphism group acting on V (H) has infinite size. Then

ρ(H) = f

(
lim inf
n→∞

µ(H,n)

n

)
.

Corollary 1.12. Let Tk be the infinite k-ary tree, that is, the rooted tree in which every

vertex has k children. Then ρ(Tk) = f(k).

Corollary 1.13. For any d ≥ 1, let Gridd be the infinite d-dimensional grid, that is,

the graph on Zd where two vertices are connected if they are at Euclidean distance 1.

Then ρ(Gridd) = f(1) = (12 +
√

8)/17 = 0.87226 . . .

Corollary 1.14. Let F be a finite bipartite graph. Then

ρ(ω · F ) = f

 min
I indep. in F

I 6=∅

|N(I)|
|I|

 .

In particular, we have ρ(ω · C2k) = f(1) for every k ≥ 2, and for every 1 ≤ a ≤ b we

have

ρ(ω ·Ka,b) = f
(a
b

)
=

2
(
a
b

)2
+ 3

(
a
b

)
+ 7 + 2

√
a
b + 1

4
(
a
b

)2
+ 4

(
a
b

)
+ 9

.

In a finite bipartite graph F , there is always an independent set satisfyng |N(I)| ≤ |I|
(one of the two partition classes has this), so the value of ρ(ω · F ) always falls on the

range in which f(x) is known explicitly.

1.2.2 Results for infinite factors

We now present two results specific to infinite factors, which can be applied to non-

bipartite graphs. The first one is again related to the expansion of independent sets:

Theorem 1.15. Let F be a finite connected graph, and let I ⊆ V (F ) be a non-empty

doubly independent set. Then ρ(ω · F ) ≥ f
(
|N(I)|
|I|

)
.

If one of the independent sets I ⊆ V (F ) that minimize |N(I)|/|I| is doubly independent,

then Theorem 1.9 and Theorem 1.15 together give the exact value for ρ(ω · F ). This

is always true in bipartite graphs, which we stated as Corollary 1.14 (this result can

be proved either from Theorem 1.11 or from Theorem 1.15). Figure 1.2 shows four

non-bipartite graphs F for which the same holds.
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Figure 1.2: Four non-bipartite graphs F for which ρ(ω ·F ) equals f(1), f(1), f(2) and f(3/2)
respectively, with their doubly independent sets indicated.

If the graph F does not contain any non-empty doubly independent sets (for example

F = K3), then Theorem 1.15 does not give any lower bound at all. Instead, in these

cases one can obtain the following lower bound on ρ(ω · F ) using finite Ramsey theory:

Theorem 1.16. For every finite graph F , we have

ρ(ω · F ) ≥ |V (F )|
2|V (F )| − α(F )

.

In the particular case F = K3, combining Theorem 1.16 with Theorem 1.9 and (1.2) we

obtain

3/5 ≤ ρ(ω ·K3) ≤ f(2) ≤ 21 +
√

12

33
≈ 0.74133. (1.3)

1.2.3 Further results for infinite factors

The results in Chapter 4, which can be found in [BL20], represent joint work with József

Balogh.

In Chapter 4 we continue looking at the Ramsey density of infinite factors ω ·F . This is

because, even though they are graphs with a relatively simple structure, there are still

plenty of choices of F for which the bounds from the previous sections are not enough

to determine ρ(ω · F ) exactly. Notably, this is the case for cliques and odd cycles:

- In the case of cliques, we have ρ(ω ·Kk) ≤ f(k− 1) ≤ k
2k−2 from Theorem 1.9 and

ρ(ω · Kk) ≥ k
2k−1 from Theorem 1.16. We cannot obtain any lower bound from

Theorem 1.15 because there is no non-empty independent set I such that N(I) is

independent, if k ≥ 3.

- In the case of odd cycles, we have ρ(ω ·C2k+1) ≤ f
(
k+1
k

)
from Theorem 1.9, f(ω ·

C2k+1) ≥ f
(

k
k−1

)
from Theorem 1.15 (if k ≥ 2), and ρ(ω · C2k+1) ≥ 2k+1

2(2k+1)−k =
2k+1
3k+2 from Theorem 1.16. For k large enough, the lower bound from Theorem 1.15

is better than that from Theorem 1.16, although the latter has the advantage of

being easier to compute.
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We will prove a new lower bound on ρ(ω · F ) for all graphs F , that will solve these and

other cases:

Theorem 1.17. Let F be a finite graph. Then ρ(ω · F ) ≥ f
(
|V (F )|
α(F ) − 1

)
.

This bound is not weaker4 than Theorem 1.16. That result can be expressed as ρ(ω·F ) ≥
f̄
(
|V (F )|
α(F ) − 1

)
, for f̄(x) = x+1

2x+1 . By Proposition B.5, we have f(x) ≥ f̄(x).

We can compare this lower bound to the upper bound in Theorem 1.9 to find a new

family of graphs for which we can obtain an exact result:

Corollary 1.18. Let F be a finite graph. Suppose that, among the non-empty in-

dependent sets I that minimize |N(I)|
|I| , there is at least one with size α(F ). Then

ρ(ω · F ) = f
(
|V (F )|
α(F ) − 1

)
. In particular:

- ρ(ω ·Kk) = f(k − 1) for all k ≥ 2.

- ρ(ω · C2k+1) = f
(
k+1
k

)
for all k ≥ 1.

For the triangle, which is both a clique and an odd cycle, Corollary 1.18 shows that

ρ(ω · K3) = f(2). Note however that, since we do not know the actual value of f(2),

the explicit bounds on (1.3) have not improved: all we know is that 3
5 ≤ ρ(ω · K3) ≤

(21 +
√

12)/33 = 0.74133 . . . (we suspect that the upper bound is sharp). The next

result improves upon this lower bound:

Theorem 1.19. ρ(ω ·K3) ≥ 1− 1√
7

= 0.62204 . . . (and therefore f(2) ≥ 1− 1√
7
).

Unlike Theorem 1.17, whose proof is based on the techniques from [CDLL19] and The-

orem 3.2 (which is where the function f(x) comes from), Theorem 1.19 is based on a

careful analysis of the technique of Burr, Erdős and Spencer [BES75].

1.2.4 Results on list coloring

Let C be an infinite set of colors (which we will often identify with N). A list assignment

of size k on a set S is a function L : S →
(C
k

)
. When not specified, we will assume that

the size of a list assignment is two and the set S is E(KN). Given a list assignment L

as above, an L-coloring is a function Ψ : S → C, where Ψ(s) ∈ L(s) for every element

s ∈ S. Note that, in this context, a red-blue coloring of E(KN) is an L-coloring, where

L is the list assignment that maps every edge to {R,B}.
4However, this does not make Theorem 1.16 redundant. While it is true that Theorem 1.17 gives

a bound that is not weaker than Theorem 1.16, the proof of this fact (namely that f(x) ≥ f̄(x)) uses
Theorem 1.16 itself.
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Most classical Ramsey theory questions admit a list coloring version. Remember that

a typical classical Ramsey theory question looks as follows: if the elements of [discrete

structure] are colored in any way using k colors, is it always possible to find a monochro-

matic [substructure]? The corresponding list coloring version would therefore take the

following form: does there exist a list assigment L of size k on the elements of [discrete

structure], such that every L-coloring contains a monochromatic [substructure]?

This merging of Ramsey theory with list coloring was introduced by Alon, Bucić, Kalvari,

Kupperwasser and Szabó [ABK+19]. They proved that the list coloring equivalent of the

diagonal Ramsey numbers of hypergraph cliques of uniformity at least 3 are much smaller

than their non-list coloring counterparts. In other words, there are lists assignments L

on the edges of complete hypergraphs that are better at forcing large monochromatic

subcliques than the uniform list assignment.

We want to study what happens in the Ramsey density problem when we consider its list

coloring analogue. Let us consider the case in which the graph that we are looking for

is P∞, the infinite path. As we know from [CDLL19], the Ramsey density of this graph

is f(1) = 12+
√

8
17 = 0.87226 . . . , and in a slightly stronger sense5, every two-coloring of

E(KN) contains a monochromatic path of density at least f(1) and there exists a two

coloring in which every monochromatic path has density at most f(1).

Thus the question here would be: does there exist a list assignment L and λ > f(1)

such that, in every L-coloring, there exists a monochromatic path with density at least

λ? And if so, how large can λ be? This question was suggested to the author by Alon.

In this chapter we will answer this question in the affirmative, and show that in fact we

can make λ be as close to 1 as we want.

Theorem 1.20. There exists a list assignment L which satisfies that, for every L-

coloring and every ε > 0, there exists a monochromatic path with density at least 1− ε.

In fact, we will prove something stronger:

Theorem 1.21. There exists a list assignment L with the following property: in every

L-coloring there exists an infinite family P of infinite monochromatic paths, satisfying

that every vertex v ∈ V (KN) is missed by at most one of the paths in P.

This is similar to the result of Rado [Rad78], which states that when the edges of KN are

k-colored, there exist k monochromatic paths, one in each color, such that every vertex

v ∈ V (KN) is contained in exactly one path. In fact, Theorem 1.21 can be strengthened

5ρ(P∞) = f(1) only means that, for every ε > 0, every two-coloring of E(KN) contains a monochro-
matic path of density at least f(1) − ε and there exists a two coloring in which every monochromatic
path has density at most f(1) + ε. As we will see in this section, this distinction is important.
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to say that each vertex is missed by exactly one path. A proof of this fact is sketched

after the proof of Theorem 1.21.

However, we we try to make λ equal to 1, we encounter an interesting phenomenon.

There exists a list assignment L which satisfies that, for every L-coloring and every

ε > 0, there exists a monochromatic path with density at least 1 − ε. Nonetheless, for

every list assignment L there exists an L-coloring in which no single monochromatic

path has density exactly 1.

Theorem 1.22. For every list assignment L there exists an L-coloring in which no

single monochromatic path has density 1.

In a certain way, this phenomenon, in which we can have density arbitrarily close to 1

but not exactly 1, can be seen as analogous of what happens in Theorem 1.7(ii)a. If

a locally finite graph H has finitely many components and infinite chromatic number,

then for every ε > 0 there exists a two-coloring of E(KN) in which every monochromatic

copy of H has density at most ε (which implies that ρ(H) = 0), but every two-coloring

of E(KN) contains a monochromatic copy of H of positive density.

1.2.5 Structure of the thesis

This thesis is organized as follows: on Chapter 2, based on [CDLL19], we prove The-

orems 1.2 and 1.3. on Chapter 3, based on [Lam20], we prove the results in Section

1.2.1 and Section 1.2.2, related to the Ramsey density of locally finite graphs. Chapter

4, which represents joint work with József Balogh, proves the results in Section 1.2.3,

which focuses on infinite factors. Chapter 5 proves the results in Section 1.2.4, relating

Ramsey density to list coloring. In Chapter 6 we propose some conjectures and open

problems regarding Ramsey density. Appendix A contains the proof of a lemma from

Chapter 3 which, due to its length and the fact that consists mostly of analytic manipu-

lations, we decided against featuring in the main body of the thesis. Finally, Appendix

B contains the proof of some properties of the function f(x) (again excluded from the

main body for the same reasons).





Chapter 2

Ramsey density of infinite paths

This chapter, which is adapted from [CDLL19] (and hence is joint work with Jan

Corsten, Louis DeBiasio and Richard Lang), contains the proof of the statement ρ(P∞) =

(12 +
√

8)/17. The upper bound on ρ(P∞) is implied by Theorem 1.2, while the lower

bound is implied by Theorem 1.3. This will act as a warm-up exercise, to introduce the

techniques that will be used in the more general results in Chapter 3. In particular,

Theorem 1.2 will be generalized as Theorem 1.9, and Theorem 1.3 will be generalized as

Theorem 3.2. Some comments will be made in the relevant sections of Chapter 3 about

the analogy of these results.

2.1 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. Let q > 1 be a real number, whose exact

value will be chosen later on. We start by defining a coloring of the edges of the infinite

complete graph. Let A0, A1, . . . be a partition of N, such that every element of Ai

precedes every element of Ai+1 and |Ai| = bqic. We color the edges of KN such that

every edge uv with u ∈ Ai and v ∈ Aj is red if min{i, j} is odd, and blue if it is even.

A straightforward calculation shows that for q = 2, every monochromatic path P in

KN satisfies d̄(P ) ≤ 8/9 (see Theorem 1.5 in [EG93]). We will improve this bound by

reordering the vertices of KN and then optimizing the value of q.

For convenience, we will say that the vertex v ∈ Ai is red if i is odd and blue if i is

even. We also denote by B the set of blue vertices and by R be the set of red vertices.

Let bi and ri denote the i-th blue vertex and the i-th red vertex, respectively. We

define a monochromatic red matching Mr by forming a matching between A2i−1 and the

first |A2i−1| vertices of A2i for each i ≥ 1. Similarly, we define a monochromatic blue

15
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matching Mb by forming a matching between A2i and the first |A2i| vertices of A2i+1 for

each i ≥ 0.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

b∗1 b∗2 b∗3

r∗1 r∗2 r∗3 r∗4 r∗5

b∗4 b∗5 b∗6

1

2 3

4 5 6

7 8 9 10 11

12

13

14 15 16 17 18 19 20 21 22

23

24

25

26

blue vertices

special blue vertices

reordering by f

reordering by f

special red vertices

red vertices

A0

A1

A2

A3

A4

. . .

. . .

. . .

Figure 2.1: The coloring for q = 2 and the reordering by φ.

Next, let us define a bijection φ : N → V (G), which will serve as a reordering of G.

Let r∗t denote the t-th red vertex not in Mb, and b∗t denote the t-th blue vertex not in

Mr. The function φ is defined as follows. We start enumerating blue vertices, in their

order, until we reach b∗1. Then we enumerate red vertices, in their order, until we reach

r∗1. Then we enumerate blue vertices again until we reach b∗2. We continue enumerating

vertices in this way, changing colors whenever we find an r∗t or a b∗t . (See Figure 2.1.)

Finally, for every H ⊂ G, we define

d̄(H;φ) = lim sup
t→∞

|V (H) ∩ φ([t])|
t

.

Note that d̄(H;φ) is the upper density of H in the reordered graph φ−1(G).

Claim 2.1. Let Pr and Pb be infinite monochromatic red and blue paths in G, respec-

tively. Then d̄(Pr;φ) ≤ d̄(Mr;φ) and d̄(Pb;φ) ≤ d̄(Mb;φ).

Claim 2.2. We have

d̄(Mr;φ), d̄(Mb;φ) ≤ q2 + 2q − 1

q2 + 3q − 2
.

We can easily derive Theorem 1.2 from these two claims. Note that the rational function

in Claim 2.2 evaluates to (12 +
√

8)/17 at q :=
√

2 + 1. It then follows from Claim 2.1

and 2.2, that every monochromatic path P in G satisfies d̄(P ;φ) ≤ (12 +
√

8)/17. Thus

we can define the desired coloring of KN, by coloring each edge ij with the color of the

edge φ(i)φ(j) in G.

It remains to prove Claim 2.1 and 2.2. The intuition behind Claim 2.1 is that in every

monochromatic red path Pr there is a red matching with the same vertex set, and that

Mr has the largest upper density among all red matchings, as it contains every red

vertex and has the largest possible upper density of blue vertices. Note that the proof

of Claim 2.1 only uses the property that φ preserves the order of the vertices inside R

and inside B.
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Proof of Claim 2.1. We will show d̄(Pr;φ) ≤ d̄(Mr;φ). (The other case is analogous.)

We prove that, for every positive integer k, we have |V (Pr)∩ φ([k])| ≤ |V (Mr)∩ φ([k])|.
Assume, for contradiction, that this is not the case and let k be the minimum positive

integer for which the inequality does not hold. Every red vertex is saturated by Mr, so

|V (Pr)∩φ([k])∩B| > |V (Mr)∩φ([k])∩B|. By the minimality of k, φ(k) must be in Pr

but not in Mr, and in particular it must be blue.

Let φ(k) ∈ A2i. Since φ(k) 6∈ Mr, we know that f(k) is not among the first |A2i−1|
vertices of A2i. Therefore, since φ preserves the order of the vertices inside B, φ([k])

contains the first |A2i−1| blue vertices in A2i, and hence

|V (Pr) ∩ φ([k]) ∩B| > |V (Mr) ∩ φ([k]) ∩B| =
i∑

j=1

|A2j−1|. (2.1)

On the other hand, every edge between two blue vertices is blue, so the successor of every

blue vertex in Pr is red, and in particular there is a red matching between V (Pr)∩B and

R saturating V (Pr)∩B. So by (2.1), the number of red neighbors of V (Pr)∩φ([k])∩B
is at least |V (Pr) ∩ φ([k]) ∩B| >

∑i
j=1 |A2j−1|. Observe that by the definition of φ, we

have V (Pr)∩ φ([k])∩B ⊆
⋃i
j=0A2j . Hence the red neighborhood of V (Pr)∩ φ([k])∩B

is contained in
⋃i
j=1A2j−1, a contradiction.

Proof of Claim 2.2. Let `r(t) and `b(t) denote the position of r∗t among the red vertices

and of b∗t among the blue vertices, respectively. In other words, let `r(t) = i where r∗t = ri

and `b(t) = j where b∗t = bj (so for example in Figure 2.1, `r(4) = 9 and `b(4) = 14).

Note that φ(`b(t) + `r(t)) = r∗t , so for `b(t− 1) + `r(t− 1) ≤ k ≤ `b(t) + `r(t)− 1, φ([k])

has exactly t − 1 vertices outside of Mb and at least t − 1 vertices outside of Mr. As a

consequence, we obtain

d̄(Mr;φ), d̄(Mb;φ) ≤ lim sup
k→∞

(1− σ(k)) = lim sup
t→∞

(
1− t− 1

`r(t) + `b(t)− 1

)
, (2.2)

where σ(k) = (t − 1)/k if `b(t − 1) + `r(t − 1) ≤ k ≤ `b(t) + `r(t) − 1. It is easy to see

that

`r(t) = t+

i∑
j=0

|A2j | for

i−1∑
j=0

(|A2j+1| − |A2j |) < t ≤
i∑

j=0

(|A2j+1| − |A2j |), and

`b(t) = t+
i∑

j=1

|A2j−1| for
i−1∑
j=1

(|A2j | − |A2j−1|) < t− |A0| ≤
i∑

j=1

(|A2j | − |A2j−1|).

Note that `r(t) − t and `b(t) − t are piecewise constant and non-decreasing. We claim

that, in order to compute the right hand side of (2.2), it suffices to consider values of t

for which `r(t)− t > `r(t− 1)− (t− 1) or `b(t)− t > `b(t− 1)− (t− 1). This is because
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we can write

1− t− 1

`r(t) + `b(t)− 1
=

1

2
+

(`r(t)− t) + (`b(t)− t) + 1

2(`r(t) + `b(t)− 1)
.

In this expression, the second fraction has a positive, piecewise constant numerator and

a positive increasing denominator. Therefore, the local maxima are attained precisely

at the values for which the numerator increases. We will do the calculations for the case

when `r(t)− t > `r(t− 1)− (t− 1) (the other case is similar), in which we have

t = 1 +
i−1∑
j=0

(|A2j+1| − |A2j |) = 1 +
i−1∑
j=0

(1 + o(1))q2j(q − 1) = (1 + o(1))
q2i

q + 1
,

`r(t) = t+
i∑

j=0

|A2j | = (1 + o(1))

 q2i

q + 1
+

i∑
j=0

q2j

 = (1 + o(1))
(q2 + q − 1)q2i

q2 − 1
, and

`b(t) = t+
i∑

j=1

|A2j−1| = (1 + o(1))

 q2i

q + 1
+

i∑
j=1

q2j−1

 = (1 + o(1))
(2q − 1)q2i

q2 − 1
.

Plugging this into (2.2) gives the desired result.

2.2 Proof of Theorem 1.3

This section is dedicated to the proof of Theorem 1.3. A total coloring of a graph G is

a coloring of the vertices and edges of G. Due to an argument of Erdős and Galvin, the

problem of bounding the upper density of monochromatic paths in edge colored graphs

can be reduced to the problem of bounding the upper density of monochromatic path

forests in totally colored graphs.

Definition 2.1 (Monochromatic path forest). Given a totally colored graph G, a forest

F ⊂ G is said to be a monochromatic path forest if ∆(F ) ≤ 2 and there is a color c such

that all leaves, isolated vertices, and edges of F receive color c.

Lemma 2.3. For every γ > 0 and k ∈ N, there is some n0 = n0(k, γ) so that the

following is true for every n ≥ n0. For every total 2-coloring of Kn, there is an integer

t ∈ [k, n] and a monochromatic path forest F with |V (F ) ∩ [t]| ≥ ((12 +
√

8)/17− γ)t.

Some standard machinery related to Szemerédi’s regularity lemma, adapted to the or-

dered setting, will allow us to reduce the problem of bounding the upper density of

monochromatic path forests to the problem of bounding the upper density of monochro-

matic simple forests.
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Definition 2.2 (Monochromatic simple forest). Given a totally colored graph G, a

forest F ⊂ G is said to be a monochromatic simple forest if ∆(F ) ≤ 1 and there is a

color c such that all edges and isolated vertices of F receive color c and at least one

endpoint of each edge of F receives color c.

Lemma 2.4. For every γ > 0, there exists k0, N ∈ N and α > 0 such that the following

holds for every integer k ≥ k0. Let G be a totally 2-colored graph on kN vertices with

minimum degree at least (1 − α)kN . Then there exists an integer t ∈ [k/8, kN ] and a

monochromatic simple forest F such that |V (F ) ∩ [t]| ≥ ((12 +
√

8)/17− γ)t.

The heart of the proof is Lemma 2.4, which we shall prove in Section 2.2.3. But first, in

the next two sections, we show how to deduce Theorem 1.3 from Lemmas 2.3 and 2.4.

2.2.1 From path forests to paths

In this section we use Lemma 2.3 to prove Theorem 1.3. Our exposition follows that of

Theorem 1.6 in [DM19].

Proof of Theorem 1.3. Fix a 2-coloring of the edges of KN in red and blue. We define a

2-coloring of the vertices by coloring n ∈ N red if there are infinitely many m ∈ N such

that the edge nm is red and blue otherwise.

Case 1. Suppose there are vertices x and y of the same color, say red, and a finite set

S ⊂ N such that there is no red path disjoint from S which connects x to y.

We partition N \ S into sets X,Y, Z, where x′ ∈ X if and only if there is a red path,

disjoint from S, which connects x′ to x and y′ ∈ Y if and only if there is a red path

disjoint from S which connects y to y′. Note that every edge from X ∪ Y to Z is blue.

Since x and y are colored red, both X and Y are infinite, and by choice of x and y all

edges in the bipartite graph between X and Y ∪Z are blue. Hence there is a blue path

with vertex set X ∪ Y ∪ Z = N \ S.

Case 2. Suppose that for every pair of vertices x and y of the same color c, and every

finite set S ⊂ N, there is a path from x to y of color c which is disjoint from S.

Let γn be a sequence of positive reals tending to zero, and let an and kn be increasing

sequences of integers such that

an ≥ n0(kn, γn) and kn/(a1 + · · ·+ an−1 + kn)→ 1,

where n0(k, γ) is as in Lemma 2.3. Let N = (Ai) be a partition of N into consecutive

intervals with |An| = an. By Lemma 2.3 there are monochromatic path forests Fn with
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V (Fn) ⊂ An and initial segments In ⊂ An of length at least kn such that

|V (Fn) ∩ In| ≥

(
12 +

√
8

17
− γn

)
|In|.

It follows that for any G ⊂ KN containing infinitely many Fn’s we have

d̄(G) ≥ lim sup
n→∞

|V (Fn) ∩ In|
a1 + · · ·+ an−1 + |In|

≥ lim sup
n→∞

12 +
√

8

17
− γn =

12 +
√

8

17
.

By the pigeonhole principle, there are infinitely many Fn’s of the same color, say blue.

We will recursively construct a blue path P which contains infinitely many of these

Fn’s. To see how this is done, suppose we have constructed a finite initial segment p

of P . We will assume as an inductive hypothesis that p ends at a blue vertex v. Let

n be large enough that min(An) is greater than every vertex in p, and Fn is blue. Let

Fn = {P1, . . . , Ps} for some s ∈ N and let wi, w
′
i be the endpoints of the path Pi (note

that wi and w′i could be equal) for every i ∈ [s]. By the case assumption, there is a blue

path q1 connecting v to w1, such that q1 is disjoint from A1 ∪ · · · ∪An. Similarly, there

is a blue path q2 connecting w′1 to w2, such that q2 is disjoint from A1 ∪ · · · ∪An ∪ {q1}.
Continuing in this fashion, we find disjoint blue paths q3, . . . , qs such that qi connects

w′i−1 to wi. Hence, we can extend p to a path p′ which contains all of the vertices of Fn

and ends at a blue vertex.

2.2.2 From simple forests to path forests

In this section we use Lemma 2.4 to prove Lemma 2.3. The proof is based on Szemerédi’s

regularity lemma. The main difference to standard applications of the regularity lemma

is that we have to define an ordering of the reduced graph, which approximately preserves

densities. This is done by choosing a suitable initial partition.

Let G = (V,E) be a graph and A and B be non-empty, disjoint subsets of V . We write

eG(A,B) for the number of edges in G with one vertex in A and one in B and define the

density of the pair (A,B) to be dG(A,B) = eG(A,B)/(|A||B|). The pair (A,B) is ε-

regular (in G) if we have |dG(A′, B′)−dG(A,B)| ≤ ε for all A′ ⊆ A with |A′| ≥ ε|A| and

B′ ⊆ B with |B′| ≥ ε|B|. It is well-known (see for instance [Hax97]) that dense regular

pairs contain almost spanning paths. We include a proof of this fact for completeness.

Lemma 2.5. For 0 < ε < 1/4 and d ≥ 2
√
ε+ε, every ε-regular pair (A,B) with density

at least d contains a path with both endpoints in A and covering all but at most 2
√
ε|A|

vertices of A ∪B.
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Proof. We will construct a path Pk = (a1b1 . . . ak) for every k = 1, . . . , d(1 −
√
ε)|A|e

such that Bk := N(ak) \ V (Pk) has size at least ε|B|. As d ≥ ε, this is easy for k = 1.

Assume now that we have constructed Pk for some 1 ≤ k < (1−
√
ε)|A|. We will show

how to extend Pk to Pk+1. By ε-regularity of (A,B), the set
⋃
b∈Bk N(b) has size at

least (1− ε)|A|. So A′ :=
⋃
b∈Bk N(b) \ V (Pk) has size at least (

√
ε− ε)|A| ≥ ε|A|. Let

B′ = B \ V (Pk) and note that |B′| ≥
√
ε|B| as k < (1 −

√
ε)|A| and |A| = |B|. By

ε-regularity of (A,B), there exists ak+1 ∈ A′ with at least (d− ε)|B′| ≥ 2ε|B| neighbors

in B′. Thus we can define Pk+1 = (a1b1 . . . akbkak+1), where bk ∈ Bk ∩N(ak+1).

A family of disjoint subsets {Vi}i∈[m] of a set V is said to refine a partition {Wj}j∈[`] of

V if, for all i ∈ [m], there is some j ∈ [`] with Vi ⊂Wj .

The specific version of the regularity lemma that we will use here comes from [KS96],

and its statement can be found later in this thesis as Lemma 3.7.

Before we start with the proof, we will briefly describe the setup and proof strategy of

Lemma 2.3. Consider a totally 2-colored complete graph G = Kn. Denote the sets of

red and blue vertices by R and B, respectively. For ` ≥ 4, let {Wj}j∈[`] be a partition

of [n] such that each Wj consists of at most dn/`e subsequent vertices. The partition

{W ′j}j∈[2`], with parts of the form Wi∩R and Wi∩B, refines both {Wj}j∈[`] and {R,B}.
Suppose that V0 ∪ · · · ∪ Vm is a partition obtained from Lemma 3.7 applied to G and

{W ′j}j∈[2`] with parameters ε, m0, 2` and d. We define the (ε, d)-reduced graph G′ to be

the graph with vertex set V (G′) = [m] where ij is an edge of G′ if and only if if (Vi, Vj)

is an ε-regular pair of density at least d in the red subgraph of H or in the blue subgraph

of H. Furthermore, we color ij red if (Vi, Vj) is an ε-regular pair of density at least d in

the red subgraph of H, otherwise we color ij blue. As {Vi}i∈[m] refines {R,B}, we can

extend this to a total 2-coloring of G′ by coloring each vertex i red, if Vi ⊂ R, and blue

otherwise. By relabelling the clusters, we can furthermore assume that i < j if and only

if max{Vi} < max{Vj}. Note that, by choice of {Wj}j∈[`], any two vertices in Vi differ

by at most n/`. Moreover, a simple calculation (see [KO09, Proposition 42]) shows that

G′ has minimum degree at least (1− d− 3ε)m.

Given this setup, our strategy to prove Lemma 2.3 goes as follows. First, we apply

Lemma 2.4 to obtain t′ ∈ [m] and a, red say, simple forest F ′ ⊂ G′ with d(F ′, t′) ≈
(12 +

√
8)/17. Next, we turn F ′ into a red path forest F ⊂ G. For every isolated vertex

i ∈ V (F ′), this is straightforward as Vi ⊂ R by the refinement property. For every edge

ij ∈ E(F ′) with i ∈ R, we apply Lemma 2.5 to obtain a red path that almost spans

(Vi, Vj) and has both ends in Vi. So the union F ′ of these paths and vertices is indeed a

red path forest. Since the vertices in each Vi do not differ too much, it will follow that

d(F, t) ≈ (12 +
√

8)/17 for t = max{Vt′}.
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Proof of Lemma 2.3. Suppose we are given γ > 0 and k ∈ N as input. Let k0, N ∈ N
and α > 0 be as in Lemma 2.4 with input γ/4. We choose constants d, ε > 0 and

`,m0 ∈ N satisfying

2
√
ε+ ε ≤ 1/`, d ≤ α/8 and m0 ≥ 4N/d, 2k0N .

We obtain M from Lemma 3.7 with input ε,m0 and 2`. Finally, set n0 = 16k`MN .

Now let n ≥ n0 and suppose that Kn is an ordered complete graph on vertex set [n] and

with a total 2-coloring in red and blue. We have to show that there is an integer t ∈ [k, n]

and a monochromatic path forest F such that |V (F ) ∩ [t]| ≥ ((12 +
√

8)/17− γ)t.

Denote the red and blue vertices by R and B, respectively. Let {W ′j}j∈[`] refine {R,B}
as explained in the above setting. Let {V0, . . . , Vm} be a partition of [n] with respect

to G = Kn and {W ′j}j∈[`] as detailed in Lemma 3.7 with totally 2-colored (ε, d)-reduced

graph G′′ of minimum degree δ(G′′) ≥ (1 − 4d)m. Set k′ = bm/Nc ≥ k0 and observe

that the subgraph G′ induced by G′′ in [k′N ] satisfies δ(G′) ≥ (1 − 8d)m ≥ (1 − α)m

as m ≥ 4N/d. Thus we can apply Lemma 2.4 with input G′, k′, γ/4 to obtain an

integer t′ ∈ [k′/8, k′N ] and a monochromatic (say red) simple forest F ′ ⊂ G′ such that

d(F ′, t′) ≥ (12 +
√

8)/17− γ/4.

Set t = maxVt′ . We have that Vt′ ⊂ Wj for some j ∈ [`]. Recall that i < j if and only

if max{Vi} < max{Vj} for any i, j ∈ [m]. It follows that Vi ⊂ [t] for all i ≤ t′. Hence

t ≥ t′|V1| ≥
k′

8
|V1| ≥

⌊m
N

⌋ (1− ε)n
8m

≥ n

16N
. (2.3)

This implies t ≥ k by choice of n0. Since [t] is covered by V0 ∪Wj ∪
⋃
i∈[t′] Vi, it follows

that

t′|V1| ≥ t− |V0| − |Wj |

≥
(

1− εn
t
− 4

`

n

t

)
t

≥
(

1− 16εN − 64N

`

)
t (by (2.3))

≥
(

1− γ

2

)
t. (2.4)

For every edge ij ∈ E(F ′) with Vi ⊂ R, we apply Lemma 2.5 to choose a path Pij which

starts and ends in Vi and covers all but at most 2
√
ε|V1| vertices of each Vi and Vj . We

denote the isolated vertices of F ′ by I ′. For each i ∈ I ′ we have Vi ⊂ R. Hence the red

path forest F :=
⋃
i∈I′ Vi ∪

⋃
ij∈E(F ′) Pij ⊂ Kn satisfies
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|V (F ) ∩ [t]| =
∑
i∈I′
|Vi ∩ [t]|+

∑
ij∈E(F ′)

|V (Pij) ∩ [t]|

≥
∑

i∈I′∩[t′]

|Vi|+
∑

i∈V (F ′−I′)∩[t′],

(|Vi| − 2
√
ε|V1|)

≥ (1− 2
√
ε)|V1||V (F ′) ∩ [t′]|

≥ (1− 2
√
ε)

(
12 +

√
8

17
− γ

4

)
t′|V1|

(2.4)

≥

(
12 +

√
8

17
− γ

)
t

as desired.

2.2.3 Upper density of simple forests

In this section we prove Lemma 2.4. For a better overview, we shall define all necessary

constants here. Suppose we are given γ′ > 0 as input and set γ = γ′/4. Fix a positive

integer N = N(γ) and let 0 < α ≤ γ/(8N). The exact value of N will be determined

later on. Let k0 = d8/γe and fix a positive integer k ≥ k0. Consider a totally 2-colored

graph G′ on n = kN vertices with minimum degree at least (1− α)n.

Denote the sets of red and blue vertices by R and B, respectively. As it turns out, we

will not need the edges inside R and B. So let G be the spanning bipartite subgraph,

obtained from G′ by deleting all edges within R and B. For each red vertex v, let db(v)

be the number of blue edges incident to v in G. Let a1 ≤ · · · ≤ a|R| denote the degree

sequence taken by db(v). The whole proof of Lemma 2.4 revolves around analysing this

sequence.

Fix an integer t = t(γ,N, k) and subset R′ ⊂ R, B′ ⊂ B. The value of t and nature of

R′, B′ will be determined later. The following two observations explain our interest in

the sequence a1 ≤ · · · ≤ a|R|.

Claim 2.6. If aj > j − t for all 1 ≤ j ≤ |R′| − 1, then there is a blue simple forest

covering all but at most t vertices of R′ ∪B.

Proof. We write R′ = {v1, . . . , v|R′|} such that db(vi) ≤ db(vj) for every 1 ≤ i ≤ j ≤ |R′|.
By assumption, we have db(vj) ≥ aj > j−t for all 1 ≤ j ≤ |R′|−1. Thus we can greedily

select a blue matching containing {vt, vt+1, . . . , v|R′|−1}, which covers all but t vertices

of R′. Together with the rest of B, this forms the desired blue simple forest.
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Claim 2.7. If ai < i+ t for all 1 ≤ i ≤ |B′|− t, then there is a red simple forest covering

all but at most t+ αn vertices of R ∪B′.

Proof. Let X ′ be a minimum vertex cover of the red edges in the subgraph of G induced

by R ∪B′. If |X ′| ≥ |B′| − t− αn, then by König’s theorem there exists a red matching

covering at least |B′| − t−αn vertices of B′. This together with the vertices in R yields

the desired red simple forest.

Suppose now that |X ′| < |B′| − t − αn. Since every edge between R \ (X ′ ∩ R) and

B′ \ (X ′ ∩B′) is blue, we have for every vertex v in R \ (X ′ ∩R),

db(v) ≥ |B′| − |X ′ ∩B′| − αn = |X ′ ∩R|+ |B′| − |X ′| − αn > |X ′ ∩R|+ t.

In particular, this implies ai ≥ i+ t for i = |X ′ ∩R|+ 1. So |B′| − t+ 1 ≤ |X ′ ∩R|+ 1

by the assumption in the statement. Together with

|X ′ ∩R|+ 1 ≤ |X ′|+ 1 < |B′| − t− αn+ 1 < |B′| − t+ 1,

we reach a contradiction.

Motivated by this, we introduce the following definitions.

Definition 2.3 (Oscillation, `+(t), `−(t)). Let a1, . . . , an be a non-decreasing sequence

of non-negative real numbers. We define its oscillation as the maximum value T , for

which there exist indices i, j ∈ [n] with ai− i ≥ T and j− aj ≥ T . For all 0 < t ≤ T , set

`+(t) = min{i ∈ [n] : ai ≥ i+ t},

`−(t) = min{j ∈ [n] : aj ≤ j − t}.

Suppose that the degree sequence a1, . . . , a|R| has oscillation T and fix some positive

integer t ≤ T . We define ` and λ by

` = `+(t) + `−(t) = λt. (2.5)

The next claim combines Claims 2.6 and 2.7 into a density bound of a monochromatic

simple forest in terms of the ratio `/t = λ. (Note that, in practice, the term αn will be

of negligible size.)

Claim 2.8. There is a monochromatic simple forest F ⊂ G with

d(F, `+ t) ≥ `− αn
`+ t

=
λt− αn
(1 + λ)t

.
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Proof. Let R′ = R∩ [`+ t] and B′ = B∩ [`+ t] so that `+(t)+ `−(t) = ` = |R′|+ |B′|− t.
Thus we have either `−(t) ≥ |R′| or `+(t) > |B′| − t. If `−(t) ≥ |R′|, then aj > j − t for

every 1 ≤ j ≤ |R′| − 1. Thus Claim 2.6 provides a blue simple forest F covering all but

at most t vertices of [` + t]. On the other hand, if `+(t) > |B′| − t, then ai < i + t for

every 1 ≤ i ≤ |B′| − t. In this case Claim 2.7 yields a red simple forest F covering all

but at most t+ αn vertices of [`+ t].

Claim 2.8 essentially reduces the problem of finding a dense linear forest to a problem

about bounding the ratio `/t in integer sequences. It is, for instance, not hard to see

that we always have ` ≥ 2t (which, together with the methods of the previous two

subsections, would imply the bound d̄(P ) ≥ 2/3 of Erdős and Galvin). The following

lemma provides an essentially optimal lower bound on `/t = λ. Note that for λ = 4+
√

8,

we have λ
λ+1 = (12 +

√
8)/17.

Lemma 2.9. For all γ ∈ R+, there exists N ∈ N such that, for all k ∈ R+ and all

sequences with oscillation at least kN , there exists a real number t ∈ [k, kN ] with

` := `+(t) + `−(t) ≥
(

4 +
√

8− γ
)
t.

The proof of Lemma 2.9 is deferred to the last section. We now finish the proof of

Lemma 2.4. Set N = N(γ) to be the integer returned by Lemma 2.9 with input γ = γ′/4.

In order to use Lemma 2.9, we have to bound the oscillation of a1, . . . , a|R|:

Claim 2.10. The degree sequence a1, . . . , a|R| has oscillation T ≥ kN/8 or there is a

monochromatic simple forest F ⊂ G with d(F, n) ≥ (12 +
√

8)/17− γ.

Before we prove Claim 2.10, let us see how this implies Lemma 2.4.

Proof of Lemma 2.4. By Claim 2.10, we may assume that the sequence a1, . . . , a|R| has

oscillation at least kN/8. By Lemma 2.9, there is a real number t′ ∈ [k/8, kN/8] with

` = `+(t′) + `−(t′) ≥ (4 +
√

8− γ)t′.

Let t = t(γ,N, k) = dt′e. Since the ai’s are all integers, we have `+(t) = `+(t′) and

`−(t) = `−(t′). Let F ⊂ G be the monochromatic simple forest obtained from Claim 2.8.
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As n = kN , ` ≥ t′ ≥ k/8 ≥ 1/γ, α ≤ γ/(8N), and by (2.5), it follows that

d(F, `+ t) ≥ `− αn
`+ t

=
1− αn/`

1 + t
`

≥ 1− 8αN

1 + t′

` +1
`

≥ 1

1 + t′

`

−2γ

≥ 1

1 + 1
4+
√

8−γ
− 2γ =

4 +
√

8− γ
5 +
√

8− γ
− 2γ

≥ 4 +
√

8

5 +
√

8
− 4γ =

12 +
√

8

17
− γ′,

as desired.

To finish, it remains to show Claim 2.10. The proof uses König’s theorem and is similar

to the proof of Claim 2.7.

Proof of Claim 2.10. Let X be a minimum vertex cover of the red edges. If |X| ≥
|B| − (1/8 + α)n, then König’s theorem implies that there is a red matching covering

all but at most (1/8 + α)n blue vertices. Thus adding the red vertices, we obtain a red

simple forest F with d(F, kN) ≥ 7/8−α ≥ (12 +
√

8)/17−γ. Therefore, we may assume

that |X| < |B| − (1/8 + α)n. Every edge between R \ (X ∩R) and B \ (X ∩B) is blue.

So there are at least |R| − |X ∩R| red vertices v with

db(v) ≥ |B| − |X ∩B| − αn = |X ∩R|+ |B| − |X| − αn > |X ∩R|+ n/8.

This implies that ai ≥ i+ n/8 for i = |X ∩R|+ 1. (See Figure 2.2.)

|X ∩R|+ 1 |R| − |Y ∩R|

i− n/8

i+ n/8 i

a|X∩R|+1

a|R|−|Y ∩R|

Figure 2.2: The sequence a1, . . . , a|R| has oscillation at least kN/8.

Let Y be a minimum vertex cover of the blue edges. Using König’s theorem as above,

we can assume that |Y | ≤ |R| − n/8. Every edge between R \ (Y ∩R) and B \ (Y ∩B)
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is red. It follows that there are at least |R| − |Y ∩R| red vertices v with

db(v) ≤ |Y ∩B| = |Y | − |Y ∩R| ≤ |R| − |Y ∩R| − n

8
.

This implies that aj ≤ j −n/8 for j = |R| − |Y ∩R|. Thus a1, . . . , a|R| has oscillation at

least n/8 = kN/8.

2.2.4 Sequences and oscillation

We now present the quite technical proof of Lemma 2.9. We will use the following

definition and related lemma in order to describe the oscillation from the diagonal.

Definition 2.4 (k-good, uo(k), ue(k)). Let a1, . . . , an be a sequence of non-negative

real numbers and let k be a positive real number. We say that the sequence is k-good

if there exists an odd i and an even j such that ai ≥ k and aj ≥ k. If the sequence is

k-good, we define for all 0 < t ≤ k

uo(t) = a1 + · · ·+ aio−1 where io = min{i : ai ≥ t, i odd},

ue(t) = a1 + · · ·+ aie−1 where ie = min{i : ai ≥ t, i even}.

Lemma 2.11. For all γ ∈ R+ there exists N ∈ N such that for all k ∈ R+ and all

(kN)-good sequences, there exists a real number t ∈ [k, kN ] with

uo(t) + ue(t) ≥
(

3 +
√

8− γ
)
t.

First we use Lemma 2.11 to prove Lemma 2.9.

Proof of Lemma 2.9. Given γ > 0, let N be obtained from Lemma 2.11. Let k ∈ R+

and a1, . . . , an be a sequence with oscillation at least kN . Suppose first that a1 ≥ 1.

Partition [n] into a family of non-empty intervals I1, . . . , Ir with the following properties:

- For every odd i and every j ∈ Ii, we have aj ≥ j.

- For every even i and every j ∈ Ii, we have aj < j.

Define si = max {|aj − j| : j ∈ Ii}. Intuitively, this is saying that the values in the odd

indexed intervals are “above the diagonal” and the values in the even indexed intervals

are “below the diagonal” and si is the largest gap between sequence values and the

“diagonal” in each interval.
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Since a1, . . . , an has oscillation at least kN , the sequence s1, . . . , sr is (kN)-good and

thus by Lemma 2.11, there exists t ∈ [k, kN ] such that

uo(t) + ue(t) ≥
(

3 +
√

8− γ
)
t. (2.6)

Since the sequence a1, a2, . . . , an is non-decreasing, aj−j can decrease by at most one in

each step and thus we have |Ii| ≥ si for every i ∈ [r− 1]. Moreover, we can find bounds

on `+(t) and `−(t) in terms of the si:

- `+(t) must lie in the interval Ii with the smallest odd index io such that sio ≥ t,

therefore `+(t) ≥ s1 + · · ·+ sio−1 = uo(t).

- `−(t) must lie in the interval Ij with the smallest even index ie such that sie ≥ t.

Moreover, it must be at least the t-th element in this interval, therefore `−(t) ≥
s1 + · · ·+ sie−1 + t = ue(t) + t.

Combining the previous two observations with (2.6) gives

`+(t) + `−(t) ≥ uo(t) + ue(t) + t ≥
(

4 +
√

8− γ
)
t,

as desired.

If 0 ≤ a1 < 1, we start by partitioning [n] into a family of non-empty intervals I1, . . . , Ir

with the following properties:

- For every even i and every j ∈ Ii, we have aj ≥ j.

- For every odd i and every j ∈ Ii, we have aj < j.

From this point, the proof is analogous.

Finally, it remains to prove Lemma 2.11. The proof is by contradiction and the main

strategy is to find a subsequence with certain properties which force the sequence to

become negative eventually.

Proof of Lemma 2.11. Let ρ = 3+
√

8−γ and let m := m(ρ) be a positive integer which

will be specified later. Suppose that the statement of the lemma is false for N = 6 · 4m

and let a1, . . . , an be an (Nk)-good sequence without t as in the statement. We first

show that ai has a long strictly increasing subsequence. Set

I = {i : ai ≥ k, ai > aj for all j < i},
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denote the elements of I by i1 ≤ i2 ≤ · · · ≤ ir and let a′j = aij . Consider any j ∈ [r− 1]

and suppose without loss of generality that ij+1 is odd. For δ small enough, this implies

uo(a′j + δ) = a1 + · · · + aij+1−1 ≥ a′1 + · · · + a′j , and ue(a
′
j + δ) ≥ a1 + · · · + aij+1 ≥

a′1 + · · · + a′j+1. By assumption we have uo(a′j + δ) + ue(a
′
j + δ) < ρ(a′j + δ). Hence,

letting δ → 0 we obtain 2
(
a′1 + · · ·+ a′j

)
+ a′j+1 ≤ ρa′j , which rearranges to

a′j+1 ≤ (ρ− 2)a′j − 2
(
a′1 + · · ·+ a′j−1

)
. (2.7)

In particular, this implies a′j+1 ≤ (ρ− 2)a′j < 4a′j . Moreover, we have a′1 ≤ uo(k) if i1 is

even and a′1 ≤ ue(k) if i1 is odd. Therefore,

6k ·4m = kN ≤ a′r < 4r ·a′1 ≤ 4r max{uo(k), ue(k)} ≤ 4r(uo(k)+ue(k)) < 4r ·ρk < 6k ·4r

and thus r ≥ m.

Finally, we show that any sequence of reals satisfying (2.7), will eventually become

negative, but since a′i is non-negative this will be a contradiction.

We start by defining the sequence b1, b2, . . . recursively by b1 = 1 and bi+1 = (ρ− 2)bi−
2(b1 + · · ·+ bi−1). Note that

bi+1 = (ρ− 2)bi − 2(b1 + · · ·+ bi−1)

= (ρ− 1)bi − bi − 2(b1 + · · ·+ bi−1)

= (ρ− 1)bi − ((ρ− 2)bi−1 − 2(b1 + · · ·+ bi−2))− 2(b1 + · · ·+ bi−1)

= (ρ− 1)bi − ρbi−1

So equivalently the sequence is defined by,

b1 = 1, b2 = ρ− 2, and bi+1 = (ρ− 1)bi − ρbi−1 for i ≥ 2.

It is known that a second order linear recurrence relation whose characteristic poly-

nomial has non-real roots will eventually become negative (see [BW81]). Indeed, the

characteristic polynomial x2 − (ρ − 1)x + ρ has discriminant ρ2 − 6ρ + 1 < 0 and so

its roots α, ᾱ are non-real. Hence the above recursively defined sequence has the closed

form of bi = zαi + z̄ᾱi = 2Re
(
zαi
)

for some complex number z. By expressing zαi in

polar form we can see that bm < 0 for some positive integer m. Note that the calculation

of m only depends on ρ.

Now let a′1, . . . , a
′
m be a sequence of non-negative reals satisfying (2.7). We will be done

if we can show that a′j ≤ a′1bj for all 1 ≤ j ≤ m; so suppose a′s > a′1bs for some s, and

such that {a′j}mj=1 and {a′1bj}mj=1 coincide on the longest initial subsequence. Let p be
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the minimum value such that a′p 6= a′1bp. Clearly p > 1. Applying (2.7) to j = p− 1 we

see that

a′p ≤ (ρ− 2)a′p−1 − 2(a′1 + · · ·+ a′p−2) = (ρ− 2)a′1bp−1 − 2(a′1b1 + · · ·+ a′1bp−2)

= a′1((ρ− 2)bp−1 − 2(b1 + · · ·+ bp−2)) = a′1bp

and thus a′p < a′1bp.

Let β = (a′1bp − a′p)/a′1 > 0. Now consider the sequence a′′j where a′′j = a′j for j < p

and a′′j = a′j + βa′j−p+1 for j ≥ p. Then a′′p = a′1bp = a′′1bp. Clearly, this new sequence

satisfies (2.7) for every j < p. Furthermore, we have

a′′p+j = a′p+j + βa′j+1

≤ (ρ− 2)a′p+j−1 − 2
(
a′1 + · · ·+ a′p+j−2

)
+ β(ρ− 2)a′j − 2β

(
a′1 + · · ·+ a′j−1

)
= (ρ− 2)a′′p+j−1 − 2

(
a′′1 + · · ·+ a′′p+j−2

)
for every j ≥ 0. Hence, the whole sequence satisfies (2.7). We also have a′′s ≥ a′s >

a′1bs = a′′1bs. This contradicts the fact that a′j was such a sequence which coincided with

a′1bj on the longest initial subsequence.



Chapter 3

Ramsey density of locally finite

graphs

In this Chapter we will prove the results from Section 1.2.1 and Section 1.2.2.

Before jumping into the proofs, we need a definition that will be important when relat-

ing the Ramsey density of a graph H and its components. This definition appears in

Theorem 3.1 and Theorem 3.2

We say that a family {S1, S2, . . . } of subsets of V (H) is concentrated in at most k

components if there are components C1, C2, . . . , Cs of H, with s ≤ k, such that all but

finitely many sets Si intersect some component Cj . We say that V (H) is concentrated

in at most k components if {{v} : v ∈ V (H)} is concentrated in at most k components.

This chapter is organized as follows: we prove the general upper bounds in Section 3.1,

and the general lower bounds in Section 3.2, besides a lemma that is left for Appendix

A (the bulk of this proof is a rather long series of calculations). In Section 3.3 we discuss

the application of the general bounds to particular families of graphs, and obtain the

remaining results from Section 1.2.1 and Section 1.2.2.

3.1 General upper bounds

We will prove two upper bounds in this section: the first one implies the upper bound

from items (ii)a and (ii)b in Theorem 1.7, while the second one is Theorem 1.9. In both

cases we will construct a coloring of E(KN) in which no dense monochromatic copy of

H exists.

31
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Theorem 3.1. Let H be a locally finite graph with chromatic number at least a, such

that V (H) is concentrated in at most b components. There exists a two-coloring of KN

in which every monochromatic copy of H has density at most b/(a− 1).

Proof. Consider the coloring of KN in which the edge uv is red iff a − 1 divides v − u.

The graph formed by the blue edges has chromatic number a − 1, and thus does not

contain H as a subgraph. Every monochromatic copy of H in this coloring is red.

The red graph consists of a− 1 cliques C1, . . . , Ca−1, each with d̄(Ci) = 1/(a− 1). The

b components that concentrate V (H ′) must be each contained in a clique Ci. Because

modifying finitely many elements does not affect the density of a set, we have d̄(H ′) ≤
d̄(C1 ∪ · · · ∪ Cb) = b/(a− 1). We conclude that ρ(H) ≤ b/(a− 1).

Next we will prove Theorem 1.9. As before, the goal is to construct a two-coloring of

KN without dense monochromatic copies of H.

The intuition behind the construction to prove Theorem 1.9 is as follows: suppose that

we are trying to find a red copy of H in this coloring. If we have a blue clique K

which has fewer than k vertices neighboring K through some red edge, and µ(H, t) = k,

then we know that fewer than t vertices from K can be in H ′, because those vertices

correspond to an independent set in H. Our goal is to find a construction that maximizes

the number of vertices from [n] that can be excluded from a potential red or blue H ′

using this method.

Compared to the approach of Theorem 1.2, we preserve the idea of a two-step con-

struction: we start with an infinite set of vertices, we first decide the color of the edges

between them, and then we choose the element of N that will correspond to each ver-

tex. One important difference is that, because we were unable to solve explicitly the

optimization problem from Definition 1.6, we will write our construction in terms of the

optimal solution (in our notation, the function g is an approximation of the solution).

This inability to solve explicitly is not due to any difference in the methods used, but

is rather subtle: there is a “without loss of generality”-type statement in the proof of

Proposition B.3 (the part in which 1−γ
1+γ > 1 is assumed) which does lose generality when

applying the proof to graphs H with expansion ratio of independent sets greater than

1. However, if this minor technical issue is overcome (and intuition leads us to believe

this is possible), then the rest of the proof goes through, and f(x) would be equal to its

upper bound in (1.2). If that is the case, then the function g can be defined explicitly,

symplifying the analysis.
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Proof of Theorem 1.9. Denote λ = lim inf
n→∞

µ(H,n)
n . Let ε > 0. Let g be a 1-Lipschitz

function such that the upper limit in (1.1) is less than h(γ) + ε, for γ = λ−1
λ+1 . Take

an infinite set of vertices v1, v2, . . . , and arrange them from left to right in this order.

Color these vertices red and blue in such a way that, for every n ∈ N, among the n

leftmost vertices there are exactly b(n+ g(n))/2c red vertices (this is possible because g

is 1-Lipschitz). Form a two-colored complete graph by giving each edge the color of its

leftmost endpoint.

There must be infinitely many vertices of each color. This is because otherwise one

of the non-decreasing functions x+g(x)
2 or x−g(x)

2 is bounded, giving an absolute upper

bound on x± g(x). Then max{Γ+
γ (g, n),Γ−γ (g, n)} = +∞ for every n large enough.

Let the red vertices be r1, r2, r3, . . . and the blue vertices be b1, b2, b3, . . . , according to

the left-to-right order. Let αi be the smallest value such that rαi has at most λ(αi − i)
blue vertices to its left, and βi the smallest value such that bβi has at most λ(βi− i) red

vertices to its left. The following discussion will not only prove the existence of αi and

βi, but also give a bound on them.

Let w = 2
1+λ(λi + 2λ + 2). Let z+ = Γ+

γ (g, w) and z− = Γ−γ (g, w). By continuity of g

and definition of Γ+
γ and Γ−γ , we have

g(z+) = w − γz+, g(z−) = γz− − w.

One can check that the following identity holds by substution of g(z−):

z− + g(z−)

2
+ 2 = λ

(
z− − g(z−)

2
− i− 2

)
.

Among the bz−c leftmost vertices there are
⌊
bz−c+g(bz−c)

2

⌋
red vertices and bz−c −⌊

bz−c+g(bz−c)
2

⌋
blue vertices. Observe that

⌊
bz−c+ g(bz−c)

2

⌋
≤bz

−c+ g(bz−c)
2

≤ z− + g(z−)

2
< λ

(
z− − g(z−)

2
− i− 2

)
≤λ
(
bz−c −

⌊
bz−c+ g(bz−c)

2

⌋
− i
)
.

If the last blue vertex among those bz−c is bτ , then the number of red vertices to its left

is less than λ(τ − i), meaning that βi ≤ τ . Hence
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βi ≤ bz−c −
⌊
bz−c+ g(bz−c)

2

⌋
≤ z− − g(z−)

2
+ 2 =

1− γ
2

z− +
w

2
+ 2.

Analogously, one has the identity

z+ − g(z+)

2
+ 2 = λ

(
z+ + g(z+)

2
− i− 2

)
and the inequality

bz+c −
⌊
bz+c+ g(bz+c)

2

⌋
≤ λ

(⌊
bz+c+ g(bz+c)

2

⌋
− i
)
.

Hence we find

αi ≤
⌊
bz+c+ g(bz+c)

2

⌋
≤ z+ + g(z+)

2
=

1− γ
2

z+ +
w

2
.

Adding the two values together, for i large enough we have

αi + βi ≤
1− γ

2
(z+ + z−) + w + 2 ≤

(
1− γ

2
h(γ) + ε+ 1

)
2λ

1 + λ
i+ o(i).

Let φ : N → {v1, v2, . . . } be an arbitrary bijection that, for every j, maps [αj + βj ] to

the set {r1, r2, . . . , rαj , b1, b2, . . . , bβj}. The function φ defines a coloring of KN, where

the color of the edge ij is the color of the edge φ(i)φ(j).

Let R and B be the sets of positive integers i whose image φ(i) is red or blue, respectively.

Let H ′ ⊆ KN be a monochromatic copy of H in this coloring. Suppose that H ′ is red.

Let n be a positive integer, and let Bn = V (H ′) ∩ [n] ∩ B. Because the vertices of Bn

form a monochromatic blue clique in our coloring of KN, the set Bn must be independent

in H ′.

Let j be the minimum value such that φ(B ∩ [n]) ⊆ {b1, b2, . . . , bβj}. We claim first

that there are at least (1 − O(ε))j vertices in [n] which do not belong to H ′. Indeed,

let B′n = V (H ′) ∩ {b1, b2, . . . , bβj−1
} ⊆ Bn. From the construction of the coloring,

the vertices that are connected to a vertex of {b1, b2, . . . , bβj−1
} through a red edge are

precisely the red vertices to the left of bβj−1
, of which there are at most λ(βj−1−(j−1)).

This means that µ(H, |B′n|) ≤ λ(βj−1 − (j − 1)). For j large enough, this implies

|B′n| ≤ (1 + o(1))(βj−1 − (j − 1)), and

|[n] \ V (H ′)| ≥ βj−1 − |B′n| ≥ (1 + o(1))(j − 1)− o(1)βj−1.
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Observe next that we cannot have βj = βj+1. This is because bβj−1, which is to the

left1 of bβj , has more than λ((βj − 1)− j) = λ(βj − (j + 1)) red vertices to its left. We

thus have, by minimality of j, that bβj+1
/∈ φ([n]), and by construction of φ we have

φ([n]) ⊂ {r1, r2, . . . , rαj+1 , b1, b2, . . . , bβj+1
}. This leads to the desired bound:

|V (H ′) ∩ [n]|
n

≤ 1− (1− o(1))j

n
≤ 1− (1− o(1))j

αj+1 + βj+1
≤ 1− 1− o(1)(

1−γ
2 h(γ) + ε+ 1

)
2λ

1+λ

which for ε small enough and n large enough can take values arbitrarily close to f(λ).

The case in which H ′ is monochromatic blue is analogous. Indeed, besides the direction

of the rounding, it is equivalent to taking the function −g(x) instead of g(x).

3.2 General lower bounds

In this section we will prove three lower bounds. One is item (i) from Theorem 1.7,

another is the lower bound of item (ii)b in the same theorem, and the final one is the

following, which will be used in the proof of Theorem 1.10 and Theorem 1.15:

Theorem 3.2. Let H be a locally finite graph, a, b, r, s be positive integers with a > b,

and Ψ : V (H)→ [a] be a proper coloring. Suppose that there exist infinitely many pair-

wise disjoint doubly independent sets I1, I2, . . . in H, each contained in some component

of H and not concentrated in fewer than b components, such that |Ii| = r, |N(Ii)| ≤ s,

and Ψ(N(Ii)) = a. Then

ρ(H) ≥ b

a− 1
f
(s
r

)
.

As an example of a graph whose Ramsey density can be computed from Theorem 3.2,

but not from the other lower bounds mentioned above, let T be the tree obtained by

taking an infinite path v1v2v3 . . . and adding i leaves to each vertex vi, for all i. Consider

the graph H = b · T +Ka, with a > b, obtained by taking the disjoint union of b copies

of T and one a-clique. We can define a proper coloring Ψ : V (H) → [a] in which the

vertices of Ka all receive different colors, and the trees T are properly two-colored with

colors {1, a}. Then for every r ∈ N there exist infinitely many independent pairwise

disjoint sets I, in every T -component, where N(I) is a single vertex with color a (just

take r leaves of a vertex with label greater than r and color a). Theorem 3.2 then tells

us that ρ(b · T + Ka) ≥ b
a−1f(r−1) for all r ∈ N, and so ρ(b · T + Ka) ≥ b

a−1 . We have

equality here, as this matches the upper bound from Theorem 1.7(ii)b.

1We cannot have βj = 1 for j ≥ 2, because then b1 would have at most λ(1− j) < 0 red vertices to
its left.
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Another example is the graph 2 · P∞ +K3, in which the graph can be colored with the

colors {1, 2, 3} in a way that both paths use only the colors {1, 3}. Then for every r,

each P∞-component contains infinitely many pairwise disjoint independent sets I with

|I| = r, |N(I)| = r+1 and N(I) being monochromatic in color 3 (just take r consecutive

vertices receiving color 1). By Theorem 3.2 we have ρ(2 · P∞ + K3) ≥ f
(
r+1
r

)
and, by

continuity of f(x), we have ρ(2 ·P∞+K3) ≥ f(1), which matches the upper bound from

Theorem 1.9.

However, for every graph for which we know that Theorem 3.2 is tight, we either have

a− 1 = b or r = s, as in the two examples above.

We start with the proof of Theorem 1.7(i). This result follows easily from the infinite

version of Ramsey’s theorem:

Proof of Theorem 1.7(i). Let χ : E(KN) → {R,B} be an edge-coloring. Let F be an

inclusion-maximal family of pairwise disjoint monochromatic infinite cliques in χ. Then

N \ V (F) is finite, because otherwise by Ramsey’s theorem there would be an infinite

monochromatic clique in χ restricted to N\V (F), contradicting the maximality of F . Let

FR and FB be the families of red and blue cliques in F . Since d̄(V (FR)∪V (FB)) = 1, we

have max{d̄(FR), d̄(FB)} ≥ 1/2. W. l. o. g. assume d̄(FR) ≥ 1/2. We can suppose that

FR contains infinitely many cliques, because otherwise we can take one clique K ∈ FR
and divide it into infinitely many infinite cliques. Let K1,K2, . . . , be the cliques in FR.

We can partition the vertex set of H into infinitely many parts S1, S2, . . . , each of which

is made up of infinitely many components of H. Now take any Φ : V (H) → V (KN)

which is a bijection from each Si to each Ki. The image of H is a monochromatic graph

H ′ and d̄(H ′) = d̄(FR) ≥ 1/2.

The proof of Theorem 1.7(ii)b and Theorem 3.2 will both be (partially) algorithmic:

given a coloring χ : E(KN) → {R,B}, we will define an algorithm that constructs a

dense monochromatic copy of H. The algorithms will be similar, so we will first prove

Theorem 3.2 and then explain how to adapt the proof to Theorem 1.7(ii)b.

Let H be as in Theorem 3.2, and let χ : E(KN) → {R,B}. Our goal is to find a copy

of H in KN with density at least b/(a− 1)f(s/r). In order to find such a copy of H, it

will be helpful to also color the vertices of KN, in a way that encodes information about

how the vertices are connected through red or blue edges. The following coloring is a

variant of one due to Elekes et al. [ESSS17].

We denote by NC(v) the set of vertices connected to v through an edge of color C. When

C is a color that is either red or blue, we denote the other color by C̄.
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Definition 3.3. Let χ : E(KN)→ {R,B} be a coloring, and let a be a positive integer.

An a-good coloring of V (KN) is a partition N = ∪ai=1(Ri ∪ Bi) ∪X into 2a + 1 classes

(some of which might be empty), where X is finite, with the following properties:

- For every color C ∈ {R,B}, every 1 ≤ i ≤ a− 1 and every nonempty finite subet

S ⊆ Ci, the set (∩v∈SNC(v)) ∩ Ci is infinite.

- For every color C ∈ {R,B}, every 1 ≤ i ≤ a− 1 and every nonempty finite subet

S ⊆ Ca ∪
(
∪a−1
j=i+1C̄j

)
, the set (∩v∈SNC(v)) ∩ C̄i is infinite.

A similar coloring was defined by Corsten, DeBiasio and McKenney [CDM20]. Both

their coloring and that by Elekes et al. are defined using ultrafilters. We define ours

algorithmically, even though ultrafilters would have worked just as well, in order to make

the properties of this coloring more intuitive and, in the process, avoiding an appeal to

the axiom of choice.

In Chapter 2, the counterpart is the coloring of the vertices used in Section 2.2.1. This

is obviously way simpler than the a-good colorings that we are defining now. There are

two main reasons for the difference in complexity. First, P∞ is a bipartite graph. As

we will see, the parameter a in a-good colorings is tied to the chromatic number of the

target graph H. Second, the self-similarity of P∞ was implicitly used in Section 2.2.1

together with this fact: given two vertices u, v in an 2-edge-colored clique, either they

are connected by a finite piece of P∞ formed by red edges or there is a partition of the

graph separating u and v where every edge between parts is blue.

We call each class Ri a shade of red and each class Bi a shade of blue. X can be seen

as a residual set, which can be removed without affecting the density of the graph. The

choice of a is related to the chromatic number of the monochromatic subgraphs that we

can find in this graph. Indeed, say that we want to find a red clique of size a containing

v ∈ Ri. If i ≤ a− 1, then we can set v = v1, and then greedily select v2, v3, . . . , va ∈ Ri,
each adjacent to the previous ones through a red edge. If i = a, we can set v = va, and

then greedily select va−1, va−2, . . . , v1, with vj ∈ Bj , each adjacent to the previous ones

through a red edge.

We denote by KC
r,s a complete bipartite graph in which all edges have color C, all vertices

in the part of size s have color C and all vertices in the part of size r have color C̄. These

subgraphs will be used to embed the sets Ii ∪N(Ii) in our colored graph.

The proof of Theorem 3.2 will have three main steps, which are captured by these

lemmas:
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Lemma 3.4. Let χ : E(KN) → {R,B} be a coloring, and let a be a positive integer.

There exists an a-good coloring in which at least two of (Ra ∪ Ba−1), (Ba ∪ Ra−1) and

X are empty.

Lemma 3.5. Let χ : E(KN) ∪ V (KN) be a coloring, and let r, s be positive integers.

There exists a color C and a subgraph W ⊆ KN, with d̄(W ) ≥ f(s/r), in which every

component is either an isolated vertex with color C, or a KC
r,s. Furthermore, if V (KN)

is further subdivided into finitely many shades, then W can be taken in a way that each

KC
r,s only uses one shade of each color.

Lemma 3.6. Let χ : E(KN) → {R,B} be an edge-coloring, let a ≥ a′ ≥ b be positive

integers. Let N → {R1, . . . , Ra, B1, . . . , Ba, X} be an a-good coloring in which at most

a′ shades of each color are non-empty. Let W ⊆ KN be a subgraph in which every

component is either an isolated vertex with color C, or a KC
r,s which uses only one

shade of each color. Under the conditions of Theorem 3.2, there exists a monochromatic

H ′ ⊆ KN of color C, H ′ ' H, with d̄(H ′) ≥ b/a′d̄(W ).

Lemma 3.5 is the counterpart of Lemma 2.3 (its proof also includes the counterpart of

the proof of Lemma 2.4). Lemma 3.6, which is used to glue some of the components

in W , is not needed for P∞ due to the simple structure of that graph. It is worth

noting that part of the difficulty of the generalization of the vertex coloring used comes

from finding the right definition of what a “good” coloring should be: weak enough that

it is possible to find in each edge-coloring, yet strong enough to allow us to construct

a monochromatic copy of H. It is straightforward to combine these three lemmas to

deduce Theorem 3.2:

Proof of Theorem 3.2. Let χ : E(KN) be given. Apply Lemma 3.4 to this edge-coloring

to obtain an a-good coloring with at most a − 1 shades of each color are non-empty.

Assign the color red to the vertices in X. Apply Lemma 3.5 to obtain C and W . Remove

from W every component which uses a vertex of X (this does not affect d̄(W ) because

it only removes finitely many vertices). By Lemma 3.6, we can find a monochromatic

H ′ ⊆ KN with d̄(H ′) ≥ b/(a− 1)d̄(W ) ≥ b/(a− 1)f(s/r).

Proof of Lemma 3.4. For each vertex v, we will denote by c(v) and s(v) the color and

the shade that we assign to it, respectively. The color assigned to a vertex might change

while the algorithm is running, but the shade of each vertex is final once assigned and

it will match the color that the vertex has at that time.

At some points, the shade assigning algorithm will call the basic coloring algorithm to

color an infinite set V = {v1, v2, . . . } of vertices. We will first describe this algorithm.
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Basic coloring algorithm: First, the color c(v1) is assigned, satisfying thatNc(v1)(v1)∩
V is infinite. Once the colors of v1, . . . , vi−1 have been assigned, assuming by induction

that
(
∩n−1
i=1 Nc(vi)(vi)

)
∩V is infinite, the color c(vn) is chosen so that

(
∩ni=1Nc(vi)(vi)

)
∩V

is infinite.

The basic coloring algorithm produces a coloring in which the set
(
∩ni=1Nc(vi)(vi)

)
∩ V

is infinite for every n. We say that a color C is dominant in this coloring if, for every n,(
∩ni=1Nc(vi)(vi)

)
∩ V contains infinitely many vertices v with c(v) = C. Observe that at

least one of the colors is dominant.

Now we define the shade assigning algorithm:

1. For every vertex v ∈ N, start with c(v) and s(v) unassigned.

2. If finitely many vertices v remain with s(v) unassigned, assign s(v) = X, and

END.

3. Let V be the set of vertices without a shade. Color V with the basic coloring

algorithm. Choose a color C that is dominant. Let i be the minimum value such

that Ci is empty. For every v ∈ V with c(v) = C, set s(v) = Ci.

4. If i = a− 1, set s(v) = C̄a for every v ∈ V with c(v) = C̄, and END. If i 6= a− 1,

return to Step 2.

The algorithm runs the loop 2−4 at most 2a−3 times before ending. Whenever a set Ci

with i ≤ a−1 is defined, the color C is dominant in the corresponding coloring, meaning

that in particular (∩v∈SNC(v)) ∩ Ci is infinite for every finite non-empty S ⊆ Ci, as it

is a superset of the color C vertices of
(
∩ni=1Nc(vi)(vi)

)
∩ V for n large enough. For the

same reason, for any finite subset S of vertices whose shade is not assigned when Ci is

defined, we have that (∩v∈SNC̄(v))∩Ci is infinite. If Ca is defined at some point in the

algorithm (namely at the end), then C̄1, C̄2, . . . , C̄a−1, Ca are defined in this order. This

proves that the coloring that we obtained is a-good.

To conclude the proof of Lemma 3.4, simply observe that X is nonempty only if the

algorithm terminates at Step 2, the set (Ra ∪ Ba−1) is nonempty only if the algorithm

terminates at Step 4 with C = B and (Ba ∪ Ra−1) is nonempty only if the algorithm

terminates at Step 4 with C = R.

The proof of Lemma 3.5 divides KN into infinitely many finite graphs, and then combines

the regularity lemma and a max flow/min cut argument, to reduce the problem to an

optimization problem equivalent to (1.1). One important feature that is common with
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the proof of Lemma 2.3 is that our application of the regularity lemma will roughly

preserve the ordering of the vertices. We will now state the lemmas that we will need

for this:

Lemma 3.7 (Regularity Lemma [KS96]). For every ε > 0 and m0, ` ≥ 1 there exists

M = M(ε,m0, `) such that the following holds. Let G be a graph on n ≥ M vertices

whose edges are colored in red and blue and let d > 0. Let {Wi}i∈[`] be a partition of

V (G). Then there exists a partition {V0, . . . , Vm} of V (G) and a subgraph H of G with

vertex set V (G) \ V0 such that the following holds:

1. m0 ≤ m ≤M ;

2. {Vi}i∈[m] refines {Wi ∩ V (H)}i∈[`];

3. |V0| ≤ εn and |V1| = · · · = |Vm| ≤ dεne;

4. degH(v) ≥ degG(v)− (d+ ε)n for each v ∈ V (G) \ V0;

5. H[Vi] has no edges for i ∈ [m];

6. all pairs (Vi, Vj) are ε-regular and with density either 0 or at least d in each color

in H.

The max flow/min cut result that we will use can be seen as a weighted version of

König’s Theorem:

Lemma 3.8. Let G be a finite bipartite graph on V = (X,Y ), and let r, s be positive

integers. There exists a unique value of D for which both of these exist:

- A function h : E(G)→ N ∪ {0} such that
∑

e3v h(e) ≤ r if v ∈ X,
∑

e3v h(e) ≤ s

if v ∈ Y and
∑

e∈E(G) h(e) = D.

- A vertex cover Z of G such that r|Z ∩X|+ s|Z ∩ Y | = D.

Proof. Take an orientation of every edge in G from X to Y , and give it an infinite

capacity. Connect every vertex in X to a source σ through an edge with capacity r,

and every vertex in y to a sink τ through an edge with capacity s. Let D be the

maximum flow in this network. D is the maximum value for which a function h as in

the statement exists (by the integrality theorem, there exists a maximum flow in which

the flow of every edge is an integer). D is also the minimum value for which a cut

(C1, C2) with σ ∈ C1 and τ ∈ C2 exists. Observe that (C1, C2) is a cut with finite

capacity iff (C2 ∩X)∪ (C1 ∩ Y ) is a vertex cover of G, in which case the capacity of the

cut is r|C2 ∩X|+ s|C1 ∩ Y |. Our lemma follows from the Ford-Fulkerson theorem.
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The next lemma that we will introduce requires the definition of two parameters, which

up to a change of coordinates are equivalent to Γ+
γ and Γ−γ .

Definition 3.9. Let g : [0,+∞) → [0,+∞) be a continuous, non-decreasing function.

Let λ, t be positive real numbers. We define the following two parameters:

`+λ (g, t) = min {x : g(λx)− x ≥ t} `−λ (g, t) = min

{
x : x− g(x)

λ
≥ t
}
,

where we take the minimum of the empty set to be +∞.

Lemma 3.10. For λ, ε > 0 there exists γ > 0 with the following property: for every

non-decreasing continuous function g : [0,+∞) → [0,+∞) with g(0) = 0 and every

m > 0 there exists t ∈ [γm,m] such that

`+λ (g, t) + `−λ (g, t)

t
≥ f(λ)

1− f(λ)
− ε.

The proof of Lemma 3.10 can be found in Appendix A. Combining Lemma 3.8 and

Lemma 3.10, we can obtain the following:

Lemma 3.11. For every ε, r, s > 0 there exists γ, η > 0 and N for which the following

hold: for every graph G on [n], with n > N and δ(G) ≥ (1 − η)n, and for every

total coloring χ : V (G) ∪ E(G) → {R,B}, there exists t ∈ [γn, n], a color C, and

h : E(G)→ N ∪ {0}, such that the following hold:

- For every edge e = uv, if g(e) > 0 then χ(e) = C and χ(u) 6= χ(v).

-
∑
e3v

h(e) ≤ r for every v with χ(v) = C and
∑
e3v

h(e) ≤ s for every v with χ(v) = C̄.

- |C∩[t]|
t +

∑
v∈(C̄∩[t])

∑
e3v h(e)

st ≥ f(s/r)− ε

Proof. Let λ = s/r. Our constants will follow the hierarchy

η,N−1 � γ � κ� ξ � ε, λ.

That is, after ε and λ are given we pick ξ small enough, after fixing ξ we pick κ small

enough, and so on.

For every red vertex v, we define its blue degree dB(v) as the number of blue vertices w

such that vw is blue. Let v1, v2, . . . , v|R| be the set of red vertices, sorted from smallest

to largest blue degree, and let di = dB(vi). Define additionally d0 = 0 and dk = d|R| for

k > |R|. Let g : [0,+∞) → [0,+∞) be the function that satisfies g(k) = dk for every

integer k and which is linear between every pair of consecutive integers.
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By Lemma 3.10 there exists τ ∈ [γn, κn] for which
`+λ (g,τ)+`−λ (g,τ)

τ ≥ f(λ)
1−f(λ) − ξ. Let

t =
(

1
1−f(λ) − ξ

)
τ . Then either |R ∩ [t]| < `−λ (g, τ) or |B ∩ [t]| ≤ `+λ (g, τ) + τ . We

consider both cases, in the former we will have C = B and in the latter C = R:

Case 1: |R ∩ [t]| < `−(g, τ). Let R′ = R ∩ [t]. Let G′ be the graph of blue edges in G

between R′ and B. Let h, Z and D be as in Lemma 3.8 applied to G′, with X = B and

Y = R′. Suppose that D ≤ s(|R′| − τ). Every vertex v ∈ R′ \ Z must have all its blue

neighbors in B ∩ Z, and so dB(v) ≤ |B ∩ Z|. Therefore

d|R′|−|Z∩R′| ≤ |Z ∩B| =
D − s|Z ∩R′|

r
≤ s

r
(|R′| − |Z ∩R′| − τ).

Setting x = |R′|− |Z ∩R′|, this expression rearranges to x− g(x)
λ ≥ τ , so by definition of

`−λ this means that x ≥ `−λ (g, τ). But this is a contradiction, because x ≤ |R′| < `−λ (g, τ).

This means that we have D > s(|R′| − τ), and

|B ∩ [t]|
t

+
D

st
≥ t− |R′|

t
+
s(|R′| − τ)

st
= 1− τ

t
= 1− 1

1
1−f(λ) − ξ

≥ f(λ)− ε.

Case 2: |B ∩ [t]| ≤ `+(g, τ) + τ . Let B′ = B ∩ [t]. Let G′ be the graph of red edges

between R and B′. Let h, Z and D be as in Lemma 3.8 applied to G′, with X = R

and Y = B′. Suppose that D < s(|B′| − τ − ηn − 1
λ). Every edge between R \ Z and

B′ \Z is blue. Every vertex v has at most ηn vertices to which it is not connected, and

so dB(v) ≥ |B′ \ Z| − ηn for all2 v ∈ R \ Z.

d|R∩Z|+1 ≥|B′| − |B′ ∩ Z| − ηn ≥ |B′| −
D − r|R ∩ Z|

s
− ηn

=
s|B′| −D

s
+

1

λ
|R ∩ Z| − ηn ≥ τ + ηn+

1

λ
+

1

λ
|R ∩ Z| − ηn

≥τ +
1

λ
(|R ∩ Z|+ 1).

Setting x = 1
λ(|R∩Z|+ 1), this expression rearranges to g(λx)− x ≥ τ , so by definition

of `+λ this means that x ≥ `+λ (g, τ). On the other hand, x = |R∩Z|+1
λ ≤ D

s + 1
λ <

|B′| − τ − ηn− 1
λ + 1

λ < |B
′| − τ ≤ `+λ (g, τ), which is a contradiction. This means that

we have D ≥ s(|B′| − τ − ηn− 1
λ), and

|R ∩ [t]|
t

+
D

st
≥ t− |B′|

t
+
s(|B′| − τ − ηn− 1

λ)

st
≥ 1− τ

t
− η

γ
− 1

λγN
≥ f(λ)− ε.

2What if R \ Z = ∅ (if this happens we cannot guarantee d|R∩Z|+1 ≥ |B′ \ Z|)? Then r|R| ≤ D ≤
s|B′| ≤ st ≤ s τ

1−f(λ)
≤ s κ

1−f(λ)
n ⇒ |R| ≤ (1 − f(λ))n ⇒ |B| ≥ f(λ)n, and thus taking t′ = n, h = 0

and C = B is enough for Lemma 3.11.
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To prove Lemma 3.5, we apply the regularity lemma to the graph and use Lemma 3.11.

We also use the fact that, by the Kővári-Sós-Turán theorem, every large enough dense

bipartite graph contains a large complete bipartite subgraph:

Proof of Lemma 3.5. Let λ = s/r. We first claim that, for every ε > 0, there exists

γ(ε) > 0 and N(ε) such that, for every n > N , there exist t ∈ [γn, n], a color C and a

subgraph F ⊆ KN contained in [n] in which every component is either an isolated vertex

of color C or a KC
r,s using only a shade of each color, with

|V (F) ∩ [t]|
t

≥ f(λ)− ε.

Let a be the total number of shades (from both colors). Our constants will follow the

hierarchy

N−1 �M−1 � ρ� δ � ζ � γ, η � ε, r−1, s−1, a−1.

Let G be the restriction of our coloring to [n]. Take a partition of [n] into ` = adρ−1e
parts {Z1, . . . , Z`}, such that each Zi is contained in one shade, and maxZi −minZi <

ρn. Applying Lemma 3.7 to G with d = 2δ, we find a subgraph H ⊆ G and a partition

[n] = {V0, V1, . . . , Vm}, with ` ≤ m ≤M , as in the statement of Lemma 3.7, replacing ε

with δ.

We suppose that the labeling of the parts is such that minV1 < minV2 < · · · < minVm.

We define an auxilliary graph H ′ as follows: the vertex set is [m]. The color of every

vertex i is the same as the color of each of its vertices in G. Between any two vertices

ij, we draw an edge if the bipartite graph ViVj is nonempty in H, and we color it in the

most dense color in ViVj .

Let y = |V1| = · · · = |Vm|. Then (1−δ)n
m ≤ y ≤ n

m . The minimum degree in H ′ is at

least (1 − η)m. Indeed, given i and v ∈ Vi, we have dH′(i) ≥ dH(v)−δn
y ≥ dG(v)−4δn

y ≥
(1− 4δ

1−δ )m > (1− η)m.

Apply Lemma 3.11 to H ′, with parameters ε/2, r, s to obtain a color C, a function

h : E(H ′) → N and a value τ ∈ [γm,m] as in the statement of Lemma 3.11, replacing

t with τ . Subdivide each Vi with color C into r parts Vi,1, . . . , Vi,r, each of size at least

by/rc, and each Vi with color C̄ into s parts Vi,1, . . . , Vi,s, each of size at least by/sc.
Construct a matching M of pairs (Vi,k, Vj,k′), where for any fixed values of i and j, the

number of pairs (Vi,k, Vj,k′) in M is h(ij).

Within each pair (Vi,k, Vj,k′), where Vi has color C and Vj has color C̄, find a maximum

family Fi,k,j,k′ of disjoint copies of KC
r,s. Since N �M, δ−1, r, s, and therefore δy � r, s,
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then min{|Vi,k \ V (Fi,k,j,k′)|, |Vj,k′ \ V (Fi,k,j,k′)|} < δy. That is because otherwise the

bipartite graph between Vi,k \ V (Fi,k,j,k′) and Vj,k′ \ V (Fi,k,j,k′) would have density at

least δ in the edges of color C, and for δy large enough this implies the existence of a

copy of KC
r,s, which would contradict the maximality of Fi,k,j,k′ .

Let F be the union of all families Fi,k,j,k′ . Let t = minVτ . We will now bound
|(V (F)∪C)∩[t]|

[t] . If v ≥ t + ρn, and v ∈ Vi with i 6= 0, then minVi > maxVi − ρn ≥
v − ρn ≥ t = minVτ , and thus i > τ . This means that |(∪τi=1Vi) \ [t]| ≤ ρn, and

t ≥ τy−ρn ≥ (1−δ)τn
m −ρn. On the other hand, if v ≤ t then either v ∈ V0 or v ∈ Vi with

minVi ≤ v ≤ t = minVτ , and thus i ≤ τ . This implies that t ≤
∑τ

i=0 |Vi| ≤ δn + τy ≤
δn+ τn

m .

Every Vi with color C and i ∈ [τ ] will trivially be contained in (V (F) ∪ C) ∩ (∪τi=1Vi).

For any Vi with color C̄ and i ∈ [τ ], there are
∑

e3i h(e) parts Vi,k which are paired up

with a different part Vj,k′ . We either have |Vi,k \ V (F)| ≤ δy or |Vj,k′ \ V (F)| ≤ δy.

In the first case, |Vi,k ∩ V (F)| ≥ by/sc − δy ≥ (1/s − 1/y − δ)y. In the second case,

|Vj,k′ ∩ V (F)| ≥ by/rc − δy ≥ (1/r − 1/y − δ)y. But F is a family of copies of Kr,s,

so |Vi,k ∩ V (F)| = r
s |Vj,k′ ∩ V (F)| ≥ (1/s − λ−1(1/y + δ))y. In either case we have

|Vi,k ∩ V (F)| ≥ (1− ζ)y/s.

Putting our bounds together:

|(V (F) ∪ CG) ∩ [t]|
t

≥|(V (F) ∪ CG) ∩ (∪τi=1Vi)| − ρn
t

≥y|CH
′ ∩ [τ ]|
t

+ (1− ζ)
y

s

∑
v∈(C̄H′∩[τ ])

∑
e3v h(e)

t
− ρn

t

≥ (1− ζ)
τy

t

(
|CH′ ∩ [τ ]|

τ
+

∑
v∈(C̄H′∩[τ ])

∑
e3v h(e)

sτ

)
− ρn

t

≥ (1− ζ)
τy

t

(
f(λ)− ε

2

)
− ρ

τ(1−δ)
m − ρ

≥ (1− ζ)
τy

δn+ τy

(
f(λ)− ε

2

)
− ρ

γ(1− δ)− ρ

≥ (1− ζ)
1

1 + δ n
my

m
τ

(
f(λ)− ε

2

)
− ε

4

≥ (1− ζ)
1

1 + δ
(1−δ)γ

(
f(λ)− ε

2

)
− ε

4

≥f(λ)− ε

To conclude the proof of our initial claim, notice that t ≥
(

(1−δ)τ
m − ρ

)
n ≥ ((1− δ)γ −

ρ)n ≥ γ′n for a constant γ′ > 0.
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We are now ready to construct W . Take a sequence f(s/r) > ε1 > ε2 > · · · > 0 with

εi → 0. Start by applying the claim with ε = ε1 and n1 = N(ε) to obtain a subgraph F1

with color C1 with density at least f(s/r) − ε1 in [t1]. Now proceed by induction, and

set ni = max{N(εi/2), 2ni−1(r + s)/(εiγ(εi/2))}. Applying the claim with ε = εi/2 we

find a subgraph F ′i with color Ci contained in [ni] and with density at least f(s/r)−εi/2
in [ti], for some ti ∈ [γ(ε)ni, ni]. Remove from F ′i all components that intersect [ni−1]

(this represents at most ni−1(r + s) vertices) to obtain Fi. Then Fi is disjoint from all

previous Fj , and by the choice of ni, it still has density at least f(s/r)− εi in [ti].

Select a color C such that Ci = C for infinitely many i. Let W = ∪Ci=CFi. Then by

construction d̄(W ) ≥ f(s/r), since the ti tend to infinity, and the components of W are

isolated vertices of color C or KC
r,s. This concludes the proof of Lemma 3.5.

Finally, we prove Lemma 3.6 by defining an algorithm that constructs a monochromatic

H ′. This algorithm uses enough components from W (mapping to them either single

vertices of H or sets Ii ∪N(Ii)) to keep a fraction of its density, and takes advantage of

the properties of the a-good coloring to map the remaining vertices of H.

Proof of Lemma 3.6. Without loss of generality, assume that C is red, let Sj denote the

vertices in W of shade Rj , plus the blue vertices contained in a copy of KR
r,s in W in

which the red side has shade Rj . Removing from W the finite sets Sj does not affect

its density, so suppose that each Sj is either empty or infinite. We will show that there

exists a set J , of size b, such that d̄(∪j∈JSj) ≥ b/a′d̄(W ).

By definition of density, there exists a sequence n1 < n2 < . . . of positive integers such

that |V (W )∩ [ni]|/ni → d̄(W ). For each i there exists a subset Ji ⊆ [a] of b indices such

that
|(∪j∈JiSj) ∩ [ni]|

ni
≥ b

a′
|V (W ) ∩ [ni]|

ni
.

For infinitely many i, the set Ji is the same, which we denote J . By taking an appropriate

subsequence of n1, n2, . . . , we can suppose without loss of generality that Ji = J for all

i and that ni+1/ni → ∞. Let Fj is the union of components from W contained in

some Sj with j ∈ J , which contain a vertex from [ni] but no vertex from [ni−1]. Let

I = {Ii, I2, . . . } be the family of doubly independent sets. We can suppose that the

elements in I are such that the sets Ii ∪N(Ii) are pairwise disjoint. Indeed, because H

is locally finite, each Ii ∪ N(Ii) intersects finitely many sets Ij ∪ N(Ij), so we can find

an infinite subfamily I ′ by including into it only the sets Ii such that Ii ∪ N(Ii) does

not intersect a set Ij ∪ N(Ij) for some j < i with Ij ∈ I ′. This does not change the

components in which I is concentrated.
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Let J ′ ⊆ J be the set of indices in j for which Sj is non-empty. We assign to each

component C ⊆ H a number κ(C) ∈ J ′, in such a way that for every j ∈ J ′ there are

infinitely many sets Ii in components with κ(C) = j. Indeed, if finitely many components

intersect I, there are at least b components that contain infinitely many elements of I,

so give different values of κ(C) to |J ′| ≤ b of them, whereas if there are infinitely many

components that intersect I, we can assign each value of J ′ to infinitely many of them.

The purpose of κ(C) will be to identify the shade of red to be used in the vertices while

embedding C in the red edges of χ.

We will define an injective graph homomorphism Φ : H → KN which maps edges to

red edges, and whose image contains Fi for infinitely many i. This is enough to prove

Theorem 3.2, because for infinitely many large enough values of i we have

|Φ(V (H)) ∩ [ni]|
ni

≥|V (Fi) ∩ [ni]|
ni

≥ b

a′
|V (W ) ∩ [ni]|

ni
− (r + s)ni−1

ni

≥ b

a′
d̄(W )− o(1).

We will define Φ in steps. On every step, we will define the image of finitely many

vertices of H. After every step, the following conditions must hold. Let u, v be two

adjacent vertices in some component C of H, such that Φ(v) is defined and Φ(u) is not.

Then:

- If κ(C) 6= a, then Φ(v) ∈ Rκ(C).

- If κ(C) = a and Ψ(v) = a, then Φ(v) ∈ Ra.

- If κ(C) = a and Ψ(v) 6= a, then Φ(v) ∈ BΨ(v) and Ψ(u) < Ψ(v).

The algorithm will consist of two operations that alternate: defining the image of a

vertex v ∈ V (H) and adding some Fi to the image of Φ. If we identify V (H) with N,

and always apply the first operation to the least vertex v with undefined Φ(v), at the

end of the algorithm Φ(v) will be defined for every vertex in V (H).

Define the image of a vertex v ∈ V (H): Suppose first that v ∈ C and κ(C) = k 6= a.

Let w1, . . . , wq be the neighbors of v which have Φ(wi) defined. By our invariant, the

vertices Φ(wi) all have shade Rk, and therefore there are infinitely many vertices x in

shade Rk which are connected to every Φ(wi) through a red edge. Select one such x

which is not yet in the image of Φ, and set Φ(v) = x.

Now suppose that κ(C) = a. Let Ψ(v) = k. For every edge uw of H, define an orientation
−→uw such that Ψ(u) < Ψ(w). Let T be the set of vertices that can be reached from v in
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this orientation. Because T is connected, does not contain a path of length greater than

a, and the degree of every vertex is finite, by König’s lemma T is finite. Also, T does

not have an oriented cycle. Observe that, by our invariant, if −→uw is an edge and Φ(u) is

defined, then Φ(w) is defined.

Now define Φ(w) for every w ∈ T for which the image is still undefined, in decreasing

order of Ψ(w). If Ψ(w) = a, choose an arbitrary vertex x ∈ Ra which is not yet the

image of any vertex and set Φ(w) = x. If Ψ(w) = k < a, then for every w′ ∈ N+(w)

the image Φ(w′) is defined and in Bk+1 ∪ · · · ∪ Ba−1 ∪Ra. By the properties of a-good

colorings, there are infinitely many vertices3 x ∈ Bk which are connected to every Φ(w′)

through a red edge. Choose one which is not yet in the image of Φ, and set Φ(w) = x.

Add some set Fi to the image: Select some Fi which is so far disjoint with the image

of Φ. For each KR
r,s component Z ⊆ Fi ∩Sj , choose a doubly independent set I ⊆ V (H)

in a component C with κ(C) = j, such that no vertex from I ∪N(I) has a defined image.

If V (Z) = X ∪ Y with |X| = r blue and |Y | = s red, then set Φ to be bijective from

I to X, and injective from N(I) to Y . The vertices v of Fi ∩ Sj that remain outside

of the image at this point all have shade Rj . For each of them, choose a vertex w with

Ψ(w) = a in a component C with κ(C) = j (there are infinitely many of these vertices),

whose image is not yet defined, and set Φ(w) = v. After doing this for every vertex in

Fi ∩ Sj for every j ∈ J ′, the set Fi is contained in the image.

After both steps are applied alternatingly infinitely many times, the image of Φ is a

monochromatic red graph H ′ ⊆ KN which contains infinitely many sets Fi, and therefore

d̄(H ′) ≥ b/a′d̄(W ).

To prove the upper bound of Theorem 1.7(ii)b, we just need the following variant of

Lemma 3.6. The proof is then analogous to the proof of Theorem 3.2, except we bypass

completely the use of Lemma 3.5, and we only need that in the a-good coloring we have

max{d̄(R), d̄(B)} ≥ 1/2.

Lemma 3.12. Let χ : E(KN) → {R,B} be an edge-coloring, let a ≥ a′ ≥ b be positive

integers. Let N→ {R1, . . . , Ra, B1, . . . , Ba, X} be an a-good coloring in which at most a′

shades of each color are non-empty. Let C ∈ {R,B}. Let H be a graph with chromatic

number a and at least b infinite components. Then there exists a monochromatic H ′ ⊆
KN of color C, H ′ ' H, with d̄(H ′) ≥ b/a′d̄(C).

Proof. Let Ψ : V (H)→ [a] be a proper coloring, in which in every component of H the

most common color is a. Without loss of generality suppose that C is red. As in the

3If N+(w) is empty, how do we know that Bk is infinite? Because κ(C) = a, we know that Ra is not
empty. By the properties of a-good colorings, every vertex y ∈ Ra has infinitely many red neighbors in
Bk, and in particular Bk is infinite.
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proof of Lemma 3.6, there exists J ′ with |J ′| ≤ b, such that d̄(∪j∈J ′Rj) ≥ b/a′, and all

Rj with J ∈ J ′ are infinite. Let F = ∪j∈J ′Rj . Define a function κ from the components

of H to J ′ for which the pre-image of every value contains infinitely many vertices.

The algorithm now alternates between define the image of a vertex v ∈ V (H),

as above, and add a vertex of F to the image. At the end of the procedure, we

obtain a red H ′ ⊆ KN isomorphic to H which contains F , and thus has density at least

d̄(F) ≥ b/a′d̄(R).

Add a vertex of F to the image: Let v ∈ F be a vertex in Rj . Choose a vertex w

in a component C with κ(C) = j, such that no vertex in w ∪N(w) has a defined image

and with Ψ(w) = a, and set Φ(w) = v.

3.3 Bounds for particular families of graphs

The goal of this section is to prove the remaining results from Section 1.2.1 and Section

1.2.2.

We will start with the proof of Theorem 1.10, which will later imply Theorem 1.11 and,

in turn, this will imply Corollary 1.12, Corollary 1.13 and Corollary 1.14.

Proof of Theorem 1.10. The upper bound follows from Theorem 1.9. We will show that,

for every ε > 0, we have ρ(H) ≥ f(λ) − ε. Our goal is to show that H satisfies the

condition of Theorem 3.2 for a = 2, b = 1, a certain coloring Ψ and some doubly

independent sets I ′i. Let Ψ : V (H) → {1, 2} be a proper coloring. Choose λ′ > λ

such that f(λ′) > f(λ) − ε (it exists by continuity of f). There exist infinitely many

pairwise disjoint independent sets Ii, all with the same size, such that |N(Ii)|
|Ii| ≤ λ

′ (by the

condition from the statement). Partition each set Ii into non-empty sets Ii,1, . . . , Ii,ki ,

where each vertex v is classified according to its color by Ψ and the component it belongs

to. If two vertices v, w have a common neighbor, then they are in the same component

and Ψ(u) = Ψ(v). For this reason, |N(Ii)| =
∑ki

j=1 |N(Ii,j)|. There exists some τi such

that
|N(Ii,τi)|
|Ii,τi |

≤
∑ki

j=1 |N(Ii,j)|∑ki
j=1 |Ii,j |

=
|N(Ii)|
|Ii|

≤ λ′

Set I ′i = Ii,τi . Set ri = |I ′i| and si = |N(I ′i)|. There is a pair (r, s) satisfying (r, s) =

(ri, si) for infinitely many values of i. Considering only the values of i for which this

equality holds, we have our set of independent sets. Note that, because H is bipartite,

N(I ′i) is monochromatic and thus independent, meaning that I ′i is doubly independent.

If Ψ(I ′i) = 2 does not hold for infinitely many i, replace Ψ with Ψ̄ = 3−Ψ (the opposite

two-coloring). We can now apply Theorem 3.2 to obtain ρ(H) ≥ f(s/r) ≥ f(λ′).
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To deduce Theorem 1.11 from Theorem 1.10, we need to show that, in both graphs with

infinite orbits and forests, the condition in the statement of Theorem 1.10 holds.

Proof of Theorem 1.11. Let λ = lim inf
n→∞

µ(H,n)
n . Fix λ′ > λ. We will show that, in both

cases, there exist infinitely many pairwise disjoint independent sets I1, I2, . . . , all with

the same size, with |N(Ii)|
|Ii| ≤ λ

′.

For graphs with infinite orbits: Choose n such that µ(H,n)
n < λ′. Let I be an

independent set of size n with |N(I)| = µ(H,n). We will show that there exists an

infinitely family of automorphisms σi ∈ Aut(H) such that the sets σi(I) are pairwise

disjoint. Then we can take Ii = σi(I) to conlude the proof. We proceed by induction

on n. For n = 1, if I = {v}, this is equivalent to the orbit of v being infinite.

Suppose that the result is true for n−1. Suppose that we have already found σ1, σ2, . . . , σk

such that the sets σi(I) are pairwise disjoint. Let X = ∪ki=1σi(I). We will construct

σk+1 ∈ Aut(H) such that σk+1(I) is disjoint from X. Choose v ∈ I. By the induction

hypothesis, there is an infinite family {τi}∞i=1 ⊆ Aut(H) such that the sets τi(I − v) are

pairwise disjoint We can suppose that the sets τi(I − v) are also disjoint with X. If

τi(v) 6∈ X for some i, then we can take σk+1 = τi, and we are done. Therefore, assume

that τi(v) ∈ X for every i. By pigeonhole principle, there exists w such that τi(v) = w

for infinitely many i. Choose φ ∈ Aut(H) such that φ(w) 6∈ X (it exists because the

orbit of w is infinite). The set φ−1(X) intersects finitely many sets τi(I − v), therefore

there exists some i with τi(I − v) disjoint from φ−1(X) and τi(v) = w. Putting this

together, φ(τi(I)) is disjoint from X, as we wanted.

For forests: The following lemma will be used to find independent sets of bounded size

with bounded expansion within larger independent sets:

Lemma 3.13. For every λ′ > λ there exists M = M(λ, λ′) such that, for every inde-

pendent set I in a forest with |N(I)| ≤ λ|I|, there exists I ′ ⊆ I with |N(I ′)| ≤ λ′|I ′| and

|I ′| ≤M .

Knowing this lemma, for every λ′ > λ choose λ′′ < λ′′′ ∈ (λ, λ′), and set M = M(λ′′′, λ′).

Suppose that we have already constructed pairwise disjoint independent sets I1, I2, . . . , Ik

with |Ii| ≤M and |N(Ii)| ≤ λ′|Ii|. We will find a new set Ik+1, disjoint from the others.

Let S = ∪ki=1Ii. There exists n large enough such that n
n−|S| ≤

λ′′′

λ′′ . By definition of

lim inf and µ(H,n), there exists an independent set I with |I| ≥ n and |N(I)| ≤ λ′′|I|.
Then

|N(I \ S)| ≤ |N(I)| ≤ λ′′|I| ≤ λ′′(|I \ S|+ |S|) ≤ λ′′′|I \ S|
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By our claim, there exists Ii+1 ⊆ I \ S such that |Ik+1| ≤ M and |N(Ik+1)| ≤ λ′|Ik+1|.
Once we have constructed an infinite family of independent sets I1, I2, . . . , simply take a

pair (r, s) which is equal to (|Ii|, |N(Ii)|) for infinitely many i (which is possible because

this pair can only take finitely many values), and we are done.

Proof of Lemma 3.13. Let δ = δ(λ, λ′) > 0 be small enough, which we will fix later.

Let F be the forest with vertex set I ∪ N(I) and containing only the edges between I

and N(I) in our original graph (in other words, do not include the edges between two

vertices in N(I)). It is enough to prove our result in F . Denote J = N(I). For every

component of F take a vertex of I as the root.

There exists a set S ⊆ V (F ) with |S| ≤ δ|V (F )|, satisfying that every component of

F \ S has size at most δ−1. Indeed, start with S = ∅ and consider the set U of vertices

whose component in F \ S contains at least δ−1 vertices (this set will be constantly

updated). The rooted forest structure in F induces a rooted forest structure in F \ S.

Let U ′ be the set of vertices in V \ F which have at least δ−1 − 1 descendants. If U 6= ∅
then U ′ 6= ∅, because the root of the largest component will be in U ′. Select a minimal

vertex v in U ′, and add it to S. This removes v and all its descendants from U , and thus

reduces the size of U by at least δ−1. After repeating this procedure at most δ|V (F )|
times, U will be empty, so every component in |F \ S| has size at most δ−1.

Let X be the union of S and the parents of the vertices of S ∩ J . This set has |X| ≤
2|S| ≤ 2δ|V (F )|, and every component of F \ X is adjacent to at most one vertex in

X ∩ J , in which case it is the parent of the root. As a consequence, every component of

F \ (X ∩ I) contains at most one vertex from X ∩ J .

Let C = {C1, . . . , Ck} be the components of F \ (X ∩ I). Then∑k
j=1 |Ci ∩ J |∑k
j=1 |Ci ∩ I|

=
|J |

|I| − |X ∩ I|
≤ |N(I)|
|I| − 2δ(|I|+ |N(I)|)

≤ λ

1− 2δ(1 + λ)
=: λ′′.

There exists some component Ci such that |Ci ∩ J | ≤ λ′′|Ci ∩ I|. If Ci ∩ I has size

not greater than M := 2δ−1, then set I ′ = Ci ∩ I and we are done, because N(I ′) ⊆
Ci∩J . Otherwise Ci has size greater than 2δ−1, hence it must contain a (unique) vertex

v ∈ X ∩ J . Let C ′1, C
′
2, . . . , C

′
r be the components obtained from Ci by removing v,

labeled in decreasing order of |C ′j ∩ J |/|C ′j ∩ I|. Consider the minimum integer t such

that
∑t

j=1 |C ′j ∩ I| ≥ δ−1. Because every component in F \X has size at most δ−1, we

have
∑t

j=1 |C ′j ∩ I| ≤
∑t−1

j=1 |C ′j ∩ I|+ δ−1 ≤ 2δ−1 = M . Set I ′ = ∪tj=1(C ′i ∩ I). Then

|N(I ′)|
|I ′|

=
1 +

∑t
j=1 |C ′j ∩ J |∑t

j=1 |C ′j ∩ I|
≤ δ +

∑r
j=1 |C ′j ∩ J |∑r
j=1 |C ′j ∩ I|

≤ δ + λ′′.
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This proves Lemma 3.13, for δ > 0 small enough such that δ + λ′′ < λ′.

Next we will prove Corollaries 1.12 to 1.14 as direct applications of Theorem 1.11:

Proof of Corollary 1.12. We will show that µ(Tk, n) = kn. For every independent set I

of size n, the set of children of the vertices of I has size kn and is contained in N(I),

thus |N(I)| ≥ kn. Equality can hold, for example for I = {v1, . . . , vn} where v1 is the

root of Tk and vi+1 is a grandchild of vi. We therefore have µ(Tk, n) = kn. Since Tk is

a forest, Theorem 1.11 applies and ρ(Tk) = f(k).

Proof of Corollary 1.13. Let I be an independent set. The set I + (1, 0, 0, . . . ) is con-

tained in N(I), so |N(I)| ≥ |I| and µ(Gridd, n) ≥ n for all n. On the other hand, let Ik

be the set of vertices in [2k]d with odd sum of coordinates. Ik is an independent set of

size (2k)d/2, and I ∪N(I) is contained in [2k + 2]d. Since I and N(I) are disjoint,

|N(I)|
|I|

=
|I ∪N(I)|
|I|

− 1 ≤ (2k + 2)d

(2k)d/2
− 1,

which tends to 1 as k →∞. We have lim inf
n→∞

µ(Gridd,n)
n = 1. The graph Gridd is vertex-

transitive, so by Theorem 1.11 we have ρ(Gridd) = f(1).

Proof of Theorem 1.14. The graph ω · F satisfies that every orbit of the automorphism

group on V (ω · F ) is infinite (because it intersects every copy of F ), so we are in the

setting of Theorem 1.11. We need to show that lim inf
n→∞

µ(ω·F,n)
n = min

I⊆V (F ) indep.

|N(I)|
|I| .

Let I be an independent set in F that minimizes |N(I)|
|I| , and let J ⊆ V (ω · F ) be an

independent sets of size n. Partition J into independent sets J1, J2, . . . , Jm, according

to the component in which the vertices are contained. Then

|N(J)|
|J |

=

∑m
i=1 |N(Ji)|∑m
i=1 |Ji|

≥ min
|N(Ji)|
|Ji|

≥ |N(I)|
|I|

.

This implies that µ(ω·F,n)
n ≥ |N(I)|

|I| for all n. Equality holds infinitely many times, since

for all n divisible by |I| we can take the union of the sets I in n
|I| different copies of F .

Therefore ρ(ω · F ) = lim sup
n→∞

µ(ω·F,n)
n = |N(I)|

|I| .

In an even cycle C2k, each independent set I satisfies |N(I)| ≥ |I|, because C2k contains

a perfect matching. Since each chromatic class in the bipartition satisfies |N(I)| = |I|,
we have ρ(ω · C2k) = f(1). For 1 ≤ a ≤ b, in Ka,b, every independent set I has size at

most b, and its neighborhood has size at least a, and both inequalities are tight if I is

the side of the bipartition with size b. Thus |N(I)|
|I| ≥

a
b , and ρ(ω ·Ka,b) = f(a/b).
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Next we will deduce Theorem 1.15 from Theorem 3.2:

Proof of Theorem 1.15. Let a = |V (F )|, and let b = a − 1. Let Ψ : V (F ) → [a] be

a coloring that assigns the value a to every vertex in N(I), and where the remaining

vertices in F all get different values in [a− 1]. Because I is doubly independent, this is

a proper coloring. Ψ extends to a coloring of ω · F , by coloring all copies of F equally.

Let I1, I2, . . . be the sets I of all copies of F . Each Ii is contained in a component of F ,

Ψ(N(Ii)) = a and the family of sets Ii is not concentrated in fewer than b components.

Thus, by Theorem 3.2, setting r = |I| and s = |N(I)|, we have ρ(ω ·F ) ≥ f
(
|N(I)|
|I|

)
.

Finally, we will prove Theorem 1.16 using a result of Burr, Erdős and Spencer [BES75]

for the Ramsey number of n · F :

Theorem 3.14 ([BES75]). Let F1, F2 be two finite graphs without isolated vertices. The

two-color Ramsey number R(n · F1, n · F2) satisfies

R(n · F1, n · F2) = (|V (F1)|+ |V (F2)| −min{α(F1), α(F2)})n+O(1),

where α(G) is the size of the largest independent set in G. In particular, R(n ·F, n ·F ) =

(2|V (F )| − α(F ))n+O(1).

Proof of Theorem 1.16. Let χ : E(KN) → {R.B} be a coloring. Let n1, n2, . . . be an

increasing sequence of positive integers with ni+1/ni → ∞. Let ki be the maximum

value such that R(ki · F, ki · F ) ≤ ni+1 − ni. By Theorem 3.14, we have

ki =

(
1

2|V (F )| − α(F )
+ o(1)

)
(ni+1 − ni) =

(
1

2|V (F )| − α(F )
+ o(1)

)
ni+1.

There exist a family Fi of ki monochromatic disjoint copies of F with vertices in [ni +

1, nn+1], all with the same color Ci. Choose a color C which is equal to Ci for infinitely

many i. Then H ′ =
⋃

Ci=C

Fi is a copy of ω · F with

lim sup
n→∞

|V (H) ∩ [n]|
n

≥ lim sup
i:Ci=C

ki|V (F )|
ni+1

=
|V (F )|

2|V (F )| − α(F )
.



Chapter 4

Ramsey density of infinite factors

In this chapter we will prove the results from Section 1.2.3. The main theorems here are

Theorem 1.17 and Theorem 1.19, with Corollary 1.18 following from the former.

The results in this chapter represent joint work with József Balogh, and are adapted

from [BL20].

4.1 Proof of Theorem 1.17

The proof of Lemma 1.17 uses the same overarching outline as Theorem 1.15: given an

edge coloring of KN we color the vertices of the graph while encoding some information,

we find a smaller substructure in the resulting coloring and finally use the information

in the vertices to extend this substructure into our desired graph.

The main difference comes from the choice of coloring. While the proof of Theorem

1.15 uses a coloring due to Elekes, Soukup, Soukup and Szentmiklóssy [ESSS17], here

instead we will use a coloring that arises from a straightforward application of Ramsey’s

theorem. The reason for this change is that the coloring from [ESSS17] is good at finding

“connections at infinity”, allowing one to add infinitely many vertices to a component

with little restriction as to how they are joined. Because the components of ω · F all

have bounded size, we do not need to worry about connecting more and more vertices

into a component. Instead, we will be able to create each component of ω · F in one or

two steps.

The intermediate step of finding a smaller substructure is essentially the same. We will

use the following lemma:

53
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Lemma 4.1. Let r and s be positive integers. For every ε > 0 there exist τ > 0, N

with the following property: for every graph G on vertex set [n], with n > N , such that

δ(G) > (1 − τ)n, in every coloring Ψ : V (G) ∪ E(G) → {R,B} there exists a subgraph

F ⊆ G, a color C ∈ {R,B} and a value k ∈ [δn, n] such that |V (F )∩ [k]| ≥ (f(s/r)−ε)k
and every component of F is of one of the following types:

- An isolated vertex of color C.

- A copy of Kr,s in which the edges and the side of size s have color C, and the side

of size r has the opposite color.

This is a finitary version of Lemma 3.5. The same proof that was used there works here.

The next lemma will require the following definition, which will be the key information

that will be encoded into our vertex coloring:

Definition 4.2. Given a set X of vertices in an edge-colored graph, a real number ε > 0,

a natural number s and a color C ∈ {R,B}, we say that X is (C, ε, s)-adequate if every

subset of X of size at least ε|X| contains a C-colored clique of size s.

Observe that in particular, if a set X is (C, ε, s)-adequate, then it contains a disjoint

family of C-colored copies of Ks covering at least (1− ε)|X| vertices. This is proved by

considering a maximal family of such cliques.

Lemma 4.3. For every ε > 0 and s ∈ N there exist T,N ∈ N with the following

property: for every Ψ : E(Kn) → {R,B} with n > N there exists a partition V (Kn) =

V1 ∪ V2 ∪ · · · ∪ VT into almost equal parts, and colors C1, . . . , CT ∈ {R,B} in which all

but εT sets Vi are (Ci, ε, s)-adequate.

Proof. Let α = d2ε−1es and q = R(Kα,Kα). Take a maximal family F of disjoint

monochromatic copies of Kα (F might contain cliques of different colors). The vertex

set V (Kn) \ V (F) does not contain any monochromatic Kα, so its size is at most q.

Let T = d3ε−1e. Each of the sets V1, . . . , VT will have size either bn/T c or dn/T e. Let

β = bbn/T c/αc, this is the number of α-cliques that fit into a set Vi (of the smaller

type). Let FR and FB be the sets of red and blue cliques from F , respectively.

Create V1, V2, . . . , VT , all initially empty. For b|FR|/βc + b|FB|/βc of these sets, put β

cliques from F of the same color into each. We call these sets pseudo-adequate, and

we will later show that they are indeed adequate. Distribute the remaining vertices
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from Kn into the sets Vi so that the resulting sets are almost equal. The number of

pseudo-adequate sets is⌊
|FR|
β

⌋
+

⌊
|FB|
β

⌋
≥
⌊
|F|
β

⌋
− 1 ≥ F

β
− 2 ≥

n−q
α

β
− 2 ≥ T − q

αβ
− 2 ≥ T − 3

if β ≥ q (this will be the case if n > qαT ). That means that there are at most three

sets which are not pseudo-adequate, which represents less than εT of the sets.

For each pseudo-adequate set Vi, we let Ci be the color of the cliques from F that

were put into it. For the (up to three) remaining sets Vi, choose Ci arbitrarily. If Vi is

pseudo-adequate, there are at most α vertices not in a copy of Kα from F .

In a pseudo-adequate set Vi, take a subset S ⊆ Vi of size at least ε|Vi|. There are at

least ε|Vi|−α vertices in S which belong to a clique in F , so by the pigeonhole principle

S contains at least d ε|Vi|−αβ e elements from some clique in F . This is at least

ε|Vi| − α
β

≥
εb nT c − α⌊
b nT c
α

⌋ ≥
ε
2b

n
T c
b nT c
α

=
αε

2
≥ s

if α < ε
2

⌊
n
T

⌋
. This holds if n > d2ε−1αeT . We conclude that we can take N =

max{qαT, d2ε−1αeT}.

We will prove a finitary version of Theorem 1.17, from which the infinite version follows

directly:

Lemma 4.4. For every finite graph F and every ε > 0 there exists N and τ > 0 with

the following property: for every n > N , for every coloring Ψ : E(Kn) → {R,B} there

exists t ∈ [τn, n] and a monochromatic family F of disjoint copies of F such that

|V (F) ∩ [t]|
t

≥ f
(
|V (F )|
α(F )

− 1

)
− ε.

Proof of Theorem 1.17. Fix ε > 0. Let Ψ : E(KN) → {R,B} be an edge-coloring.

Consider a sequence n1 < n2 < . . . of natural numbers with limni+1/ni →∞. For each

i ≥ 2, consider the colored clique Gi on vertex set (ni−1, ni], whose edge-coloring is Ψi,

the one induced by Ψ. Now consider the graph G′i, obtained by substracting ni−1 from

the label on each vertex.

By Lemma 4.4, there exists a fixed τ > 0 such that, for every i large enough (enough to

have ni−ni−1 > N) there is a value ti ∈ [τ(ni−ni−1), ni−ni−1], and a monochromatic
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family F ′i of disjoint copies of F in G′i with color Ci, such that

|V (F ′i) ∩ [ti]|
ti

≥ f
(
|V (F )|
α(F )

− 1

)
− ε.

For infinitely many values of i, the color Ci will be the same, which we denote C. Let

Fi be family of copies of F in KN obtained by adding ni−1 to every vertex in F ′i . Then

consider F =
⋃

Ci=C

Fi. Clearly F is a monochromatic copy of ω · F . We will show that

it has upper density at least f (|V (F )|/α(F )− 1)− ε.

For every i with Ci = C, we have

|V (F) ∩ [ti + ni−1]|
ti + ni−1

≥|V (F ′i) ∩ [ti]|
ti + ni−1

≥
(
f

(
|V (F )|
α(F )

− 1

)
− ε
)

ti
ti + ni−1

≥
(
f

(
|V (F )|
α(F )

− 1

)
− ε
)

τni
τni + ni−1

.

By taking the upper limit on the latter expression as i→∞, we conclude that d̄(F) ≥
f (|V (F )|/α(F )− 1)− ε, and thus this value is a lower bound on ρ(ω · F ). Since this is

valid for all ε > 0, we conclude ρ(ω · F ) ≥ f(|V (F )|/α(F )− 1).

In the proof of Lemma 4.4 we routinely omit rounding signs, except when they are

part of a definition. All rounding errors are smaller than the effect that taking stronger

constants.

Proof of Lemma 4.4. Let γ = γ(ε, F ) be small enough (we will define how small later).

Let ` = dγ−1e. Partition [n] into ` almost equal intervals, labelled I1, I2, . . . , I` from

smallest to largest. Apply the colored variant of the Szemerédi regularity lemma [KS96]

to this edge-colored graphKn to findM = M(γ) and a γ-regular partition {X0, X1, X2, . . . , Xm},
with m ≤M , that refines {I1, . . . , I`}.

Now let κ = κ(ε, F ) be small enough (κ will be chosen before γ, so we may suppose

γ � κ � ε). Lemma 4.3 gives T,N ′(κ, s′), for s′ = |V (F )|. If the size of all Xi with

i > 0 is at least N ′ (which will happen if n > (1 − γ)−1mN ′, and in particular is

implied by N > (1 − γ)−1MN ′) then by Lemma 4.3 we can subdivide each Xi into T

parts Xi
1, . . . , X

i
T , as in the statement of that lemma. Because the sizes of the Xi are

all almost equal, the Tm sets Xi
j also have almost equal sizes. Color each set Xi

j with

the color Cij that it receives from Lemma 4.3. Assuming that they are all non-empty

(true if N > (1 − γ)−1TM) we can label them Y1, . . . , YTm, with the property that

minY1 < minY2 < . . . < minYTm. We denote the color of Yi by Ci.
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If the pair (Xi1 , Xi2) is γ-regular, then the pair (Xi1
j1
, Xi2

j2
) is Tγ-regular. Construct an

auxiliary colored graph J on [Tm] as follows: the color of a vertex v is the color of Yv. If

the pair (Yv, Yw) is Tγ-regular in the original graph, draw an edge vw in J , whose color

is the densest color in the bipartite graph (Yi, Yj) (ties are broken arbitrarily). Because

every Xi is γ-regular with at least (1−γ)m other Xj , each Yi is Tγ-regular with at least

(1− γ)Tm other Yj . The minimum degree of J is at least (1− γ)Tm.

Next we apply Lemma 4.1 to this totally colored graph. This produces a value k ∈
[δTm, Tm], a color C and a subgraph J ′ ⊆ J in which every component is either an

isolated vertex of color C or a Kr,s, for r = α(F ) and s = |V (F )| − α(F ), colored as in

the statement of Lemma 4.1. These satisfy

|V (J ′) ∩ [k]|
k

≥ f
(s
r

)
− ε

2
.

This assumes that the minimum degree condition is satisfied, which is true if γ � τ =

τ(ε, F ). We also have δ = δ(ε, F ), with these two functions as in Lemma 4.1.

Now we return to our original graph on [n] with a coloring given by Ψ. We will find in

it a family F of vertex-disjoint copies of F , such that every copy is contained in parts

Yi corresponding to a component of J ′, according to the following restrictions:

- If the corresponding component of J ′ is an isolated vertex v, then there is no

restriction: any copy of F in Yv can be taken.

- If the corresponding component of J ′ is a Kr,s on vertex classes {v1, . . . , vr} and

{v′1, . . . , v′s}, we only consider the copies of F which contain exactly r vertices in

Yv1 ∪ · · · ∪ Yvr , and s vertices in Yv′1 ∪ · · · ∪ Yv′s .

Under these restrictions we consider an inclusion-maximal such family F . Let t =

minYk. We will show that |V (F)∩[t]|
t is large enough for our purposes.

When each set Xi is split into T sets X1
i , . . . , X

T
i , there are at most κT of them which

cannot be almost-partitioned into cliques Ks′ of the corresponding color. In these sets

Xj
i , assuming they are isolated vertices in J , the family F will use at least (1− κ)|Xj

i |
vertices in each of them.

On the other hand, consider a component in J which is a copy of Kr,s on vertex classes

{v1, . . . , vr} and {v′1, . . . , v′s}. There are at most κTm of these components which contain

a set which is not adequate, in the sense of Lemma 4.3. We claim that, if all of the sets

are adequate, then F contains at least a 1−ξ proportion of the vertices in Yv1∪· · ·∪Yvr∪
Yv′1 ∪ · · · ∪ Yv′s , for some ξ that will be defined later. Indeed, suppose that fewer than a
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1− ξ proportion of vertices is contained in F . Then there are two sets, w.l.o.g. Yv1 and

Yv′1 , such that
|Yv1∩V (F)|
|Yv1 |

,
|Yv′1
∩V (F)|
|Yv′1
| < 1− ξ. Let W = Yv1 \ V (F) and W ′ = Yv′1 \ V (F).

Because the pair (Yv1 , Yv′1) is Tγ-regular, and has density at least 1
2 in color C, the

bipartite graph (W,W ′) has density at least 1
2 − Tγ >

1
4 in color C.

Next we will select w1, w2, . . . , wr, which will be the vertices of our copy of F in Yv1 .

Select w1 ∈W that maximizes the number of C-neighbors in W ′. Then let w2 ∈W \{w1}
that maximizes the size of its C-neighborhood in the C-neighborhood of w1 in W ′. We

proceed this way, each time picking the vertex that maximizes the common neighborhood

with the previous choices. As long as ξ4−r > Tγ (which will be true because γ � ξ, T−1),

we can use regularity to ensure that the density of the C-colored edges between the

common neighborhood and W is at least 1
4 .

Let Z be the common C-neighborhood of w1, w2, . . . , wr in W ′. It has size at least

4−r|W ′| ≥ ξ4−r|Yv′1 |. If ξ4−r > κ (which again holds because κ� ξ), by the partition of

Lemma 4.3 there is a clique of size s′ = r+s of color C in Z. We can take w′1, w
′
2, . . . , w

′
s

in this clique as the remaining vertices of F . We have thus found a new copy of F , which

contradicts the maximality of F . This completes the proof that F contains at least a

1− ξ proportion of the vertices in Yv1 ∪ · · · ∪ Yvr ∪ Yv′1 ∪ · · · ∪ Yv′s .

We are ready to estimate |V (F)∩[t]|
t = 1 − |[t]\V (F)|

t . We will do so by giving a lower

bound on t, and an upper bound on the vertices of [t] which do not belong to F .

Since each set Yi satisfies maxYi − minYi ≤ `−1n ≤ γn (because they are contained

in some interval Ij), from t = minYk we have Y1 ∪ · · · ∪ Yk ⊆ [t + γn]. It is also true

that |Y1 ∪ · · · ∪ YTm| = |[n] \X0| ≥ (1 − γ)n. Since the |Yi| are almost equal, we have

|Yi| ≥ (1−γ)n
Tm , and

t = |[t+ γn]| − γn ≥ k|Yi| − γn ≥
(1− γ)n

Tm
k − γn.

Next we will estimate |[t] \ V (F)|. Every vertex z which belongs to [t] but not to V (F)

is in at least one of the following classes:

- They are in X0.

- They are in a class Yv with v /∈ J ′.

- They are in a class Yv, where v is an isolated vertex in J ′, but Yv is not adequate

as in Lemma 4.3.

- They are in a class Yv, where v is an isolated vertex in J ′, and Yv is adequate, but

z is not in F .
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- They are in a class Yv with v belonging to a Kr,s in J ′, where some sets Yv′

corresponding to a vertex of this component is not adequate.

- They are in a class Yv with v belonging to aKr,s in J ′, and all sets Yv′ corresponding

to vertices of this component are adequate, but z is not in F .

The sum of the number of vertices in each class can be upper-bounded by

γn+
(

1− f
(s
r

)
+
ε

2

)
k
n

Tm
+ κn+ κn+ (r + s)κn+ ξn,

respectively. If ξ, κ and γ are chosen small enough after choosing ε, this can be upper-

bounded by

|[t] \ V (F)| ≤
(

1− f
(s
r

)
+

2ε

3

)
k
n

Tm
.

Combining both bounds, we have

|V (F) ∩ [t]|
t

=1− |[t] \ V (F)|
t

≥1−
(
1− f

(
s
r

)
+ 2ε

3

)
k n
Tm

(1−γ)n
Tm k − γn

=1−
1− f

(
s
r

)
+ 2ε

3

1− γ − γ Tmk

≥1−
1− f

(
s
r

)
+ 2ε

3

1− γ − γδ−1

≥f
(s
r

)
− ε

since γ � δ, ε. To conclude the proof of Lemma 4.4, we observe that there exists τ > 0

such that t ≥ τn, namely

t ≥ (1− γ)n

Tm
k − γn ≥ (δ(1− γ)− γ)n.

Proof of Corollary 1.18. By the same argument as in Corollary 1.14, for every finite

F we have that lim inf
n→∞

µ(ω·F,n)
n = min

I⊆V (F ) indep.

|N(I)|
|I| . Then, under the hypothesis of

Corollary 1.18, the upper bound on ρ(ω ·F ) from Theorem 1.9 is equal to f
(
|N(I)|
|I|

)
for

an independent set I with size α(F ). Because I is a maximum independent set in F ,

we have |N(I)| = |V (F )| − α(F ), and f
(
|N(I)|
|I|

)
= f

(
|V (F )|
α(F ) − 1

)
, which is the lower

bound from Theorem 1.17.

In an odd cycle C2k+1, every independent set I satisfies |N(I)| ≥ |I| + 1, so |N(I)|
|I| ≥

1 + 1
|I| ≥ 1 + 1

k = k+1
k =

|V (C2k+1)|
α(C2k+1) − 1. This means that we can apply the first part of

Corollary 1.18 to odd cycles, to obtain ρ(ω ·C2k+1) = f
(
k+1
k

)
. For cliques Kk, the only
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non-empty independent sets are single vertices, so we have |N(I)|
|I| = k − 1. This means

that ρ(ω ·Kk) = f(k − 1).

4.2 Proof of Theorem 1.19

The proof of Theorem 1.19 borrows ideas from the proof by Burr, Erdős and Spencer

[BES75] for the Ramsey number of n disjoint triangles, R(n · K3, n · K3) = 5n. The

following configuration plays a crucial role in both results:

Definition 4.5. A bowtie is an edge-colored graph on five vertices, formed by a red

triangle and a blue triangle sharing a vertex.

Lemma 4.6. Let Ψ : Kn → {R,B}, let F be the largest monochromatic family of disjoint

triangles, and let F ′ be the largest family of disjoint bowties. Then 3|F |+ 2|F ′| ≥ n− 5.

Proof. We start by noting that, if a two-edge-colored K6 contains a vertex-disjoint red

triangle and blue triangle, then it also contains a bowtie. This is because out of the nine

edges between both triangles, there are at least five with the same color, w. l. o. g. red.

By the pigeonhole principle, there is a vertex v in the blue triangle incident to at least

two red edges. Then the original blue triangle plus the two red-neighbors of v form a

bowtie.

Now consider the largest family F ′ of vertex-disjoint bowties. The set of vertices not in

F ′ cannot contain triangles in both colors, by the argument above. Suppose w. l. o. g.

that all remaining triangles are red. Let F ′′ be a maximal family of vertex-disjoint red

triangles in V (Kn) \ V (F ′). We know that |V (F ′)| + |V (F ′′)| ≥ n − 5, because the

remaining vertices do not contain a monochromatic triangle in either color. Now note

that there is a family of disjoint red triangles in Kn of size |F ′| + |F ′′|, obtained by

taking the triangles in F ′′ and the red triangles in each bowtie of F ′. Thus we get

|F | ≥ |F ′|+ |F ′′|, and

3|F |+ 2|F ′| ≥ 3(|F ′|+ |F ′′|) + 2|F ′| = 5|F ′|+ 3|F ′′| = |V (F ′)|+ |V (F ′′)| ≥ n− 5,

as we wanted to prove.

The proof of the following lemma is a simple (but slightly cumbersome) case analysis:

Lemma 4.7. Let W1,W2 be two vertex-disjoint bowties in a red-blue edge-coloring of

K10. Then either there are two vertex-disjoint triangles of the same color using four

vertices of W1 or there are nine vertices containing two vertex-disjoint red triangles and

two vertex-disjoint blue triangles.
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B1 B2

R1 R2

C1

R3 R4

B3 B4

C2

W1 W2

Figure 4.1: Labeling of the vertices of W1 and W2.

Proof. We label the vertices of W1 and W2 as in Figure 4.1. Whenever a target config-

uration from the statement appears, we will denote it by two or four triangles between

square brackets. We suppose that the coloring is such that none of the configurations

from the statement appears, and we will reach a contradiction.

Without loss of generality the edge C1C2 is blue. At least one of the edges B2R3 or

B2R4 must be blue, because otherwise [C1R1R2, B2R3R4]. We will assume w. l. o. g.

that B2R3 is blue. For the same reason, we assume that R2B3 is red. Then the color of

some edges is forced:

- C1R3 is red, otherwise [C1R1R2, C2R3R4, C1B2R3, C2B3B4].

- C1B3 is blue, otherwise [C1R2B3, C2R3R4, C1B1B2, C2B3B4].

- B1R3 is red, otherwise [C1R1R2, C2R3R4, B1B2R3, C1C2B3].

- B1C2 is blue, otherwise [B1C2R3, C1R1R2].

- B1R4 is blue, otherwise [B1R3R4, C1R1R2].

- B2R4 is red, otherwise [C1R1R2, C2R3R4, B1B2R4, C1C2B3].

- B2C2 is blue, otherwise [C1R1R2, B2C2R4].

- C1R4 is red, otherwise [C1R1R2, C2R3R4, C1B1R4, C2B3B4].

At this point, we split our analysis into two cases, depending on the color of R1B1. If

R1B1 is blue:

- R1B2 is red, otherwise [B1B2R1, C1C2B3].

- R1R4 is red, otherwise [B1R1R4, C1C2B2].

- R2R3 is blue, otherwise [B2R1R4, C1R2R3].
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But then we reach a contradiction with the color ofR2B2. If it is red, then [R1R2B2, C1R3R4].

If it is blue, then [R2B2R3, C1C2B1].

We suppose now that R1B1 is red. Then:

- B1R2 is blue, otherwise [R1R2B1, C1R3R4].

- B2R2 is red, otherwise [B1B2R2, C1C2B3].

- R2R4 is red, otherwise [B1R2R4, C1C2B2].

- R1R3 is blue, otherwise [B1R1R3, C1R2R4].

But then we reach a contradiction with the color ofR1B2. If it is red, then [R1R2B2, C1R3R4].

If it is blue, then [R1R3B2, B1C1C2]. This concludes the case analysis.

We now have the necessary preparations for the proof of Theorem 1.19. Similarly to the

proof of Theorem 1.17, we will here prove a finitary version. The reason that Theorem

1.19 follows from the lemma below is the same argument by which Theorem 1.17 follows

from Lemma 4.4.

Lemma 4.8. Let δ = 4
√

7+2
27 = 0.46603 . . . and γ = 1 − 1√

7
= 0.62203 . . . . For every

Ψ : E(Kn)→ {R,B} there exists k ∈ {bδnc, n} and a monochromatic family of disjoint

triangles F with |V (F ) ∩ [k]| ≥ γk − 7.

Proof. Let F1 be a maximum monochromatic family of disjoint triangles, and F ′1 be

a maximum family of disjoint bowties, both in [δn]. Let F2, F
′
2 be the families defined

similarly in (δn, n]. If 3|F1| ≥ γδn−7, or 3|F1|+3|F ′2| ≥ γn−7, or 3|F ′1|+3|F2| ≥ γn−7,

then we are done. Therefore we assume the opposite.

Suppose first that |F ′1| ≥ |F ′2|. This leads to a contradiction, because, by Lemma 4.6,

0 < (3|F1| + 2|F ′1| − bδnc + 5) + 2(3|F2| + 2|F ′2| − (1 − δ)n + 5) + (γδn − 7 − 3|F1|) +

2(γn − 7 − 3|F ′1| − 3|F2|) + 4(|F ′1| − |F ′2|) < (γδ + 2γ + δ − 2)n − 5 < 0. Therefore we

will assume |F ′2| ≥ |F ′1|.

Let q = |F ′1|. Let (W 1
1 ,W

1
2 ), (W 2

1 ,W
2
2 ), . . . , (W q

1 ,W
q
2 ) be a family of pairs of bowties

with W i
1 ⊆ [δn] and W i

2 ⊆ (δn, n]. For every pair (W i
1,W

i
2) there is either a set of two

disjoint triangles of the same color which contain four vertices of W i
1 or nine vertices in

V (W i
1 ∪W i

2) which contain two disjoint triangles of each color.

Let q1 and q2 be the number of pairs (W i
1,W

i
2) for which we obtain the former or the

latter, respectively. We have q1 + q2 ≥ q. We can find a monochromatic family of

triangles that uses 3(q − q1
2 ) + 4 q12 = 3q + q1

2 vertices from [δn], and a monochromatic
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family of triangles that uses 6q2 + 3
5(n − 9q2) = 3

5(n + q2) vertices from [n]. Therefore

we must assume 3q + q1
2 < γδn − 7 and 3

5(n + q2) < γn − 7. But then we have

0 < 7(3|F1|+ 2q − bδnc+ 5) + 7(γδn− 7− 3|F1|) + 4(γδn− 7− 3q − q1
2 ) + 10

3 (γn− 7−
3
5(n+ q2)) + 2(q1 + q2 − q) < (11γδ + 10

3 γ − 7δ − 2)n− 175
3 < 0, a contradiction.





Chapter 5

Ramsey density and list coloring

In this chapter we will prove the theorems from Section 1.2.4. The main results here are

Theorem 1.21 and Theorem 1.22, with Theorem 1.20 following from the former.

5.1 Proof of Theorem 1.20 and Theorem 1.21

To prove Theorem 1.21, one needs to construct a list assignment L satisfying the property

in the statement. In our construction, the assignment will be such that, for every pair

of colors {C1, C2}, the graph formed by the edges with this list is the Rado graph, also

known as the infinite random graph. This will be achieved by adapting a construction

of Ackermann [Ack37].

One relevant part in this construction is that, for every vertex v and every list {C1, C2},
the set S of vertices that are connected to v through edges with list {C1, C2} has positive

density. This guarantees that, in every L-coloring, either NC1(v) or NC2(v) has positive

density. As this holds for every pair of colors, it must be true that NC(v) has positive

density for all but at most one color. We call this color, if it exists, the defective color

of v. In our construction of P, if a path misses v, then the path must be of its defective

color.

Proof of Theorem 1.21. Given two positive integers i, j, we denote by BIT(i, j) the j-th

bit in the binary expression of i, that is, the one corresponding to the value 2j−1. We

enumerate all the lists in
(C

2

)
as `1, `2, `3 . . . For any pair of positive integers a < b, the list

on the edge ab is `i, where i is the minimum value that satisfies BIT(b, (2a−1)2i−1) = 0.

Crucially, under this assignment, for any a 6= a′, the sets of binary digits of b that are

checked to determine the lists assigned to ab and a′b if b > max{a, a′} are disjoint.

65



66 Chapter 5. Ramsey density and list coloring

We claim that this list assignment L satisfies the following property:

Proposition 5.1. For any disjoint pair of sets S1, S2 ⊆ V (KN), both with positive

density, the set of edges between S1 and S2 contains edges that get assigned all lists in(C
2

)
by L.

Proof. Suppose that d̄(S1), d̄(S2) ≥ ε > 0. Consider a list `i. We will assume that there

is no edge between S1 and S2 that takes the list `i, and derive a contradiction. Take

u1, u2, . . . , ur ∈ S1, where r will be defined later. Let S′ be the set of vertices which are

not connected to any of u1, u2, . . . , ur through edges with list `i. Clearly S2 ⊆ S′, so

d̄(S′) ≥ d̄(S2) ≥ ε.

If v > max{u1, u2, . . . , ur}, whether v ∈ S′ or not depends exclusively on ir bits in

the binary expression of v. Each vertex uj acts on i bits, and the edge ujv takes

the list `i if and only if those bits form the sequence 011 . . . 1. Thus we can deduce

d̄(S′) =
(
1− 2−i

)r
. But for r large enough, this density is less than ε, reaching the

desired contradiction.

Next take an L-coloring Ψ. We will decide for which colors we will add a monochromatic

path to P. We say that a color C is broken if there exists a finite set S and a partition

V (KN) \ S = P1 ∪P2 such that d̄(P1), d̄(P2) > 0 such that there is no edge with color C

between P1 and P2.

We claim that there is at most one broken color. Indeed, suppose that C1 and C2 are

broken, and let (P1, P2) and (P ′1, P
′
2), respectively, be the partitions of V (KN) \ S that

certify this fact (we can assume that the set S is the same in both partitions). For

a, b ∈ {1, 2}, let da,b = d̄(Pa∩P ′b). As the sets P1, P2, P
′
1 and P ′2 all have positive density,

we have d1,1 + d1,2, d2,1 + d2,2, d1,1 + d2,1, d1,2 + d2,2 > 0. W.l.o.g., we can suppose that

both d1,1, d2,2 > 0. But this implies that, by Proposition 5.1, there is an edge between

P1∩P1 and P2∩P ′2 with list {C1, C2}, which will goes across both partitions and receives

a broken color. This is a contradiction, so there is at most one broken color.

We can now label all the non-broken colors as C1, C2, C3, . . . . For each i, we will create

a monochromatic path Zi with color Ci in which every vertex that is missed by Zi has

Ci as its defective color. Let v1 < v2 < . . . be the sequence of all vertices which do not

have Ci as its defective color (this sequence may be finite or infinite). We take v1 as the

first vertex in Zi. Suppose that we have constructed an initial segment of Zi, ending

at vj . If Zi already contains all vertices for which Ci is not broken, stop. Otherwise

consider the minimum k such that vk is not in Zi. There must be a path from vj to vk in

color Ci that avoids the already constructed Zi, because otherwise there is a partition of



5.1. Proof of Theorem 1.20 and Theorem 1.21 67

V (KN) \ V (Zi) that separates Ci-neighborhoods of vj and vk, contradicting Proposition

5.1. We can thus extend Zi to contain vk.

We proceed in this way to produce a finite or infinite path containing all vj . Because

each vertex has at most one defective color, each vertex is missed by at most one path,

as we claimed. P cannot contain two or more finite paths, as there would be vertices

missed by both of them. If P contains only one finite path, we remove it from P. Thus

we may suppose that all paths in P are infinite, completing the proof.

With a more careful construction, we can ensure that in fact every vertex is missed by

exactly one path. The idea is as follows: the paths in colors Ci are constructed one by

one. For each color Ci, we can predetermine a finite set Xi of vertices that are going

to be avoided. Then Zi will be missing all vertices in Xi, some vertices for which Ci is

defective, and nothing else.

We start by adding the vertices v which do not have a defective color, or those whose

defective color is broken, or those which share a defective color with all but finitely

many other vertices, to distinct sets Xi. This represents all vertices which do not have

a defective color for which an infinite path will be constructed. Then we construct the

paths one by one, starting with Z1. When we construct Zi, we add the vertices v ∈ Zi
for which Ci is a defective color to distinct sets Xj , with j > i. Following this procedure,

we can check that every vertex is missed by exactly one path in P.

Theorem 1.20 follows from Theorem 1.21 via a simple counting argument:

Proof of Theorem 1.20. We consider the same list assignment L as in Theorem 1.21.

Let Ψ be an L-coloring, and ε > 0. Consider the family P of paths from Theorem 1.21,

and take k of them, for some k > ε−1. Denote these paths by Z1, Z2, . . . , Zk. We will

show that one of these paths has density at least 1− k−1 > 1− ε.

Let n be a natural number. Each vertex in [n] is missed by at most one path Zj , so

there is some in such that Zin misses at most n/k vertices in [n]. This means that

|V (Zin)∩ [n]| ≥ (1− 1/k)n. There is some value of i such that i = in for infinitely many

n. Then we have

d̄(Zi) = lim sup
n→∞

|V (Zi) ∩ [n]|
n

≥ 1− 1

k
> 1− ε.
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5.2 Proof of Theorem 1.22

The idea for this proof is similar to the proof of the upper bound ρ(P∞) ≤ 8/9 given in

[EG93] (which is also the basis for Theorem 1.9). However, we look at it from a different

perspective this time.

The statement “there exists a two-coloring Ψ of E(KN) such that no monochromatic

path has density higher than 8/9” is obviously equivalent to “there exists a two-coloring

Ψ of E(KN) such that every path with density greater than 8/9 has edges in both colors”.

Indeed, the coloring Ψ from the second statement also satisfies the first statement, but

so does its complement. This is the implication that we are interested in: given a list

assignment, we will define which color not to choose, by using an auxilliary coloring

(which does not depend on the lists) with the following property:

Lemma 5.2. There exists a coloring Φ : E(KN) → C such that every infinite path P

with density 1 contains edges in every color in C.

Proof. Let C1, C2, C3, . . . be the colors in C. We will start by coloring the vertices of

KN. We partition N into intervals Ii = [3i−1, 3i). We color the vertices of Ii in color Cj ,

where j is the largest value such that 2j−1 divides i. For every edge uv with u < v, its

color in Φ is the color of u.

Next consider a path P with density 1, and take a color Cj . We will show that P

contains an edge in this color. Because d̄(P ) = 1, there exists some t > 32j such that

|V (P ) ∩ [t]| ≥
(

1− 3−(2j+1)
)
t. Let i be the largest value such that i ≡ 2j−1 (mod 2j)

and 3i ≤ t. This value satisfies t < 32j3i, and so |[t] \ V (P )| ≤ 3−(2j+1)t ≤ 3i−1. Since

|Ii| = 2 · 3i−1 and Ii ⊆ [t], this implies that |V (P ) ∩ Ii| ≥ 3i−1.

There must be a vertex v ∈ V (P ) ∩ Ii whose succesor w in P is not in [3i−1 − 1]. We

either have w ∈ [3i − 1] (in which case w ∈ Ii) or w > v. In the latter case the edge

vw ∈ P receives the color of v, which is Cj . In the former case vw receives the color of

one of the endpoints, and both of them have color Cj . In any case, the edge vw ∈ P
receives the color Cj , completing our proof.

Now we can prove Theorem 1.22. Observe that Lemma 5.2 does not involve list coloring

at all. Nevertheless, given a list assignment L, we will use the coloring Φ as an auxiliary

tool to choose a color from each list.

Proof of Theorem 1.22. Let L be a list assignment, and let Φ be the coloring from

Lemma 5.2. We will define an L-coloring Ψ as follows: for each edge uv, if Φ(uv) ∈ L(uv)
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we take Ψ(uv) to be the color in L(uv) other than Φ(uv). If Φ(uv) /∈ L(uv), we choose

Ψ(uv) arbitrarily. With this we guarantee that Ψ(uv) 6= Φ(uv) for all uv ∈ E(KN).

Now for contradiction, assume that Ψ contains a monochromatic path P in color Ci.

By Lemma 5.2, P contains an edge uv with Φ(uv) = Ci. Thus we find Ψ(uv) 6= Ci,

contradicting the fact that P is monochromatic in color Ci.





Chapter 6

Open problems

As a way to wrap up this thesis, in this chapter we will propose the conjectures and

open problems related Ramsey density.

Let us start by addressing the most pressing question. Throughout this thesis we have

mentioned a function f(x) that connects the Ramsey density and the expansion of

independent sets of a graph H (as in Theorems 1.9, 1.10, 1.11, 1.15, 1.17 and 3.2,

and Corollaries 1.18, 1.12, 1.13 and 1.14), but we do not have a closed formula for

this function, outside of the interval [0, 1]. We can only define f(x) in terms of an

optimization problem on Lipschitz functions.

We conjecture that the exact value of this function is the upper bound in (1.2):

Conjecture 6.1.

f(x) =


2x2+3x+7+2

√
x+1

4x2+4x+9
for 0 ≤ x < 3,

x+1
2x for x ≥ 3.

When the contents of Chapter 3 appeared as an article [Lam20], one of the open questions

that was asked was about the value of ρ(ω ·K3), and to improve the bounds on (1.3).

This question was the motivation for the work in Chapter 4, which answers it. Therefore

we will ask about a graph which, arguably, is now the most interesting graph H for which

ρ(H) is still not known.

We already mentioned that Elekes et al. [ESSS17] proved that in every two-coloring of

E(KN) the vertex set can be partitioned into at most four copies of P 2
∞ plus a finite

set, and that DeBiasio and McKenney [DM19] observed that this implies ρ(P 2
∞) ≥ 1/4.
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Figure 6.1: Three vertex-minimum graphs F for which ρ(ω · F ) is not known. If Conjecture
6.3 has an affirmative answer, their Ramsey densities are f(2), f(1) and f(2/3), respectively.
All other graphs on seven vertices with unknown ρ(ω · F ) are subgraphs of these three with the

same minimum value of |N(I)|/|I|.

The best upper bound known is that given by Theorem 1.7, which is 1/2. It would be

interesting to have more precision on the value.

Problem 6.2. Improve either bound in 1/4 ≤ ρ(P 2
∞) ≤ 1/2.

The square of the path poses an interesting challenge. Like in ω ·K3, this graph does

not contain any non-empty doubly independent set, so the techniques from the proof of

Theorem 3.2 are not necessarily of much help. On the other hand, unlike ω · K3, the

graph P 2
∞ is connected, which prevents us from using the same trick as in Theorem 1.17.

If we restrict ourselves to looking for pieces of the square path in finite graphs, we still

need to find a way of ‘gluing’ these pieces together into an infinite square path.

As we have seen, there are many different conditions that guarantee that the upper

bound on ρ(ω ·F ) from Theorem 1.9 is tight. This is the case if an independent set that

minimizes |N(I)|
|I| is maximal (in which case it matches Theorem 1.17) or if N(I) is also

independent (in which case it matches Theorem 1.15).

Remarkably, we do not know of any finite graph F for which Theorem 1.9 is not tight

for ω · F . That leads to the following conjecture:

Conjecture 6.3. For every finite graph F , we have

ρ(ω · F ) = f

 min
I indep. in F

I 6=∅

|N(I)|
|I|

 .

The smallest graphs F which are not covered by the previous cases have seven vertices,

and are depicted in Figure 6.1.

In Theorem 1.19, we improve the lower bound on f(2). There is no reason why the

same argument cannot be used to improve the bound on f(x) for all x > 1, but there

is a catch: a straightforward generalization can only be applied for rational x, and even

then the method appears to be scale-dependent. To clarify this, consider the graphs

F1 = Ka+b \ Kb (the graph on a + b vertices whose complement is an a-clique) and
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F2 = K2(a+b) \ K2b. They satisfy ρ(ω · F1) = f(a/b) = ρ(ω · F2) by Corollary 1.18.

However, it is not clear what the analogous for Lemma 4.7 should be in each case, and

different versions might produce different bounds on f(a/b), if applied to F1 and F2.

Problem 6.4. What lower bounds on f(x) can be obtained by adapting Lemma 4.7?

Regarding the list coloring version of Ramsey density, so far we have only dealt with

finding monochromatic infinite paths. It would be interesting to determine what happens

when we look for other graphs H, like we did in Chapter 3 and Chapter 4. Let us consider

locally finite graphs. As one can deduce from the proof of Theorem 1.11, there exists a

locally finite tree T such that every two-coloring of KN contains a monochromatic copy

of T with density 1 (in fact, by Theorem 1.14 in [CDM20], there exists a copy of T that

contains all but finitely many vertices of KN), so a generalization of Theorem 1.22, even

for connected graphs, may require some extra conditions. However, there is no easy

argument as for why Theorem 1.20 would fail for locally finite graphs in general. Thus

we propose the following conjecture:

Conjecture 6.5. There exists a list assignment L such that, for every locally finite

graph H and every ε > 0, every L-coloring contains a monochromatic copy of H with

density at least 1− ε.

It is possible that the list assignment described in the proof of Theorem 1.21 is a valid

choice of L for Conjecture 6.5.
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Proof of Lemma 3.10

We will show that the parameters from Lemma 3.10 are essentially the same as Γ+

and Γ−, except the axes are rotated by 45 degrees. Thus we get that Lemma 3.10

is equivalent to the following lemma, which is just a compacity argument away from

completing the proof:

Lemma A.1. Let λ ∈ (−1, 1) and ε > 0. There exists γ > 0 with the following property.

For every 1-Lipschitz function g : [0,+∞) → R with g(0) = 0, and every m > 0, there

exists t ∈ [γm,m] such that

Γ+
λ (g, t) + `−Γ (g, t) ≥ (h(λ)− ε)t =

2

1− λ2

 f
(

1+λ
1−λ

)
1− f

(
1+λ
1−λ

) − λ
 t− εt.

Proof of Lemma 3.10. Define the function z : [0,+∞) → R as follows: for every x, let

z(x) = g(y) − y, where y is the unique value such that x = g(y) + y. This function is

1-Lipschitz: if x1, x2 are non-negative, and y1, y2 are the corresponding values of y, then

|z(x1)− z(x2)| = |(g(y1)− g(y2))− (y1 − y2)|

≤ |(g(y1)− g(y2)) + (y1 − y2)|

= |x1 − x2|,

since y1 − y2 and g(y1)− g(y2) do not have opposite signs.
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For every t > 0, let yt = `+λ (g, t). By continuity of g, we have g(λyt) − yt = t. Let

xt = g(λyt) + λyt. Then

z(xt) =g(λyt)− λyt

=g(λyt)− λyt −
2λ

1 + λ
(g(λyt)− yt − t)

=
1− λ
1 + λ

(g(λyt) + λyt) +
2λ

1 + λ
t

=
1− λ
1 + λ

xt +
2λ

1 + λ
t,

which rearranges to λ−1
λ+1xt + z(xt) = 2λ

1+λ t. Thus, xt ≥ Γ+
λ−1
λ+1

(z, 2λ
1+λ t). On the other

hand, let y′t = `−λ (g, t). We have y′t −
g(y′t)
λ = t. Let x′t = g(y′t) + y′t. Then

z(x′t) =g(y′t)− y′t

=g(y′t)− y′t +
2λ

1 + λ

(
y′t −

g(y′t)

λ
− t
)

=
λ− 1

λ+ 1

(
g(y′t) + y′t

)
− 2λ

1 + λ
t

=
λ− 1

λ+ 1
x′t −

2λ

1 + λ
t,

which rearranges to λ−1
λ+1x

′
t − z(x′t) = 2λ

1+λ t. Thus, x′t ≥ Γ−λ−1
λ+1

(
z, 2λ

1+λ t
)

. By Lemma A.1,

for every m there exists a value t ∈ [γm,m], where γ depends only on λ and δ, such that

(
h

(
λ− 1

λ+ 1

)
− δ
)

2λ

1 + λ
t ≤xt + x′t

=g(λyt) + λyt + g(y′t) + y′t

=(yt + t) + λyt + λ(y′t − t) + y′t

=(λ+ 1)(yt + y′t) + (1− λ)t.

Rearranging this inequality, substituting h and taking δ small enough we obtain yt+y
′
t ≥

(f(λ)− ε)t.

Finally, Lemma A.1 can easily be proved by showing that the restriction t ∈ [γm,m] is

unnecessary:

Proof of Lemma A.1. Suppose that Lemma A.1 is false. For some λ ∈ (−1, 1) there are

1-Lipschitz functions g1, g2, . . . with gi(0) = 0 such that
Γ+
λ (gi,t)+Γ−(gi,t)

t < h(λ) − ε for
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every t ∈ [mii ,mi]. By scaling each fraction as ḡi(x) =
√
i

mi
gi

(
mi√
i
x
)

, we can assume that

mi =
√
i for every i ∈ N.

Because the sequence gi(x) is bounded for every x, there is a subsequence gi1 , gi2 , . . .

which is uniformly convergent on every compact subset of [0,+∞), and has limit g(x).

This function is also 1-Lipschitz and has g(0) = 0, so by definition there exists t > 1

such that Γ+
λ (g, t) + Γ−λ (g, t) ≥ (h(λ)− ε/2)t.

Let q = Γ+
λ (g, t). Since g satisfies that λx+ g(x) < t for every 0 ≤ x ≤ q, we also have

λx+ gij (x) < (1− δ)t for all x ∈ [0, q], all δ > 0 and all j > J(δ) large enough, therefore

Γ+
λ (gij , (1 − δ)t) > q. For the same reason, Γ+

λ (gij , (1 − ε/4)t) > Γ−λ (gij , (1 − δ)t) >

Γ−λ (g, t). We obtain the inequality

Γ+
λ (gij , (1− δ)t) + Γ−λ (gij , (1− δ)t)

(1− δ)t
>

Γ+
λ (g, t) + Γ−λ (g, t)

(1− δ)t
≥ h(λ)− ε/2

1− δ
> h(λ)− ε

for δ small enough. To reach a contradiction, simply observe that (1−δ)t ∈
[

1√
ij
,
√
ij

]
=[

mij
ij
,mij

]
for all j large enough.
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Properties of f (λ)

We will prove four propositions regarding f(x). Propositions B.2 and B.5 together imply

(1.2), while Proposition B.3 means that the upper bound is tight for x ∈ [0, 1].

Proposition B.1. f is non-increasing and continuous.

Proof. Let −1 < γ < τ < 1. Let ε > 0. Choose g such that lim sup
Γ+
γ (g,t)+Γ−γ (g,t)

t ≤
h(γ) + ε. Let z(t) = Γ+

γ (g, t) and z̄(t) = Γ+
τ (g, t). We have γz(t) + g(z(t)) = t =

τ z̄(t) + g(z̄(t)). Because τz(t) + g(z(t)) > γz(t) + g(z(t)) = t, by definition of Γ+
τ we

have z̄(t) ≤ z(t). Thus

z(t)− z̄(t) ≥ g(z(t))− g(z̄(t)) = τ z̄(t)− γz(t)

which rearranges to (τ + 1)z̄(t) ≤ (γ + 1)z(t). Similarly, if z′(t) = Γ−γ (g, t) and z̄′(t) =

Γ−τ (g, t), then (τ + 1)z′(t) ≤ (γ + 1)z′(t). We take upper limits.

(τ + 1)h(τ) ≤(τ + 1) lim sup
t→∞

z̄(t) + z̄′(t)

t

≤(γ + 1) lim sup
t→∞

z(t) + z′(t)

t

≤(γ + 1)h(γ) + ε

Since this inequality is valid for every ε > 0, we find that the function (γ + 1)h(γ) is

non-increasing on γ. On the other hand, we have t = γz(t) + g(z(t)) ≤ (γ + 1)z(t), or

equivalently z(t) ≥ t
γ+1 . Similarly z′(t) ≥ t

γ+1 . This leads to h(γ) ≥ 2
γ+1 . We conclude
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that the function 1−γ2

2 h(γ) + (γ + 1) is non-increasing, because

1− τ
2

(τ + 1)h(τ) + (τ + 1) ≤1− τ
2

(γ + 1)h(γ) + (τ + 1)

≤1− τ
2

(γ + 1)h(γ) + (τ + 1)−
(

(γ + 1)h(γ)

2
− 1

)
(τ − γ)

=
1− γ

2
(γ + 1)h(γ) + (γ + 1).

After the change of variables, γ = λ−1
λ+1 , this is equivalent to f(λ) being non-decreasing.

To show that f is continuous, we will show that h is continuous. We will show that, for

every −1 < γ < 1 and every ε > 0 there exists δ > 0 such that h(γ − δ) − h(γ) < ε.

Because h is non-increasing, this implies continuity.

Choose ξ > 0 very small, and choose g such that
Γ+
γ (g,t)+Γ−γ (g,t)

t ≤ h(γ) + ξ for t large

enough. Let z(t) = Γ+
γ (g, t). We have γz(t) + g(z(t)) = t. If t is large enough, then

(γ − δ)z(t) + g(z(t)) ≥ t− δz(t) ≥ (1− h(γ) + ξ)t. If z̄(t) = Γ+
γ−δ(g, t), then for t large

enough we have z̄(t) ≤ z
(

t
1−(h(γ)+ξ)δ

)
. As before, the same argument works for Γ−,

and produces (taking ξ → 0)

h(γ − δ) ≤ h(γ)

1− δh(γ)
,

which is smaller than h(γ) + ε for δ small enough.

Proposition B.2.

f(λ) ≤


2λ2+3λ+7+2

√
λ+1

4λ2+4λ+9
for 0 ≤ λ < 3,

λ+1
2λ for x ≥ 3.

Proof. Let γ = λ−1
λ+1 . All we need to do is find a function g(x) for which

lim sup
t→∞

Γ+
γ (g, t) + Γ−γ (g, t)

t
≤


2γ2+2γ+8+

√
32(1−γ)

(γ+1)3 for γ ∈
(
−1, 1

2

)
2
γ for γ ∈

[
1
2 , 1
)
,

to show an upper bound on h(γ), and consequently on f(λ).

For γ ∈ [1
2 , 1), take g(x) = 0. Then Γ+

γ (g, t) = Γ−γ (g, t) = t
γ .

For γ ∈ (−1, 1
2), let σ =

1−γ+
√

2(1−γ)

1+γ . We define g as follows: for every x > 0, we have

|g(x)| = min{|x − σi| : i ∈ Z}. g(x) is non-negative if x ∈ [σi, σi+1) for some odd i
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and non-positive otherwise. This creates a 1-Lipschitz function in which the derivative

is always ±1, and changes sign precisely at the values x = σi+σi+1

2 .

This function g satisfies that Γ+
γ (g, t) and Γ−γ (g, t) are piecewise linear, with sudden in-

creases at the points at which the respective functions take value σi+σi+1

2 . By symmetry,

it is at these points that
Γ+
γ +Γ−γ

2 is maximized, and one can check that the value is

lim
t→(t∗)+

Γ+
γ (g, t) + Γ−γ (g, t)

t
=

2(γ(σ + 1) + σ2 + 2σ − 1)

(γ + 1)((γ + 1)σ + γ − 1)
=

2γ2 + 2γ + 8 +
√

32(1− γ)

(γ + 1)3
,

where t∗ = γ σ
i+σi+1

2 + σi+1−σi
2 .

The next proposition gives the exact value for f(x) for x ∈ [0, 1]. It can be seen as a

generalization of Lemma 2.9. The problem of determining the value of f(x) is similar,

at least in appearence, to a certain generalization of the linear search problem, also

known as the cow path problem. In its original form, this problem was solved by Beck

and Newman [BN70]. There are many common ideas between their approach and our

approach.

Proposition B.3.

f(λ) =
2λ2 + 3λ+ 7 + 2

√
λ+ 1

4λ2 + 4λ+ 9
∀0 ≤ λ ≤ 1

Proof. Let γ = λ−1
λ+1 . If two 1-Lipschitz functions with g1(0) = g2(0) = 0 satisfy |g1(x)−

g2(x)| ≤ 1 for every x, then Γ+
γ (g1, t) = min{x : γx+ g1(x) ≥ t} ≥ min{x : γx+ g2(x) ≥

t− 1} = Γ+
γ (g2, t− 1). Similarly, Γ−γ (g1, t) ≥ Γ−γ (g2, t− 1). This implies that

lim sup
t→∞

Γ+
γ (g1, t) + Γ−γ (g1, t)

t
= lim sup

t→∞

Γ+
γ (g2, t) + Γ−γ (g2, t)

t

For this reason, we can focus our attention on continuous functions g which are piecewise

linear, the slope of each piece is 1 or -1 and the length of each piece is at least 1
2 . Indeed,

let g1 be a 1-Lipschitz function with g1(0) = 0. Define g2 by starting at g2(0) = 0. Take

g2(x) in [0, x1], where x1 is the minimum value for which g1(x1) = x1−1. Then continue

with slope -1 in the interval [x1, x2] until the minimum value of x2 for which we would

have g2(x2) = g1(x2)−1. Proceed alternating the sign of the slope every time g2 reaches

distance 1 from g1. Clearly we always have |g1(x) − g2(x)| ≤ 1, and it is easy to check

that each piece has length at least 1
2 (it could be that some piece has infinite length).

We can further suppose that the first piece has slope 1. Let `1, `2, . . . be the length of

the pieces, and xi be the end of the i-th piece. The points xi are local maxima if i is

odd and minima if i is even. If for some odd i we have γxi + g(xi) ≤ γxi−2 + g(xi−2)
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(which means that xi does not equal Γ+
γ (g, t) for any t), we can “remove the peak”

by extending the intervals [xi−2, xi−1] and [xi+1, xi+2] until they intersect. The new

function ḡ satisfies Γ+
γ (ḡ, t) ≤ Γ+

γ (g, t) and Γ−γ (ḡ, t) = Γ−γ (g, t), because Γ+
γ (g, t) will

always lie on an increasing piece and Γ−γ (g, t) lies on a decreasing piece.

We can similarly “remove a valley”, if for some even i the value xi does not equal Γ−γ (g, t)

for any t. Applying these two procedures repeatedly, always to the first peak or valley

that can be removed, we produce a function in which every xi is either Γ+
γ (g, ti) for odd

i or Γ−γ (g, ti) for even i. The function must still have infinitely many peaks and valleys,

otherwise we have Γ+
γ (g, t) =∞ or Γ−γ (g, t) =∞ for large enough t.

Let µ > lim sup
t→∞

Γ+
γ (g,t)+Γ−γ (g,t)

t . After scaling, we can suppose that
Γ+
γ (g,t)+Γ−γ (g,t)

t ≤ µ

for every t ≥ 1 (because of the scaling, we might lose the property that every interval

has length larger than 1
2 , but it will still be larger than some constant). Let us see the

relation that the ti must satisfy. We have

xi =
i∑

j=1

`i g(xi) =
i∑

j=1

(−1)j+1`i ti = γxi + (−1)i+1g(xi).

We can express xi in terms of t1, t2, . . . , ti. Combining the identities above we have

ti =
∑i

j=1(γ+ (−1)j−i)`j , and therefore ti + ti−1 = (γ+ 1)`i + 2γ
∑i−1

j=1 `j = (γ+ 1)xi +

(γ − 1)xi−1, which produces the recursion xi = 1−γ
1+γxi−1 + 1

1+γ (ti + ti−1). Together with

x1 = 1
1+γ t1, the solution is

xi =
1

1 + γ
ti +

i−1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)i−j
tj .

Based on these values, we can compute Γ+
γ (g, t) and Γ−γ (g, t). The former must lie in

the interval [xi−1, xi], where i is the smallest odd value for which ti ≥ t. Moreover, it

is the unique value x ∈ [xi−1, xi] for which t = γx + g(x) = γx + (g(xi) + x − xi) =

ti − (γ + 1)(xi − x). If mo = mo({ti}∞i=1, t) is the smallest odd i such that ti ≥ t, then

Γ+
γ (g, t) = tmo − (γ + 1)(xm0 − x) =

1

1 + γ
t+

mo−1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)mo−j
tj .

Similarly, if me = me({ti}∞i=1, t) is the smallest even i such that ti ≥ t, then

Γ−γ (g, t) =
1

1 + γ
t+

me−1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)me−j
tj .
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Define

s({ti}∞i=1, t) =
2

1 + γ
t+

mo−1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)mo−j
tj +

me−1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)me−j
tj .

We are then interested in the lowest value that supt≥1
s({ti}∞i=1,t)

t can take. Given a non-

negative unbounded sequence {ti}∞i=1, let i1 < i2 < . . . be the set of indices i for which

ti ≥ 1 and ti > tj for every j < i. One can check that s({tij}∞j=1, t) ≤ s({ti}∞i=1, t) for

every t ≥ 1 (this is because 1−γ
1+γ > 1). Therefore, we can assume that ti is increasing

and t1 ≥ 1. In this case, and setting t0 = 0,

sup
t≥1

s({ti}∞i=1, t)

t
≥ sup

i≥1

2

1 + γ
+

i+1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)i−j+2 tj + tj−1

ti
,

since {mo({ti}∞i=1, ti + ε),me({ti}∞i=1, ti + ε)} = {i+ 1, i+ 2} for ε > 0 small enough.

A sequence is called S-good if it satisfies

Sti ≥
2

1 + γ
ti +

i+1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)i−j+2

(tj + tj−1) ∀i ≥ 1, (B.1)

which is a necessary condition for supt≥1
s({ti}∞i=1,t)

t ≥ S. Suppose that a sequence is

S-good. Consider the recurring sequence where T1 = t1 and

STi =
2

1 + γ
Ti +

i+1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)i−j+2

(Tj + Tj−1). (B.2)

Observe that (B.2) is used to define Ti+1 from the previous entries, rather than Ti.

Claim B.4. If {ti}∞i=1 is S-good, we have ti ≤ Ti for every i ≥ 1.

Proof of Claim. Suppose that there exists an index i for which ti > Ti. Let u and v be

the smallest indices such that tu 6= Tu and tv > Tv, respectively. Clearly we have u ≥ 2.

We will prove our claim by induction on v − u. By definition of Ti we have u, v > 1.

Combining (B.1) and (B.2) for i = u− 1 we see that we cannot have v − u = 0.

Let α = Tu−tu
t1

> 0. Consider the sequence {t′i}∞i=1, where t′i = ti for i < u and

t′i = ti+αti−u+1 for i ≥ u. This sequence is still increasing. We have t′1 = t1 and, by the

choice of α we have tu = Tu. Additionally, t′v ≥ tv > Tv. This means that, if we define

u′ and v′ analogously to u and v, then u′ > u and v′ ≤ v, which leads to v′−u′ < v−u.

Finally, observe that {t′i} is still good, since (B.1) is satisfied for i < u (the equation

becomes (B.2)) and for i ≥ u we have
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St′i =Sti + Sti−u+1

=
2

1 + γ
(ti + ti−u+1) +

i+1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)i−j+2

(tj + tj−1 + tj−u+1 + tj−u)

=
2

1 + γ
t′i +

i+1∑
j=1

2

1− γ2

(
1− γ
1 + γ

)i−j+2

(t′j + t′j−1)

taking ti = 0 for i ≤ 0. This completes the induction step.

To complete the proof of Theorem B.3, we show that Ti ≤ 0 for some i if S <
2γ2+2γ+8+

√
32(1−γ)

(γ+1)3 . The reason is that the sequence Ti also satisfies the recursion

STi −
1− γ
1 + γ

STi−1 =
2

1 + γ

(
Ti −

1− γ
1 + γ

Ti−1

)
+

2

1− γ2

1− γ
1 + γ

(Ti+1 − Ti).

which can be rewritten as Ti+1 + αTi + βTi−1 = 0. If S is smaller than the claimed

bound, then the roots of the polynomial x2 + αx + β are not real. This implies that

Ti ≤ 0 for some i (see for example [BW81]). This proves that S ≥ 2γ2+2γ+8+
√

32(1−γ)

(γ+1)3 ,

which produces the desired value of f(λ).

For Proposition B.5, we note that the proofs of Theorem 1.9 and Theorem 1.16 do not

use this proposition, so we avoid a circular argument.

Proposition B.5. For x > 1 we have f(x) ≥ x+1
2x+1 .

Proof. We will prove this statement for rational values of x, and it will follow for irra-

tional values because f is continuous (Proposition B.1).

Let x = s/r. Let F be the graph on r + s vertices whose complement is a clique on r

vertices (hence α(F ) = r). We have µ(ω · F, n) = sdn/re, because an independent set I

intersects at least dn/re components and has at least s neighbors in each. Combining

Theorem 1.9 and Theorem 1.16 we find f(s/r) ≥ ρ(ω · F ) ≥ r+s
r+2s , or f(x) ≥ x+1

2x+1 .



Declaration of Authorship

I, Ander Lamaison Vidarte, declare that this thesis titled, “Upper density problems in

infinite Ramsey theory” and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

85





Bibliography

[Ack37] W. Ackermann, Die widerspruchsfreiheit der allgemeinen mengenlehre,

Math. Ann. 114 (1937), 305–315.
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