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Abstract

This dissertation is an investigation of the theory of the parqueting-reflection principle and its
applications to basic boundary value problems in some circular polygons.

The parqueting-reflection principle is applied to solve several boundary value problems for
particular domains whose boundaries are composed of circular arcs. It provides heuristic ideas
and procedures for constructing harmonic Green functions and harmonic Neumann functions,
which play important roles in dealing with Dirichlet and Neumann boundary value problems
for the Poisson equation. The parqueting-reflection principle also contributes a method to solve
Schwarz boundary value problems for the homogeneous and inhomogeneous Cauchy-Riemann
equations. The parqueting-reflection principle has been verified to successfully solve these bound-
ary value problems for many planar domains. However, this principle has not yet been well
explained or rigorously justified in theory. This dissertation dedicates to building a fundamental
theory for the parqueting-reflection principle and exploring new domains in which the principle
can be applied.

The main works of this dissertation are listed below.
We first discuss circle reflections in the extended complex plane and employ some matrix

techniques in dealing with circle reflections. These matrix tools bring some convenience for
the discussions and the computations. Some results on consecutive circle reflections are also
prepared for further discussions.

We next introduce the definition of parqueting-reflection domains, in which the parqueting-
reflection principle is supposed to be applicable. We prove that the parqueting-reflection princi-
ple succeeds in constructing the harmonic Green and Neumann functions for finite parqueting-
reflection domains. We also obtain some properties of the normal derivatives of harmonic Green
and Neumann functions on the boundary of the domains.

We then fully overview basic boundary value problems in disks and half-planes and unify the
harmonic Green and Neumann functions, the Schwarz integral formulas, the Poisson integral for-
mulas, and their boundary behaviors for disks and half-planes. On the basis of these discussions
and by means of the parqueting-reflection principle, we generally solve the Schwarz problems
for the Cauchy-Riemann equations and the Dirichlet problems for the Poisson equation in finite
parqueting-reflection bounded domains.

The last two parts of this dissertation are about the applications of the parqueting-reflection
principle to basic boundary value problems in a class of circular digons and a circular rectangle.
The circular digons with the intersection angles π/n for some positive integer n are verified to be
finite parqueting-reflection domains. We then solve the Dirichlet problem, Neumann problem,
and Schwarz problem for this class of circular digons by means of the parqueting-reflection
principle. We also verify that a circular rectangle is an infinite parqueting-reflection domain.
We succeed in constructing the harmonic Green function and then solving the Dirichlet problem
in this circular rectangle.
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Chapter 1

Preliminaries

This chapter is an overall review of function theory about the differential operators of
first and second order in a single complex variable, especially about the Cauchy-Riemann
operator and the Laplacian operator. Some functional tools, integral representation
formulas and integral operators are prepared for later discussions on several boundary
value problems.

1.1 Differential operators, function classes and integral rep-
resentation formulas

We denote the set of all complex numbers by C. A complex number z ∈ C is usually
written as z = x+ iy, where x, y ∈ R and i the imaginary unit. For the complex number
z = x+ iy, x is called the real part and y is called the imaginary part, they are denoted
by Re(z) and Im(z) respectively. The absolute value of z is defined by |z| =

√
x2 + y2,

the complex conjugate of z is denoted by z = x− iy.
We call D ⊂ C a regular domain if it is a connected, bounded open subset with

piecewise smooth boundary ∂D. Let D = D ∪ ∂D denote the closure of D. Throughout
the whole thesis, we assume that domains are regular unless otherwise stated.

A complex-valued function in variable z is denoted by w(z) = u(x, y) + iv(x, y),
where u(x, y) and v(x, y) are two real-valued functions in variables x and y.

The complex differential operators of first order, ∂
∂z and ∂

∂z , are defined respectively
by :

∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

( ∂

∂x
+ i

∂

∂y

)
.

For a function w(z) with differentiable real and imaginary parts,

∂w

∂z
=

1

2

[(∂u
∂x

+
∂v

∂y

)
+ i
(∂v
∂x

− ∂u

∂y

)]
,

∂w

∂z
=

1

2

[(∂u
∂x

− ∂v

∂y

)
+ i
(∂v
∂x

+
∂u

∂y

)]
.
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The complex derivatives ∂w
∂z and ∂w

∂z are also called the Wirtinger derivatives of w. We

often use notations wz :=
∂w
∂z and wz :=

∂w
∂z for convenience, in the same manner that fx

and fy denote the partial derivatives for a real-valued function f(x, y) in the variables
x and y. We also write the operators ∂

∂z by ∂z, and
∂
∂z by ∂z for convenience.

Let D be a domain. We say that w(z) ∈ Cn(D;C) if u(x, y), v(x, y) ∈ Cn(D;R),
i.e. both u(x, y) and v(x, y) have continuous partial derivatives up to order n in the
domain D. In the case of n = 0, C0(D;C) and C0(D;R), usually denoted by C(D;C)
and C(D;R) respectively, represent the complex and real valued continuous functions in
D respectively.

One of the fundamental theorems of calculus in two variables is the Green theorem,
or equivalently, the Gauss divergence theorem in two variables. See e.g. [29, Sect. 13.3.1,
Prop. 1].

Theorem 1.1.1 (Green Theorem). Let D be a bounded domain in R2 with a positively
oriented, piecewise smooth boundary ∂D. Let P (x, y), Q(x, y) ∈ C1(D;R) ∩ C(D;R).
Then ∫

∂D
Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Using complex derivatives, Green theorem can be easily restated in complex forms.

Theorem 1.1.2 ([2, Gauss Theorems]). Let D be a bounded domain in C with a
positively oriented, piecewise smooth boundary ∂D. Let w(z) = u(x, y) + iv(x, y) ∈
C1(D;C) ∩ C(D;C). Then∫

∂D
w(z)dz = 2i

∫
D
wz(z)dxdy,∫

∂D
w(z)dz = −2i

∫
D
wz(z)dxdy.

From now on, all the boundary integrals throughout this thesis are carried out along
the positive orientation of the boundary curves unless otherwise specified.

A class of functions that is closely connected to the first-order differential operator
with respect to z is the class of holomorphic functions. A holomorphic function is a
complex-valued function that is, at every point of its domain, complex differentiable in
a neighborhood of the point. For one complex variable, w(z) is holomorphic in D if
wz̄ = 0 for all z ∈ D. The equation wz̄ = 0 can also be described in real form. A
function w(z) = u(x, y) + iv(x, y) is holomorphic in the domain D if and only if the
Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x

are satisfied in D. We call ∂z the Cauchy-Riemann operator.

For the complex-valued functions in one variable, the class of holomorphic functions
is equivalent to the class of analytic functions, i.e. functions that can be locally given

2



by convergent power series. The class of holomorphic functions on D is usually denoted
by H(D) or A(D).

Holomorphic functions play a core role in complex analysis. Among plentiful results
about holomorphic functions, Cauchy theorem and Cauchy integral formula are two
fundamental ones.

Theorem 1.1.3 (Cauchy Theorem). Let D be an bounded domain in C with a piece-
wise smooth boundary ∂D. Let w(z) be a holomorphic function on D. Then∫

∂D
w(z)dz = 0.

Theorem 1.1.4 (Cauchy Integral Formula). Let D be an open bounded domain in
C with a piecewise smooth boundary ∂D. Let w(z) be a holomorphic function on D.
Then for any z ∈ D

w(z) =
1

2πi

∫
∂D

w(ζ)

ζ − z
dζ.

It is natural to consider analogously those functions which are related to ∂
∂z , the

conjugate operator of ∂
∂z . A function w(z) that satisfies the condition ∂w

∂z = 0 for every
point in D is called an anti-holomorphic (or anti-analytic) function in D. We get an
anti-holomorphic version of Cauchy-Riemann equations, namely

∂u

∂x
= −∂v

∂y
and

∂u

∂y
=

∂v

∂x
.

Anti-holomorphic functions are closely related to holomorphic functions. Via compar-
ing the two versions of Cauchy-Riemann equations, one can show that w(z) is anti-
holomorphic in D if and only if w(z) is holomorphic in Dc, where Dc is the conjugate
domain of D, i.e. the reflection of D at the real axis. Any anti-holomorphic function
can be obtained in this manner from a holomorphic function, and vice versa. Since a
holomorphic function can be expanded locally as a power series in the variable z, an anti-
holomorphic function therefore can be expanded as a power series in z in a neighborhood
of each point in its domain. We therefore have a criterion for anti-holomorphic functions
that is, a function w(z) is anti-holomorphic in D if and only if w(z) is holomorphic in
D.

The Cauchy integral formula can be generalized for the functions with continuous
first-order derivatives. It results in the Cauchy-Pompeiu formulas, which derive from
Pompeiu’s work, see e.g. [27], Section I.4.1.

Theorem 1.1.5 (Cauchy-Pompeiu Formulas). Let D be a regular domain. Let
w(z) ∈ C1(D;C) ∩ C(D;C). Then for any z ∈ D we have the representation formulas:

w(z) =
1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

π

∫
D
wζ(ζ)

dσζ
ζ − z

, (1.1)

w(z) = − 1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

π

∫
D
wζ(ζ)

dσζ

ζ − z
, (1.2)

where dσζ = dξdη denotes the area element with respect to the variable ζ = ξ + iη.

3



Remark 1.1.6. Gauss theorems imply that

1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

π

∫
D
wζ(ζ)

dσζ
ζ − z

=0, (1.3)

− 1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

π

∫
D
wζ(ζ)

dσζ

ζ − z
=0, (1.4)

if z /∈ D.

We call 1
ζ−z the kernel function of ∂z and 1

ζ−z
the kernel function of ∂z.

Applying Cauchy-Pompeiu formulas to wz(z) and wz(z) produces four representation
formulas of second order for w(z) ∈ C2(D;C) ∩ C1(D;C). They are

w(z) =
1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

2πi

∫
∂D

wζ(ζ)
ζ − z

ζ − z
dζ

+
1

π

∫
D
wζζ(ζ)

ζ − z

ζ − z
dσζ ,

(1.5)

w(z) =
1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
+

1

2πi

∫
∂D

wζ(ζ)log|ζ − z|2dζ

+
1

π

∫
D
wζζ(ζ)log|ζ − z|2dσζ ,

(1.6)

w(z) =− 1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
+

1

2πi

∫
∂D

wζ(ζ)
ζ − z

ζ − z
dζ

+
1

π

∫
D
wζζ(ζ)

ζ − z

ζ − z
dσζ ,

(1.7)

w(z) =− 1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

2πi

∫
∂D

wζ(ζ)log|ζ − z|2dζ

+
1

π

∫
D
wζζ(ζ)log|ζ − z|2dσζ .

(1.8)

From these second-order representation formulas we obtain the kernel functions ζ−z
ζ−z ,

log|ζ − z|2 and ζ−z

ζ−z
for the operators ∂2

z , ∂z∂z and ∂2
z respectively.

Via applying the iterating procedure of Cauchy-Pompeiu formulas, higher order rep-
resentation formulas of Cauchy-Pompeiu type can be developed. Kernel functions with
respect to high order differential operators are thus obtained, see [8].

Among the second-order differential operators ∂2
z , ∂z∂z and ∂2

z , we are mostly inter-
ested in ∂z∂z in this thesis. Note that

4∂z∂z =
∂2

∂x2
+

∂2

∂y2

is just the 2-dimensional Laplacian operator. Therefore, ∂z∂z is also called the complex
Laplacian operator.

4



We recall that a real-valued function u(x, y) is harmonic in D if ∆u = ∂2u
∂x2 +

∂2u
∂y2

= 0
for any x + iy ∈ D. Intrinsic connection between harmonic functions and holomorphic
functions is well known in complex analysis. The real part and imaginary part of any
holomorphic function are harmonic functions. For every harmonic function u(x, y), there
exists a conjugate harmonic function v(x, y) such that u(x, y)+ iv(x, y) is a holomorphic
function.

Here we recall two basic properties of harmonic functions.

Theorem 1.1.7 (Mean Value Theorem). If u : D −→ R is a harmonic function and
B(a, r) is a closed disk contained in D, then

u(a) =
1

2π

∫ 2π

0
u(a+ reiθ)dθ.

Mean value property is a key property of harmonic functions. The converse of Mean
Value Theorem is also true, namely, if u : D −→ R is a continuous function which has
the mean value property then u is harmonic in D.

Theorem 1.1.8 (Maximum Principle). Suppose that u : D −→ R is a harmonic
function. If there is a point z0 ∈ D such that u(z0) ≥ u(z) for all z in a neighborhood of
z0, then u is a constant function.

We also call a complex-valued function w(z) complex harmonic, or harmonic in short,
if wzz = 0. Obviously, a complex harmonic function is a complex-valued funtion with
harmonic real and imaginary parts.

Formulas (1.6) and (1.8) show two integral representation formulas for ∂z∂z. Here-
after two modified versions are deduced. They are developed to deal with Dirichlet and
Neumann boundary value problems for Laplacian operator, see e.g. [7].

Employing the outward normal derivative ∂νζ and the arc length parameter s for the
boundary curve ∂D, we have

∂νζds = −i∂ζdζ + i∂ζdζ for ζ = ζ(s) ∈ ∂D.

Adding up (1.6) and (1.8) gives

w(z) =
1

4π

∫
∂D

w(ζ)∂νζ log|ζ − z|2dsζ −
1

4π

∫
∂D

∂νζw(ζ)log|ζ − z|2dsζ

+
1

π

∫
D
wζζ(ζ)log|ζ − z|2dσζ .

(1.9)

Suppose that h(z, ζ) is a harmonic function in the variable ζ for every z ∈ D. Via Gauss
theorem, we obtain that

1

π

∫
D
wζζ(ζ)h(z, ζ)dσζ =

1

π

∫
D

[
∂ζ
(
wζ(ζ)h(z, ζ)

)
− ∂ζ

(
w(ζ)hζ(z, ζ)

)]
dσζ

= − 1

2πi

∫
∂D

wζ(ζ)h(z, ζ)dζ + w(ζ)hζ(z, ζ)dζ,

5



and a parallel version

1

π

∫
D
wζζ(ζ)h(z, ζ)dσζ =

1

π

∫
D

[
∂ζ
(
wζ(ζ)h(z, ζ)

)
− ∂ζ

(
w(ζ)hζ(z, ζ)

)]
dσζ

=
1

2πi

∫
∂D

wζ(ζ)h(z, ζ)dζ + w(ζ)hζ(z, ζ)dζ.

Adding these two formulas produces

1

4π

∫
∂D

(
w(ζ)∂νζh(z, ζ)− ∂νζw(ζ)h(z, ζ)

)
dsζ +

1

π

∫
D
wζζ(ζ)h(z, ζ)dσζ = 0. (1.10)

Then from formulas (1.9) and (1.10) we obtain that

w(z) =
1

4π

∫
∂D

w(ζ)∂νζ
(
log|ζ − z|2 + h(z, ζ)

)
dsζ

− 1

4π

∫
∂D

∂νζw(ζ)
(
log|ζ − z|2 + h(z, ζ))dsζ

+
1

π

∫
D
wζζ(ζ)

(
log|ζ − z|2 + h(z, ζ)

)
dσζ

(1.11)

for every z ∈ D and for any harmonic function h(z, ζ) in variable ζ.
Given a harmonic function h(z, ζ),

1

π
(log|ζ − z|2 + h(z, ζ))

is a fundamental solution for the complex Laplacian operator ∂z∂z̄. The choice of h(z, ζ)
can be adjusted to meet some boundary conditions. Hereafter we introduce two types
of adjustments.

Let D be a domain in the complex plane.

Definition 1.1.9. A real-valued function G1(z, ζ), z, ζ ∈ D, z ̸= ζ, is called the har-
monic Green function of D, if for any z ∈ D it satisfies the properties:

(G1) G1(z, ζ) is harmonic for any ζ ∈ D \ {z};
(G2) G1(z, ζ) + log |ζ − z|2 is harmonic for any ζ ∈ D;

(G3) lim
ζ→∂D

G1(z, ζ) = 0.

Remark 1.1.10. Note that this definition has a slight difference with the classical
definition of Green functions. We call G(z, ζ) the Green function of D if G(z, ζ) satisfies
(G1) , (G3) and the condition that G(z, ζ)+ log |ζ− z| is harmonic instead of (G2). The
relation G1(z, ζ) = 2G(z, ζ) holds. Also note that − 1

πG1(z, ζ) is a fundamental solution
for ∂z∂z̄.

Theorem 1.1.11 (See e.g. [4, Thm. 9]). The harmonic Green function G1(z, ζ) of a
domain D satisfies the additional properties:

6



(i) G1(z, ζ) > 0, for z, ζ ∈ D;

(ii) G1(z, ζ) is symmetric, i.e. G1(z, ζ) = G1(ζ, z);

(iii) G1(z, ζ) is unique if it exists.

Let D be a regular domain in C, G1(z, ζ) its harmonic Green function, and w(z) ∈
C2(D,C) ∩ C(D,C). Via formula (1.11) we obtain a modified version of the second
order representation formulas of Cauchy-Pompeiu type for w(z), that is the Green
representation formula:

w(z) = − 1

4π

∫
∂D

w(ζ)∂νζG1(z, ζ)dsζ −
1

π

∫
D
wζζ̄(ζ)G1(z, ζ)dσζ . (1.12)

Harmonic Green functions play an essential role in solving the Dirichlet boundary
value problem for the Poisson equation. The following result shows an important prop-
erty of harmonic Green functions, see e.g. [25, Thm. I. 21].

Theorem 1.1.12. Let D be a bounded domain with piecewise smooth boundary C and
G1(z, ζ) its harmonic Green function; let γ ∈ C(D;C). Then

u(z) := − 1

4π

∫
C
γ(ζ)∂νζG1(z, ζ)dsζ (1.13)

is a harmonic function on D, where ν denotes the outward normal vector on C and s
the arc length parameter of C. If z0 is a smooth point in C, then holds the boundary
property

lim
z→z0

u(z) = γ(z0). (1.14)

Another important property of Green functions is that they are conformally invariant,
i.e. conformal mappings preserve Green functions.

Theorem 1.1.13 ([16, Thm. 10.5.3]). Let G and Ω be regions such that there is a one-
to-one analytic function w = f(z) of D onto Ω; let a ∈ G and α = f(a). If g(z, a) and
γ(w,α) are the Green functions for D and Ω with singularities a and α respectively, then
g(z, a) = γ(f(z), f(a)).

Although the Green functions mentioned in the above theorem are in the classical
sense as shown in Remark 1.1.10, this conclusion also works for harmonic Green functions
defined by Definition 1.1.9. We usually consider conformal mappings from a domain onto
the unit disk D, since the harmonic Green function for D is well known. In this situation,
we use the following result to show that harmonic Green functions are conformally
invariant.

Theorem 1.1.14 ([4, Thm. 9]). If ϕ is a conformal mapping from D onto the unit disk
D, then the harmonic Green function of D is

G1(z, ζ) = log

∣∣∣∣∣1− ϕ(z)ϕ(ζ)

ϕ(ζ)− ϕ(z)

∣∣∣∣∣
2

.
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The existence of conformal mappings from a simply connected domain onto the unit
disk is guaranteed by the famous Riemann mapping theorem. See e.g. [16, Thm. 7.4.2].

Theorem 1.1.15 (Riemann Mapping Theorem). Let D be a simply connected do-
main which is not the whole plane and let a ∈ D. Then there exists a unique analytic
function f : D −→ D having the properties:

(i) f(a) = 0 and f ′(a) ̸= 0;

(ii) f is bijective.

Conformal mappings could be used to obtain Green functions for particular domains.
However, it is generally difficult or too complicated to construct a conformal mapping
from a given domain onto the unit disc. Obtaining harmonic Green functions by con-
formal mapping method is therefore limited. Thereby we need to develop new methods
to compute the explicit expressions of Green functions. We will explore this topic in
Chapter 3.

Next part is about harmonic Neumann functions, which provide another type of
fundamental solutions for ∂z∂z.

Definition 1.1.16. A real-valued function N1(z, ζ), z, ζ ∈ D, z ̸= ζ, is called a har-
monic Neumann function of D, if for any z ∈ D it has the properties:

(N1) N1(z, ζ) is harmonic for ζ ∈ D\{z} and continuously differentiable for ζ ∈ D\{z};

(N2) N1(z, ζ) + log |ζ − z|2 is harmonic for ζ ∈ D;

(N3) For ζ = ζ(s) ∈ ∂D, the density function δ(s) := ∂νζN1(z, ζ) is a real-valued,
piecewise constant function of s and has finite mass

∫
∂D δ(s)ds, where ∂νζ denotes

the outward normal derivative on ∂D and s is the arc length parameter for ∂D.

Remark 1.1.17. Harmonic Neumann functions are also called harmonic Green func-
tions of the second kind. Note that − 1

πN1(z, ζ) is a fundamental solution for ∂z∂z. For a
domain, the harmonic Neumann function is not uniquely determined by the conditions
(N1), (N2) and (N3). There might exist harmonic Neumann functions with different
density functions. For a fixed density function, two harmonic Neumann functions differ
by a constant. In some circumstance, we thus require an extra condition to obtain a
unique harmonic Neumann function for the domain, that is

(N4)
∫
∂D δ(s)N1(z, ζ)dsζ = 0 (normalization condition).

From formula (1.11) we obtain the Neumann representation formula:

w(z) =− 1

4π

∫
∂D

w(ζ)∂νζN1(z, ζ)dsζ +
1

4π

∫
∂D

∂νζw(ζ)N1(z, ζ)dsζ

− 1

π

∫
D
wζζ̄(ζ)N1(z, ζ)dσζ .

(1.15)

Harmonic Neumann functions provide fundamental solutions for ∂z∂z and help to
solve Neumann boundary value problems for the Poisson equations. More discussions
on harmonic Neumann functions will be carried on in the later chapters.
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1.2 Some integral operators

We start with the notion of Hölder continuity.

Definition 1.2.1. A function f of one real or complex variable z is said to satisfy a
Hölder condition or to be Hölder continuous in D if there exists H > 0 and 0 < α ≤ 1
such that

|f(z1)− f(z2)| ≤ H|z1 − z2|α

for all z1, z2 ∈ D. Particularly, in the case of α = 1, f is called Lipschitz continuous in
D.

For α ∈ (0, 1], let Hα(f) = H(f ;D,α) denote the infimum of those constants H
which satisfy the inequality in the definition. It is obvious that

Hα(f) = H(f ;D,α) = sup
z1,z2∈D

|f(z1)− f(z2)|
|z1 − z2|α

.

The set of Hölder continuous functions with respect to α on D is denoted by Hα(D).
Specifically, Hα(D;C) means the class of complex-valued Hölder continuous functions in
D, and Hα(D;R) the class of real-valued ones. Obviously, if D is a bounded set, then a
Hölder continuity with exponent α implies Hölder continuity with any exponent β ≤ α,
i.e. Hα(D) ⊂ Hβ(D) for any β ≤ α.

Let Γ be a positively oriented, rectifiable curve in the complex plane and φ integrable
along Γ. Then

ϕ(z) :=
1

2πi

∫
Γ
φ(ζ)

dζ

ζ − z
(1.16)

is an analytic function in C∞\Γ vanishing at∞, where C∞ denotes the extended complex
plane C ∪ {∞}.

In general ϕ does not exists for points in Γ. We need the notion of Cauchy principal
value of the integral ϕ(z) when z is in Γ.

Definition 1.2.2. Let Γ be a smooth curve in C. For a fixed point c ∈ Γ, let φ(·; c) be
an integrable function on Γ \ {c} having a singularity at ζ = c. Denote

Γϵ := Γ \ {ζ : |ζ − c| < ϵ}

for ϵ > 0. If

lim
ϵ→0

∫
Γϵ

φ(ζ; c)dζ

exists, then this value is called the Cauchy principal value of the singular integral, written
as

C.P.

∫
Γ
φ(ζ; c)dζ,

or shortly as ∫
Γ
φ(ζ; c)dζ.
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Similarly, if D ⊂ C is a domain and φ(·; c) a function in D \ {c} for some point c ∈ D
such that ∫

Dϵ

φ(z; c)dσz, Dϵ := D \ {z : |z − c| < ϵ},

exists for any small enough positive number ϵ, then∫
D
φ(z; c)dσz := lim

ϵ→0

∫
Dϵ

φ(z; c)dσz

is called the Cauchy principal value of the singular integral if the limits exists.

Theorem 1.2.3 ([4, Thm. 1]). Let Γ be a simply closed piecewise smooth curve in C
and φ ∈ Hα(Γ), then

ϕ(z) =
1

2πi

∫
Γ
φ(ζ)

dζ

ζ − z

exists as Cauchy principle integral on Γ.

Theorem 1.2.4 (Plemelj-Sokhotski). Let Γ be a smooth simply closed curve, D+ the
bounded domain with ∂D+ = Γ, and D− = C∞ \ (D+ ∪ Γ). If φ ∈ Hα(Γ), then

ϕ(z) =
1

2πi

∫
Γ
φ(ζ)

dζ

ζ − z

has boundary values

ϕ+(τ) := lim
z→τ
z∈D+

ϕ(z), ϕ−(τ) := lim
z→τ
z∈D−

ϕ(z)

for τ ∈ Γ. Moreover,

ϕ+(τ) =
1

2
φ(τ) + ϕ(τ), ϕ−(τ) = −1

2
φ(τ) + ϕ(τ), (1.17)

where ϕ(τ) is understood as Cauchy principal value.

Theorem 1.2.5 (Plemelj-Privalov). ϕ+(τ), ϕ−(τ) ∈ Hα(Γ) if φ(τ) ∈ Hα(Γ).

For proofs of the above two theorems, see e.g. Thm. 1.4 and Thm. 1.5 in [4]. The
result of Plemelj-Sokhotski can be generalized to domains with piecewise smooth curves.

Theorem 1.2.6 (See e.g. [20, Thm. 2.5.1]). Let Γ be positively oriented, piecewise
smooth, simply closed curve and φ(τ) ∈ H(Γ), then, for τ ∈ Γ, ϕ(z) has boundary values
ϕ+(τ) and ϕ−(τ), and the Cauchy principal value ϕ(τ) exists . Moreover,

ϕ+(τ) =

(
1− θτ

2

)
φ(τ) + ϕ(τ), ϕ−(τ) = −θτ

2
φ(τ) + ϕ(τ), (1.18)

where θτ is the angle spanned by the two one-sided tangents of Γ at τ towards the positive
side of Γ.
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Let C1
0 (D;C) denote the class of complex-valued functions in D which are continu-

ously differentiable and have compact support in D. Let Lp(D;C) denote the class of
complex-valued functions in D which have finite Lp-norm.

Definition 1.2.7. Let f(z), F (z) ∈ L1(D;C). f(z) is called generalized (distributional)
derivative of F (z) with respect to ∂z if for all φ ∈ C1

0 (D;C)∫
D
F (z)φzdσ +

∫
D
f(z)φ(z)dσ = 0.

This derivative is denoted by ∂zF = f .
The generalized derivatives with respect to z are defined in the same manner, we

denote ∂zF = f if ∫
D
F (z)φzdσ +

∫
D
f(z)φ(z)dσ = 0.

If a function is differentiable in the classical sense, then it is also differentiable in the
distributional sense and both derivatives coincide (see e.g. [4], Page 82).

Definition 1.2.8. The integral operator given by

Tf := − 1

π

∫
D
f(ζ)

dσζ
ζ − z

, z ∈ C,

for f(z) ∈ L1(D;C) is called the Pompeiu operator.

The Pompeiu operator is investigated in detail in Vekua’s book [27], it is closely
related to the theory of generalized analytic functions. Essential differential properties
of T are stated bellow.

Theorem 1.2.9 (See e.g. [4, Thm. 26]). If f(z) ∈ L1(D;C), then for all φ ∈ C1
0 (D;C)∫

D
(Tf)(z)φz(z)dσ +

∫
D
f(z)φ(z)dσ = 0.

This theorem implies that for z ∈ D

∂z(Tf) = f (1.19)

in distributional sense, hence the Pompeiu operator T can be viewed as the right inverse
operator of ∂z. Besides, for z ∈ C \D, Tf is analytic and its derivative is

∂z(Tf) = − 1

π

∫
D
f(ζ)

dσζ
(ζ − z)2

.

Define the Π operator by

Πf := − 1

π

∫
D
f(ζ)

dσζ
(ζ − z)2

, z ∈ D,
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where the integral on the right-hand side is understood as a Cauchy principal value. Π
is a bounded linear operator on Hα(D). The derivative of Tf with respect to z is

∂z(Tf) = Πf (1.20)

in distributional sense. This is a deep result from [15].
Next part is about Schwarz operators.
Given a harmonic function, its conjugate harmonic function can locally be calculated.

Generally, the conjugate harmonic function is not a single-valued function, but it is true
when the domain under consideration is simply connected. Analogously, we can consider
the conjugate Green function. Let G(z, ζ) denote the Green function of domain D, see
Remark 1.1.10. Denote z = x + iy. Let H(z, ζ) be the conjugate harmonic function
for G(z, ζ) with respect to the variable z. Locally, namely in a neighborhood of a point
z0 ∈ D, H(z, ζ) is determined via the Cauchy-Riemann equations, given by

H(z, ζ) =

∫ z

z0

(
−∂G

∂y
dx+

∂G

∂x
dy

)
+ const.

The function H(z, ζ) is single-valued when D is simply connected. The function

M(z, ζ) := G(z, ζ) + iH(z, ζ)

is called the complex Green function for the domain D. This term was introduced by S.
G. Mikhlin [21]. It is analytic in z everywhere except at the point z = ζ where it has a
logarithmic singularity. For more details see [18, p. 209] and [4, p. 32].

For any function u(x, y) which is harmonic in D and continuous in D,

u(x, y) =
1

2π

∫
∂D

∂G(z, ζ)

∂nζ
u(ζ)dsζ , z ∈ D, (1.21)

where s is the arc length parameter and n the interior normal vector on ∂D. A conjugate
harmonic function to u(x, y) is

v(x, y) =
1

2π

∫
∂D

∂H(z, ζ)

∂nζ
u(ζ)dsζ , z ∈ D. (1.22)

The function

w(z) := u(x, y) + iv(x, y) =
1

2π

∫
∂D

∂M(z, ζ)

∂nζ
u(ζ)dsζ , z ∈ D, (1.23)

is analytic in D.

Definition 1.2.10. An operator

S : C(∂D;R) −→ A(D) ∩ C(D;C)
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from the space of real-valued continuous functions on ∂D into the space of analytic
functions in D which are also continuous on the closure D satisfying

Re(Sf) = f on ∂D

is called the Schwarz operator.

If D has a Green function, then S is given by

(Sf)(z) =
1

2π

∫
∂D

∂M(z, ζ)

∂nζ
f(ζ)dsζ . (1.24)

Moreover, it is clear that S is determined only up to an additive imaginary constant.
This constant can be fixed by requiring

Im((Sf)(z0)) = 0

for some given point z0 ∈ D.
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Chapter 2

Generalized Circle Reflections

In the extended complex plane, reflections through straight lines and inversions through
circles are well-known. We call a reflection through a straight line or an inversion through
a circle a generalized circle reflection, or shortly a circle reflection in many circumstances.
In this chapter, we are going to review some preliminary knowledge about circle reflec-
tions and also develop some techniques for circle reflections. We will see the expressions
of circle reflections in matrix form, and some results on consecutive circle reflections.
These preparation serve for further discussions in the later chapters.

2.1 Generalized circles

Let C∞ denote the extended complex plane. It is the union of the complex plane and
an extra point, the point at infinity, denoted by the symbol ∞, namely C∞ = C∪ {∞}.
In C∞, we adopt the convention that 0 · ∞ = 1, 1

∞ = 0 and 1
0 = ∞. The extended

complex plane can also be equivalently identified as the complex projective line CP1,
whose points can be expressed as homogeneous coordinates, e.g. [z : w], where z, w ∈ C,
and z, w cannot both be 0. If w ̸= 0, the point [z : w] corresponds to the complex
number z/w, while [z : w] corresponds to ∞ if w = 0. Employing this model for C∞ can
bring us convenience for discussion in some situations.

Every straight line l in the complex plane can be expressed as a subset in C of the
form

{z ∈ C
∣∣ bz + bz + c = 0, b ∈ C \ {0}, c ∈ R}.

The straight line l can be embedded into the extended complex plane. It corresponds to
l ∪ {∞} in C∞. We call l ∪ {∞} an extended straight line.

A circle in the complex plane is determined by an equation

azz + bz + bz + c = 0,

where a ∈ R \ {0}, c ∈ R, b ∈ C and ac− bb < 0. By rewriting the equation as∣∣∣∣z + b

a

∣∣∣∣ =
√
bb− ac

|a|
,
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we see that the center of the circle is − b
a and the radius

√
bb−ac
|a| .

We call an extended straight line or a circle in C a generalized circle in C∞. There is
a natural understanding of generalized circles on 2-sphere S2, another equivalent model
of C∞. The usual stereographic projection maps S2 minus the North Pole onto C and is
naturally extended to a bijection S2 −→ C∞ (the North pole is mapped to ∞). Under
the extended stereographic projection, circles on S2 are mapped to generalized circles in
C∞. Specifically speaking, circles on S2 that pass through the North Pole are mapped
to extended lines in C∞, and circles on S2 that do not pass through the North Pole are
mapped to circles in C.

Actually, we have uniform expressions for generalized circles in C∞ by using homo-
geneous coordinates. Every generalized circle is a subset in C∞ of the form

{[z : w] ∈ C∞
∣∣ azz + bzw + bzw + cww = 0, a, c ∈ R, b ∈ C, ac− bb < 0}.

If a = 0, it is an extended straight line; otherwise, it is a circle. We immediately see
that a generalized circle in C∞ is determined by a matrix(

a b
b c

)
, where a, c ∈ R, b ∈ C, and ac− bb < 0,

a 2 × 2 Hermitian matrix with a negative determinant. We call it a matrix of the
generalized circle. It is easy to check that the matrix of a generalized circle is unique up
to a nonzero real scalar multiple. Let

H− := {A ∈ GL2(C) |A = A∗, det(A) < 0}

be the set of all the 2 × 2 Hermitian matrices with negative determinants, where A∗

means the conjugate transpose of A. We define an equivalence relation, denoted by
H−
∼,

on H−:

A
H−
∼ B if and only if ∃λ ∈ R\{0} s.t. A = λB. (2.1)

It is obvious that there exists a one-to-one correspondence between the collection of all
generalized circles in C∞ and the set of all the equivalence classes in H−.

2.2 Reflections through generalized circles

The section is about reflections at generalized circles and their matrix forms.

Reflections at straight lines are basic and well-known. A reflection at a straight line
in the plane maps a point to an image point that lies on the perpendicular line through
the point, and these two points have equal distances from the straight line. We restate
below this content in complex form. The reflection at the straight line

l := {z ∈ C
∣∣ bz + bz + c = 0, b ∈ C \ {0}, c ∈ R}
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is a transformation in C∞ defined by

Rl(z) =

{
− bz+c

b
, if z ∈ C,

∞, if z = ∞.

An inversion at a circle is the parallel version of a reflection at a straight line. Specif-
ically speaking, the inversion at the circle

C := {z ∈ C
∣∣ azz + bz + bz + c = 0, a ∈ R \ {0}, c ∈ R, b ∈ C, ac− bb < 0}

is a mapping IC : C∞ −→ C∞ defined by

IC(z) =


− bz+c

az+b
, if z ∈ C \ {− b

a},
∞, if z = − b

a ,

− b
a , if z = ∞.

An inversion fixes the points in the circle, and switches the inside domain and outside
domain of the circle. A point and its image lie on the same straight line through the
center of the reflecting circle.

We can unify reflections at lines and inversions at circles by adopting the term re-
flections at generalized circles. Let A be the matrix of a generalized circle {[z : w] ∈
C∞
∣∣ azz + bzw + bzw + cww = 0}. A transformation on C∞ given by

RA : C∞ −→ C∞,

[z : w] 7→ [−bz − cw : az + bw]

is called the reflection at the generalized circle A. If a = 0, the generalized circle is an
extended straight line, the transformation RA is just the reflection at the straight line.
If a ̸= 0, the generalized circle is a circle in C, the transformation RA is an inversion at
this circle.

For convenience, we employ some operations for homogeneous coordinates. The
multiplication of a homogeneous coordinate and an invertible matrix is defined naturally
as the usual matrix multiplication, namely,

[z : w]

(
a b
c d

)
def
== [az + cw : bz + dw].

The conjugate of a homogeneous coordinate [z : w] can be naturally defined by [z : w].
With the help of above operations for homogeneous coordinates, a reflection at a

generalized circle A =
(
a b
b c

)
, denoted by RA, can be written as

RA([z : w]) = [−bz − cw : az + bw] = [z : w]AP, (2.2)

where P =
(

0 1
−1 0

)
. Such expression will bring us some convenience for further discus-

sions.
We show below some fundamental results about reflections at generalized circles.
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Lemma 2.2.1. For any A ∈ H−, the reflection RA is a self-inverse transformation, i.e.
R2

A is the identity transformation in C∞.

Proof. Let [z : w] ∈ C∞, A =
(
a b
b c

)
∈ H−. Then

R2
A([z : w]) = [z : w]APAP = [z : w]APAP.

APAP =

(
a b
b c

)(
0 1
−1 0

)(
a b

b c

)(
0 1
−1 0

)
=

(
bb− ac 0

0 bb− ac

)
.

It follows that R2
A([z : w]) = [z : w]. Therefore R2

A is the identity transformation in
C∞.

Theorem 2.2.2. Reflections in the extended complex plane map generalized circles onto
generalized circles. More specifically, the reflection at the generalized circle A maps the
generalized circle B onto the generalized circle AB−1A.

Proof. Let A and B be two matrices associated with two generalized circles. It means
that A,B ∈ H−. Suppose [z : w] is a point in the circle B and its image under the
reflection at the circle A is [u : v]. Because [z : w] satisfies the equality

[z : w]B

[
z
w

]
= 0,

substituting [z : w] by [u : v]AP , where P =
(

0 1
−1 0

)
, gives

[u : v]APBP tAt

[
u
v

]
= 0.

It is easy to verify that PBP t H−
∼ B−1, thus

APBP tAt H−
∼ AB−1A∗ H−

∼ AB−1A.

It is easy to verify that AB−1A ∈ H− since A,B ∈ H−. It follows that AB−1A is a
matrix corresponding to a generalized circle. So the point [u : v] is in the generalized
circle AB−1A. Hence reflecting the circle B at the circle A gives the circle AB−1A.

Theorem 2.2.3 (Angle Theorem, [14, Thm. 5.1.5]). A reflection through any general-
ized circle preserves the magnitude of angles between curves but reverses their direction.

Theorems 2.2.2 and 2.2.3 give us fundamental properties of reflections. A reflection
at a generalized circle maps generalized circles onto generalized circles and preserves the
magnitude of angles.
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2.3 Inversive transformations and inversive group

In this section we introduce a class of transformations generated by generalized circle
reflections. It includes generalized circle reflections, the well-known Möbius transforma-
tions, and their compositions. We will see some connections between generalized circle
reflections and Möbius transformations and also their algebraic properties. For conve-
nience, we often use the term ‘reflections’ in short, instead of reflections at generalized
circles in C∞.

Definition 2.3.1. A transformation T : C∞ −→ C∞ is called an inversive transforma-
tion if it is a composition of some reflections.

From the definition we know that inversive transformations are those functions in
C∞ which are generated by reflections.

Since every reflection preserves the magnitude of angles and maps generalized circles
onto generalized circles, the same is true for any composition of reflections. We therefore
have the following result.

Theorem 2.3.2 ([14, Thm. 5.3.2]). Inversive transformations preserve the magnitude
of angles, and map generalized circles onto generalized circles.

We consider a natural group structure for the set of all inversive transformations.
It is obvious that a composition of two inversive transformations is still an inversive
transformation. Every inversive transformation has an inverse since each reflection is a
self-inverse transformation by Lemma 2.2.1. This lemma also implies that the identity
mapping is an inversive transformation. Therefore we have the following conclusion.

Theorem 2.3.3 ([14, Thm. 5.3.3]). The set of inversive transformations forms a group
under the operation of compositions of transformations.

We call this group the inversive group of C∞. It includes all reflections and their
compositions.

Let us review some knowledge about Möbius transformations.

Definition 2.3.4. A Möbius transformation is a function M : C∞ −→ C∞ of the form

M(z) =
az + b

cz + d
,

where a, b, c, d ∈ C and ad− bc ̸= 0. We adopt the convention that

M(∞) = ∞, if c = 0,

M

(
−d

c

)
= ∞, M(∞) =

a

c
, if c ̸= 0.
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We can also use homogeneous coordinates to express Möbius transformations as

M([z : w]) = [z : w]

(
a c
b d

)
,

where ( a c
b d ) ∈ GL2(C) is called a matrix associated with M . A matrix in GL2(C) deter-

mines a unique Möbius transformation, but the inverse is not true. Matrices associated
with the same Möbius transformation can differ up to a nonzero scalar multiple in C∗.
In other words, the family of all Möbius transformations is identified with

PSL2(C) := GL2(C)/C∗ = SL2(C)/{±Id}.

It is easy to check that

MA ◦MB = MBA and M−1
A = MA−1 , ∀A,B ∈ GL2(C).

These facts induce the next result.

Proposition 2.3.5. All Möbius transformations in C∞ form a group under compositions
of transformations. It is isomorphic to PSL2(C) via MA −→ A−1.

The set of all Möbius transformations is called the Möbius group.

The next part shows some connections between reflections and Möbius transforma-
tions.

Theorem 2.3.6. A composition of two reflections is a Möbius transformation. More
precisely, RB ◦RA = MAB−1 for A,B ∈ H−.

Proof. Let RA, RB be two reflections at two generalized circles and A,B ∈ H− be re-
spective associated matrices. Then for every point [z : w] ∈ C∞,

RB ◦RA([z : w]) = [z : w]APBP = [z : w]APBP.

Since the matrices A,B and P are all invertible, it follows that

APBP
H−
∼ AB−1 ∈ GL2(C).

Note that the relation ‘
H−
∼’ on H− can be lifted to GL2(C). Therefore RB ◦RA = MAB−1

is a Möbius transformation.

Corollary 2.3.7. If two generalized circles A and B intersect at a right angle, then the
corresponding reflections RA and RB are commutative, i.e.

RA ◦RB = RB ◦RA.
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Proof. Because generalized circles A and B intersect at a right angle and the magnitude
of angles is preserved by reflection, so the image circle of B under the reflection at circle

A must be B itself. Then we have AB−1A
H−
∼ B via Theorem 2.2.2. It follows that

AB−1 H−
∼ BA−1. Therefore from Theorem 2.3.6 we know that

RA ◦RB = MBA−1 = MAB−1 = RB ◦RA.

It is natural to ask if the inverse proposition is true, i.e., if any Möbius transformation
is a composition of two reflections. The answer is negative in general. For instance, the
dilation z 7→ 2z can not be a composition of two reflections. Otherwise, there exist two
matrices A,B ∈ H− such that

AB−1 H−
∼

(
2 0
0 1

)
.

But we can verify that such A and B do not exist. Although not every Möbius trans-
formation can be decomposed into two reflections, we still have a weaker conclusion.

Theorem 2.3.8 ([14, Thm. 5.3.4]). Every Möbius transformation is a composition of
reflections.

Therefore Möbius mappings are inversive transformations and the Möbius group is
thus a subgroup of the inversive group.

Theorem 2.3.9 ([14, Thm. 5.3.5]). Möbius transformations preserve the magnitude and
orientation of angles, and map generalized circles to generalized circles.

From this theorem we know that Möbius transformations are conformal mappings on
C∞ which send generalized circles to generalized circles. Since Möbius transformations
preserve the orientation of angles but reflections reverse the orientation, we could make
the claim in Theorem 2.3.8 more precisely, that every Möbius transformation must be a
composition of an even number of reflections.

2.4 Consecutive reflections

In this section we consider a family of generalized circles generated by reflecting two
given generalized circles consecutively and investigate some properties of the family of
relative reflections.

Let A0 and A1 be two generalized circles in C∞. We operate consecutive reflections
starting with the reflections at circle A0 and at circle A1. Let Ak+1 be the image circle
of Ak−1 under the reflection at circle Ak; we also proceeds reflections in the opposite
direction, namely, reflecting Ak+1 at circle Ak generates the circle Ak−1. Then we obtain
a family of consecutive generalized circles, denoted by {Ak | k ∈ Z}. We adopt the
convention that Ak not only represents a generalized circle but also a matrix associated
with it.
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Lemma 2.4.1. Let {Ak | k ∈ Z} be a family of consecutive generalized circles generated
by A0 and A1. Then for any k ∈ Z,

Ak = A0(A
−1
0 A1)

k.

Proof. We apply induction on k to prove the conclusion. The formula holds for k = 0, 1.
Since Ak+1 is the image of Ak−1 under the reflection at Ak, via Theorem 2.2.2 we see
that

Ak+1 = AkA
−1
k−1Ak

= A0(A
−1
0 A1)

k(A0(A
−1
0 A1)

k−1)−1A0(A
−1
0 A1)

k

= A0(A
−1
0 A1)

k+1

holds for k > 1. For k < 0, the circle Ak is obtained by reflecting Ak+2 at the circle
Ak+1. Applying Theorem 2.2.2 again, we have

Ak = Ak+1A
−1
k+2Ak+1

= A0(A
−1
0 A1)

k+1(A0(A
−1
0 A1)

k+2)−1A0(A
−1
0 A1)

k+1

= A0(A
−1
0 A1)

k

for k < 0. So Ak = A0(A
−1
0 A1)

k holds for all k ∈ Z.

Theorem 2.2.2 and Lemma 2.4.1 imply the next result.

Corollary 2.4.2. Let {Ak | k ∈ Z} be a family of consecutive generalized circles gener-
ated by A0 and A1. Then Ak+l = AkA

−1
k−lAk for any k, l ∈ Z. It means that reflecting

the generalized circle Ak−l at Ak gives the generalized circle Ak+l.

Theorem 2.4.3. Let {Ak | k ∈ Z} be a family of consecutive generalized circles generated
by A0 and A1. Let RAk

denote the reflection at the circle Ak, k ∈ Z. Then RAk
◦RAj ◦

RAi = RAi−j+k
for all i, j, k ∈ Z.

Proof. Let [z : w] ∈ C∞. The transformation RAk
◦RAj ◦RAi maps the point [z : w] to

the point
[z : w]AiPAjPAkP .

Note that

AiPAjPAkP
H−
∼ AiA

−1
j AkP .

Corollary 2.4.2 guarantees that

AiA
−1
j Ak = A0(A0A1)

i(A0(A0A1)
j)−1A0(A0A1)

k

= A0(A0A1)
i−j+k

= Ai−j+k.

Then we have
RAk

◦RAj ◦RAi([z : w]) = [z : w]Ai−j+kP .

The transformation RAk
◦RAj ◦RAi therefore coincides with the reflection RAi−j+k

.
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Theorem 2.4.3 ensures that a composition of three reflections from a family of con-
secutive reflections is still a reflection in the family.

Corollary 2.4.4. Let {Ak | k ∈ Z} be a family of consecutive generalized circles gener-
ated by A0 and A1. Let RAk

denote the reflection at the circle Ak and {zk | k ∈ Z} a
family of points in C∞ such that zk = RAk

(zk−1) for all k ∈ Z. Then RA0(zk) = z−k−1

and RA1(zk) = z−k+1 for all k ∈ Z.

Proof. Theorem 2.4.3 implies that

RA−1 ◦RA−2 ◦ · · · ◦RA−k
◦RA0 ◦RAk

◦ · · · ◦RA2 ◦RA1 = RA0 .

Then we see that

RA0(zk) = RA0 ◦RAk
· · · ◦RA2 ◦RA1(z0)

= RA−k
· · · ◦RA−2 ◦RA−1 ◦RA0(z0)

= z−k−1.

The relation RA1(zk) = z−k+1 can be verified similarly.

Theorem 2.4.5. Let {Ak | k ∈ Z} be a family of consecutive generalized circles generated
by A0 and A1. Let RAk

denote the reflection at the circle Ak. Then

RAl
◦RAk

= M(A0A
−1
1 )l−k = M l−k

A0A
−1
1

.

Proof. This theorem is an immediate result from Theorem 2.3.6 and Lemma 2.4.1. Just
note that

AkA
−1
l = A0(A

−1
0 A1)

k(A−1
0 A1)

−lA−1
0 = (A0A

−1
1 )l−k.

The next two results follow from Theorem 2.4.3 and Theorem 2.4.5.

Corollary 2.4.6.

n∏
i=0

RAi := RAn ◦ · · · ◦RA1 ◦RA0 =

M
n+1
2

A0A
−1
1

, n is odd,

RAn
2
, n is even.

Corollary 2.4.7. RAn = Mn
A0A

−1
1

◦RA0 = RA0 ◦Mn
A1A

−1
0

,∀n ∈ Z.

We are interested in the group generated by RA0 and RA1 . The above two corollaries
imply the next conclusion.

Corollary 2.4.8. The inversive group generated by RA0 and RA1 is equal to

{Mn
A0A

−1
1
, Mn

A0A
−1
1

◦RA0 | n ∈ Z}.
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Chapter 3

Parqueting-Reflection Principle

The parqueting-reflection principle is introduced to solve several boundary value prob-
lems, e.g. Schwarz problems for the homogeneous and inhomogeneous Cauchy-Riemann
equations, Dirichlet problems and Neumann problems for the Laplace and the Poisson
equation, in particular domains whose boundaries are composed of circular arcs. Re-
search works on the parqueting-reflection principle are mainly contributed by H. Begehr
and his students. The parqueting-reflection principle has been verified feasible for many
domains, for instance, discs, half-planes, disc sectors, strip domains, half-strip domains,
cones, concentric rings, hyperbolic strips, et al., see e.g. [1, 5, 6, 9, 10, 11, 12, 13, 17,
19, 23, 26, 28].

Harmonic Green functions and harmonic Neumann functions play important roles in
dealing with Dirichlet and Neumann boundary value problems for the Poisson equation.
The parqueting-reflection principle provides ideas and procedures on how to construct
the harmonic Green and Neumann functions for particular domains. If a domain can
provide a parqueting of the extended complex plane via reflections, a point in the do-
main generates a family of reflection images corresponding to the parqueting. These
reflection images are used to construct candidate functions for the harmonic Green and
Neumann functions and verify that these candidates are the required ones for the spe-
cific domain. Although the parqueting-reflection principle has been verified successful
in obtaining harmonic Green and Neumann functions for many particular domains, we
are not satisfied with the achievement. There might be a hidden theory that makes
the parqueting-reflection principle playing the role. We are interested in investigating a
theory behind the parqueting-reflection principle and exploring new domains to which
the principle can be applied.

In this chapter, we first introduce the notions of parqueting domains and parqueting-
reflection domains. Then we prove that the parqueting reflection principle succeeds in
giving harmonic Green and Neumann functions for finite parqueting-reflection domains.
We also obtain some results on normal derivatives of harmonic Green and Neumann
functions for finite parqueting-reflection domains.
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3.1 Parqueting of C∞ via circle reflections

We call a curve in C∞ a circular arc if it is a segment of a generalized circle. From
now on, we focus on domains in C∞ whose boundaries are composed of a finite number
of circular arcs. Particularly, we pay attention to circular polygons, which are simply
connected domains bounded by a finite number of connected circular arcs. In this thesis,
all half-planes and discs are viewed as circular polygons, they are just those domains
bounded by one generalized circle. We also adopt the terms circular digons, circular
triangles, circular rectangles, circular pentagons, and so on.

We have already discussed generalized circle reflections in the previous chapter. We
also need to consider reflections at boundary arcs of domains. When we talk about a
reflection at a boundary arc of a domain, it means the reflection at the circle defined by
that arc.

Now we introduce the concept of parqueting of the extended complex plane provided
by reflections.

Definition 3.1.1. Let D and D′ be two domains in C∞. We say that D′ is reflecting-
congruent to D if there exist a finite sequence of domains (D0, D1, · · · , Dn), n ∈ N
such that D0 = D,Dn = D′ and Dk+1 is the image of Dk under the reflection through
a boundary arc of Dk for k = 0, · · · , n− 1. Every domain is considered to be reflecting-
congruent to itself.

From the discussions in Chapter 2, we know that a composition of an even number
of reflections is a Möbius transformation, and a composition of an odd number of re-
flections is a composition of the complex conjugate and a Möbius transformation. If D′

is reflecting-congruent to D through an even number of reflections, then there exists a
Möbius transformation Φ : D → D′,

Φ(z) =
az + b

cz + d
,

(
a b
c d

)
∈ GL2(C).

If D′ is reflecting-congruent to D through an odd number of reflections, then there exists
an inversive transformation Φ̂ : D → D′,

Φ̂(z) =
αz + β

γz + δ
,

(
α β
γ δ

)
∈ GL2(C).

Definition 3.1.2. Let D be a domain in C∞ whose boundary is composed of a finite
number of circular arcs. We say that D provides a parqueting of C∞ via reflections if
there exists a family of domains {Di | i ∈ I}, where I is an index set, such that

� Di is reflecting-congruent to D for all i ∈ I;

� Di ∩Dj = ∅ for any two different indices i, j ∈ I;

� C∞ =
⋃
i∈I

Di.

Such a domain is called a parqueting domain in C∞.
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There are plenty of parqueting domains in C∞. Every disc, half-plane or half-disk is
a parqueting domain. It is easy to know that equilateral triangles, rectangles, hexagons,
half-hexagons, strip domains, half-strip domains, hyperbolic strips, ring domains, and
cones with an angle 2π

n for a positive integer n are all parqueting domains.

Definition 3.1.3. Let D be a domain in C∞ whose boundary is composed of finitely
many circular arcs, say ∂D = ∪k∈ICk, where I is a finite index set. Let Rk denote the
circle reflection at Ck, k ∈ I. The group generated by {Rk}k∈I is called the inversive
group of D, denoted by Inv(D) := ⟨Rk|k ∈ I⟩.

Lemma 3.1.4. Let M(D) := {T ∈ Inv(D)| T is a composition of an even number of
reflections }. Then M(D) is a normal subgroup of Inv(D), the index of M(D) in Inv(D)
is 2.

Proof. We define a mapping

ϕ : Inv(D) −→ {1,−1},

T 7→

{
1, T ∈ M(D),

−1, otherwise.

It is easy to check that ϕ is a surjective group homomorphism. Then M(D) = ker(ϕ) is
a normal subgroup of Inv(D). The isomorphism

Inv(D)/M(D) ≃ {−1, 1}

implies that the index of M(D) in Inv(D) is 2.

Remark 3.1.5. Every element in M(D) is a Möbius transformation, Every element in
Inv(D) \M(D) is a composition of an odd number of reflections. There is a one-to-one
correspondence between M(D) and Inv(D) \M(D). For every circular arc C of ∂D, its
corresponding reflection RC satisfies that

RCM(D) = M(D)RC = Inv(D) \M(D).

Definition 3.1.6. We call D a parqueting-reflection domain if

� C∞ =
⋃

T∈Inv(D)

T (D);

� T (D) ∩ T ′(D) = ∅ for all T , T ′ ∈ Inv(D), T ̸= T ′.

Furthermore, we call D a finite parqueting-reflection domain if Inv(D) is a finite group,
otherwise, it is called an infinite parqueting-reflection domain.

Remark 3.1.7. Suppose D is a parqueting-reflection domain. Let z ∈ D, P :=
{Φ(z)|Φ ∈ M(D)}, and P̂ := {Φ̂(z)|Φ̂ ∈ Inv(D) \ M(D)}. P ∪ P̂ is the set of re-
flection images generated by z corresponding to the parqueting. Let C be a circular arc
of ∂D and RC its reflection. RC induces a one-to-one correspondence between P and P̂ .
If z ∈ C, then Φ(z) = (Φ ◦RC)(z) for all Φ ∈ M(D).
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There are many examples of parqueting-reflection domains. Disks, half-planes, half-
disks and cones or disk sectors with angles π

n for all positive integer n are finite parqueting-
reflection domains. In Chapter 5, we will verify that circular digons with angles π

n for all
positive integer n are also finite parqueting-reflection domains. It is easy to see that equi-
lateral triangles, rectangles, strip domains, half-strip domains, hyperbolic strips and ring
domains are infinite parqueting-reflection domains. We will see an infinite parqueting-
reflection circular rectangle in Chapter 6. Note that some parqueting domains are not
parqueting-reflection domains. For instance, cones or disk sectors with angles 2π

n where
n is a positive odd integer are not parqueting-reflection domains.

It is natural to ask which circular polygons are parqueting-reflection domains and
what criterion can determine parqueting-reflection domains. These questions are still
open.

3.2 Parqueting-reflection principle

Now we are ready to fully explain the parqueting-reflection principle. We show be-
low how to construct harmonic Green functions and harmonic Neumann functions via
the parqueting-reflection principle. We also prove that the parqueting-reflection prin-
ciple succeeds in giving harmonic Green and Neumann functions for finite parqueting-
parqueting domains.

Let D be a parqueting-reflection domain in the extended complex planes. Let I be
an index set, {Φi|i ∈ I} = M(D) the family of Möbius transformations in Inv(D) and
{Φ̂i|i ∈ I} = Inv(D)\M(D) the family of orientation-reversing inversive transformations
in Inv(D). Denote Di := Φi(D), D̂i := Φ̂i(D), i ∈ I. Then D provides a parqueting of
C∞:

C∞ =
⋃
i∈I

(Di ∪ D̂i).

Let z ∈ D. z generates two families of reflection images

P = {zi := Φi(z)|i ∈ I} and P̂ = {ẑi := Φ̂i(z)|i ∈ I}

with respect to the parqueting. We know zi is a linear fractional function in z of the
form

zi = Φi(z) =
aiz + bi
ciz + di

,

(
ai bi
ci di

)
∈ GL2(C), (3.1)

and ẑi is a linear fractional function in z of the form

ẑi = Φ̂i(z) =
αiz + βi
γiz + δi

,

(
αi βi
γi δi

)
∈ GL2(C). (3.2)

It could happen that zi or ẑi is ∞ when the corresponding denominator is 0 for some
point z ∈ D. Suppose that the expressions of zi and ẑi are given by the forms of (3.1)
and (3.2) respectively. We denote the denominators of zi and ẑi by

Den(zi) := ciz + di and Den(ẑi) := γiz + δi
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respectively. These notations will be involved in later discussions.

Suppose D is a finite parqueting-reflection domain and it provides a finite parqueting

of C∞, namely, C∞ =
⋃
i∈I

(Di ∪ D̂i), where I is a finite index set. Take a point z ∈ D. z

generates two finite families of reflection images {zi = Φi(z)|i ∈ I} and {ẑi = Φ̂i(z)|i ∈
I}. From these reflection images we define two functions

F̃ (z, ζ) :=
∏
i∈I

ζ − ẑi
ζ − zi

, (3.3)

Q̃(z, ζ) :=
∏
i∈I

(ζ − ẑi)(ζ − zi). (3.4)

For a finite parqueting-reflection domain D, F̃ (z, ζ) is used to construct the harmonic
Green function which satisfies the conditions (G1)-(G3) of Definition 1.1.9, and Q̃(z, ζ) is
used to construct a harmonic Neumann function which meets the conditions (N1)-(N3)
of Definition 1.1.16.

Lemma 3.2.1. For ζ ∈ D and z ∈ ∂D, F̃ (z, ζ) = 1 holds.

Proof. Suppose C is a boundary arc of ∂D and RC the reflection at C. From Remark
3.1.5 we see that

{Φ̂i|i ∈ I} = {Φi ◦RC |i ∈ I}.

Note that RC(z) = z when z ∈ C. Via a proper ordering of {ẑi = Φ̂i(z)|i ∈ I}, we can
make sure that

ẑi = Φ̂i(z) = Φi ◦RC(z) = Φi(z) = zi, ∀i ∈ I,

when z ∈ C. Then

F̃ (z, ζ) =
∏
i∈I

ζ − ẑi
ζ − zi

= 1.

for ζ ∈ D, z ∈ C. The above conclusion holds for an arbitrary boundary arc, therefore
F̃ (z, ζ) = 1 for ζ ∈ D, z ∈ ∂D.

Lemma 3.2.2. Suppose that D is a finite parqueting-reflection domain with a connected

boundary. Let C∞ =
⋃
i∈I

(Di ∪ D̂i). Let zi ∈ Di and ẑi ∈ D̂i be the reflection images

generated by a point z in D corresponding to the parqueting. Then V (z) :=
∏
i∈I

∣∣∣Den(ẑi)
Den(zi)

∣∣∣
is constant on ∂D.

Proof. The domain D provides a finite parqueting of the extended complex plane; I is a
finite index set. Since ∂D consists of a finite number of boundary arcs, each domain Di

or D̂i contains the same number of boundary arcs. Let A(D) denote the set of boundary
arcs of all domains for the parqueting. A(D) is a finite set. If z ∈ ∂D, then the reflection
points zi and ẑi are located on A(D) for all i ∈ I.
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We first show that V (z) is piecewise constant on ∂D. Suppose that C is a boundary
arc of ∂D. If z ∈ C, by reordering the domains {D̂i}i∈I , we can make sure that ẑi =
zi ∈ Ai, where Ai is a boundary arc in A(D). Suppose the equation for Ai is

αizz + βiz + βiz + γi = 0.

We have

ẑi = − βizi + γi

αizi + βi

for ẑi = zi ∈ Ai. Suppose

zi =
aiz + bi
ciz + di

.

Then

ẑi = − βi(aiz + bi) + γi(ciz + di)

αi(aiz + bi) + βi(ciz + di)
.

We see that

|Den(ẑi)| =
∣∣∣αi(aiz + bi) + βi(ciz + di)

∣∣∣ = |Den(zi)||αizi + βi|.

It follows that

V (z) =
∏
i∈I

∣∣∣∣Den(ẑi)

Den(zi)

∣∣∣∣ =∏
i∈I

|Den(zi)||αizi + βi|
|Den(zi)|

=
∏
i∈I

|αizi + βi|.

Note that

|αizi + βi| =

|βi|, αi = 0,√
βiβi−αiγi

|αi| , αi ̸= 0,

when zi ∈ Ai. If z ∈ C, then |αizi + βi| is a constant which only depends on the arc Ai

for any i ∈ I. Then V (z) is a constant on C when z ∈ C and thus piecewise constant
for z ∈ ∂D.

Every two adjacent boundary arcs of ∂D at least meet at a common point, then
constants of V (z) on two adjacent arcs must coincide. Because D has a path-connected
boundary, those piecewise constants for all boundary arcs of ∂D must be the same.
Therefore V (z) is constant on ∂D.

Suppose D is a finite parqueting-reflection domain with a path-connected boundary.

Lemma 3.2.2 shows that V (z) =
∏
i∈I

∣∣∣Den(ẑi)
Den(zi)

∣∣∣ is constant on ∂D. Denote this constant

by V (∂D). Let

F (z, ζ) :=
1

V (∂D)
F̃ (z, ζ)

∏
i∈I

Den(ẑi)

Den(zi)
=

1

V (∂D)

∏
i∈I

ζ − ẑi
ζ − zi

Den(ẑi)

Den(zi)
. (3.5)

We use this function to construct the harmonic Green function for D.
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Theorem 3.2.3. Let D be a finite parqueting-reflection domain with a path-connected
boundary. Then G1(z, ζ) := log |F (z, ζ)|2 is the harmonic Green function of D.

Proof. Let {zi ∈ Di|i ∈ I} and {ẑi ∈ D̂i|i ∈ I} be the reflection images generated
by z ∈ D with respect to the parqueting provided by D. Let Di0 = D and zi0 = z.
log |(ζ − zi0)Den(zi0)|2 = log |ζ − z|2 as a function in the variable z is harmonic in D
except for one point z = ζ. Suppose that

zi =
aiz + bi
ciz + di

, ẑi =
αiz + βi
γiz + δi

.

For all i ∈ I \{i0}, log |(ζ−zi)Den(zi)|2 = log |(ciz+di)ζ−(aiz+bi)|2 as a function in the
variable z is harmonic in D since ζ ̸= zi for z, ζ ∈ D. For all i ∈ I, log |(ζ−ẑi)Den(ẑi)|2 =
log |(γiz+ δi)ζ− (αiz+βi)|2 as a function in the variable z is harmonic in D since ζ ̸= ẑi
for z, ζ ∈ D. Then it follows that log |F (z, ζ)|2 as a function in the variable z is harmonic
in D except for one pole z = ζ and log |F (z, ζ)|2 + log |ζ − z|2 is harmonic in D.

Lemma 3.2.1 and Lemma 3.2.2 imply that |F (z, ζ)| = 1 for ζ ∈ D, z ∈ ∂D. It follows
that log |F (z, ζ)|2 = 0 if z ∈ ∂D. Therefore G1(z, ζ) is the harmonic Green function of
D.

Theorem 3.2.3 shows that we can obtain the harmonic Green function G1(z, ζ) for
a finite parqueting-reflection domain with a path-connected boundary via parqueting-
reflection principle. For a finite parqueting-reflection domain D, the explicit expression
of the harmonic Green function is given by

G1(z, ζ) = log

∣∣∣∣∣ 1

V (∂D)

∏
i∈I

ζ − ẑi
ζ − zi

Den(ẑi)

Den(zi)

∣∣∣∣∣
2

. (3.6)

We next investigate the normal derivatives of the harmonic Green functions for finite
parqueting-reflection domains.

Lemma 3.2.4. Let C be a generalized circle in the extended complex plane, whose
equation is given by aζζ + bζ + bζ + c = 0, where a, c ∈ R, b ∈ C and ac − bb < 0.
Let z ∈ C and ẑ the image of z under the reflection at C. Let νζ := aζ+b√

bb−ac
denote the

outward normal vector for ζ ∈ C. Then the outward normal derivative of the function

log
∣∣∣ ζ−ẑ
ζ−z

∣∣∣2 on C is

∂νζ log

∣∣∣∣ζ − ẑ

ζ − z

∣∣∣∣2 = 2√
bb− ac

(
a− aζ + b

ζ − z
− aζ + b

ζ − z

)
.

Moreover, ∂νζ log
∣∣∣ ζ−ẑ
ζ−z

∣∣∣2 = 0 if z ∈ C \ {ζ}.

Proof.

∂νζ log

∣∣∣∣ζ − ẑ

ζ − z

∣∣∣∣2 =2Re

(
aζ + b√
bb− ac

∂ζ log

∣∣∣∣ζ − ẑ

ζ − z

∣∣∣∣2
)
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=
2√

bb− ac
Re

(
aζ + b

ζ − ẑ
− aζ + b

ζ − z

)
.

Note that

(aζ + b)(aζ + b) = bb− ac,

(aẑ + b)(az + b) = bb− ac.

Then

aζ + b

ζ − ẑ
=

a(aζ + b)

(aζ + b)− (aẑ + b)

=
a(aζ + b)(aζ + b)(az + b)

[(aζ + b)− (aẑ + b)](aζ + b)(az + b)

=
a(bb− ac)(az + b)

(bb− ac)(az + b)− (bb− ac)(aζ + b)

=
az + b

z − ζ

=a− aζ + b

ζ − z
.

We therefore see that

∂νζ log

∣∣∣∣ζ − ẑ

ζ − z

∣∣∣∣2 = 2√
bb− ac

(
a− aζ + b

ζ − z
− aζ + b

ζ − z

)
.

If z ∈ C, then ẑ = z. Therefore

∂νζ log

∣∣∣∣ζ − ẑ

ζ − z

∣∣∣∣2 = 2√
bb− ac

Re

(
aζ + b

ζ − ẑ
− aζ + b

ζ − z

)
= 0

for z ∈ C \ {ζ}.

Proposition 3.2.5. Suppose that D is a finite parqueting-reflection domain with a path-
connected boundary. Let C be a circular arc of ∂D, whose equation is given by aζζ +
bζ + bζ + c = 0, where a, c ∈ R, b ∈ C, ac− bb < 0. Then

∂νζG1(z, ζ) =
−2√
bb− ac

∑
i∈I

(
aζ + b

ζ − zi
+

aζ + b

ζ − zi
− a

)
, (3.7)

for ζ ∈ C. Moreover,

∂νζG1(z, ζ) =
2√

bb− ac

(
a− aζ + b

ζ − z
− aζ + b

ζ − z

)
, for z, ζ ∈ C; (3.8)

∂νζG1(z, ζ) = 0, for ζ ∈ C, z ∈ ∂D \ {ζ}. (3.9)
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Proof. From Theorem 3.2.3 we know that the harmonic Green function for D is

G1(z, ζ) = log

∣∣∣∣∣ 1

V (∂D)

∏
i∈I

ζ − ẑi
ζ − zi

Den(ẑi)

Den(zi)

∣∣∣∣∣
2

.

Let RC denote the circle reflection at C. From Remark 3.1.7 we know that RC induces
a one-to-one correspondence between {zi}i∈I and {ẑi}i∈I . Without loss of generality, we
assume that ẑi = RC(zi) for all i ∈ I. Then Lemma 3.2.4 implies that

∂νζ log

∣∣∣∣ζ − ẑi
ζ − zi

∣∣∣∣2 = 2√
bb− ac

(
a− aζ + b

ζ − zi
− aζ + b

ζ − zi

)
for all i ∈ I. Thus for ζ ∈ C,

∂νζG1(z, ζ) =
∑
i∈I

∂νζ log

∣∣∣∣ζ − ẑi
ζ − zi

∣∣∣∣2 = −2√
bb− ac

∑
i∈I

(
aζ + b

ζ − zi
+

aζ + b

ζ − zi
− a

)
.

Assume that zi0 = z ∈ D and ẑi0 is its image under the reflection at C. When z
tends to C, ẑi0 and zi0 coincide, they are located on C. Actually, via reordering the set
{ẑi|i ∈ I} properly, we can make sure that ẑi = zi for all i ∈ I when z ∈ C. Then for
ζ, z ∈ C,

∂νζG1(z, ζ) =∂νζ log

∣∣∣∣ζ − ẑi0
ζ − zi0

∣∣∣∣2 + ∑
i∈I\{i0}

∂νζ log

∣∣∣∣ζ − ẑi
ζ − zi

∣∣∣∣2

=∂νζ log

∣∣∣∣ζ − ẑi0
ζ − zi0

∣∣∣∣2 + 2√
bb− ac

∑
i∈I\{i0}

Re

(
aζ + b

ζ − ẑi
− aζ + b

ζ − zi

)

=∂νζ log

∣∣∣∣ζ − ẑi0
ζ − zi0

∣∣∣∣2
=

2√
bb− ac

(
a− aζ + b

ζ − z
− aζ + b

ζ − z

)
.

If z is in the boundary ∂D but does not coincide with the point ζ, ẑi = zi for all i ∈ I,
and there is no singular term in∑

i∈I
Re

(
aζ + b

ζ − ẑi
− aζ + b

ζ − zi

)
,

namely, ζ ̸= zi, ẑi for all i ∈ I. Therefore

∂νζG1(z, ζ) =
2√

bb− ac

∑
i∈I

Re

(
aζ + b

ζ − ẑi
− aζ + b

ζ − zi

)
= 0.
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The last part of this section is about the construction of harmonic Neumann functions
via parqueting-reflection principle for finite parqueting-reflection domains.

Lemma 3.2.6. Under the notations and assumptions as in Lemma 3.2.4, we have

∂νζ log |(ζ − z)(ζ − ẑ)|2 = 2a√
bb− ac

, for ζ ∈ C, z ∈ C \ C; (3.10)

∂νz log |(ζ − z)(ζ − ẑ)|2 = 0, for z ∈ C, ζ ∈ C \ C; (3.11)

∂νz log |(ζ − z)(ζ − ẑ)|2 = 2√
bb− ac

(
a− aζ + b

ζ − z
− aζ + b

ζ − z

)
, for z, ζ ∈ C. (3.12)

Proof. Since ẑ is the image of z under the reflection at C, z and ẑ satisfy the equation
aẑz + bẑ + bz + c = 0, i.e.

ẑ = − bz + c

az + b
.

Then for ζ ∈ C and z ∈ C \ C,

∂νζ log |(ζ − z)(ζ − ẑ)|2 =2Re

(
aζ + b√
bb− ac

∂ζ log |(ζ − z)(ζ − ẑ)|2
)

=
2√

bb− ac
Re

(
aζ + b

ζ − z
+

aζ + b

ζ − ẑ

)
=

2√
bb− ac

Re

(
aζ + b

ζ − z
+

(aζ + b)(az + b)

(aζ + b)z + bζ + c

)

=
2√

bb− ac
Re

aζ + b

ζ − z
+

az + b

z + bζ+c
aζ+b


=

2√
bb− ac

Re

(
aζ + b

ζ − z
+

az + b

z − ζ

)
=

2√
bb− ac

Re

(
aζ + b

ζ − z
− aζ + b

ζ − z
+ a

)
=

2a√
bb− ac

.

Because (az + b)(az + b) = bb− ac and ẑ = z hold when z ∈ C, then

∂νz log |(ζ − z)(ζ − ẑ)|2 = 2√
bb− ac

Re

(
−az + b

ζ − z
+

az + b

ζ − ẑ

bb− ac

(az + b)2

)
=

2√
bb− ac

Re

(
−az + b

ζ − z
+

az + b

ζ − z

)
=0
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for z ∈ C and ζ ∈ C \ C. Furthermore, if ζ is also in C, then

az + b

ζ − z
=

−a bz+c
az+b + b

− bζ+c
aζ+b +

bz+c
az+b

=
aζ + b

z − ζ
= −a− az + b

ζ − z
.

In this case, the normal derivative with respect to z can be written as

∂νz log |(ζ − z)(ζ − ẑ)|2 = 2√
bb− ac

Re

(
−az + b

ζ − z
+

az + b

ζ − z

)
=

2√
bb− ac

Re

(
−az + b

ζ − z
− az + b

ζ − z
− a

)
=

2√
bb− ac

(
a− aζ + b

ζ − z
− aζ + b

ζ − z

)
.

Let

Q(z, ζ) := Q̃(z, ζ)
∏
i∈I

Den(zi)Den(ẑi) =
∏
i∈I

(ζ − zi)(ζ − ẑi)Den(zi)Den(ẑi).

This function is used to construct a harmonic Neumann function of D.

Theorem 3.2.7. Suppose that D is a finite parqueting-reflection domain. Let N1(z, ζ) :=
− log |Q(z, ζ)|2. Then N1(z, ζ) is a harmonic Neumann function of D.

Proof. It is obvious that Q(z, ζ) =
∏
i∈I

(ζ − zi)(ζ − ẑi)Den(zi)Den(ẑi), as a polynomial in

the variable ζ, has only one zero ζ = z in D. It is easy to check that − log |Q(z, ζ)|2 is
harmonic in D except for the point ζ = z and

− log |Q(z, ζ)|2 + log |ζ − z|2

is harmonic in D.

Let C be a boundary arc of D and its equation given by

aζζ + bζ + bζ + c = 0, a, c ∈ R, b ∈ C, ac− bb < 0.

SinceD is a parqueting-reflection domain, according to Remark 3.1.7, the circle reflection
at C, denoted by RC , induces a one-to-one correspondence between {zi|i ∈ I} and
{ẑi|i ∈ I}. Via reordering the set {ẑi|i ∈ I}, we can assume that ẑi = RC(zi) for all
i ∈ I. Then via Lemma 3.2.6 we see that

∂νζ log |(ζ − zi)(ζ − ẑi)Den(zi)Den(ẑi)|2 =
2a√

bb− ac
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for ζ ∈ C. Note that the terms Den(zi) and Den(ẑi) on the left-hand side of the above
equality do not affect the result of the normal derivative because they are functions in
the variable z. Hence

∂νζN1(z, ζ) = −∂νζ

(
log

(∏
i∈I

|(ζ − zi)(ζ − ẑi)Den(zi)Den(ẑi)|2
))

= −
∑
i∈I

∂νζ
(
log |(ζ − zi)(ζ − ẑi)|2

)
= − 2a√

bb− ac
·#I, (3.13)

where #I denotes the cardinality of I.
I is a finite set, since D provides a finite covering of C∞. This means that the normal

derivative ∂νζN1(z, ζ) is a constant on every boundary arc of ∂D. Thus it is piecewise
constant on ∂D.

Therefore we have verified that

N1(z, ζ) = − log

∣∣∣∣∣∏
i∈I

(ζ − zi)(ζ − ẑi)Den(zi)Den(ẑi)

∣∣∣∣∣
2

(3.14)

is a harmonic Neumann function of D.

From Theorem 1.1.11 we know that the harmonic Green function G1(z, ζ) is sym-
metric in the variables z and ζ. We expect that harmonic Neumann functions would
also possess this symmetry. We show a conjecture below.
Conjecture. The functions

∏
i∈I

|(ζ − zi)Den(zi)| and
∏
i∈I

|(ζ − ẑi)Den(ẑi)| are both sym-

metric in the variables z and ζ.
If this conjecture is true, then |Q(z, ζ)| is symmetric in the variables z and ζ, so is
N1(z, ζ). Since harmonic Neumann functions have been determined symmetric for many
domains, we believe that this conjecture holds for parqueting-reflection domains.

3.3 Invariant property of harmonic Green functions

We know that harmonic Green functions are conformally invariant from Theorem 1.1.14.
We show below that they are also invariant under circle reflections. It thus means that
harmonic Green functions are invariant under inversive transformations.

Lemma 3.3.1. Let D and Ω be domains in C∞ such that there is a circle reflection R
sending D onto Ω. If h(w) is a harmonic function in Ω, then the function h(R(z)) is
harmonic in D.

Proof. Let g(z) := h(R(z)). Then with w = R(z)

∂zg(z) = ∂wh(w)∂zR(z) + ∂wh(w)∂zR(z),
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∂2
zzg(z) =∂2

wwh(w)∂zR(z)∂zR(z) + ∂2
wwh(w)∂zR(z)∂zR(z)

+ ∂wh(w)∂
2
zzR(z) + ∂2

wwh(w)∂zR(z)∂zR(z)

+ ∂2
wwh(w)∂zR(z)∂zR(z) + ∂wh(w)∂

2
zzR(z).

(3.15)

Note that ∂zR(z) and ∂zR(z) are both 0, since R(z) is of the form

R(z) = − bz + c

az + b
.

Since h(w) is harmonic in Ω, ∂2
wwh(w) = 0. Then the right hand side of the equality

(3.15) is 0. Therefore g(z) is harmornic in D.

Theorem 3.3.2. Let D and Ω be domains in C∞ such that there is a circle reflection R
sending D onto Ω. Let H1(w,ω) be the harmonic Green function for Ω. Then G1(z, ζ) :=
H1(R(z), R(ζ)) is the harmonic Green function for D.

Proof. For a fixed point ζ ∈ D, let ω := R(ζ) ∈ Ω. Since H1(w,ω) is harmonic in Ω\{ω}
as a function in the variable w, Lemma 3.3.1 implies that G1(z, ζ) = H1(R(z), R(ζ)) is
harmonic in D except for the point ζ. Since H1(w,ω) + log |w − ω|2 is harmonic in Ω,
from Lemma 3.3.1 we also know that

H1(R(z), R(ζ)) + log |R(z)−R(ζ)|2 = G1(z, ζ) + log |R(z)−R(ζ)|2

is harmonic in D. Assume that the circle reflection R is given by

R(z) = − bz + c

az + b
,

then

log |R(z)−R(ζ)|2 = log

∣∣∣∣ bz + c

az + b
− bζ + c

aζ − b

∣∣∣∣2
= log

∣∣∣∣ ac− bb

(az + b)(aζ + b)

∣∣∣∣2 + log |z − ζ|2.

Note that the first term of the right-hand side in the above equality is harmonic in D,
hence G1(z, ζ) + log |z − ζ|2 is a harmonic function on D. The last step is to verify that
G1(z, ζ) vanishes when z tends to the boundary ∂D. This is guaranteed by the facts
that H1(w,ω) vanishes when w tends to the ∂Ω and R sends the boundary ∂D onto the
boundary ∂Ω.
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Chapter 4

Application of
Parqueting-Reflection Principle to
Basic Boundary Value Problems

This chapter is an investigation of the application of parqueting-reflection principle to
some basic boundary value problems in parqueting-reflection domains. First we discuss
basic boundary value problems in disks and half-planes. We overview some well-known
results about Schwarz operators, Pompeiu operators, Poisson integral formulas, har-
monic Green functions, Poisson kernels and harmonic Neumann functions for disks and
half-planes respectively. With the help of Schwarz and Pompeiu operators, we solve
the Schwarz problems for the inhomogeneous Cauchy-Riemann equation in disks and
half-planes. With the help of harmonic Green functions, Poisson integral formulas and
Neumann functions, we solve the Dirichlet and Neumann problems for the Poisson equa-
tion in disks and half-planes. On the basis of the discussions for disks and half-planes, we
unify the expressions for Schwarz operators, Poisson integral formulas, harmonic Green
functions and harmonic Neumann functions of disks and half-planes. At the end, we gen-
erally solve the Schwarz problems for the inhomogeneous Cauchy-Riemann equation and
the Dirichlet problems for the Poisson equation in finite parqueting-reflection bounded
domains.

4.1 Basic boundary value problems in disks

Let D(a, r) := {z| |z − a| < r}, a ∈ C, r ∈ R>0 be a disk in the complex plane,
and let Γ denote its boundary circle. D(a, r) is a parqueting-reflection domain. Let
z ∈ D(a, r) and zre its reflection image under the circle reflection at Γ. It is obvious that
(zre − a)(z − a) = r2, i.e.

zre = a+
r2

z − a
.
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Applying the Cauchy-Pompeiu formula, we have

w(z) =
1

2πi

∫
Γ
w(ζ)

dζ

ζ − z
− 1

π

∫
D(a,r)

wζ(ζ)
dσζ
ζ − z

, (4.1)

0 =
1

2πi

∫
Γ
w(ζ)

dζ

ζ − zre
− 1

π

∫
D(a,r)

wζ(ζ)
dσζ

ζ − zre
(4.2)

for w(z) ∈ C1(D(a, r);C)∩C(D(a, r);C). Inserting the formula of zre, using the relation
(ζ − a)(ζ − a) = r2 for ζ ∈ Γ, and taking the complex conjugate for the formula (4.2)
lead to

0 = − 1

2πi

∫
Γ
w(ζ)

z − a

ζ − z

dζ

ζ − a
− 1

π

∫
D(a,r)

wζ(ζ)
z − a

r2 − (z − a)(ζ − a)
dσζ . (4.3)

Note that
dζ

ζ − a
= − dζ

ζ − a

for ζ ∈ Γ, then adding formula (4.3) to formula (4.1) gives

w(z) =
1

2πi

∫
Γ
Re(w(ζ))

ζ + z − 2a

ζ − z

dζ

ζ − a
+

1

2π

∫
Γ
Im(w(ζ))

dζ

ζ − a

− 1

π

∫
D(a,r)

(
wζ(ζ)

ζ − z
+

(z − a)wζ(ζ)

r2 − (z − a)(ζ − a)

)
dσζ .

(4.4)

Let s be the arc length parameter of Γ, then

i
ds

r
=

dζ

ζ − a
.

Formula (4.4) can also be rewritten as

w(z) =
1

2πr

∫
Γ
Re(w(ζ))

ζ + z − 2a

ζ − z
dsζ +

i

2πr

∫
Γ
Im(w(ζ))dsζ

− 1

π

∫
D(a,r)

(
wζ(ζ)

ζ − z
+

(z − a)wζ(ζ)

r2 − (z − a)(ζ − a)

)
dσζ .

(4.5)

Formulas (4.4) and (4.5) are called the Cauchy-Schwarz-Pompeiu formulas of D(a, r).

Applying (4.5) for z = a and taking the imaginary part of both sides implies that

i · Im(w(a)) =
i

2πr

∫
Γ
Im(w(ζ))dsζ −

1

2π

∫
D(a,r)

(
wζ(ζ)

ζ − a
−

wζ(ζ)

ζ − a

)
dσζ (4.6)
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Subtracting i · Im(w(a)) from formula (4.5) induces

w(z) =
1

2πr

∫
Γ
Re(w(ζ))

ζ + z − 2a

ζ − z
dsζ + i · Im(w(a))

− 1

π

∫
D(a,r)

(
wζ(ζ)

ζ − z
+

(z − a)wζ(ζ)

r2 − (z − a)(ζ − a)

)
dσζ

+
1

2π

∫
D(a,r)

(
wζ(ζ)

ζ − a
−

wζ(ζ)

ζ − a

)
dσζ .

(4.7)

Before dealing with the Schwarz problems for the Cauchy-Riemann equation in disks,
we first review the Schwarz operators for disks and their essential properties.

The Schwarz operator for the unit disk is well-known, see e.g. [2], [22]. By means
of conformal mappings, the formula for the unit disk can be generalized to any simply
connected domain. So it is easy to determine the Schwarz operator for the disk D(a, r),
which is given by

Sφ(z) :=
1

2πr

∫
Γ
φ(ζ)

ζ + z − 2a

r(ζ − z)
dsζ =

1

2πi

∫
Γ
φ(ζ)

ζ + z − 2a

ζ − z

dζ

ζ − a
. (4.8)

For φ(z) ∈ C(Γ;R), Sφ(z) provides an analytic function in D(a, r) with the property

Re(Sφ) = φ on Γ (4.9)

in the sense of
lim
z→Γ

Re(Sφ(z)) = φ(z).

The kernel function
ζ + z − 2a

ζ − z

is called the Schwarz kernel of the disk D(a, r).
The Schwarz operator S helps to solve the Schwarz problem for analytic functions.

We immediately obtain the following result.

Theorem 4.1.1. The Schwarz problem for analytic functions in D(a, r)

∂z̄w = 0 in D(a, r), Re(w) = γ on Γ, Im(w(a)) = c

is uniquely solvable for γ ∈ C(Γ;R) and c ∈ R; the solution is provided by

w(z) =
1

2πi

∫
Γ
γ(ζ)

ζ + z − 2a

ζ − z

dζ

ζ − a
+ ic. (4.10)

Theorem 4.1.2. The Schwarz problem for the inhomogeneous Cauchy-Riemann equa-
tion in D(a, r)

∂z̄w = f in D(a, r), Re(w) = γ on Γ, Im(w(a)) = c
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is uniquely solvable for f ∈ Lp(D(a, r);C), p > 2, γ ∈ C(Γ;R) and c ∈ R, the solution
is provided by

w(z) =
1

2πi

∫
Γ
γ(ζ)

ζ + z − 2a

ζ − z

dζ

ζ − a
+ ic

− 1

2π

∫
D(a,r)

(
f(ζ)

ζ − a

ζ + z − 2a

ζ − z
+

f(ζ)

ζ − a

r2 + (z − a)(ζ − a)

r2 − (z − a)(ζ − a)

)
dσζ .

(4.11)

Proof. Let u(z) denote the third term on the right-hand side of (4.11).

u(z) =− 1

2π

∫
D(a,r)

(
f(ζ)

ζ − a

ζ + z − 2a

ζ − z
+

f(ζ)

ζ − a

r2 + (z − a)(ζ − a)

r2 − (z − a)(ζ − a)

)
dσζ

=− 1

π

∫
D(a,r)

f(ζ)

ζ − z
dσζ −

1

π

∫
D(a,r)

(z − a)f(ζ)

r2 − (z − a)(ζ − a)
dσζ

+
1

2π

∫
D(a,r)

(
f(ζ)

ζ − a
− f(ζ)

ζ − a

)
dσζ .

(4.12)

The first term on the right-hand side of (4.12) is T (f(z)), where T is the Pompeiu
operator. Recall that ∂z(Tf(z)) = f(z). Note that the second term on the right-hand
side of (4.12) is

− 1

π

∫
D(a,r)

(z − a)f(ζ)

r2 − (z − a)(ζ − a)
dσζ =

1

π

∫
D(a,r)

f(ζ)

ζ − zre
dσζ .

It is holomorphic in D(a, r). Then ∂zu = f . Thus ∂zw = ∂zu = f follows from Theorem
4.1.1. When z tends to the boundary Γ, zre coincides with z. It implies that

lim
z→Γ

z∈D(a,r)

Re(u(z)) = 0.

Then Re(w) = γ on Γ. It is obvious that Im(w(a)) = c. Therefore, w(z) given by (4.11)
is a solution to the Schwarz problem. Uniqueness of solution is ensured by the fact that
the boundary problem

∂z̄w = 0 in D(a, r), Re(w) = 0 on Γ, Im(w(a)) = 0

has only the trivial solution.

The harmonic Green and Neumann functions of D(a, r) can be obtained via applying
the parqueting-reflection principle (Formulas (3.6) and (3.14)). Let

G1(z, ζ) := log

∣∣∣∣(ζ − a)(z − a)− r2

r(ζ − z)

∣∣∣∣2 ,
N1(z, ζ) :=− log

∣∣(ζ − z)
(
(ζ − a)(z − a)− r2

)∣∣2 .
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We can verify directly that G1(z, ζ) is the harmonic Green function of D(a, r) and
N1(z, ζ) a harmonic Neumann function. From Formula (3.7) we obtain that

∂νζG1(z, ζ) =
−2

r

(
ζ − a

ζ − z
+

ζ − a

ζ − z
− 1

)
.

The Poisson kernel for the disk D(a, r) is given by

p(z, ζ) :=
ζ − a

ζ − z
+

ζ − a

ζ − z
− 1.

We see that the Poisson kernel is the real part of the Schwarz kernel.

Applying Theorem 1.1.12 for D = D(a, r) solves the Dirichlet problem for harmonic
functions in D(a, r).

Theorem 4.1.3. The Dirichlet problem for harmonic functions on D(a, r)

wzz = 0 in D(a, r), w = γ on Γ

is uniquely solvable for γ ∈ C(Γ;R), the solution is provided by

w(z) =
1

2πr

∫
Γ
γ(ζ)

(
ζ − a

ζ − z
+

ζ − a

ζ − z
− 1

)
dsζ . (4.13)

Formula (4.13) is called the Poisson integral for disks. It is a generalization of the
well-known Poisson integral for the unit disk, see e.g. [3].

Theorem 4.1.4. The Dirichlet problem for the Poisson equation in D(a, r)

wzz = f in D(a, r), w = γ on Γ

is uniquely solvable for f ∈ Lp(D(a, r);C), p > 2 and γ ∈ C(Γ;R), the solution is
provided by

w(z) =
1

2πr

∫
Γ
γ(ζ)

(ζ − a

ζ − z
+

ζ − a

ζ − z
− 1
)
dsζ

− 1

π

∫
D(a,r)

f(ζ) log

∣∣∣∣(ζ − a)(z − a)− r2

r(ζ − z)

∣∣∣∣2 dσζ . (4.14)

Proof. This theorem results from Theorem 4.1.3 and the properties of harmonic Green
functions.

We can compute the normal derivatives of N1(z, ζ) directly. We see that

∂νζN1(z, ζ) =− 2

r
, for ζ ∈ Γ, z ∈ D(a, r), (4.15)
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∂νzN1(z, ζ) =− 2

r
, for z ∈ Γ, ζ ∈ D(a, r), (4.16)

∂νzN1(z, ζ) =− 2

r
+

2

r

(
ζ − a

ζ − z
+

ζ − a

ζ − z
− 1

)
, for z, ζ ∈ Γ. (4.17)

These results are used to solve the Neumann boundary problem for the Poisson equation
in D(a, r).

Theorem 4.1.5. The Neumann boundary problem for the Poisson equation in D(a, r)

wzz = f in D(a, r), ∂νzw = γ on Γ

is solvable for f ∈ Lp(D(a, r);C), p > 2 and γ ∈ C(Γ;R) if and only if∫
Γ
γ(ζ)dsζ = 4

∫
D(a,r)

f(ζ)dσζ .

The solutions are of the form

w(z) =c− 1

4π

∫
Γ
γ(ζ) log

∣∣(ζ − z)
(
(ζ − a)(z − a)− r2

)∣∣2 dsζ
+

1

π

∫
D(a,r)

f(ζ) log
∣∣(ζ − z)

(
(ζ − a)(z − a)− r2

)∣∣2 dσζ , (4.18)

where c is an arbitrary constant in C.

Proof. Since − 1
πN1(z, ζ) is a fundamental solution to the Laplacian operator and the

boundary integral is a harmonic function, (4.18) provides a solution to the Poisson
equation. We only need to check the boundary behavior of w(z). For z ∈ Γ,

∂νzw(z) =
1

4π

∫
Γ
γ(ζ)∂νzN1(z, ζ)dsζ −

1

π

∫
D(a,r)

f(ζ)∂νzN1(z, ζ)dσζ

=
1

2πr

∫
Γ
γ(ζ)

(
ζ − a

ζ − z
+

ζ − a

ζ − z
− 1

)
dsζ

− 1

2πr

(∫
Γ
γ(ζ)dsζ − 4

∫
D(a,r)

f(ζ)dσζ

)

=γ(z)− 1

2πr

(∫
Γ
γ(ζ)dsζ − 4

∫
D(a,r)

f(ζ)dσζ

)
.

(4.19)

The last equality is guaranteed by the Poisson integral (4.13). Therefore ∂νzw = γ on Γ
if and only if ∫

Γ
γ(ζ)dsζ = 4

∫
D(a,r)

f(ζ)dσζ .
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4.2 Basic boundary value problems in half-planes

This section is an investigation on the Schwarz problem, Dirichlet problem and Neumann
problem in half-planes. For the case of the upper half-plane, they have already been
well discussed, see e.g. [17]. We will deal with these topics for general half-planes.
The expressions for the Schwarz kernel, the harmonic Green function, the harmonic
Neumann function and the Poisson kernel will be given and these functions serve to
solve the corresponding boundary problems.

A straight line in the complex plane can be given by the equation:

bz + bz + c = 0, where b ∈ C \ {0}, c ∈ R.

Let L be the straight line determined by the above equation. Let z0 := − c
2b

∈ L. For

z ∈ L, we have Re(b(z − z0)) = 0. The straight line L has a parameterization:

ζ(s) = − c

2b
+ i

b

|b|
s, s ∈ R.

For ζ(s) ∈ L we have

bdζ − bdζ = 2i|b|ds, bdζ + bdζ = 0.

Let Ω := {z ∈ C| bz + bz + c < 0} be the domain bounded by L. We see that
Re(b(z − z0)) < 0 for z ∈ Ω and b/|b| is the outward normal vector on L. Let z ∈ Ω and
zre its image under the reflection at L. It is easy to check that

zre = −bz + c

b
.

According to the parqueting-reflection principle, we can obtain the harmonic Green
function for Ω:

G1(z, ζ) = log

∣∣∣∣bζ + bz + c

b(ζ − z)

∣∣∣∣2 .
We see that

−1

2
∂νζG1(z, ζ) = −Re

(
b

|b|
∂ζG1(z, ζ)

)
=

1

|b|

(
b

ζ − z
+

b

ζ − z

)
for ζ ∈ L.

Given γ ∈ C(L;R) and γ(z) = O(|z|−α) for α > 0 , the formula

u(z) =
1

2πi

∫
L
γ(ζ)

(
b

ζ − z
+

b

ζ − z

)
dζ

b
(4.20)

provides a harmonic function in the half-plane Ω with the boundary data γ. Formula
(4.20) is called the Poisson integral formula for the half-planes. On the basis of the
harmonic Green function G1(z, ζ) and the Poisson formula (4.20) for Ω, the explicit
solution to the Dirichlet problem for the Poisson equation can be obtained.
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Theorem 4.2.1. Let f ∈ Lp(Ω;C), p > 2, γ ∈ C(L;C) and γ(z) = O(|z|−α) for α > 0.
The Dirichlet problem for the Poisson equation in Ω

wzz = f in Ω, w = γ on L

has a unique solution

w(z) =
1

2πi

∫
L
γ(ζ)

(
b

ζ − z
+

b

ζ − z

)
dζ

b
− 1

π

∫
Ω
f(ζ) log

∣∣∣∣bζ + bz + c

b(ζ − z)

∣∣∣∣2 dσζ . (4.21)

Via the parqueting-reflection principle, we also obtain a harmonic Neumann function
of Ω, namely,

N1(z, ζ) = − log
∣∣(ζ − z)(bζ + bz + c)

∣∣2 .
We can verify that

∂νζN1(z, ζ) =0, for ζ ∈ L, z ∈ Ω, (4.22)

∂νzN1(z, ζ) =0, for z ∈ L, ζ ∈ Ω, (4.23)

∂νzN1(z, ζ) =
2

|b|

(
b

ζ − z
+

b

ζ − z

)
, for z, ζ ∈ L. (4.24)

Theorem 4.2.2. Let f ∈ Lp(Ω;C), p > 2, γ ∈ C(L;C) and γ(z) = O(|z|−α) for α > 0.
The Neumann boundary problem for the Poisson equation in the half-plane Ω

wzz = f in Ω, ∂νzw = γ on L

is solvable, the solutions are of the form

w(z) =c0 −
1

4πi

∫
L
γ(ζ) log

∣∣(ζ − z)(bζ + bz + c)
∣∣2 |b|dζ

b

+
1

π

∫
Ω
f(ζ) log

∣∣(ζ − z)(bζ + bz + c)
∣∣2 dσζ , (4.25)

where c0 is an arbitrary constant in C.

Proof. (4.25) is given by

w(z) = c0 +
1

4πi

∫
L
γ(ζ)N1(z, ζ)

|b|dζ
b

− 1

π

∫
Ω
f(ζ)N1(z, ζ)dσζ .

Let

u(z) :=
1

4πi

∫
L
γ(ζ)N1(z, ζ)

|b|dζ
b

,

v(z) :=
1

π

∫
Ω
f(ζ)N1(z, ζ)dσζ .
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It is obvious that u(z) is a (complex valued) harmonic function in Ω, i.e. uzz = 0. Since
− 1

πN1(z, ζ) is a fundamental solution to the Laplacian operator ∂z∂z, it follows that
vzz = f in Ω. So we have wzz = f . Formulas (4.23) and (4.24) are used to verify the
normal derivative of w(z) on the boundary.

∂νzw(z) =
1

4πi

∫
L
γ(ζ)∂νzN1(z, ζ)

|b|dζ
b

− 1

π

∫
Ω
f(ζ)∂νzN1(z, ζ)dσζ

=
1

2πi

∫
L
γ(ζ)

(
b

ζ − z
+

b

ζ − z

)
dζ

b

= γ(z).

The last equality is guaranteed by the Poisson integral formula (4.20).

Suppose that w(z) ∈ C1(Ω;C), w(z) = O(|z|−α) for z ∈ L, α > 0 and wz ∈ Lp(Ω;C),
p > 2. Consider the Cauchy-Pompeiu representation formula for half-planes:

1

2πi

∫
L
w(ζ)

dζ

ζ − z
− 1

π

∫
Ω
wζ(ζ)

dσζ
ζ − z

=

{
w(z), z ∈ Ω,

0, z /∈ Ω.
(4.26)

When z ∈ Ω, its reflection image zre /∈ Ω. Applying the Cauchy-Pompeiu formula for z
and zre gives

w(z) =
1

2πi

∫
L
w(ζ)

dζ

ζ − z
− 1

π

∫
Ω
wζ(ζ)

dσζ
ζ − z

, (4.27)

0 =
1

2πi

∫
L
w(ζ)

dζ

ζ + bz+c
b

− 1

π

∫
Ω
wζ(ζ)

dσζ

ζ + bz+c
b

. (4.28)

Taking the complex conjugate for both sides of (4.28) and subtracting it from (4.27)
produces

w(z) =
1

2πi

∫
L

(
w(ζ)

ζ − z
dζ +

bw(ζ)

bζ + bz + c
dζ

)
− 1

π

∫
Ω

(
wζ(ζ)

ζ − z
−

bwζ(ζ)

bζ + bz + c

)
dσζ

=
1

2πi

∫
L
Re(w(ζ))

(
dζ

ζ − z
+

bdζ

bζ + bz + c

)
+

1

2π

∫
L
Im(w(ζ))

(
dζ

ζ − z
− bdζ

bζ + bz + c

)
− 1

π

∫
Ω

(
wζ(ζ)

ζ − z
−

bwζ(ζ)

bζ + bz + c

)
dσζ .

(4.29)

Note that for ζ ∈ L

dζ

ζ − z
+

bdζ

bζ + bz + c
=

dζ

ζ − z
+

bdζ

b(z − ζ)
=

2dζ

ζ − z
,
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dζ

ζ − z
− bdζ

bζ + bz + c
=
bdζ + bdζ

b(ζ − z)
= 0.

Applying these two relations to (4.29) produces that, for z ∈ Ω,

w(z) =
1

πi

∫
L
Re(w(ζ))

dζ

ζ − z
− 1

π

∫
Ω

(
wζ(ζ)

ζ − z
−

bwζ(ζ)

bζ + bz + c

)
dσζ . (4.30)

For w(z) ∈ C1(Ω;C), w(z) = O(|z|−α) for z ∈ L, α > 0 and wz ∈ Lp(Ω;C), p > 2,
Formula (4.30) holds. It is called the Cauchy-Schwarz-Pompeiu formula for half-
planes. It helps to solve the Schwarz problem for the inhomogeneous Cauchy-Riemann
equation in a half-plane.

For φ ∈ C(L;R) and φ(z) = O(|z|−α), α > 0, the Schwarz operator

Sφ :=
1

πi

∫
L

φ(ζ)

ζ − z
dζ (4.31)

provides a holomorphic function in Ω which satisfies the boundary behavior Re(Sφ) = φ.
This formula is called the Schwarz integral for half-planes.

Theorem 4.2.3. Let f ∈ Lp(Ω,C), p > 2, γ ∈ C(L;R) and γ(z) = O(|z|−α), α > 0.
The Schwarz problem in Ω

∂z̄w = f in Ω, Re(w) = γ on L

is solvable, the solutions are of the form

w(z) =
1

πi

∫
L

γ(ζ)

ζ − z
dζ − 1

π

∫
Ω

(
f(ζ)

ζ − z
− bf(ζ)

bζ + bz + c

)
dσζ + ic0, (4.32)

where c0 is a real constant.

Proof.

Sγ =
1

πi

∫
L

γ(ζ)

ζ − z
dζ

is holomorphic in Ω and Re(Sγ) = γ on L. It is easy to check that

1

π

∫
Ω

bf(ζ)

bζ + bz + c
dσζ

is holomorphic in Ω. From the properties of the Pompeiu operator we know that

∂z̄

(
− 1

π

∫
Ω

f(ζ)

ζ − z
dσζ

)
= f.

Note that bz+c
b = −z for z ∈ L, thus

Re

(∫
Ω

(
f(ζ)

ζ − z
− bf(ζ)

bζ + bz + c

)
dσζ

)
= 0
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for z ∈ L. Therefore a function of the form (4.20) is a solution to the Schwarz problem.
Moreover, every solution is of this form, since the Schwarz problem

∂z̄w = 0 in Ω, Re(w) = 0 on L

has only purely imaginary constant solutions.

4.3 Uniform expressions for disks and half-planes

It has been mentioned in Chapter 2 that circles and straight lines in the complex plane
can be viewed as generalized circles in the extended complex planes. Therefore a disk
or a half-plane is actually a domain in C∞ which is bounded by one generalized circle.
In this section, on the basis of the previous discussions about disks and half-planes, we
are going to demonstrate uniform expressions of harmonic Green functions, harmonic
Neumann functions, Poisson integrals and Schwarz integrals for disks and half-planes.

Let D := {z ∈ C| azz + bz + bz + c < 0}, where a is a non-negative real number,
b ∈ C, c ∈ R and ac− bb < 0. D is a domain bounded by a generalized circle C in C∞.
The associated matrix of C is (

a b
b c

)
∈ H−.

Denote by D̂ the image of D under the reflection at C. Then D and D̂ provide a covering

of C∞, i.e. C∞ = D∪ D̂. Obviously, D is a simply connected finite parqueting-reflection
domain. We can apply the parqueting-reflection principle for constructing the harmonic
Green and Neumann functions.

Let z be a point in D and zre ∈ D̂ the reflection of z. It is already known that

zre = − bz + c

az + b
.

On the basis of ζ−zre
ζ−z , we construct the function

F (z, ζ) :=
azζ + bz + bζ + c√

bb− ac(ζ − z)
.

We see that

|F (z, ζ)| =
∣∣∣∣ζ(az + b) + bz + c

(ζ − z)

∣∣∣∣ = ∣∣∣∣ζ − zre
ζ − z

∣∣∣∣ |az + b|√
bb− ac

.

Since ẑ = z when z is on the boundary C, it follows that

|F (z, ζ)| = 1 for z ∈ C.

The harmonic Green function of D is

G1(z, ζ) = log|F (z, ζ)|2.
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In the case of a > 0, G1(z, ζ) is actually the harmonic Green function for the disk

D(− b
a ,

√
bb−ac
a ), while in the other case of a = 0, it is the harmonic Green function for

the half-plane {bz + bz + c < 0}.
According to Lemma 3.2.4,

∂νζG1(z, ζ) =∂νζ log

∣∣∣∣∣ζ − zre
ζ − z

az + b√
bb− ac

∣∣∣∣∣
2

=∂νζ log

∣∣∣∣ζ − zre
ζ − z

∣∣∣∣2
=

−2√
bb− ac

(
aζ + b

ζ − z
+

aζ + b

ζ − z
− a

)
.

The Poisson integral

u(z) =
1

2πi

∫
C
γ(ζ)

(
aζ + b

ζ − z
+

aζ + b

ζ − z
− a

)
dζ

aζ + b
(4.33)

provides a harmonic function in D with the boundary data u = γ on C if γ satisfies
proper conditions. This formula unifies (4.13) and (4.20).

Via the parqueting-reflection principle, a harmonic Neumann function of D is given
by

N1(z, ζ) = − log |(ζ − z)(aζz + bζ + bz + c)|2.

From (3.13) we know that

∂νζN1(z, ζ) =− 2a√
bb− ac

, for ζ ∈ C, z ∈ D. (4.34)

Since N1(z, ζ) is symmetric in ζ and z, it follows that

∂νzN1(z, ζ) =− 2a√
bb− ac

, for z ∈ C, ζ ∈ D. (4.35)

In the case of z, ζ ∈ C, we can verify that

∂νzN1(z, ζ) =− 2a√
bb− ac

+
2a√

bb− ac

(
aζ + b

ζ − z
+

aζ + b

ζ − z
− a

)
. (4.36)

Unifying Schwarz operators for disks and half-planes, we obtain the Schwarz operator
for D

Sγ =
1

2πi

∫
∂D

γ(ζ)
aζ + az + 2b

ζ − z

dζ

aζ + b
. (4.37)

We require that γ(z) ∈ C(∂D;R) if a ̸= 0, and γ(z) ∈ C(∂D;R), γ(z) = O(|z|−α), α > 0
if a = 0. The function Sγ is holomorphic in D and satisfies the boundary behavior

Re(Sγ) = γ on ∂D.
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The above conclusions about disks and half-planes are fundamental. More general
results regarding parqueting-reflection domains are based on these conclusions. Particu-
larly, the Poisson integrals and Schwarz integrals of disks and half-planes play important
roles. We will see their contribution in the proof of two theorems in the following section.
These two theorems ensure the feasibility of the parqueting-reflection principle in solving
the Dirichlet and Schwarz boundary value problems for parqueting-reflection domains.

4.4 Basic boundary value problems for finite parqueting-
reflection bounded domains

Suppose D is a finite parqueting-reflection domain, it provides a finite parqueting of C∞,

namely, C∞ =
⋃
k∈I

(Dk ∪ D̂k), where I is a finite set. Let z ∈ D. z generates two families

of finite reflection images {zk|k ∈ I} and {ẑk|k ∈ I}.
From discussions in Chapter 3, we know that G1(z, ζ) = log |F (z, ζ)|2 is the harmonic

Green function of D, where F (z, ζ) is given by (3.5). We use this harmonic Green
function to solve the Dirichlet problem for the Poisson equation in D.

Theorem 4.4.1. Suppose D is a finite parqueting-reflection bounded domain and G1(z, ζ)
its harmonic Green function. Let f ∈ Lp(D;C), p > 2, and γ ∈ C(∂D;C). Then the
Dirichlet problem

wzz = f in D, w = γ on ∂D

has a unique solution

w(z) = − 1

4π

∫
∂D

γ(ζ)∂νζG1(z, ζ)dsζ −
1

π

∫
D
f(ζ)G1(z, ζ)dσζ , (4.38)

where s is the arc length parameter on ∂D.

Proof. Via the maximum principle of harmonic functions we know that the Dirichlet
problem

wzz = 0 in D, w = 0 on ∂D

has only the trivial solution. Then the Dirichlet problem for the Poisson equation in D
has a unique solution if it is solvable.

Since − 1
πG1(z, ζ) is a fundamental solution to ∂z∂z̄, we have

∂z∂z̄

(
− 1

π

∫
D
f(ζ)G1(z, ζ)dσζ

)
= f.

From Theorem 1.1.12 we know that

− 1

4π

∫
∂D

γ(ζ)∂νζG1(z, ζ)dsζ

provides a harmonic function in D with the boundary value γ on ∂D. Therefore

w(z) = − 1

4π

∫
∂D

γ(ζ)∂νζG1(z, ζ)dsζ −
1

π

∫
D
f(ζ)G1(z, ζ)dσζ
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is a solution to the Dirichlet problem.
We could also verify the boundary data of w via the the results from Proposition

3.2.5 and the Poisson integral formula (4.33). Let C be a circular arc of ∂D and its
equation is given by aζζ + bζ + bζ + c = 0, where a, c ∈ R, b ∈ C, ac− bb < 0. Then

lim
z→C
z∈D

(
− 1

4π

∫
∂D

γ(ζ)∂νζG1(z, ζ)dsζ

)

= lim
z→C
z∈D

1

2πi

∫
C
γ(ζ)

(
aζ + b

ζ − z
+

aζ + b

ζ − z
− a

)
dζ

aζ + b

=γ(z).

Parqueting-reflection principle can also be used to solve the Schwarz problem for the
inhomogeneous Cauchy-Riemann equation in D:

∂zw = f in D, Re(w) = γ on ∂D,

where f ∈ C(D,C), γ ∈ C(∂D;R).
Denote

Φγ(zk) : =
1

2πi

∫
∂D

γ(ζ)
dζ

ζ − zk
,

Φγ(ẑk) : = − 1

2πi

∫
∂D

γ(ζ)
dζ

ζ − ẑk
,

Tf (zk) : = − 1

π

∫
D

f(ζ)

ζ − zk
dσζ ,

Tf (ẑk) : = − 1

π

∫
D

f(ζ)

ζ − ẑk
dσζ .

Suppose that D provides a parqueting of the extended complex plane,

C∞ =
⋃
k∈I

(Dk ∪ D̂k).

Let {zk}k∈I and {ẑk}k∈I be the reflection images corresponding to the parqueting. Let
Dk0 = D and zk0 = z ∈ D. We know that zk /∈ D for all k ∈ I \ {k0} and ẑk /∈ D for all
k ∈ I. We also know that zk is a linear fraction in z and ẑk is a linear fraction in z. Via
Cauchy integral formula we see that

Φγ(zk0) =
1

2πi

∫
∂D

γ(ζ)
dζ

ζ − z

is holomorphic in D, i.e.

∂z̄(Φγ(zk0)) = 0, for z ∈ D, (4.39)
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and

Φγ(zk) = 0, ∀k ∈ I \ {k0}, (4.40)

Φγ(ẑk) = 0, ∀k ∈ I. (4.41)

From the properties of the T operator mentioned in Chapter 1, we see that

∂z̄(Tf (zk0)) = ∂z̄

(
− 1

π

∫
D

f(ζ)

ζ − z
dσζ

)
= f, (4.42)

∂z̄(Tf (zk)) = 0, ∀k ∈ I \ {k0}, (4.43)

∂z̄(Tf (ẑk)) = 0, ∀k ∈ I. (4.44)

Construct a function

w(z) : =
∑
k∈I

(Φγ(zk)− Φγ(ẑk) + Tf (zk)− Tf (ẑk))

=
1

2πi

∑
k∈I

∫
∂D

γ(ζ)

(
dζ

ζ − zk
+

dζ

ζ − ẑk

)
− 1

π

∑
k∈I

∫
D

(
f(ζ)

ζ − zk
− f(ζ)

ζ − ẑk

)
dσζ .

We show below that w(z) provides a solution to the Schwarz problem in D.

Theorem 4.4.2. Suppose D is a finite parqueting-reflection bounded domain, it provides

a finite parqueting of the extended complex plane, C∞ =
⋃
k∈I

(Dk ∪ D̂k). A point z ∈ D

generates two families of reflection images {zk|k ∈ I} and {ẑk|k ∈ I}. Then for f ∈
Lp(D,C), p > 2 and γ ∈ C(∂D;R), the Schwarz problem

∂zw = f in D, Re(w) = γ on ∂D

is solvable, the solutions are of the form

w(z) =
1

2πi

∑
k∈I

∫
∂D

γ(ζ)

(
dζ

ζ − zk
+

dζ

ζ − ẑk

)

− 1

π

∑
k∈I

∫
D

(
f(ζ)

ζ − zk
− f(ζ)

ζ − ẑk

)
dσζ + ic0,

(4.45)

where c0 is a real constant.

Proof. Suppose thatDk0 = D and zk0 = z. From Formulas (4.39)–(4.44) we immediately
see that

∂zw =
∑
k∈I

∂z(Φγ(zk)− Φγ(ẑk) + Tf (zk)− Tf (ẑk)) = ∂z(Tf (zk0)) = f.

We next verify that w(z) satisfies the boundary condition.
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Suppose C is a boundary arc of ∂D and aζζ + bζ + bζ + c = 0 gives the equation of
C, where a, c ∈ R, b ∈ C, ac− bb < 0. Via a proper ordering of {ẑk|k ∈ I}, we can ensure
that ẑk = zk for all k when z tends to C. Then we see that

lim
z→C

Re

(
− 1

π

∑
k∈I

∫
D

(
f(ζ)

ζ − zk
− f(ζ)

ζ − ẑk

)
dσζ

)

=Re

(
− 1

π

∑
k∈I

∫
D

(
f(ζ)

ζ − zk
− f(ζ)

ζ − zk

)
dσζ

)
=0.

In the case of ζ ∈ ∂D \ C,

lim
z→C

Re

 1

2πi

∫
∂D\C

γ(ζ)

(
dζ

ζ − zk
+

dζ

ζ − ẑk

)
=Re

 1

2πi

∫
∂D\C

γ(ζ)

(
dζ

ζ − zk
+

dζ

ζ − zk

) = 0.

In the case of ζ ∈ C, since ẑk = zk /∈ C for k ∈ I \ {k0} when z tends to C, we also have

lim
z→C

Re

(
1

2πi

∫
C
γ(ζ)

(
dζ

ζ − zk
+

dζ

ζ − ẑk

))
= 0, ∀k ∈ I \ {k0}.

We only need to investigate the boundary integral on C for the terms zk0 and ẑk0 . For
z, ζ ∈ C, we have aζζ + bζ + bζ + c = 0, azẑ + bz + bẑ + c = 0 and ẑ = z. Then

dζ

ζ − z
+

dζ

ζ − ẑ
=

aζ + b

ζ − z

dζ

aζ + b
+

aζ + b

ζ − z

dζ

aζ + b

=

(
aζ + b

ζ − z
− aζ + b

ζ − z

)
dζ

aζ + b

=

(
aζ + b

ζ − z
− az + b

z − ζ

)
dζ

aζ + b

=
aζ + az + 2b

ζ − z

dζ

aζ + b
.

Then from the Schwarz integral formula (4.37) we know that

lim
z→C

Re

(
1

2πi

∫
C
γ(ζ)

(
dζ

ζ − zk0
+

dζ

ζ − ẑk0

))
=Re

(
1

2πi

∫
C
γ(ζ)

(
dζ

ζ − z
+

dζ

ζ − z

))
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=Re

(
1

2πi

∫
C
γ(ζ)

aζ + az + 2b

ζ − z

dζ

aζ + b

)
=γ.

Therefore we see that

lim
z→C

Re(w(z)) = lim
z→C

Re

(
1

2πi

∫
C
γ(ζ)

(
dζ

ζ − zk0
+

dζ

ζ − ẑk0

))
= γ(z).

This boundary behavior works for any boundary arc of ∂D, thus the boundary condition

lim
z→∂D

Re(w) = γ

holds.
Since the boundary problem

∂zu = 0 in D, Re(u) = 0 on ∂D

has only trivial solutions, namely, u(z) must be a pure imaginary constant. Therefore
every solution to the Schwarz problem differs from w(z) by a purely imaginary constant.

From Theorem 3.2.7 we see that the parqueting-reflection principle can be used to
construct harmonic Neumann functions for finite parqueting-reflection domains. Har-
monic Neumann functions help to solve the Neumann boundary value problems for the
Poisson equation. Although we do not have a general conclusion for the Neumann
problems in finite parqueting-reflection domains, we still see many successful examples
that harmonic Neumann functions produce explicit solutions to the Neumann problems
in particular domains. We will see in the next chapter that the parqueting-reflection
principle also works for solving the Neumann problems for a class of circular digons.
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Chapter 5

Boundary Value Problems in a
Class of Circular Digons

A circular digon in C∞ is a domain whose boundary is composed of two circular arcs
of C∞ with two intersection points, it is a circular polygon with two circular arcs and
two vertices. Figure 5.1 demonstrates all the four cases of circular digon domains.
They are lune domains, circular segment domains, lens domains and cones, respectively
corresponding to Figures 5.1a, 5.1b, 5.1c and 5.1d. In the last case, as seen in Figure
5.1d, the two boundary rays of a cone are considered to intersect at the corner point and
at infinity.

We focus on a class of circular digons. Let

Dα,θ := {z ∈ C | zz̄ − 1 < 0, zz̄ sin(α− θ) + z sin θ + z̄ sin θ − sin(α+ θ) > 0},

where 0 < α < π, 0 < θ ≤ π. Dα,θ is a circular digon with the two corner points
v± := e±iα and two boundary arcs

C0 := ∂Dα,θ ∩ {zz̄ sin(α− θ) + z sin θ + z̄ sin θ − sin(α+ θ) = 0},
C1 := ∂Dα,θ ∩ {zz̄ = 1}.

C0 and C1 intersect at the corner points v+ and v− with the intersection angle θ. C1 is a
part of the unit circle {|z| = 1}. If α = θ, {z sin θ+ z̄ sin θ− sin(α+ θ) = 0} is a straight

(a) (b) (c) (d)

Figure 5.1: Four cases of circular digons
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Figure 5.2: Dα,θ in the case of α > θ

line and C0 is the straight line segment connecting v+ and v−. In this case, Dα,θ looks
like Figure 5.1b. If α ̸= θ, C0 is a part of the circle whose center is c0 := sin θ/ sin(θ−α)
and radius is r0 := sinα/| sin(θ−α)|. If α > θ, the domain Dα,θ is a lune domain, while
for α < θ, Dα,θ is a lens domain. Figure 5.2 depicts the details of Dα,θ in the case of
α > θ.

In this chapter, we show that Dα,θ is a finite parqueting-reflection domain when
θ = π

n , n ∈ N∗, where N∗ denotes the set of positive integers. We obtain the harmonic
Green and Neumann functions for Dα,θ via parqueting-reflection principle. With the
help of harmonic Green and Neumann functions, we solve the Dirichlet and Neumann
boundary value problems for the Poisson equation in Dα,θ. We also solve the Schwarz
boundary value problem for the inhomogeneous Cauchy-Riemann equation in Dα,θ via
parqueting-reflection principle. Parts of the results are published in [19].

5.1 Parqueting of C∞ provided by Dα,θ

In this section, we are going to investigate the parqueting of the extended complex plane
provided by Dα,θ in the case of θ = π

n , n ∈ N∗.

Let D0 := Dα,θ. Reflecting D0 at C1 generates a new circular digon, denoted by
D1, and ∂D1 = C1 ∪ C2, where C2 is the image of C0 under the circle reflection at
C1. Carrying out consecutive reflections in anticlockwise direction produces a family
of circular digons {Dk}k∈N and a family of circular arcs {Ck}k∈N. (Reflecting Dk at
Ck+1 gives Dk+1.) The circular digon Dk is bounded by Ck−1 and Ck, namely ∂Dk =
Ck−1 ∪ Ck. This family of circular digons share the common corner points v±. Since
circle reflections preserve angles, every two adjacent circular arcs Ck−1 and Ck intersect
at v± with the same angle θ. In the case of θ = π/n, after operating 2n − 1 steps of
circle reflections, C2n coincides with C0 and D2n turns out to be D0. More generally,
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C2n+k = Ck and D2n+k = Dk for all k ∈ N. The circular arcs C0, C1, · · · , C2n−1 thus
divide the extended complex plane into 2n domains, which are just D0, D1, · · · , D2n−1.
Therefore the family of domains {D0, D1, · · · , D2n−1} provides a parqueting of C∞,
namely,

C∞ =

2n−1⋃
k=0

Dk, Dj ∩Dk = ∅ for j ̸= k.

So we have verified that Dα,θ is a finite parqueting domain.
The following lemma provides the associated matrices for the circular arcs {Ck}k∈N.

Lemma 5.1.1. Let Ak be an associated matrix of Ck. Then

Ak
H−
∼

(
− sin(α+ (k − 1)θ) sin(k − 1)θ

sin(k − 1)θ sin(α− (k − 1)θ)

)
, (5.1)

where “
H−
∼” is the equivalence relation on H− defined by (2.1).

Proof. We proceed with the proof by induction on k. It is easy to see that

A0 =

(
sin(α− θ) sin θ

sin θ − sin(α+ θ)

)
H−
∼

(
− sin(α− θ) sin(−θ)

sin(−θ) sin(α+ θ)

)
and

A1 =

(
1 0
0 −1

)
H−
∼

(
− sinα 0

0 sinα

)
.

So A0 and A1 both satisfy formula (5.1). Suppose that

Ak−2 =

(
− sin(α+ (k − 3)θ) sin(k − 3)θ

sin(k − 3)θ sin(α− (k − 3)θ)

)
,

and

Ak−1 =

(
− sin(α+ (k − 2)θ) sin(k − 2)θ

sin(k − 2)θ sin(α− (k − 2)θ)

)
.

Because Ck is obtained by reflecting Ck−2 at Ck−1, via Theorem 2.2.2 we validate that

Ak = Ak−1A
−1
k−2Ak−1

H−
∼

(
− sin(α+ (k − 1)θ) sin(k − 1)θ

sin(k − 1)θ sin(α− (k − 1)θ)

)
.

Let Rk denote the circle reflection at Ck, k ∈ Z. Let Inv(Dα,θ) be the group generated
by R0 and R1, the two circle reflections respectively at the two boundary arcs C0 and
C1 of the circular digon Dα,θ. Let M := R1 ◦R0. From Corollary 2.4.8 we see that

Inv(Dα,θ) =< R0, R1 >= {Mk, Mk ◦R0| k ∈ Z}.

Particularly, we see a result below for the case θ = π
n , n ∈ N∗.
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Lemma 5.1.2. If θ = π
n for some n ∈ N∗, then

Inv(Dα,θ) =< R0, R1 >= {Mk, Mk ◦R0| k = 0, 1, · · · , n− 1},

where M = R1 ◦R0.

Proof. The matrix associated with C0 is

A0 :=

(
sin(α− θ) sin(θ)
sin(θ) − sin(α+ θ)

)
,

and the matrix associated with C1 is

A1 :=

(
1 0
0 −1

)
.

M = R1 ◦R0 is a Möbius transformation, we also denote the matrix of M by M . Then
Theorem 2.3.6 implies that

M = A0A
−1
1 =

(
sin(α+ θ) sin(θ)
− sin(θ) − sin(α− θ)

)
.

It is easy to determine the eigenvalues of M , which are λ1 = sin(α)eiθ and λ2 =
sin(α)e−iθ. Then we see that(

sin(α)eiθ 0
0 sin(α)e−iθ

)n

=

(
(sin(α))neinθ 0

0 (sin(α))ne−inθ

)
= −(sin(α))n

(
1 0
0 1

)
if θ = π

n . It follows that Mn = Id. The Möbius transformation M generates a cyclic
group of order n. Therefore

Inv(Dα,θ) =< R0, R1 >= {Mk, Mk ◦R0| k = 0, 1, · · · , n− 1}.

We already know that the family of domains {D0, D1, · · · , D2n−1} provides a par-
queting of C∞ if θ = π

n , n ∈ N∗. Note that Dk = Rk(Dk−1). Theorem 2.4.5 implies
that

Mk(D0) =

 2k∏
j=1

Rj

 (D0) = D2k,

(Mk ◦R0)(D0) =

2k−1∏
j=1

Rj

 (D0) = D2k−1,
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for k = 0, 1, · · · , n− 1. Note that D−1 = D2n−1 and D0 = Dα,θ. Then

{g(Dα,θ)|g ∈ Inv(Dα,θ)} = {Mk(D0), (M
k ◦R0)(D0)|k = 0, 1, · · · , n− 1}

= {D0, D1, · · · , D2n−1}.

We have thus verified that Dα,θ is a finite parqueting-reflection domain.
Let z0 = z ∈ D0. The family of reflections {Rk|k ∈ N} produces a family of reflection

images {zk|k ∈ N}, zk = (Rk ◦ Rk−1 ◦ · · · ◦ R1)(z0) ∈ Dk. Particularly, z1 = R1(z0) =
1/z̄ ∈ D1. Via Theorem 2.4.3, Lemma 5.1.1 and Formula (2.2), we deduce that

Rk+1([1 : z̄]) = [1 : z̄]Ak+1

(
0 1
−1 0

)
= [−z sin(α− kθ)− sin kθ : z sin kθ − sin(α+ kθ)],

Rk+1([z : 1]) = [z : 1]Ak+1

(
0 1
−1 0

)
= [z̄ sin kθ + sin(α− kθ) : z̄ sin(α+ kθ)− sin kθ].

Therefore, we have

z2k = Rk+1(z1) =
−z sin(α− kθ)− sin kθ

z sin kθ − sin(α+ kθ)
(5.2)

and

z2k+1 = Rk+1(z0) =
z̄ sin kθ + sin(α− kθ)

z̄ sin(α+ kθ)− sin kθ
. (5.3)

Remark 5.1.3. In the case of θ = π/n, the relation z2n+k = zk holds. Besides, zk =
z2n−k−1 holds when z is in the circle C0, while z2k = z2k+1 holds when z lies on the
circle C1.

5.2 Schwarz problem for inhomogeneous Cauchy-Riemann
equation in Dα,θ

Since the circular digon Dα,θ is a finite parqueting-reflection domain, applying Theorem
4.4.2 to Dα,θ, we solve the Schwarz problem for the inhomogeneous Cauchy-Riemann
equation in Dα,θ.

Theorem 5.2.1. Given f ∈ Lp(Dα,θ;C), p > 2 and γ ∈ C(∂Dα,θ;R), the Schwarz
problem

∂zw = f in Dα,θ, Re(w) = γ on ∂Dα,θ

is solvable and the solutions are of the form

w(z) =
1

2πi

n−1∑
k=0

∫
∂Dα,θ

γ(ζ)

(
dζ

ζ − z2k
+

dζ

ζ − z2k+1

)

− 1

π

n−1∑
k=0

∫
Dα,θ

(
f(ζ)

ζ − z2k
− f(ζ)

ζ − z2k+1

)
dσζ + ic,

(5.4)

where c is a real constant.
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We show below the derivation of the Cauchy-Schwarz-Pompeiu integral formula for
Dα,θ by using parqueting-reflection principle.

According to the Cauchy-Pompeiu formula, for a function w(z) ∈ C1(Dα,θ,C) ∩
C(Dα,θ,C) the formula

1

2πi

∫
∂Dα,θ

w(ζ)
dζ

ζ − z
− 1

π

∫
Dα,θ

wζ(ζ)
dσζ
ζ − z

=

{
w(z), for z ∈ Dα,θ,

0, for z /∈ Dα,θ

(5.5)

holds. If z ∈ Dα,θ, among the reflection images z0, · · · , z2n−1, only z0 is located in Dα,θ,
all the other reflection images are outside Dα,θ. Thus we have

1

2πi

∫
∂Dα,θ

w(ζ)
dζ

ζ − z2k
− 1

π

∫
Dα,θ

wζ(ζ)
dσζ

ζ − z2k
=

{
w(z), k = 0,

0, k = 1, · · · , n− 1,
(5.6)

1

2πi

∫
∂Dα,θ

w(ζ)
dζ

ζ − z2k+1
− 1

π

∫
Dα,θ

wζ(ζ)
dσζ

ζ − z2k+1
= 0, for k = 0, · · · , n− 1. (5.7)

Taking the complex conjugate of the formulas for z2k+1 produces

− 1

2πi

∫
∂Dα,θ

w(ζ)
dζ

ζ − z2k+1

− 1

π

∫
Dα,θ

wζ(ζ)
dσζ

ζ − z2k+1

= 0, for k = 0, · · · , n− 1. (5.8)

Lemma 5.2.2. Let C := {ζ ∈ C| aζζ + bζ + bζ + c = 0} be a generalized circle, where
0 ≤ a ∈ R, b ∈ C, c ∈ R and ac− bb < 0. Let s be the arc length parameter of C, and let
R denote the reflection at C. Let z ∈ C and zre = R(z). Then for ζ ∈ C \ {z}, we have

dζ

ζ − zre
=

az + b

ζ − z

dζ

aζ + b
= i

az + b

ζ − z

ds√
bb− ac

.

Proof. We have

zre = R(z) = − bz + c

az + b

via the definition of circle reflections. If aζζ + bζ + bζ + c = 0, then

dζ

aζ + b
= − dζ

aζ + b

holds. Therefore

dζ

ζ − zre
= − aζ + b

ζ − zre

dζ

aζ + b
=

aζ + b
bζ+c
aζ+b −

bz+c
az+b

dζ

aζ + b
=

az + b

ζ − z

dζ

aζ + b
. (5.9)

If a > 0, C is a circle, and
dζ

aζ + b
= i

ds√
bb− ac

62



holds. Actually, this relation is also true for the case of a = 0. In this case, C is a
straight line, and we have

dζ

b
= i

ds

|b|
.

The second equality in the conclusion is thus guaranteed.

Let R0 denote the circle reflection at C0 and R1 denote the circle reflection at C1.
Via Corollary 2.4.4 we see that the reflection images satisfy the relations R0(zk) = z−k−1

and R1(zk) = z−k+1 for k ∈ Z. Note that zk = z2n+k holds. It follows that

R0(z2k+1) = z2n−2k−2, R1(z2k+1) = z2n−2k, k = 0, · · · , n− 1.

If ζ ∈ C0, i.e., ζζ̄ sin(α− θ)+ ζ sin θ+ ζ̄ sin θ− sin(α+ θ) = 0, applying Lemma 5.2.2
to the the family of formulas (5.8) we see that

1

2πi

∫
C0

w(ζ)
sin(α− θ)z2n−2k−2 + sin θ

ζ − z2n−2k−2

dζ

sin(α− θ)ζ + sin θ

+
1

2πi

∫
C1

w(ζ)
z2n−2k

ζ − z2n−2k

dζ

ζ
+

1

π

∫
Dα,θ

wζ(ζ)
dσζ

ζ − z2k+1

= 0

(5.10)

for k = 0, · · · , n− 1. Rewriting the formulas (5.6) produces

1

2πi

∫
C0

w(ζ)
sin(α− θ)ζ + sin θ

ζ − z2k

dζ

sin(α− θ)ζ + sin θ

+
1

2πi

∫
C1

w(ζ)
ζ

ζ − z2k

dζ

ζ
− 1

π

∫
Dα,θ

wζ(ζ)
dσζ

ζ − z2k
=

{
w(z), k = 0,

0, k = 1, · · · , n− 1.

(5.11)

Adding these two sets of formulas (5.10) and (5.11) produces the Cauchy-Schwarz-
Pompeiu representation formula for Dα,θ:

w(z) =
1

2π sinα

∫
C0

Re(w(ζ))

n−1∑
k=0

sin(α− θ)(ζ + z2k) + 2 sin θ

ζ − z2k
dsζ

+
1

2π

∫
C1

Re(w(ζ))

n−1∑
k=0

ζ + z2k
ζ − z2k

dsζ + i
n sin(α− θ)

2π sinα

∫
C0

Im(w(ζ))dsζ

+ i
n

2π

∫
C1

Im(w(ζ))dsζ −
1

π

∫
Dα,θ

n−1∑
k=0

(
wζ(ζ)

ζ − z2k
−

wζ(ζ)

ζ − z2k+1

)
dσζ .

(5.12)

5.3 Dirichlet problem for Poisson equation in Dα,θ

In this section we apply the parqueting-reflection principle for constructing the harmonic
Green function for Dα,θ and then solve the Dirichlet problem for the Poisson equation in
Dα,θ. Although the harmonic Green functions for finite parqueting-reflection domains
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have already been generally investigated in preceding chapters, it is still worthy to show
the details for this particular domain Dα,θ here.

Let

F̃ (z, ζ) :=
n−1∏
k=0

ζ − z2k+1

ζ − z2k
= F (z, ζ)

n−1∏
k=0

z sin kθ − sin(α+ kθ)

z̄ sin(α+ kθ)− sin kθ
,

where

F (z, ζ) =

n−1∏
k=0

z̄ζ sin(α+ kθ)− (z̄ + ζ) sin kθ − sin(α− kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

=
z̄ζ − 1

ζ − z

n−1∏
k=1

z̄ζ sin(α+ kθ)− (z̄ + ζ) sin kθ − sin(α− kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ
.

It is obvious that log |F (z, ζ)|2 as a function in the variable z is harmonic in Dα,θ \ {ζ},
and log |F (z, ζ)|2 + log |ζ − z|2 is harmonic in Dα,θ. Before showing that log |F (z, ζ)|2
vanishes on the boundary ∂Dα,θ, we firstly investigate some properties of F (z, ζ).

Lemma 5.3.1. If θ = π
n , then

n−1∏
k=0

∣∣∣ z sin kθ−sin(α+kθ)
z̄ sin(α+kθ)−sin kθ

∣∣∣ = 1 hold for z ∈ ∂Dα,θ.

Proof. In the case of z ∈ C0, zz̄ sin(α − θ) + z sin θ + z̄ sin θ − sin(α + θ) = 0 and

|z sin(α− θ) + sin θ| = sinα hold. Substituting z̄ by −z sin θ+sin(α+θ)
z sin(α−θ)+sin θ , we see that

n−1∏
k=0

∣∣∣∣z sin kθ − sin(α+ kθ)

z̄ sin(α+ kθ)− sin kθ

∣∣∣∣ = n−1∏
k=0

∣∣∣∣∣∣ z sin kθ − sin(α+ kθ)
−z sin θ+sin(α+θ)
z sin(α−θ)+sin θ sin(α+ kθ)− sin kθ

∣∣∣∣∣∣
=

n−1∏
k=0

∣∣∣∣ z sin kθ − sin(α+ kθ)

z sin(k + 1)θ − sin(α+ (k + 1)θ)

z sin(α− θ) + sin θ

sinα

∣∣∣∣
=

∣∣∣∣ − sinα

z sinnθ − sin(α+ nθ)

∣∣∣∣
nθ=π
===

∣∣∣∣ − sinα

z sinπ − sin(α+ π)

∣∣∣∣
= 1.

In the other case of z ∈ C1, the relation zz̄ = 1 implies that

n−1∏
k=0

∣∣∣∣z sin kθ − sin(α+ kθ)

z̄ sin(α+ kθ)− sin kθ

∣∣∣∣ = n−1∏
k=0

∣∣∣∣z sin kθ − sin(α+ kθ)

sin(α+ kθ)− z sin kθ

∣∣∣∣ = 1.

The conclusion holds for both cases.

From Remark 5.1.3 we know that lim
z→∂Dα,θ

F̃ (z, ζ) = 1. Then Lemma 5.3.1 ensures

that lim
z→∂Dα,θ

|F (z, ζ)| = 1. Thus, log |F (z, ζ)|2 vanishes on the boundary. Therefore the

harmonic Green function of Dα,θ is obtained, as stated in the following theorem.
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Theorem 5.3.2. The harmonic Green function of Dα,θ is G1(z, ζ) = log |F (z, ζ)|2.

We next discuss the Poisson kernel for Dα,θ.

Let p(z, ζ) := −1
2∂νζG1(z, ζ), where z ∈ Dα,θ and ζ ∈ ∂Dα,θ. It is called the Poisson

kernel of Dα,θ. We can calculate the expression of p(z, ζ) directly. First, we obtain that

∂ζG1(z, ζ) =−
n−1∑
k=0

z sin kθ − sin(α+ kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

+
n−1∑
k=0

z̄ sin(α+ kθ)− sin kθ

z̄ζ sin(α+ kθ)− z̄ sin kθ − ζ sin kθ − sin(α− kθ)
.

On the boundary arc C0 ⊂ {ζ ∈ C | ζζ̄ sin(α− θ) + ζ sin θ+ ζ̄ sin θ− sin(α+ θ) = 0}, the
outward normal vector is

νζ = −ζ sin(α− θ) + sin θ

sinα
,

and the outward normal derivative is

∂νζ = −
(
ζ sin(α− θ) + sin θ

sinα
∂ζ +

ζ̄ sin(α− θ) + sin θ

sinα
∂ζ̄

)
.

Especially, C0 is a line segment when α = θ. In this case we have νζ = −1 and
∂νζ = −∂ζ − ∂ζ̄ .

We can check that

ζ sin(α− θ) + sin θ

sinα

z sin kθ − sin(α+ kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

=
sin(α− θ)

sinα
− z sin(α− (k + 1)θ) + sin (k + 1)θ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ
.

Replacing ζ by −ζ̄ sin θ+sin(α+θ)

ζ sin(α−θ)+sin θ
in

z̄ sin(α+ kθ)− sin kθ

z̄ζ sin(α+ kθ)− (z̄ + ζ) sin kθ − sin(α− kθ)

gives

− z̄ sin(α+ kθ)− sin kθ

z̄ζ̄ sin (k + 1)θ − z̄ sin(α+ (k + 1)θ) + ζ̄ sin(α− (k + 1)θ) + sin (k + 1)θ

× ζ̄ sin(α− θ) + sin θ

sinα
,
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which implies that

ζ sin(α− θ) + sin θ

sinα

z̄ sin(α+ kθ)− sin kθ

z̄ζ sin(α+ kθ)− (z̄ + ζ) sin kθ − sin(α− kθ)

=− z̄ sin(α+ kθ)− sin kθ

z̄ζ̄ sin (k + 1)θ − z̄ sin(α+ (k + 1)θ) + ζ̄ sin(α− (k + 1)θ) + sin (k + 1)θ

× |ζ sin(α− θ) + sin θ|2

sin2 α

=− z̄ sin(α+ kθ)− sin kθ

z̄ζ̄ sin (k + 1)θ − z̄ sin(α+ (k + 1)θ) + ζ̄ sin(α− (k + 1)θ) + sin (k + 1)θ
.

Let l := n− k − 1. Since nθ = π, we have

ζ sin(α− θ) + sin θ

sinα

z̄ sin(α+ kθ)− sin kθ

z̄ζ sin(α+ kθ)− (z̄ + ζ) sin kθ − sin(α− kθ)

=
z̄ sin(α− (l + 1)θ) + sin (l + 1)θ

z̄ζ̄ sin lθ + z̄ sin(α− lθ)− ζ̄ sin(α+ lθ) + sin lθ
.

Then it follows that

ζ sin(α− θ) + sin θ

sinα
∂ζG1(z, ζ)

=− n sin(α− θ)

sinα
+ 2

n−1∑
k=0

Re

(
z sin(α− (k + 1)θ) + sin (k + 1)θ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)
.

Thus in the case of ζ ∈ C0, the Poisson kernel of Dα,θ is

p(z, ζ)

=− 1

2
∂νζG1(z, ζ)

=Re

(
ζ sin(α− θ) + sin θ

sinα
∂ζG1(z, ζ)

)
=− n sin(α− θ)

sinα
+ 2

n−1∑
k=0

Re

(
z sin(α− (k + 1)θ) + sin (k + 1)θ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)
.
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On the other boundary arc C1, the outward normal derivative is ∂νζ = ζ∂ζ + ζ̄∂ζ̄ . Then

ζ∂ζG1(z, ζ)

=−
n−1∑
k=0

zζ sin kθ − ζ sin(α+ kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

+
n−1∑
k=0

z̄ζ sin(α+ kθ)− ζ sin kθ

z̄ζ sin(α+ kθ)− z̄ sin kθ − ζ sin kθ − sin(α− kθ)

ζζ̄=1
===

n−1∑
k=0

(
−1 +

z sin(α− kθ) + sin kθ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)

+
n−1∑
k=0

z̄ sin(α+ kθ)− sin kθ

z̄ sin(α+ kθ)− z̄ζ̄ sin kθ − sin kθ − ζ̄ sin(α− kθ)

l:=n−k
nθ=π====− n+

n−1∑
k=0

z sin(α− kθ) + sin kθ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

+

n∑
l=1

z̄ sin(α− lθ) + sin lθ

z̄ζ̄ sin lθ + z̄ sin(α− lθ)− ζ̄ sin(α+ lθ) + sin lθ

=− n+ 2

n−1∑
k=0

Re

(
z sin(α− kθ) + sin kθ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)
.

Thus in the case of ζ ∈ C1, the Poisson kernel of Dα,θ is

p(z, ζ)

=− Re(ζ∂ζG1(z, ζ))

=n− 2
n−1∑
k=0

Re

(
z sin(α− kθ) + sin kθ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)
.

Remark 5.3.3. The definition of p(z, ζ) can be extended to Dα,θ × ∂Dα,θ. When
z ∈ ∂Dα,θ, we have ∂ζG1(z, ζ) = 0 because G1(z, ζ) vanishes on the boundary. Therefore
p(z, ζ) = 0 holds when z, ζ ∈ ∂Dα,θ and z ̸= ζ.

Further investigation about the boundary behavior of the Poisson kernel p(z, ζ) is
necessary. Let g0(z, ζ) be the harmonic Green function for the domain

{ζ ∈ C | ζζ̄ sin(α− θ) + ζ sin θ + ζ̄ sin θ − sin(α+ θ) > 0},

and p0(z, ζ) be the corresponding Poisson kernel. It is easy to check that

g0(z, ζ) = log

∣∣∣∣ z̄ζ sin(α− θ) + z̄ sin θ + ζ sin θ − sin(α+ θ)

(z − ζ) sinα

∣∣∣∣2 ,
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p0(z, ζ) = −1

2
∂νζg0(z, ζ) = −sin(α− θ)

sinα
+ 2Re

(
z sin(α− θ) + sin θ

(z − ζ) sinα

)
.

Denote the harmonic Green function and the Poisson kernel for the unit disk {ζ ∈
C
∣∣ |ζ| ≤ 1} respectively by g1(z, ζ) and p1(z, ζ). It is well known that

g1(z, ζ) = log

∣∣∣∣ z̄ζ − 1

z − ζ

∣∣∣∣2 ,

p1(z, ζ) = −1

2
∂νζg1(z, ζ) =

ζ

ζ − z
+

ζ

ζ − z
− 1 = 1− 2Re

(
z

z − ζ

)
.

With these notations, a boundary property of p(z, ζ) is shown in the next lemma.

Lemma 5.3.4. 
lim
z→C0
z∈Dα,θ

p(z, ζ) = lim
z→C0
z∈Dα,θ

p0(z, ζ), if ζ ∈ C0,

lim
z→C1
z∈Dα,θ

p(z, ζ) = lim
z→C1
z∈Dα,θ

p1(z, ζ), if ζ ∈ C1

Proof. If z tends to C0, replacing z by −z̄ sin θ+sin(α+θ)
z̄ sin(α−θ)+sin θ gives

∂ζG1(z, ζ)− ∂ζg0(z, ζ)

=−
n−1∑
k=1

z̄ sin(α+ (k − 1)θ)− sin (k − 1)θ

z̄ζ sin(α+ (k − 1)θ)− z̄ sin (k − 1)θ − ζ sin (k − 1)θ − sin(α− (k − 1)θ)

+
n−2∑
k=0

z̄ sin(α+ kθ)− sin kθ

z̄ζ sin(α+ kθ)− z̄ sin kθ − ζ sin kθ − sin(α− kθ)

=0.

Hence ∂νζG1(z, ζ)− ∂νζg0(z, ζ) = 0 when z tends to C0. Likewise, if z tends to C1, then
via substituting z̄ by 1/z, we see that

∂ζG1(z, ζ)− ∂ζg1(z, ζ)

=−
n−1∑
k=1

z sin kθ − sin(α+ kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

+
n−1∑
k=1

z̄ sin(α+ kθ)− sin kθ

z̄ζ sin(α+ kθ)− z̄ sin kθ − ζ sin kθ − sin(α− kθ)

=0.

Hence ∂νζG1(z, ζ)− ∂νζg1(z, ζ) = 0 follows when z goes to C1.
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By the above discussion, we deduce that, for ζ ∈ C0

lim
z→C0
z∈Dα,θ

p(z, ζ) = lim
z→C0
z∈Dα,θ

p0(z, ζ),

while for ζ ∈ C1

lim
z→C1
z∈Dα,θ

p(z, ζ) = lim
z→C1
z∈Dα,θ

p1(z, ζ).

Then the following result is obtained from Remark 5.3.3 and Lemma 5.3.4.

Theorem 5.3.5. Given γ ∈ C(∂Dα,θ;C), the boundary behavior

lim
z→z̃

z∈Dα,θ

1

2π

∫
∂Dα,θ

γ(ζ)p(z, ζ)dsζ = γ(z̃)

holds for any z̃ ∈ ∂Dα,θ.

With the properties of Green function and the result of Theorem 5.3.5, the Green
representation formula succeeds in giving the solution to the Dirichlet boundary problem
for the Poisson equation in the domain Dα,θ, as shown in the next theorem.

Theorem 5.3.6. The Dirichlet problem wzz̄ = f in Dα,θ, w = γ on ∂Dα,θ for f ∈
Lp(Dα,θ;C), p > 2, γ ∈ C(∂Dα,θ,C) has a unique solution, which is provided by

w(z) = − 1

4π

∫
∂Dα,θ

γ(ζ)∂νζG1(z, ζ)dsζ −
1

π

∫
Dα,θ

f(ζ)G1(z, ζ)dξdη.

5.4 Neumann problem for Poisson equation in Dα,θ

To construct a harmonic Neumann function for Dα,θ, we start with a function given by

Q̃(z, ζ) :=

n−1∏
k=0

(ζ − z2k)(ζ − z2k+1).

Via multiplying Q̃(z, ζ) by the product of all the denominators appearing in the zk terms,
we obtain a new function

Q(z, ζ) :=

n−1∏
k=0

(z̄ζ sin(α+ kθ)− (z̄ + ζ) sin kθ − sin(α− kθ))

×
n−1∏
k=0

(zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ).

From Theorem 3.2.7 we know that N1(z, ζ) := − log |Q(z, ζ)|2 is a harmonic Neumann
function for Dα,θ.

We see below some properties of the normal derivatives of N1(z, ζ) on the boundary
∂Dα,θ.
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Lemma 5.4.1.

∂νzN1(z, ζ) =

{
2n sin(α−θ)

sinα , for z ∈ C0, ζ ∈ Dα,θ \ {z},
−2n, for z ∈ C1, ζ ∈ Dα,θ \ {z}.

Proof. The outward normal derivative can be calculated straightforwardly. Note that

∂zN1(z, ζ) =−
n−1∑
k=0

ζ sin kθ + sin(α− kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

−
n−1∑
k=0

ζ̄ sin(α+ kθ)− sin kθ

zζ̄ sin(α+ kθ)− (z + ζ̄) sin kθ − sin(α− kθ)
.

In the case of z ∈ C1, zz̄ = 1 holds and we have

z∂zN1(z, ζ)

=−
n−1∑
k=0

zζ sin kθ + z sin(α− kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

−
n−1∑
k=0

zζ̄ sin(α+ kθ)− z sin kθ

zζ̄ sin(α+ kθ)− (z + ζ̄) sin kθ − sin(α− kθ)

=−
n−1∑
k=0

(
1 +

ζ sin(α+ kθ)− sin kθ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)

+

n−1∑
k=0

ζ̄ sin(α+ kθ)− sin kθ

z̄ζ̄ sin(kθ) + z̄ sin(α− kθ)− ζ̄ sin(α+ kθ) + sin kθ

=− n− 2i
n−1∑
k=0

Im

(
ζ sin(α+ kθ)− sin kθ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)
.

Thereby for z ∈ C1 and ζ ∈ Dα,θ \ {z}, the normal derivative of N1(z, ζ) with respect
to z is

∂νzN1(z, ζ) = z∂zN1(z, ζ) + z̄∂z̄N1(z, ζ) = 2Re(z∂zN1(z, ζ)) = −2n.

In the other case of z ∈ C0, the operator of outward normal derivative is

∂νz = −
(
z sin(α− θ) + sin θ

sinα
∂z +

z̄ sin(α− θ) + sin θ

sinα
∂z̄

)
.

Note that

z sin(α− θ) + sin θ

sinα

ζ sin kθ + sin(α− kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

=
sin(α− θ)

sinα
+

ζ sin(α+ (k − 1)θ)− sin (k − 1)θ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ
.
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Replacing z by −z̄ sin θ+sin(α+θ)
z̄ sin(α−θ)+sin θ in

ζ̄ sin(α+ kθ)− sin kθ

zζ̄ sin(α+ kθ)− (z + ζ̄) sin kθ − sin(α− kθ)

gives

− ζ̄ sin(α+ kθ)− sin kθ

z̄ζ̄ sin (k + 1)θ + z̄ sin(α− (k + 1)θ)− ζ̄ sin(α+ (k + 1)θ) + sin (k + 1)θ

× z̄ sin(α− θ) + sin θ

sinα
.

Then we have

z sin(α− θ) + sin θ

sinα

ζ̄ sin(α+ kθ)− sin kθ

zζ̄ sin(α+ kθ)− (z + ζ̄) sin kθ − sin(α− kθ)

=− ζ̄ sin(α+ kθ)− sin kθ

z̄ζ̄ sin (k + 1)θ + z̄ sin(α− (k + 1)θ)− ζ̄ sin(α+ (k + 1)θ) + sin (k + 1)θ
.

Hence

z sin(α− θ) + sin θ

sinα
∂zN1(z, ζ)

= −n sin(α− θ)

sinα
−

n−1∑
k=0

ζ sin(α+ (k − 1)θ)− sin (k − 1)θ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

+

n−1∑
k=0

ζ̄ sin(α+ kθ)− sin kθ

z̄ζ̄ sin (k + 1)θ + z̄ sin(α− (k + 1)θ)− ζ̄ sin(α+ (k + 1)θ) + sin (k + 1)θ

= −n sin(α− θ)

sinα
− 2i

n−1∑
k=0

Im

(
ζ sin(α+ (k − 1)θ)− sin (k − 1)θ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)
follows, from which we know that, for z ∈ C0 and ζ ∈ Dα,θ \ {z},

∂νzN1(z, ζ) = −2Re

(
z sin(α− θ) + sin θ

sinα
∂zN1(z, ζ)

)
=

2n sin(α− θ)

sinα
.

Remark 5.4.2. Let σ(s) := ∂νzN1(z, ζ), z = z(s) ∈ ∂Dα,θ and ζ ∈ Dα,θ \ {z}, where s
is the arc length parameter. Then restating the result of Lemma 5.4.1 gives

σ(s) =

{
2n sin(α−θ)

sinα , for z(s) ∈ C0,

−2n, for z(s) ∈ C1.

Formula (3.13) implies that

∂νζN1(z, ζ) =

{
2n sin(α−θ)

sinα , for ζ ∈ C0,

−2n, for ζ ∈ C1.
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Therefore σ(s) = ∂νζN1(z, ζ) holds for ζ = ζ(s) ∈ ∂Dα,θ. Moreover, we have

− 1

4π

∫
∂Dα,θ

σ(s)ds =− 1

4π

(
2n sin(α− θ)

sinα

∫
C0

ds− 2n

∫
C1

ds

)
=− 1

4π
(4n(α− θ)− 4nα)

=1.

Remark 5.4.3. We are not sure if our Neumann function N1(z, ζ) satisfies the nor-
malization condition (N4) in Remark 1.1.17. However, we conjecture that the integral∫
∂Dα,θ

σ(s)N1(z, ζ)dsζ is constant for z ∈ Dα,θ. If this conjecture can be verified, sup-

pose that the constant is K, then N1(z, ζ) −K will be the unique harmonic Neumann
function of Dα,θ satisfying the normalization condition.

Lemma 5.4.4. For ζ ∈ C0,

lim
z→C0
z∈Dα,θ

{
Re

(
−z sin(α− θ) + sin θ

sinα
∂zN1(z, ζ)

)
− p0(z, ζ)

}
=

n sin(α− θ)

sinα
;

while for ζ ∈ C1,

lim
z→C1
z∈Dα,θ

{Re(z∂zN1(z, ζ))− p1(z, ζ)} = −n.

Proof. For ζ ∈ C0,

−z sin(α− θ) + sin θ

sinα
∂zN1(z, ζ) = 2

z sin(α− θ) + sin θ

(z − ζ) sinα
+ T0(z, ζ),

where

T0(z, ζ) =
n−1∑
k=1

ζ sin kθ + sin(α− kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

+
n−2∑
k=0

ζ̄ sin(α+ kθ)− sin kθ

zζ̄ sin(α+ kθ)− (z + ζ̄) sin kθ − sin(α− kθ)
.

From the proof of Lemma 5.4.1, we see that T0(z, ζ) tends to

(n− 1) sin(α− θ)

sinα
− 2i

n−1∑
k=1

Im

(
ζ sin(α+ (k − 1)θ)− sin (k − 1)θ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)
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when z tends to C0. Hence

lim
z→C0
z∈Dα,θ

Re

(
−z sin(α− θ) + sin θ

sinα
∂zN1(z, ζ)

)

= lim
z→C0
z∈Dα,θ

2Re
z sin(α− θ) + sin θ

(z − ζ) sinα
+

(n− 1) sin(α− θ)

sinα

= lim
z→C0
z∈Dα,θ

p0(z, ζ) +
n sin(α− θ)

sinα
.

For ζ ∈ C1,

z∂zN1(z, ζ) = − 2z

z − ζ
− T1(z, ζ),

where

T1(z, ζ) =

n−1∑
k=1

ζ sin kθ + sin(α− kθ)

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

+
n−1∑
k=1

ζ̄ sin(α+ kθ)− sin kθ

zζ̄ sin(α+ kθ)− (z + ζ̄) sin kθ − sin(α− kθ)
.

When z tends to C1, T1(z, ζ) turns out to be

(n− 1) + 2i
n−1∑
k=1

Im

(
ζ sin(α+ kθ)− sin kθ

zζ sin kθ + z sin(α− kθ)− ζ sin(α+ kθ) + sin kθ

)
,

which is also shown in the proof of Lemma 5.4.1. Therefore for ζ ∈ C1,

lim
z→C1
z∈Dα,θ

Re(z∂zN1(z, ζ)) = − lim
z→C1
z∈Dα,θ

2Re
z

z − ζ
− (n− 1) = lim

z→C1
z∈Dα,θ

p1(z, ζ)− n.

Now we are ready to solve the Neumann boundary problem for the Poisson equation
in Dα,θ.

Theorem 5.4.5. For f ∈ Lp(Dα,θ;C), p > 2 and γ ∈ C(∂Dα,θ,C), the Neumann
boundary problem

wzz̄ = f in Dα,θ, ∂νzw = γ on ∂Dα,θ except for the two corner points,

is solvable if and only if ∫
∂Dα,θ

γ(ζ)dsζ = 4

∫
Dα,θ

f(ζ)dξdη.
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The solutions are of the form

w(z) = c+
1

4π

∫
∂Dα,θ

γ(ζ)N1(z, ζ)dsζ −
1

π

∫
Dα,θ

f(ζ)N1(z, ζ)dξdη,

where c is an arbitrary constant in C.

Proof. We know that − 1
πN1(z, ζ) is a fundamental solution to the Poisson equation, and

the boundary integral
∫
∂Dα,θ

γ(ζ)N1(z, ζ)dsζ is harmonic in Dα,θ. It immediately implies

that wzz̄ = f . The normal derivative of w(z) is

∂νzw(z) =
1

4π

∫
∂Dα,θ

γ(ζ)∂νzN1(z, ζ)dsζ −
1

π

∫
Dα,θ

f(ζ)∂νzN1(z, ζ)dξdη.

On the basis of Lemma 5.4.1 and Lemma 5.4.4, if z̃ ∈ C0,

lim
z→z̃

z∈Dα,θ

∂νzw(z) = γ(z̃) +
2n sin(α− θ)

sinα

(
1

4π

∫
∂Dα,θ

γ(ζ)dsζ −
1

π

∫
Dα,θ

f(ζ)dξdη

)
,

if z̃ ∈ C1,

lim
z→z̃

z∈Dα,θ

∂νzw(z) = γ(z̃)− 2n

(
1

4π

∫
∂Dα,θ

γ(ζ)dsζ −
1

π

∫
Dα,θ

f(ζ)dξdη

)
.

Then ∂νzw(z) = γ(z) on ∂Dα,θ if and only if∫
∂Dα,θ

γ(ζ)dsζ = 4

∫
Dα,θ

f(ζ)dξdη. (5.13)

Hence the function w(z) solves the Neumann problem if and only if the solubility con-
dition (5.13) is satisfied.

Suppose ϕ(z) also solves the Neumann problem, then ϕ(z) − w(z) is harmonic in
Dα,θ and its normal derivative vanishes on ∂Dα,θ. It implies that ϕ(z) − w(z) must be
a constant.

To sum up, if the Neumann problem is solvable, all the solutions are of the form

w(z) = c+
1

4π

∫
∂Dα,θ

γ(ζ)N1(z, ζ)dsζ −
1

π

∫
Dα,θ

f(ζ)N1(z, ζ)dξdη,

where c is a complex number.
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Chapter 6

Boundary Value Problems in a
Circular Rectangle

We have shown that the parqueting-reflection principle can be used to construct har-
monic Green and Neumann functions for finite parqueting-reflection domains and also
help to solve Schwarz Problem and Dirichlet problem for finite parqueting-reflection do-
mains. Although it is still unclear if the parqueting-reflection principle generally works
for infinite parqueting domains, we have seen some successful examples, see e.g. [5, 10,
23, 26]. In this chapter, we show an example of infinite parqueting-reflection domains
and verify that the parqueting-reflection principle method is feasible for this example.

The four circles |z − 1| =
√
2, |z + 1| =

√
2, |z −

√
3i| =

√
2 and |z +

√
3i| =

√
2 in

the complex plane bound a circular rectangle

R := {z ∈ C | |z ± 1| <
√
2 < |z ±

√
3i|},

see Figure 6.1. We are going to show that R is a parqueting-reflection domain, apply the
parqueting-reflection principle for constructing the harmonic Green function of R and
then solve the Dirichlet problem for the Poisson equation in R.

6.1 A family of circles {|z −mki| = rk,m
2
k = r2k + 1}k∈Z

Lemma 6.1.1. The image of the circle C1 := {z ∈ C | |z − m1i| = r1,m
2
1 = r21 + 1}

under the reflection at another circle C2 := {z ∈ C | |z −m2i| = r2,m
2
2 = r22 + 1} is the

circle C3 := {z ∈ C | |z −m3i| = r3,m
2
3 = r23 + 1} with the relations

m3 =
α1m2 + β1
β1m2 + α1

, r3 =
r1r

2
2

|β1m2 + α1|
,

where α1 = m1m2 − 1, β1 = m1 −m2.

Proof. By Lemma 2.2.2 we see that the matrix associated with C3 is(
1 im2

−im2 1

)(
1 im1

−im1 1

)−1(
1 im2

−im2 1

)
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Figure 6.1: Circular rectangle R

H−
∼

(
(m1 −m2)m2 + (m1m2 − 1) ((m1m2 − 1)m2 + (m1 −m2))i

−((m1m2 − 1)m2 + (m1 −m2))i (m1 −m2)m2 + (m1m2 − 1)

)
.

Here “
H−
∼” means the equivalence relation on H−, as introduced in Section 2.1. Let

α1 := m1m2 − 1, β1 := m1 −m2, and m3 :=
α1m2+β1

β1m2+α1
. The center of C3 is

(m1m2 − 1)m2 + (m1 −m2)

(m1 −m2)m2 + (m1m2 − 1)
i = m3i,

and the radius is

r3 =
√
m2

3 − 1 =

√
m2

1 − 1(m2
2 − 1)

|(m1 −m2)m2 + (m1m2 − 1)|
=

r1r
2
2

|β1m2 + α1|
.

By this lemma, we see that reflecting the circle |z+
√
3i| =

√
2 at the circle |z−

√
3i| =√

2 results in the circle |z − 3
√
3

5 i| =
√
2
5 . Let m1 :=

√
3, r1 :=

√
2, m2 := 3

√
3

5 , and

r2 :=
√
2
5 . By operating consecutive reflections in the upward direction of R, a family of

circles {|z −mki| = rk, m
2
k = r2k + 1}k∈N∗ is produced. More specifically, reflecting the

circle |z−mki| = rk at the circle |z−mk+1i| = rk+1 results in the circle |z−mk+2i| = rk+2.
Lemma 6.1.1 ensures that

m2
k = r2k + 1, mk+2 =

αkmk+1 + βk
βkmk+1 + αk

,

where αk = mkmk+1 − 1, βk = mk −mk+1, k ∈ N∗.
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Remark 6.1.2. Actually, we can verify that βk
αk

is constant, namely,

q :=
βk
αk

=
β1
α1

=

√
3

2
for k ∈ N∗.

It follows from

αk+1

βk+1
=

mk+1mk+2 − 1

mk+1 −mk+2
=

mk+1
αkmk+1+βk

βkmk+1+αk
− 1

mk+1 − αkmk+1+βk

βkmk+1+αk

=
αk(m

2
k+1 − 1)

βk(m
2
k+1 − 1)

=
αk

βk
.

We thus have an iterating formula for mk, namely, for k ∈ N∗,

mk+1 =
mk + q

qmk + 1
. (6.1)

Lemma 6.1.3. The sequence (mk)k∈N∗ decreases monotonically to the limit 1. More-
over,

0 < mk+1 − 1 < (1− q)k(m1 − 1),

where q =
√
3
2 , for all k ∈ N∗.

Proof. Remark 6.1.2 immediately implies that

mk+1 − 1 =
mk + q

qmk + 1
− 1 =

(1− q)(mk − 1)

qmk + 1
.

It is easy to see that mk − 1 > 0 for all k ∈ N∗ by induction. Then the estimate

mk+1 − 1 =
(1− q)(mk − 1)

qmk + 1
< (1− q)(mk − 1)

follows. It shows that the sequence (mk − 1)k∈N∗ is monotonically decreasing with limit
0, which implies the conclusion.

We consider analogously the consecutive circle reflections in the downward direction.
Reflecting the circle |z −

√
3i| =

√
2 at the circle |z +

√
3i| =

√
2 results in the circle

|z + 3
√
3

5 i| =
√
2
5 . Let m−1 := −

√
3, r−1 :=

√
2, m−2 := −3

√
3

5 , and r−2 :=
√
2
5 .

Consecutive downward reflections produce a sequence of circles {|z −m−ki| = r−k}k∈N∗

with the relations

m2
−k = r2−k + 1,

m−(k+2) =
(m−km−(k+1) − 1)m−(k+1) + (m−k −m−(k+1))

(m−k −m−(k+1))m−(k+1) + (m−km−(k+1) − 1)
.

The iterating formula implies that

m−k −m−(k+1)

1−m−km−(k+1)
=

m−1 −m−2

1−m−1m−2
=

√
3

2
= q, ∀k ∈ N∗.
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Then we have

m−(k+1) =
−m−k + q

qm−k − 1
, or equivalently, m−k =

m−(k+1) + q

qm−(k+1) + 1

for k ∈ N∗. Moreover, we can verify the relations

m−k = −mk,∀k ∈ N∗ (6.2)

by mathematical induction.
Actually, from the iterating formula (6.1) and the first term m1, an explicit formula

for mk can be derived.

Lemma 6.1.4. For k ∈ N∗, mk = (2+
√
3)2k−1+1

(2+
√
3)2k−1−1

and m−k = (2+
√
3)2k−1+1

1−(2+
√
3)2k−1 .

Proof. The iterating formula (6.1) can be rewritten in the form of homogenous coordi-
nates as

[mk+1 : 1] = [mk : 1]

(
1 q
q 1

)
.

Then we have

[mk : 1] = [m1 : 1]

(
1 q
q 1

)k−1

.

By the Jordan normal decomposition(
1 q
q 1

)
=

(
−

√
2
2

√
2
2√

2
2

√
2
2

)(
1− q 0
0 1 + q

)(
−

√
2
2

√
2
2√

2
2

√
2
2

)
,

the calculation for the matrix power can be easily achieved, namely,

(
1 q
q 1

)k−1

=

(
−

√
2
2

√
2
2√

2
2

√
2
2

)(
(1− q)k−1 0

0 (1 + q)k−1

)(
−

√
2
2

√
2
2√

2
2

√
2
2

)

=
1

2

(
(1 + q)k−1 + (1− q)k−1 (1 + q)k−1 − (1− q)k−1

(1 + q)k−1 − (1− q)k−1 (1 + q)k−1 + (1− q)k−1

)
.

Then we have

mk =
[(1+q

1−q )
k−1 + 1]m1 + [(1+q

1−q )
k−1 − 1]

[(1+q
1−q )

k−1 − 1]m1 + [(1+q
1−q )

k−1 + 1]
.

Inserting q =
√
3
2 and m1 =

√
3 results in the formula

mk =
(2 +

√
3)2k−1 + 1

(2 +
√
3)2k−1 − 1

. (6.3)

From the relation m−k = −mk we immediately get the formula

m−k =
(2 +

√
3)2k−1 + 1

1− (2 +
√
3)2k−1

. (6.4)
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Because the circle |z−1| =
√
2 is both perpendicular to |z−m1i| = r1 and |z−m−1i| =

r−1, so it is perpendicular to |z−mki| = rk for each k ∈ Z\{0}. Analogously, |z+1| =
√
2

is perpendicular to |z −mki| = rk for each k ∈ Z \ {0}. These facts are based on angle-
preserving property of circle reflections, and they will be applied in the following sections.

6.2 Parqueting of C∞ provided by R

Let

C l
0 := {z ∈ C | |z − 1| =

√
2} ∩R,

Cr
0 := {z ∈ C | |z + 1| =

√
2} ∩R,

C1 := {z ∈ C | |z −
√
3i| =

√
2} ∩R,

C−1 := {z ∈ C | |z +
√
3i| =

√
2} ∩R,

denote respectively the four boundary arcs of R, namely, ∂R = C l
0 ∪Cr

0 ∪C−1 ∪C1. Let
D0 = R. Reflecting D0 at its upper boundary C1 produces a new circular rectangle,
denoted by D1. Suppose that C l

0, C
r
0 and C−1 are reflected respectively to C l

1, C
r
1 and

C2, then ∂D1 = C l
1 ∪ Cr

1 ∪ C1 ∪ C2. Operating consecutive reflections in the upward
direction results in a family of circular rectangles {Dk}k∈N∗ . Let C l

k ∪ Cr
k ∪ Ck ∪ Ck+1

denote the boundary of Dk. We next repeat the procedure of consecutive reflections in
the downward direction. Reflecting D0 at its lower boundary C−1 produces a circular
rectangle, say D−1, ∂D−1 = C l

−1 ∪ Cr
−1 ∪ C−1 ∪ C−2. Consecutive reflections in the

downward direction generate a family of circular rectangles, say D−k, k ∈ N∗. Let
C l
−k ∪ Cr

−k ∪ C−k ∪ C−k−1 be the boundary of D−k. With the above notations, Ck is a
circular arc of the circle |z−mki| = rk for k ∈ Z\{0}. On the basis of the orthogonality
for the boundary arcs of R, the two circles |z − 1| =

√
2 and |z + 1| =

√
2 are mapped

respectively to themselves under the reflection at circle |z−mki| = rk for each k ∈ Z\{0}.
This implies that C l

k is a circular arc of the circle |z− 1| =
√
2 while Cr

k is a circular arc
of the circle |z + 1| =

√
2 for each k ∈ Z. we therefore see that

Dk = {z ∈ C | |z ± 1| <
√
2, |z −mki| < rk, |z −mk+1i| > rk+1},

D−k = {z ∈ C | |z ± 1| <
√
2, |z +mki| < rk, |z +mk+1i| > rk+1},

for k ∈ N∗.
From Lemma 6.1.3 and the fact m−k = −mk, we know that the sequence (mk)k∈N∗

decreases monotonically to the limit 1 and (m−k)k∈N∗ increases monotonically to the
limit −1. It then implies that the sequences (rk)k∈N∗ and (r−k)k∈N∗ are both decreasing
with limit 0. When k tends towards +∞, the centers of circles |z −mki| = rk converge
to the point i and theirs radii decrease to 0, in the meantime, the centers of circles
|z+mki| = rk converge to the point −i. Note that i and −i are just the two intersection
points of the two circles |z±1| =

√
2. Thereby we see that a family of domains {Dk}k∈Z

provides a parqueting of the lens domain

L0 := {z ∈ C | |z ± 1| <
√
2},
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namely,

L0 =
⋃
k∈Z

Dk.

The orthogonality of the two circles |z − 1| =
√
2 and |z + 1| =

√
2 guarantees a

parqueting of the extended complex plane provided by L0. Let

L1 := {z ∈ C | |z − 1| <
√
2, |z + 1| >

√
2},

L2 := {z ∈ C | |z − 1| >
√
2, |z + 1| >

√
2} ∪ {∞},

L3 := {z ∈ C | |z − 1| >
√
2, |z + 1| <

√
2}.

We see that L1 is the reflection of L0 at the circle |z + 1| =
√
2, L2 is the reflection of

L1 at the circle |z − 1| =
√
2, and L3 is the reflection of L2 at the circle |z + 1| =

√
2.

Actually L3 can also be produced by reflecting L0 at the circle |z − 1| =
√
2. Then

the four domains L0, L1, L2 and L3 build a parqueting of the extended complex plane,
namely,

C∞ = L0 ∪ L1 ∪ L2 ∪ L3.

Based on the above investigation, a parqueting for C∞ can be achieved by reflections
starting from the initial domain R. Let Dl

k denote the reflection of Dk at the circle
|z − 1| =

√
2, Dr

k denote the reflection of Dk at the circle |z + 1| =
√
2, and D′

k be the
reflection of Dr

k at the circle |z − 1| =
√
2. All these domains are determined, namely,

Dl
0 = {z ∈ C | |z + 1| <

√
2 < |z − 1|, |z +

√
3i| >

√
2, |z −

√
3i| >

√
2},

Dr
0 = {z ∈ C | |z − 1| <

√
2 < |z + 1|, |z +

√
3i| >

√
2, |z −

√
3i| >

√
2},

D′
0 = {z ∈ C | |z ± 1| >

√
2, |z +

√
3i| >

√
2, |z −

√
3i| >

√
2} ∪ {∞},

and for k ∈ N∗

Dl
k = {z ∈ C | |z + 1| <

√
2 < |z − 1|, |z −mki| < rk, |z −mk+1i| > rk+1},

Dl
−k = {z ∈ C | |z + 1| <

√
2 < |z − 1|, |z +mki| < rk, |z +mk+1i| > rk+1},

Dr
k = {z ∈ C | |z − 1| <

√
2 < |z + 1|, |z −mki| < rk, |z −mk+1i| > rk+1},

Dr
−k = {z ∈ C | |z − 1| <

√
2 < |z + 1|, |z +mki| < rk, |z +mk+1i| > rk+1},

D′
k = {z ∈ C | |z ± 1| >

√
2, |z −mki| < rk, |z −mk+1i| > rk+1},

D′
−k = {z ∈ C | |z ± 1| >

√
2, |z +mki| < rk, |z +mk+1i| > rk+1}.

Therefore the circular rectangle R generates a parqueting of the extended complex plane,
namely

C∞ =
⋃
k∈Z

(Dk ∪Dl
k ∪Dr

k ∪D′
k).

Figure 6.2 demonstrates this parqueting.
Let Tl, Tr, Tu and Td denote the reflections respectively at the boundary arcs Cl, Cr,

C1 and C−1 of the circular rectangle R. Denote Inv(R) := ⟨Tl, Tr, Tu, Td⟩ the inversive
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Figure 6.2: Parqueting generated by R

group generated by Tl, Tr, Tu and Td. Let M1 := Tu ◦ Td, M2 := Tr ◦ Tl. Since the
two circles |z ± i

√
3| =

√
2 lie outside each other, from Corollary 2.4.8 we know that

M1 generates an infinite cyclic group. Since the two circles |z± 1| =
√
2 are orthogonal,

then Lemma 5.1.2 implies that M2
2 = Id. Because the two circle |z ± i

√
3| =

√
2 are

orthogonal to the other two |z ± 1| =
√
2, Corollary 2.3.7 implies that

Tu ◦ Tl = Tl ◦ Tu, Tu ◦ Tr = Tr ◦ Tu, Td ◦ Tl = Tl ◦ Td, Td ◦ Tr = Tr ◦ Td.

Then we can determine Inv(R), namely,

Inv(R) =


Mk

1 , Mk
1 ◦ Tu,

Tl ◦Mk
1 , Tl ◦Mk

1 ◦ Tu,
Tr ◦Mk

1 , Tr ◦Mk
1 ◦ Tu,

M2 ◦Mk
1 , M2 ◦Mk

1 ◦ Tu


k∈Z

.

It is easy to check that

Mk
1 (R) = D2k, Mk

1 ◦ Tu(R) = D2k+1,
Tl ◦Mk

1 (R) = Dl
2k, Tl ◦Mk

1 ◦ Tu(R) = Dl
2k+1,

Tr ◦Mk
1 (R) = Dr

2k, Tr ◦Mk
1 ◦ Tu(R) = Dr

2k+1,

M2 ◦Mk
1 (R) = D

′
2k, M2 ◦Mk

1 (R) ◦ Tu(R) = D
′
2k+1.

Therefore we conclude that R is an infinite parqueting-reflection domain.
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6.3 Reflection images

Let z0 = z ∈ D0. The reflection of z0 at the circle |z −m1i| = r1 is

z1 :=
m1iz0 − 1

z0 +m1i
∈ D1.

Let zk denote the reflection of zk−1 at the circle |z − mki| = rk for k ∈ N∗. We have
zk ∈ Dk and the relation

zk =
mkizk−1 − 1

zk−1 +mki
.

Then

zk+1 =
mk+1izk − 1

zk +mk+1i
=

αkzk−1 + βki

−βkizk−1 + αk
=

zk−1 + qi

−qizk−1 + 1
.

Denote that

A :=

(
1 −qi
qi 1

)
.

From the iteration for zk we see that

[z2k : 1] = [z0 : 1]A
k,

[z2k+1 : 1] = [z1 : 1]A
k = [z0 : 1]

(
m1i 1
−1 m1i

)
Ak.

By determining the Jordan normal form of A, it is easy to compute the matrix powers
of A, that is

Ak =
1

2

(
(1 + q)k + (1− q)k −i[(1 + q)k − (1− q)k]
i[(1 + q)k − (1− q)k] (1 + q)k + (1− q)k

)
.

Then we obtain that

z2k =
i[(1+q

1−q )
k + 1]z0 − [(1+q

1−q )
k − 1]

[(1+q
1−q )

k − 1]z0 + i[(1+q
1−q )

k + 1]
,

z2k+1 =
i[(m1 + 1)(1+q

1−q )
k + (m1 − 1)]z0 − [(m1 + 1)(1+q

1−q )
k − (m1 − 1)]

[(m1 + 1)(1+q
1−q )

k − (m1 − 1)]z0 + i[(m1 + 1)(1+q
1−q )

k + (m1 − 1)]
.

Inserting the values of m1 and q results in

z2k =
i[(2 +

√
3)2k + 1]z − [(2 +

√
3)2k − 1]

[(2 +
√
3)2k − 1]z + i[(2 +

√
3)2k + 1]

, (6.5)

z2k+1 =
i[(2 +

√
3)2k+1 + 1]z − [(2 +

√
3)2k+1 − 1]

[(2 +
√
3)2k+1 − 1]z + i[(2 +

√
3)2k+1 + 1]

. (6.6)

Let

γk :=
(2 +

√
3)k + 1

(2 +
√
3)k − 1

, k ∈ Z,
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with the convention that γ0 = ∞. Then

z2k =
iγ2kz − 1

z + iγ2k
, (6.7)

z2k+1 =
iγ2k+1z − 1

z + iγ2k+1
, (6.8)

for k ∈ N.

Remark 6.3.1. From the formulas of mk and γk, we deduce that

mk = γ2k−1, m−k = γ−(2k−1), ∀k ∈ N∗; (6.9)

γ−k = −γk, ∀k ∈ Z \ {0}; (6.10)

γk+l =
γkγl + 1

γk + γl
, ∀k, l ∈ Z. (6.11)

The last relation can be verified directly via the expression of γk.

Analogously, we deal with the reflection points in the downward direction. Let
z−(k+1) be the reflection of z−k at the circle |z +mk+1i| = rk+1 for k ∈ N. Then

z−(k+1) =
−imk+1z−k − 1

z−k − imk+1
, i.e. z−k =

imk+1z−(k+1) − 1

z−(k+1) + imk+1
.

We thus have

z−(k−1) =
z−(k+1) + iq

−iqz−(k+1) + 1
.

Then

[z0 : 1] = [z−2k : 1]Ak,

[z−1 : 1] = [z−(2k+1) : 1]A
k.

By the formula of Ak, we have

z0 =
iγ2kz−2k − 1

z−2k + iγ2k
, z−1 =

iγ2kz−(2k+1) − 1

z−(2k+1) + iγ2k
.

The above two formulas and Remark 6.3.1 imply that

z−2k =
iγ2kz0 + 1

−z0 + iγ2k
=

iγ−2kz − 1

z + iγ−2k
, (6.12)

z−(2k+1) =
iγ2kz−1 + 1

−z−1 + iγ2k
=

iγ2k+1z0 + 1

−z0 + iγ2k+1
=

iγ−(2k+1)z − 1

z + iγ−(2k+1)
. (6.13)

We can unify the expressions for zk and z−k, namely,

z2k =
iγ2kz − 1

z + iγ2k
, ∀k ∈ Z; (6.14)
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z2k+1 =
iγ2k+1z − 1

z + iγ2k+1
, ∀k ∈ Z. (6.15)

The image of zk under the reflection at the circle |z − 1| =
√
2 is

zlk :=
zk + 1

zk − 1
∈ Dl

k.

Then the formulas for zlk are given by

zl2k =
−ϵ2kz̄ + ϵ2k
ϵ2kz + ϵ2k

, ∀k ∈ Z, (6.16)

zl2k+1 =
−ϵ2k+1z + ϵ2k+1

ϵ2k+1z + ϵ2k+1
, ∀k ∈ Z, (6.17)

where ϵk = 1 + iγk. In particular, zl0 =
z+1
z−1 .

The image of zk under the reflection at the circle |z + 1| =
√
2 is

zrk :=
−zk + 1

zk + 1
∈ Dr

k.

The formulas for zrk are given by

zr2k =
ϵ2kz + ϵ2k
ϵ2kz̄ − ϵ2k

, ∀k ∈ Z; (6.18)

zr2k+1 =
ϵ2k+1z + ϵ2k+1

ϵ2k+1z − ϵ2k+1
, ∀k ∈ Z. (6.19)

In particular, zr0 = −z+1
z+1 .

Reflecting zrk at the circle |z − 1| =
√
2 gives

z′k := − 1

zk
∈ D′

k.

The formulas for z′k are given by

z′2k =
z + iγ2k

−iγ2kz + 1
, ∀k ∈ Z, (6.20)

z′2k+1 =
z + iγ2k+1

−iγ2k+1z + 1
, ∀k ∈ Z. (6.21)

In particular, z′0 = −1
z .

Moreover, we have the relations

zlkz
r
k = −1 = zkz

′
k, ∀k ∈ Z. (6.22)

Lemma 6.3.2. Let wk ∈ {zk, zlk, zrk, z′k}, k ∈ Z. Then for z ∈ R

|wk − i| < 3(1− q)
k
2 , |w−k + i| < 3(1− q)

k
2 .

for k ∈ N∗.
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Proof. When z ∈ R, wk is located inside the circle |z −mki| = rk, i.e. |wk −mki| ≤ rk
for k ∈ Z \ {0}. Lemma 6.1.3 implies that

|wk − i| ≤ |wk −mki|+ (mk − 1)

≤
√
m2

k − 1 + (mk − 1)

≤
√
mk − 1(

√
m1 + 1 +

√
m1 − 1)

< 3(1− q)
k
2

for k ∈ N∗. Analogously, Lemma 6.1.3 and the relation m−k = −mk imply that

|w−k + i| ≤ |w−k −m−ki|+ |1 +m−k|

≤
√

m2
k − 1 + (mk − 1)

< 3(1− q)
k
2

for k ∈ N∗.

Lemma 6.3.3. i) In the case of z ∈ C l
0, we have

zk = zlk, z
′
k = zrk ∈ {|z − 1| =

√
2}

for k ∈ Z. In the case of z ∈ Cr
0 , we have

zk = zrk, z
′
k = zlk ∈ {|z + 1| =

√
2}

for k ∈ Z.
ii) Let {wk}k∈Z ∈

{
{zk}k∈Z, {zlk}k∈Z, {zrk}k∈Z, {z′k}k∈Z

}
. Then, in the case of z ∈ C1,

we have

w2k = w2k+1 ∈ {|z −m2k+1i| = r2k+1},
w−(2k+1) = w−(2k+2) ∈ {|z +m2k+2i| = r2k+2}

for k ∈ N, while in the case of z ∈ C−1, we have

w2k+1 = w2k+2 ∈ {|z −m2k+2i| = r2k+2},
w−2k = w−(2k+1) ∈ {|z +m2k+1i| = r2k+1}

for k ∈ N.

Proof. i) Denote the two circles {|z ± 1| =
√
2} respectively by C± and let T± be the

circle reflections corresponding to C± respectively. According to the parqueting provided
by R, C l

k is a circular arc of C− and Cr
k is a circular arc of C+ for k ∈ Z. Obviously

zk ∈ C l
k when z ∈ C l

0 . It follows that zlk = T−(zk) = zk ∈ C− when z ∈ C l
0. Let Ak

be the image of C l
k under the reflection T+. Since the two circles C± are orthogonal,

T+ maps the circle C− onto itself. Then the circular arc Ak = T+(C l
k) is a part of the
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circle C−. When z ∈ C l
0, z

r
k = T+(zk) is located on C− and z′k = T−(zrk) = zrk ∈ C−.

The claim for the case of z ∈ C l
0 is thus verified. The discussion for the case of z ∈ Cr

0

is similar.
ii) Let Ck denote the circle {|z−mk| = rk} and Tk the corresponding circle reflection,

k ∈ Z \ {0}. In the case of z ∈ C1, z2k ∈ C2k+1 and z−(2k+1) ∈ C−(2k+2) for k ∈ N.
Then z2k+1 = T2k+1(z2k) = z2k ∈ C2k+1 and z−(2k+2) = T−(2k+2)(z−(2k+1)) = z−(2k+1) ∈
C−(2k+2) follow. In the case of z ∈ C−1, z2k+1 ∈ C2k+2 and z−2k ∈ C−(2k+1) for
k ∈ N. In the case of z ∈ C−1, from the parqueting provided by R we see that z2k+2 =
T2k+2(z2k+1) = z2k+1 ∈ C2k+2 and z−(2k+1) = T−(2k+1)(z−2k) = z−2k ∈ C−(2k+1) for
k ∈ N.

Note that the two circle C± are both orthogonal to Ck for any k ∈ Z\{0}. It implies
that zk, z

l
k, z

r
k and z′k are located on the same circle if z ∈ C1 or z ∈ C−1. The relations

for {zk}k∈Z also work for {zlk}k∈Z, {zrk}k∈Z and {z′k}k∈Z. Therefore the verification for
part ii) is complete.

6.4 Harmonic Green function of R

According to the parqueting-reflection principle, we construct a formal function

F̃ (z, ζ) :=
∏
k∈Z

ζ − z2k+1

ζ − z2k

ζ − z′2k+1

ζ − z′2k

ζ − zl2k
ζ − zl2k+1

ζ − zr2k
ζ − zr2k+1

.

As a function in the variable ζ, F̃ (z, ζ) has the poles

z2k, z
′
2k, z

l
2k+1, z

r
2k+1, k ∈ Z,

and the zeros
z2k+1, z

′
2k+1, z

l
2k, z

r
2k, k ∈ Z.

The next lemma ensures that F̃ (z, ζ) is well-defined.

Lemma 6.4.1. The infinite product F̃ (z, ζ) converges absolutely for z ̸= ζ, z, ζ ∈ R.

Proof. It is sufficient to show that the infinite product
∏

k∈Z
ζ−w2k+1

ζ−w2k
is absolutely conver-

gent for any {wk}k∈Z ∈ {{zk}k∈Z, {z′k}k∈Z, {zlk}k∈Z, {zrk}k∈Z}. We know that the infinite

product
∏

k∈Z
ζ−w2k+1

ζ−w2k
is absolutely convergent if and only if the series

∑
k∈Z(

ζ−w2k+1

ζ−w2k
−1)

is absolutely convergent, see [24]. Then it is sufficient to prove that
∑

k∈N | ζ−w2k+1

ζ−w2k
− 1|

and
∑

k∈N | ζ−w−2k−1

ζ−w−2k
− 1| are both convergent. Using the estimates in Lemma 6.3.2 we

have
|w2k − w2k+1| ≤ |w2k − i|+ |w2k+1 − i| < 6(1− q)k

and

|ζ − w2k| ≥ |ζ − i| − |w2k − i| > |ζ − i|
2
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when k is large enough. We thus see that∣∣∣∣ζ − w2k+1

ζ − w2k
− 1

∣∣∣∣ = |w2k − w2k+1|
|ζ − w2k|

≤ 12

|ζ − i|
(1− q)k.

It follows that the series
∑

k∈N | ζ−w2k+1

ζ−w2k
− 1| converges. Applying again the estimate for

w−k in lemma 6.3.2, we obtain that∣∣∣∣ζ − w−2k−1

ζ − w−2k
− 1

∣∣∣∣ = |w−2k − w−2k−1|
|ζ − w−2k|

≤ 12

|ζ + i|
(1− q)k.

It immediately implies convergence of the series
∑

k∈N

∣∣∣ ζ−w−2k−1

ζ−w−2k
− 1
∣∣∣.

Lemma 6.3.3 immediately leads to the following results.

Lemma 6.4.2. For z ∈ ∂R, ζ ∈ R\{z} the function F̃ (z, ζ) has unit modulus, i.e.

|F̃ (z, ζ)| = 1 for z ∈ ∂R, ζ ∈ R\{z}.

In Section 6.3 we have seen that all the reflection points are linear fractions in the
variable z or z. For some particular terms, denominator of the corresponding linear
fraction may turn out to be zero, which means the reflection point is infinity. This
can only happen for the reflection point z′0 in the domain D′

0, since D′
0 is unbounded

while the other domains for the parqueting are bounded. Actually, from the formula
z′0 = −1

z we see that z′0 = ∞ when z = 0. On this basis, we somehow need to deal with
the denominators in linear fractions of the reflection points. Therefore we modify the
function F̃ (z, ζ) by multiplying with the formal product

V (z) :=
∏
k∈Z

z + iγ2k+1

z + iγ2k

−iγ2k+1z + 1

−iγ2kz + 1

ϵ2kz + ϵ2k
ϵ2k+1z + ϵ2k+1

ϵ2kz̄ − ϵ2k
ϵ2k+1z − ϵ2k+1

,

whose terms appear in the denominators of zk, z
l
k, z

r
k and z′k.

Remark 6.4.3. Note that γ0 = ∞ does not cause problems for the clarity of the
expression of V (z). The factor for k = 0,

ϵ0z + ϵ0
z + iγ0

ϵ0z̄ − ϵ0
−iγ0z + 1

=
(1 + i∞)z + (1− i∞)

z + i∞
(1− i∞)z̄ − (1 + i∞)

−i∞z + 1

should be interpreted as (z−1)(z+1)
z .

Considering the function V (z) makes sense due to the following conclusion.

Lemma 6.4.4. The infinite product V (z) converges absolutely and the function has
unitary modulus on the boundary of R, i.e.

|V (z)| = 1 for z ∈ ∂R.
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Proof. In the case of z ∈ C l
0, we have (z − 1)(z − 1) = 2. Let

Al
k(z) :=

z + iγ2k+1

z + iγ2k

ϵ2kz + ϵ2k
ϵ2k+1z + ϵ2k+1

, Bl
k(z) :=

−iγ2k+1z + 1

−iγ2kz + 1

ϵ2kz̄ − ϵ2k
ϵ2k+1z − ϵ2k+1

.

Inserting z = z+1
z−1 into Al

k(z) and Bl
k(z) results in

|Al
k(z)| =

∣∣∣∣ ϵ2k+1z + ϵ2k+1

(z − 1)(z + iγ2k)

2(z + iγ2k)

(z − 1)(ϵ2k+1z + ϵ2k+1)

∣∣∣∣ = 1,

|Bl
k(z)| =

∣∣∣∣ ϵ2k+1z − ϵ2k+1

(z − 1)(−iγ2kz + 1)

2(−iγ2kz + 1)

(z − 1)(ϵ2k+1z − ϵ2k+1)

∣∣∣∣ = 1.

Thus |Al
k(z)B

l
k(z)| = 1 for z ∈ C l

0, k ∈ Z. Therefore for z ∈ C l
0

|V (z)| =
∏
k∈Z

|Al
k(z)B

l
k(z)| = 1.

In the case of z ∈ Cr
0 , we have (z + 1)(z + 1) = 2. The verification is similar to the

first case. Let

Ar
k(z) :=

z + iγ2k+1

z + iγ2k

ϵ2kz̄ − ϵ2k
ϵ2k+1z − ϵ2k+1

, Br
k(z) :=

−iγ2k+1z + 1

−iγ2kz + 1

ϵ2kz + ϵ2k
ϵ2k+1z + ϵ2k+1

.

Inserting z = −z+1
z+1 into Ar

k(z) and Br
k(z) one can deduce that

|Ar
k(z)| = 1 = |Br

k(z)|.

Hence

|V (z)| =
∏
k∈Z

|Ar
k(z)B

r
k(z)| = 1

holds for z ∈ Cr
0 .

In the case of z ∈ C1, the relation (z − iγ1)(z + iγ1) = 2 holds. Let

Ak(z) :=
z + iγ2k+1

z + iγ2k

−iγ2k+1z + 1

−iγ2kz + 1
, Bk(z) :=

ϵ2kz + ϵ2k
ϵ2k+1z + ϵ2k+1

ϵ2kz̄ − ϵ2k
ϵ2k+1z − ϵ2k+1

.

Inserting z = iγ1z−1
z+iγ1

into Ak(z) results in

Ak(z) =
(z + iγ2k+1)(z + iγ1)

i(γ1 + γ2k)z − (1 + γ1γ2k)

(−iγ2k+1z + 1)(z + iγ1)

(1 + γ1γ2k)z + i(γ1 + γ2k)
.

Remark 6.3.1 ensures that γ2k+1 =
γ1γ2k+1
γ1+γ2k

holds. Then

|Ak(z)| =
|z − iγ1|2

|γ1 + γ2k|2
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follows. Inserting z = iγ1z+1
−z+iγ1

into Bk(z) produces

|Bk(z)| =
∣∣∣∣ [(γ1γ2k + 1)− i(γ1 + γ2k)]z − [(γ1γ2k + 1) + i(γ1 + γ2k)]

(ϵ2k+1z + ϵ2k+1)(−z + iγ1)

∣∣∣∣
×
∣∣∣∣ [(γ1γ2k + 1) + i(γ1 + γ2k)]z + [(γ1γ2k + 1)− i(γ1 + γ2k)]

(ϵ2k+1z − ϵ2k+1)(−z + iγ1)

∣∣∣∣
=
|γ1 + γ2k|2

|z − iγ1|2
.

Therefore
|V (z)| =

∏
k∈Z

|Ak(z)Bk(z)| = 1

holds for z ∈ C1.
In the case of z ∈ C−1, the relation (z + iγ1)(z − iγ1) = 2 holds.We rewrite V (z) as

V (z) =
∏
k∈Z

A′
k(z)B

′
k(z),

where

A′
k(z) :=

z + iγ2k−1

z + iγ2k

−iγ2k−1z + 1

−iγ2kz + 1
, B′

k(z) :=
ϵ2kz + ϵ2k

ϵ2k−1z + ϵ2k−1

ϵ2kz̄ − ϵ2k
ϵ2k−1z − ϵ2k−1

.

Via inserting z = iγ1z+1
−z+iγ1

into A′
k(z) and z = iγ1z−1

z+iγ1
into B′

k(z), one can verify that

|A′
k(z)B

′
k(z)| = 1

for z ∈ C−1, k ∈ Z. Therefore |V (z)| = 1 also holds for z ∈ C−1.

We modify the function F̃ (z, ζ) by multiplying with V (z). Let

F (z, ζ) := F̃ (z, ζ)V (z).

The function F (z, ζ) is well-defined and has the expression:

F (z, ζ) =
∏
k∈Z

ζ(z + iγ2k+1)− (iγ2k+1z − 1)

ζ(z + iγ2k)− (iγ2kz − 1)

ζ(−iγ2k+1z + 1)− (z + iγ2k+1)

ζ(−iγ2kz + 1)− (z + iγ2k)

× ζ(ϵ2kz + ϵ2k)− (−ϵ2kz̄ + ϵ2k)

ζ(ϵ2k+1z + ϵ2k+1)− (−ϵ2k+1z + ϵ2k+1)

× ζ(ϵ2kz̄ − ϵ2k)− (ϵ2kz̄ + ϵ2k)

ζ(ϵ2k+1z − ϵ2k+1)− (ϵ2k+1z + ϵ2k+1)

=
∏
k∈Z

(ζz + 1) + iγ2k+1(ζ − z)

(ζz + 1) + iγ2k(ζ − z)

(ζ − z)− iγ2k+1(ζz + 1)

(ζ − z)− iγ2k(ζz + 1)

× ϵ2k(ζz − 1) + ϵ2k(ζ + z)

ϵ2k+1(ζz − 1) + ϵ2k+1(ζ + z)

ϵ2k(ζz − 1)− ϵ2k(ζ + z)

ϵ2k+1(ζz − 1)− ϵ2k+1(ζ + z)
.
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Remark 6.4.5. From the constructions of F̃ (z, ζ) and F (z, ζ), we see immediately that
F (z, ζ) has poles at the points ζ = z2k, z

′
2k, z

l
2k+1, z

r
2k+1 and has zeros at the points

ζ = z2k+1, z
′
2k+1, z

l
2k, z

r
2k, k ∈ Z. Moreover, one can verify directly that the function

F (z, ζ) is symmetric in z and ζ via using the relation γ−k = −γk.

Theorem 6.4.6. The harmonic Green function of R is G1(z, ζ) = log |F (z, ζ)|2.

Proof. For z ∈ R, from the parqueting generated by R we have seen that all the reflection
points except z0 = z are outside the domain R. Then Remark 6.4.5 implies that F (z, ζ)
as a function in the variable z has only one pole z = ζ for ζ ∈ R. From the expression
of F (z, ζ) we thus see that log |(z − ζ)F (z, ζ)|2 is harmonic in R. In addition, Lemmas
6.4.2 and 6.4.4 ensure that G1(z, ζ) = 0 for z ∈ ∂R. Therefore G1(z, ζ) is the harmonic
Green function of R.

6.5 Poisson kernel of R

Let v1, v2, v3 and v4 denote the four corner points of R. The Poisson kernel for the
domain R is defined by

p(z, ζ) := −1

2
∂νζG1(z, ζ)

for z ∈ R, ζ ∈ ∂R\{v1, v2, v3, v4}, where νζ denotes the outward normal vector and ∂νζ
is the outward normal derivative operator on ∂R. Note that

∂νζ = νζ∂ζ + νζ∂ζ = 2Re(νζ∂ζ).

This formula is used to calculate the normal derivative.
Since the boundary ∂R consists of four circular arcs C l

0, C
r
0 , C−1 and C1, the outward

normal derivative has to be calculated respectively for the four parts. The formula

∂ζG1(z, ζ) =∂ζ log |F (z, ζ)|2 = ∂ζ log |F̃ (z, ζ)|2

=
∑
k∈Z

( 1

ζ − z2k+1
− 1

ζ − z2k
+

1

ζ − z′2k+1

− 1

ζ − z′2k

+
1

ζ − zl2k
− 1

ζ − zl2k+1

+
1

ζ − zr2k
− 1

ζ − zr2k+1

)
will be used.

Remark 6.5.1. It is easy to check that all the series
∑

k∈Z
(

1
ζ−z2k+1

− 1
ζ−z2k

)
,
∑

k∈Z
(

1
ζ−z′2k+1

− 1
ζ−z′2k

)
,
∑

k∈Z
(

1
ζ−zl2k

− 1
ζ−zl2k+1

)
and

∑
k∈Z

(
1

ζ−zr2k
− 1

ζ−zr2k+1

)
converge absolutely

via applying Lemma 6.3.2. Therefore ∂ζG1(z, ζ) converges absolutely.

We discuss below the Poisson kernel respectively for the four boundary arcs.
Case 1. ζ ∈ C l

0.
In this case, the relation (ζ − 1)(ζ − 1) = 2 holds, the outward normal vector is

νζ = ζ−1√
2

and the outward normal derivative operator is ∂νζ =
√
2Re((ζ − 1)∂ζ). Hence

p(z, ζ) = − 1√
2
Re((ζ − 1)∂ζG1(z, ζ)).
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Lemma 6.5.2. Let {wk}k∈Z ∈
{
{zk}k∈Z, {zlk}k∈Z, {zrk}k∈Z, {z′k}k∈Z

}
. Then∣∣|wk − 1|2 − 2

∣∣ < 192

(2 +
√
3)|k| − 1

∣∣|z − 1|2 − 2
∣∣

holds for z ∈ R, k ∈ Z.

Proof. Applying the formula

z2k =
iγ2kz − 1

z + iγ2k

gives ∣∣|z2k − 1|2 − 2
∣∣ = r22k − 1

|z + iγ2k|2
∣∣|z − 1|2 − 2

∣∣.
Analogously, by inserting

z2k+1 =
iγ2k+1z − 1

z + iγ2k+1
,

we have ∣∣|z2k+1 − 1|2 − 2
∣∣ = r22k+1 − 1

|z − iγ2k+1|2
∣∣|z − 1|2 − 2

∣∣.
In general, we have

∣∣|zk − 1|2 − 2
∣∣ = r2k − 1

|z + (−1)kiγk|2
∣∣|z − 1|2 − 2

∣∣.
The formula

γk =
(2 +

√
3)k + 1

(2 +
√
3)k − 1

, k ∈ Z

implies that

γ2k − 1 = (|γk|+ 1)(|γk| − 1) ≤ (γ1 + 1)
2

(2 +
√
3)|k| − 1

<
6

(2 +
√
3)|k| − 1

.

For z ∈ R, the estimate

|z ± iγk| ≥ |z ± iγ1| − (γ1 − |γk|) >
√
2− (

√
3− 1) >

1

2

holds. Then we have ∣∣|zk − 1|2 − 2
∣∣ < 24

(2 +
√
3)|k| − 1

∣∣|z − 1|2 − 2
∣∣

for z ∈ R, k ∈ Z.
Applying the relation z′k = − 1

zk
, we see that

∣∣|z′k − 1|2 − 2
∣∣ = ∣∣|zk − 1|2 − 2

∣∣
|zk|2

=
γ2k − 1

|1− (−1)kiγkz|2
∣∣|zk − 1|2 − 2

∣∣.
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With the estimate

|1− (−1)kiγkz| = |γk|
∣∣∣∣z + i

(−1)k

γk

∣∣∣∣
≥ |z + (−1)kiγ1| − (γ1 − | 1

γk
|)

>
√
2− (

√
3− 1√

3
)

>
1

4
,

the inequality ∣∣|z′k − 1|2 − 2
∣∣ < 96

(2 +
√
3)|k| − 1

∣∣|z − 1|2 − 2
∣∣

follows.

Applying the relation

zlk =
zk + 1

zk − 1

results in ∣∣|zlk − 1|2 − 2
∣∣ = 2

∣∣|zk − 1|2 − 2
∣∣

|zk − 1|2
.

By the fact that each zk is located inside the circle |z+1| =
√
2, the estimate |zk − 1| ≥

2− |zk + 1| > 2−
√
2 > 1

2 follows. Thus we have

∣∣|zlk − 1|2 − 2
∣∣ < 192

(2 +
√
3)|k| − 1

∣∣|z − 1|2 − 2
∣∣.

Analogously, by applying the relation

zrk =
−zk + 1

zk + 1

and the estimate |zk + 1| ≥ 2− |zk − 1| > 2−
√
2 > 1

2 , we show that

∣∣|zrk − 1|2 − 2
∣∣ = 2

∣∣|zk − 1|2 − 2
∣∣

|zk + 1|2
<

192

(2 +
√
3)|k| − 1

∣∣|z − 1|2 − 2
∣∣.

To sum up, we have shown that

∣∣|wk − 1|2 − 2
∣∣ < 192

(2 +
√
3)|k| − 1

∣∣|z − 1|2 − 2
∣∣

for z ∈ R, k ∈ Z.
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Lemma 6.5.3. On the boundary part C l
0 except for the two corner points, the Poisson

kernel satisfies that

p(z, ζ) =
1√
2

(
ζ − 1

ζ − z
+

ζ − 1

ζ − z
− 1

)
+O(2− |z − 1|2) (6.23)

for z ∈ R, ζ ∈ C l
0.

Proof. On the basis of the absolute convergence of ∂ζG1(z, ζ), we can rewrite (ζ −
1)∂ζG1(z, ζ) as

− (ζ − 1)(
ζ − 1

ζ − z0
− ζ − 1

ζ − zl0
) + (ζ − 1)

∑
k∈Z∗

(−1)k−1
( 1

ζ − zk
− 1

ζ − zlk

)
+ (ζ − 1)

∑
k∈Z

(−1)k−1
( 1

ζ − z′k
− 1

ζ − zrk

)
,

where Z∗ denotes the set of nonzero integers. Since the relation (ζ − 1)(ζ − 1) = 2, i.e.
ζζ − ζ − ζ − 1 = 0, holds for ζ ∈ C l

0, substituting zlk by zk+1
zk−1 gives

ζ − 1

ζ − zk
− ζ − 1

ζ − zlk
=

ζ − 1

ζ − zk
− ζ − 1

ζ − zk+1
zk−1

=
ζ − 1

ζ − zk
− (ζ − 1)(zk − 1)

(ζ − 1)(zk − 1)− 2

=
ζ − 1

ζ − zk
− (ζ − 1)(ζ − 1)(zk − 1)

(ζ − 1)(ζ − 1)(zk − 1)− 2(ζ − 1)

=
ζ − 1

ζ − zk
+

zk − 1

ζ − zk

=
ζζ − ζ − ζ + z + z − zz

|ζ − zk|2

=
2− |zk − 1|2

|ζ − zk|2
.

Especially, we have

ζ − 1

ζ − z0
− ζ − 1

ζ − zl0
=

2− |z − 1|2

|ζ − z|2
=

ζ − 1

ζ − z
+

ζ − 1

ζ − z
− 1.

Lemma 6.3.2 ensures that |ζ − zk| has the limit |ζ − i| when k tends to ∞, while it has
the limit |ζ + i| when k tends to −∞. Then we see from Lemma 6.5.2 that

(ζ − 1)
∑
k∈Z∗

( 1

ζ − zk
− 1

ζ − zlk

)
= O(2− |z − 1|2).
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Analogously, via substituting zrk by
z′k+1

z′k−1
we can show that

ζ − 1

ζ − z′k
− ζ − 1

ζ − zrk
=

2− |z′k − 1|2

|ζ − z′k|2
.

Again Lemma 6.3.2 and Lemma 6.5.2 guarantee that

(ζ − 1)
∑
k∈Z

( 1

ζ − z′k
− 1

ζ − zrk

)
= O(2− |z − 1|2).

Therefore on C l
0 except for the two corner points

p(z, ζ) = − 1√
2
Re
(
(ζ − 1)∂ζG1(z, ζ)

)
=

1√
2

(
ζ − 1

ζ − z
+

ζ − 1

ζ − z
− 1

)
+O(2− |z − 1|2).

Case 2. ζ ∈ Cr
0 .

In this case, the relation (ζ + 1)(ζ + 1) = 2 holds, the outward normal vector is
νζ = ζ+1√

2
, the outward normal derivative operator is ∂νζ =

√
2Re((ζ + 1)∂ζ) and the

Poisson kernel is p(z, ζ) = − 1√
2
Re((ζ−1)∂ζG1(z, ζ)). Since the computation in this case

is analogous to the case of C l
0, we just list the following two parallel lemmas omitting

the proofs.

Lemma 6.5.4. Let {wk}k∈Z ∈
{
{zk}k∈Z, {zlk}k∈Z, {zrk}k∈Z, {z′k}k∈Z

}
. Then

∣∣|wk + 1|2 − 2
∣∣ < 192

(2 +
√
3)|k| − 1

∣∣|z + 1|2 − 2
∣∣

holds for z ∈ R, k ∈ Z.

Lemma 6.5.5. On the boundary part Cr
0 except for the two corner points, the Poisson

kernel satisfies that

p(z, ζ) =
1√
2

(
ζ + 1

ζ − z
+

ζ + 1

ζ − z
− 1

)
+O(2− |z + 1|2) (6.24)

for z ∈ R and ζ ∈ Cr
0 except for the two corner points.

Case 3. ζ ∈ C1.
In this case, we have the relation (ζ−

√
3i)(ζ+

√
3i) = 2. The outward normal vector

is νζ = − ζ−
√
3i√

2
, the outward normal derivative operator is ∂νζ = −

√
2Re((ζ −

√
3i)∂ζ)

and the Poisson kernel is p(z, ζ) = 1√
2
Re((ζ −

√
3i)∂ζG1(z, ζ)).
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Lemma 6.5.6. Let {wk}k∈Z ∈
{
{zk}k∈Z, {zlk}k∈Z, {zrk}k∈Z, {z′k}k∈Z

}
. Then

∑
k∈Z

∣∣∣∣ 1

ζ − w2k+1
− 1

ζ − w2k

∣∣∣∣ = O(|z −m1i|2 − r21)

holds for ζ ∈ R, z ∈ R\{ζ}.

Proof. Lemma 6.3.2 implies that |ζ −wk| tends towards |ζ ± i| when k goes to ±∞. So
we only need to show that∑

k∈Z
|w2k+1 − w2k| = O(|z −m1i|2 − r21). (6.25)

Applying the formulas z′k = −1
zk
, zlk = zk+1

zk−1 and zrk = −zk+1
zk+1 , we obtain that

|z′2k+1 − z′2k| =
|z2k+1 − z2k|
|z2k||z2k+1|

,

|zl2k+1 − zl2k| =
2|z2k+1 − z2k|

|z2k − 1||z2k+1 − 1|
,

|zr2k+1 − zr2k| =
2|z2k+1 − z2k|

|z2k + 1||z2k+1 + 1|
.

By the fact that |zk| tends towards 1 when k goes to ±∞ and |zk ± 1| > 1
2 which is seen

from the proof of Lemma 6.5.2, we only need to verify the estimate (6.25) for the case
wk = zk.

Inserting the formulas

z2k =
iγ2kz − 1

z + iγ2k
and z2k+1 =

iγ2k+1z − 1

z + iγ2k+1

results in

|z2k+1 − z2k|

=
|i(γ2k+1 − γ2k)zz + (γ2k+1γ2k − 1)z − (γ2k+1γ2k − 1)z + i(γ2k+1 − γ2k)|

|z + iγ2k+1||z + iγ2k|
.

Note that
γ2k+1γ2k − 1

γ2k+1 − γ2k
= −γ2k+1γ−2k + 1

γ2k+1 + γ−2k
= −γ1 = −m1

follows from Remark 6.3.1. Then

|z2k+1 − z2k| =
|γ2k+1 − γ2k|

|z + iγ2k+1||z + iγ2k|
|zz + im1z − im1z + 1|

=
|γ2k+1 − γ2k|

|z + iγ2k+1||z + iγ2k|
∣∣|z −m1i|2 − r21|.
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From the formula of γk we see that

|γ2k+1 − γ2k| =
∣∣∣∣ 2

(2 +
√
3)2k+1 − 1

− 2

(2 +
√
3)2k − 1

∣∣∣∣ < 4

(2 +
√
3)2|k| − 1

.

In the proof of Lemma 6.5.2 we have already shown that |z ± iγk| > 1
2 for z ∈ R. Hence

the series ∑
k∈Z

|γ2k+1 − γ2k|
|z + iγ2k+1||z + iγ2k|

converges. It follows that∑
k∈Z

|z2k+1 − z2k| = O(|z −m1i|2 − r21).

Lemma 6.5.7. On the boundary part C1 except for the two corner points, the Poisson
kernel satisfies that

p(z, ζ) = − 1√
2

(
ζ −

√
3i

ζ − z
+

ζ −
√
3i

ζ − z
− 1

)
+O(|z −

√
3i|2 − 2) (6.26)

for z ∈ R and ζ ∈ C1 except for the two corner points.

Proof. We can rewrite (ζ −
√
3i)∂ζG1(z, ζ) as

ζ −
√
3i

ζ − z1
− ζ −

√
3i

ζ − z

+
∑
k∈Z∗

( ζ −
√
3i

ζ − z2k+1
− ζ −

√
3i

ζ − z2k

)
+
∑
k∈Z

( ζ −
√
3i

ζ − z′2k+1

− ζ −
√
3i

ζ − z′2k

)
−
∑
k∈Z

( ζ −
√
3i

ζ − zl2k+1

− ζ −
√
3i

ζ − zl2k

)
−
∑
k∈Z

( ζ −
√
3i

ζ − zr2k+1

− ζ −
√
3i

ζ − zr2k

)
.

Lemma 6.5.6 implies that each of the four sums in above expression is at most a positive
constant multiple of |z − m1i|2 − r21 for ζ ∈ C1, z ∈ R. For the first term, by using

(ζ −
√
3i)(ζ +

√
3i) = 2 and z1 =

√
3iz−1

z+
√
3i

=
√
3i+ 2

z+
√
3i
,

ζ −
√
3i

ζ − z1
− ζ −

√
3i

ζ − z
=

(ζ −
√
3i)(z +

√
3i)

(ζ −
√
3i)(z +

√
3i)− 2

− ζ −
√
3i

ζ − z

=
z +

√
3i

(z +
√
3i)− (ζ +

√
3i)

− ζ −
√
3i

ζ − z

= 1−
(ζ +√

3i

ζ − z
+

ζ −
√
3i

ζ − z

)
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is seen. Thus we have

p(z, ζ) =
1√
2
Re((ζ −

√
3i)∂ζG1(z, ζ))

= − 1√
2

(
ζ −

√
3i

ζ − z
+

ζ −
√
3i

ζ − z
− 1

)
+O(|z −

√
3i|2 − 2)

Case 4. ζ ∈ C−1.
In this case, the relation (ζ +

√
3i)(ζ −

√
3i) = 2 holds, the outward normal vector

is νζ = − ζ+
√
3i√

2
, the outward normal derivative operator is ∂νζ = −

√
2Re((ζ +

√
3i)∂ζ)

and the Poisson kernel is p(z, ζ) = 1√
2
Re((ζ +

√
3i)∂ζG1(z, ζ)).

Lemma 6.5.8. Let {wk}k∈Z ∈
{
{zk}k∈Z, {zlk}k∈Z, {zrk}k∈Z, {z′k}k∈Z

}
. Then

∑
k∈Z

∣∣∣∣ 1

ζ − w2k
− 1

ζ − w2k−1

∣∣∣∣ = O(|z +m1i|2 − r21)

holds for ζ ∈ R, z ∈ R\{ζ}.

Proof. The verification is analogous to the proof of Lemma 6.5.6, One only needs to
show that ∑

k∈Z
|z2k−1 − z2k| = O(|z +m1i|2 − r21).

Combining the relations

|z2k−1 − z2k|

=
|i(γ2k−1 − γ2k)zz + (γ2k−1γ2k − 1)z − (γ2k−1γ2k − 1)z + i(γ2k−1 − γ2k)|

|z + iγ2k−1||z + iγ2k|

and
γ2k−1γ2k − 1

γ2k−1 − γ2k
=

γ1−2kγ2k + 1

γ1−2k + γ2k
= γ1 = m1

results in

|z2k−1 − z2k| =
|γ2k−1 − γ2k|

|z + iγ2k−1||z + iγ2k|
|zz − im1z + im1z + 1|

=
|γ2k−1 − γ2k|

|z + iγ2k−1||z + iγ2k|
∣∣|z +m1i|2 − r21|.

It follows that ∑
k∈Z

|z2k−1 − z2k| = O(|z +m1i|2 − r21).
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Lemma 6.5.9. On the boundary part C−1 except for the two corner points, the Poisson
kernel satisfies that

p(z, ζ) = − 1√
2

(
ζ +

√
3i

ζ − z
+

ζ +
√
3i

ζ − z
− 1

)
+O(|z +

√
3i|2 − 2) (6.27)

for z ∈ R and ζ ∈ C−1 except for the two corner points.

Proof. We can rewrite (ζ +
√
3i)∂ζG1(z, ζ) as

ζ +
√
3i

ζ − z−1
− ζ +

√
3i

ζ − z

+
∑
k∈Z∗

( ζ +
√
3i

ζ − z2k−1
− ζ +

√
3i

ζ − z2k

)
+
∑
k∈Z

( ζ +
√
3i

ζ + z′2k−1

− ζ +
√
3i

ζ − z′2k

)
−
∑
k∈Z

( ζ +
√
3i

ζ − zl2k−1

− ζ +
√
3i

ζ − zl2k

)
−
∑
k∈Z

( ζ +
√
3i

ζ − zr2k−1

− ζ +
√
3i

ζ − zr2k

)
Lemma 6.5.8 implies that each of the four sums in above expression is at most a positive
constant multiple of |z + m1i|2 − r21 for ζ ∈ C−1, z ∈ R. For the first term, by using

(ζ +
√
3i)(ζ −

√
3i) = 2 and z−1 =

√
3iz+1

−z+
√
3i

= −
√
3i+ 2

z−
√
3i
,

ζ +
√
3i

ζ − z−1
− ζ +

√
3i

ζ − z
= 1−

(ζ −√
3i

ζ − z
+

ζ +
√
3i

ζ − z

)
is deduced. Thus

p(z, ζ) =
1√
2
Re((ζ +

√
3i)∂ζG1(z, ζ))

= − 1√
2

(
ζ +

√
3i

ζ − z
+

ζ +
√
3i

ζ − z
− 1

)
+O(|z +

√
3i|2 − 2).

6.6 Dirichlet problem in R

On the basis of previous results on the harmonic Green function and the boundary
properties of the Poisson kernel for R, the Dirichlet problem for the Poisson equation in
R can be solved.

Theorem 6.6.1. The Dirichlet problem for the Poisson equation in R:

wzz̄ = f in R, w = γ on ∂R,
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where f ∈ Lp(R;C), p > 2, γ ∈ C(∂R,C), is uniquely solvable. The solution is provided
by

w(z) =
1

2π

∫
∂R

γ(ζ)p(z, ζ)dsζ −
1

π

∫
R
f(ζ)G1(z, ζ)dσζ ,

where p(z, ζ) and G1(z, ζ) are respectively the Poisson kernel and harmonic Green func-
tion of R.

Proof. We only need to verify the boundary behavior of the solution. Denote the circle
C(a, r) := {|z−a| = r}, a ∈ C, r > 0 and D(a, r) the corresponding disk. From Theorem
4.1.3 we know the Poisson integral formula for the disk D(a, r) and also the boundary
property

lim
z→z̃

z∈D(a,r)

1

2πr

∫
C(a,r)

γ(ζ)

(
ζ − a

ζ − z
+

ζ − a

ζ − z
− 1

)
dsζ = γ(z̃)

for γ ∈ C(C(a, r);C), z̃ ∈ C(a, r). Note that the Poisson kernel for D(a, r) satisfies the
boundary behavior

ζ − a

ζ − z
+

ζ − a

ζ − z
− 1 = 0, for z, ζ ∈ C(a, r) and z ̸= ζ.

It follows that for a circular arc Γ ⊂ C(a, r),

lim
z→z̃∈Γ
z∈D(a,r)

1

2πr

∫
Γ
γ(ζ)

(
ζ − a

ζ − z
+

ζ − a

ζ − z
− 1

)
dsζ = γ(z̃). (6.28)

Since the harmonic Green function G1(z, ζ) vanishes on the boundary, we know that

lim
z→∂R
z∈R

p(z, ζ) = −1

2
lim

z→∂R
z∈R

∂νζG1(z, ζ) = 0.

This property can also be verified by the boundary behavior of p(z, ζ) given by the
relations (6.23), (6.24), (6.26) and (6.27).

We keep the notations C l
0, C

r
0 , C1 and C−1 as the boundary arcs of our circular

rectangle R. Note that C l
0 ⊂ C(1,

√
2), Cr

0 ⊂ C(−1,
√
2), C1 ⊂ C(

√
3i,

√
2) and C−1 ⊂

C(−
√
3i,

√
2). The relations (6.23) and (6.28) imply that

lim
z→z̃∈Cl

0
z∈R

1

2π

∫
∂R

γ(ζ)p(z, ζ)dsζ

= lim
z→z̃∈Cl

0
z∈R

1

2π

∫
∂R

γ(ζ)

(
1√
2

(
ζ − 1

ζ − z
+

ζ − 1

ζ − z
− 1

)
+O(2− |z − 1|2)

)
dsζ

= lim
z→z̃∈Cl

0
z∈R

1

2
√
2π

∫
∂R

γ(ζ)

(
ζ − 1

ζ − z
+

ζ − 1

ζ − z
− 1

)
dsζ
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= lim
z→z̃∈Cl

0
z∈R

1

2
√
2π

∫
Cl

0

γ(ζ)

(
ζ − 1

ζ − z
+

ζ − 1

ζ − z
− 1

)
dsζ

=γ(z̃).

Analogously, applying the relations (6.24), (6.26), (6.27) and (6.28) respectively for the
boundary arcs Cr

0 , C1 and C−1, we obtain that

lim
z→z̃∈Cr

0
z∈R

1

2π

∫
∂R

γ(ζ)p(z, ζ)dsζ

= lim
z→z̃∈Cr

0
z∈R

1

2
√
2π

∫
Cr

0

γ(ζ)

(
ζ + 1

ζ − z
+

ζ + 1

ζ − z
− 1

)
dsζ

=γ(z̃),

lim
z→z̃∈C1

z∈R

1

2π

∫
∂R

γ(ζ)p(z, ζ)dsζ

= lim
z→z̃∈C1

z∈R

−1

2
√
2π

∫
C1

γ(ζ)

(
ζ −

√
3i

ζ − z
+

ζ −
√
3i

ζ − z
− 1

)
dsζ

=γ(z̃),

and

lim
z→z̃∈C−1

z∈R

1

2π

∫
∂R

γ(ζ)p(z, ζ)dsζ

= lim
z→z̃∈C−1

z∈R

−1

2
√
2π

∫
C−1

γ(ζ)

(
ζ +

√
3i

ζ − z
+

ζ +
√
3i

ζ − z
− 1

)
dsζ

=γ(z̃).

Therefore, the boundary behavior of the solution for each boundary arc has been verified.
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List of Symbols

C complex numbers, 1
R real numbers, 1
i imaginary unit, 1
Re(z) real part of z, 1
Im(z) imaginary part of z, 1
|z| modulus of z, 1
z̄ conjugate of z, 1
D a domain in C, 1
∂D boundary of D, 1

D closure of D, 1
∂w
∂z (wz) complex derivative of w(z) with respect to z, 2
∂w
∂z̄ (wz̄) complex derivative of w(z) with respect to z̄, 2
∂z̄ first order differential operator with respect to z̄, 2
∂z first order differential operator with respect to z, 2
Cn(D;C) complex-valued functions with continuous derivatives up to the nth

order in a domain D, 2
C(D;C) (C0(D;C)) continuous complex-valued functions in a domain D, 2
H(D) holomorphic functions in a domain D, 3
A(D) analytic functions in a domain D, 3
Dc conjugate domain of a domain D, 3
dσζ area element (with respect to ζ), 3
dζ differential with respect to the variable ζ, 3
wζζ second order derivative of w(ζ) with respect to ζ, 4
wζζ̄ second order derivative of w(ζ) with respect to ζ and ζ̄, 4

wζζ second order derivative of w(ζ) with respect to ζ̄, 4

∂2
z second order differential operator with respect to z, 4

∂z∂z̄ second order differential operator with respect to z and z̄, 4
∂2
z̄ second order differential operator with respect to z̄, 4

∆ Laplacian operator, 5
dθ differential of argument, 5
s arc length parameter, 5
dsζ differential of arc length with respect to ζ(s), 5
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∂νζ outward normal derivative with respect to ζ, 5

G1(z, ζ) harmonic Green function, 6
G(z, ζ) (classical) Green function, 6
D (open) unit disk in the complex plane, 7
N1(z, ζ) harmonic Neumann function, 8
δ(s) normal derivative of harmonic Neumann function with respect to the

parameter of arc length, 8
Hα(f) (H(f ;D,α)) Hölder constant of a function f in D with respect to the index α, 9
Hα(D;C) complex-valued functions satisfying Hölder condition in a domain D

with respect to the index α, 9
Hα(D;R) real-valued functions satisfying Hölder condition in a domain D with

respect to the index α, 9
C∞ extended complex plane, 9
C.P. Cauchy principal value, 9
C1
0 (D;C) complex-valued functions with continuous first order derivatives and

compact support in a domain D, 11
Lp(D;C) complex-valued functions in D with finite Lp-norm, 11
T Pompeiu operator, 11
Π an integral operator, 11
∂

∂nζ
interior normal derivative with respect to the variable ζ, 12

S Schwarz operator, 12
CP1 complex projective line, 15
[z : w] a homogeneous coordinate of complex projective line, 15
S2 2-sphere, 16
A∗ conjugate transpose of a matrix A, 16
H− 2× 2 Hermitian matrices with negative determinants, 16
H−
∼ an equivalent relation defined by H−, 16
GL2(C) general linear group of degree 2 over C, 16
RA reflection at the generalized circle determined by a matrix A, 17
At transpose of a matrix A, 18
B−1 inverse of a matrix B, 18
Id identity matrix, 20
SL2(C) special linear group of degree 2 over C, 20
PSL2(C) projective special linear group of degree 2 over C, 20
C∗ nonzero complex numbers, 20
N natural numbers (including zero), 26
I an index set, 26
Inv(D) the group generated by reflections at the boundary arcs of a domain

D, 27
M(D) Möbius transformations in Inv(D), 27
#I cardinality of I, 36
R>0 positive real numbers, 39
D(a, r) open disk of center a and radius r in C, 39
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zre reflection image of z, 39
O(|z|−α) a function whose absolute value is at most a constant multiple of |z|−α

as z → ∞ for a given positive index α, 45
Ω a half-plane, 45
Dα,θ a circular digon, 57
N∗ positive integers, 58
R a circular rectangle, 75
Z∗ nonzero integers, 93
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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Spiegelparkettierungsprinzip und seinen Anwendungen in
grundlegenden Randwertproblemen in einigen kreisförmigen Polygonen.

Das Spiegelparkettierungsprinzip wird verwendet, um mehrere Randwertprobleme für bes-
timmte Bereiche zu lösen, deren Grenzen aus Kreisbögen bestehen. Es liefert Ideen und Ver-
fahren zur Konstruktion harmonischer Green-Funktionen und harmonischer Neumann-
Funktionen, die bei der Behandlung von Dirichlet- und Neumann-Randwertproblemen für die
Poisson-Gleichungen eine wichtige Rolle spielen. Das Spiegelparkettierungsprinzip trägt auch
eine Methode zur Lösung des Schwarzschen Randwertproblems für die homogenen und inho-
mogenen Cauchy-Riemann-Gleichungen bei. Das Spiegelparkettierungsprinzip hat sich bei der
Lösung dieser Randwertproblemen für viele spezielle Bereiche bewährt. Die Theorie dahin-
ter und für welche Gebiete dieses Prinzip generell funktionieren kann, ist jedoch noch ein
Mythos. Daher sind wir daran interessiert, die verborgene Theorie hinter dem Spiegelparket-
tierungsprinzip zu untersuchen und neue Bereiche zu erkunden, für die das Prinzip funktionieren
kann.

Wir diskutieren zunächst Kreispiegelungen in der erweiterten komplexen Ebene und entwick-
eln auch einige Techniken im Umgang mit Kreispiegelungen. Wir verwenden Matrixwerkzeuge
und sehen, dass die Formulierung mit Matrizen eine gewisse Bequemlichkeit für die Diskussionen
bieten. Einige Ergebnisse zu konsekutiven Kreispiegelungen werden für weitere Untersuchungen
aufbereitet.

Als nächstes führen wir die Definition von Spiegelparkettierungsgebieten ein, einer Klasse
von Gebieten, für die Spiegelparkettierungen durchführbar sind. Wir beweisen, dass es dem
Spiegelparkettierungsprinzip im Allgemeinen gelingt, die harmonischen Green- und Neumann-
Funktionen für endliche Spiegelparkettierungsgebiete zu konstruieren. Wir erhalten auch einige
Ergebnisse über die Normalableitungen von harmonischen Green- und Neumann-Funktionen an
Gebietsrändern.

Wir untersuchen auch grundlegende Randwertprobleme in Kreisen und Halbebenen. Wir
besprechen die Schwarzsche und die Poissonsche Integralformeln und ihr Randverhalten auf
verallgemeinerten Kreisen. Mit Hilfe der Schwarzschen Integralformeln und den Eigenschaften
des Pompeiu-Operators lösen wir das Schwarzsche Randwertproblem für die Cauchy-Riemann-
Gleichungen in endlichen spiegelparkettbeschränkten Gebieten. Mit Hilfe harmonischer Green-
Funktionen und Poisson-Integralformeln lösen wir auch die Dirichlet-Probleme für die Poisson-
Gleichungen in endlichen spiegelparkettbeschränkten Gebieten.

Die letzten beiden Teile dieser Arbeit beschäftigen sich mit der Anwendung des Spiegelpar-
kettierungsprinzips für grundlegende Randwertprobleme einiger kreisförmiger Polygone. Kreis-
digonen, deren Randbögen sich an den beiden Eckpunkten mit einem Schnittwinkel π

n für
eine beliebige positive ganze Zahl n schneiden, werden als endliche Spiegelparkettierungsge-
biete verifiziert. Mit Hilfe des Spiegelparkettierungsprinzips werden das Dirichlet-Problem, das
Neumann-Problem und das Schwarz-Problem für diese Klasse von Kreisdigonen gelöst. Wir
verifizieren auch, dass ein bestimmtes kreisförmiges Rechteck ein unendliches Spiegelparket-
tierungsgebiet ist. Es gelingt uns, die harmonische Green-Funktion zu konstruieren und dann das
Dirichlet-Problem im Kreisrechteck zu lösen. Da wir mit Erfolg Beispiele für die Anwendung des
Spiegelparkettierungsprinzips zur Lösung einiger Randwertproblem in unendlichen Spiegelpar-
kettierungsgebieten behandeln, ist es lohnenswert, die Theorie des Spiegelparkettierungsprinzips
für den Fall von unendliche Spiegelungen weiter zu untersuchen.
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