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Abstract
Glycerol-based epoxy networks have great potential for surface functionalization, providing anti-microbial and protein repel-
lant function. However, the synthesis of glycerol glycidyl ether (GGE) monomer often requires excessive epichlorohydrin 
(ECH). ECH derived organochloride containing byproducts from monomer production maybe present in the eluent of the 
polymer networks prepared by cationic ring-opening polymerization. Here, the cytotoxicity analysis revealed cell damages 
in contact with the polyGGE eluent. The occurrence of organochlorides, which was predicted based on the data from high-
performance liquid chromatography/electrospray ionization mass spectrometry, as confirmed by a constant chloride level 
in GGE and polyGGE, and by a specific peak of C–Cl in infrared spectra of GGE. The resulting polyGGE was densely 
crosslinked, which possibly contribute to the trapping of organochlorides. These results provide a valuable information for 
exploring the toxins leaching from polyGGE and propose a feasible strategy for minimizing the cytotoxicity via reducing 
their crosslink density.

Introduction

Epoxy resins, a major class of thermosetting polymers, has 
been widely employed in a range of biomedical applica-
tions including composite coating, biosensor manufacturing, 
orthopedic and dental implants for fixation and osseointegra-
tion, owing to its outstanding chemical, mechanical, electri-
cal and adhesive features [1–5].

Recently, glycerol-based epoxy networks show great 
promise especially for surface functionalization to exhibit 
anti-biofouling potential and plasma protein resistance, 
which is attributed to the existence of hydroxyl groups and 
the polyether backbone [6–8]. Notably, the production does 
not require the oil-based bisphenol A, which is a key com-
pound applied in the industrial synthesis of polyepoxides 
[9]. However, another oil-based substance, epichlorohydrin 

(ECH) remains an important precursor in manufacturing 
glycerol glycidyl ether (GGE), which is monomer for the 
synthesis of polyGGE via cationic ring-opening polymeri-
zation [10–12]. Although bio-based glycerol can be used as 
a renewable feedstock for ECH production [13, 14], ECH 
residues and its organochloride derivatives are still toxic to 
cells and may limit the cell and tissue compatibility as well 
as biomedical applications of glycerol-based epoxy networks 
[15].

Various technologies have been applied for the cytotox-
icity analysis as a prime criterion for evaluating biomateri-
als [16]. Chloride channels are found to express on plasma 
membrane to maintain the membrane homeostasis. A novel 
class of chloride channels predominantly presented on mito-
chondrial membrane plays a critical role in membrane poten-
tial regulation, mitochondrial fusion and fission [17–20]. In 
this regard, not only the cell viability, but also metabolic 
condition of mitochondria needs to be assessed when investi-
gating the toxicity of organochloride containing compounds.

Potential toxins can be explored by computational analy-
sis using high content imaging and deep learning, which 
highly rely on generating large datasets and successful 
machine training [21, 22]. In contrast, combining conven-
tional analytic tools such as high-performance liquid chro-
matography and electrospray ionization mass spectrometry 
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(HPLC–ESI–MS) for toxin prediction can be a highly effec-
tive methodological approach [23–25].

Here, the cytotoxicity analysis of the eluent of polyGGE 
with and without washing using organic solvents was per-
formed. Chemical structures of potential toxic organochlo-
rides were proposed and the underlying mechanism was 
illustrated based on HPLC–ESI–MS and chloride content 
analysis.

Experimental

Detailed descriptions appear in supplementary information.

Cytotoxicity analysis of sample eluent

Cytotoxicity analysis was performed in conformity with 
the EN DIN ISO standards ISO 10993-5 and ISO 10993-
12. PolyGGE films were washed with minimum essential 
medium (MEM) or solvents including acetone, chloroform 
and methanol (all from Sigma-Aldrich, Germany) for two 
weeks. The eluents of these films were then used as culture 
medium for L-929 cells (Manassas, USA). Total cell num-
ber and cell viability were determined by FDA/PI staining 
(Thermo Scientific, Germany). The cell membrane integ-
rity was tested by LDH-assay (Roche, Germany). The met-
abolic activity was measured using MTS-assay (Promega, 
Germany).

HPLC–ESI–MS

Spectra of MEM eluent of polyGGE and pure MEM were 
measured with an impact II ESI–MS (Bruker Daltonics, 
Germany), which was connected with UltiMate 3000 HPLC 
(Thermo Scientific, Germany).

Attenuated total reflection Fourier transform 
infrared (ATR‑FT‑IR) spectroscopy

GGE monomer was analyzed by ATR-FT-IR spectroscopy 
(Nicolet IR 6700, Thermo Fisher Scientific, USA) in the 
absorbance range from 600 to 4000 cm−1 with a resolution 
of 2 cm−1.

Total chloride and free chloride anion content 
determination

The total chloride content of GGE and polyGGE was deter-
mined by inline combustion digestion with subsequent ion 
chromatography using an ion chromatograph 88 l compact 
IC pro (Metrohm, Germany) and a combustion module with 
autosampler for solids. Free chloride anion content in GGE 
was determined according to international standard EN DIN 

ISO 21627–1 using AgNO3 titration method performed on 
Titrino 716 DMS (Metrohm, Germany).

Crosslink density determination

Crosslink density and number average molecular weight 
between crosslinks of polyGGE were calculated by using 
the modified Flory-Rehner equation [26, 27].

Results and discussion

The eluent of polyGGE films impaired the cell 
viability and metabolic activity

For biomedical applications, an understanding of the toxins 
leaching from the polyglycerol-based networks including 
excessive precursors and byproducts formed during polym-
erization and monomer synthesis is crucial.

After 72 h incubation with polyGGE films, the MEM 
solution turned yellowish, indicating a substance being 
released from the polymer networks (Fig. 1a). Moreover, 
cells were loosely attached on the culture vessels and exten-
sive cell lysis occurred, leaving large empty areas between 
individual cells (Fig. 1b). Therefore, additional washing of 
polyGGE films with organic solvents including acetone, 
chloroform and methanol was performed. Although the 
L-929 fibroblasts did not exhibit the typical spindle shape 
when exposed to eluents from polyGGE after solvent wash-
ing, the cobblestone morphology of cells suggesting a 
slightly improvement of culture conditions in such eluents 
(Fig. 1b). There was no statistical difference of the total cell 
density (living and dead cells) observed in the eluents of 
polyGGE with and without washing. However, the viabil-
ity, plasma membrane integrity and mitochondrial activity 
were impaired, when the cells were exposed to the eluents 
of polyGGE with and without washing (Fig. 1c). Notably, 
the mitochondrial activity was rescued (sevenfold increase) 
when cells were cultured in the eluents of polyGGE after 
washing with all three solvents (Fig. 1c). Given the fact that 
a class of chloride channels is highly involved in organo-
chloride mediated mitochondrial dysfunction [20], the 
substances more likely the organochloride containing com-
pounds in the eluent of polyGGE are considered to be the 
main trigger for cytotoxicity.

Prediction of chloride substances in the eluent 
of polyGGE via HPLC–ESI–MS

To identify the released substances, the dissolved compo-
nents of the eluent were separated by HPLC, to which an 
ESI–MS was coupled, which allows structural study, predic-
tion and compound identification [28].
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Peaks in 72 h MEM eluent, which did not show in the 
pure MEM, were identified for further evaluation (Fig. 2a). 
H+ ionized molecules with different mass-to-charge ratios 
(m/z) in each numbered peak could be separately distrib-
uted on the spectra. H+ ionized molecules were formulated 
by simulating the numbered peaks at different retention 
time (Fig. 2b). According to the chemical formula, struc-
tures in Fig. 2c and d were proposed as 100% matching the 
m/z. Although the cleavage of –C–O–C– of polyGGE can 
occur driven by enzyme or bacteria to produce oligomer 
fragments [29], it is not likely to take place at moderate 
condition, as in case of MEM washing. On the contrary, 
those oligomers were possibly originating from the mon-
omer. It could be seen from the ion formula C6H12ClO3, 
C9H18ClO5, and C12H24ClO7, when the number of chlorides 
is the same, m/z increased by 74.036 as the unit of C3H6O2. 
The same could be found for C12H23Cl2O6, C15H29Cl2O8 and 
for C12H24Cl3O6, C15H30Cl3O8, C18H36Cl3O10, which may 
result from the addition of ECH during the production of 
the monomer.

Chlorohydrin byproducts could be formed 
during monomer synthesis and trapped 
in the polymer network

The synthesis of the monomer GGE is generally based on the 
reaction between glycerol and ECH [11, 12]. When the bond 
between oxygen and the least substituted carbon of ECH is 
attacked under acid or base, 1–2-chlorohydrin intermediates 

are formed, which undergo ring closure by base treatment 
companied with dechlorination. However, additive side reac-
tion can occur. Results from HPLC–ESI–MS showed that 
chloride-containing substances are continuously released 
after intensive washing steps. These remaining chloride end 
groups were mainly resulting from the following conditions: 
(i) additional ECH reacts with the secondary alcohol group 
of the 1–2-chlorohydrin intermediate, yielding inactive Cl 
end groups (byproduct #1), which could not be dechlorinated 
in the base treatment; (ii) When an acid catalyst was applied 
for the monomer synthesis, the bond between oxygen and the 
most substituted carbon of ECH could also be attacked and 
form 1–3-chlorohydrin (byproduct #2 and #3) with inactive 
chloride end group as byproducts, which cannot produce the 
epoxy ring; (iii) active Cl end groups (byproduct #4) could 
be formed from incomplete glycidylation during ring closure 
reaction. However, this active Cl end group could be further 
hydrolyzed in base and form a new alcohol group (byprod-
uct #5). During the polymerization of polyGGE, byproducts 
with multi-functional groups (epoxy ring) could be involved 
in growing the network structure (Fig. 3a).

Although the prediction from mass spectrometry 
showed that C12H23ClO7 (m/z 314.1132), C12H22Cl2O6 (m/z 
332.0793) and C12H23Cl3O6 (m/z 368.0560) might have the 
same chemical structures as byproducts #3, #4 and #5, iso-
mers from other side reactions might be also in conformity 
with the assigned molecular formula due to the uncontrol-
lable random reaction between the alcohol groups and ECH.

Fig. 1   Cytotoxicity analysis of eluents from polyGGE with and with-
out washing using organic solvent. (a) The color change of eluent 
before (0 h) and after extraction (72 h) of polyGGE in MEM medium. 
(b) Representative images shown the morphological changes of 
L-929 cells cultured in eluents from polyGGE films with and with-
out washing using organic solvents including acetone (–Ac), chloro-
form (–Ch) and methanol (–Me). Scale bar = 100 μm. c Quantitative 

analysis of total cell density, viability, LDH release and mitochon-
drial activity of L-929 cells cultured in the eluents of pure MEM col-
lected from tissue culture plate (control), polyGGE prewashed with 
acetone (polyGGE–Ac), chloroform (polyGGE–Ch) and methanol 
(polyGGE–Me). n = 8, * p < 0.05, one-way ANOVA with Tukey’s 
tests
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Fig. 2   Prediction of organochloride containing substances in the 
eluent of polyGGE based on HPLC–ESI–MS analysis. (a) HPLC 
chromatogram of composites in polyGGE eluent compared to pure 
medium. Numbers indicate the peaks that were not present in the 
analysis of the pure medium. (b) MS spectra of peak 11 at reten-

tion time of 1.8 min, isotope patterns of H+ ionized C9H18ClO5 and 
C12H24ClO7. Predicted chemical structures (c) and assignment of 
organochloride containing compounds in respect to their H+ ionized 
forms, retention times (tR) and mass-to-charge ratios (m/z) (d) in the 
eluent from polyGGE

Fig. 3   Proposed mechanisms of chlorohydrin byproduct generation 
during GGE monomer production. (a) Reaction scheme showing 
potential byproducts, which could be formed during the synthesis 
of GGE monomer based on the reaction between glycerol and ECH. 

Inactive Cl end groups were marked in red. (b) ATR-FT-IR spectrum 
of GGE monomer. i, spectrum in the range of 500–4000  cm−1; (ii), 
zoom-in spectrum in the range of 600–1000 cm−1
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Results from total chloride and free chloride anion con-
tent determination also confirmed the presence of organo-
chloride in GGE monomer (0.0024 ± 0.0002 wt% free chlo-
ride anion and 13.42 ± 0.23 wt% total chloride). Moreover, 
two weeks solvent washing did not remove the organo-
chloride in polyGGE (13.75 ± 0.73 wt% total chloride in 
crude polyGGE and 12.68 ± 1.27 wt% in washed polyGGE, 
Table S1), which means these organochloride containing 
compounds were either chemically bound to the polymer 
structure or entrapped in the crosslinked network.

The swelling data showed that polyGGE was densely 
crosslinked with low  M

n
 values (29.4 ± 1.0  g·mol−1, 

Table  S2) of the chain segments, indicating a highly 
branched polymer network. With such high crosslink density 
and low swelling ability, mono-functional or non-functional 
byproducts could be stabilized in the densely crosslinked 
network. As chlorohydrin molecules have a high polarity, 
they could alter plasma and mitochondrial membrane stabil-
ity and permeability of the cells. It is likely that the released 
chlorohydrin molecules are taken up into L929 cells and 
cause the cell detachment, thereafter completing cell lysis 
[30]. Chloride binding to the backbone of the polymer net-
work seems to have little negative effect on the cells. An 
example would be poly(vinyl chloride), which is actually 
used as biomaterials, e.g. for blood bags [31]. However, free 
organochlorides released from the bulk can cause the cell 
death [32].

The ATR-FT-IR spectra profile of the GGE monomer 
showed a weak C–H stretching of epoxide at 3056 cm−1, 
asymmetric epoxide ring deformation at 907 cm−1, sym-
metric epoxide ring deformation at 839 cm−1 and epoxide 
ring breathing at 1256 cm−1. In addition to that, the presence 
of peaks at 2998 cm−1, 985 cm−1 (as a shoulder), 754 cm−1, 
1337 cm−1 and 1452 cm−1 are also characteristics of cyclic 
ethers (Fig. 3bi) [33–35].

C–Cl stretching frequencies were observed at 701 cm−1 
(Fig. 3bii), while broad absorbance from 3600 to 3300 cm−1 
can be assigned to -OH stretching vibrations, which may 
result from the incomplete glycidylation of alcohol groups 
(Fig. 3bi).

Conclusions

The eluent from polyGGE films strongly impaired the cell 
viability, plasma membrane integrity and metabolic activ-
ity due to the unhydrolyzable organochloride byproducts or 
ECH precursors originating from the GGE monomer, which 
was explored by HPLC–ESI–MS. Chloride content deter-
mination and ATR-FT-IR analysis confirmed the presence 
of the organochloride in the monomer mixture and could 
not be fully extracted by solvent washing. Swelling data 
revealed that polyGGE was highly crosslinked and capable 

of trapping the unfavored byproducts. To this end, reducing 
the crosslink density might be a potential solution to achieve 
the goal of eliminating the cytotoxic substances from the 
proposed materials so that these purified materials could be 
used for biomedical applications.
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