
Dissertation
zur Erlangung des akademischen Grades

des Doktors der Naturwissenschaften

(Dr. rer. nat.)

Evolutionary Multi-Objective Optimization for
Computation Offloading in Collaborative

Edge-Cloud Computing

eingereicht

am Institut für Informatik

des Fachbereichs Mathematik und Informatik

der Freien Universität Berlin

von

Guang Peng

Berlin, 2021

Gutachter:

Prof. Dr. Katinka Wolter
Department of Computer Science
Freie Universität Berlin, Germany

Associate Prof. Dr. Huaming Wu
Center for Applied Mathematics
Tianjin University, China

Disputation: 25.10.2021

Selbständigkeitserklärung

Ich versichere, dass ich die Doktorarbeit selbständig verfasst, und keine anderen als die angegebenen

Quellen und Hilfsmittel benutzt habe. Die Arbeit hat keiner anderen Prüfungsbehörde vorgelegen.

Guang Peng

Berlin, den 20. Dezember 2021

Abstract

Many real-world problems involve multiple and conflicting objectives to be optimized simulta-

neously, which are formulated as multi-objective optimization problems (MOPs). In general, prob-

lems with more than three objectives or a large number of decision variables are referred to as

many-objective or large-scale optimization problems (MaOPs or LSMOPs), respectively. Recently,

a variety of multi-objective evolutionary algorithms (MOEAs) inspired by nature have been devel-

oped to solve MOPs. However, the performance of MOEAs often deteriorates when faced with

many-objective or large-scale optimization. In addition, these MOEAs using the classical Pareto

dominance principle face no strong selection pressure towards the Pareto front with regard to many-

objective optimization. Furthermore, it is difficult for a limited population size to explore the high-

dimensional search space of large-scale optimization.

With the development of the Internet of things (IoT) and mobile networks, more and more

computation-intensive and latency-critical applications are deployed to mobile devices. Due to some

limitations inherent to mobile devices including limited computing capability, storage space, and

battery lifetime, these applications cannot run efficiently on mobile devices. To address this issue,

computation offloading in mobile cloud and edge computing (MCC and MEC) provides a promising

paradigm to migrate computation-heavy parts of mobile applications to the cloud and edge servers.

Hence, MCC and MEC computation offloading may involve different objectives such as reducing

time and saving energy. Offloading decision making can be described as multi-criteria optimization

and we develop efficient MOEAs to solve different computation offloading models.

This work covers evolutionary multi-objective optimization for computation offloading in col-

laborative MCC and MEC. Its main content includes two parts: (i) evolutionary multi-objective

optimization and (ii) optimization in offloading. Specifically, the contributions of this thesis can be

summarized as follows:

• Proposing a multi-objective artificial bee colony algorithm based on decomposition to improve

convergence and diversity for solving normalized and scaled MOPs.

i

• Developing a many-objective evolutionary algorithm with adaptive weight vectors for dealing

with normalized and scaled MaOPs.

• Designing a novel archive maintenance for adapting weight vectors in decomposition-based

evolutionary algorithms for handling MOPs and MaOPs with irregular Pareto fronts.

• Proposing three constrained MOEAs to deal with constrained MOPs as well as offloading

problems in IoT-edge-cloud computing networks.

• Exploring and comparing two evolutionary large-scale sparse multi-objective optimization

algorithms for tackling collaborative edge-cloud offloading problems.

• Studying a novel multi-objective computation offloading algorithm to solve offloading prob-

lems with the consideration of compression, security and mobility.

ii

Zusammenfassung

Bei vielen realen Problemen müssen mehrere und widersprüchliche Ziele gleichzeitig optimiert

werden, die als Multi-Objective Optimierungsprobleme (MOPs) formuliert werden. Im Allgemei-

nen werden Probleme mit mehr als drei Zielen oder einer großen Anzahl von Entscheidungsvaria-

blen als Optimierungsprobleme mit vielen Zielen oder großen Optimierungen (MaOPs bzw. LS-

MOPs) bezeichnet. In jüngster Zeit wurde eine Vielzahl von von der Natur inspirierten Multi-

Objective-Evolutionary-Algorithmen (MOEAs) entwickelt, um MOPs zu lösen. Die Leistung von

MOEAs verschlechtert sich jedoch häufig, wenn sie mit einer Optimierung mit vielen Zielen oder in

großem Maßstab konfrontiert werden. Darüber hinaus sind diese MOEAs, die das klassische Pareto-

Dominanzprinzip verwenden, keinem starken Selektionsdruck gegenüber der Pareto-Front im Hin-

blick auf eine Optimierung mit vielen Zielen ausgesetzt. Darüber hinaus ist es für eine begrenzte

Populationsgröße schwierig, den hochdimensionalen Suchraum einer groß angelegten Optimierung

zu erkunden.

Mit der Entwicklung des Internet der Dinge (IoT) und mobiler Netzwerke werden immer mehr

rechenintensive und latenzkritische Anwendungen auf mobilen Geräten bereitgestellt. Aufgrund ei-

niger Einschränkungen, die mobilen Geräten inhärent sind, einschließlich eingeschränkter Rechen-

kapazität, Speicherplatz und Akkulaufzeit, können diese Anwendungen auf mobilen Geräten nicht

effizient ausgeführt werden. Um dieses Problem zu beheben, bietet das Auslagern von Berechnun-

gen in Mobile Cloud und Edge Computing (MCC und MEC) ein vielversprechendes Paradigma für

die Migration rechenintensiver Teile mobiler Anwendungen in die Cloud und auf Edgeserver. Daher

kann das Auslagern von MCC- und MEC-Berechnungen unterschiedliche Ziele beinhalten, wie z. B.

Zeitersparnis, Energieeinsparung und Verbesserung der Sicherheit. Die Entscheidungsfindung beim

offloading kann als Optimierung mehrerer Kriterien beschrieben werden. Wir entwickeln effiziente

MOEAs, um verschiedene Modelle für das offloading von Berechnungen zu lösen.

Diese Arbeit befasst sich mit der evolutionären Optimierung mehrerer Ziele für das Auslagern

von Berechnungen in kollaborativen MCC und MEC. Sein Hauptinhalt besteht aus zwei Teilen:

iii

(i) evolutionäre Multiobjektive Optimierung und (ii) Optimierung beim Offloading. Insbesondere

können die Beiträge dieser Arbeit wie folgt zusammengefasst werden:

• Vorschlag eines auf Zersetzung basierenden Algorithmus für künstliche Bienenkolonien mit

mehreren Zielsetzungen zur Verbesserung der Konvergenz und Diversität zur Lösung von

normalisierten und skalierten MOPs.

• Entwicklung eines evolutionären Algorithmus mit vielen Zielen und adaptiven Gewichtsvek-

toren für den Umgang mit normalisierten und skalierten MaOPs.

• Entwurf einer neuartigen Archivpiesing zur Anpassung von Gewichtsvektoren in zerlegungs-

basierten evolutionären Algorithmen zur Behandlung von MOPs und MaOPs mit unregelmä-

ßigen Pareto-Fronten.

• Vorschlag von drei eingeschränkten MOEAs zur Bewältigung eingeschränkter MOPs sowie

zum Auslagern von Problemen in IoT-Edge-Cloud-Computing-Netzwerken.

• Untersuchen und Vergleichen von zwei evolutionären, spärlichen Optimierungsalgorithmen

mit mehreren Zielen, um kollaborative Edge-Cloud-Offloading-Probleme anzugehen.

• Untersuchung eines neuartigen Multi-Objective-Computation-Offloading-Algorithmus zur Lö-

sung von Offloading-Problemen unter Berücksichtigung von Komprimierung, Sicherheit und

Mobilität.

iv

Acknowledgements

My study is under the financial support by Xi’an Jiaotong University and has been carried out

at Dependable Distributed Systems (DDS) group at Freie Universität Berlin, Germany. I am very

thankful to them for providing me with such a valuable working opportunity. I would like to express

my sincere gratitude to everyone who contributed to the completion of this thesis.

First and foremost, I would like to thank my supervisor Prof. Dr. Katinka Wolter. I really

appreciate her invaluable advice and guidance throughout my research in FUB. She taught me how to

write good papers and prepare presentations. She carefully revised my papers sentence by sentence.

I deeply admire her work attitude and professional knowledge. She has been more than a perfect

supervisor during my life in FUB. When I came to Berlin, she helped and encouraged me to adapt

to a new culture and start a new life. She provided me with a lot of help and suggestion for both

life and work. Without her advice and patience, this thesis would have never been possible. I really

appreciate everything she has done for me.

Thanks to my colleagues Xiao Jia, Dr. Zhihao Shang and Dr. Han Wu. They created an ever nice

and friendly working atmosphere in the institute. I enjoyed working with them very much. They

shared their interesting ideas and discussed the problems I faced. Thanks for their company and

memorable time.

Thanks to my friends Hanxing Lin, who gave me a lot of support and helpful suggestions during

the research.

Last but not least, I am very grateful for the love and support of my parents, who have provided

continuous motivation for my education.

v

vi

Contents

Abstract i

Acknowledgement v

I Introduction 1

1 Basic Problems 3

1.1 Problem Statement . 3

1.2 Main Research Challenges . 5

1.3 Contributions . 7

1.4 Thesis Structure . 9

2 Background and Related Work 11

2.1 Multi-objective Optimization . 11

2.2 Multi-objective Evolutionary Algorithm . 15

2.3 Benchmark Suites . 17

2.4 Evaluation Metrics . 22

2.5 Computation Offloading Optimization . 24

2.6 Related Work . 25

2.6.1 Evolutionary Multi-objective Optimization 25

2.6.2 Computation Offloading Optimization Schemes 29

2.7 Summary . 30

vii

II Evolutionary Multi-objective Optimization 31

3 A Multi-objective Artificial Bee Colony Algorithm 33
3.1 Classical Decomposition Approaches . 33

3.2 The Artificial Bee Colony Algorithm . 34

3.3 The Proposed MOEA/D-ABC . 36

3.3.1 General Framework . 36

3.3.2 Modified Tchebycheff Approach . 37

3.3.3 The ABC Operator . 38

3.3.4 Adaptive Normalization . 39

3.3.5 Computational Complexity . 40

3.4 Experimental Studies . 40

3.4.1 Experiment Settings . 40

3.4.2 Normalized Test Problems . 41

3.4.3 Scaled Test Problems . 42

3.4.4 MOEA/D-ABC VS MOEA/D-PBI . 44

3.5 Summary . 47

4 A Many-objective Decomposition-based Algorithm 49
4.1 Compared Decomposition Approaches . 50

4.2 The Proposed DBEA-AWV . 51

4.2.1 General Framework . 51

4.2.2 Adaptive Weight Vectors . 52

4.2.3 Replacement Strategy . 54

4.2.4 Computational Complexity . 56

4.3 Experimental Studies . 57

4.3.1 Experimental Design . 57

4.3.2 Comparative Results on MOPs . 58

4.3.3 Comparative Results on MaOPs . 59

4.3.4 Parameter Sensitivity Analysis . 63

4.4 Summary . 66

5 An Adaptive Algorithm for Irregular Pareto Fronts 69
5.1 Irregular Pareto Fronts . 70

5.2 The Proposed AMAWV . 70

viii

5.2.1 General Framework . 71

5.2.2 Archive Maintenance . 73

5.2.3 Weight Vector Adaptation . 76

5.2.4 Computational Complexity . 78

5.3 Experimental Studies . 79

5.3.1 Experimental Design . 79

5.3.2 Experimental Results . 79

5.4 Summary . 83

6 Three Constrained Algorithms with Better Versatility 87
6.1 PPS Framework . 88

6.2 The Proposed PPS-NSGA-II/SPEA2/SPEA2-SDE 89

6.2.1 General Framework . 89

6.2.2 PPS-NSGA-II . 90

6.2.3 PPS-SPEA2 . 92

6.2.4 PPS-SPEA2-SDE . 93

6.2.5 Computational Complexity . 94

6.3 Simulations on Benchmark Problems . 95

6.3.1 Parameter Settings . 95

6.3.2 Simulation Results . 96

6.4 Summary . 102

III Optimization in Offloading 105

7 Constrained Multi-objective Optimization for Offloading 107
7.1 Constrained Offloading Model . 107

7.1.1 System Model . 108

7.1.2 Communication Model . 108

7.1.3 Computation Model . 111

7.1.4 Problem Formulation . 112

7.2 Performance Evaluation . 113

7.2.1 Experimental Setup . 113

7.2.2 Convergence Analysis . 114

7.2.3 Performance of Different Offloading Schemes 115

ix

7.2.4 Impact of Different Parameters . 117

7.2.5 Impact of Different Types of Applications 119

7.3 Summary . 120

8 Large-scale Offloading in Edge-Cloud Computing 121
8.1 Restricted Boltzmann Machine . 121

8.2 Large-scale Offloading Model . 122

8.2.1 System Model . 123

8.2.2 Local Computing Model . 123

8.2.3 Edge Computing Model . 124

8.2.4 Cloud Computing Model . 126

8.2.5 Problem Formulation . 127

8.3 The Proposed ELSMO . 127

8.3.1 General Framework . 127

8.3.2 The Proposed ELSMO-1 . 128

8.3.3 The Proposed ELSMO-2 . 130

8.3.4 Computational Complexity . 131

8.4 Performance Evaluation . 132

8.4.1 Experimental Settings . 132

8.4.2 Comparison with Other MOEAs . 133

8.4.3 Comparison with Other Offloading Schemes 138

8.5 Summary . 138

9 Dynamic and Secure Multi-objective Offloading 141
9.1 Dynamic and Secure Offloading Model . 142

9.1.1 System Overview . 142

9.1.2 Offloading Decision Model . 143

9.1.3 Compression . 146

9.1.4 Security . 147

9.1.5 Mobility . 148

9.1.6 Problem Formulation . 148

9.2 The Proposed MCOEA . 150

9.2.1 General Framework . 150

9.2.2 Crossover Operator . 150

9.2.3 Mutation Operator . 151

x

9.2.4 Computational Complexity . 153

9.3 Performance Evaluation . 154

9.3.1 Experiment Profile . 154

9.3.2 Convergence Analysis . 155

9.3.3 Compression Security Mobility Analysis 155

9.3.4 Comparison with Different Offloading Schemes 157

9.3.5 Impact of System Parameters . 159

9.4 Summary . 162

IV Concluding Remarks 163

10 Conclusions and Outlook 165
10.1 Conclusions . 165

10.2 Outlook . 167

Bibliography 169

List of Figures 179

List of Tables 183

Glossary 185

List of Publications 187

About the Author 189

xi

xii

Part I

Introduction

1

Chapter 1

Basic Problems

In this chapter the problems considered in this thesis will be explained, the contributions are

illustrated and an outline is given.

1.1 Problem Statement

Multi-objective optimization problems (MOPs) [116] exist in real-world applications. A decision-

maker often needs to handle different conflicting objectives. For example, a hybrid electric vehicle

controller design problem proposed in [1] consists of seven optimization objectives: fuel consump-

tion, battery stress, internal combustion engine (ICE) operation changes, ICE emissions, ICE noise,

urban operation, and average battery state of charge level. These seven optimization objectives to-

gether determine the performance of the hybrid electric vehicle controller. Generally, the MOPs with

more than three objectives are named many-objective optimization problems (MaOPs) [69]. In ad-

dition, the MOPs with a set of equality and/or inequality constraints are denoted constrained MOPs

(CMOPs) [31]. The improvement of one objective may lead to deterioration of other objectives.

Different from a single solution in single-objective optimization, a set of non-dominated solutions

are used to balance different objectives in MOPs. Another challenge of multi-objective optimization

is to deal with the large-scale optimization [119], which means the MOPs are associated with a large

number of decision variables.

There are a number of open problems in classical optimization algorithms. The classical op-

timization methods such as weighted sum cannot perform well for MOPs, sometimes it is also

difficult to set the weights for different objectives. On the other hand, some MOPs like multi-

objective travelling salesman problem are NP-hard, the traditional deterministic methods might

3

CHAPTER 1. BASIC PROBLEMS

need a large computational budget. Multi-objective evolutionary algorithms (MOEAs) [14] have

been popularly developed to solve these problems. Evolutionary algorithms (EAs) [82] belong to

the metaheuristic algorithms, which are inspired by the natural evolution from biology. Most of

the EAs are population-based algorithms and have the advantages of global optimization. However,

some MOEAs can achieve good results for MOPs, while they may encounter difficulties in facing

MaOPs. With the increasing number of objectives, the solutions with many objectives are usually

non-dominated by each other. Pareto dominance has no strong selection pressure to make the non-

dominated solutions approximate the true Pareto front. Furthermore, a huge number of solutions

are needed to represent the entire Pareto front and how to choose a single final solution is difficult

for the decision-maker. As for the large-scale optimization, with the growing number of decision

variables, it becomes much more challenging for MOEAs to search in a high-dimensional search

space. The initial population can only explore a limited area of the search space. Then the MOEAs

can just obtain a small part of the Pareto front. With regard to CMOPs, it is challenging to handle

both multiple objectives optimization and constraint satisfaction.

We apply MOEAs to optimization problems in the context of offloading. Mobile cloud computing

(MCC) [99] is emerging as a computing paradigm that combines the strength of cloud computing

and the convenience of mobile networks. With the progress of the Internet of Things (IoT) and 5G

communications, mobile computing has undergone a shift from centralized MCC to mobile edge

computing (MEC) [1]. More and more computation-intensive and time-sensitive applications have

been developed for mobile devices, e.g., face recognition, augmented reality and interactive gaming.

Due to the insufficient computing ability as well as the limited battery power of mobile devices, the

quality of service (QoS) of these complicated applications cannot be satisfied if they are handled

locally. Computation offloading in MCC and MEC has emerged as a potential method to solve

these problems, where the complicated computing tasks can be chosen to be offloaded to a central

cloud or an edge cloud. Fig. 1.1 presents a generic mobile edge-cloud offloading architecture. The

applications can be offloaded to the cloud through 4G/5G or WiFi networks. The computation

offloading in MCC and MEC aims to shorten response time, save energy consumption and decrease

the monetary cost. Obviously, offloading decision making problems are MOPs. How to establish the

multi-objective computation offloading models and apply the efficient MOEAs to solve the models

will be studied.

4

1.2. MAIN RESEARCH CHALLENGES

4G/5G

WiFi

Core Network

Figure 1.1: Mobile edge-cloud offloading architecture

1.2 Main Research Challenges

A variety of multi-objective evolutionary algorithms (MOEAs) have been developed for multi-

objective optimization problems (MOPs), it still faces many challenges to improve convergence

and diversity, especially for many-objective optimization, constrained optimization and large-scale

optimization. From another perspective, existing MOEAs may encounter difficulties in solving dif-

ferent multi-objective computation offloading optimization problems in MCC and MEC. As shown

in Fig. 1.2, several research challenges are summarized as follows:

• Multi-objective Optimization: Although different MOEAs have been proposed to solve MOPs,

how to further improve the convergence and diversity of algorithms for solving normalized

and scaled MOPs needs to be investigated. In addition, traditional MOEAs may be suitable

for MOPs with regular Pareto fronts, while they cannot solve the complex MOPs with irregu-

lar Pareto fronts. For instance, the performance of decomposition-based algorithms strongly

depends on Pareto front shapes [45]. The decomposition-based algorithms utilize a decom-

position method to decompose a MOP into several subproblems based on the weight vectors

provided, resulting in the performance of the algorithms being highly dependent on the unifor-

5

CHAPTER 1. BASIC PROBLEMS

Intelligent

Optimization for Offloading

Multi-objective

Optimization

Scaled Irregular
Selection

Pressure

Constraint

Handling

High-

dimensional

Part II: Evolutionary

Multi-objective

Optimization

Many-objective

Optimization

Constrained

Optimization

Large-scale

Optimization

Part III:

Optimization in

Offloading

Goal-

Challenges-

Criteria-

Solutions-

Figure 1.2: Main research challenges and solutions in this dissertation

mity between the problem’s optimal Pareto front and the distribution of the specified weight

vectors [65]. However, weight vector generation is generally based on a simplex lattice de-

sign [22], which is suitable for regular Pareto fronts (i.e., simplex-like fronts) but not for other

irregular Pareto fronts (e.g., inverted, degenerated, disconnected, etc.) [63].

• Many-objective Optimization: Many-objective optimization problems (MaOPs) consist of

more than three objectives, more and more solutions are non-dominated by each other. The

traditional Pareto dominance-based methods cannot work well for MaOPs, which face no

strong selection pressure towards the Pareto front [22]. Then some MOEAs have good per-

formance for solving normalized problems, but they may have drawbacks for dealing with

problems with disparately scaled objectives. The entire Pareto front needs a huge number of

solutions. We want to find an adaptive algorithm to solve normalized and scaled MaOPs for

obtaining a set of solutions to represent the Pareto front. Furthermore, MaOPs with irregular

Pareto fronts are also difficult to be solved [63].

• Constrained Optimization: Constrained multi-objective optimization problems (CMOPs) have

a set of equality and/or inequality constraints. It is challenging to solve CMOPs because of

the difficulty in striking a good balance of optimizing objectives and satisfying constraints

6

1.3. CONTRIBUTIONS

simultaneously. In addition, classical constrained multi-objective evolutionary algorithms

(CMOEAs) may face difficulties in solving complicated CMOPs, such as CMOPs with large

infeasible regions [32], CMOPs with adjustable difficulties [34] and CMOPs with both deci-

sion and objective constraints [66]. We will design an efficient constrained algorithm to solve

these different complicated CMOPs.

• Large-scale Optimization: Large-scale multi-objective optimization problems (LSMOPs) in-

clude a large number of decision variables [12]. The search space increases exponentially

with the growth of the number of decision variables. The first challenge for optimization al-

gorithms is to search the whole decision space using a limited population size [119]. These

limited algorithms can only search in a small portion of the high-dimensional search space,

resulting in obtaining a small part of the Pareto front. The second challenge for MOEAs is

that it is difficult to explore the high-dimensional space with limited computational resources.

The algorithms need enough function evaluations to search the whole decision space.

We try to propose effective and efficient multi-objective evolutionary algorithms (MOEAs) to

solve these challenges in different kinds of multi-objective optimization problems (MOPs). Based

on these multi-objective optimization theories and algorithms, we apply and develop multi-objective

optimization methods to solve different multi-objective offloading optimization problems, such as

constrained and large-scale offloading optimization problems.

1.3 Contributions

The main contributions of this thesis are to analyze and improve the performance of MOEAs

and adopt evolutionary multi-objective optimization methods for solving computation offloading

problems in collaborative MCC and MEC. According to Fig. 1.2, the main contributions include

two parts (Part II and Part III). In the second part of the thesis, we propose four efficient multi-

objective optimization algorithms to solve a variety of MOPs and MaOPs coming from the widely

used benchmark suites. Then in the third part we apply and develop three optimization methods for

dealing with different multi-objective computation offloading problems in collaborative edge-cloud

computing.

The major contributions of this thesis are summarized as follows:

Part II: Evolutionary Multi-objective Optimization

• Multi-objective Optimization Algorithm: In order to efficiently solve normalized and scaled

MOPs, we design a multi-objective artificial bee colony algorithm based on decomposition.

We use a novel reproduction operator inspired by the artificial bee colony algorithm to improve

7

CHAPTER 1. BASIC PROBLEMS

the convergence. Then a modified Tchebycheff approach is adopted to achieve higher diversity

of the solutions. Further, an adaptive normalization operator can be applied to solve differently

scaled problems. The proposed algorithm can obtain a well-converging and well-diversified

set of solutions for MOPs.

• Many-objective Optimization Algorithm: In order to efficiently solve normalized and scaled

MaOPs, we develop a decomposition-based evolutionary algorithm with adaptive weight vec-

tors. For dealing with disparately scaled problems, a strategy is adopted to tune weight vec-

tors according to the range of each objective concerning candidate solutions. Based on the

adaptive weight vectors, we compare the existing six popular decomposition approaches and

choose the best suitable one. Even more, one novel replacement strategy is adopted to attain

the balance between convergence and diversity for MOPs and MaOPs.

• Adaptive Algorithm for Irregular Pareto Fronts: In order to efficiently solve MOPs and

MaOPs with irregular Pareto fronts, we propose a novel archive maintenance for adapting

weight vectors to improve the performance of the decomposition-based evolutionary algo-

rithms. An archive is used to store non-dominated solutions. A novel archive maintenance

strategy is applied to avoid the dominance resistant solutions, as well as retain the good diver-

sity of non-dominated solution set. Furthermore, guided from the information of the archive,

an adaptive weight vector method is designed to solve problems with various Pareto fronts

(the simplex-like, the inverted, the disconnected, the degenerated, the scaled, the mixed, the

high dimensional).

• Constrained Optimization Algorithm: In order to efficiently solve different constrained

MOPs (CMOPs), we put forward three tailored constrained multi-objective optimization al-

gorithms. The search process of the proposed algorithms is divided into two stages. In the first

stage, we use a multi-objective evolutionary algorithm to search the unconstrained solutions

without considering any constraints. In the second stage, a constraint handling mechanism is

used to search the constrained solutions. The two-stage search method helps solutions to jump

across large infeasible regions. The proposed constrained algorithms can be used to deal with

more complicated CMOPs.

Part III: Optimization in Offloading

• Constrained Offloading Optimization: For dealing with constrained computation offload-

ing optimization problems in IoT-edge-cloud networks, the three tailored constrained MOEAs

(CMOEAs) in Chapter 6 of Part II are applied. First of all, a constrained multi-objective

computation offloading model is established to satisfy time and energy consumption require-

8

1.4. THESIS STRUCTURE

ments. Then a multi-server multi-user multi-task computation offloading experimental sce-

nario is used to evaluate the performance of three proposed algorithms. The experimental

results demonstrate the effectiveness and superiority of the proposed algorithms.

• Large-scale Offloading Optimization: For solving large-scale computation offloading prob-

lems in collaborative edge-cloud computing, two evolutionary large-scale sparse multi-objective

optimization algorithms are developed. To begin with, a large-scale multi-objective computa-

tion offloading model is established, where the offloading decision is represented as a binary

encoding. Considering the large-scale and sparsity property of the computation offloading

model, the restricted Boltzmann machine (RBM) is applied to reduce the dimensionality and

learn the Pareto-optimal subspace. In addition, the contribution score of each decision vari-

able is assumed to generate new offspring solutions. The proposed algorithms are compared

with other representative algorithms and offloading strategies on a number of test problems

with different scales.

• Dynamic and Secure Offloading Optimization: For tackling dynamic and secure computa-

tion offloading problems when considering compression, security and mobility in collabora-

tive MCC and MEC, a novel multi-objective computation offloading evolutionary algorithm

(MCOEA) is proposed. A dynamic and secure multi-objective computation offloading model

is built with the consideration of compression, security and mobility. The designed binary

crossover and mutation operators in the proposed MCOEA are applied to improve the conver-

gence and diversity of the solutions.

1.4 Thesis Structure

This thesis consists of four parts. In the first part we generally introduce the research topics and

background of the thesis as well as some related work. Part I has the following structure:

In Chapter 1, the main research topics and challenges are described. The major contributions are

summarized and the structure of this thesis is also organized.

In Chapter 2, we present the basic principles and some related work that are needed for this work.

First the basic concepts of multi- and many-objective, constrained and large-scale optimization are

introduced. The general framework of the MOEA is described. The characteristics of benchmark

suites for multi-objective optimization are summarized. Some of the most widely used evaluation

metrics are adopted to test the performance of MOEAs. Then we discuss the principles of com-

putation offloading optimization. What’s more, we present and analyze some related work about

evolutionary multi-objective optimization and computation offloading policies.

9

CHAPTER 1. BASIC PROBLEMS

We propose four MOEAs for solving MOPs and MaOPs in the second part. Part II is structured

as follows:

In Chapter 3, we design a multi-objective artificial bee colony algorithm using the decomposition

approach for dealing with normalized and scaled MOPs.

In Chapter 4, we propose a decomposition-based evolutionary algorithm with adaptive weight

vectors for solving the normalized and scaled MaOPs.

In Chapter 5, we develop a novel archive maintenance method for adapting weight vectors in the

decomposition-based algorithms for MOPs and MaOPs with irregular Pareto fronts.

In Chapter 6, we propose three CMOEAs with better versatility for different kinds of CMOPs.

The third part utilizes three evolutionary multi-objective methods for dealing with computation

offloading problems in collaborative edge-cloud computing. Part III is organized as follows:

In Chapter 7, the three CMOEAs illustrated in Chapter 6 are adopted to tackle constrained

computation offloading problems in IoT-edge-cloud computing networks.

In Chapter 8, two evolutionary large-scale sparse multi-objective optimization algorithms are

developed to solve edge-cloud computation offloading problems.

In Chapter 9, a novel multi-objective computation offloading evolutionary algorithm is developed

to a solve multi-objective computation offloading model to minimize time and energy consumption

with the consideration of compression, security and mobility.

Part IV shows the concluding remarks.

In Chapter 10, this thesis is summarized and concluded. We also provide an outlook on some

future research directions.

10

Chapter 2

Background and Related Work

In this chapter, some background knowledge and related work about evolutionary multi-objective

optimization and computation offloading optimization are briefly described. The basic concepts of

multi-objective optimization are introduced in Section 2.1. Section 2.2 presents the general princi-

ples of multi-objective evolutionary algorithms. Then the benchmark suites and evaluation metrics

for multi-objective optimization are introduced in Section 2.3 and Section 2.4, respectively. After-

wards, the basic principles of computation offloading optimization in mobile cloud/edge computing

are described in Section 2.5. Some related work and recent advances about evolutionary multi-

objective optimization and computation offloading optimization are introduced in Section 2.6. The

final section of this chapter gives a short summary.

2.1 Multi-objective Optimization

In this section, we introduce some basic concepts about multi- and many-objective optimization,

large-scale optimization, and constrained multi-objective optimization, respectively.

Multi-objective Optimization

Many real-world engineering optimization problems involve the simultaneous satisfaction of mul-

tiple objectives which are often in conflict, which means the improvement of one objective value can

result in the degradation of other objectives. For instance, the construction of a car is a typical ex-

ample. The car can be designed to be fast but at a higher price, or cheap, which might decrease

its maximum speed. Speed and price can be two conflicting objectives. Instead of finding a single

optimal solution as in single-objective optimization, multi-objective optimization problems have a

11

CHAPTER 2. BACKGROUND AND RELATED WORK

set of tradeoff solutions to satisfy all conflicting objectives. A multi-objective optimization problem

(MOP) can be defined as follows [76]:

min F (x) = (f1 (x) , f2 (x) , · · · , fm (x))T

s.t. gi (x) ≤ 0, i = 1, 2, · · · , p

hj (x) = 0, j = 1, 2, · · · , q

x ∈ Ω ⊆ Rn

(2.1)

where Ω denotes the decision space and x = (x1, x2, · · · , xn) is an n-dimensional decision vector.

F : Ω → Θ ⊆ Rm represents an m-dimensional objective vector and Θ is the objective space.

gi (x) ≤ 0 (i = 1, 2, · · · , p) refers to i-th inequality constraint and hj (x) = 0 (j = 1, 2, · · · , q)
refers to the j-th equality constraint.

The MOP consists of m objective functions, sometimes also called fitness functions, which have

to be minimized or maximized. Without loss of generality, we assume that all objective functions

are minimized. It is noted that MOPs having two and three objective functions without consider-

ing constraints are called multi-objective optimization, while MOPs with more than three objective

functions are often referred to as many-objective optimization problems (MaOPs). In particular,

MOPs with a set of equality and/or inequality constraints are called constrained multi-objective

optimization problems (CMOPs).

In the following, four important definitions for MOPs are given [76].

Definition 2.1.1. (Pareto dominance) A decision vector x0 =
(
x0

1, x
0
2, · · · , x0

n

)
is said to dominate

a decision vector x1 =
(
x1

1, x
1
2, · · · , x1

n

)
, denoted by x0 ≺ x1, if and only if the following two

conditions are satisfied: (1) for all objective functions, the values f
(
x0
)

are not greater than f
(
x1
)

and (2) there exists at least one objective function where f
(
x0
)

is less than f
(
x1
)
.{

fi
(
x0
)
≤ fi

(
x1
)
, ∀i ∈ {1, 2, · · · ,m}

fj
(
x0
)
< fj

(
x1
)
, ∃j ∈ {1, 2, · · · ,m}

(2.2)

Definition 2.1.2. (Pareto optimal solution) A solution vector x0 =
(
x0

1, x
0
2, · · · , x0

n

)
is called

a Pareto optimal solution, if and only if there exists no other solution x1 ∈ Ω which dominates

solution x0.

¬∃x1 : x1 ≺ x0 (2.3)

12

2.1. MULTI-OBJECTIVE OPTIMIZATION

Definition 2.1.3. (Pareto optimal solution set) The set of Pareto optimal solutions is defined as

PS =
{
x0
∣∣¬∃x1 ≺ x0

}
.

Definition 2.1.4. (Pareto front) The Pareto optimal solution set in the objective space is called

Pareto front, denoted by PF = {F (x) = (f1 (x) , f2 (x) , · · · , fm (x)) |x ∈ Ps }.

The solutions in the Pareto optimal set are non-dominated solutions, which are also not dominated

by any other solutions in the decision space. The goal of MOP is to obtain final non-dominated

solutions with better convergence and diversity, where the convergence means that the achieved non-

dominated solutions in the objective space approximate the true PF closely, and diversity means that

the corresponding non-dominated solutions are uniformly distributed over the PF. Fig. 2.1 shows an

example of PF of a two-objective optimization problem. The orange circles represent the dominated

solutions in the search process, the blue circles denote the non-dominated solutions, and the black

line is assumed as an optimal front in the objective space.

f2

f1

Figure 2.1: The PF of two-objective optimization problem

When solving CMOPs with equality constraints, we often relax the equality constraint with an

infinitesimal positive value δ and convert the equality constraints into inequality constraints, which

can be expressed as:

hj(x)′ ≡ δ − |hj (x)| ≥ 0 (2.4)

In order to deal with CMOPs with different inequality and quality constraints, the overall con-

13

CHAPTER 2. BACKGROUND AND RELATED WORK

straint violation of each solution x can be calculated as:

CV (x) =

p∑
i=1

|min {gi (x) , 0}|+
q∑
i=1

∣∣min
{
hj(x)′, 0

}∣∣ (2.5)

where x is a feasible solution if CV (x) = 0, otherwise it is infeasible.

Many-objective Optimization

Multi-objective optimization problems (MOPs) with more than three objectives are called many-

objective optimization problems (MaOPs). With the growth of the number of objective functions,

more and more solutions are most likely non-dominated by each other, the traditional Pareto dom-

inance concept encounters difficulties in selecting non-dominated solutions to improve the conver-

gence [74]. To address this effect, some modified Pareto dominance concepts [106, 110] have been

proposed to enhance the selection ability for solving MaOPs. The main idea of these modified Pareto

dominance methods is to relax the requirements of traditional Pareto dominance. In this way, the

non-dominated solutions can be selected easily under the new environment.

On the other hand, some other many-objective optimization algorithms [22,60,113] try to rely on

the weight vectors (or reference directions) to decompose a MaOP into a series of scalar optimization

subproblems. Each weight vector represents a search direction, we only need to optimize one sub-

problem under this weight vector. With the help of these search directions, different non-dominated

solutions can be obtained to approach the Pareto front.

In addition, the number of objective functions in many-objective optimization research areas

mainly focuses on 5, 10, 15.

Large-scale Optimization

In this work, large-scale optimization refers to MOPs and MaOPs with a large number of deci-

sion variables. Single-objective and multi-objective optimization problems may both have a large

number of decision variables, here we analyze large-scale multi-objective optimization problems

(LSMOPs) [12]. In the literature, large-scale may represent different numbers of decision variables.

Any problem with more than 100 decision variables can be called large-scale.

When the number of decision variables increases, the search space increases exponentially. The

first challenge for metaheuristic methods is to search the whole decision space using a limited popu-

lation size [119]. Only a small portion of the high-dimensional search space can be explored by the

algorithm, and also a small part of the Pareto front can be obtained. Thus the diversity of the final

14

2.2. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

obtained non-dominated solution set is poor with regard to the optimal PF. On the other hand, large

scale properties may influence the function of common genetic operators. The mutation rate in the

mutation operator is often set to 1/n, where n is the number of decision variables. Considering that

n is very large, i.e. n = 1000, the mutation rate is 0.001, in this way the solutions will easily fall

into local optima.

The second challenge for MOEAs is that it is difficult to explore the high-dimensional space

with limited computational resources. With increasing dimensionality of the decision variables, the

decision space is becoming huge quickly. The algorithms not only need a certain population size but

also need enough function evaluations to help the algorithms thoroughly search the whole decision

space. For solving these two problems, most large-scale optimization algorithms try to reduce the

number of decision variables for solving large-scale MOPs.

2.2 Multi-objective Evolutionary Algorithm

Simple optimization problems can be addressed by traditional methods such as integer program-

ming, dynamic programming, and enumeration methods. However, some complex optimization

problems are NP-hard or cannot be formulated mathematically directly. The traditional mathe-

matical methods face difficulties in dealing with such problems. The metaheuristic optimization

algorithms which have been inspired by biological or physical processes provide a way to obtain a

suboptimal or optimal solution during the polynomial time.

A large variety of metaheuristic optimization algorithms has been proposed to solve different opti-

mization problems over the years. Some representative algorithms are Hill Climbing [53], Simulated

Annealing (SA) [52, 53], Genetic Algorithms (GA) [19], Particle Swarm Optimization (PSO) [50],

and Ant Colony Optimization (ACO) [8]. While the former two methods seem to be local search

mechanisms, the latter three methods are representative algorithms that belong to global optimiza-

tion. A Genetic Algorithm (GA) is inspired by the evolution of species, the new offspring solutions

will be generated by crossover and mutation operators, and the better solution (offspring) will sur-

vive through natural selection. The Particle Swarm Optimization (PSO) algorithm is inspired by

bird predation behavior, which finds the optimal solution through collaboration and information

sharing between individuals in the population. PSO uses a position in the decision space to rep-

resent a solution, and utilize concepts like velocity to guide the search. Ant Colony Optimization

(ACO) algorithm is a probabilistic algorithm, which is inspired by the behavior of ants finding paths

in the process of searching for food. Ants will release a substance called pheromone on the path,

and they will walk along a path with a higher concentration of pheromone. GA, PSO and ACO

15

CHAPTER 2. BACKGROUND AND RELATED WORK

are all population-based metaheuristic algorithms, and they fall into the category of evolutionary

computation [77].

An Evolutionary Algorithm (EA) [82, 94] applies a population to retain a set of solutions and

approximates the optimal or Pareto optimal solution set by gradually improving the performance of

current solutions in the population. The new candidate solutions are generated by existing solutions,

and they are selected as better solutions by natural selection mechanism. The natural selection

mechanism is also often called "survival of the fittest" based on the theory of evolution [16]. EAs

consist of two categories, single-objective EAs and multi-objective EAs. In this work, we focus on

the topic of multi-objective evolutionary algorithms (MOEAs) [14].

Algorithm 1 presents the basic framework of a MOEA. At first, a random population is initialized.

The solutions in the population are evaluated by the objective functions. After that, a loop operation

is carried out until the termination is satisfied. The existing solutions with better fitness function

values are selected into a mating pool. Then the parents are selected from the mating pool by

a tournament selection mechanism. The new solutions are generated by crossover and mutation

operations of parents. After the new solutions are evaluated, an environmental selection operation is

used to determine which solution can survive to the next generation. As the iteration progresses the

algorithm approaches better non-dominated solutions until the Pareto front is found.

Algorithm 1: Basic framework of a multi-objective evolutionary algorithm
Input: Optimization problem
Output: Solution population P

1 P ← initial random population;
2 Evaluate(P);
3 while the termination criterion is not satisfied do
4 P ′ ←MatingSelection (P);
5 Q← Crossover (P ′);
6 Q←Mutation (Q);
7 Evaluate(Q);
8 P ← EnvironmentalSelection (P,Q);
9 end

In MOEAs there exist different kinds of operations to produce offspring solutions, and also a va-

riety of environmental selection mechanisms to select better solutions in the evolutionary process.

It is worth noting that two solutions that have similar objective functions share a similar represen-

tation of decision variables. In that way, the newly generated offspring solutions can inherit the

characteristics of the parents.

16

2.3. BENCHMARK SUITES

2.3 Benchmark Suites

This section gives a brief overview of existing benchmark suites for multi- and many-objective

optimization, constrained and large-scale multi-objective optimization, including the ones used in

this thesis. Most of the benchmark suites have been widely used to evaluate different kinds of al-

gorithms. The problems have different characteristics, which can test a variety of performance of

algorithms for solving different problems. A series of scalable test problems have been designed and

these benchmark instances are mathematical problems. For example, Zitzler, Deb and Thiele [122]

designed ZDT test problems and used their names’ acronyms to name the test suite ZDT. The ZDT

problems aim to find x to minimize two functions f1 (x) and f2 (x) simultaneously. Each test

problem in ZDT test suite involves a particular feature that can cause difficulty in the evolutionary

optimization process. By investigating these different features, it is possible to know different tech-

niques are suited for different kinds of problems. Five widely used two-objective ZDT test problems

are formalized as:

• ZDT1
f1 (x) = x1

f2 (x) = g (x)
[
1−

√
f1 (x)/g (x)

]
g (x) = 1 + 9

(
n∑
i=2

xi

)/
(n− 1)

(2.6)

where x = (x1, . . . , xn)T ∈ [0, 1]n, and n = 30. Its Pareto front (PF) is convex.

• ZDT2
f1 (x) = x1

f2 (x) = g (x)
[
1− (f1 (x)/g (x))2

]
g (x) = 1 + 9

(
n∑
i=2

xi

)/
(n− 1)

(2.7)

where n = 30. Its PF is concave. ZDT1 and ZDT2 can test an algorithm’s performance for

searching the Pareto fronts with convex and concave shapes, respectively.

• ZDT3
f1 (x) = x1

f2 (x) = g (x)
[
1−

√
f1 (x)/g (x)− (f1 (x)/g (x)) sin (10πx1)

]
g (x) = 1 + 9

(
n∑
i=2

xi

)/
(n− 1)

(2.8)

where n = 30. Its PF is disconnected. This problem can test an algorithm’s performance for

17

CHAPTER 2. BACKGROUND AND RELATED WORK

searching the disconnected Pareto fronts.

• ZDT4
f1 (x) = x1

f2 (x) = g (x)
[
1−

√
f1 (x)/g (x)

]
g (x) = 1 + 10 (n− 1) +

n∑
i=2

[
x2
i − 10 cos (4πxi)

] (2.9)

where x = (x1, . . . , xn)T ∈ [0, 1] × [−5, 5]n−1, and n = 10. It has many local PFs. This

problem can test an algorithm’s ability for searching the Pareto fronts with many local optima.

• ZDT6
f1 (x) = 1− exp (−4x1) sin6 (6πx1)

f2 (x) = g (x)
[
1− (f1 (x)/g (x))2

]
g (x) = 1 + 9

[(
n∑
i=2

xi

)/
(n− 1)

]0.25
(2.10)

where n = 10. Its PF is concave. The Pareto optimal solutions are distributed nonuniformly

in the PF. This problem can test an algorithm’s ability for searching for a set of solutions

distributed uniformly in the Pareto fronts.

The true PFs of ZDT test problems are shown in Fig. 2.2. Similar to the ZDT test suite, the

mathematical description and Pareto fronts of other test problems can be located in the original

papers. Afterward we mainly analyze the characteristics and scalability of other benchmark suites.

The DTLZ (Deb, Thiele, Laumanns and Zitzler [25] designed and used their names’ acronyms

to denote) benchmark suite is designed in [25], which includes nine test problems DTLZ1-9, but

the first seven problems DTLZ1-7 are most used. These problems are scalable in the number of

decision variables and objective functions and have the ability to control the difficulties in both

converging to the true PF and maintaining a widely distributed set of solutions in the PF. The DTLZ

benchmark families are suitable for testing the performance of algorithms on multi- and many-

objective optimization and large-scale optimization.

The SZDT (Scaled ZDT) and SDTLZ (Scaled DTLZ) benchmark suites are modifications of the

ZDT and DTLZ test suites [22], which have disparately scaled objective functions. To illustrate, if

the scaling factor is a, the objective value fi of SZDT and SDTLZ is equal to the original objective

value fi of ZDT and DTLZ multiplied by ai−1, that is:

fi = ai−1fi, i = 1, 2, · · · ,m, a 6= 0 (2.11)

where m is the number of objective functions. Each test problem of the ZDT and SZDT suites

18

2.3. BENCHMARK SUITES

Figure 2.2: The true Pareto fronts of five ZDT test instances

19

CHAPTER 2. BACKGROUND AND RELATED WORK

only has 2 objective functions. DTLZ and SDTLZ test problems can be scaled to any number of

objectives. The different number of objective functions corresponds to different scaling factors. The

scaling factors used in SZDT and SDTLZ with the different number of objectives are listed in Table

2.1.

Table 2.1: The scaling factor

No. of objectives (m) Scaling factor (a)
2 10
3 10
5 10
8 3
10 2

The IDTLZ (Inverted DTLZ) and CDTLZ (Convex DTLZ) benchmark suites are modifications

of the DTLZ test suites. IDTLZ1-4 problems have inverted PF shapes compared with DTLZ1-4 test

problems. CDTLZ2 and CDTLZ4 have convex PF shapes while the original PFs of DTLZ2 and

DTLZ4 are concave.

The MaF benchmark suite has been developed for the IEEE Conference of Evolutionary Compu-

tation (CEC) Competition on Evolutionary Many-Objective Optimization [13]. The MaF test suite

consists of fifteen test problems, which are mainly modified DTLZ [25], WFG [44], LSMOP [12]

test problems.

The LIR-CMOP (Constrained Multi-objective Optimization Problem with Large Infeasible Re-

gions) benchmark suite is proposed in [32], which has fourteen test problems LIR-CMOP1-14. All

the test problems have large infeasible regions with respect to constraint functions. The objective

functions have two components: shape functions and distance functions, where shape functions are

used to set the shape of PFs and distance functions are applied to control the difficulty of conver-

gence. In addition, the feasible regions of LIR-CMOP1-4 are very small. LIR-CMOP5 and LIR-

CMOP6 have convex and concave PFs, respectively. The PFs of LIR-CMOP7 and LIR-CMOP8 are

located on their constraint boundaries. The PFs of LIR-CMOP9-12 have a number of disconnected

segments. LIR-CMOP13 and LIR-CMOP14 have three objectives.

The DAS-CMOP (Difficulty-adjustable and Scalable CMOP) benchmark suite has been devel-

oped in [34]. It has a set of nine CMOPs (DAS-CMOP1-9). DAS-CMOPs adopted three types

of difficulty, feasibility-hardness, convergence-hardness and diversity-hardness, to characterize the

constraint functions in CMOPs. The difficulty can be defined by the three primary constraint func-

tions with different parameters. The number of objectives in DAS-CMOPs can be scaled. The PFs

20

2.3. BENCHMARK SUITES

of DAS-CMOPs include convex, concave and discrete PFs.

The DOC (Decision and Objective Constraints) benchmark suite is constructed in [66]. It consists

of nine test problems DOC1-9. DOC considers both the decision and objective constraints simul-

taneously. Various decision constraints in DOC (e.g., inequality and equality, linear and nonlinear

constraints) are collected, while the controllable objective constraints make the PFs have diverse

characteristics (e.g., continuous, discrete, mixed and degenerate). DOC poses a great challenge for

CMOEAs to find well-converged and well-distributed feasible solutions.

The LSMOP (Large-scale MOP) benchmark suite is proposed in [12]. It includes nine test prob-

lems, LSMOP1-9, for large-scale multi- and many-objective optimization. These test problems are

scalable in terms of the number of decision variables and objective functions. The mixed separa-

bility between decision variables and the non-uniform correlation between decision variables and

objective functions are also considered in the test problems.

The SMOP (Sparse MOP) benchmark suite is designed in [90]. It includes eight test problems

SMOP1-8 for large-scale sparse MOPs. These test problems are designed to have various landscape

functions for providing various difficulties for algorithms in obtaining Pareto optimal solutions.

Table 2.2 shows different properties of a list of benchmark suites.

Table 2.2: Different properties of a list of benchmark suites

Benchmark suites Benchmark problems
Properties

multi many large constrained scaled irregular

ZDT ZDT1-4, and ZDT6 X X

DTLZ DTLZ1-7 X X X X

SZDT SZDT1-4, and SZDT6 X X X

SDTLZ SDTLZ1-7 X X X X

IDTLZ IDTLZ1-4 X X

CDTLZ CDTLZ2 and CDTLZ4 X X

MaF MaF1-15 X X X X

LIR-CMOP LIR-CMOP1-14 X X X

DAS-CMOP DAS-CMOP1-9 X X X X

DOC DOC1-9 X X X

LSMOP LSMOP1-9 X X X

SMOP SMOP1-8 X X X

21

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Evaluation Metrics

In single-objective optimization, the fitness function values are often used to compare the per-

formance of achieved solutions. Different from single-objective optimization, the result of multi-

objective optimization is to find a Pareto optimal solution set instead of one solution. A set of

solutions represents a tradeoff between different objective functions. Therefore, certain metrics

(also called performance indicators) are needed to evaluate the performance of multi-objective op-

timization algorithms by analyzing the obtained Pareto optimal solution set. Different evaluation

metrics can be used to measure the convergence and diversity of a solution set. This section mainly

introduces three performance indicators Generational Distance (GD) [93], Inverted Generational

Distance (IGD) [5, 125] and Hypervolume (HV) [96, 125], which are also used in the experiments

of this thesis.

The Generational Distance (GD) indicator can measure the convergence of a solution set. The

GD indicator requires a reference set P ∗ which is assumed to be a sample of the true PF. The GD

indicator calculates the average of the shortest Euclidean distance from each solution in the obtained

solution set to its closest solution in P ∗. GD is defined as follows:

GD (S, P ∗) =
1

|S|

√√√√ |S|∑
i=1

d2
i (2.12)

where S is the obtained solution set, |S| denotes the number of solutions in S. di is the smallest

Euclidean distance between the i-th point of set S and all the members in the set P ∗. If the size of

P ∗ is large enough, GD can reflect the information on how close the obtained solutions are to the

optimal ones. For scaled problems, GD is often computed after the objective values are normalized.

The Inverted Generational Distance (IGD) indicator can convey information of both convergence

and diversity of a solution set. IGD also needs the reference set P ∗ in the true PF. The IGD indicator

calculates the average of the shortest Euclidean distance from each solution in P ∗ to its closest

solution in the obtained solution set S. IGD is formulated as follows:

IGD (P ∗, S) =
1

|P ∗|

√√√√|P ∗|∑
i=1

d̃2
i (2.13)

where d̃i is the smallest Euclidean distance between the i-th point of set P ∗ and all the members

in the set S. When the size of P ∗ is large enough, IGD can reflect the information on how close

the obtained solutions are to the optimal ones as well as how diverse the obtained solutions are dis-

22

2.4. EVALUATION METRICS

tributed in the PF. IGD can provide information about convergence and diversity, and it is often used

as the performance indicator to compare the performance of multi- and many-objective optimiza-

tion algorithms [2, 11, 46, 113]. Also for scaled problems, IGD is often calculated after normalizing

the objective values. Fig. 2.3 gives an example of calculating GD and IGD on a two-objective

optimization problem.

Reference set

Obtained solution set

id

*P

S

O
1f

2f

(a) GD calculation

Reference set

Obtained solution set

id

*P

S

O
1f

2f

(b) IGD calculation

Figure 2.3: GD and IGD calculation

The Hypervolume (HV) indicator is one of the most frequently used metrics [96, 125]. It can

reflect the information of convergence as well as diversity. HV measures the volume of the region

dominated by the obtained solution set S and bounded by a reference point r = (r1, r2, · · · , rm),

the reference point is dominated by all the obtained solutions. HV is calculated as follows:

HV (S, r) = Lebesgue

(⋃
x∈S

[f1 (x) , r1]× · · · × [fm (x) , rm]

)
(2.14)

where Lebesgue(S) is the Lebesgue measure of a solution set S. Considering the differently scaled

objectives in different optimization problems, the objective values of all test problems are normal-

ized before calculating the HV indicator. The reference point can be set as an m-dimensional vector

of ones. Fig. 2.4 shows how to calculate HV on a two-objective optimization problem.

Assuming that all objective functions need to be minimized, the obtained solution set is closer

to the true PF and further away from the reference point, thus the HV increases. Compared with

GD and IGD, the HV indicator does not need a sample of the true PF, and it only has one reference

23

CHAPTER 2. BACKGROUND AND RELATED WORK

Reference point

Obtained solution set

r

S

O
1f

2f

Hypervolume: HV

Figure 2.4: HV calculation

point. Therefore, the HV indicator can be used in some real applications whose true PFs are not

available. On the other hand, the HV indicator has been applied to some indicator-based multi- and

many-objective optimization algorithms [3,4]. Larger HV means better solutions with regard to both

convergence and diversity.

2.5 Computation Offloading Optimization

Optimization of application offloading is an interesting real-world problem.

Cloud computing can provide powerful, elastic and scalable computing resources for users [70].

The computation offloading in mobile cloud computing (MCC) [78] takes advantage of cloud re-

sources and the convenience of mobile networks, which helps the mobile devices to offload com-

plicated computation tasks to remote data centers [68]. To reduce the transmission delay in MCC,

mobile edge computing (MEC) [51,72] has been developed as a new solution that performs compu-

tation at the edge of the network.

IoT devices have different complex applications and these applications can be divided into a se-

ries of tasks. The tasks can be migrated to MCC/MEC servers and then processed on the servers.

Computation offloading in MCC/MEC is not always beneficial because of the extra cost of trans-

mitting the tasks from IoT devices to MCC/MEC servers [98]. A suitable offloading decision is

needed to determine whether a task is best executed locally or offloaded to different servers. We

want to optimize the offloading decision to shorten execution time, reduce energy consumption or

achieve a combination of the above two. Hence, the offloading decision making is a multi-objective

24

2.6. RELATED WORK

optimization problem.

2.6 Related Work

In this section, we introduce some related work of the topics covered in this thesis, including

multi- and many-objective optimization, constrained and large-scale multi-objective optimization as

well as computation offloading optimization in mobile cloud and edge computing.

2.6.1 Evolutionary Multi-objective Optimization

We present and analyze some related work on multi-objective evolutionary algorithms (MOEAs).

Fig. 2.3 shows the classification of some representative optimization algorithms discussed as fol-

lows.

Table 2.3: Classification of different optimization algorithms

Multi- and many-objective algorithms Constrained algorithms Large-scale algorithms

Pareto dominance-based: NSGA-II [24],
PESA-II [15], SPEA-II [124], GrEA [106].

Decomposition-based: MOEA/D [113],
MOEA/D-M2M [64], RVEA [11].

Indicator-based: IBEA [123], HyPE [3],
SMS-EMOA [4], SRA [56].

MOEA/D-IEpsilon [32],
C-TAEA [59],
CCMO [89],

MOEA/D-DAE [118].

Decision variable decomposition:
MOEA/DVA [67], LMEA [114].

Problem transformation: WOF [120],
LCSA [121], LSMOF [40].

Sparse: MOEA/PSL [88], SparseEA [90].

Multi- and Many-objective Optimization

A diversity of MOEAs has been developed for solving multi-objective optimization problems

(MOPs) and many-objective optimization problems (MaOPs) during the last two decades, which

can be classified into three categories [55, 112].

The first category is the Pareto dominance-based MOEA, where the Pareto dominance criterion

is the main feature to push the candidate solutions to approximate the PF. NSGA-II [24] is a typ-

ical Pareto dominance-based MOEA for MOPs, all non-dominated solutions are first identified by

the fast non-dominated sorting approach and then the crowding distance strategy is used to pre-

serve population diversity. Fig. 2.5 shows the non-dominated sorting and crowding distance cal-

culating in NSGA-II. PESA-II [15] and SPEA-II [124] are two other similar representative Pareto

dominance-based MOEAs with different diversity preservation methods. Due to the loss of selection

pressure with the increasing number of objectives, the traditional Pareto dominance-based MOEAs

25

CHAPTER 2. BACKGROUND AND RELATED WORK

face the dominance resistance phenomenon with regard to many-objective optimization problems

[74]. To address this issue, some modified Pareto dominance relationships have been put forward

to solve MaOPs, such as grid dominance-based MOEA (GrEA) [106], fuzzy Pareto dominance-

based MOEA (FD-NSGA-II) [41], knee point driven MOEA (KnEA) [115] and θ dominance-based

MOEA (θ-DEA) [110]. These new modified Pareto dominance methods relax the restrictions of

traditional Pareto dominance to some extent.

Front number = 1

O
1f

2f

Front number = n

Front number = 2

…
…

PF

(a) Front number

Cuboid

O
1f

2f

i

i-1

i+1

(b) Crowding distance

Figure 2.5: Non-dominated sorting and crowding distance in NSGA-II

The second category is the decomposition-based MOEA, where a MOP can be decomposed into

a series of scalar optimization subproblems. MOEA/D [113] is a typical MOEA of this category,

the decomposition approaches can decompose a MOP into several subproblems and optimize them

simultaneously based on a set of uniformly distributed weight vectors. Owing to the efficient frame-

work, MOEA/D with differential evolution (DE) has been applied for solving complicated Pareto

sets [58]. Some other novel decomposition-based MOEAs try to decompose a MOP into different

subspaces, such as MOEA/D-M2M [64], RVEA [11], and SPEA/R [48].

The third category is the indicator-based MOEA, where the performance indicators are adopted

as criteria to distinguish and select candidate solutions. IBEA [123] and SMS-EMOA [4] are two

representative indicator-based MOEAs, where the indicators are designed as predefined binary indi-

cator and hypervolume (HV) indicator. The computational complexity of HV grows exponentially

with the increasing number of objectives. HypE [3] adopted the Monte Carlo simulation to estimate

the HV value for accelerating the computing speed. Other performance indicators (such as ∆p [79],

IGD [83], and IGD-NS [84]) with lower computational complexity have also been proposed for

26

2.6. RELATED WORK

MOPs. In addition, combined multiple indicators are also a trend, SRA [56] is a typical MOEA

selecting the stochastic ranking strategy to balance different indicators.

Constrained Multi-objective Optimization

A wide range of constrained multi-objective evolutionary algorithms (CMOEAs) have been de-

signed to tackle constrained multi-objective optimization problems (CMOPs). A key issue in CMOEA

is to deal with constraints. The penalty function approach is often used to balance objectives and

constraints. It converts a CMOP into an unconstrained MOP by adding the overall constraint viola-

tion multiplied by a predefined penalty factor to each objective [97]. The constrained NSGA-II [24]

adopts the constraint dominance principle to distinguish feasible and infeasible solutions. MOEA/D-

IEpsilon [32] combines an improved epsilon constraint handling mechanism with the MOEA/D

algorithm [113] to solve CMOPs. C-TAEA [59] maintains a convergence-oriented archive and a

diversity-oriented archive simultaneously to retain the balance between the convergence and diver-

sity of solutions. Push and pull search (PPS) [33] divides the search process into two stages: push

and pull search, and embeds the MOEA/D algorithm [113] into the PPS framework for tackling

CMOPs. CCMO [89] uses a coevolutionary framework of two populations to share information

with each other for dealing with CMOPs. Fig. 2.6 illustrates the working procedure of the CCMO

algorithm [89]. MOEA/D-DAE [118] develops a detect-and-escape strategy to avoid being trapped

in local optima and stuck in an unfeasible area.

Initialization

Population 1

Population 2

Mating

selection

Mating

selection

Offspring

generation

Offspring

generation

Combination of

Population 1

and offsprings

Environmental

Selection with

Constraints

Combination of

Population 2

and offsprings

Environmental

Selection without

Constraints

Figure 2.6: Procedure of the CCMO algorithm

27

CHAPTER 2. BACKGROUND AND RELATED WORK

Large-scale Multi-objective Optimization

Traditional MOEAs will encounter difficulties in dealing with large-scale MOPs [119]. For solv-

ing large-scale MOPs, some tailored MOEAs have been developed based on two main ideas.

The first idea for solving large-scale MOPs is decision variable decomposition, which divides

the decision variables into different groups and optimizes each group of decision variables indepen-

dently. For example, MOEA/DVA [67] adopts control property analysis to decompose the original

MOP into a set of sub-MOPs based on position variables and mixed variables. It also uses variable

linkage analysis to decompose high-dimensional distance variables into several low-dimensional

subcomponents. Each subcomponent in sub-MOPs can be optimized separately. LMEA [114] di-

vides the decision variables into convergence-related and diversity-related variables and optimizes

them by different strategies. Fig. 2.7 shows the structure of the LMEA algorithm.

Start LMEA Variable clustering Interaction analysis

Diversity-variables

optimization

Termination

criterion

End LMEA
Yes

No

Convergence-variables

optimization

Figure 2.7: Outline of the LMEA algorithm

The second idea for solving large-scale MOPs is problem transformation, which aims to transform

the original large-scale MOP into a small-scale problem. Weighted Optimization Framework (WOF)

[120] is a generic framework for problem transformation. In WOF, a set of weights is applied

to divide the decision variables into different groups. Each weight is related to multiple decision

variables. The optimization of all the decision variables can be represented by the optimization of

these weights. LCSA [121] uses a linear combination of population members to tackle large-scale

MOPs. LSMOF [40] applies two reference points on a solution to search for better solutions in the

28

2.6. RELATED WORK

large-scale search space. Although these MOEAs are tailored for large-scale MOPs, they cannot be

applied to MOPs with binary decision variables and they are shown to be of low efficiency with a

large number of function evaluations.

Considering some large-scale MOPs whose Pareto optimal solutions are sparse, MOEA/PSL pro-

posed in [88] uses two unsupervised neural networks (a restricted Boltzmann machine and a denois-

ing autoencoder) to learn a sparse distribution and compact representation of the decision variables.

SparseEA designed in [90] integrates real and binary encodings to represent a solution. A new pop-

ulation initialization strategy and genetic operators are suggested to generate solutions with sparsity,

which can solve large-scale sparse benchmarks.

2.6.2 Computation Offloading Optimization Schemes

We apply multi-objective evolutionary algorithms to solve the offloading optimization problems.

Recently, a range of optimization-based algorithms have been designed to deal with computation

offloading problems for mobile cloud computing (MCC) and mobile edge computing (MEC).

Sheikh et al. [80] modeled the effect of parallel execution on multi-site computation offloading

in MCC and used an existing genetic algorithm (GA) to solve this multi-site offloading problem.

In [54] Kuang et al. established a system model in the MEC environment with multiple users and

structured tasks. Then an offloading decision problem was formalized as a cost-minimization prob-

lem and a modified genetic algorithm was adopted to solve the offloading problem.

Guo et al. [38] studied the energy-efficient computation offloading scheme in the MEC system

with small cell networks. In addition, they formulated the computation offloading problem as a

mixed integer non-linear programming problem. Taking advantage of genetic algorithm (GA) and

particle swarm optimization (PSO), an optimization method named hierarchical GA and PSO-based

computation algorithm was developed to tackle this offloading problem.

An application placement technique proposed in [37] aims to minimize the execution time and

energy consumption of IoT applications in edge and fog computing environments. Goudarzi et

al. [37] designed a lightweight pre-scheduling algorithm to maximize the number of parallel tasks

for execution. Furthermore, an optimized version of the Memetic Algorithm (MA) was put forward

to make batch application placement decisions for concurrent IoT applications. The Memetic Al-

gorithm (MA) is a combined algorithm of evolutionary algorithm such as GA with one local search

method.

In [104] Xu et al. built a multi-objective optimization model of task offloading and proposed

the non-dominated sorting genetic algorithm III (NSGA-III) to solve the offloading model. Peng

et al. [73] established an end-edge-cloud collaborative computation offloading model in a heteroge-

29

CHAPTER 2. BACKGROUND AND RELATED WORK

neous edge-server environment, with the aim to minimize time and energy consumption. Further,

an improved strength Pareto evolutionary algorithm 2 (SPEA2) [124] was adopted to address this

model.

2.7 Summary

This chapter presented the background and related work of this thesis. At first, the basic principles

of multi- and many-objective optimization, constrained and large-scale multi-objective optimization

were given. A brief overview of the MOEA was described. Then the widely used benchmark

suites for multi-objective optimization were introduced. The formal definition of evaluation metrics

GD, IGD and HV were presented. The basic concepts and properties of computation offloading in

MCC and MEC were explained. After that, some related work about evolutionary multi-objective

optimization and computation offloading optimization schemes were introduced.

30

Part II

Evolutionary Multi-objective
Optimization

31

Chapter 3

A Multi-objective Artificial Bee Colony
Algorithm

This chapter presents a multi-objective artificial bee colony algorithm based on decomposition

(called MOEA/D-ABC) for dealing with normalized and scaled multi-objective optimization prob-

lems (MOPs).

Multi-objective evolutionary algorithms (MOEAs) have been developed for solving MOPs [14,

23]. MOEA based on decomposition (MOEA/D) [113] is a novel MOEA framework, which decom-

poses a MOP into a series of scalar optimization problems. Recently, the MOEA/D framework has

achieved great success and received much attention [92]. We try to improve the performance of the

MOEA/D from three aspects, i.e., convergence, diversity, and scalability.

In this chapter, first we want to develop other nature inspired meta-heuristics so as to adopt an

artificial bee colony (ABC) algorithm as the reproduction operator to improve the convergence of

MOEA/D. Second, we substitute the original Tchebycheff approach with a modified Tchebycheff

approach for improving diversity. Then, in terms of differently scaled problems, an adaptive nor-

malization mechanism is incorporated into the proposed algorithm.

3.1 Classical Decomposition Approaches

MOEA/D is an efficient algorithm framework approaching the Pareto front. The decomposition

methods are able to convert the MOPs into a number of single optimization problems. In addition,

the decomposition methods often determine the evolving direction of the MOEAs. The weighted

sum approach, the Tchebycheff approach and the penalty-based boundary intersection (PBI) ap-

33

CHAPTER 3. A MULTI-OBJECTIVE ARTIFICIAL BEE COLONY ALGORITHM

proach are three widely used decomposition methods in the framework.

In the weighted sum approach, a scalar optimization problem can be described as follows:

min
x∈Ω

gws (x |λ) = min
x∈Ω

m∑
i=1

λi×fi (x) (3.1)

where λ = (λ1, λ2, · · · , λm)T is a weight vector and
∑m

i=1 λi = 1, λi ≥ 0, i = 1, 2, · · · ,m. It

has been proved that the weighted sum approach does not work well with non-convex Pareto fronts

[113].

In the Tchebycheff approach, a scalar optimization problem can be stated as follows:

min
x∈Ω

gte (x |λ, z∗) = min
x∈Ω

max
1≤i≤m

{λi |fi (x)− zi∗|} (3.2)

where λ = (λ1, λ2, · · · , λm)T is a weight vector and
∑m

i=1 λi = 1, λi ≥ 0, i = 1, 2, · · · ,m.

z∗ = (z∗1 , z
∗
2 , · · · , z∗m)T is the reference point. Because it is often time-consuming to compute

the exact z∗i , it is estimated by the minimum objective value fi (i.e., z∗i = min {fi (x) |x ∈ Ω} , i =

1, 2, · · · ,m).

A scalar optimization problem of the penalty-based boundary intersection (PBI) approach is de-

fined as follows:

min
x∈Ω

gpbi (x |λ, z∗) = min
x∈Ω

(d1 + θd2) (3.3)

where d1 =
‖(z∗−F (x))Tλ‖

‖λ‖

d2 =
∥∥∥F (x)−

(
z∗ + d1

λ
‖λ‖

)∥∥∥ (3.4)

Here θ is a user-predefined penalty parameter. As shown in Fig. 3.1, the line L is passing through

the reference point z∗ with the direction vector λ. The point y is the projection of F (x) on the line

L. For each solution, a PBI measure value of the form d1 +θd2 is used. The distance between z∗ and

y is d1, which denotes the distance along the weight vector and controls convergence. The distance

between F (x) and y is d2, which denotes the perpendicular distance and controls diversity.

3.2 The Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm is a population-based algorithm, which is motivated by

the intelligent foraging behavior of a honey bee swarm [49]. In the ABC algorithm, each position

34

3.2. THE ARTIFICIAL BEE COLONY ALGORITHM

00
1f

2f

z

 F x1d

2d

Pareto FrontPareto Front

Attainable Objective SetAttainable Objective Set

y

L

Figure 3.1: Illustration of penalty-based boundary intersection (PBI) approach

of a food source represents a potential solution of the optimization problem and the nectar amount

of a food source corresponds to the fitness. The honey colony swarm contains three types of bees:

employed bees associated with specific food sources, onlooker bees watching the dance of employed

bees within the hive to select good food sources, and scout bees searching for food randomly.

In the ABC algorithm, the number of employees and onlookers is equal to the number of food

sources. The ABC algorithm first generates a randomly distributed initial population of N solutions

in the swarm, where N is the swarm size. Then, the employed bees search the new solutions within

the neighborhood in their memory. Let Xi = {xi,1, xi,2, · · · , xi,n} represent the i-th solution in the

swarm, where n is the dimension. Each employed bee Xi generates a new position Vi using the

following formula:

Vi,k = Xi,k + Φi,k × (Xi,k −Xj,k) (3.5)

where Xj is a randomly selected solution (i 6= j), k is a random dimension index from the set

{1, 2, · · · , n}, and Φi,k is a random number within the range [−1, 1]. After generating a new candi-

date solution Vi, a greedy selection between Vi andXi is used. Comparing the fitness value between

35

CHAPTER 3. A MULTI-OBJECTIVE ARTIFICIAL BEE COLONY ALGORITHM

Vi and Xi, the better one is adopted to update the population. Once the searching phase of the em-

ployed bees is completed, the employed bees share the food source information with the onlooker

bees through waggle dances. An onlooker bee chooses a food source with a probability based on a

roulette wheel selection mechanism. The probability Pi for the maximization problem is defined as

follows:

Pi =
fiti∑N
j fitj

(3.6)

where fiti is the fitness value of the i-th solution. The better solution often has a higher probability

to be chosen to reproduce the new solution using Equation 3.5. If a position Xi cannot be improved

through a predefined number of cycles, then it is replaced by the new solution Xnew
i discovered by

the scout bee using the following equation:

Xnew
i,k = lbi + rand(0, 1)× (ubi − lbi) (3.7)

where rand(0, 1) is a random number in [0, 1]. The upper and lower boundaries of the i-th dimen-

sion are lbi and ubi, respectively.

3.3 The Proposed MOEA/D-ABC

In this section we will present the details of the proposed MOEA/D-ABC. We combine the ad-

vantages of an artificial bee colony (ABC) algorithm and a multi-objective evolutionary algorithm

based on decomposition (MOEA/D) [113], so we name the proposed algorithm MOEA/D-ABC.

Compared with the original MOEA/D, an artificial bee colony (ABC) algorithm is adopted as a new

reproduction operator to improve the convergence of MOEA/D. Second, a modified Tchebycheff

approach instead of the original Tchebycheff approach is used to improve diversity.

3.3.1 General Framework

The general framework of the proposed MOEA/D-ABC is given in Algorithm 2. First, a set of

uniformly distributed weight vectors Λ =
{
λ1, λ2, · · · , λN

}
is generated by the Das and Dennis’s

systematic approach [17] (Step 1 in Algorithm 2), λ1, λ2, · · · , λN are all m-dimensional weight

vectors andm is the number of objectives. Then, a population ofN solutions P = {x1, x2, · · · , xN}
is initialized randomly (Step 2 in Algorithm 2), after that the reference point z∗ = (z∗1 , z

∗
2 , · · · , z∗m)T

is initialized (Step 3 in Algorithm 2). According to the generated weight vectors, the neighborhood

range T of subproblem i as B (i) = {i1, · · · , iT } can be obtained by computing the Euclidean

36

3.3. THE PROPOSED MOEA/D-ABC

distance between all the weight vectors and finding the T closest weight vectors (Step 5 in Algorithm

2). Steps 7-17 are iterated until the termination criterion is met. At each iteration, for the solution

xi, the mating solutions xk and xl are chosen from the neighborhood B (i). In MOEA/D-ABC, we

use the ABC operator and polynomial mutation operator to reproduce the offspring y, which will be

introduced in detail in Section 3.3.3. Then the new offspring is used to update the reference point

and neighboring solutions. In addition, we use the modified Tchebycheff approach to determine the

search direction for updating the neighboring solutions. Steps 9-11 in Algorithm 2 refers to Step

4 in Algorithm 1. Steps 12-13 in Algorithm 2 refers to Steps 5-6 in Algorithm 1. Steps 14-15 in

Algorithm 2 refers to Step6 7-8 in Algorithm 1.

Algorithm 2: Framework of MOEA/D-ABC

1 Generate a set of weight vectors Λ←
{
λ1, λ2, · · · , λN

}
;

2 Initialize the population P ← {x1, x2, · · · , xN};
3 Initialize the reference point z∗ ← (z∗1 , z

∗
2 , · · · , z∗m)T ;

4 for i = 1 : N do
5 B (i)← {i1, i2, · · · , iT }, where λi1 , λi2 , · · · , λiT are the T closest weight vectors to λi ;
6 end
7 while the termination criterion is not satisfied do
8 for i = 1 : N do
9 E ← B (i) ;

10 Select an index k ∈ E based on roulette wheel selection ;
11 Randomly select an index l ∈ E and l 6= k ;
12 ȳ ← ABCOperator (xk, xl) ;
13 y ← PolynomialMutationOperator (ȳ);
14 UpdateIdealPoint (y, z∗);
15 UpdateNeighborhood (y, z∗,Λ, B (i));
16 end
17 end

3.3.2 Modified Tchebycheff Approach

In MOEA/D-ABC, the modified Tchebycheff approach is defined as follows:

min
x∈Ω

gmte (x |λ, z∗) = min
x∈Ω

max
1≤i≤m

{
1

λi
|fi (x)− zi∗|

}
(3.8)

where λ = (λ1, λ2, · · · , λm)T is a weight vector and
∑m

i=1 λi = 1, λi ≥ 0, i = 1, 2, · · · ,m. z∗ =

(z∗1 , z
∗
2 , · · · , z∗m)T is the reference point. It is worth noting that the modified Tchebycheff approach

37

CHAPTER 3. A MULTI-OBJECTIVE ARTIFICIAL BEE COLONY ALGORITHM

has two advantages [111] over the original one in MOEA/D [113]. First, the modified form can

produce more uniformly distributed solutions with a set of uniformly spread weight vectors. Second,

each weight vector corresponds to a unique solution on the Pareto front. The proof can be found in

Theorem 3.3.1.

Theorem 3.3.1. Assume a straight line passing through reference point z∗ with the direction vector

λ = (λ1, λ2, . . . , λm)T has a intersection with the Pareto front (PF), then the intersection point is

the optimal solution to Γ (x) (i.e., Γ (x) = max
1≤i≤m

{
1
λi
|fi (x)− zi∗|

}
).

Proof. Let F (x) = (f1 (x) , f2 (x) , . . . , fm (x)) be the intersection point with the PF, then we can

have the following equality

f1 (x)− z∗1
λ1

=
f2 (x)− z∗2

λ2
= · · · = fm (x)− z∗m

λm
= C (3.9)

where C is a constant. Suppose F (x) is not the optimal solution to Γ (x), then ∃F (y) that satisfies

Γ (y) < Γ (x). According to Equation 3.9, Γ (x) = C. Then ∀k ∈ {1, 2, · · · ,m}, we have

fk (y)− z∗k
λk

≤ Γ (y) < C =
fk (x)− z∗k

λk
(3.10)

Hence, fk (y) < fk (x). This is in contradiction with the condition that F (x) is the intersection

point on the PF and the supposition is invalid.

3.3.3 The ABC Operator

Inspired by the artificial bee colony (ABC) algorithm, we adopt the ABC operator to reproduce

the offspring. For each solution xi, one mating solution xk is chosen based on the roulette wheel

selection mechanism and another xl (l 6= k) is randomly selected from the neighborhood B (i). To

get the mating solution xk, assuming there is a solution xi and its associated weight vector λi. First,

the fitness value of the solution xi can be calculated using the following equation:

Γ (xi) = max
1≤j≤m

{
1

λij
|fj (xi)− zj∗|

}
(3.11)

In this way we can obtain T fitness values Γ (B (i)) of the neighboring solutions with the same

38

3.3. THE PROPOSED MOEA/D-ABC

weight vector λi. Then the fitness value of the solution xi can be converted in the following way:

Γ∗ (xi) = exp

(
−Γ (xi)∑
Γ (B (i))/T

)
(3.12)

According to the converted T fitness values, the mating solution xk can be determined using

the roulette wheel selection mechanism. For each solution xi, the new solution ȳ is computed as

follows:

ȳ = xk + Φi × (xk − xl) (3.13)

where Φi is a n-dimensional random vector within the range [−1, 1]. After using the ABC operator

to obtain the new solution ȳ, we apply a polynomial mutation on ȳ with probability pm to produce a

new offspring y. The polynomial mutation is defined as follows:

yk =

{
ȳk + σk × (bk − ak) with probability pm,

ȳk with probability 1− pm.
(3.14)

with

σk =

 (2× rand)
1

η+1 − 1 if rand < 0.5,

1− (2− 2× rand)
1

η+1 otherwise.

where rand is a uniformly distributed random number within [0, 1]. The lower and upper bounds of

the k-th dimension are ak and bk. The distribution index η and the mutation rate pm are two control

parameters.

3.3.4 Adaptive Normalization

For disparately scaled objectives the original MOEA/D sometimes cannot provide satisfactory

results. The normalization operators are by default incorporated into the MOEA/D framework.

In recent research there are three typical normalization approaches proposed in MOEA/D [113],

NSGA-III [22], and I-DBEA [2]. The normalization procedures in NSGA-III and I-DBEA are

similar to some extent, as both aim at finding the extreme points to constitute a hyperplane. However,

these two algorithms are more computationally expensive for solving the linear system of equations

and sometimes result in abnormal normalization results [109]. Therefore, in this chapter we select a

simple and efficient way to normalize the objectives.

For a solution xi the objective value fj (xi) (j = 1, 2, · · · ,m) can be replaced with the normal-

39

CHAPTER 3. A MULTI-OBJECTIVE ARTIFICIAL BEE COLONY ALGORITHM

ized objective value f̄j (xi) as follows:

f̄j (xi) =
fj (xi)− z∗j
zmax
j − z∗j

(3.15)

where zmax
j is the maximum value of objective fj in the current population.

3.3.5 Computational Complexity

For MOEA/D-ABC, the major computational costs are the iteration process in Algorithm 2. Steps

9-13 mainly need O (mT) operations to calculate the modified Tchebycheff values for choosing

the mating solutions based on the roulette wheel selection mechanism. Step 14 performs O (m)

comparisons to update the reference point. Step 15 requires O (mT) computations to update the

neighborhood. Thus, the overall computational complexity of MOEA/D-ABC is O (mNT) in one

generation. Considering the adaptive normalization operator incorporated into the MOEA/D-ABC

for solving the scaled optimization problems, the computational complexity of MOEA/D-ABC will

be O
(
mN2

)
in one generation since T is smaller than N .

3.4 Experimental Studies

In this section we compare the performance of the proposed algorithm with other state-of-the-art

MOEAs for solving different MOPs.

3.4.1 Experiment Settings

The proposed MOEA/D-ABC is implemented in the PlatEMO framework [85]. For better com-

parison the other algorithms are also chosen from the PlatEMO. Two well-known ZDT [122] and

DTLZ [25] test suites are used as test instances.

In order to evaluate the performance of the proposed algorithm, we have chosen the inverse gen-

erational distance (IGD) [93] as a performance metric which can reflect both convergence and diver-

sity. Since the exact Pareto front of the test problems is known we can easily locate some uniformly

targeted points in the optimal surface. As for the IGD metric a smaller value means that the obtained

solutions have better quality. For each test instance 30 independent runs are performed and mean

and standard deviation of the IGD values are recorded. For all algorithms we use the solutions from

the final generation to compute the performance metrics.

In the experiment the performance of MOEA/D-ABC is compared with NSGA-II [24], MOEA/D

40

3.4. EXPERIMENTAL STUDIES

[113] and MOEA/D-DE [58]. The original MOEA/D study proposes two procedures MOEA/D-

TCH using the Tchebycheff and MOEA/D-PBI using the penalty-based boundary intersection (PBI)

approach. Table 3.1 presents some parameters for crossover and mutation operators used in the pro-

posed algorithm (MOEA/D-ABC) and compared algorithms NSGA-II [24], MOEA/D-TCH [113]

and MOEA/D-DE [58].

Table 3.1: Parameters for crossover and mutation

Parameters MOEA/D-ABC NSGA-II MOEA/D-TCH MOEA/D-DE
SBX probability (pc) - 1 1 -

Polynomial mutation probability (pm) 1/n 1/n 1/n 1/n
Distribution index for crossover (ηc) - 20 20 -
Distribution index for mutation (ηm) 20 20 20 20
DE operator control parameter (CR) - - - 1
DE operator control parameter (F) - - - 0.5

The neighborhood size T is set to 20 and the penalty parameter θ is set to 5 for MOEA/D-PBI.

In MOEA/D-DE the probability δ of choosing the parent solution form the whole population is set

to 0.9 and the maximum number of replaced solutions nr is set to 2. As analyzed above MOEA/D-

ABC has the obvious advantage of having less parameters.

3.4.2 Normalized Test Problems

Initially we use the ZDT problems and the DTLZ problems (DTLZ1, DTLZ2, DTLZ3, DTLZ4) to

test the performance of the respectively used algorithms. The number of variablesD is set according

to the original papers. Since the test problems have similar range of values for each objective they are

called "normalized test problems". For all 2-objective (m = 2) ZDT test problems the population

size N in NSGA-II and other variants of MOEA/D is set to be 100 and the number of function

evaluations (FEs) is set to 30000. The number of function evaluations (FEs) means the number

of calculating objective functions. For all 3-objective (m = 3) DTLZ test problems N is set to 200

and FEs is set to 100000.

Figs. 3.2 and 3.3 show the obtained fronts with the median value of IGD performance metric of

all algorithms for ZDT4 and DTLZ1. As shown from Fig. 3.2, we can observe that the proposed

MOEA/D-ABC can determine the Pareto optimal solutions with better convergence and diversity.

Compared with the other three algorithms MOEA/D-DE has the worst convergence for the ZDT4

problem with its many local optima. According to the analysis of convergence we find that the

ABC operator improves the convergence of MOEA/D in comparison with the simulated binary

crossover (SBX) operator [113]. In Fig. 3.3, NSGA-II can get the random non-dominated solutions

41

CHAPTER 3. A MULTI-OBJECTIVE ARTIFICIAL BEE COLONY ALGORITHM

in the Pareto front. Both MOEA/D-TCH and MOEA/D-DE use the Tchebycheff approach as a

decomposition method to obtain the similar Pareto front. MOEA/D-ABC performs much better than

MOEA/D-TCH and MOEA/D-DE with regard to the diversity which illustrates that the modified

Tchebycheff approach improves the diversity of MOEA/D compared with the original Tchebycheff

approach. Table 3.2 shows that MOEA/D-ABC outperforms the other three algorithms with respect

to the IGD performance metric. The best result in each row is highlighted.

Figure 3.2: Final solutions obtained by MOEA/D-ABC, NSGA-II, MOEA/D-TCH, and MOEA/D-
DE on ZDT4

3.4.3 Scaled Test Problems

To investigate the proposed algorithm’s performance in the case of disparately scaled objectives

we choose the SZDT1 and SZDT2 as two-objective scaled test instances and SDTLZ1 and SDTLZ2

42

3.4. EXPERIMENTAL STUDIES

Figure 3.3: Final solutions obtained by MOEA/D-ABC, NSGA-II, MOEA/D-TCH, and MOEA/D-
DE on DTLZ1

as three-objective scaled test instances. The SZDT and SDTLZ test suites are described in Sec-

tion 2.3.

To handle the differently scaled test problems, we incorporate the adaptive normalization operator

presented in Section 3.3.4 into the proposed MOEA/D-ABC. The original MOEA/D-TCH with and

without normalization procedure is also used to compare the performance. For clarity, we denote the

MOEA/D-ABC using the normalization procedure as MOEA/D-ABC-N, MOEA/D-TCH with nor-

malization procedure as MOEA/D-TCH-N, respectively. Fig. 3.4 shows the distribution of obtained

solutions for MOEA/D-ABC-N, MOEA/D-TCH-N and MOEA/D-TCH on SZDT2 and SDTLZ1. It

is clear that the normalization operator can greatly improve the performance for handling the scaled

problems. Both MOEA/D-ABC-N and MOEA/D-TCH-N can obtain better distributed solutions

43

CHAPTER 3. A MULTI-OBJECTIVE ARTIFICIAL BEE COLONY ALGORITHM

Table 3.2: IGD values for MOEA/D-ABC, NSGA-II, MOEA/D-TCH, and MOEA/D-DE on ZDT
and DTLZ test instances

Problem N m D FEs MOEA/D-ABC NSGA-II MOEA/D-TCH MOEA/D-DE

ZDT1 100 2 30 30000 4.0371e-3 (6.09e-5) 4.6043e-3 (1.84e-4) 5.8106e-3 (5.88e-3) 1.1626e-2 (5.42e-3)
ZDT2 100 2 30 30000 3.8379e-3 (2.29e-5) 4.7864e-3 (1.99e-4) 5.3845e-3 (4.66e-3) 9.4609e-3 (3.62e-3)
ZDT3 100 2 30 30000 1.0928e-2 (3.85e-2) 4.1278e-2 (5.03e-2) 1.9680e-2 (2.06e-2) 2.5511e-2 (1.52e-2)
ZDT4 100 2 10 30000 4.5511e-3 (9.93e-4) 5.4563e-3 (9.52e-4) 7.3588e-3 (4.00e-3) 1.8529e-1 (1.62e-1)
ZDT6 100 2 10 30000 3.1078e-3 (1.07e-5) 3.7673e-3 (1.14e-4) 3.1968e-3 (4.79e-5) 3.1125e-3 (1.63e-5)

DTLZ1 200 3 7 100000 1.4208e-2 (6.95e-4) 1.9097e-2 (9.01e-4) 1.9937e-2 (2.02e-5) 1.9716e-2 (5.19e-5)
DTLZ2 200 3 12 100000 3.7745e-2 (3.05e-4) 4.8807e-2 (1.49e-3) 4.9259e-2 (7.96e-5) 4.8923e-2 (2.25e-4)
DTLZ3 200 3 12 100000 4.3475e-2 (2.96e-3) 4.8337e-2 (1.22e-3) 4.8881e-2 (2.52e-4) 1.3899e-1 (4.83e-1)
DTLZ4 200 3 12 100000 4.1621e-2 (1.35e-3) 4.8543e-2 (1.33e-3) 2.7569e-1 (2.73e-1) 7.3774e-2 (6.23e-2)

than MOEA/D-TCH with regard to SZDT2. MOEA/D-TCH is not able to handle SDTLZ1 without

normalization. It is interesting to observe that MOEA/D-ABC-N is superior to MOEA/D-TCH-N

with respect to diversity for solving SDTLZ1. The IGD performance metric values of concerning al-

gorithms are shown in Table 3.3 which also verifies the efficiency and reliability of MOEA/D-ABC

with normalization for solving disparately scaled objective problems.

Table 3.3: IGD values for MOEA/D-ABC-N, MOEA/D-TCH-N, and MOEA/D-TCH on SZDT1-2
and SDTLZ1-2 test instances

Problem N m D FEs MOEA/D-ABC-N MOEA/D-TCH-N MOEA/D-TCH

SZDT1 200 2 30 100000 1.1069e-2 (3.68e-5) 1.1043e-2 (7.72e-6) 5.0087e-2(6.85e-5)
SZDT2 200 2 30 100000 1.1358e-2 (1.14e-5) 6.8675e-1 (1.42e+0) 4.0293e-2(8.80e-6)

SDTLZ1 200 3 7 100000 1.2620e-1 (2.06e-2) 5.2850e-1 (5.72e-3) 9.1805e+0(8.39e-3)
SDTLZ2 200 3 12 100000 3.1699e-1 (2.07e-2) 1.0600e+0 (2.27e-3) 1.5530e+1(9.49e-3)

3.4.4 MOEA/D-ABC VS MOEA/D-PBI

The proposed MOEA/D-ABC adopts the modified Tchebycheff approach while MOEA/D-PBI

uses the penalty-based boundary intersection (PBI) approach. In the original MOEA/D study [113],

MOEA/D-PBI can obtain much better distribution of solutions than NSGA-II and MOEA/D-TCH on

DTLZ1 and DTLZ2 instances when setting the penalty parameter to 5. According to the experiments

on normalized test problems, MOEA/D-ABC can also get good results on three-objective instances.

To further compare the performance of MOEA/D-ABC and MOEA/D-PBI, we choose DTLZ5 and

44

3.4. EXPERIMENTAL STUDIES

Figure 3.4: Final solutions obtained by MOEA/D-ABC-N, MOEA/D-TCH-N, and MOEA/D-TCH
on SZDT2 and SDTLZ1

45

CHAPTER 3. A MULTI-OBJECTIVE ARTIFICIAL BEE COLONY ALGORITHM

DTLZ6 as the test instances.

Fig. 3.5 shows the obtained Pareto fronts with MOEA/D-ABC and MOEA/D-PBI on these two

three-objective test instances. It is clear that MOEA/D-PBI is unable to find the convergent front

with the penalty factor 5. However, MOEA/D-ABC can determine the front approaching the true

Pareto front. Table 3.4 shows the IGD metric of the obtained solutions with MOEA/D-ABC and

MOEA/D-PBI for DTLZ5 and DTLZ6 instances. Based on the above result analysis we see that the

use of a penalty parameter cannot always obtain good results. MOEA/D-PBI requires an appropriate

setting of the penalty parameter for different problems. MOEA/D-ABC is a more stable and efficient

algorithm to solve different optimization problems.

Figure 3.5: Final solutions obtained by MOEA/D-ABC and MOEA/D-PBI on DTLZ5 and DTLZ6

46

3.5. SUMMARY

Table 3.4: IGD values for MOEA/D-ABC and MOEA/D-PBI on DTLZ5 and DTLZ6 test instances

Problem N m D FEs MOEA/D-ABC MOEA/D-PBI

DTLZ5 200 3 12 100000 1.1250e-2 (2.06e-5) 2.2605e-2 (1.95e-5)
DTLZ6 200 3 12 100000 1.1319e-2 (7.43e-6) 2.2632e-2 (4.78e-6)

3.5 Summary

In this chapter we have developed a multi-objective artificial bee colony algorithm based on de-

composition (MOEA/D-ABC) for solving MOPs. The proposed MOEA/D-ABC approach adopts

a novel ABC operator as new reproduction operator and a modified Tchebycheff approach as new

decomposition method, respectively. The above two operators are used to improve the convergence

and diversity of the algorithm. Furthermore, the adaptive normalization operator is incorporated into

the proposed MOEA/D-ABC for handling differently scaled problems.

In the experiment two well-known test suites and some modified scaled test instances have been

applied to test the performance of proposed MOEA/D-ABC and compare them with other state-

of-the-art MOEAs. The test problems involve fronts that have convex, concave, disjointed, non-

uniformly distributed, differently scaled, and many local fronts where an optimization algorithm

can get stuck in. The proposed MOEA/D-ABC can obtain a well-converging and well-diversified

set of solutions repeatedly for all problems, which shows its obvious advantage over other compared

MOEAs. Moreover, there is another advantage of MOEA/D-ABC which is that it does not require

any additional parameters with respect to the reproduction operator compared with other MOEA/Ds.

47

CHAPTER 3. A MULTI-OBJECTIVE ARTIFICIAL BEE COLONY ALGORITHM

48

Chapter 4

A Many-objective Decomposition-based
Algorithm

This chapter illustrates a decomposition-based evolutionary algorithm with adaptive weight vec-

tors (called DBEA-AWV) for solving the normalized and scaled many-objective optimization prob-

lems (MaOPs).

Multi-objective optimization problems (MOPs) involve more than one conflicting objective to

be optimized. Especially, MOPs with more than three objectives are known as many-objective

optimization problems (MaOPs). With the growth of the number of objectives, more and more

solutions are non-dominated by each other. Multi-objective evolutionary algorithms (MOEAs) face

more challenges for solving MaOPs since it is difficult to select non-dominated solutions.

Although different MOEAs using decomposition approaches in the MOEA/D framework have

been verified on different normalized MOPs and MaOPs, the literature [22, 57] has demonstrated

the unstable performance of MOEA/D variants when dealing with scaled problems. In other words,

even adopting different normalization approaches into MOEA/D framework, MOEA/D versions

can’t always get good results with regard to scaled problems. To address the issue, we propose a

decomposition-based evolutionary algorithm with adaptive weight vectors (DBEA-AWV) for both

the normalized and scaled MOPs and MaOPs. The main contributions of this chapter are summa-

rized as follows:

• An adaptive weight vectors adjusting method is proposed for problems with disparately scaled

objectives instead of using normalization approaches.

• Based on the adaptive weight vectors, we analyze the characteristics of the existing six popular

decomposition approaches and find the best one. Further, one novel replacement strategy is

49

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

adopted to keep the balance between convergence and diversity for solving MOPs and MaOPs.

4.1 Compared Decomposition Approaches

In the original MOEA/D, three decomposition approaches are reported: the weighted sum, Tcheby-

cheff and penalty-based boundary intersection (PBI). The weighted sum approach has some short-

comings to deal with concave Pareto fronts [113].

PBI approach has gained particular research interest because of the ability to control convergence

and diversity. To improve the performance of the original PBI with a constant penalty value, Yang et

al. [105] proposed two new penalty schemes, i.e., adaptive penalty scheme (APS) and subproblem-

based penalty scheme (SPS). APS is defined as follows:

θ = θmin + (θmax − θmin)
t

tmax
(4.1)

where t is the iteration number, tmax is maximum number of iterations. θmax and θmin are the upper

and lower bounds of θ, respectively. θmin = 1 and θmax = 10 are recommended in the original

paper.

The subproblem-based penalty scheme (SPS) is described as follows:

θj = eαβj (4.2)

βj = max
1≤i≤m

λji − min
1≤i≤m

λji (4.3)

where θj represents the penalty value for a weight vector λj . βj is the difference between the

maximum and minimum value of λj . α is a control parameter, and α = 4 is suggested.

Moreover, an adaptive PBI selection is developed in [39], an angle-based dynamic penalty factor

adaptation strategy is determined as follows:

θk = K ·m ·
(
αindk + αneighbork

)
(4.4)

where αindk is the angle between the current solution xk and λk, αneighbork is the angle between the

weight vector λk and the closest neighboring one. m is the number of objectives. K is a pre-defined

scaling parameter, and K = 0.06 is suggested.

50

4.2. THE PROPOSED DBEA-AWV

4.2 The Proposed DBEA-AWV

This section presents the details of the proposed DBEA-AWV.

4.2.1 General Framework

The general framework of the proposed DBEA-AWV is described as Algorithm 3. First, Das and

Dennis’s systematic approach [17] is used to generate a set of uniform weight vectors. The popu-

lation P ← {x1, x2, · · · , xN} is randomly generated, then the reference point is initialized. The

neighborhood set of each weight vector can be derived based on the Euclidean distance. The widely

used simulated binary crossover (SBX) and polynomial mutation [113] are applied to produce the

offspring. The other two main components, i.e., weight vector adaptation and replacement strategy

of updating population will be introduced in detail in the following sections. The flowchart of the

proposed DBEA-AWV is shown in Fig. 4.1.

Algorithm 3: Framework of DBEA-AWV
Input: A set of uniform weight vectors Λ0 ←

{
λ1

0, λ
2
0, · · · , λN0

}
, the maximum number of

generations tmax

Output: The final population P
1 Initialize the population P ← {x1, x2, · · · , xN};
2 Initialize the reference point z∗ ← (z∗1 , z

∗
2 , · · · , z∗m)T ;

3 Set Λ = Λ0;
4 for i = 1 : N do
5 B (i)← {i1, i2, · · · , iT }, where λi1 , λi2 , · · · , λiT are T closest weight vectors to λi;
6 end
7 while t < tmax do
8 for i = 1 : N do
9 y = Offspring_Creation

(
Pt, λ

i, B (i)
)
;

10 z∗ = Update_Ideal_Point (y, z∗);
11 Pt+1 = Update_Population (y, z∗,Λt, Pt);
12 end
13 Λt+1 = Weight_Vector_Adaption (t, Pt+1,Λt,Λ0) ;
14 t = t+ 1;
15 end

51

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

Initialize the
population

Initialize the
reference point

Generate
weight vectors

Generate offspringUpdate ideal point
Update population

(Replacement Strategy)

Weight vector

adaptation

Termination

criterion

Output

Initialize the
neighborhood set

Yes

No

Figure 4.1: The flowchart of DBEA-AWV

4.2.2 Adaptive Weight Vectors

Given a set of uniform weight vectors in a hyperplane, the MOEA/D variants can often produce

uniformly distributed solutions with regard to normalized problems. For scaled problems, it is a

challenge to use fixed weight vectors or some normalization approaches [22,57]. We adopt a weight

vector adaptation method to solve both the normalized and scaled problems. The adaptive weight

vectors are adjusted by the ranges of objective values as follows:

λit+1,k =
λi0,k ×

(
fmax
t+1,k − fmin

t+1,k

)
∑m

j=1×
(
λi0,j ×

(
fmax
t+1,j − fmin

t+1,j

)) (4.5)

where i = 1, 2, · · · , N and k = 1, 2, · · · ,m, λit+1,k denotes k-th value of i-th adaptive weight

vector for the next generation t + 1. λi0,k denotes the k-th value of i-th weight vector in Λ0. fmax
t+1,k

and fmin
t+1,k represent the maximum and minimum values of the population in the generation t +

1. The denominator in Equation 4.5 makes sure that
∑m

k=1 λ
i
t+1,k = 1 is suitable for different

decomposition approaches in MOEA/D framework, which is different from the strategy in RVEA

[11]. Based on the weight vector adaption strategy, the proposed DBEA-AWV is able to deal with

52

4.2. THE PROPOSED DBEA-AWV

disparately scaled problems.

The literature [36] suggested that weight vector adaptation should be periodically executed to

ensure convergence in the search process. The parameter fr is used to control the frequency, the

smaller fr is, the higher frequency of weight vector adaptation will be employed. The weight vector

adaptation method is described as Algorithm 4. Fig. 4.2 presents the adaptive weight vectors for

Pareto fronts with different scales.

Algorithm 4: Weight vector adaptation
Input: Weight vector set Λ0 and Λt, generation index t, population Pt+1

Output: Weight vector set Λt+1 and neighborhood set B
1 if

(
t

tmax
mod fr

)
== 0 then

2 Calculate the maximum and minimum objective values of fmax
t+1,k and fmin

t+1,k of Pt+1,
respectively;

3 for i← 1 to N do
4 for k ← 1 to m do

5 λit+1,k =
λi0,k×(fmax

t+1,k−f
min
t+1,k)∑m

j=1×(λi0,j×(fmax
t+1,j−fmin

t+1,j))
;

6 end
7 end
8 for i← 1 to N do
9 Calculate the neighborhood set B (i)← {i1, i2, · · · , iT };

10 end
11 else
12 Λt+1 = Λt;
13 end

It has been proven that the modified Tchebycheff approach can produce more uniformly dis-

tributed solutions against the original one [75]. Furthermore, we compare six different decom-

position approaches (introduced in Section 4.1) based on the adaptive weight vectors to solve the

SDTLZ1 problem having objectives with different scales [22], and the results are shown in Fig. 4.3.

From Fig. 4.3, we can see that except for the modified Tchebycheff approach, the proposed algo-

rithm with other decomposition methods cannot find the true Pareto fronts of SDTLZ1. However, it

is noted that the PBI approach based on adaptive weight vectors might be suitable for some small

scaled problems, i.e., WFG test problems [44], as illustrated in Fig. 4.4. Based on the analysis, we

can learn that the Tchebycheff approach suffers the diversity loss employing the adaptive weight

vectors. PBI methods seem to be suitable for solving some small scaled problems. The litera-

ture [39, 57] could also demonstrate it to some extent. On the other hand, the penalty parameter

53

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

PF1

PF2

o
1f

2f

1

2

3

3

2

1

Figure 4.2: Adaptive weight vectors for Pareto fronts with different scales

is always difficult to set for different scaled problems. Therefore we select the modified Tcheby-

cheff approach combined with adaptive weight vectors as our algorithm, denoted as DBEA-AWV

to replace DBEA-AWV-mte for convenience.

4.2.3 Replacement Strategy

Compared with MOPs, in MaOPs it should be paid more attention to balancing the diversity and

convergence based on a set of uniform weight vectors. Instead of updating the whole neighboring

solutions, we choose one novel replacement strategy for MOPs and MaOPs.

With respect to MOPs and MaOPs, we calculate the acute angles between the offspring and all

the solutions in the current population when an offspring is produced. A cluster of K front solutions

is marked based on the sorted increasing acute angles. Then the offspring is compared with these

K solutions one by one using the modified Tchebycheff value, and the process is terminated until

one of K solutions is replaced with the offspring. In this way, the balance factor K is vital for

controlling the convergence and diversity and the influence of K will be discussed in Section 4.3.4.

Fig. 4.5 presents the replacement strategy with a cluster of K solutions.

54

4.2. THE PROPOSED DBEA-AWV

(a) DBEA-AWV-mte (b) DBEA-AWV-te

(c) DBEA-AWV-pbi (d) DBEA-AWV-aps

(e) DBEA-AWV-sps (f) DBEA-AWV-apbi

Figure 4.3: The obtained Pareto fronts of six decomposition approaches on SDTLZ1

55

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

(a) DBEA-AWV-mte (b) DBEA-AWV-te

(c) DBEA-AWV-pbi (d) MOEA/D-pbi

Figure 4.4: The obtained Pareto fronts of three decomposition approaches on WFG4

4.2.4 Computational Complexity

In the proposed DBEA-AWV, the major computational costs are the iteration process in Algorithm

3. Step 9 randomly chooses two solutions from the neighborhood set for genetic operators. Step 10

requires O (m) comparisons to update the reference point. Step 11 performs O (mN) operations

to update the population for MOPs and MaOPs at the worst case. For the weight vector adaptation

strategy in Step 13, it needs O (mN) and O
(
N2
)

operations to update the weight vectors and

the neighborhood set. Since it has N passes from Step 8 to Step 12, the overall computational

complexity becomes O
(
mN2

)
for one generation of DBEA-AWV.

56

4.3. EXPERIMENTAL STUDIES

Cluster

Cluster

Cluster

o
1f

2f

K solutions

K solutions

K solutions

Figure 4.5: The replacement strategy with a cluster of K solutions

4.3 Experimental Studies

In this section empirical experiments are conducted on different MOPs and MaOPs to compare

DBEA-AWV with other state-of-the-art algorithms. We then analyze the influence of parameters in

DBEA-AWV.

4.3.1 Experimental Design

The experimental design includes four parts.

1) Test problems. The test problems are chosen from the widely used benchmark test suites

ZDT [122] (including scaled ZDT, i.e. SZDT), DTLZ [25] (including scaled DTLZ, i.e. SDTLZ).

2) Performance metrics. The inverted generational distance (IGD) [125] and hypervolume (HV)

[125] are adopted to evaluate the performance of the tested algorithms. For scaled problems, the

objective values are normalized by the ideal and nadir points of the true PF. The smaller IGD and

larger HV mean better.

3) Comparing algorithms. To assess the performance of the proposed DBEA-AWV, overall

ten different state-of-the-art algorithms are chosen to evaluate. Five MOEAs are considered for

MOPs. NSGA-II and IBEA are the representative Pareto dominance and indicator-based MOEAs,

respectively. Other three MOEA/D (using Tchebycheff) [113], MOEA/D-AWA [75] and MOEA/D-

STM [61] are the popular MOEA/D variants. Five many-objective optimization algorithms are

selected for MaOPs. NSGA-III and RVEA are two widely used algorithms with good perfor-

57

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

mance. Other three MOEA/DD [60], MOEA/D-DU [111] and MOEA/D-PaS [95] are the typical

decomposition-based algorithms for many-objective optimization.

4) Parameter settings. The population size of decomposition-based algorithms is controlled by a

parameter H (N = Cm−1
H+m−1). To obtain the uniform weight vectors, a two-layered weight vectors

method [22] is used. Table 4.1 lists the population size used for different number of objectives of

proposed DBEA-AWV. For comparison, other tested algorithms adopt the same population size.

Table 4.1: The population size

No. of objectives (m) Parameter(H1, H2) Population size (N)
2 99, 0 100
3 13, 0 105
5 5, 0 210
8 3, 2 156

10 3, 2 275

The neighborhood size of decomposition-based algorithms is set to 0.1N . The crossover proba-

bility and distribution index of SBX are set to pc = 1 and ηc = 20, respectively. For polynomial

mutation, the mutation probability and distribution index are set to pm = 1/n and ηm = 20, where

n is the number of decision variables. For other parameters for specific algorithms, we use the same

settings as the original references.

In DBEA-AWV, the frequency control parameter is set to fr = 0.2, and the factor in replacement

strategy is set to K = 5. More details of parameter analysis will be discussed in Section 4.3.4.

The termination of each run is the maximal number of generations, which is set to 1000 for all test

problems. Each algorithm is run 30 times independently on each test instance, and the average and

standard deviation of metric values are recorded. The Wilcoxon rank sum test at a 5% significance

level is used to compare the experimental results, where the symbol ’+’, ’−’ and ’≈’ denotes that

the result of another algorithm is significantly better, significantly worse and similar to that obtained

by DBEA-AWV, respectively.

4.3.2 Comparative Results on MOPs

Table 4.2 presents the IGD metric values obtained by NSGA-II, IBEA, MOEA/D, MOEA/D-

AWA, MOEA/D-STM, and DBEA-AWV on a variety of MOPs, including ZDT1-ZDT6, SZDT1-

SZDT6, DTLZ1-DTLZ4 and SDTLZ1-SDTLZ4. The best result in each row is highlighted. The

proposed DBEA-AWV could achieve the best performance on 15 of 18 instances of all the test

problems, while compared algorithms could get one or two best results at most. According to

58

4.3. EXPERIMENTAL STUDIES

the Wilcoxon rank sum test, the proposed DBEA-AWV has great advantages. It is still noted that

MOEA/D-AWA shows some features suitable for the non-uniform distributed solutions especially

for disconnected Pareto fronts. Fig. 4.6 shows the IGD values obtained by different tested al-

gorithms. The compared algorithms can get good results for ZDT4 and SZDT4. The proposed

DBEA-AWV can solve the 3-objective SDTLZ problem well compared with other algorithms.

Table 4.2: The IGD values obtained by tested algorithms

Problem m NSGA-II IBEA MOEA/D MOEA/D-AWA MOEA/D-STM DBEA-AWV

ZDT1 2 4.6126e-3 (1.69e-4) − 4.5333e-3 (1.44e-4) − 3.8878e-3 (6.84e-8) ≈ 3.9579e-3 (3.64e-5) − 3.9352e-3 (2.16e-5) − 3.8876e-3 (6.06e-7)
ZDT2 2 4.7196e-3 (1.31e-4) − 9.5288e-3 (1.11e-3) − 3.8070e-3 (8.79e-9) + 3.8303e-3 (1.70e-5) − 3.8367e-3 (1.18e-5) − 3.8070e-3 (1.23e-8)
ZDT3 2 1.1804e-2 (1.33e-2) − 4.9370e-2 (3.98e-2) − 1.1079e-2 (6.36e-6) − 5.0208e-3 (1.34e-4) + 1.1012e-2 (2.61e-5) − 7.0573e-3 (1.55e-2)
ZDT4 2 4.4721e-3 (1.48e-4) − 1.9465e-2 (2.60e-3) − 3.8975e-3 (1.27e-5) ≈ 3.9465e-3 (5.25e-5) − 3.9749e-3 (1.21e-4) − 3.8907e-3 (1.37e-5)
ZDT6 2 3.8764e-3 (1.00e-4) − 5.3567e-3 (1.43e-4) − 3.2597e-3 (3.78e-7) − 3.2617e-3 (1.44e-5) − 3.2594e-3 (8.86e-8) − 3.1575e-3 (2.27e-7)

SZDT1 2 4.5832e-3 (1.49e-4) − 4.4852e-3 (1.81e-4) − 1.2390e-2 (2.16e-6) − 4.3416e-3 (1.21e-4) − 1.2406e-2 (2.13e-5) − 3.8875e-3 (7.56e-7)
SZDT2 2 4.7551e-3 (2.19e-4) − 9.1512e-3 (9.84e-4) − 1.5905e-2 (2.39e-7) − 6.7764e-3 (9.80e-4) − 1.6000e-2 (5.40e-5) − 3.8070e-3 (1.27e-8)
SZDT3 2 8.5945e-3 (9.99e-3) + 5.0946e-2 (3.93e-2) − 5.4132e-2 (7.66e-5) − 7.1083e-3 (1.38e-3) ≈ 5.3839e-2 (1.83e-4) − 1.0178e-2 (9.86e-3)
SZDT4 2 4.6028e-3 (1.51e-4) − 1.8516e-2 (2.32e-3) − 1.2400e-2 (2.38e-5) − 4.3634e-3 (1.21e-4) − 1.2422e-2 (2.22e-5) − 3.9264e-3 (3.12e-5)
SZDT6 2 4.0015e-3 (2.01e-4) − 5.3703e-3 (9.87e-5) − 1.5110e-2 (1.92e-6) − 3.6376e-3 (8.29e-5) − 1.5109e-2 (2.13e-6) − 3.1672e-3 (2.22e-5)

+/− / ≈ 1/9/0 0/10/0 1/7/2 1/8/1 0/10/0
DTLZ1 3 5.3162e-2 (2.73e-3) − 3.1082e-1 (5.65e-2) − 5.6991e-2 (2.11e-5) − 4.0135e-2 (5.80e-4) − 3.8079e-2 (5.46e-5) − 3.7967e-2 (2.47e-5)
DTLZ2 3 6.7512e-2 (2.40e-3) − 7.9687e-2 (2.17e-3) − 6.9623e-2 (5.18e-5) − 5.0666e-2 (2.13e-4) − 5.1043e-2 (2.03e-4) − 5.0318e-2 (1.09e-5)
DTLZ3 3 6.7180e-2 (2.59e-3) − 4.7455e-1 (7.88e-3) − 6.9437e-2 (2.02e-4) − 5.1034e-2 (3.45e-4) − 5.3434e-2 (1.04e-3) − 5.0627e-2 (1.67e-4)
DTLZ4 3 6.6333e-2 (2.01e-3) − 7.7829e-2 (2.01e-3) − 3.4147e-1 (3.43e-1) − 1.1616e-1 (1.69e-1) − 7.6677e-2 (6.17e-2) − 5.0327e-2 (2.01e-5)

SDTLZ1 3 5.2909e-2 (2.25e-3) − 3.0006e-1 (3.67e-2) − 2.9216e-1 (2.80e-4) − 1.4347e-1 (5.21e-2) − 3.3976e-1 (8.95e-2) − 3.7971e-2 (2.02e-5)
SDTLZ2 3 6.7847e-2 (2.88e-3) − 7.8525e-2 (2.31e-3) − 3.4039e-1 (1.06e-4) − 1.2649e-1 (1.20e-2) − 2.7225e-1 (2.09e-4) − 5.0368e-2 (9.58e-5)
SDTLZ3 3 6.8050e-2 (3.08e-3) − 4.7493e-1 (9.90e-3) − 3.4169e-1 (1.12e-3) − 1.3736e-1 (1.21e-2) − 1.3067e+0 (2.36e+0) − 5.1217e-2 (7.75e-4)
SDTLZ4 3 9.5373e-2 (1.61e-1) − 1.0637e-1 (1.59e-1) − 6.0224e-1 (2.58e-1) − 2.7603e-1 (2.45e-1) − 2.9495e-1 (3.71e-2) − 5.0329e-2 (1.06e-5)

+/− / ≈ 0/8/0 0/8/0 0/8/0 0/8/0 0/8/0

Fig. 4.7 shows the obtained Pareto fronts with medium value of IGD metric of all six algorithms

for 3-objective SDTLZ3. We can find that only DBEA-AWV can get the true Pareto front of the

scaled SDTLZ3 with better convergence and diversity.

4.3.3 Comparative Results on MaOPs

Table 4.3 presents the HV metric values obtained by NSGA-III, RVEA, MOEA/DD, MOEA/D-

DU, MOEA/D-PaS, and DBEA-AWV on different MaOPs, including many-objective DTLZ1-4 and

SDTLZ1-4. The proposed DBEA-AWV could achieve the best performance on 15 of 24 instances,

while the number of best results obtained by NSGA-III, RVEA, MOEA/DD, MOEA/D-DU and

MOEA/D-PaS are 1, 0, 2, 6, and 0, respectively. Although NSGA-III can get only one best result,

it has the stable performance for most of the MaOPs. MOEA/D-DU and MOEA/DD can acquire

some best results for normalized many-objective DTLZ problems, while they seem to encounter

difficulties when facing the scaled test instances. The proposed DBEA-AWV performs much better

59

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

NSGA-II IBEA MOEA/D MOEA/D-AWA MOEA/D-STM DBEA-AWV
Tested Algorithms

0

0.2

0.4

0.6

0.8

1

1.2

1.4

IG
D

 v
al

ue
s

ZDT4 (2-objective)
SZDT4 (2-objective)
DTLZ3 (3-objective)
SDTLZ3 (3-objective)

Figure 4.6: The IGD values obtained by different algorithms

than other compared algorithms on MaOPs with disparately scaled objectives. As shown in Table

4.3, DBEA-AWV is always reliable and effective to achieve good performance for both normalized

and scaled MaOPs. Fig. 4.8 shows the HV values obtained by different tested algorithms. NSGA-

III, RVEA, MOEA/DD, and MOEA/D-DU can get good results for 10-objective DTLZ1 but RVEA,

MOEA/DD, and MOEA/D-DU show poor performance for scaled problems. The proposed DBEA-

AWV is competitive for the normalized and scaled many-objective optimization problems.

Fig. 4.9 and Fig. 4.10 show the obtained Pareto fronts with medium value of HV metric of all six

algorithms for 10-objective DTLZ1 and SDTLZ3, respectively. It can be observed that NSGA-III,

RVEA, MOEA/DD, MOEA/D-DU and DBEA-AWV have obtained good approximations to true

Pareto front of 10-objective DTLZ1. For 10-objective SDTLZ3, only NSGA-III, MOEA/D-DU

and DBEA-AWV get the right fronts. Furthermore, DBEA-AWV can acquire a better performance

with regard to convergence and diversity compared with NSGA-III, MOEA/D-DU. In general the

proposed DBEA-AWV has a promising versatility of solving normalized and scaled MaOPs.

Compared with the classical decomposition-based algorithm MOEA/D [113], the obviously in-

creased complexity of the proposed DBEA-AWV is the adaptative weight vectors operation. The

weight vector adaptation is periodically executed and will not increase a lot of added overhead.

However, the traditional decomposition-based algorithms can not get good results of scaled many-

objective optimization problems, whereas the proposed DBEA-AWV can deal well with normalized

and scaled multi- and many-objective optimization problems.

60

4.3. EXPERIMENTAL STUDIES

Figure 4.7: The obtained Pareto fronts of tested algorithms on 3-objective SDTLZ3

61

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

Table 4.3: The HV values obtained by tested algorithms

Problem m NSGA-III RVEA MOEA/DD MOEA/D-DU MOEA/D-PaS DBEA-AWV

DTLZ1
5 9.7985e-1 (1.62e-4) ≈ 9.7982e-1 (1.18e-4) ≈ 9.7989e-1 (1.53e-4) ≈ 9.7990e-1 (1.60e-4) ≈ 5.5473e-1 (4.53e-1) − 9.7985e-1 (1.56e-4)
8 9.9714e-1 (1.12e-3) − 9.9761e-1 (4.64e-5) + 9.9756e-1 (6.69e-5) + 9.9765e-1 (6.60e-5) ≈ 6.1110e-2 (1.67e-1) − 9.9732e-1 (1.42e-3)
10 9.9680e-1 (1.32e-2) − 9.9969e-1 (1.87e-5) − 9.9967e-1 (1.46e-5) − 9.9969e-1 (1.80e-5) ≈ 2.7064e-5 (1.48e-4) − 9.9970e-1 (1.58e-5)

DTLZ2
5 8.1254e-1 (4.40e-4) ≈ 8.1261e-1 (4.47e-4) ≈ 8.1263e-1 (4.13e-4) ≈ 8.1263e-1 (3.38e-4) ≈ 7.6761e-1 (2.02e-2) − 8.1250e-1 (3.68e-4)
8 9.1111e-1 (3.34e-2) − 9.2411e-1 (2.45e-4) − 9.2411e-1 (2.73e-4) − 9.2436e-1 (8.79e-4) − 4.6198e-1 (2.37e-1) − 9.2475e-1 (3.91e-4)
10 9.5953e-1 (2.12e-2) − 9.6976e-1 (1.58e-4) − 9.6979e-1 (1.82e-4) − 9.7019e-1 (3.45e-4) − 1.5943e-1 (1.90e-1) − 9.7043e-1 (2.01e-4)

DTLZ3
5 8.1105e-1 (1.11e-3) ≈ 8.1131e-1 (1.04e-3) ≈ 8.1190e-1 (7.01e-4) + 8.1191e-1 (6.71e-4) + 4.6863e-1 (3.02e-1) − 8.1141e-1 (8.05e-4)
8 8.7304e-1 (1.73e-1) − 9.2233e-1 (1.39e-3) ≈ 9.2182e-1 (1.62e-3) ≈ 9.2242e-1 (1.60e-3) ≈ 4.7565e-2 (5.00e-2) − 9.1732e-1 (1.54e-2)
10 9.2389e-1 (1.56e-1) ≈ 9.6936e-1 (4.14e-4) + 9.6950e-1 (2.36e-4) + 9.6880e-1 (5.82e-4) ≈ 4.8485e-2 (4.61e-2) − 9.6021e-1 (1.22e-2)

DTLZ4
5 8.0895e-1 (1.98e-2) ≈ 8.1264e-1 (2.81e-4) ≈ 8.1270e-1 (4.78e-4) ≈ 8.1260e-1 (3.98e-4) ≈ 7.5010e-1 (3.86e-2) − 8.1276e-1 (4.83e-4)
8 9.1312e-1 (3.64e-2) − 9.2400e-1 (2.16e-4) − 9.2406e-1 (1.87e-4) − 9.2665e-1 (5.08e-4) + 8.9996e-1 (6.68e-3) − 9.2617e-1 (3.53e-4)
10 9.6840e-1 (6.21e-3) − 9.6975e-1 (1.81e-4) − 9.6979e-1 (1.79e-4) − 9.7123e-1 (1.92e-4) + 9.5729e-1 (7.90e-3) − 9.7106e-1 (2.36e-4)

SDTLZ1
5 9.7833e-1 (2.96e-3) − 7.0877e-1 (1.48e-1) − 4.4899e-1 (6.13e-3) − 9.3765e-1 (4.68e-4) − 6.1446e-1 (4.65e-1) − 9.7978e-1 (3.18e-4)
8 9.9638e-1 (3.12e-3) ≈ 8.5694e-1 (6.72e-2) − 6.6415e-1 (1.21e-2) − 9.9470e-1 (4.49e-4) − 3.0818e-2 (8.90e-2) − 9.9729e-1 (5.77e-4)
10 9.9467e-1 (1.39e-2) ≈ 9.7052e-1 (9.45e-3) − 8.2216e-1 (8.84e-3) − 9.9927e-1 (4.96e-5) − 5.8189e-2 (1.60e-1) − 9.9961e-1 (9.88e-5)

SDTLZ2
5 8.1255e-1 (4.18e-4) + 7.7032e-1 (4.27e-3) − 2.4895e-1 (1.89e-2) − 6.7704e-1 (1.05e-3) − 7.5242e-1 (5.37e-2) − 8.1221e-1 (5.38e-4)
8 9.2012e-1 (1.10e-2) − 7.7615e-1 (3.49e-2) − 3.2121e-1 (1.59e-2) − 8.9447e-1 (2.91e-3) − 4.8659e-1 (2.49e-1) − 9.2255e-1 (7.29e-4)
10 9.6749e-1 (6.36e-3) ≈ 9.1550e-1 (9.00e-3) − 5.0061e-1 (2.32e-2) − 9.5674e-1 (1.24e-3) − 1.2844e-1 (1.41e-1) − 9.6933e-1 (4.21e-4)

SDTLZ3
5 8.0842e-1 (6.29e-3) − 2.9667e-1 (1.66e-1) − 2.6951e-1 (1.55e-2) − 6.7218e-1 (5.08e-3) − 5.1518e-1 (3.01e-1) − 8.0941e-1 (9.55e-4)
8 8.4412e-1 (2.08e-1) ≈ 4.7586e-1 (1.24e-1) − 3.2048e-1 (1.84e-2) − 8.7872e-1 (7.63e-3) − 8.2632e-2 (1.13e-1) − 9.0631e-1 (1.74e-2)
10 9.1410e-1 (1.21e-1) ≈ 7.8909e-1 (7.86e-2) − 4.9249e-1 (1.57e-2) − 9.5030e-1 (2.14e-3) − 6.9697e-2 (3.91e-2) − 9.6090e-1 (5.65e-3)

SDTLZ4
5 8.1213e-1 (4.80e-4) ≈ 7.8040e-1 (2.00e-3) − 2.8442e-1 (1.94e-2) − 6.7723e-1 (4.42e-4) − 7.5781e-1 (3.21e-2) − 8.1232e-1 (4.05e-4)
8 9.1587e-1 (2.38e-2) − 8.4798e-1 (5.48e-3) − 3.6363e-1 (3.29e-2) − 8.9998e-1 (2.86e-4) − 8.9667e-1 (1.96e-2) − 9.2619e-1 (3.18e-4)
10 9.6701e-1 (9.66e-3) − 9.4574e-1 (2.87e-3) − 5.4249e-1 (1.74e-2) − 9.6072e-1 (2.02e-4) − 9.5751e-1 (6.86e-3) − 9.7110e-1 (1.49e-4)

+/− / ≈ 1/12/11 2/17/5 3/17/4 3/14/7 0/24/0

62

4.3. EXPERIMENTAL STUDIES

NSGA-III RVEA MOEA/DD MOEA/D-DU MOEA/D-PaS DBEA-AWV
Tested Algorithms

0

0.2

0.4

0.6

0.8

1

H
V

 v
al

ue
s

DTLZ1 (10-objective)
SDTLZ1 (5-objective)
SDTLZ3 (10-objective)
SDTLZ4 (5-objective)

Figure 4.8: The HV values obtained by different algorithms

4.3.4 Parameter Sensitivity Analysis

There are two major parameters to be specified in the proposed DBEA-AWV, i.e., K controlling

the balance between convergence and diversity and fr controlling frequency of employing the weight

vector adaptation. To investigate the sensitivity of these two parameters, different settings of K

and fr are used in DBEA-AWV on DTLZ2 and SDTLZ3, which represent normalized and scaled

problems, respectively.

We first analyze the sensitivity of parameter K, where K varies from 1 to 20 and fr is fixed to

0.2. The average HV values obtained by DBEA-AWV with different K over 30 independent runs

are shown in Fig. 4.11. Two observations from the results can be noted. The first observation is that

DTLZ2 having a simple search landscape is not sensitive to the parameter K. Second, SDTLZ3 is

a representative disparately scaled problem with multimodality, where the performance starts to be

better with increasing values ofK in the beginning. However, the optimization results cannot always

be better with increasing of K when K becomes larger than 15. It implies that a suitable setting

of K can achieve a better balance between convergence and diversity especially for many-objective

optimization. Based on the analysis, K is recommended to be selected between [5, 15].

The sensitivity analysis of parameter fr is carried out, where fr varies from 0.01 to 0.5 and K is

fixed to 5. The average HV values obtained by DBEA-AWV with different fr over 30 independent

runs are shown in Fig. 4.12. It can be observed that the normalized problem DTLZ2 having the

63

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

1 2 3 4 5 6 7 8 9 10
Dimension No.

0

0.1

0.2

0.3

0.4

0.5

V
al

ue
MOEA/D-DU on

10-objective DTLZ1

1 2 3 4 5 6 7 8 9 10
Dimension No.

0

100

200

300

V
al

ue

MOEA/D-PaS on
10-objective DTLZ1

Figure 4.9: The obtained Pareto fronts of tested algorithms on 10-objective DTLZ1

64

4.3. EXPERIMENTAL STUDIES

1 2 3 4 5 6 7 8 9 10
Dimension No.

0

100

200

300

400

V
al

ue

RVEA on
10-objective SDTLZ3

1 2 3 4 5 6 7 8 9 10
Dimension No.

0

200

400

600
V

al
ue

MOEA/D-DU on
10-objective SDTLZ3

Figure 4.10: The obtained Pareto fronts of tested algorithms on 10-objective SDTLZ3

65

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

0 5 10 15 20
 K

0.5

0.6

0.7

0.8

0.9

1

H
V

DTLZ2

m=3
m=5
m=8
m=10

0 5 10 15 20
 K

0.5

0.6

0.7

0.8

0.9

1

H
V

SDTLZ3

m=3
m=5
m=8
m=10

Figure 4.11: The average HV values obtained by DBEA-AWV with different K

same range of objectives is insensitive to the parameter fr. For SDTLZ3 with high dimensional

objectives, a too small fr, employing weight vector adaptation frequently, will lead to deterioration

of performance of DBEA-AWV. On the other hand, a too large fr is also not beneficial for the

performance. Therefore, fr is recommended to be selected between [0.1, 0.3].

0 0.1 0.2 0.3 0.4 0.5
 f

r

0.5

0.6

0.7

0.8

0.9

1

H
V

DTLZ2

m=3
m=5
m=8
m=10

Figure 4.12: The average HV values obtained by DBEA-AWV with different fr

4.4 Summary

In this chapter, we have proposed the DBEA-AWV algorithm for solving normalized and scaled

MOPs and MaOPs. In order to improve the performance of DBEA-AWV on disparately scaled

66

4.4. SUMMARY

problems, a strategy for adapting weight vectors is adopted to tune weight vectors according to the

range of each objective with respect to candidate solutions. Based on the adaptive weight vectors, we

compare several existing popular decomposition approaches and find that the modified Tchebycheff

approach shows high efficiency in dealing with both normalized and scaled problems. What’s more,

a novel replacement strategy is developed to achieve a better balance between convergence and

diversity especially for MaOPs.

To investigate the performance of DBEA-AWV, we compare DBEA-AWV with ten state-of-the-

art MOEAs. The experimental results demonstrate that DBEA-AWV is competitive and efficient

compared with other algorithms.

67

CHAPTER 4. A MANY-OBJECTIVE DECOMPOSITION-BASED ALGORITHM

68

Chapter 5

An Adaptive Algorithm for Irregular
Pareto Fronts

This chapter shows an adaptive algorithm (called AMAWV) for solving multi- and many-objective

optimization problems (MOPs and MaOPs) with irregular Pareto fronts.

Most multi-objective evolutionary algorithms (MOEAs) may have the advantages of solving

MOPs with regular Pareto fronts, but they often encounter difficulties in dealing with problems with

complex irregular Pareto fronts. For instance, MOEA/D [113] is a general decomposition-based

MOEA framework for decomposing a MOP into a number of single-objective (or multi-objective)

optimization subproblems. The performance of solutions generated by decomposition-based evolu-

tionary algorithms depends heavily on the Pareto front shapes [45].

In this chapter, we present a novel archive maintenance method for adapting weight vectors in the

decomposition-based multi-objective evolutionary algorithms (called AMAWV) for solving MOPs

and MaOPs with regular and irregular Pareto fronts. The main contributions of this chapter are

summarized as follows:

• A novel archive maintenance strategy is proposed for deleting the dominance resistant solu-

tions as well as retaining good diversity.

• An efficient weight vector adaptation method is presented for solving different MOPs and

MaOPs with various Pareto front shapes.

• The proposed algorithm is competitive compared with the other five state-of-the-art algorithms

on test problems with a variety of Pareto front shapes.

69

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

5.1 Irregular Pareto Fronts

In MOEA/D, each weight vector corresponds to one subproblem, ideally associated with one

solution. A set of weight vectors will determine the search direction and the diversity of solutions

is controlled by these weight vectors as well as Pareto front shapes. If the shape of a set of weight

vectors shares a similar shape with Pareto front, the obtained solutions can be uniformly distributed

on the Pareto front.

In general, the weight vectors are systematically generated and distributed uniformly in a unit

simplex. In that way, if the MOPs have regular Pareto front (i.e., simplex-like), e.g., a triangle plane

or a sphere, the decomposition-based algorithms can get a set of solutions suited to the Pareto front.

However, when MOPs have irregular Pareto fronts (e.g., convex, concave, inverted, disconnected,

degenerated or scaled) [63], a set of uniformly distributed weight vectors may not result in a set of

uniformly distributed Pareto optimal solutions.

When using the decomposition-based evolutionary algorithms to deal with MOPs with irregular

Pareto fronts, some weight vectors may have no intersection with the Pareto front and lead to several

weight vectors associated with one solution. In this case, the number of obtained Pareto optimal

solutions may be less than the weight vectors. Fig. 5.1 and Fig. 5.2 present two examples that the

sets of Pareto optimal solutions are obtained by decomposition-based evolutionary algorithms on

irregular Pareto fronts (convex IMOP1 and inverted IDTLZ1) [46, 86]. MOEA/D-te, MOEA/D-pbi

and MOEA/D-mte represent that MOEA/D algorithm adopts the Tchebycheff approach, the penalty-

based boundary intersection and modified Tchebycheff approach, respectively.

As shown in the first two subfigures (Figs. 5.1a and 5.2a), the shapes of weight vectors are differ-

ent from the shapes of Pareto fronts. The Pareto front of IMOP1 is very convex, while the obtained

Pareto optimal solutions of different decomposition approaches in MOEA/D are non-uniformly dis-

tributed and few solutions are found on the boundary. The Pareto front of IDTLZ1 is inverted,

whereas the obtained Pareto optimal solutions of MOEA/D focus on the boundary and sparse solu-

tions are generated in the center. The above examples elaborate on the difficulties of finding a set of

weight vectors to be suitable for any MOP. It is necessary to adjust the weight vectors to be adaptive

for MOPs with various Pareto fronts.

5.2 The Proposed AMAWV

This section presents the details of the proposed AMAWV.

70

5.2. THE PROPOSED AMAWV

(a) Weight vectors and optimal Pareto front (b) MOEA/D-te

(c) MOEA/D-pbi (d) MOEA/D-mte

Figure 5.1: The performance of different decomposition approaches in MOEA/D on IMOP1

5.2.1 General Framework

The general framework of the proposed AMAWV is described in Algorithm 5. First, the popula-

tion P ←
{
x1, x2, · · · , xN

}
are randomly generated in the whole decision space, then the reference

point z∗ = (z∗1 , z
∗
2 , · · · , z∗m)T is initialized. After that we can initialize the archive A by adding

the non-dominated solutions from the population P . A set of uniformly random weight vectors

Λ =
{
λ1, λ2, · · · , λN

}
are generated as follows [18].

First, 5000 weight vectors are uniformly randomly generated for forming the set Λ1. Λ is initial-

ized as the set containing all the weight vectors (1 0 ... 0 0), (0 1 ... 0 0), ..., (0 0 ... 0 1). Second,

the weight vector in Λ1 with the largest distance to Λ is found, added to Λ, and removed from Λ1.

71

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

(a) Weight vectors and optimal Pareto front (b) MOEA/D-te

(c) MOEA/D-pbi (d) MOEA/D-mte

Figure 5.2: The performance of different decomposition approaches in MOEA/D on IDTLZ1

This process is repeated until the size of Λ is N .

The AMAWV adopts the uniformly random weight vectors method instead of Das and Dennis’s

systematic approach [17]. The advantage of this approach is that the population size is flexible,

which is independent on the number of objectives. In the light of the generated weight vectors,

the neighborhood set of subproblem i as B (i) = {i1, · · · , iT } can be obtained by computing the

Euclidean distance, where T is the neighborhood size. Steps 8-28 in Algorithm 5 are iterated until

the termination criterion is met. At each iteration, the mating pool is allowed to be selected from the

whole population with a low probability 1− δ. The widely used simulated binary crossover (SBX)

and polynomial mutation are randomly selected mating solutions from E to generate offspring y.

72

5.2. THE PROPOSED AMAWV

Then offspring y is used to update the reference point, the population and the archive. When the

size of the archive exceeds the predefined limit size (NA), a novel strategy is adopted to maintain

the archive (Steps 20-22 in Algorithm 5), which will be introduced in Section 5.2.2. When the

frequency of updating the weight vectors is satisfied with the designed requirements, the weight

vector adaptation method is conducted (Steps 23-26 in Algorithm 5), which will be presented in

Section 5.2.3.

5.2.2 Archive Maintenance

In AMAWV, we use the Pareto dominance to select the non-dominated solutions to be added

to the archive, when the size of the archive exceeds the pre-set capacity (NA). A novel archive

maintenance strategy is applied to remove some dominance resistance solutions and some other

solutions with poor distribution. The archive maintenance strategy is presented in Algorithm 6.

Aiming at dealing with the scaled problems with different objectives ranges, the normalization

approach in NSGA-III [22] is adopted to normalize the solutions in the archive (Step 2 in Algorithm

6). The main idea of this approach is to find some extreme solutions to construct the hyperplane.

The extreme solutions are determined by minimizing the achievement scalarizing function (ASF):

ASF (x,w) =
m

max
i=1

fi (x)− z∗i
wi

, for x ∈ St (5.1)

where St represents the current population. w is the axis direction, wi = 10−6 when it is zero. After

m extreme solutions have been adopted, they are used to construct a hyperplane and the intercept aj
of the j-th objective axis on the hyperplane can be computed. Then the solutions are normalized as

follows:

f̄j (x) =
fj (x)− z∗j

aj
(5.2)

where fj (x) is the j-th objective value of solution x, f̄j (x) is the normalized objective value.

According to the non-dominated solutions in the archive during the evolution process, we can

estimate the shape of PF (Step 3 in Algorithm 6). The PF shape can guide the search direction [102].

First, the m solutions in the archive closest to the m-dimensional vector V = (1, 1, . . . , 1) are

identified based on the angle between the non-dominated solutions and vector V . Then the ratio

r =
d

d⊥
(5.3)

is used to estimate the PF shape, where d is the average Euclidean distance from m closest solutions

73

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

Algorithm 5: Framework of AMAWV
Input: A set of weight vectors Λ←

{
λ1, λ2, · · · , λN

}
, the maximum number of generations

tmax

Output: The final population P
1 Initialize the population P ←

{
x1, x2, · · · , xN

}
;

2 Initialize the reference point z∗ ← (z∗1 , z
∗
2 , · · · , z∗m)T ;

3 Initialize the archive A;
4 for i = 1 : N do
5 B (i)← {i1, i2, · · · , iT }, where λi1 , λi2 , · · · , λiT are T closest weight vectors to λi;
6 end
7 t← 1;
8 while t < tmax do
9 for i = 1 : N do

10 if uniform (0, 1) < δ then
11 E ← B (i);
12 else
13 E ← {1, 2, . . . , N};
14 end
15 y = offspring_creation (E);
16 z∗ = Update_Ideal_Point (y, z∗);
17 P = Update_Population (y, z∗,Λ, P);
18 A = Update_Archive (y,A);
19 end
20 if |A| > NA then
21 Maintain the archive A;
22 end
23 if t > tmax × 10% ∧ t == tmax × 5% ∧ t < tmax × 90% then
24 Λ = Weight_Vector_Adaption (t, P,A,Λ);
25 Update the neighborhood set of each weight vector of Λ;
26 end
27 t = t+ 1;
28 end

74

5.2. THE PROPOSED AMAWV

Algorithm 6: Archive Maintenance
Input: The archive A (|A| > NA)
Output: The new archive newA

1 newA← φ;
2 A← normalization (A);
3 r ← estimateShape(A);
4 Set the reference point z∗ to znad if r < 1.1, or itself otherwise;
5 {S+, S−} ← classificationByHypercube (A);
6 if |S+| > NA then
7 /*——— newA← selection (S+, S−) ———*/
8 Add m extreme solutions into newA and remove them from S+;
9 repeat

10 Add into newA the solution in S+ that has the maximum angle to newA;
11 until |newA| = NA

12 else
13 newA = S+;
14 end

to the coordinate origin, and d⊥ is the Euclidean distance from coordinate origin to the hyperplane∑m
i=1 fi = 1. Since d⊥ = |−1|√

m
= |1|√

m
, we obtain

r = d×
√
m (5.4)

Therefore, the shape of the PF can be estimated as convex (if r < 0.9), linear (if r ∈ [0.9, 1.1]),

and concave (if r > 1.1).

According to the estimated PF shape, we set the reference point z∗ to znad if r < 1.1, or itself

otherwise (Step 4 in Algorithm 6). The coordinates of the nadir point correspond to the maximum

value of each objective on the true Pareto front. The nadir point znad is usually estimated to be

znad = zmax = (zmax
1 , zmax

2 , · · · , zmax
m). But here we set the znad = I = (1, 1, · · · , 1) after

normalizing the objectives. Then the solutions in the archive can be divided into two repositories

(S+ and S−) inside and outside the hypercube (Step 5 in Algorithm 6), which is bounded by z∗ and

znad.

The new archive (newA) will select the non-dominated solutions from the S+ and S− (Steps

6-14 in Algorithm 6). When the size of S+ is beyond NA, the m extreme solutions are added into

newA and removed from S+. Then we use the one by one adding solution procedure to choose the

solutions from S+. At each stage, the solution in S+ that has the maximum angle to newA will

75

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

be placed into the newA [101]. The above operation is repeated until the size of the new archive

is equal to NA. When the size of S+ is smaller than NA, all the solutions in S+ will be added

into newA. In the literature [102] the Pareto-adaptive reference points are used to calculate fitness

values and the union population selects both the dominated and non-dominated solutions based on

the fitness values. Also, the solutions outside the hypercube can be added to the population. In this

chapter, only the non-dominated solutions inside the hypercube are added to the archive to adjust the

weight vectors for various PF shapes, which can avoid the dominance resistant solutions to improve

the convergence.

The reference point set (z∗ ← znad if r < 1.1) plays an important role in the archive maintenance

strategy, we will explain the process using the 2-dimensional example as shown in Fig. 5.3. Through

the adaptive normalization procedure and classification by the hypercube, we can delete some dom-

inance resistant solutions such as the solution C (or D), if C has an extremely poor value in the

second objective (f2) but has optimal value in the first objective (f1). In this way, some extremely

poor solutions in the archive can be deleted and will not guide the solutions to search in the wrong

direction. This improves the convergence of the algorithm. On the other hand, in the one by one

adding solution procedure, we use the maximum angle as the criterion to select a solution with good

distribution. If the PF shape is very convex, there are many solutions along the coordinate (such

as A and B), the angle between the vector
−−→
z∗A and

−−→
z∗B is close to zero. At this time, it is easy

to ignore the solutions along the coordinate and finally obtain the non-dominated solution set with

poor distribution. But the angle between the vector
−−−→
znadA and

−−−→
znadB is clear in this situation, we

can differentiate these solutions by substituting the reference point z∗ with znad. Therefore, we use

different reference points (z∗ or znad) based on the different PF shapes in order to obtain a good

spread of non-dominated solutions in the archive.

5.2.3 Weight Vector Adaptation

The non-dominated solutions in the archive can reflect the PF shape to some extent, hence it is

necessary to use the information of the archive to guide the search direction of the decomposition-

based algorithms for solving problems with irregular Pareto fronts. The weight vector addition and

deletion method is an effective way to adapt the weight vectors for various PF shapes. We select an

efficient strategy to add and delete some weight vectors.

Inspired by the literature [63], we first compare the population with the archive to find the un-

developed solutions. If a solution in the archive is located in a niche which has no solution in the

population, the solution is considered as an undeveloped solution. The radius of the niche is set

to the median of the distances from all the solutions to their closest solution in the archive. After

76

5.2. THE PROPOSED AMAWV

1

1O

I

nadz

maxz

*z A B

C

D

2f

1f

Figure 5.3: Illustration of the reference points

finding all the undeveloped solutions we then compute the corresponding weight vectors of these

solutions. Formally, let z∗ ← (z∗1 , z
∗
2 , · · · , z∗m)T be the reference point and λ = (λ1, λ2, · · · , λm)T

be the optimal weight vector to a solution q in the modified Tchebycheff approach. Then it holds

that
f1 (q)− z∗1

λ1
=
f2 (q)− z∗2

λ2
= · · · = fm (q)− z∗m

λm
(5.5)

Since λ1 + λ2 + · · ·+ λm = 1, we get

λ =

(
f1 (q)− z∗1∑m
i=1 fi (q)− z∗i

, · · · , fm (q)− z∗m∑m
i=1 fi (q)− z∗i

)
(5.6)

After obtaining the undeveloped solutions and their corresponding weight vectors, we need to

determine whether the found undeveloped solutions are promising or not. For each of these unde-

veloped weight vectors, we find its neighboring weight vectors as well as their associated solutions

in the population. Let q be an undeveloped solution in the archive and λq be its corresponding weight

vector. Let λp be one of the neighboring weight vectors of λq and p be its associated solution in the

population. The solution q outperforms p if

g (q, λq) < g (p, λq) (5.7)

or

g (q, λq) = g (p, λq) and

m∑
i=1

fi (q) <

m∑
i=1

fi (p) (5.8)

where g () denotes the modified Tchebycheff function, fi () denotes the i-th objective function, and

77

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

m is the number of objectives. If the undeveloped solution q outperforms all of its neighboring

solutions in the population on the basis of λq, q will be considered the promising solution and added

to the population.

After placing the undeveloped and promising solutions with their corresponding weight vectors

into the population, the number of solutions and weight vectors in the new population may be beyond

the predefined size N , hence the weight vector deletion operation needs to be applied. The one

by one removing solution procedure is designed to delete the redundant population solutions and

corresponding weight vectors. That means at each time, the solution (along with its weight vector) in

the population which has minimum distance to another solution is chosen to be deleted. If there are

several solutions with the same minimum distance the second smallest distance will be considered

and so forth [124]. The deletion process will repeat until the number of weight vectors is equal to

N .

The frequency of updating the weight vectors plays an important part of the performance of

decomposition-based algorithms. The frequent change of weight vectors may deteriorate the con-

vergence of these algorithms. In AMAWV the weight vectors do not change during the first 10% and

last 10% generations for retaining the same search direction to improve convergence. The weight

vector adaptation operation is conducted every 5% of the total generations in the middle evolution

process.

The weight vector deletion process and the frequency of updating the weight vectors in the pro-

posed algorithm are different from the literature [63]. The weight vector deletion process is more

efficient and the frequency of updating the weight vectors can improve the whole convergence. In

addition, the novel archive maintenance strategy for avoiding the dominance resistant solutions is

used to maintain the archive, which can guide the weight vectors addition and deletion process to

balance the convergence and diversity.

5.2.4 Computational Complexity

In the proposed AMAWV, the major computational costs are the iteration process in Algorithm 5.

For one generation of AMAWV, Step 15 needs O(N) operations to produce the offspring. Step 16

needs O(mN) comparisons to update the reference point. Step 17 performs O
(
mN2

)
operations

to update the population at the worst case. Step 18 needs O (mNNA) comparisons to update the

archive. Step 21 requires O
(
mN2

A

)
operations to maintain the archive.

On average, the weight vector adaptation needs O
(
N2
A logNA

)
operations and it needs O

(
N2
)

comparisons to update the neighborhood set. Hence, the overall computational complexity at one

generation of AMAWV is max
{
O
(
N2
A logNA

)
, O
(
mN2

A

)}
.

78

5.3. EXPERIMENTAL STUDIES

5.3 Experimental Studies

In this section empirical experiments are conducted on MOPs and MaOPs with different PF shapes

to compare AMAWV with other five state-of-the-art algorithms.

5.3.1 Experimental Design

Five state-of-the-art algorithms, MOEA/D [113], MOEA/D-AWA [75], NSGA-III [22], RVEA

[11] and VaEA [101] are chosen to evaluate the performance of AMAWV. In MOEA/D, the modified

Tchebycheff approach is also applied.

The test problems are chosen from widely used benchmark test suites. They are categorized

into eight groups according to different PF shape properties [63]: simplex-like (DTLZ1, DTLZ2,

CDTLZ2 and MaF3), inverted (IDTLZ1 and IDTLZ2), highly nonlinear (SCH1 and FON), discon-

nected (ZDT3 and DTLZ7), degenerated (DTLZ5 and DTLZ6), scaled (SDTLZ1 and SDTLZ2),

mixed (SCH2 and MaF4) and high-dimensional (DTLZ2-10 and IDTLZ1-10). The test problems in

the first seven groups are 2- or 3-objective and the last group are 10-objective.

The inverted generational distance (IGD) [125] and hypervolume (HV) [125] are adopted to eval-

uate the performance of the compared algorithms. The smaller IGD and larger HV mean better.

The neighborhood size T is set to 0.1N , the probability δ of selecting from the mating pool is set

to 0.9, the capacity NA of the archive is 2N . The crossover probability and distribution index of

SBX are set to pc = 1 and ηc = 20, respectively. For polynomial mutation, the mutation probability

and distribution index are set to pm = 1/n and ηm = 20, where n is the number of decision

variables.

The population size in decomposition-based algorithms cannot be arbitrary. For a fair comparison,

we set the population size N to 100, 105 and 275 for the 2-, 3- and 10-objective problems, respec-

tively. The maximal number of generations is set to 1000 for all the problems. Each algorithm is

executed 30 times independently on each test instance, and the average and standard deviation of

the metric values are recorded. The Wilcoxon rank sum test at a 5% significance level is used to

compare the experimental results, where the symbol ’+’, ’−’ and ’≈’ denotes that the result of an-

other algorithm is significantly better, significantly worse and similar to that obtained by AMAWV,

respectively.

5.3.2 Experimental Results

Table 5.1 presents the IGD metric values obtained by MOEA/D, MOEA/D-AWA, NSGA-III,

RVEA, VaEA and AMAWV on the test problems with different PF shapes. The best result in each

79

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

row is highlighted. The proposed algorithm has achieved the best performance on 13 of 18 test in-

stances, while the number of best results obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA,

VaEA are 1, 1, 1, 2 and 0, respectively. It can be seen that the proposed AMAWV has a clear ad-

vantage over other compared algorithms with regard to the IGD metric. Figs. 5.4 and 5.5 show

the final non-dominated solution set with the median IGD value obtained by MOEA/D, MOEA/D-

AWA, NSGA-III, RVEA, VaEA and AMAWV on 3-objective MaF3 and 3-objective DTLZ7. For

3-objective MaF3, the PF shape is convex, MOEA/D, NSGA-III, RVEA and VaEA focus on the cen-

ter part of PF, MOEA/D-AWA could tune the diversity of the solutions a little, AMAWV can achieve

the best balance between convergence and diversity. For 3-objective DTLZ7 the PF shape is discon-

nected, while VaEA and AMAWV can obtain the solution set with good distribution compared with

the other four algorithms.

Table 5.1: The IGD values obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA and
AMAWV on test problems

Problem MOEA/D MOEA/D-AWA NSGA-III RVEA VaEA AMAWV

DTLZ1 1.8983e-2 (9.28e-6) + 1.9741e-2 (4.76e-4) ≈ 1.8989e-2 (2.69e-5) + 1.8981e-2 (9.20e-6) + 2.7894e-2 (8.25e-3) − 1.9675e-2 (1.69e-4)
DTLZ2 5.0315e-2 (6.41e-6) + 5.0674e-2 (1.91e-4) + 5.0301e-2 (1.23e-6) + 5.0301e-2 (1.35e-6) + 5.3517e-2 (6.94e-4) − 5.1491e-2 (4.15e-4)

CDTLZ2 4.3371e-2 (4.40e-6) − 3.3688e-2 (1.20e-3) − 4.3347e-2 (1.68e-4) − 3.8134e-2 (4.14e-4) − 5.8261e-2 (4.21e-3) − 3.1819e-2 (4.98e-4)
MaF3 4.3944e-2 (5.50e-4) − 3.6480e-2 (1.24e-3) − 4.4005e-2 (6.12e-4) − 3.9123e-2 (9.02e-4) − 1.0286e-1 (6.82e-2) − 3.2005e-2 (6.31e-4)

IDTLZ1 3.2323e-2 (7.86e-6) − 2.0001e-2 (1.47e-4) − 2.7614e-2 (5.36e-4) − 4.5021e-2 (1.16e-2) − 2.9573e-2 (1.21e-2) − 1.9765e-2 (1.41e-4)
IDTLZ2 9.7749e-2 (1.85e-5) − 5.2547e-2 (5.48e-4) − 6.8724e-2 (2.75e-3) − 7.6365e-2 (8.07e-4) − 6.9191e-2 (2.00e-3) − 5.2189e-2 (4.33e-4)
SCH1 4.7648e-2 (9.46e-5) − 1.7135e-2 (7.35e-5) ≈ 4.7622e-2 (1.34e-4) − 4.4682e-2 (2.16e-4) − 5.5476e-2 (6.59e-3) − 1.7146e-2 (8.56e-5)
FON 3.5827e-3 (1.04e-5) + 3.6737e-3 (2.93e-5) + 3.5951e-3 (7.79e-6) + 4.6246e-3 (3.89e-4) − 4.6102e-3 (9.91e-5) − 3.9019e-3 (7.87e-5)
ZDT3 1.0967e-2 (4.34e-5) − 4.8912e-3 (6.16e-5) − 1.0013e-2 (9.94e-3) − 8.4826e-3 (9.45e-4) − 1.3966e-2 (1.29e-2) − 4.7013e-3 (1.12e-4)

DTLZ7 2.4607e-1 (1.85e-1) − 1.3131e-1 (9.16e-2) − 7.1013e-2 (3.20e-3) − 1.0369e-1 (2.33e-3) − 5.9058e-2 (1.32e-3) − 5.3663e-2 (7.62e-4)
DTLZ5 1.8610e-2 (2.32e-6) − 4.9479e-3 (8.68e-5) − 1.2185e-2 (1.64e-3) − 5.9830e-2 (2.74e-3) − 4.6950e-3 (1.33e-4) − 4.0480e-3 (6.67e-5)
DTLZ6 1.8612e-2 (1.83e-6) − 4.8461e-3 (1.26e-4) − 1.6910e-2 (2.32e-3) − 6.3984e-2 (1.12e-2) − 4.3482e-3 (1.50e-4) − 4.0338e-3 (4.62e-5)

SDTLZ1 2.7841e+0 (5.43e-3) − 2.1104e+0 (1.14e+0) − 9.6234e-1 (2.85e-2) − 8.9768e-1 (4.91e-2) − 8.1286e-1 (3.72e-1) − 6.0928e-1 (1.68e-2)
SDTLZ2 5.2277e+0 (5.55e-4) − 1.8208e+0 (3.04e-1) − 1.4903e+0 (3.61e-4) ≈ 1.4973e+0 (8.44e-3) ≈ 1.5179e+0 (8.60e-2) ≈ 1.5013e+0 (6.69e-2)

SCH2 1.0517e-1 (8.89e-5) − 2.1807e-2 (5.20e-4) − 3.2901e-2 (3.76e-3) − 4.4899e-2 (2.58e-4) − 3.2417e-2 (3.11e-3) − 2.0903e-2 (1.98e-4)
MaF4 5.8395e-1 (1.55e-3) − 2.5536e-1 (5.95e-3) − 3.2311e-1 (1.63e-2) − 3.8401e-1 (1.06e-1) − 4.5213e-1 (2.27e-1) − 2.3830e-1 (3.08e-3)

DTLZ2-10 4.5187e-1 (2.73e-2) − 4.2634e-1 (1.46e-2) − 4.4224e-1 (4.33e-2) − 4.2101e-1 (3.62e-4) − 4.1345e-1 (2.02e-3) − 4.0212e-1 (7.49e-3)
IDTLZ1-10 2.3840e-1 (6.38e-3) − 1.7218e-1 (2.55e-2) − 1.4086e-1 (3.51e-3) − 2.6238e-1 (4.61e-2) − 1.1330e-1 (1.42e-2) − 1.1279e-1 (1.86e-3)

+/− / ≈ 3/15/0 2/14/2 3/14/1 2/15/1 0/17/1

Table 5.2 presents the HV metric values obtained by MOEA/D, MOEA/D-AWA, NSGA-III,

RVEA, VaEA and AMAWV on the test problems with different PF shapes. The proposed algo-

rithm has achieved the best performance on 12 of 18 test instances, while the number of best results

obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA are 1, 1, 2, 2 and 0, respectively.

It can be observed that proposed AMAWV outperforms the other five compared algorithms a lot

with respect to HV metric. Figs. 5.6 and 5.7 show the final non-dominated solution set with the me-

dian HV value obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on

80

5.3. EXPERIMENTAL STUDIES

Figure 5.4: The non-dominated solution set with the median IGD value obtained by MOEA/D,
MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on 3-objective MaF3

81

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

Figure 5.5: The non-dominated solution set with the median IGD value obtained by MOEA/D,
MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on 3-objective DTLZ7

82

5.4. SUMMARY

3-objective MaF4 and 10-objective IDTLZ1. For 3-objective MaF4, it has an inverted badly scaled

PF shape, MOEA/D could only find a part of PF, the solution set of RVEA seems to be sparse,

AMAWV can obtain a good spread of the solutions compared with MOEA/D-AWA, NSGA-III and

VaEA. For 10-objective IDTLZ1, it has a high-dimensional and inverted PF shape, RVEA cannot

find the true PF, MOEA/D and MOEA/D-AWA could only find a small part of solutions, NSGA-III

fails to cover the whole PF, VaEA has some solutions which fail to converge to the true PF. Only

AMAWV can obtain a solution set to cover the whole PF with good convergence and diversity.

Table 5.2: The HV values obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA and
AMAWV on test problems

Problem MOEA/D MOEA/D-AWA NSGA-III RVEA VaEA AMAWV

DTLZ1 8.4428e-1 (1.30e-4) + 8.3738e-1 (7.26e-3) − 8.4420e-1 (3.31e-4) + 8.4431e-1 (1.33e-4) + 8.2025e-1 (1.92e-2) − 8.4286e-1 (4.05e-4)
DTLZ2 5.6302e-1 (4.11e-6) + 5.6491e-1 (3.92e-4) + 5.6302e-1 (6.40e-6) + 5.6301e-1 (1.99e-5) + 5.5825e-1 (1.37e-3) − 5.6162e-1 (9.39e-4)

CDTLZ2 9.5967e-1 (3.52e-6) − 9.6306e-1 (3.28e-4) − 9.5969e-1 (7.09e-5) − 9.6054e-1 (5.25e-4) − 9.5481e-1 (1.55e-3) − 9.6363e-1 (1.98e-4)
MaF3 9.5889e-1 (6.72e-4) − 9.6187e-1 (7.05e-4) − 9.5863e-1 (6.55e-4) − 9.6045e-1 (1.01e-3) − 9.1572e-1 (5.99e-2) − 9.6287e-1 (5.19e-4)

IDTLZ1 2.0345e-1 (1.01e-4) − 2.2342e-1 (3.22e-4) ≈ 2.1113e-1 (8.86e-4) − 1.7968e-1 (1.62e-2) − 2.0726e-1 (1.74e-2) − 2.2353e-1 (3.10e-4)
IDTLZ2 5.0850e-1 (1.58e-5) − 5.3777e-1 (6.64e-4) − 5.2007e-1 (2.86e-3) − 5.1442e-1 (9.90e-4) − 5.3035e-1 (1.24e-3) − 5.3953e-1 (6.11e-4)
SCH1 8.5798e-1 (4.28e-6) − 8.5913e-1 (4.27e-5) ≈ 8.5798e-1 (5.79e-6) − 8.5810e-1 (9.65e-6) − 8.5688e-1 (5.55e-4) − 8.5914e-1 (4.07e-5)
FON 4.3160e-1 (2.93e-5) + 4.3151e-1 (3.87e-5) ≈ 4.3151e-1 (2.76e-5) ≈ 4.2916e-1 (7.22e-4) − 4.2963e-1 (2.01e-4) − 4.3151e-1 (4.84e-5)
ZDT3 5.8139e-1 (1.29e-5) − 5.8320e-1 (2.61e-5) − 5.8217e-1 (3.33e-2) − 5.7843e-1 (1.11e-3) − 5.8321e-1 (4.34e-2) ≈ 5.8330e-1 (5.12e-5)

DTLZ7 2.5390e-1 (1.82e-2) − 2.6177e-1 (1.12e-2) − 2.7184e-1 (1.63e-3) − 2.6020e-1 (2.47e-3) − 2.7779e-1 (7.25e-4) − 2.8080e-1 (2.75e-4)
DTLZ5 1.9268e-1 (2.21e-6) − 1.9963e-1 (9.10e-5) − 1.9466e-1 (1.05e-3) − 1.6334e-1 (2.50e-3) − 1.9967e-1 (1.24e-4) − 2.0016e-1 (1.87e-4)
DTLZ6 1.9268e-1 (1.49e-6) − 1.9966e-1 (8.29e-5) − 1.9231e-1 (1.66e-3) − 1.5706e-1 (7.70e-3) − 1.9993e-1 (8.08e-5) − 2.0025e-1 (3.85e-5)

SDTLZ1 6.8595e-1 (3.79e-4) − 7.5145e-1 (4.16e-2) − 8.4384e-1 (2.06e-3) + 8.4121e-1 (1.46e-2) − 8.2476e-1 (1.78e-2) − 8.4274e-1 (3.69e-4)
SDTLZ2 4.3510e-1 (1.29e-5) − 5.2712e-1 (1.06e-2) − 5.6302e-1 (6.68e-6) + 5.6256e-1 (2.49e-4) ≈ 5.5817e-1 (1.43e-3) − 5.6239e-1 (5.72e-4)

SCH2 6.4666e-1 (5.20e-5) − 6.5528e-1 (4.61e-5) ≈ 6.5458e-1 (2.12e-4) − 6.5214e-1 (9.42e-5) − 6.5499e-1 (3.46e-4) − 6.5529e-1 (1.15e-4)
MaF4 4.7320e-1 (1.08e-3) − 5.3039e-1 (1.87e-3) − 5.1973e-1 (4.55e-3) − 5.0494e-1 (2.65e-2) − 4.9773e-1 (5.77e-2) − 5.3759e-1 (8.18e-4)

DTLZ2-10 9.5643e-1 (1.30e-2) + 9.6452e-1 (6.90e-3) + 9.6119e-1 (1.73e-2) + 9.6979e-1 (2.08e-4) + 9.4757e-1 (3.02e-3) + 9.3416e-1 (1.67e-2)
IDTLZ1-10 6.4382-2 (2.88e-4) − 1.6567-1 (2.55e-2) − 9.5142e-2 (6.59e-3) − 3.6636e-2 (4.37e-3) − 3.3557e-1 (1.38e-2) ≈ 3.3716e-1 (7.14e-3)

+/− / ≈ 4/14/0 2/12/4 5/12/1 3/14/1 1/15/2

5.4 Summary

In this chapter, we proposed a novel archive maintenance for adapting weight vectors to make

the decomposition-based multi-objective evolutionary algorithms solve MOPs and MaOPs with dif-

ferent PF shapes. The novel archive maintenance strategy can delete some dominance resistant

solutions to improve the convergence and the one by one adding solution procedure can retain good

diversity. The weight vector adaptation method helps the decomposition-based algorithms to be suit-

able for different problems with various PF properties. The experimental results have demonstrated

the superiority and versatility of the proposed algorithm.

83

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

Figure 5.6: The non-dominated solution set with the median HV value obtained by MOEA/D,
MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on 3-objective MaF4

84

5.4. SUMMARY

1 2 3 4 5 6 7 8 9 10
Dimension No.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

V
al

ue
MOEA/D on IDTLZ1-10

1 2 3 4 5 6 7 8 9 10
Dimension No.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

V
al

ue

NSGA-III on IDTLZ1-10

1 2 3 4 5 6 7 8 9 10
Dimension No.

0

0.1

0.2

0.3

0.4

0.5

0.6

V
al

ue

VaEA on IDTLZ1-10

1 2 3 4 5 6 7 8 9 10
Dimension No.

0

0.1

0.2

0.3

0.4

0.5

0.6

V
al

ue

AMAWV on IDTLZ1-10

Figure 5.7: The non-dominated solution set with the median HV value obtained by MOEA/D,
MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on 10-objective IDTLZ1

85

CHAPTER 5. AN ADAPTIVE ALGORITHM FOR IRREGULAR PARETO FRONTS

86

Chapter 6

Three Constrained Algorithms with
Better Versatility

This chapter presents three constrained multi-objective optimization algorithms (called PPS-NSGA-

II, PPS-SPEA2, and PPS-SPEA2-SDE) to solve a variety of constrained multi-objective optimiza-

tion problems (CMOPs). We combine the push and pull search (PPS) framework with the algo-

rithms NSGA-II [24], SPEA2 [124], and SPEA2-SDE [62], so we name the proposed algorithms

PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE.

Many real-world MOPs consist of different conflicting objectives with a set of inequality and/or

equality constraints, referred to as CMOPs. CMOPs are challenging because of the difficulty in

striking a good balance of optimizing objectives and satisfying constraints simultaneously. Some

constrained MOEAs (CMOEAs) have achieved good performance on certain CMOPs, while they

show poor versatility on complicated CMOPs, e.g., CMOPs with large infeasible regions, CMOPs

with adjustable difficulties and CMOPs with both decision and objective constraints. To address this

issue, in this chapter we propose three CMOEAs for solving different kinds of CMOPs.

Inspired by the push and pull search (PPS) framework, three CMOEAs are developed by combin-

ing the advantages of population-based search algorithms with flexible constraint handling mecha-

nisms. In addition, three popular and challenging constrained benchmark suites are selected to test

the performance of the proposed algorithms by comparing them to the other seven state-of-the-art

CMOEAs. The experimental results demonstrate the effectiveness and superiority of the proposed

algorithms.

87

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

6.1 PPS Framework

The push and pull search (PPS) framework was proposed to solve CMOPs by Fan et al. [33].

The search process of PPS is divided into two different stages: push and pull search stages. In

the first push stage, the working population is pushed to approach the unconstrained Pareto front

without considering any constraints, which can help the solutions to get across infeasible regions.

Afterwards, a constraint handling mechanism is used to pull the working population to approach the

constrained Pareto front in the pull stage.

The condition when to convert from the push stage to pull stage is important, which can be

suggested as [33, 35]:

rk = max {rzk, rnk} ≤ ε (6.1)

where ε (suggested ε = 0.001) is a threshold. rk denotes the maximum rate of change between the

ideal and nadir points during the last l generations. The coordinates of the nadir point correspond

to the maximum value of each objective on the true Pareto front. rzk and rnk represent the rates of

change of the ideal and nadir points during the last l generations, defined as follows:

rzk = max
i=1,··· ,m

∣∣∣zki − zk−li

∣∣∣
max

{∣∣∣zk−li

∣∣∣ ,∆}
 (6.2)

rnk = max
i=1,··· ,m

∣∣∣nki − nk−li

∣∣∣
max

{∣∣∣nk−li

∣∣∣ ,∆}
 (6.3)

where zk =
(
zk1 , · · · , zkm

)
and nk =

(
nk1, · · · , nkm

)
are the ideal and nadir points in the k-th gener-

ation, respectively. zk−l =
(
zk−l1 , · · · , zk−lm

)
and nk−l =

(
nk−l1 , · · · , nk−lm

)
are the ideal and nadir

points in the k − l-th generation. ∆ (suggested ∆ = 1e− 6) is a very small positive number, which

is used to make sure that the denominators in Equations 6.2 and 6.3 are not equal to zero. rzk and

rnk are two points in the interval [0,1].

rk is initialized to 1 at the beginning of the search, and is updated at each iteration according to

Equation 6.1. When rk is less than or equal to ε, the push stage will be transformed into pull stage.

To summarize, PPS has two potential advantages over other constraint handling techniques [35].

During the first push stage, a multi-objective evolutionary algorithm is adopted to approximate the

Pareto front without considering any constraints, which can help the working population to get

across the large infeasible regions and avoid the distance between the unconstrained PF and true PF.

After obtaining the unconstrained PF in the push stage, some valuable information can be collected

88

6.2. THE PROPOSED PPS-NSGA-II/SPEA2/SPEA2-SDE

to guide the parameter setting for the constraint handling approaches in the pull stage, which can

enhance the adaptability of the algorithm.

6.2 The Proposed PPS-NSGA-II/SPEA2/SPEA2-SDE

This section presents the details of three proposed algorithms PPS-NSGA-II, PPS-SPEA2 and

PPS-SPEA2-SDE.

6.2.1 General Framework

The flowchart of PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE is shown in Fig. 6.1. The

general frameworks of the three proposed algorithms are presented in Algorithm 7 and Algorithm 8,

respectively. Please note that PPS-SPEA2 and PPS-SPEA2-SDE share the same framework but

have different fitness calculating methods. In the framework of PPS-NSGA-II, the non-dominated

front numbers and crowding distances of solutions are calculated by the fast non-dominated sorting

approach [24] with and without considering constraints, respectively. The whole search process

consists of two stages: push and pull search. When PushStage = true, the push stage is utilized,

the parents are selected via binary tournament selection as the mating pool without considering

constraints and then offspring solutionsO are generated from the mating pool. When PushStage =

false, the pull stage is applied, a constraint handling mechanism is embedded into NSGA-II to pull

the working population to the constrained PF. The parameter rk for switching from push to pull

stage is updated iteratively.

In the framework of PPS-SPEA2 and PPS-SPEA2-SDE, different fitness calculation methods are

adopted instead of calculating the non-dominated front numbers and crowding distances in PPS-

NSGA-II. The fitness calculating methods can reflect both the performance of convergence and

diversity of each solution in the population. Without loss of generality, the smaller fitness value

means better performance. The whole search processes of PPS-SPEA2 and PPS-SPEA2-SDE also

include push and pull search stages. In the push stage, we use SPEA2 and SPEA2-SDE without

considering any constraints to search the unconstrained PF. In the pull stage, the constraint handing

approaches are applied to search the constrained PF. More details about the main operations in

PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE are presented in Sections 6.2.2, 6.2.3, and 6.2.4,

respectively.

89

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

Start
Random initialization

population

Fitness evaluation

with/without constraints

Push

stage

Calculate PPS

switch criterion

Offspring generation

without constraints

Environmental selection

without constraints

Offspring generation

with constraints

Environmental selection

with constraints

Termination

criterion

Output

Yes

No

Yes

No

Figure 6.1: The flowchart of PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE

6.2.2 PPS-NSGA-II

In the original NSGA-II, Deb et al. [24] embedded feasibility into Pareto dominance and devel-

oped a constraint dominance principle (CDP) to deal with constraints. If a solution xi is said to

constrained-dominate a solution xj , one of the following three conditions holds: 1) xi is a feasible

solution and xj is an infeasible solution. 2) Solutions xi and xj are both feasible solutions, and

solution xi Pareto dominates solution xj in terms of objectives. 3) Solutions xi and xj are both

infeasible solutions, and solution xi has a lower overall constraint violation than that of solution xj .

PPS-NSGA-II is an instantiation of the PPS framework of a specific type of NSGA-II algorithm

[24]. In the push search stage, we use an unconstrained NSGA-II to search for both feasible and

infeasible solutions to minimize the objectives of solutions without considering any constraints,

which aims to approach the unconstrained PF. The non-dominated front numbers and crowding

distances of solutions are calculated by the fast non-dominated sorting approach. The crowding

distance is defined as the average distance between its two closest points on each objective. Then

Ñ parents are selected as mating pool via binary tournament selection based on the non-dominated

front numbers and crowding distances. The two parents are randomly selected from the mating pool

90

6.2. THE PROPOSED PPS-NSGA-II/SPEA2/SPEA2-SDE

Algorithm 7: Framework of PPS-NSGA-II

Input: The population size Ñ
Output: The final population P

1 P ← Initialization
(
Ñ
)

;

2 [F1, F2, · · ·]← NDSorting (P.objs);
3 CrowdDis← CrowdingDistance (F1, F2, · · ·);
4 [F1

′, F2
′, · · ·]← NDSorting (P.objs, P.cons);

5 CrowdDis′ ← CrowdingDistance (F1
′, F2

′, · · ·);
6 Set rk = 1.0, PushStage = true;
7 while termination criterion not fulfilled do
8 Calculate rk according to Equation 6.1;
9 if rk ≤ ε and PushStage = true then

10 PushStage = false;
11 end
12 if PushStage = true then
13 P ′ ← Select Ñ parents via binary tournament selection according to [F1, F2, · · ·] and

CrowdDis in P ;
14 O ← OffspringGeneration (P, P ′);
15 (P, [F1, F2, · · ·] , CrowdDis)← EnvironemntalSelection (P ∪O) ;
16 else
17 P ′ ← Select Ñ parents via binary tournament selection according to [F1

′, F2
′, · · ·] and

CrowdDis′ in P ;
18 O ← OffspringGeneration (P, P ′);
19 (P, [F1

′, F2
′, · · ·] , CrowdDis′)← EnvironemntalSelection′ (P ∪O) ;

20 end
21 end

to generate two offspring solutions, and a genetic operator [24] or differential evolution operator

[58] can be applied as offspring generating operator. Thus the environmental selection operation

is adopted to update the non-dominated front numbers and crowding distances as well as the new

population.

The ideal and nadir points are updated at each iteration. And the maximum rate of change be-

tween the ideal and nadir points (rk) during the last l generations is calculated. When rk satisfies

the condition of switching from the push to pull stages, the pull search stage is starting. In the pull

search stage, the constraint dominance principle (CDP) is applied to calculate the non-dominated

front numbers and crowding distances. Then the new mating pool and offspring solutions are gen-

erated based on the new non-dominated front numbers and crowding distances with respect to the

91

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

Algorithm 8: Frameworks of PPS-SPEA2 and PPS-SPEA2-SDE

Input: The population size Ñ
Output: The final population P

1 P ← Initialization
(
Ñ
)

;

2 Fitness← CalF itness (P.objs);
3 Fitness′ ← CalF itness (P.objs, P.cons);
4 Set rk = 1.0, PushStage = true;
5 while termination criterion not fulfilled do
6 Calculate rk according to Equation 6.1;
7 if rk ≤ ε and PushStage = true then
8 PushStage = false;
9 end

10 if PushStage = true then
11 P ′ ← Select Ñ parents via binary tournament selection according to Fitness in P ;
12 O ← OffspringGeneration (P, P ′);
13 (P, F itness)← EnvironemntalSelection (P ∪O) ;
14 else
15 P ′ ← Select Ñ parents via binary tournament selection according to Fitness′ in P ;
16 O ← OffspringGeneration (P, P ′);
17 (P, F itness′)← EnvironemntalSelection′ (P ∪O) ;
18 end
19 end

constraints. Finally, a set of feasible solutions will be updated and obtained in the environmental

selection operation.

6.2.3 PPS-SPEA2

PPS-SPEA2 is an instantiation of the PPS framework of a specific type of SPEA2 algorithm [124].

In PPS-NSGA-II, the non-dominated front number represents the performance of convergence and

the crowding distance reflects the performance of diversity. However, the fitness metric value is used

to measure both convergence and diversity in PPS-SPEA2. The fitness evaluation strategy shares the

same idea to the one in the original SPEA2. First of all, let the solution set Rx store all the solutions

dominated by x and the solution set Sx store all the solutions dominating x, the raw fitness R (x) of

a solution x is calculated as:

R (x) =
∑
y∈Sx

|Ry| (6.4)

92

6.2. THE PROPOSED PPS-NSGA-II/SPEA2/SPEA2-SDE

where |Ry| denotes the number of solutions in the set. R (x) = 0 means solution x is a non-

dominated solution. What’s more, additional density information is needed to distinguish the quality

of different non-dominated solutions. The k-th nearest neighbor method [81] is applied to measure

the density information of solutions. Then
⌊√

2Ñ
⌋

-th nearest neighbor x′ of solution x is detected,

the density D (x) corresponding to x is calculated as:

D (x) =
1

dist (x, x′) + 2
(6.5)

where dist (x, x′) denotes the Euclidean distance between solutions x and x′.

Hence, the fitness of the solution x can be expressed as follows:

fit (x) = R (x) +D (x) (6.6)

where x is the non-dominated solution when fit (x) < 1. Obviously, smaller fitness means better

quality of the solution.

PPS-SPEA2 also has two search stages: push and pull stages. In the push stage, no constraints

will be considered into the fitness evaluation method, PPS-SPEA2 can search for unconstrained

solutions. In the pull stage, the constraint dominance principle (CDP) is embedded into the fitness

evaluation method, PPS-SPEA2 can pull the unconstrained solutions to the feasible regions. It

is necessary to point out that the solution which has the minimum distance to another solution is

chosen to be deleted in the environmental selection operation. If there are several solutions having

the same minimum distance, we consider the second smallest distances and so forth.

6.2.4 PPS-SPEA2-SDE

PPS-SPEA2-SDE is an instantiation of the PPS framework of a specific type of SPEA2-SDE

algorithm [62]. Compared PPS-SPEA2 with PPS-SPEA2-SDE, the fitness calculating method is

different. In PPS-SPEA2-SDE, the shift-based density estimation (SDE) strategy is used to measure

the density of the solutions. The shifted-based density estimation based distance between solution

x and solution y (y ∈ P\ {x}) can be calculated as:

SDE (x, y) =

√√√√ m∑
i=1

(max {0, fi (y)− fi (x)})
2

(6.7)

93

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

Similar to PPS-SPEA2, the fitness of the solution x can be expressed as follows:

fit (x) = R (x) +
1

SDE (x, x′) + 2
(6.8)

where R (x) is the same to that of PPS-SPEA2. SDE (x, x′) is the SDE crowding degree of the

solution x with regard to its
⌊√

2Ñ
⌋

-th nearest neighbor x′. Afterwards, PPS-SPEA2-SDE shares

the same search process with PPS-SPEA2. It is noted that the solution which has the minimum SDE

based distance to another solution is chosen to be deleted in the environmental selection operation.

If there are several solutions having the same minimum SDE based distance, we consider the second

smallest distances and so forth.

6.2.5 Computational Complexity

For the proposed algorithms PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE, the major costs

are the iteration process in Algorithm 7 and Algorithm 8. In PPS-NSGA-II, the worst-case time

complexities of the maximum rate of change between the ideal and nadir points are O(M̃Ñ), where

M̃ is the number of objectives and Ñ is the population size. The mating selection operator needs

O(Ñ) operations for the binary tournament selection. The offspring reproduction needs O(ÑD)

operations to generate offspring solutions, where D is the number of decision variables. The non-

dominated sorting operator and environmental selection operator need O(M̃Ñ2) operations. Thus,

the overall computational complexity of PPS-NSGA-II within one generation is O(M̃Ñ2). The

computational complexity of original NSGA-II is also O(M̃Ñ2) [24]. We can see that the proposed

PPS-NSGA-II has the same computational complexity as the original NSGA-II. However, the pro-

posed PPS-NSGA-II has two search stages, the first stage without considering any constraints and

the second stage considering the constraints. The original constrained NSGA-II only has the second

search stage. Hence, the proposed PPS-NSGA-II needs more calculation for the first stage search.

In PPS-SPEA2, the time complexity of the fitness calculating procedure is O(Ñ2 log Ñ). The

binary tournament selection needs O(Ñ) operations and the offspring generation needs O(ÑD)

operations. The worst run-time complexity of the environmental selection operator is O(Ñ3), on

average the complexity will be lower O(Ñ2 log Ñ) [124]. Thus, the worst overall computational

complexity of PPS-SPEA2 within one generation is O(Ñ3). In PPS-SPEA2-SDE, the time com-

plexity of the fitness calculating procedure is O(M̃Ñ2). And the worst run-time complexity of the

environmental selection operator is O(Ñ3). Since Ñ is often larger than M̃ . Hence, the worst

overall computational complexity of PPS-SPEA2-SDE within one generation is O(Ñ3).

94

6.3. SIMULATIONS ON BENCHMARK PROBLEMS

6.3 Simulations on Benchmark Problems

To test the performance of the proposed algorithms PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-

SDE, we select seven algorithms for comparison, namely TiGE-2 [117], constrained NSGA-II [24],

C-TAEA [59], PPS-MOEA/D [33], ToP [66], CCMO [89], and CMOEA-MS [91] to solve the LIR-

CMOP test suite [32], DAS-CMOP test suite [34], and DOC test suite [66].

6.3.1 Parameter Settings

Benchmark Suites

A series of CMOPs are selected from three challenging benchmark suites LIR-CMOP, DAS-

CMOP, and DOC test suites, which are used as test problems. LIR-CMOP test problems have

large infeasible regions with different shapes. DAS-CMOP test problems’ difficulties can be ad-

justable and the number of objectives can be scalable. DOC test problems consider both decision

and objective constraints at the same time. These selected CMOPs have different characteristics

which can pose different difficulties for the CMOEAs. The number of objectives in LIR-CMOP13,

LIR-CMOP14, DASCMOP7, DAS-CMOP8, DAS-CMOP9, DOC8 and DOC9 is 3, the number of

objectives in the other CMOPs is 2. And the number of decision variables in all CMOPs is set to

10 [91].

Compared Algorithms

Seven popular CMOEAs (TiGE-2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, and CMOEA-

MS) are selected as compared algorithms. TiGE-2 utilizes three different indicators to measure con-

vergence, diversity, and feasibility. NSGA-II adopts constraint dominance principle (CDP) to deal

with constraints. C-TAEA maintains the convergence-oriented archive and the diversity-oriented

archive simultaneously for constrained multi-objective optimization. PPS-MOEA/D embedded the

MOEA/D algorithm into the PPS framework, and an improved epsilon constraint handling is applied

into MOEA/D. A simple and efficient two-phase framework is implemented in ToP algorithm. In

the first phase, a CMOP is transformed into a single-objective optimization problem to find the po-

tentially feasible regions. In the second phase, one CMOEA is applicable to get the final solutions.

CCMO used a coevolutionary framework and was assisted by a simple helper problem for solving

CMOPs. CMOEA-MS adjusted the fitness evaluation strategies to balance objective optimization

and constraint satisfaction in constrained evolutionary multi-objective optimization.

For the above algorithms, TiGE-2, NSGA-II, C-TAEA, CCMO and CMOEA-MS used simulated

95

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

binary crossover [20] and polynomial mutation [21] to generate offspring solutions, while PPS-

MOEA/D, ToP, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE adopt differential evolution [58]

and polynomial mutation to generate offspring solutions. The simulation crossover probability and

polynomial mutation probability are set to 1.0 and 1/D, respectively. The distribution index of

crossover and mutation is set to 20. The differential evolution control parameters CR and F are set

to 1 and 0.5, respectively. All the other parameters in these algorithms are set as suggested in their

original parameters. For a fair comparison of different CMOEAs, the population size is set to 100

for all the test problems with two objectives and 300 for the problems with three objectives. The

total number of function evaluations (FEs) is set to 200,000 for all two-objective problems, and to

400,000 for three-objective CMOPs.

Performance Metrics

In order to evaluate the performance of compared CMOEAs, the inverted generational distance

(IGD) [9] and hypervolume (HV) [96] metrics are adopted. IGD and HV can reflect the information

of both convergence and diversity. The smaller IGD and larger HV mean better.

Each algorithm is executed 30 times independently on each test problem, and the average and

standard deviation of performance metric values are recorded. The Wilcoxon rank sum test at a 5%

significance level is used to compare the experimental results, where the symbol ’+’, ’−’ and ’≈’

denotes that the result of another algorithm is significantly better, significantly worse and similar to

that obtained by the proposed algorithm.

6.3.2 Simulation Results

Comparisons on LIR-CMOP Suite

The LIR-CMOP suite includes 14 challenging test problems, which have very large infeasible

regions. These test problems have different unconstrained and constrained Pareto fronts, where the

large infeasible regions may obstruct the solutions to approximate the true Pareto fronts. It can be

observed from Table 6.1 that PPS-MOEA/D has achieved the best performance on five test instances,

PPS-SPEA2-SDE exhibits the best performance on four test problems, PPS-SPEA2 gets one best

results, while both PPS-CCMO and CMOEA-MS gain the best results on two CMOPs, respectively.

According to the Wilcoxon rank sum test analysis, PPS-MOEA/D and PPS-NSGA-II have achieved

better performance than PPS-SPEA2-SDE on LIR-CMOP suite. PPS-SPEA2 and PPS-SPEA2 have

similar performance, which also gain better performance than CCMO and CMOEA-MS ad outper-

forms the other four algorithms (TiGE-2, NSGA-II, C-TAEA and ToP).

96

6.3. SIMULATIONS ON BENCHMARK PROBLEMS

As shown in Figs. 6.2 and 6.3, TiGE-2 cannot find the true Pareto front of LIR-CMOP7. NSGA-

II, C-TAEA and CMOEA-MS find some solutions that fail to jump over the large infeasible re-

gions. PPS-MOEA/D, To/P and PPS-SPEA2 get some solutions that cannot converge to the true

PF. CCMO, PPS-NSGA-II and PPS-SPEA2-SDE can gain good performance with regard to conver-

gence and diversity. The PPS framework helps NSGA-II and SPEA2-SDE cross the large infeasible

solutions and obtain populations distributed uniformly on the PF.

Table 6.1: The IGD values obtained by TiGE-2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO,
CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on the LIR-CMOP benchmark
suite. The best result in each row is highlighted.

Problem TiGE-2 NSGA-II C-TAEA PPS-MOEA/D ToP

LIR-CMOP1 9.3392e-2 (3.23e-2) − 2.1920e-1 (8.39e-2) − 2.9600e-1 (1.54e-1) − 1.0552e-2 (5.51e-3) + 1.3882e-1 (1.06e-1) −
LIR-CMOP2 1.0701e-1 (3.21e-2) − 1.9173e-1 (6.41e-2) − 7.7720e-2 (2.32e-2) − 6.3287e-3 (7.28e-4) + 1.3271e-1 (1.15e-1) −
LIR-CMOP3 9.2810e-2 (3.19e-2) − 2.4396e-1 (5.70e-2) − 3.2290e-1 (1.81e-1) − 1.1475e-2 (1.42e-2) ≈ 3.5708e-1 (7.76e-2) −
LIR-CMOP4 1.0274e-1 (2.14e-2) − 2.5887e-1 (6.96e-2) − 1.7434e-1 (8.94e-2) − 4.6253e-3 (2.68e-3) ≈ 3.0743e-1 (5.65e-2) −
LIR-CMOP5 3.2555e-1 (7.96e-2) − 5.8024e-1 (5.14e-1) − 9.3841e-2 (2.21e-2) − 6.5300e-3 (6.11e-4) − 1.9760e-1 (4.34e-1) −
LIR-CMOP6 4.2489e-1 (1.72e-1) − 5.3830e-1 (5.17e-1) − 1.0403e-1 (8.33e-2) − 7.9585e-3 (1.21e-3) − 3.7106e-2 (9.32e-2) ≈
LIR-CMOP7 1.5879e-1 (8.60e-2) − 2.1200e-2 (2.33e-2) − 2.0310e-2 (5.78e-3) − 1.0805e-2 (1.35e-3) − 8.6365e-3 (3.09e-4) −
LIR-CMOP8 2.7260e-1 (1.27e-1) − 2.8755e-2 (5.32e-2) − 1.8209e-2 (7.29e-3) − 1.0406e-2 (1.11e-3) − 8.7276e-3 (4.08e-4) −
LIR-CMOP9 7.7393e-1 (2.11e-1) − 5.2245e-1 (1.30e-1) − 7.2773e-2 (3.05e-2) ≈ 3.2189e-3 (1.27e-4) + 3.2045e-1 (1.27e-1) ≈

LIR-CMOP10 4.7189e-1 (1.88e-2) − 3.2749e-1 (9.87e-2) − 5.3351e-2 (4.92e-2) − 5.2406e-3 (2.96e-4) − 5.5419e-3 (2.14e-4) −
LIR-CMOP11 6.7401e-1 (3.84e-1) − 2.0368e-1 (1.81e-1) − 1.2915e-1 (4.30e-2) − 2.4144e-3 (1.00e-4) + 1.3398e-1 (7.04e-2) −
LIR-CMOP12 4.0064e-1 (2.12e-1) − 1.5019e-1 (9.19e-2) − 1.8690e-2 (7.04e-3) − 3.1229e-3 (1.09e-4) ≈ 3.4787e-2 (5.13e-2) −
LIR-CMOP13 3.7022e-1 (6.73e-2) − 6.7847e-2 (1.55e-3) + 5.4180e-2 (6.66e-4) + 6.8434e-2 (1.82e-3) + 7.7436e-2 (1.94e-3) +

LIR-CMOP14 3.3733e-1 (7.20e-2) − 7.0452e-2 (2.09e-3) + 5.5202e-2 (5.93e-4) + 6.7415e-2 (1.30e-3) + 7.0416e-2 (1.06e-3) +

+/− / ≈ 0/14/0 2/12/0 2/11/1 6/5/3 2/10/2

Problem CCMO CMOEA-MS PPS-NSGA-II PPS-SPEA2 PPS-SPEA2-SDE

LIR-CMOP1 1.9523e-1 (1.14e-1) − 3.6404e-1 (1.19e-1) − 5.8615e-2 (2.71e-2) + 6.6652e-2 (2.60e-2) ≈ 7.1902e-2 (2.67e-2)
LIR-CMOP2 7.4052e-2 (3.90e-2) − 2.4700e-1 (9.92e-2) − 1.4110e-2 (2.37e-2) + 1.0965e-2 (1.62e-2) + 1.8512e-2 (3.61e-2)
LIR-CMOP3 1.4087e-1 (5.75e-2) − 3.7948e-1 (1.68e-1) − 6.1746e-2 (5.90e-2) ≈ 7.0369e-2 (6.78e-2) ≈ 6.3190e-2 (5.96e-2)
LIR-CMOP4 1.4888e-1 (5.81e-2) − 3.1472e-1 (6.22e-2) − 3.7573e-2 (3.84e-2) ≈ 5.8888e-2 (5.68e-2) ≈ 4.5838e-2 (6.41e-2)
LIR-CMOP5 6.6559e-3 (8.50e-4) − 1.4538e-2 (1.46e-2) − 6.4025e-3 (3.30e-4) − 4.8944e-3 (1.09e-4) − 4.3859e-3 (1.25e-4)
LIR-CMOP6 5.9696e-3 (2.55e-4) + 1.6741e-2 (3.60e-2) ≈ 6.4054e-3 (2.32e-4) ≈ 5.0147e-3 (1.66e-4) + 6.6161e-3 (7.34e-4)
LIR-CMOP7 7.4989e-3 (5.28e-4) − 9.9978e-3 (1.13e-2) − 8.6728e-3 (3.27e-4) − 7.1968e-3 (1.90e-4) − 7.0463e-3 (1.72e-4)
LIR-CMOP8 7.1835e-3 (2.26e-4) ≈ 1.5135e-2 (2.39e-2) ≈ 8.7137e-3 (3.91e-4) − 7.1960e-3 (2.43e-4) ≈ 7.0915e-3 (1.94e-4)
LIR-CMOP9 5.2432e-3 (2.01e-3) + 2.7109e-1 (1.20e-1) − 1.4441e-1 (2.24e-1) + 2.0447e-1 (2.62e-1) − 1.9521e-1 (2.79e-1)

LIR-CMOP10 4.6869e-3 (1.75e-4) − 6.5069e-2 (4.36e-2) − 5.5581e-3 (2.42e-4) − 4.3195e-3 (1.69e-4) − 3.7496e-3 (1.06e-4)
LIR-CMOP11 2.3872e-3 (4.42e-5) + 7.5616e-2 (6.43e-2) − 7.1308e-3 (2.58e-2) − 1.4166e-2 (3.74e-2) − 4.6128e-3 (1.28e-2)
LIR-CMOP12 3.0359e-3 (1.02e-4) ≈ 3.7814e-2 (5.77e-2) ≈ 3.4399e-3 (1.69e-3) ≈ 2.3794e-2 (4.68e-2) ≈ 1.6181e-2 (3.75e-2)
LIR-CMOP13 5.2697e-2 (3.89e-4) + 5.2124e-2 (2.84e-4) + 7.8700e-2 (1.57e-3) + 6.1769e-2 (8.63e-4) + 8.0243e-2 (2.34e-3)
LIR-CMOP14 5.4921e-2 (4.31e-4) + 5.4283e-2 (3.19e-4) + 7.0282e-2 (1.42e-3) + 5.8687e-2 (4.90e-4) + 8.2779e-2 (2.18e-3)

+/− / ≈ 5/7/2 2/9/3 5/5/4 4/5/5

97

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
TiGE-2

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
NSGA-II

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
C-TAEA

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
PPS-MOEA/D

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
ToP

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
CCMO

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
CMOEA-MS

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
PPS-NSGA-II

1 2 3 4 5 6
 f

1

1

2

3

4

5

6

 f
2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
PPS-SPEA2

Figure 6.2: The non-dominated solution set with the medium IGD value obtained by TiGE-2,
NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, CMOEA-MS, PPS-NSGA-II, and PPS-SPEA2
on LIR-CMOP7

Comparisons on DAS-CMOP Suite

The DAS-CMOP suite consists of 9 difficulty-adjustable and scalable CMOPs. These test prob-

lems also have large infeasible regions, and the feasible regions are far away from the constrained

Pareto fronts. As listed in Table 6.2, CCMO has achieved the best results on three CMOPs and

followed by CMOEA-MS, PPS-MOEA/D, PPS-NSGA-II and PPS-SPEA2-SDE. It is necessary to

point out that CCMO and PPS-NSGA-II have an obvious advantage over other algorithms on the

DAS-CMOP test suite based on the Wilcoxon rank sum test. C-TAEA, PPS-MOEA/D, CMOEA-

MS, PPS-SPEA2 and PPS-SPEA2-SDE have similar overall performance and outperforms the other

98

6.3. SIMULATIONS ON BENCHMARK PROBLEMS

1 2 3 4 5 6
 f

1

1

2

3

4

5

6
 f

2

LIR-CMOP7

PF without constraints
True PF
Infeasible regions
PPS-SPEA2-SDE

Figure 6.3: The non-dominated solution set with the medium IGD value obtained by PPS-SPEA2-
SDE on LIR-CMOP7, DAS-CMOP9, and DOC6

three algorithms (TiGe-2, NSGA-II, and ToP).

Fig. 6.4 shows the final non-dominated solution set with the medium IGD value obtained by TiGE-

2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, CMOEA-MS, PPS-NSGA-II, and PPS-SPEA2

on DAS-CMOP9. And the non-dominated and feasible solutions obtained by PPS-SPEA2-SDE on

DAS-CMOP9 is presented in Fig. 6.3. Obviously, TiGE-2 can only find some sparse solutions.

NSGA-II, CCMO, CMOEA-MS, and PPS-SPEA2-SDE can find a set of solutions distributed in the

center part of the Pareto front. C-TAEA and PPS-MOEA/D can find some solutions with better

diversity performance since there exists a special diversity archive in CCMO for maintaining the

diversity of solutions. ToP, PPS-NSGA-II and PPS-SPEA2 can get a large number of uniformly

distributed solutions.

Comparisons on DOC Suite

The DOC suite contains 9 CMOPs with joint decision constraints and objective constraints.

These test problems have various decision constraints (inequality, equality, linear and nonlinear

constraints), which makes the feasible regions in the decision space have diverse characteristics.

From Table 6.3, it can be found that PPS-SPEA2 gains the best results on four CMOPs, while Top

and PPS-SPEA2-SDE have achieved the best performance on two CMOPs, respectively. As can be

seen, PPS-NSGA-II and PPS-SPEA2 exhibit better overall performance than the other eight algo-

rithms on the DOC suite. The results demonstrate that PPS-NSGA-II and PPS-SPEA2 can deal with

more complicated CMOPs since the DOC suite involves complex constraints in both decision and

objective spaces.

Fig. 6.5 plots the final non-dominated solution set with the medium IGD value obtained by TiGE-

2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, CMOEA-MS, PPS-NSGA-II, and PPS-SPEA2

99

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

Table 6.2: The IGD values obtained by TiGE-2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO,
CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on the DAS-CMOP benchmark
suite. The best result in each row is highlighted.

Problem TiGE-2 NSGA-II C-TAEA PPS-MOEA/D ToP

DAS-CMOP1 1.0360e-1 (9.57e-2) − 1.3806e-1 (1.98e-1) − 1.0428e-2 (2.32e-3) + 2.3338e-3 (5.83e-4) + 1.2084e-2 (4.92e-2) −
DAS-CMOP2 2.5659e-2 (5.26e-3) − 3.9072e-2 (2.18e-2) − 7.6687e-3 (5.66e-4) − 3.9502e-3 (1.11e-4) − 3.8178e-3 (1.22e-4) −
DAS-CMOP3 1.2183e-1 (4.55e-2) − 1.7979e-1 (6.74e-2) − 3.2096e-2 (1.11e-2) + 1.8648e-2 (2.09e-3) + 1.2209e-1 (1.03e-1) −
DAS-CMOP4 1.3661e-1 (2.22e-1) − 4.7427e-2 (1.29e-1) − 1.1204e-2 (1.71e-3) − 1.7091e-3 (7.87e-5) + 5.3641e-1 (1.74e-1) −
DAS-CMOP5 2.4390e-2 (4.84e-3) − 3.4839e-3 (1.14e-4) − 7.8244e-3 (5.68e-4) − 4.0922e-3 (1.49e-4) − 5.4637e-1 (2.45e-1) −
DAS-CMOP6 1.0086e-1 (1.12e-1) − 4.1587e-2 (7.76e-2) − 2.6768e-2 (4.49e-3) − 2.1863e-2 (6.10e-3) ≈ 7.0519e-1 (1.16e-1) −
DAS-CMOP7 5.4695e-2 (3.56e-3) − 2.3389e-2 (1.01e-3) + 2.9083e-2 (8.55e-4) + 3.9192e-2 (4.63e-3) ≈ 5.2238e-1 (2.22e-1) −
DAS-CMOP8 6.8960e-2 (3.04e-3) − 2.8454e-2 (1.24e-3) + 4.4571e-2 (2.18e-3) + 6.0822e-2 (1.25e-2) ≈ 7.5145e-1 (1.90e-1) −
DAS-CMOP9 6.1361e-2 (2.91e-3) − 3.1214e-2 (1.24e-3) − 4.5581e-2 (2.70e-3) − 3.2068e-2 (2.00e-3) − 2.8497e-2 (9.37e-4) +

+/− / ≈ 0/9/0 2/7/0 4/5/0 3/3/3 1/8/0

Problem CCMO CMOEA-MS PPS-NSGA-II PPS-SPEA2 PPS-SPEA2-SDE

DAS-CMOP1 1.7668e-2 (3.81e-2) ≈ 1.3268e-1 (1.74e-1) − 4.5949e-3 (5.61e-3) + 6.5184e-3 (7.66e-3) + 1.0679e-2 (9.89e-3)
DAS-CMOP2 2.6768e-2 (2.57e-2) − 2.0677e-2 (1.85e-2) − 3.9454e-3 (1.28e-4) − 3.1447e-3 (1.04e-4) ≈ 3.1145e-3 (1.23e-4)
DAS-CMOP3 5.6668e-2 (4.25e-2) − 1.3579e-1 (5.59e-2) − 4.0409e-2 (4.69e-2) ≈ 3.9968e-2 (4.68e-2) ≈ 4.4131e-2 (5.04e-2)
DAS-CMOP4 1.1382e-3 (1.74e-5) + 1.9129e-2 (6.85e-2) − 1.6106e-3 (1.18e-4) + 2.1404e-2 (6.16e-2) − 1.0109e-2 (3.64e-2)
DAS-CMOP5 2.8517e-3 (1.41e-4) + 2.6534e-3 (3.04e-5) + 3.8773e-3 (1.81e-4) − 3.0523e-3 (1.06e-4) + 3.2926e-3 (2.56e-4)
DAS-CMOP6 1.9788e-2 (4.30e-3) + 2.6165e-2 (2.32e-2) ≈ 1.7381e-2 (3.30e-3) + 2.5254e-2 (2.24e-2) ≈ 1.9884e-2 (2.62e-3)
DAS-CMOP7 1.7724e-2 (2.92e-4) + 1.7300e-2 (2.18e-4) + 2.9693e-2 (4.10e-3) + 3.9982e-2 (1.37e-2) ≈ 4.3865e-2 (1.50e-2)
DAS-CMOP8 2.2393e-2 (3.39e-4) + 2.3227e-2 (8.25e-4) + 3.8502e-2 (1.14e-2) + 6.0143e-2 (1.83e-2) ≈ 6.1326e-2 (1.48e-2)
DAS-CMOP9 2.2234e-2 (3.10e-4) + 2.2888e-2 (2.65e-4) + 2.8611e-2 (8.23e-4) + 2.3668e-2 (3.98e-4) + 3.0362e-2 (1.59e-3)

+/− / ≈ 6/2/1 4/4/1 6/2/1 3/1/5

100

6.3. SIMULATIONS ON BENCHMARK PROBLEMS

Figure 6.4: The non-dominated solution set with the medium IGD value obtained by TiGE-2,
NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, CMOEA-MS, PPS-NSGA-II, and PPS-SPEA2
on DAS-CMOP9

on DOC6. And the non-dominated and feasible solutions obtained by PPS-SPEA2-SDE on DOC6

is presented in Fig. 6.3. For a given DOC6 with a disconnected landscape, it is obvious that the pro-

posed three algorithms PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE have better convergence

and diversity performance than other compared seven algorithms. TiGE-2, C-TAEA, PPS-MOEA/D

and ToP can only find a few feasible solutions since they encounter difficulties in both decision and

objective constraints. NSGA-II, CCMO and CMOEA-MS can find a set of solutions far away from

the constrained Pareto front. It is further demonstrated that the three proposed algorithms have a

good and stable performance for solving various CMOPs.

101

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

Table 6.3: The IGD values obtained by TiGE-2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO,
CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on the DOC benchmark suite. The
best result in each row is highlighted. ‘N/A’ indicates that no feasible solution is found.

Problem TiGE-2 NSGA-II C-TAEA PPS-MOEA/D ToP

DOC1 2.1126e+0 (1.73e+0) − 3.7007e+0 (2.44e+0) − 5.2585e+2 (2.80e+2) − 6.9749e-2 (4.79e-2) − 6.0467e-3 (4.13e-4) +

DOC2 N/A N/A N/A 3.3691e-1 (1.71e-1) − N/A
DOC3 5.4385e+2 (1.87e+2) ≈ 7.0845e+2 (2.43e+2) ≈ N/A 2.4354e+2 (3.09e+2) ≈ 1.8863e+2 (1.56e+2) +

DOC4 2.2657e+0 (1.62e+0) − 1.0049e+0 (1.29e+0) − 2.4092e+2 (2.67e+2) − 2.9778e-1 (7.09e-2) − 1.0287e-1 (8.61e-2) ≈
DOC5 8.8488e+1 (3.68e+1) ≈ N/A N/A 3.2705e+1 (1.01e+2) ≈ 2.5523e+1 (5.04e+1) ≈
DOC6 9.8179e-1 (5.95e-1) − 2.3144e+0 (2.25e+0) − 2.5379e+1 (1.89e+1) − 5.0652e-1 (9.01e-2) − 4.8518e+0 (1.80e+0) −
DOC7 3.5848e+0 (2.07e+0) − 5.4283e+0 (2.24e+0) − N/A 5.0754e-1 (2.09e-1) − 9.3749e-1 (6.23e-1) −
DOC8 1.2315e+2 (7.42e+1) − 8.0406e+1 (6.61e+1) − 4.1052e+2 (1.79e+2) − 7.3879e+1 (1.52e+1) − 5.1458e+1 (2.09e+1) −
DOC9 3.1946e-2 (1.28e-2) − 8.3123e-2 (6.01e-2) − 9.9191e-1 (1.65e-1) − 2.4100e-1 (1.93e-2) − 1.8848e-1 (3.41e-2) −

+/− / ≈ 0/6/2 0/6/1 0/5/0 0/7/2 2/4/2

Problem CCMO CMOEA-MS PPS-NSGA-II PPS-SPEA2 PPS-SPEA2-SDE

DOC1 4.8668e+0 (3.97e+0) − 3.7414e+0 (3.16e+0) − 6.1709e-3 (2.41e-4) + 5.4443e-3 (3.23e-4) + 9.2780e-3 (1.05e-3)
DOC2 N/A N/A 3.6254e-2 (1.10e-1) + 2.9815e-2 (9.92e-2) + 4.5584e-2 (1.14e-1)
DOC3 6.1836e+2 (1.58e+2) ≈ 6.6583e+2 (2.18e+2) ≈ 1.0703e+3 (4.32e+2) ≈ 8.5551e+2 (5.73e+2) ≈ 7.9078e+2 (6.11e+2)
DOC4 1.1935e+0 (6.98e-1) − 9.4098e-1 (7.97e-1) − 1.9586e-2 (2.39e-3) + 2.0794e-2 (2.74e-3) ≈ 2.4830e-2 (7.57e-3)
DOC5 N/A 9.0087e+1 (3.18e+1) ≈ 3.0733e+1 (5.71e+1) ≈ 2.6195e+1 (5.41e+1) ≈ 5.6742e+1 (8.42e+1)
DOC6 3.3319e+0 (4.05e+0) − 1.7154e+0 (1.54e+0) − 3.6421e-3 (2.31e-4) + 3.1091e-3 (2.74e-4) + 5.1402e-2 (2.66e-1)
DOC7 5.6675e+0 (2.20e+0) − 5.8488e+0 (3.01e+0) − 7.1706e-2 (3.01e-1) − 2.4397e-3 (1.34e-4) + 7.8216e-3 (2.23e-2)
DOC8 6.7197e+1 (5.11e+1) − 1.2301e+2 (6.89e+1) − 8.1841e-2 (1.20e-2) − 4.1026e-2 (2.13e-3) − 2.4695e-2 (2.16e-3)
DOC9 9.7203e-2 (9.76e-2) − 4.6108e-2 (6.75e-2) − 9.0207e-2 (8.91e-3) − 5.4600e-2 (7.23e-3) − 1.1604e-2 (9.67e-3)

+/− / ≈ 0/6/1 0/6/2 4/3/2 4/2/3

6.4 Summary

In this chapter, three constrained multi-objective evolutionary algorithms (CMOEAs) have been

developed to solve a variety of CMOPs. NSGA-II, SPEA2 and SPEA2-SDE are embedded into PPS

framework for solving CMOPs, and then PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE are

realized. In the push search stage, PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE algorithms

search for the unconstrained solutions without considering any constraints. In the pull search stage,

the constraint handling mechanism is integrated into these algorithms to pull the unconstrained

solutions to approximate the constrained Pareto fronts. Three challenging constrained benchmark

suites (LIR-CMOP, DAS-CMOP, and DOC) were used to test the performance of the proposed

algorithms by comparing them to the other state-of-the-art CMOEAs. The experimental results

demonstrate the efficiency and good versatility of the proposed algorithms.

102

6.4. SUMMARY

Figure 6.5: The non-dominated solution set with the medium IGD value obtained by TiGE-2,
NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, CMOEA-MS, PPS-NSGA-II, and PPS-SPEA2
on DOC6

103

CHAPTER 6. THREE CONSTRAINED ALGORITHMS WITH BETTER VERSATILITY

104

Part III

Optimization in Offloading

105

Chapter 7

Constrained Multi-objective
Optimization for Offloading

In this chapter, we adopt the proposed three constrained optimization algorithms PPS-NSGA-

II, PPS-SPEA2 and PPS-SPEA2-SDE of Chapter 6 to solve IoT-enabled constrained computation

offloading problems in collaborative edge and cloud computing.

Computation offloading problems are often constrained optimization problems and NP-hard [6,

104]. However, there are few studies that combine constrained multi-objective optimization with

computation offloading in the collaborative mobile cloud and edge computing (MCC and MEC).

The motivation of this chapter is to treat the computation offloading problem as a constrained multi-

objective optimization problem (CMOP) and then we focus on the state-of-the-art constrained multi-

objective evolutionary algorithms (CMOEAs) for solving that.

At first, a constrained multi-objective computation offloading model considering time and energy

consumption is established in the mobile environment. Then a multi-server multi-user multi-task

computation offloading experimental scenario with a different number of IoT devices is used to

evaluate the performance of three proposed algorithms and other compared algorithms as well as

representative offloading schemes. The three designed CMOEAs can solve the constrained compu-

tation offloading problems well and achieve good results.

7.1 Constrained Offloading Model

In this section, we consider a collaborative MEC and MCC network with multiple mobile devices

(MDs), multiple edge servers and multiple cloud servers. The computation tasks in the MDs can be

107

CHAPTER 7. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION FOR OFFLOADING

executed locally or offloaded to the edge/cloud servers.

7.1.1 System Model

Fig. 7.1 presents the system model composed by L cloud servers, K edge servers, and N mo-

bile devices (MDs). Each MD can communicate with the edge server with a wireless link, whereas

the edge server and cloud server are connected through a wired link. Without loss of general-

ity, we assume that each mobile device has M independent tasks. We denote the set of MDs as

N = {1, 2, · · · , N} and the set of tasks as M = {1, 2, · · · ,M}, and the set of servers as K =

{0, 1, 2, · · · ,K,K + 1, · · · ,K + L}, where server 0 denotes MD itself and servers {1, 2, · · · ,K}
denote the edge servers and servers {K + 1, · · · ,K + L} denote the cloud servers. In each MD,

different tasks can decide to be processed by MD itself or remotely processed by edge/cloud servers.

We denote anm ∈ {0, 1, 2, · · · ,K,K+ 1, · · · ,K+L} as the offloading decision that MD n’s m-th

task is assigned to mobile device or cloud/edge servers, where n ∈ N and M ∈ M. Especially,

anm = 0 means that MD n chooses to locally execute its m-th task, anm ∈ {1, 2, · · · ,K} indicates

that MD n’s m-th task is offloaded to the edge servers and anm ∈ {K + 1,K + 2, · · · ,K + L}
represents that MD n’s m-th task is offloaded to the cloud servers. Overall, every task must be

processed locally or by the edge/cloud servers, whose offloading decision depends on:

anm =

0, local computing,

∈ {1, 2, · · · ,K}, edge computing,

∈ {K + 1,K + 2, · · · ,K + L}, cloud computing.

(7.1)

where n ∈ N and M ∈ M. Since both response time and energy consumption play a significant

role in the performance of computation offloading for MDs, we consider these two objectives as QoS

metrics. The detailed operations of the communication and computation process are illustrated in

Sections 7.1.2 and 7.1.3, respectively. The key notations used in this chapter are listed in Table 7.1.

7.1.2 Communication Model

Considering the communication cost between the MDs and edge/cloud servers, we first ana-

lyze the transmission time and energy consumption in the communication model. We set a tuple

(αnm, γnm) to represent MD n’s m-th task, where αnm is the data size and γnm is the required

number of CPU cycles to finish the task. When one of the MD n’s task m is offloaded to the edge

server k ∈ {1, 2, · · · ,K}, the whole processing of task m includes transmitting and edge comput-

108

7.1. CONSTRAINED OFFLOADING MODEL

IoT Layer

Edge Layer

Cloud Layer

IoT Devices

Distributed Edge Servers

Cloud Servers

Figure 7.1: System model of local-edge-cloud computation offloading

ing phase. Let BUE
nk denote the allocated upload bandwidth between the MD n and the edge server

k. We neglect the influence of the process when the edge server returns the results back to MDs

since the data size of feedback information is small in general [28]. The upload transmission time

for offloading MD n’s m-th task to the edge server k can be calculated as:

TUEnm =
αnm

BUE
nk

(7.2)

The energy consumption for uploading MD n’s m-th task to the edge server k can be quantified

as:

EUEnm = P TXn TUEnm (7.3)

where P TXn is the transmission energy consumption power of the MD n.

When one of the MD n’s task is offloaded to the cloud server k ∈ {K + 1,K + 2, · · · ,K + L},
one of the edge servers is selected as a relay node between the MD and the cloud server. We assume

that the task is first transmitted to the edge server k̃ through a wireless link, then the edge server k̃

will forward the task to the central cloud server k via a wired link. The upload transmission time for

109

CHAPTER 7. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION FOR OFFLOADING

Table 7.1: Key notations

Notation Description

anm The offloading decision of m-task of n-th MD
αnm Input data size of the task m of MD n
γnm Total CPU cycles of the task m of MD n
BUE
nk The transmission bandwidth between MD n and edge server k

P TXn The transmission power consumption of MD n
TUEnm The transmission time for offloading task m of MD n to edge server k
EUEnm The transmission energy consumption for offloading task m of MD n to edge server k
τ The propagation latency between an edge server and a cloud server
TCommEn The transmission latency from MD n to edge servers
TCommCn The transmission latency from MD n to cloud servers
TCommn The total communication delay of MD n for completing all M tasks
ECommEn The communication energy consumption from MD n to edge servers
ECommCn The communication energy consumption from MD n to cloud servers
ECommn The total communication energy consumption of MD n for completing all M tasks
fl, fe, fc The CPU frequency in mobile devices, edge servers and cloud servers
TCompnm The computation latency of m task of MD n

TCompLn The total computation latency of MD n in mobile devices
TCompEn The total computation latency of MD n in edge servers
TCompCn The total computation latency of MD n in cloud servers
ECompn The total computation energy consumption of MD n
Tn The overall completion time of executing all M tasks of MD n
T The overall completion time of executing all tasks of all MDs
En The energy consumption of executing all M tasks of MD n
E The total energy consumption of executing all tasks of all MDs
TCons The response time constraint
ECons The energy consumption constraint

offloading MD n’s m-th task to the cloud server k can be calculated as:

TUCnm =
αnm

BUE
nk̃

+ τ (7.4)

where τ denotes the propagation delay between edge servers and cloud servers. We focus on the

energy consumption of MDs, thus the energy consumption for uploading MD n’s m-th task to the

110

7.1. CONSTRAINED OFFLOADING MODEL

cloud server k can be quantified as:

EUCnm = P TXn ×
(
TUCnm − τ

)
(7.5)

When the task is executed locally, there is no communication latency. Hence, the total communi-

cation delay of MD n for completing all M tasks can be expressed as:

TCommn = TCommEn + TCommCn (7.6)

where
TCommEn =

M∑
m=1

TUEnm , anm ∈ {1, 2, · · · ,K},

TCommCn =
M∑
m=1

TUCnm , anm ∈ {K + 1, · · · ,K + L}.
(7.7)

Then the overall communication energy consumption of MD n for completing all M tasks can be

calculated as:

ECommn = ECommEn + ECommCn (7.8)

where
ECommEn =

M∑
m=1

EUEnm , anm ∈ {1, 2, · · · ,K},

ECommCn =
M∑
m=1

EUCnm , anm ∈ {K + 1, · · · ,K + L}.
(7.9)

7.1.3 Computation Model

We denote fl, fe, fc as the number of CPU cycles for the mobile devices, the edge servers and

the cloud servers, respectively. In general, the computation capability of the cloud servers is more

powerful than the edge servers, and the edge servers have better computation capability than the

mobile devices, as fl � fe � fc.

When each task is determined to be offloaded to edge or cloud servers, the edge or cloud servers

start to process it after all the input data has been received by the edge or cloud servers. The

computation latency of MD n’s m-th task in MDs, the edge servers and cloud servers are calculated

as:

TCompnm =

γnm

fl
, anm = 0,

γnm

fe
, anm ∈ {1, 2, · · · ,K} ,

γnm

fc
, anm ∈ {K + 1, · · · ,K + L} .

(7.10)

111

CHAPTER 7. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION FOR OFFLOADING

Thus, the total computation latency of MD n for completing all M tasks can be expressed as:

TCompLn =
M∑
m=1

γnm

fl
, anm = 0,

TCompEn =
M∑
m=1

γnm

fe
, anm ∈ {1, 2, · · · ,K} ,

TCompCn =
M∑
m=1

γnm

fc
, anm ∈ {K + 1, · · · ,K + L} .

(7.11)

In this model, we only consider the energy consumption at MDs. Specially, we use PLn to denote

the local energy consumption power of MD n. Then MD n’s energy consumption for executing its

task m locally is given by:

ECompnm = PLn ×
γnm
fl

(7.12)

Hence, the total computation energy consumption of MD n can be expressed as:

ECompn = PLn × TCompLn (7.13)

7.1.4 Problem Formulation

The processing latency consists of communication and computation latency, and the total delay

of executing all M tasks of MD n can be given by:

Tn = max{TCompLn , TCompEn + TCommEn , TCompCn + TCommCn } (7.14)

The total completion time of executing all tasks of all MDs can be expressed:

T = max

{
N∑
n=1

TCompLn ,

N∑
n=1

(
TCompEn + TCommEn

)
,
N∑
n=1

(
TCompCn + TCommCn

)}

The energy consumption of executing all M tasks of MD n can be given by:

En = ECompn + ECommn (7.15)

The total energy consumption of executing all tasks of all MDs can be expressed as:

E =

N∑
n=1

(
ECompn + ECommn

)
(7.16)

112

7.2. PERFORMANCE EVALUATION

Hence, the computation offloading problem can be formalized as follows:

min : [T,E], (7.17)

s.t. : anm ∈ {0, 1, 2, · · · ,K,K + 1, · · · ,K + L}, (7.18)

|anm| = 1, (7.19)

T ≤ TCons , (7.20)

E ≤ ECons , (7.21)

where the first and second constraints indicate that each task is assigned to one server, the third con-

straint denotes that MDs have constraints of response time deadline, and the last constraint represents

the energy consumption limits. Hence, we set up a local-edge-cloud constrained multi-objective

computation offloading model.

7.2 Performance Evaluation

In this section, we use the proposed three algorithms PPS-NSGA-II (Algorithm 7), PPS-SPEA2

and PPS-SPEA2-SDE (Algorithm 8) of Chapter 6 to solve constrained multi-objective computa-

tion offloading optimization problems.

7.2.1 Experimental Setup

We set up the multi-server multi-user multi-task computation offloading scenario in the local-

edge-cloud environment. The number of mobile devices is selected between 10 and 100. The

number of independent tasks of each MD is M = 5. We set the number of edge servers K = 5 and

the number of cloud servers L = 2. In the following scenarios, we consider the CPU frequencies of

each MD, each edge server, and each cloud server are 0.6 GHz, 10 GHz and 1 THz, respectively [27].

The transmitting power P TXn of all MDs is 0.2 W. The power consumption of all MDs is 0.7 W. The

round-trip propagation delay between edge servers and cloud servers is τ = 15 ms. The bandwidth

between MDs and edges is randomly selected from [8,15] MBps. The data size of each task is

uniformly distributed between 10 MB and 30 MB. The total CPU cycles for finishing the task are

assumed to be proportional to the input data size [43], i.e., γnm = ραnm. Here the parameter ρ

denotes the computation to data radio for different types of applications. Table 7.2 lists some values

of ρ for various applications [26, 71]. For example, the label A represents the gzip application and

ρ = 330 cycles/byte. By default, the type A application is taken as an example.

113

CHAPTER 7. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION FOR OFFLOADING

Table 7.2: Application complexity

Application Labels ρ (cycles/byte)

gzip A 330
pdf2text (N900 data sheet) B 960
x264 CBR encode C 1900
html2text D 5900
pdf2text (E72 data sheet) E 8900

To test the performance of the proposed algorithms, we compare PPS-NSGA-II, PPS-SPEA2,

and PPS-SPEA2-SDE with other five algorithms (TiGE-2 [117], constrained NSGA-II [24], PPS-

MOEA/D [33], ToP [66] and CMOEA-MS [91]) to solve five offloading problems, which consider

the number of MDs N = [10, 30, 50, 70, 100]. For a fair comparison, the population size of all

algorithms is set to 100, and the number of iterations is 1000. The solution encoding style adopts

the real-encoding method, which means that each task is assigned to a specific server including

edge and cloud servers. We apply the HV as the performance metric to evaluate the performance of

these compared algorithms. Each algorithm is executed 30 times independently and the average and

standard deviation of the metric values are recorded. The Wilcoxon rank sum test is also operated.

7.2.2 Convergence Analysis

As listed in Table 7.3, the proposed PPS-NSGA-II has achieved the best performance on four of-

floading problems, while only CMOEA-MS gets one best result among other algorithms. It is neces-

sary to point out that CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE share similar

overall performance based on the Wilcoxon rank sum test, which outperform other four compared

algorithms (TiGE-2, NSGA-II, PPS-MOEA/D and ToP). We can also observe that PPS-MOEA/D

may obtain good performance for solving the benchmark suites, while encountering difficulties in

solving discrete computation offloading problems.

We can observe that ToP cannot find any feasible solutions onN = 50 and 100 offloading problems

as shown in Figs. 7.2b and 7.2c. TiGE-2, NSGA-II and PPS-MOEA/D can obtain a few feasible

and non-dominated solutions. NSGA-II, CMOEA-MS, PPS-SPEA2 and PPS-SPEA2-SDE may

get good results about the small-scale offloading problems (e.g., N = 10), while their performance

deteriorates with the growth of the number of mobile devices, especially for the algorithm NSGA-II.

PPS-NSGA-II can always obtain a set of well-distributed and well-converged feasible solutions for

different offloading problems.

114

7.2. PERFORMANCE EVALUATION

Table 7.3: The HV values obtained by TiGE-2, NSGA-II, PPS-MOEA/D, ToP, CMOEA-MS, PPS-
NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on five offloading problems. The best result in each
row is highlighted. ‘N/A’ indicates that no feasible solution is found.

Problem N TiGE-2 NSGA-II PPS-MOEA/D ToP

Offloading1 10 3.2142e-1 (1.60e-2) − 3.4539e-1 (9.90e-3) − 3.2459e-1 (8.59e-3) − 2.8488e-1 (2.14e-2) −
Offloading2 30 2.7354e-1 (6.73e-3) − 1.5740e-1 (1.36e-1) − 7.6545e-2 (1.23e-1) − 5.1039e-2 (1.08e-1) −
Offloading3 50 2.6492e-1 (7.76e-3) − 1.8942e-1 (1.31e-1) − 1.0244e-1 (1.32e-1) − N/A
Offloading4 70 2.4061e-1 (8.49e-2) − 2.4333e-1 (8.63e-2) − 1.2822e-1 (1.35e-1) − 5.0319e-2 (1.06e-1) −
Offloading5 100 1.8015e-1 (1.24e-1) − 1.2960e-1 (1.37e-1) − 5.1053e-2 (1.08e-1) − N/A
+/− / ≈ 0/5/0 0/5/0 0/5/0 0/3/0

Problem N CMOEA-MS PPS-NSGA-II PPS-SPEA2 PPS-SPEA2-SDE

Offloading1 10 3.4966e-1 (9.82e-3) ≈ 3.5209e-1 (7.42e-3) ≈ 3.5051e-1 (7.43e-3) ≈ 3.4799e-1 (7.17e-3)
Offloading2 30 2.9020e-1 (7.39e-3) ≈ 2.8669e-1 (7.55e-3) ≈ 2.8761e-1 (4.38e-3) ≈ 2.8279e-1 (9.65e-2)
Offloading3 50 2.8118e-1 (1.17e-2) ≈ 2.8837e-1 (5.51e-3) ≈ 2.8482e-1 (8.87e-3) ≈ 2.8182e-1 (1.18e-2)
Offloading4 70 2.8290e-1 (7.49e-3) ≈ 2.8896e-1 (3.41e-3) ≈ 2.8520e-1 (7.26e-3) ≈ 2.8635e-1 (2.46e-3)
Offloading5 100 2.7111e-1 (9.13e-3) ≈ 2.7197e-1 (1.11e-2) ≈ 2.7020e-1 (1.35e-3) ≈ 2.7055e-1 (5.87e-3)
+/− / ≈ 0/0/5 0/0/5 0/0/5

7.2.3 Performance of Different Offloading Schemes

It has been demonstrated that PPS-NSGA-II has a good and stable performance in terms of both

convergence and diversity on different offloading problems. To further evaluate the performance

of PPS-NSGA-II for reducing response time and energy consumption, we compare PPS-NSGA-II

with other four offloading schemes, which are Local Offloading Scheme (LOS), Edge Offloading

Scheme (EOS), Cloud Offloading Scheme (COS), and Random Offloading Scheme (ROS). LOS,

EOS, and COS represent that all tasks are executed locally, offloaded to edge servers and central

cloud servers. ROS denotes that offloading decisions of all tasks are generated randomly. In order to

better compare the effectiveness of different algorithms, we can design system cost and offloading

gain of a weighted sum of time and energy as follows:

SystemCost = w × Toffloading + (1− w)× Eoffloading (7.22)

OffloadingGain =

[
w ×

TLOS − Toffloading
TLOS

+ (1− w) ×
ELOS − Eoffloading

ELOS

]
×100% (7.23)

where Toffloading and Eoffloading denote overall time and energy consumption of one specific of-

floading scheme, respectively. TLOS and ELOS denote the time and energy consumption of LOS,

respectively. w is the weight trade-off parameter between time and energy, which can be set by the

decision-maker. The larger w is, the more sensitive the response time is.

Figs. 7.3, 7.4, and 7.5 present the offloading gain of different offloading schemes under different

115

CHAPTER 7. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION FOR OFFLOADING

46.5 47 47.5 48 48.5
Time

26

28

30

32

34

36

38

E
ne
rg
y

 N=10

TiGE-2
NSGA-II
PPS-MOEA/D
ToP
CMOEA-MS
PPS-NSGA-II
PPS-SPEA2
PPS-SPEA2-SDE

(a) N = 10

240 241 242 243 244
Time

145

150

155

160

165

E
ne
rg
y

 N=50

TiGE-2
NSGA-II
PPS-MOEA/D
CMOEA-MS
PPS-NSGA-II
PPS-SPEA2
PPS-SPEA2-SDE

(b) N = 50

506 507 508 509 510 511 512 513 514
Time

355

360

365

370

375

380

385

390

395

E
ne
rg
y

 N=100

TiGE-2
NSGA-II
PPS-MOEA/D
CMOEA-MS
PPS-NSGA-II
PPS-SPEA2
PPS-SPEA2-SDE

(c) N = 100

Figure 7.2: The non-dominated solution set with the medium HV value obtained by TiGE-2, NSGA-
II, PPS-MOEA/D, ToP, CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on differ-
ent offloading problems

weights. Compared with LOS, all the other offloading schemes benefit a lot with regard to time

consumption and energy consumption. PPS-NSGA-II can obtain the best offloading gain compared

with other offloading schemes among all the different offloading problems with different weights.

COS achieves a better offloading gain performance than EOS since the cloud servers take advantage

of powerful cloud resources. Offloading is more beneficial when focusing on energy usage than time

consumption.

116

7.2. PERFORMANCE EVALUATION

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00
Of

flo
ad

in
g

Ga
in

(a) N = 10

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00

Of
flo

ad
in

g
Ga

in

(b) N = 50

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00

Of
flo

ad
in

g
Ga

in

(c) N = 100

Figure 7.3: Offloading gain of different offloading schemes for w = 0.2

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00

Of
flo

ad
in

g
Ga

in

(a) N = 10

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00

Of
flo

ad
in

g
Ga

in

(b) N = 50

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00

Of
flo

ad
in

g
Ga

in

(c) N = 100

Figure 7.4: Offloading gain of different offloading schemes for w = 0.5

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00

Of
flo

ad
in

g
Ga

in

(a) N = 10

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00

Of
flo

ad
in

g
Ga

in

(b) N = 50

EOS COS ROS PPS-NSGA-II
Offloading Schemes

0.75

0.80

0.85

0.90

0.95

1.00

Of
flo

ad
in

g
Ga

in

(c) N = 100

Figure 7.5: Offloading gain of different offloading schemes for w = 0.8

7.2.4 Impact of Different Parameters

In this section, we analyze the impact of different parameters in collaborative edge-cloud comput-

ing networks, and w is set to 0.5 as well as N is equal to 10. Fig. 7.6 illustrates the performance of

system cost and offloading gain on different offloading schemes under the different number of tasks

117

CHAPTER 7. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION FOR OFFLOADING

of each MD. PPS-NSGA-II gains the best performance compared with other offloading schemes.

With the increasing number of tasks, the system cost of LOS grows much faster than EOS, COS,

ROS, and PPS-NSGA-II. The offloading gain of the different offloading schemes stays stable since

the system cost of EOS, COS, ROS, and PPS-NSGA-II belongs to a small relevant proportion of

LOS.

1 2 4 6 8 10
Number of Tasks

0

200

400

600

800

1000

S
ys

te
m

 C
os

t

LOS
EOS
COS
ROS
PPS-NSGA-II

1 2 4 6 8 10
Number of Tasks

0.82

0.84

0.86

0.88

0.9

0.92

0.94

O
ff

lo
ad

in
g

G
ai

n

EOS
COS
ROS
PPS-NSGA-II

Figure 7.6: System cost and offloading gain on different offloading schemes under different number
of tasks

Fig. 7.7 shows the performance of system cost and offloading gain on different offloading schemes

under the different wireless bandwidth between MDs and edge servers. LOS does not change with

the increment of wireless bandwidth. Both the performance of the system cost as well as offloading

gain of the other four offloading schemes (EOS, COS, ROS, and PPS-NSGA-II) improve due to

larger wireless bandwidth. In addition, with the increment of wireless bandwidth, the performance

improves very fast at the beginning and then becomes small. It is worth noting that the offloading

gain of EOS and COS may be negative when the wireless bandwidth is small, which means that a

computing task should not be offloaded to edge or cloud servers due to large communication cost in

the case wireless bandwidth is small enough.

Fig. 7.8 presents the performance of system cost and offloading gain on different offloading

schemes under different edge server CPU frequency. The performance of LOS and COS do not

change no matter what the CPU frequency of the edge servers’. With the increment of edge server

CPU frequency, the performance of system cost and offloading gain of EOS grows faster than ROS

and PPS-NSGA-II. However, PPS-NSGA-II still achieves the best results among all the offloading

schemes.

118

7.2. PERFORMANCE EVALUATION

1 5 10 15 20 25
Wireless Bandwidth (MB/s)

0

100

200

300

400

500

600
S

ys
te

m
 C

os
t

LOS
EOS
COS
ROS
PPS-NSGA-II

1 5 10 15 20 25
Wireless Bandwidth (MB/s)

-0.2

0

0.2

0.4

0.6

0.8

1

O
ff

lo
ad

in
g

G
ai

n

EOS
COS
ROS
PPS-NSGA-II

Figure 7.7: System cost and offloading gain on different offloading schemes under different wireless
bandwidth

1 5 10 15 20 25
Edge Server CPU Frequency (GHz)

0

100

200

300

400

500

S
ys

te
m

 C
os

t

LOS
EOS
COS
ROS
PPS-NSGA-II

1 5 10 15 20
Edge Server CPU Frequency (GHz)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
O

ff
lo

ad
in

g
G

ai
n

EOS
COS
ROS
PPS-NSGA-II

Figure 7.8: System cost and offloading gain on different offloading schemes under different edge
server CPU frequency

7.2.5 Impact of Different Types of Applications

Fig. 7.9 illustrates the performance of system cost and offloading gain on different offloading

schemes under different types of applications. With the increment of parameter ρ of different appli-

cations, the computing delay increases directly. The system cost of LOS increases very fast due to

the poor computing capability of MDs, while COS and PPS-NSGA-II grow slowly due to the pow-

erful computing resources at the cloud servers. PPS-NSGA-II will make more offloading decisions

to offload the tasks to cloud servers. In addition, the system cost of EOS and ROS grow gradually

119

CHAPTER 7. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION FOR OFFLOADING

and the increasing speed of EOS is slower than ROS. Furthermore, the performance of offloading

gain of EOS, COS and PPS-NSGA-II is much better than ROS, and the COS and PPS-NSGA-II

achieve the best and similar results due to the increment of parameter ρ of different applications.

A B C D E
Applications

0

2000

4000

6000

8000

10000

12000

S
ys

te
m

 C
os

t

LOS
EOS
COS
ROS
PPS-NSGA-II

A B C D E
Applications

0.8

0.85

0.9

0.95

1

O
ff

lo
ad

in
g

G
ai

n

EOS
COS
ROS
PPS-NSGA-II

Figure 7.9: System cost and offloading gain on different offloading schemes under different types of
applications

7.3 Summary

In this chapter, the three designed CMOEAs were applied to solve IoT-edge-cloud constrained

multi-objective computation offloading problems. We establish a constrained multi-objective com-

putation offloading model for minimizing time and energy consumption of IoT devices. The pro-

posed PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE are compared with other state-of-the-art

CMOEAs and different offloading schemes to deal with different computation offloading problems.

The experimental results show the proposed algorithms can achieve better performance than other

compared representative algorithms, and outperform other different offloading policies.

120

Chapter 8

Large-scale Offloading in Edge-Cloud
Computing

In this chapter, we propose and compare two evolutionary large-scale sparse multi-objective op-

timization algorithms (called ELSMO) to solve collaborative edge-cloud large-scale computation

offloading problems.

The traditional multi-objective evolutionary algorithms (MOEAs) will encounter difficulties in

dealing with large-scale computation offloading problems when there exists a large number of mo-

bile devices having a great many computation tasks. To remedy this issue, in this chapter we set up

a collaborative edge-cloud computation offloading large-scale sparse multi-objective optimization

model with binary encoding. Focus on large-scale optimization methods, based on the dimension-

ality reducing and decision variable analysis methods [88, 90], two evolutionary large-scale sparse

multi-objective optimization algorithms (called ELSMO) are applied and compared to solve the

large-scale offloading problems. Compared with other MOEAs and offloading schemes, the pro-

posed algorithms are competitive on different large-scale test problems.

8.1 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is a stochastic neural network, which consists of an input

layer and a hidden layer, as shown in Fig. 8.1. The nodes in the two layers are binary variables

obeying binomial distribution. RBM can be used to reduce the dimensionality through unsupervised

learning. Given an input vector x, the value of each node hj in the hidden layer is set to 1 with a

121

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

probability:

p (hj = 1 |x) = σ

(
aj +

D∑
i=1

xiwij

)
(8.1)

where aj is the basis, wij is the weight, D is the dimensionality of input layer, and σ (x) =

1/ (1 + exp (−x)) is the sigmoid function. Through comparing the probability p (hj = 1 |x) with

a uniformly distributed random value in [0, 1], the binary value of each node hj can be obtained. In

the same way, the reconstructed value of each node x′i in the input layer is set to 1 with a probability:

p
(
x′i = 1 |h

)
= σ

a′j +

K∑
j=1

hjwij

 (8.2)

where K is the dimensionality of the hidden layer. Hinton [42] proposed the contrastive divergence

algorithm to train RBM, which aims to minimize the reconstruction error between the reconstructed

vector x′ and the original input x by finding the suitable a, a′, and w.

𝑥1

𝑥1

bias

bias

𝑥𝐷−1

𝑥𝐷

ℎ1

ℎ𝐾

𝑎
𝑎′

𝑤

Figure 8.1: RBM structure

8.2 Large-scale Offloading Model

In this section, we consider a collaborative MEC and MCC network with one edge cloud, one

central cloud and multiple mobile devices (MDs). Thus, the mobile device can execute its computa-

tional tasks locally, or offload its tasks to the edge cloud server through a wireless link and/or to the

central cloud server through wireless and backhaul links.

122

8.2. LARGE-SCALE OFFLOADING MODEL

8.2.1 System Model

Fig. 8.2 presents the system model, which consists of one edge cloud server, one central cloud

server and multiple MDs, denoted by a set N = {1, 2, . . . , N}. The edge cloud server can be

deployed into the base station, which is closer to the MDs. The MDs can communicate with the

edge cloud with a wireless link, whereas the edge cloud and the central cloud can be interconnected

through a wired link. Each MD has multiple tasks, denoted by a set M = {1, 2, · · · ,M}. The

size of the m-th task of the n-th MD is denoted by w(n,m). In each MD, these different tasks can

choose to be processed locally or offloaded to the edge cloud server and the central cloud server.

The offloading decision is represented by two binary variables x1
(n,m) and x2

(n,m).

On one hand, x1
(n,m) ∈ {0, 1} denotes the offloading decision for the m-th task, which means:

x1
(n,m) =

{
0, if task is executed locally

1, if task is offloaded
(8.3)

where x1
(n,m) = 0 denotes n-th MD decides to execute the m-th task locally, x1

(n,m) = 1 indicates

n-th MD decides to offload m-th task to the edge cloud server or central cloud server.

Once the m-th task is decided to be offloaded to the cloud server, x2
(n,m) ∈ {0, 1} represents the

specific offloading destination for the m-th task, which means:

x2
(n,m) =

 0, if offloaded to edge cloud & x1
(n,m)= 1

1, if offloaded to central cloud & x1
(n,m)= 1

(8.4)

where x2
(n,m) = 0 denotes the n-th MD decides to offload the m-th task to the edge cloud server,

x2
(n,m) = 1 denotes m-th task is offloaded to the central cloud server.

The detailed operations of a local computing model, edge computing model and cloud computing

model are illustrated as follows, respectively. The important notations used in this chapter are listed

in Table 8.1.

8.2.2 Local Computing Model

We first establish the local computing model when the task is decided to be executed locally. The

task execution time of mobile device can be calculated as:

T l(n,m) =
w(n,m)

fl
(8.5)

123

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

MD 1 MD 2 MD N

M tasks M tasks M tasks

Edge Cloud

Central CloudWireless

Wired

Figure 8.2: System model of computation offloading with heterogeneous cloud

where fl denotes the task processing rate of local device.

The energy consumption for executing task m at the n-th device can be calculated as:

El(n,m) = θlw(n,m) (8.6)

where θl denotes the energy consumption per unit of workload of local device.

Therefore, the total time and energy consumption of the n-th MD can be expressed as:

T l(n) =
M∑
m=1

(
1− x1

(n,m)

)
T l(n,m) (8.7)

El(n) =

M∑
m=1

(
1− x1

(n,m)

)
El(n,m) (8.8)

8.2.3 Edge Computing Model

For the edge computing model, the MDs can communicate with the edge server via the cellular

link. When the task is decided to be offloaded to the edge cloud, the MD needs to transmit the

workload of the task to the edge cloud server and then to be processed. In general, the time and

energy consumption are often neglected when the cloud servers return the computing results back

to MDs, because the data size of feedback result is small [7].

124

8.2. LARGE-SCALE OFFLOADING MODEL

Table 8.1: Important notations

Notation Description
w(n,m) The m-th task workload of the n-th MD
x1

(n,m) x1
(n,m) = 0 if m-th task is executed locally, x1

(n,m) = 1 if m-th task is offloaded to the cloud
x2

(n,m) x2
(n,m) = 0 if m-th task is offloaded to edge cloud, x2

(n,m) = 1 if m-th task is offloaded to central cloud
El(n,m) The energy consumption of the m-th task of the n-th MD
θl The local device energy consumption per unit of workload
T l(n,m) The execution time of the m-th task of the n-th MD
fl The task processing rate of the MD
T et (n,m) The transmission time of offloading m-th task to edge cloud via wireless link
b(n,e) The bandwidth between n-th MD and edge cloud
Eet (n,m) The energy consumption for transmission to the edge cloud
σ The energy consumption per unit of workload for transmission to the edge cloud
Te(n,m) The time delay of offloading the m-th task of the n-th MD to the edge cloud
fe The task processing rate of the edge cloud
Ee(n,m) The energy consumption of offloading the m-th task of the n-th MD to the edge cloud
θe The energy consumption per unit of workload of edge cloud
T ct (n,m) The transmission time of offloading m-th task to central cloud via wireless link and wired link
b(e,c) The bandwidth between edge cloud and central cloud
Ect (n,m) The energy consumption for transmission to the central cloud
β The energy consumption per unit of workload for transmission to the central cloud
Tc(n,m) The time delay of offloading the m-th task of the n-th MD to the central cloud
fc The task processing rate of the central cloud
Ec(n,m) The energy consumption of offloading the m-th task of the n-th MD to the central cloud
θc The energy consumption per unit of workload of central cloud

The transmission time for offloading the task to the edge cloud server can be calculated as:

T et (n,m) =
w(n,m)

b(n,e)
(8.9)

where b(n,e) denotes the bandwidth between the n-th MD and the edge server.

The energy consumption for the transmission can be given by:

Eet (n,m) = σw (n,m) (8.10)

where σ denotes the energy consumption per unit of workload for transmission to the edge cloud

server.

After the task is transmitted to the edge cloud, it will be executed at the edge cloud server. The

computation delay of the whole process can be expressed as:

Te(n,m) = T et (n,m) +
w(n,m)

fe
(8.11)

125

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

where fe denotes the task processing rate of the edge cloud server.

The energy consumption of whole process can be expressed as:

Ee(n,m) = Eet (n,m) + θew(n,m) (8.12)

where θe denotes the energy consumption per unit of workload of edge server.

Therefore, the total time and energy consumption of the n-th MD can be expressed as:

Te(n) =
M∑
m=1

x1
(n,m)

(
1− x2

(n,m)

)
Te(n,m) (8.13)

Ee(n) =
M∑
m=1

x1
(n,m)

(
1− x2

(n,m)

)
Ee(n,m) (8.14)

8.2.4 Cloud Computing Model

For the cloud computing model, MDs can communicate with the central cloud via wireless and

wired links. The central cloud servers can provide more powerful computing capacity for the MDs,

but it might cause more delays for the transmission between MDs and the central cloud. The trans-

mission time and energy consumption for offloading the task to the central cloud server can be

calculated as:

T ct (n,m) =
w(n,m)

b(n,e)
+
w(n,m)

b(e,c)
(8.15)

Ect (n,m) = σw (n,m) + βw (n,m) (8.16)

where b(e,c) denotes the bandwidth between edge cloud and central cloud. β denotes the energy

consumption per unit of workload for transmission to the central cloud server.

After the task is transmitted to the central cloud, it will be executed at the central cloud server.

The computation delay and energy consumption of the whole process can be expressed as:

Tc(n,m) = T ct (n,m) +
w(n,m)

fc
(8.17)

Ec(n,m) = Ect (n,m) + θcw(n,m) (8.18)

where fc denotes the task processing rate of central cloud server, θc denotes the energy consumption

per unit of workload of central cloud.

126

8.3. THE PROPOSED ELSMO

Therefore, the total time and energy consumption of the n-th MD can be expressed as:

Tc(n) =
M∑
m=1

x1
(n,m)x

2
(n,m)Tc(n,m) (8.19)

Ec(n) =

M∑
m=1

x1
(n,m)x

2
(n,m)Ec(n,m) (8.20)

8.2.5 Problem Formulation

The total computation time of executing all tasks can be given by:

T =

N∑
n=1

max
{
T l(n), T e(n), T c(n)

}
(8.21)

The total energy consumption of executing all tasks can be given by:

E =

N∑
n=1

(
El(n) + Ee(n) + Ec(n)

)
(8.22)

Considering a large number of mobile devices having different applications in the mobile environ-

ment, the offloading model is the large-scale MOP. To summarize, we establish a local-edge-cloud

large-scale two-objective computation offloading optimization model.

8.3 The Proposed ELSMO

This section presents the details of two evolutionary large-scale sparse multi-objective optimiza-

tion algorithms (called ELSMO) for solving the large-scale computation offloading problems.

8.3.1 General Framework

The general frameworks of two proposed algorithms are presented in Algorithm 9 and Algorithm

10, respectively. In both two algorithms, the non-dominated front number and crowding distance are

calculated the same way as in NSGA-II [24], which are also the selection criteria in the environmen-

tal selection. In ELSMO-1, the non-dominated solutions in the current population are used to train

a RBM, then the offspring solutions are generated from the mating pool. The two parameters ρ and

K are updated iteratively. In ELSMO-2, the population initialization is different from ELSMO-1,

127

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

which analyzes the contribution score of each decision variable. And the new offspring generation

operation is conducted based on the score. More details about the main operations in ELSMO-1 and

ELSMO-2 are presented in the following sections.

Algorithm 9: Framework of ELSMO-1

Input: The population size Ñ
Output: The final population P

1 P ← Initialization
(
Ñ
)

;

2 [F1, F2, · · ·]← NondominatedSorting (P);
3 CrowdDis← CrowdingDistance (F1, F2, · · ·);
4 ρ← 0.5; // Ratio of offspring solutions generated in the different search subspace
5 K ← N ; // Size of the hidden layer
6 while termination criterion not fulfilled do
7 Train a RBM with K hidden neurons based on non-dominated solutions in P ;
8 P ′ ← Select Ñ parents via binary tournament selection in P ;
9 O ← OffspringGeneration (P, P ′, ρ,K,RBM);

10 P ← P ∪O;
11 Delete duplicated solutions from P ;
12 P ← EnvironmentalSelection (P);
13 [ρ,K]← UpdateParameter (P, ρ) ;
14 end

8.3.2 The Proposed ELSMO-1

Offspring Generation

Before generating offspring solutions, all the non-dominated solutions in the population are used

to train an RBM via the contrastive divergence algorithm. As shown in Fig. 8.3, the RBM can be

used to reduce the dimensionality of the original binary vectors, and the reduced binary vectors can

be also recovered. Since the non-dominated solutions are used to train the RBM, it can be seen that

each solution can be mapped between the Pareto optimal space and the original search space.

After obtaining the trained RBM, the binary tournament selection mechanism is used to select Ñ

parents as the mating pool based on the non-dominated front number and crowding distance. Then

two parents are randomly selected from the mating pool and single-point crossover and bitwise mu-

tation operation are used to generate two offspring solutions. The ratio ρ determines the probability

that the offspring solutions will be generated in the Pareto-optimal subspace by the trained RBM or

generated in the original search space. Specifically, if the probability ρ is larger than a random value

128

8.3. THE PROPOSED ELSMO

Algorithm 10: Framework of ELSMO-2

Input: The population size Ñ
Output: The final population P

1 [P, Score]← Initialization
(
Ñ
)

;

2 [F1, F2, · · ·]← NondominatedSorting (P);
3 CrowdDis← CrowdingDistance (F1, F2, · · ·);
4 while termination criterion not fulfilled do
5 P ′ ← Select 2Ñ parents via binary tournament selection in P ;
6 O ← OffspringGeneration (P ′, Score);
7 P ← P ∪O;
8 Delete duplicated solutions from P ;
9 P ← EnvironmentalSelection (P);

10 end

0

1

0

1

0

1

0

1

0

RBM

Reduce

Recover

Binary

vector Reduced

binary

vector

Figure 8.3: Reduce and recover of solutions

in [0, 1], the binary vectors of parents are reduced by Equation 8.1 and the offspring solutions are

generated in the Pareto-optimal space, then the reduced offspring solutions are recovered by Equa-

tion 8.2. If the probability ρ is smaller than the random value, the offspring solutions are generated

in the original search space without RBM.

Update Parameter

In ELSMO-1, there are two parameters needed to be considered, the ratio of offspring solutions

generated in the Pareto-optimal subspace or original search space ρ and the size of the hidden layer

129

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

K. The parameter ρ is updated iteratively, which is defined as follows:

ρt+1 = 0.5×
(
ρt +

s1,t + 1

s1,t + s2,t + 1

)
(8.23)

where ρt is the value of ρ at the t-th generation and ρ0 = 0.5. s1,t and s2,t denotes the number of

successful offspring solutions generated in the Pareto-optimal subspace and in the original search

space, respectively. A successful solution means that it survives to the next population.

The sparsity of non-dominated solutions in the current population reflects the setting value of K.

Let dec be a binary vector denoting whether each variable should be nonzero, the probability of

setting deci to 1 is defined according to the non-dominated solution set NP:

p (deci = 1 |NP) =
1

|NP |
∑
x∈NP

|sign (xi)| (8.24)

where if xi = 0 then |sign (xi)| equals 0 or |sign (xi)| is equal to 1 otherwise. Through comparing

the probability p (deci = 1 |NP) with a uniformly distributed random value in [0, 1], the value of

deci is obtained. Then the parameter K is defined as follows:

K =
∑

deci (8.25)

8.3.3 The Proposed ELSMO-2

Population Initialization

In ELSMO-2, the population initialization process includes two steps, i.e., calculating the scores

of decision variables and generating the initial population. First, the populationQ is constituted by a

D ∗D identity matrix, where D denotes the number of decision variables. Then the non-dominated

front numbers of the solutions in population Q are calculated based on the non-dominated sorting

method. The non-dominated front number of the i-th solution in Q can be regarded as the score of

the i-th decision variable. The smaller score means the better quality of the decision variable, so the

value of the decision variable is set to 1 with a higher probability.

Afterwards, let a binary vector mask represent the offloading decision. According to the scores

of decision variables, the binary tournament selection mechanism is used to select the element in

mask with a better score and set the element to 1. In each solution, the number of rand () × D
elements are selected to be set to 1 and other elements in mask are set to 0, where rand () denotes

a uniformly distributed random value in [0, 1]. In this way, the initialized population with better

130

8.3. THE PROPOSED ELSMO

convergence and diversity is obtained by selecting decision variables with good quality.

Offspring Generation

The binary tournament selection mechanism is used to select 2Ñ parents as the mating pool based

on the non-dominated front number and crowding distance. Then two parents p and q are randomly

selected from the mating pool to generate an offspring solution o each time. The binary vector

mask of o is first set to the same to p, then two decision variables from the nonzero elements in

p.mask ∩ q.mask are randomly selected with probability 0.5, the decision variable in the mask of

o with a larger score is set to 0. Otherwise, selecting two decision variables from nonzero elements

in p.mask ∩ q.mask, the decision variable in the mask of o with a smaller score is set to 1.

Afterwards, one mutation operation is conducted on the mask of o to retain diversity. Compare

one random probability distributed in [0, 1] with 0.5, if the probability is less than 0.5, randomly

select two decision variables from the nonzero elements in o.mask, and set the element with a large

score in o.mask to 0. Otherwise, randomly select two decision variables from the nonzero elements

in o.mask, and set the element with a small score in o.mask to 1. The main idea of the mutation

operation is making decision variables with better quality approach to 1, while decision variables

with worse quality approach 0.

8.3.4 Computational Complexity

For the proposed algorithms, the major costs are the iteration process in Algorithm 9 and Algo-

rithm 10. In ELSMO-1, Step 7 needs O
(
ÑEDK

)
operations to train the RBM, where Ñ is the

population size, E is the number of epochs for training, D is the number of decision variables, K is

the hidden layer size. Step 8 needs O
(
Ñ
)

operations for the binary tournament selection. Step 9

performs O
(
ÑDK

)
to generate offspring solutions. Step 12 performs O

(
M̃Ñ2

)
operations for

the environmental selection, where M̃ is the number of objectives. Step 13 needs O
(
ÑD

)
opera-

tions to update the parameters. To summarize, the overall computational complexity at one gener-

ation of ELSMO-1 is max
{
O
(
ÑEDK

)
, O
(
M̃Ñ2

)}
. In ELSMO-2, Step 5 performs O

(
2Ñ
)

operations for selecting mating pool. Step 6 needs O
(
ÑD

)
operations to generate offspring solu-

tions. Step 9 performs O
(
M̃Ñ2

)
operations for the environmental selection. The overall compu-

tational complexity at one generation of ELSMO-2 is max
{
O
(
M̃Ñ2

)
, O
(
ÑD

)}
.

131

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

8.4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms and demonstrate the

compared results of different MOEAs and offloading strategies.

8.4.1 Experimental Settings

In the experiment, we set up the local-edge-cloud offloading environment. The number of mobile

devices is selected between 100 and 1000. The number of independent tasks of each MD is M = 5.

So the dimension of the offloading problem D is between 1000 and 10000. We set the energy

consumption per unit of workloads in local device, edge and central cloud server θl = 3J/MB,

θe = 1.5J/MB, and θc = 1J/MB, respectively. The processing rates of local device, edge and

central cloud server are fl = 2MB/s, fe = 8MB/s, and fc = 12MB/s, respectively. The energy

consumption per unit of workloads for transmission from local device to edge cloud server is a

random value within [0.4, 0.6] J/MB, and the same measure from edge to central cloud server is a

random value within [0.3, 0.5] J/MB. In addition, the bandwidth between the local device and edge

server is chosen from [80, 100] Mbps, whereas the bandwidth between edge cloud and central cloud

is fixed b(e,c) = 150Mbps. We assume that the workloads of tasks are randomly distributed between

10MB and 30MB. The related parameters and corresponding values are summarized in Table 8.2.

Table 8.2: Parameter values

Parameter Value
The number of mobile devices N = [100, 1000]
The number of independent tasks of each MD M = 5
The local energy consumption per unit θl = 3J/MB
The edge cloud energy consumption per unit θe = 1.5J/MB
The central cloud energy consumption per unit θc = 1J/MB
The processing rate of the local device fl = 2MB/s
The processing rate of the edge cloud server fe = 8MB/s
The processing rate of the central cloud server fc = 12MB/s
The energy consumption per unit for transmission from MD to edge cloud σ = [0.4, 0.6] J/MB
The energy consumption per unit for transmission from edge to central cloud β = [0.3, 0.5] J/MB
The bandwidth between n-th MD and edge cloud b(n,e) ∈ [80, 100] Mbps

The bandwidth between edge and central cloud b(e,c) = 150Mbps

The workloads of all tasks w(n,m) ∈ [10, 30] MB

To verify the performance of the proposed algorithms, we compare the proposed algorithms with

other MOEAs and offloading schemes to solve ten different large-scale offloading problems, which

132

8.4. PERFORMANCE EVALUATION

means the number of devices N = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] and the

dimension D = [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]. The compared

algorithms are NSGA-II [24], SPEA2 [124], SMS-EMOA [4], and EAG-MOEA/D [10]. NSGA-

II, SPEA2, SMS-EMOA are three classical MOEAs which are effective for MOPs, while EAG-

MOEA/D is tailored for combinatorial MOPs. For a fair comparison, the population size of all

algorithms is set to 50. The number of function evaluations is set with values in the interval from

6.0×104 to 15×104 for ten test problems. In NSGA-II, SPEA2, SMS-EMOA, EAG-MOEA/D and

ELSMO-1, the single-point crossover and bitwise mutation are applied to generate new offspring,

where the probabilities of crossover and mutation are set to 1.0 and 1/D, respectively. The hyper-

volume (HV) [125] is adopted as the metric to evaluate the performance of the compared algorithms.

For each test instance, each algorithm is executed 30 times independently, and the average and stan-

dard deviation of the metric values are recorded. The Wilcoxon rank sum test at a 5% significance

level is used to compare the experimental results, where the symbol ’+’, ’−’ and ’≈’ denotes that

the result of another algorithm is significantly better, significantly worse and similar to that obtained

by proposed algorithm.

8.4.2 Comparison with Other MOEAs

Table 8.3 presents the HV metric values obtained by NSGA-II, SPEA2, SMS-EMOA, EAG-

MOEA/D, ELSMO-1 and ELSMO-2 on ten test problems. The proposed ELSMO-2 has achieved

the best performance on 9 of 10 test instances, while only EAG-MOEA/D gets 1 of 10 best results

for the rest of compared algorithms. When the dimension is not so large (i.e., 1000), the EAG-

MOEA/D and ELSMO-2 can obtain similar metric values. It can be observed that ELSMO-2 has a

clear advantage over other compared algorithms with the increment of dimension.

Figs. 8.4, 8.5 and 8.6 show the final non-dominated solution set with the medium HV value ob-

tained by NSGA-II, SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1 and ELSMO-2 on offloading

problems with 1000, 5000, and 10000 binary variables. NSGA-II, SPEA2, SMS-EMOA can only

get a small part of the solutions in the Pareto front, which may be worse when dealing with large-

dimension problems. EAG-MOEA/D is designed for combinatorial problems, which can obtain

good performance compared with other classical algorithms NSGA-II, SPEA2 and SMS-EMOA,

whereas its diversity still encounters difficulties for solving large-dimensional offloading problems.

ELSMO-1 seems to have the best performance of diversity compared with the other five algorithms,

but the RBM may need more iterations to be trained for improving the convergence. It is clear from

the figures that ELSMO-2 can always get better performance between convergence and diversity no

matter what the dimensional offloading problem is.

133

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

Table 8.3: The HV values obtained by NSGA-II, SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1
and ELSMO-2 on offloading problems

Problem D NSGA-II SPEA2 SMS-EMOA

Offloading1 1000 2.7834e-1 (1.60e-3) − 2.7353e-1 (1.75e-3) − 2.6961e-1 (1.64e-3) −
Offloading2 2000 2.6303e-1 (1.80e-3) − 2.5928e-1 (1.20e-3) − 2.5669e-1 (9.36e-4) −
Offloading3 3000 2.5533e-1 (1.70e-3) − 2.5192e-1 (9.69e-4) − 2.5123e-1 (1.44e-3) −
Offloading4 4000 2.5263e-1 (1.10e-3) − 2.4856e-1 (7.96e-4) − 2.4805e-1 (7.14e-4) −
Offloading5 5000 2.5009e-1 (1.09e-3) − 2.4757e-1 (6.41e-4) − 2.4656e-1 (8.32e-4) −
Offloading6 6000 2.4780e-1 (6.85e-4) − 2.4587e-1 (6.99e-4) − 2.4483e-1 (4.67e-4) −
Offloading7 7000 2.4759e-1 (1.04e-3) − 2.4493e-1 (1.59e-4) − 2.4391e-1 (2.20e-4) −
Offloading8 8000 2.4542e-1 (6.92e-4) − 2.4373e-1 (7.42e-4) − 2.4254-1 (6.27e-4) −
Offloading9 9000 2.4439e-1 (4.68e-4) − 2.4325e-1 (3.76e-4) − 2.4218-1 (7.11e-4) −
Offloading10 10000 2.4434e-1 (3.23e-4) − 2.4267e-1 (5.62e-4) − 2.4212-1 (3.56e-4) −

+/− / ≈ 0/10/0 0/10/0 0/10/0

Problem D EAG-MOEA/D ELSMO-1 ELSMO-2

Offloading1 1000 2.9834e-1 (3.45e-4) + 2.9541e-1 (8.36e-4) − 2.9800e-1 (8.96e-5)
Offloading2 2000 2.9564e-1 (9.80e-4) − 2.6861e-1 (2.92e-2) − 2.9761e-1 (1.73e-4)
Offloading3 3000 2.8934e-1 (3.76e-3) − 2.8580e-1 (2.07e-3) − 2.9442e-1 (3.48e-4)
Offloading4 4000 2.8371e-1 (3.79e-3) − 2.7427e-1 (1.89e-2) − 2.9761e-1 (1.73e-4)
Offloading5 5000 2.8441e-1 (1.35e-3) − 2.7836e-1 (3.87e-3) − 2.9161e-1 (3.14e-4)
Offloading6 6000 2.8219e-1 (2.73e-3) − 2.7564e-1 (2.51e-3) − 2.9018e-1 (2.00e-4)
Offloading7 7000 2.7632e-1 (5.08e-3) − 2.6431e-1 (1.77e-2) − 2.8837e-1 (5.94e-4)
Offloading8 8000 2.7476-1 (5.20e-3) − 2.7134e-1 (1.67e-3) − 2.8626e-1 (8.37e-4)
Offloading9 9000 2.7607e-1 (3.52e-3) − 2.6904e-1 (2.81e-3) − 2.8521e-1 (3.74e-4)
Offloading10 10000 2.7024e-1 (7.04e-4) − 2.7013e-1 (2.49e-3) − 2.8359e-1 (1.17e-3)

+/− / ≈ 1/9/0 0/10/0

134

8.4. PERFORMANCE EVALUATION

Figure 8.4: The non-dominated solution set with the medium HV value obtained by NSGA-II,
SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1 and ELSMO-2 on 1000-dimensional offloading
problem

135

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

Figure 8.5: The non-dominated solution set with the medium HV value obtained by NSGA-II,
SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1 and ELSMO-2 on 5000-dimensional offloading
problem

136

8.4. PERFORMANCE EVALUATION

Figure 8.6: The non-dominated solution set with the medium HV value obtained by NSGA-II,
SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1 and ELSMO-2 on 10000-dimensional offloading
problem

137

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

8.4.3 Comparison with Other Offloading Schemes

It has been observed that ELSMO-2 can get the best non-dominated solution set in the Pareto

front. The non-dominated solution set can give the decision-maker more choices. To further validate

the performance of ELSMO-2, we apply the offloading gain (Equation 7.23) to compare ELSMO-

2 with the other four offloading schemes, which are LOS, EOS, COS and ROS in Section 7.2.3.

According to the different quality of service, the decision-maker may set different weights of w for

the tradeoff between time and energy. If the decision-maker is sensitive to the time consumption,

it may set a larger weight for the time consumption, or if the decision-maker focus is on energy

performance, it may set a larger weight for the energy consumption.

Figs. 8.7, 8.8 and 8.9 present the offloading gain of different offloading schemes under the differ-

ent weights on 1000-, 5000-, 10000-dimensional offloading problems. It can be seen that offloading

is always beneficial compared with the only local offloading scheme. And the proposed ELSMO-

2 can always get the best offloading gain compared with other offloading schemes under different

weights on different large-scale offloading problems. On the other hand, ELSMO-2 takes an obvious

advantage over other offloading schemes when w is becoming larger, which means that ELSMO-2

can reduce the time delay more efficiently. What’s more, compared with ROS, EOS and COS can

obtain a better offloading gain, which also demonstrates that edge and cloud offloading can improve

performance for both time and energy consumption.

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(a) D = 1000

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(b) D = 5000

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(c) D = 10000

Figure 8.7: Offloading gain of different offloading schemes for w = 0.2

8.5 Summary

In this chapter, two evolutionary large-scale sparse multi-objective optimization (ELSMO) algo-

rithms have been proposed and compared for solving heterogeneous edge-cloud computation of-

138

8.5. SUMMARY

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0
Of

flo
ad

in
g

Ga
in

ELSMO-2
EOS
COS
ROS

(a) D = 1000

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(b) D = 5000

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(c) D = 10000

Figure 8.8: Offloading gain of different offloading schemes for w = 0.5

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(a) D = 1000

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(b) D = 5000

Offloading Schemes0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(c) D = 10000

Figure 8.9: Offloading gain of different offloading schemes for w = 0.8

floading problems. Taking into account the large-scale and sparsity properties of the multi-objective

offloading model, the RBM is used to reduce the dimensionality and learn from the Pareto optimal

subspace. The contribution score is applied to select better decision variables to generate offspring

solutions. The proposed algorithms are compared with other MOEAs and offloading schemes to

solve the test problems under different scales, the experimental results have demonstrated the effec-

tiveness and efficiency of the proposed algorithms.

139

CHAPTER 8. LARGE-SCALE OFFLOADING IN EDGE-CLOUD COMPUTING

140

Chapter 9

Dynamic and Secure Multi-objective
Offloading

In this chapter, we design a novel multi-objective computation offloading evolutionary algorithm

(called MCOEA) to solve a dynamic multi-objective offloading problem considering compression,

security and mobility.

In the computation offloading process of MCC and MEC, the mobility and security of IoT devices

play significant roles in offloading decision making. At first, we establish a multi-server multi-user

multi-task multi-objective computation offloading model in IoT-edge-cloud computing networks,

with the consideration of compression, security and mobility, which aims to minimize response

time and energy consumption of the IoT devices. The compression strategy is used to compress the

large data size, and the security layer is adopted to encrypt the private data, as well as the mobility

influence is analyzed in dynamic computation offloading.

For solving the proposed model, a novel multi-objective computation offloading evolutionary al-

gorithm (MCOEA) is developed. In MCOEA, a tailored binary crossover operator is designed to

improve the convergence, and a hybrid mutation operator is employed to retain the diversity of the

solutions. We compare the proposed MCOEA with the other five representative multi-objective

evolutionary algorithms (MOEAs) as well as four offloading schemes to solve ten different compu-

tation offloading problems. In addition, we analyze the advantages and influence of compression,

security and mobility. Furthermore, the impact of different system parameters in IoT-edge-cloud

networks are studied with regard to computation offloading performance. The experimental results

demonstrate the superiority and efficiency of the proposed algorithms.

141

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

9.1 Dynamic and Secure Offloading Model

In this section, we first introduce a collaborative IoT-edge-cloud computing network and then for-

mulate the computation offloading decision model related to task offloading, compression, security

and mobility.

9.1.1 System Overview

In order to take advantage of MEC and MCC, we try to leverage heterogeneous computing re-

sources and consider a collaborative MEC and MCC network with multiple IoT devices, multiple

edge servers and one cloud server. Fig. 9.1 presents a task offloading framework in the IoT-edge-

cloud computing network. The MEC servers can be deployed to the base stations and MCC server

can be placed at the central cloud data center. Each IoT device can communicate with edge server

through the wireless network while edge server and cloud server are connected with wired links. In

addition, the different MEC servers can communicate with each other through wired links. The IoT

device has different computing tasks, which can be executed locally at IoT devices or offloaded to

the MEC servers and MCC servers.

tasks tasks tasks

IoT Devices IoT Devices IoT Devices

MEC Server

MEC Server

MEC Server

MCC Server

Figure 9.1: A task offloading framework in the IoT-edge-cloud computing network

The IoT-edge-cloud computing model consists of N IoT devices, K MEC servers and one MCC

server. In general, we assume that each IoT device has M independent tasks. We denote the set of

IoT devices as N = {1, 2, . . . , N} and the set of tasks as M = {1, 2, · · · ,M}. These different

142

9.1. DYNAMIC AND SECURE OFFLOADING MODEL

computing tasks can be allocated to IoT devices, MEC or MCC servers. We use two binary variables

a1
nm and a2

nm to represent the offloading decision of each task [100], which are defined as:

a1
nm =

{
0, if task is executed locally

1, if task is offloaded
(9.1)

a2
nm =

{
0, if offloaded to MEC server & a1

nm= 1

1, if offloaded to MCC server & a1
nm= 1

(9.2)

We try to find the optimal offloading decision to make IoT devices reduce response time and

energy consumption. The detailed operations of the task offloading decision model as well as com-

pression, security, and mobility are illustrated as follows. Table 9.1 summarizes the key notations

and their definitions in this chapter.

9.1.2 Offloading Decision Model

We intend to establish the task offloading decision model to minimize the completion time and

energy consumption of IoT devices.

IoT Computing Model

For an IoT computing model, each computing task is defined as a tuple (αnm, γnm), where αnm
is the data size of m-th task of IoT n and γnm is the required number of CPU cycles to finish the

task. Due to the limited computing resources and battery life, IoT devices can perform lightweight

tasks.

The execution time of task m on IoT device can be calculated as:

T IoT_exec
nm =

γnm
fIoT

(9.3)

where fIoT is the computing frequency of the IoT device.

Similarly, the energy consumption of the IoT device for executing the task m is formulated as:

EIoT_exec
nm = pex × T IoT_exec

nm (9.4)

where pex is the CPU power of the IoT device.

143

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

Table 9.1: Summary of notations

Notation Description
a1
nm a1

nm represents that task m of IoT device n is executed locally or offloaded
a2
nm a2

nm represents that task m of IoT device n is offloaded to MEC or MCC server
αnm Input data size of the task m of IoT device n
βnm The total data size of the task m of IoT device n for offloading after compression
γnm Total CPU cycles of the task m of IoT device n
pex The CPU power of the IoT device
ptr The transmission power of the IoT device
Blan, Bwan The bandwidth of LAN and WAN
fIoT , fedge, fcloud The computing capability of the IoT device, MEC server and MCC server
T IoT_exec
nm The execution time for processing task m on the IoT device
T edge_exec
nm The execution time for processing task m on the MEC server
T cloud_exec
nm The execution time for processing task m on the MCC server
T edge_tr
nm The transmission time for offloading task m to the MEC server
T cloud_tr
nm The transmission time for offloading task m to the MCC server
EIoT_exec
nm The energy consumption for processing task m on the IoT device

Eedge_tr
nm The energy consumption for transmitting the task m to the MEC server

Ecloud_tr
nm The energy consumption for transmitting the task m to the MCC server

T edge_tr+exec
nm The total computation time for processing the task m on the MEC server
T cloud_tr+exec
nm The total computation time for processing the task m on the MCC server
xnm Compression decision of the task m of the IoT device n
ynm Security decision of the task m of the IoT device n
zn Mobility decision of the IoT device n
σnm CPU cycles required to compress the data size of the task m
ηnm CPU cycles required to decompress the data size of the task m
T edge_compr+decompr
nm The compression and decompression time of the task m on the IoT device and MEC server
T cloud_compr+decompr
nm The compression and decompression time of the task m on the IoT device and MCC server
Ecomprnm The energy consumption for compressing the task m on the IoT device
T edge_tr_compr
nm The transmission time for offloading task m to the MEC server after compression
T cloud_tr_compr
nm The transmission time for offloading task m to the MCC server after compression
Etr_compr
nm The energy consumption for transmitting the task m to the MEC or MCC server after compression

qnm CPU cycles required to encrypt the data size of the task m
dnm CPU cycles required to decrypt the data size of the task m
T edge_enc+dec
nm The encryption and decryption time of the task m on the IoT device and MEC server
T cloud_enc+dec
nm The encryption and decryption time of the task m on the IoT device and MCC server
Eencnm The energy consumption for encrypting the task m on the IoT device
τn The mobility delay of the IoT device n
Tmob_edgen The mobility delay of the IoT device n on the MEC server
Tmob_cloudn The mobility delay of the IoT device n on the MCC server
T IoTnm , T edgenm , T cloudnm The total time consumption for processing the task m on the IoT device, MEC server and MCC server
Enm The total energy consumption for processing the task m of the IoT device n
Tn The completion time for processing all M tasks of IoT device n
T Total completion time for processing all tasks of all IoT devices
En The energy consumption for processing all M tasks of IoT device n
E Total energy consumption for processing all tasks of all IoT devices

144

9.1. DYNAMIC AND SECURE OFFLOADING MODEL

Edge Computing Model

For an edge computing model, IoT devices can communicate with the MEC servers through

wireless communication technologies. The tasks can be offloaded to and then processed on MEC

servers. The energy consumption and delay are neglected for transmitting the results from MEC

servers to IoT devices. This is due to the fact that the size of output result is generally much smaller

than input data [104, 107].

By using a Local Area Network (LAN), the transmission time for offloading the task m to the

MEC server can be expressed as:

T edge_tr
nm =

αnm
Blan

(9.5)

where Blan is the bandwidth of LAN between IoT devices and MEC servers.

The energy consumption for the transmission can be calculated as:

Eedge_tr
nm = ptr × T edge_tr

nm (9.6)

where ptr is the transmission power of IoT device.

The execution time of processing the task m on the MEC server can be given by:

T edge_exec
nm =

γnm
fedge

(9.7)

where fedge is the computing frequency of the MEC server.

Hence, the total computation time for processing the task m on the MEC server can be expressed

by:

T edge_tr+exec
nm = T edge_tr

nm + T edge_exec
nm (9.8)

Cloud Computing Model

For a cloud computing model, IoT devices can communicate with MCC servers with wireless and

wired links. MCC servers can provide more powerful computing capabilities than the IoT devices

and MEC servers. By taking advantage of MCC via Wide Area Network (WAN), the transmission

time and energy consumption for offloading the task m to MCC server can be calculated by:

T cloud_tr
nm =

αnm
Bwan

(9.9)

Ecloud_tr
nm = ptr

αnm
Blan

(9.10)

145

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

whereBwan is the bandwidth of WAN between IoT devices and MCC servers. It is noted that energy

consumption for transmitting the task to MCC server only covers the transmission process between

IoT devices and MEC server, since we only focus on the energy consumption of IoT devices.

The time consumption for executing the task m on MCC server can be expressed as:

T cloud_exec
nm =

γnm
fcloud

(9.11)

where fcloud is the computing frequency of the MCC server.

Hence, the total computation time for processing the task m on the MCC server can be expressed

by:

T cloud_tr+exec
nm = T cloud_tr

nm + T cloud_exec
nm (9.12)

9.1.3 Compression

More and more IoT devices produce ever-increasing amounts of data which could be offloaded

to MEC or MCC servers through the wireless channel. Multiple IoT devices will share the radio

resource and the wireless network may not always be stable and abundant for IoT devices. The large

data size of tasks could cause the communication overhead to exceed the benefits of offloading. To

address this problem, a compression layer can be an efficient solution to reduce the communication

overhead by compressing the tasks’ data before offloading [30].

Let xnm ∈ {0, 1} denote the compression decision for the taskm of IoT device n, where xnm = 0

indicates that task m does not need to compress the data before offloading; and xnm = 1 indicates

that the data of task m is compressed before offloading. When the task is decided to be compressed

before offloading, the extra overhead in terms of time and energy consumption for executing the task

m on MEC servers or MCC servers can be calculated as:{
T edge_compr+decompr
nm = σnm

fIoT
+ ηnm

fedge

T cloud_compr+decompr
nm = σnm

fIoT
+ ηnm

fcloud

(9.13)

Ecomprnm = pex
σnm
fIoT

(9.14)

where σnm and ηnm denote the number of CPU cycles required to compress and decompress the

data of computing task m on IoT device and MEC or MCC server, respectively.

After the data of the task is compressed, the transmission time and energy consumption will be

146

9.1. DYNAMIC AND SECURE OFFLOADING MODEL

reduced, which are respectively calculated as:{
T edge_tr_compr
nm = βnm

Blan

T cloud_tr_compr
nm = βnm

Bwan

(9.15)

Etr_compr
nm = ptr

βnm
Blan

(9.16)

where βnm denotes data size of the computing task after compression, and βnm = αnm×Compr_ratio.

Compr_ratio is the compression ratio.

9.1.4 Security

In MEC and MCC framework, each IoT device can offload the tasks to the MEC and MCC servers

through wireless links. However, this data includes private information such as photos, shopping or

payment. Without a security mechanism, the private data are vulnerable to cyber-attack and damage

while transmitting to edge or cloud servers. Hence, an efficient and secure layer is required to

encrypt the data [29]. We select a cryptographic technique (e.g., AES) to encrypt and protect data.

Let ynm ∈ {0, 1} denote the security decision for the task m of IoT device n, where ynm = 0

indicates that the taskm of IoT device nwill be offloaded without any encryption; ynm = 1 indicates

that the task m of IoT device n will be encrypted before offloading. MEC or MCC servers will

decrypt the data after receiving the encrypted data of the task. When the IoT device considers the

security layer, the extra overhead in terms of time and energy consumption for executing on MEC

servers or MCC servers can be calculated as:{
T edge_enc+dec
nm = qnm

fIoT
+ dnm

fedge

T cloud_enc+dec
nm = qnm

fIoT
+ dnm

fcloud

(9.17)

Eencnm = pex
qnm
fIoT

(9.18)

where qnm and dnm denote the number of CPU cycles required to encrypt and decrypt the data of

computing task m on IoT device and MEC or MCC server, respectively. Accordingly, the security

decision is determined by the IoT user based on private information. We set the security decision

randomly in the simulation scenario.

147

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

9.1.5 Mobility

The mobility of IoT devices from one base station to another base station during the offloading

period may influence the performance of the task offloading. We consider a dynamic offloading

scenario that executes the mobility randomly of different IoT devices. Once the IoT device is moving

from one base station to another new base station during the offloading period, it is necessary to

consider the information hand-over mechanism between these different base stations. We design

two basic information hand-over strategies for IoT devices and base stations. First, when the IoT

device has finished transmitting all the offloaded data to the current base station, whereas it does not

receive the result of the current MEC server and moves to another new base station, the current base

station will transmit the result to the new base station and then send the result to the IoT device.

Another situation is that the IoT device just transmits some part of data to the current base station

and moves to the new base station, the IoT device will retransmit the remaining data to the new base

station to guarantee data integrity and security.

Let zn ∈ {0, 1} denote the mobility decision for IoT device n, where zn = 0 indicates that the

IoT device n will transmit and receive the data from current base station; zn = 1 indicates device

n will move to another new base station during the offloading period. When device n considers

mobility, the extra delay may be caused by moving between different base stations. We denote the

mobility delay as τn, which is often determined by the moving distance of the IoT device.

Tmob−edgen = znτn, if
M∑
m=1

a1
nm

(
1− a2

nm

)
> 0,∀n ∈ N (9.19)

Tmob−clond
n = znτn, if

M∑
m=1

a1
nma

2
nm > 0,∀n ∈ N (9.20)

9.1.6 Problem Formulation

With consideration of the collaborative MEC and MCC computation offloading, compression,

security, and mobility, the total time and energy consumption of m-th task of IoT n in IoT-edge-

cloud framework can be calculated as:

T IoTnm =
(
1− a1

nm

)
T IoT_exec
nm (9.21)

148

9.1. DYNAMIC AND SECURE OFFLOADING MODEL

T edgenm = a1
nm

(
1− a2

nm

)
(1− xnm)T edge_tr+exec

nm

+a1
nm

(
1− a2

nm

)
xnmT

edge_compr+decompr
nm

+a1
nm

(
1− a2

nm

)
xnm

(
T edge_tr_compr
nm + T edge_exec

nm

)
+a1

nm

(
1− a2

nm

)
ynmT

edge_enc+dec
nm

(9.22)

T cloudnm = a1
nma

2
nm (1− xnm)T cloud_tr+exec

nm

+a1
nma

2
nmxnmT

cloud_compr+decompr
nm

+a1
nma

2
nmxnm

(
T cloud_tr_compr
nm + T cloud_exec

nm

)
+a1

nma
2
nmynmT

cloud_enc+dec
nm

(9.23)

Enm =
(
1− a1

nm

)
EIoT_exec
nm

+a1
nm

(
1− a2

nm

)
(1− xnm)Eedge_tr

nm

+a1
nma

2
nm (1− xnm)Ecloud_tr

nm

+a1
nmxnmE

compr
nm + a1

nmxnmE
tr_compr
nm

+a1
nmynmE

enc
nm

(9.24)

where T IoTnm , T edgenm and T cloudnm denote time consumption of task m executed on IoT devices, MEC

servers and MCC servers, respectively. Enm represents the energy consumption of the IoT devices

for processing the task m.

The total execution time and energy consumption of all tasks of the n-th IoT can be expressed by:

Tn = max
{
T IoTn , T edgen + Tmob_edgen , T cloudn + Tmob_cloudn

}
(9.25)

En =
M∑
m=1

Enm (9.26)

where

T IoTn =
M∑
m=1

T IoTnm

T edgen =
M∑
m=1

T edgenm

T cloudn =
M∑
m=1

T cloudnm

(9.27)

149

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

The total time and energy consumption for executing all tasks can be given by:

T = max

{
N∑
n=1

T IoTn ,
N∑
n=1

(
T edgen + Tmob_edgen

)
,
N∑
n=1

(
T cloudn + Tmob_cloudn

) }
(9.28)

E =
N∑
n=1

En (9.29)

Thus, we establish a dynamic and secure IoT-edge-cloud multi-objective computation offloading

optimization model, with consideration of compression, security and mobility.

9.2 The Proposed MCOEA

This section presents the details of the proposed novel multi-objective computation offloading

evolutionary algorithm (MCOEA) for solving dynamic and secure computation offloading problems

in IoT-edge-cloud orchestrated computing networks.

9.2.1 General Framework

The general framework of the proposed algorithm is presented in Algorithm 11. In the beginning,

the number of Ñ solutions are initialized to form the population P . In each iteration, the offspring

solution set O is generated by the crossover operator (Step 3). Then the offspring solution set O

is mutated to retain the diversity by the mutation operator (Step 4). The original population P and

new offspring O are combined to a new population. The non-dominated front number and crowding

distance are calculated by the fast non-dominated sorting (Step 6) and crowding distance calculation

(Step 7) methods in NSGA-II [24]. Finally, Ñ solutions are selected from the combined population

based on the non-dominated front number and crowding distance.

9.2.2 Crossover Operator

Considering that the multi-objective computation offloading decision model adopts the binary

encoding method, the crossover operator applies a binary crossover idea to generate offspring so-

lutions [103]. First, the mating pool P ′ randomly selects parents from the global population with

a probability 0.8 and from the neighborhood at probability 0.2, respectively [58]. Through the

neighborhood selection method, the closer solutions can exchange information to generate similar

offspring solutions to improve the convergence. The selected parents from the global population

can help the generated offspring solutions to keep the diversity. The neighborhood size T is set

150

9.2. THE PROPOSED MCOEA

Algorithm 11: Framework of MCOEA

Input: The population size Ñ
Output: The final population P

1 P ← Initialization
(
Ñ
)

;

2 while termination criterion not fulfilled do
3 O = CrossoverOperator (P) in Algorithm 12;
4 O = MutationOperator (O) in Algorithm 13;
5 P ← P ∪O;
6 [F1, F2, · · ·]← NondominatedSorting (P);
7 CrowdDis← CrowdingDistance (F1, F2, · · ·);
8 k ← arg mini |F1 ∪ · · · ∪ Fi| ≥ Ñ ;
9 Delete |F1 ∪ · · · ∪ Fk| − Ñ solutions from Fk with the smallest CrowdDis;

10 P ← F1 ∪ · · · ∪ Fk;
11 end

to 20% of the population size, and the objective values of all solutions are normalized to the scale

[0,1]. After that, a Ñ∗T neighborhood matrix Nic is generated, while Nic (i) consists of T nearest

solutions to P (i) based on the Euclidean distances among normalized objective values.

We use the k-bit crossover method to exchange the decision variable values. First, the offspring set

O is initialized to the same as P , we compare decision variable values of the parent P ′ (i) with P (i)

and find the index j where the bit values of the two parents are different (s.t. P (i, j) 6= P ′ (i, j)).

From the total |j| indices, we select at least one but no more than |j| − 1 decision variables to

cross between offspring solution O (i) and the parent solution P ′ (i). Compared with the traditional

single-point crossover method [24], the k-bit crossover method can exchange information frequently

to improve the convergence speed. The procedure of the crossover operator are shown in Algorithm

12.

9.2.3 Mutation Operator

The main idea of the mutation operator is to retain the diversity of the solutions. The mutation

operator is detailed in Algorithm 13. Here we adopt the hybrid mutation operator to mutate the

solutions [103]. The modified mutation method (Steps 2-8) and a traditional mutation method (Steps

9-15) are randomly applied with a probability of 0.2 and 0.8. In the modified mutation method, we

find the indices t1 and t0 to satisfy O
(
i, t1

)
== 1 and O

(
i, t0

)
== 0, respectively. According

to Steps 5-8, the specific actions are applied to turn the decision variable value 1 to 0 or 0 to 1.

151

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

Algorithm 12: CrossoverOperator(P)

Input: The population P
Output: The offspring set O

1 The population size Ñ = |P |;
2 Set the neighborhood size T =

⌈
Ñ ∗ 0.2

⌉
;

3 Normalize the objective values of all solutions in P to the scale [0,1];
4 Generate a neighborhood matrix Nic, while Nic (i) consists of T nearest solutions to P (i)

based on the normalized Euclidean distances among solutions;
5 Generate an empty parent set P ′;
6 for i = 1, . . . , Ñ do
7 if rand < 0.8 then
8 Randomly select a parent from Nic (i) into P ′;
9 else

10 Randomly select a parent from P into P ′;
11 end
12 end
13 Initialize O = P ;
14 for i = 1, . . . , Ñ do
15 Find index j s.t. P (i, j) 6= P ′ (i, j);
16 if |j| > 1 then
17 k = j(randperm (|j| , randi ({1, . . . , |j| − 1} , 1)));
18 O (i, k) = P ′ (i, k);
19 end
20 end

On the other hand, the traditional mutation method adopts the bitwise mutation [24]. The modified

mutation method aims to balance the probabilities of exchanging the value of 1 and 0, respectively.

We will give an example to show the advantage of the modified mutation method.

Assuming that the decision space dimension (denoted as D) is 10, the number of decision vari-

ables whose value equals 1 is 2 while the number of decision variables whose value equals 0 is 8. In

the traditional bitwise mutation method, the mutation probability of each bit in the genetic algorithm

is equal to the reciprocal of the encoding length (i.e., 1/D). Therefore, in the traditional bitwise mu-

tation method, the probability of transforming at least one value 1 to 0 is 1 − (1− 1/10)2 = 0.19,

while that of transforming at least one value 0 to 1 is 1 − (1− 1/10)8 ≈ 0.57. The probability of

turning 0 to 1 is about three times higher than transforming 1 to 0, which is not fair to mutate 0

and 1 decision variables in the offspring solutions. By contrast, in the modified mutation method,

152

9.2. THE PROPOSED MCOEA

the probability of transforming at least one value 1 to 0 is 1 − (1− 1/(1 + 2))2 ≈ 0.56, while that

of transforming at least one value 0 to 1 is 1 − (1− 1/ (1 + 8))8 ≈ 0.61. It can be seen that the

probability of turning binary variables to each other is similar, which can improve the diversity of

the offspring solutions.

Algorithm 13: MutationOperator(O)

Input: The offspring set O
Output: The offspring set O

1 for i = 1, . . . , Ñ do
2 if rand < 0.2 then
3 Find index t1 s.t. O

(
i, t1

)
== 1;

4 Find index t0 s.t. O
(
i, t0

)
== 0;

5 k1 =
(
rand

(
1,
∣∣t1∣∣) < 1/

(
1 +

∣∣t1∣∣));
6 k0 =

(
rand

(
1,
∣∣t0∣∣) < 1/

(
1 +

∣∣t0∣∣));
7 O

(
i, t1 (k1)

)
= Õ

(
i, t1 (k1)

)
;

8 O
(
i, t0 (k0)

)
= Õ

(
i, t0 (k0)

)
;

9 else
10 for l = 1, . . . , D do
11 if rand < 1/D then
12 O (i, l) = Õ (i, l);
13 end
14 end
15 end
16 end

9.2.4 Computational Complexity

In the proposed algorithm, the major costs are the iteration process in Algorithm 11. The crossover

operator (Step 3) needs O
(
mÑ

)
operations to select parents from the mating pool and requires

O
(
ÑD

)
operations to generate the offspring set, where m is the number of objectives, Ñ is the

population size, D is the number of decision variables. The mutation operator (Step 4) performs

O
(
ÑD

)
operations to mutate the offspring solutions. The environment selection using fast non-

dominated sorting and crowding distance methods (Steps 6-10) needs O
(
mÑ2

)
to select the new

solutions. To summarize, the overall computational complexity of MCOEA within one generation

is O
(
mÑ2

)
.

153

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

9.3 Performance Evaluation

In this section, we evaluate the performance of the proposed MCOEA.

9.3.1 Experiment Profile

In the IoT-edge-cloud environment, we set up the multi-user multi-task computation offloading

scenario with consideration of compression, security, and mobility. The number of IoT devices is

selected between 20 and 200. The number of independent tasks of each IoT device is M = 5. The

number of edge servers is K = 3. As an example, the CPU frequencies of IoT device, MEC server

and MCC server are fIoT = 0.5 GHz, fedge = 5 GHz, and fcloud = 10 GHz, respectively. The CPU

computation power and data transmission power of IoT device are pex = 0.7 W, and ptr = 0.2 W,

respectively. The bandwidth of LAN and WAN are set to Blan ∈ (10, 15) MB/s and Bwan ∈ (5, 10)

MB/s. The data size of each task is uniformly distributed between 10 MB and 30 MB. Due to the

security decision is based on the private information of task, while mobility decision is related to

the mobility of IoT device, then we set the security decision and mobility decision randomly using

uniform distribution in the following simulations.

Here we adopt the different types of applications in Table 7.2 to analyze the impact of application

complexity. Furthermore, we add an augmented reality application as label F with ρ = 12000

cycles/byte. In addition, the label C represents the x264 CBR encode application and ρ = 1900

cycles/byte. The type C application is taken as an example of the offloading problems.

We compare MCOEA with five other algorithms to solve ten different offloading problems, which

consider the number of IoT devices N = [20, 40, 60, 80, 100, 120, 140, 160, 180, 200], thus D =

[300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000]. The comparison algorithms are NSGA-

II [24], NSGA-III [22], NSGA-II/SDR [87], AREA [47], and PREA [108]. NSGA-II, NSGA-III,

NSGA-II/SDR are representative Pareto dominance-based algorithms. AREA uses decomposition-

based framework and PREA applies indicator-based method to solve MOPs, respectively.

In all algorithms, the population size and the number of function evaluations is set to 50 and

50 ∗ D, respectively. The solution encoding uses the binary-encoding method. The crossover and

mutation operators in NSGA-II, NSGA-III, NSGA-II/SDR, AREA, and PREA adopt the single-

point and bitwise mutation operators. We utilize the HV [96] as the performance metric. Each

algorithm is executed 30 times independently and the average and standard deviation of the metric

values are recorded. The Wilcoxon rank sum test at a 5% significance level is used to analyze the

experimental results.

154

9.3. PERFORMANCE EVALUATION

9.3.2 Convergence Analysis

Table 9.2 lists the HV metric values obtained by NSGA-II, NSGA-III, NSGA-II/SDR, AREA,

PREA and MCOEA for solving ten computation offloading problems. The proposed MCOEA has

achieved the best performance on 9 of 10 test instances, while PREA only gets 1 of 10 best results

for the rest of compared algorithms. Compared with the other five comparison algorithms NSGA-

II, NSGA-III, NSGA-II/SDR, AREA, and PREA, MCOEA can get better results in terms of HV

metric. With the increment of the dimension, MCOEA and PREA have an obvious advantage over

other compared algorithms.

Fig. 9.2 presents the non-dominated solution set with the medium HV value obtained by NSGA-

II, NSGA-III, NSGA-II/SDR, AREA, PREA, and MCOEA on N = 20, 100, and 200 computation

offloading problems. We can observe that MCOEA can always obtain a set of well-distributed

and well-converged solutions for different dimensional computation offloading problems. With the

growth of the number of the IoT devices, the performance of convergence or diversity of NSGA-II,

NSGA-III, NSGA-II/SDR, AREA, and PREA deteriorates, while PREA can obtain a better solution

set than NSGA-II, NSGA-III, NSGA-II/SDR and AREA.

9.3.3 Compression Security Mobility Analysis

Compression, security and mobility models play a significant role in the computation offloading

problems. We take N = 100 computation offloading instance as an example to analyze the per-

formance. Fig. 9.3a presents the Pareto fronts of the N = 100 computation offloading model with

and without compression. As shown in Fig. 9.3a, the offloading model with compression can save

time and energy compared with the model without compression to some extent. Since the compres-

sion strategy makes the data size of tasks become small, the offloading decision model can reduce

transmission time and transmission energy consumption. However, the compression process can

cause extra energy consumption in the IoT device. Hence, most of the non-dominated solutions

in the offloading model with compression have better convergence than that in the model without

compression, whereas the model without compression can still get the least energy consumption.

Fig. 9.3b shows the Pareto fronts of the N = 100 computation offloading model with and without

security. Considering the security layer, the encryption and decryption of data size of tasks will

increase the time and energy consumption of IoT devices and edge/cloud servers, respectively. The

non-dominated solution set in the model without security has better convergence than that in the

model with security. Fig. 9.3c illustrates the Pareto fronts of the N = 100 computation offloading

model with and without mobility. It can be seen that when the model considers the mobility of

155

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

Table 9.2: The HV values obtained by NSGA-II, NSGA-III, NSGA-II/SDR, AREA, PREA and
MCOEA on ten computation offloading problems

Problem N NSGA-II NSGA-III NSGA-II/SDR

Offloading1 20 4.2722e-1 (7.03e-3) − 4.1602e-1 (8.32e-3) − 4.1653e-1 (4.54e-3) −
Offloading2 40 4.2494e-1 (1.07e-2) − 4.0896e-1 (1.10e-2) − 4.0367e-1 (9.64e-3) −
Offloading3 60 4.2757e-1 (6.63e-3) − 4.0125e-1 (1.30e-2) − 3.9600e-1 (1.18e-2) −
Offloading4 80 4.3037e-1 (6.30e-3) − 3.9308e-1 (1.80e-2) − 3.9747e-1 (7.23e-3) −
Offloading5 100 4.1932e-1 (7.65e-3) − 3.7703e-1 (1.40e-2) − 3.9042e-1 (1.46e-2) −
Offloading6 120 2.4780e-1 (6.85e-4) − 2.4587e-1 (6.99e-4) − 2.4483e-1 (4.67e-4) −
Offloading7 140 4.2395e-1 (8.49e-3) − 3.8467e-1 (1.68e-2) − 3.8032e-1 (1.11e-2) −
Offloading8 160 4.0963e-1 (9.93e-3) − 3.6636e-1 (1.04e-2) − 3.6394e-1 (9.95e-3) −
Offloading9 180 4.0951e-1 (6.38e-3) − 3.7475e-1 (1.19e-2) − 3.5894e-1 (9.35e-3) −
Offloading10 200 4.0680e-1 (7.98e-3) − 3.6521e-1 (8.73e-3) − 3.5369e-1 (1.09e-2) −

+/− / ≈ 0/10/0 0/10/0 0/10/0

Problem N AREA PREA MCOEA

Offloading1 20 4.1892e-1 (4.69e-3) − 4.3319e-1 (2.91e-3) − 4.3859e-1 (3.90e-3)
Offloading2 40 4.0481e-1 (1.36e-2) − 4.3293e-1 (4.44e-3) ≈ 4.3598e-1 (2.55e-3)
Offloading3 60 4.0034e-1 (1.76e-2) − 4.3522e-1 (3.59e-3) ≈ 4.3591e-1 (2.60e-3)
Offloading4 80 4.0213e-1 (1.10e-2) − 4.3895e-1 (5.52e-3) ≈ 4.4069e-1 (4.50e-3)
Offloading5 100 3.9075e-1 (1.13e-2) − 4.3270e-1 (7.33e-3) ≈ 4.3652e-1 (4.20e-3)
Offloading6 120 2.8219e-1 (2.73e-3) − 2.7564e-1 (2.51e-3) − 2.9018e-1 (2.00e-4)
Offloading7 140 3.7507e-1 (1.52e-2) − 4.3404e-1 (6.98e-3) ≈ 4.3936e-1 (3.27e-3)
Offloading8 160 3.6943e-1 (1.40e-2) − 4.2445e-1 (6.01e-3) ≈ 4.2853e-1 (5.05e-3)
Offloading9 180 3.6307e-1 (9.46e-3) − 4.3081e-1 (6.23e-3) ≈ 4.2785e-1 (4.79e-3)
Offloading10 200 3.6055e-1 (1.09e-2) − 4.2403e-1 (3.77e-3) ≈ 4.2723e-1 (4.69e-3)

+/− / ≈ 0/10/0 0/2/8

156

9.3. PERFORMANCE EVALUATION

370 380 390 400 410 420 430

Time

100

150

200

250

300

350
E

ne
rg

y
 N=20

NSGA-II
NSGA-III
NSGA-II/SDR
AREA
PREA
MCOEA

(a) N = 10

1900 1950 2000 2050

Time

600

800

1000

1200

1400

1600

1800

E
ne

rg
y

 N=100

NSGA-II
NSGA-III
NSGA-II/SDR
AREA
PREA
MCOEA

(b) N = 100

3800 3850 3900 3950 4000 4050 4100 4150

Time

1500

2000

2500

3000

3500

E
ne

rg
y

 N=200

NSGA-II
NSGA-III
NSGA-II/SDR
AREA
PREA
MCOEA

(c) N = 200

Figure 9.2: The non-dominated solution set with the medium HV value obtained by NSGA-II,
NSGA-III, NSGA-II/SDR, AREA, PREA, and MCOEA on N = 10, 100, 200 offloading problems

the IoT devices, the extra delay will be compared with the model without mobility, while energy

consumption will not change so much.

9.3.4 Comparison with Different Offloading Schemes

We use the other four offloading schemes, i.e., LOS, EOS, COS and ROS of Section 7.2.3 to

further compare the performance with the proposed MCOEA. The system cost and offloading gain in

Equations 7.22 and 7.23 are adopted as performance metrics. It is noted that the proposed MCOEA

157

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

1900 1950 2000 2050 2100

Time

400

600

800

1000

1200

1400

1600

1800

E
n

er
g

y

N=100

Model without Compression
Model with Compression

(a) Compression

1750 1800 1850 1900 1950 2000

Time

400

600

800

1000

1200

1400

1600

1800

E
n

er
g

y

N=100

Model without Security
Model with Security

(b) Security

(c) Mobility

Figure 9.3: The Pareto fronts of the N = 100 computation offloading model with regard to com-
pression, security and mobility

is adopted as the baseline in the offloading gain metric, which measures the benefits of the MCOEA

compared with LOS, EOS, COS and ROS, respectively.

Figs. 9.4, 9.5, and 9.6 present the offloading gain of different offloading schemes under different

weights. Compared with LOS, EOS, COS and ROS, MCOEA can always benefit a lot with regard

to time and energy consumption, especially for LOS and ROS. COS can get better performance

than EOS. With the growing number of IoT devices, more and more tasks will be chosen to be

offloaded to MCC servers since cloud servers have more powerful computation capability. Hence,

158

9.3. PERFORMANCE EVALUATION

the offloading gain between MCOEA and COS will decrease due to the growing number of IoT

devices. In addition, with the increment of the tradeoff parameter w, the offloading gain of EOS

and COS will be improved, which means the MCOEA is more sensitive to time latency than energy

consumption.

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

(a) N = 20

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

(b) N = 100

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

(c) N = 200

Figure 9.4: Offloading gain of different offloading schemes for w = 0.2

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

(a) N = 20

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

(b) N = 100

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

(c) N = 200

Figure 9.5: Offloading gain of different offloading schemes for w = 0.5

9.3.5 Impact of System Parameters

The impact of different system parameters are analyzed in the IoT-edge-cloud computation of-

floading model, where w = 0.5 and N = 100. Fig. 9.7 presents the performance of system cost

and offloading gain on different offloading schemes under the different average data size. MCOEA

can achieve the best results with respect to system cost and offloading gain. With the increment of

average data size of tasks, the system cost of LOS and ROS increase much faster than EOS, COS

and MCOEA, while the offloading gain of EOS and COS will decrease since that the complicated

tasks will be more likely to be processed on MEC or MCC servers.

159

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

(a) N = 20

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in
(b) N = 100

LOS EOS COS ROS
Offloading Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Of
flo

ad
in

g
Ga

in

(c) N = 200

Figure 9.6: Offloading gain of different offloading schemes for w = 0.8

5 10 15 20 25 30
Average Data Size (MB)

0

1

2

3

4

5

S
ys

te
m

 C
os

t

#104

LOS
EOS
COS
ROS
MCOEA

5 10 15 20 25 30
Average Data Size (MB)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ff

lo
ad

in
g

G
ai

n

LOS
EOS
COS
ROS

Figure 9.7: System cost and offloading gain on different offloading schemes under different average
data size

Fig. 9.8 illustrates the performance of system cost and offloading gain on different offloading

schemes under different edge server CPU frequency. The system cost of LOS and COS stay the

same. With the increment of edge server CPU frequency, the system cost of EOS will decrease

obviously in the beginning and then decrease slowly. Since the edge server CPU frequency is in-

creasing, more and more tasks can be offloaded to MEC servers, and the offloading gain of EOS will

decrease while COS is on the contrary.

Fig. 9.9 shows the performance of system cost and offloading gain on different offloading schemes

under different types of applications. With the increment of parameter ρ, the total CPU cycles for

processing tasks are increasing, causing more time and energy consumption for finishing tasks. The

increasing speed of system cost of LOS is much faster than EOS and COS due to the fact that the

computing capability of MEC and MCC servers are more powerful than IoT devices. The offloading

160

9.3. PERFORMANCE EVALUATION

1 3 5 7 9
Edge Server CPU Frequency (GHz)

0

0.5

1

1.5

2

2.5

3

3.5
S

ys
te

m
 C

os
t

#104

LOS
EOS
COS
ROS
MCOEA

1 3 5 7 9
Edge Server CPU Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

O
ff

lo
ad

in
g

G
ai

n

LOS
EOS
COS
ROS

Figure 9.8: System cost and offloading gain on different offloading schemes under different edge
server CPU frequency

gain of EOS and COS is increasing with the increment of ρ, while they begin to decrease after ρ

is increasing to a certain extent, that is because the system cost of EOS and COS belongs to an

increasingly relevant proportion of MCOEA.

A B C D E F
Applications

0

0.5

1

1.5

2

2.5

S
ys

te
m

 C
os

t

#105

LOS
EOS
COS
ROS
MCOEA

A B C D E F
Applications

0

0.2

0.4

0.6

0.8

1

O
ff

lo
ad

in
g

G
ai

n

LOS
EOS
COS
ROS

Figure 9.9: System cost and offloading gain on different offloading schemes under different types of
applications

161

CHAPTER 9. DYNAMIC AND SECURE MULTI-OBJECTIVE OFFLOADING

9.4 Summary

In this chapter, we proposed a novel multi-objective computation offloading evolutionary algo-

rithm (MCOEA) for solving dynamic and secure computation offloading problems in collabora-

tive IoT-edge-cloud computing networks. We establish the multi-objective computation offloading

model with the consideration of compression, security and mobility. The compression model can

compress the data size of tasks to reduce the transmission overhead. The security layer is used to

encrypt private data for protecting personal information. The mobility model reflects the dynamic

positions of IoT devices in the offloading period and will cause extra delay. Furthermore, the binary

k-bit crossover and hybrid mutation can be used to improve the convergence and diversity of the

non-dominated solutions. The proposed MCOEA is compared with the other five state-of-the-art

multi-objective evolutionary algorithms and four offloading strategies on ten different offloading

problems. The experiment results demonstrate the efficiency and superiority of the proposed algo-

rithm.

162

Part IV

Concluding Remarks

163

Chapter 10

Conclusions and Outlook

10.1 Conclusions

In this thesis, the main goal has been to design effective and efficient multi-objective evolution-

ary algorithms (MOEAs) to solve multi- and many-objective optimization problems (MOPs and

MaOPs), constrained and large-scale optimization problems. Then we apply and develop multi-

objective optimization methods to deal with different computation offloading problems in collabo-

rative edge-cloud computing. We discuss the contributions as follows:

• Multi-objective Optimization Algorithm: A multi-objective artificial bee colony algorithm us-

ing the decomposition approach is proposed to solve normalized and scaled MOPs (Chapter
3). We substitute the artificial bee colony operator for the original genetic operator to improve

the convergence. The modified Tchebycheff approach is used to retain diversity. An adaptive

normalization method is adopted to solve scaled problems. The proposed algorithm exhibits

better convergence and diversity than other compared algorithms on most instances.

• Many-objective Optimization Algorithm: A decomposition-based evolutionary algorithm with

adaptive weight vectors is presented for solving the normalized and scaled MaOPs (Chapter
4). We use an adaptive weight vector method to tune weight vectors for solving scaled prob-

lems instead of using normalization approaches. We compare and analyze the performance of

the existing six decomposition approaches and select the best one. Further, one novel replace-

ment strategy is adopted to keep the balance between convergence and diversity for MaOPs.

The algorithm is reliable for dealing with different normalized and scaled MaOPs.

• Adaptive Algorithm for Irregular Pareto fronts: An adaptive decomposition-based evolution-

ary algorithm is developed to solve different MOPs and MaOPs with irregular Pareto fronts

165

CHAPTER 10. CONCLUSIONS AND OUTLOOK

(Chapter 5). The archive in the algorithm is used to store non-dominated solutions. We de-

sign a novel archive maintenance strategy to avoid the dominance resistant solutions as well as

retain the good diversity. An adaptive adding and deleting weight vector method is adopted to

solve MOPs and MaOPs with regular and irregular Pareto fronts. The proposed algorithm can

achieve good performance of both convergence and diversity on different MOPs and MaOPs

with various Pareto front shapes (the simplex-like, the inverted, the disconnected, the degen-

erated, the scaled, the mixed, the high dimensional).

• Constrained Optimization in Optimization: Three tailored constrained multi-objective opti-

mization algorithms are designed to solve different constrained MOPs (CMOPs) selected from

widely used benchmark suites (Chapter 6). Then we apply these three constrained algorithms

to deal with constrained computation offloading optimization problems in mobile edge-cloud

computing (Chapter 7). The proposed algorithms use two search stages (without considering

constraint handling first and then with constraint handling). The two search stages can help

the algorithms to jump over the infeasible regions. The proposed constrained optimization

algorithms can work well for the complicated benchmark test problems as well as constrained

applications offloading optimization problems.

• Large-scale Offloading Optimization: Two evolutionary large-scale sparse multi-objective op-

timization algorithms are developed to solve large-scale computation offloading problems

in collaborative edge-cloud computing (Chapter 8). First we establish a large-scale multi-

objective computation offloading optimization model. The restricted Boltzmann machine

(RBM) is used to reduce the dimensionality of the problem. The contribution scores of deci-

sion variables are applied to select better decision variables for generating offspring solutions.

The proposed algorithms can achieve good performance for large-scale offloading optimiza-

tion problems.

• Dynamic and Secure Offloading Optimization: A novel multi-objective computation offload-

ing evolutionary algorithm (MCOEA) is proposed to tackle dynamic and secure computation

offloading problems (Chapter 9). We set up a dynamic multi-objective computation offload-

ing model considering compression, security and mobility. The new binary crossover and

mutation operators are designed in the proposed algorithm to improve convergence and diver-

sity for solving the model. Furthermore, we analyze the impact of compression, security and

mobility in the offloading optimization.

The source codes of this work are available on GitHub: https://github.com/Guang

fu17. The proposed multi-objective optimization algorithms in the thesis can be also used to solve

two and three-objective optimization problems in other research areas. The designed many-objective

166

https://github.com/Guangfu17
https://github.com/Guangfu17

10.2. OUTLOOK

optimization algorithm can be applied to deal with optimization problems with more than three ob-

jectives. In addition, the tailored constrained optimization algorithms are able to tackle constrained

multi-objective optimization problems having a set of constraints. The large-scale optimization al-

gorithms can be applied to solve large-scale multi-objective optimization problems with large-scale

binary decision variables.

10.2 Outlook

Several directions for future work are worth investigated. The main ideas of them are summarized

as follows:

• In order to improve the performance of decomposition-based multi-objective evolutionary al-

gorithms for solving MOPs and MaOPs with irregular Pareto fronts, adjusting weight vectors

to be suitable for various Pareto front shapes is one of the key factors in the designed algo-

rithm. However, the weight vector adaptation methods may bring two shortcomings. The

first one is that it may deteriorate the performance of dealing with problems with regular

Pareto fronts. The second one is that it can increase the computational complexity of the al-

gorithm. Some other more efficient and effective adaptation methods of decomposition-based

algorithms will be studied.

• For large-scale multi-objective optimization, some other more efficient methods that can re-

duce the dimensionality will be considered. The relationship between different decision vari-

ables as well as relevant groups for the decision variables will be investigated. Furthermore,

the efficient large-scale offloading decision algorithms will be applied to a real software de-

ployment framework in mobile edge/cloud computing.

• The different computing tasks in IoT devices are assumed to be independent in this work.

However, a user often needs to execute multiple related tasks, the input of one task may

require the output of another. In the future, the dependencies between the tasks in various

applications will be considered.

• During the process of task offloading, the transmitted data is vulnerable. To remedy this

issue, the blockchain technology can be employed in mobile edge computing to ensure the

data integrity. In addition, a decentralized, transparent and trustworthy toll collection based

on blockchain technology is worth investigating to motivate the heterogeneous edge platforms

to share their vacant resource.

• Adaptive deep learning methods for tackling task offloading problems is another interest-

167

CHAPTER 10. CONCLUSIONS AND OUTLOOK

ing research topic. On one hand, by aggregating the decision-making ability of reinforce-

ment learning, and the rapid environment learning ability of meta-learning, it is possible to

quickly and flexibly obtain the near-optimal offloading strategy from the dynamic environ-

ment. What’s more, federated learning can be applied to solve computation offloading prob-

lems for guaranteeing data privacy and security.

168

Bibliography

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie. Mobile edge computing: A survey. IEEE

Internet of Things Journal, 5(1):450–465, 2018.

[2] M. Asafuddoula, T. Ray, and R. Sarker. A decomposition-based evolutionary algorithm for

many objective optimization. IEEE Transactions on Evolutionary Computation, 19(3):445–

460, 2014.

[3] J. Bader and E. Zitzler. Hype: An algorithm for fast hypervolume-based many-objective

optimization. Evolutionary computation, 19(1):45–76, 2011.

[4] N. Beume, B. Naujoks, and M. Emmerich. Sms-emoa: Multiobjective selection based on

dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669,

2007.

[5] L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle. An empirical assessment of the properties

of inverted generational distance on multi- and many-objective optimization. In Evolutionary

Multi-Criterion Optimization, pages 31–45, Cham, 2017. Springer International Publishing.

[6] S. Bi, L. Huang, and Y. A. Zhang. Joint optimization of service caching placement and

computation offloading in mobile edge computing systems. IEEE Transactions on Wireless

Communications, 19(7):4947–4963, 2020.

[7] S. Bi and Y. J. Zhang. Computation rate maximization for wireless powered mobile-edge

computing with binary computation offloading. IEEE Transactions on Wireless Communica-

tions, 17(6):4177–4190, 2018.

[8] C. Blum. m. dorigo, t. stützle, ant colony optimization (2004) mit press, cambridge, ma 300

pp. Artificial Intelligence, 165(2):261–264, 2005.

[9] P. A. Bosman and D. Thierens. The balance between proximity and diversity in multiobjective

evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 7(2):174–188,

2003.

[10] X. Cai, Y. Li, Z. Fan, and Q. Zhang. An external archive guided multiobjective evolutionary

169

BIBLIOGRAPHY

algorithm based on decomposition for combinatorial optimization. IEEE Transactions on

Evolutionary Computation, 19(4):508–523, 2015.

[11] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. A reference vector guided evolutionary al-

gorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation,

20(5):773–791, 2016.

[12] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. Test problems for large-scale multiobjective

and many-objective optimization. IEEE Transactions on Cybernetics, 47(12):4108–4121,

2017.

[13] R. Cheng, M. Li, Y. Tian, X. Zhang, and S. Yang. A benchmark test suite for evolutionary

many-objective optimization. Complex & Intelligent Systems, 3(1):67–81, 2017.

[14] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen. Evolutionary algorithms for solving

multi-objective problems. Springer, 2007.

[15] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates. Pesa-ii: Region-based selection

in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on

Genetic and Evolutionary Computation, pages 283–290. Morgan Kaufmann Publishers Inc.,

2001.

[16] C. Darwin. On the Origin of Species by Means of Natural Selection: Or the Preservation of

Favoured Races in the Struggle for Life. D. Appleton, 1869.

[17] I. Das and J. E. Dennis. Normal-boundary intersection: A new method for generating the

pareto surface in nonlinear multicriteria optimization problems. SIAM journal on optimiza-

tion, 8(3):631–657, 1998.

[18] L. R. de Farias, P. H. Braga, H. F. Bassani, and A. F. Araújo. Moea/d with uniformly randomly

adaptive weights. In Proceedings of the Genetic and Evolutionary Computation Conference,

pages 641–648. ACM, 2018.

[19] K. Deb. An introduction to genetic algorithms. Sadhana, 24(4):293–315, 1999.

[20] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. Complex

systems, 9(2):115–148, 1995.

[21] K. Deb and M. Goyal. A combined genetic adaptive search (geneas) for engineering design.

Computer Science and informatics, 26:30–45, 1996.

[22] K. Deb and H. Jain. An evolutionary many-objective optimization algorithm using reference-

point-based nondominated sorting approach, part i: solving problems with box constraints.

IEEE Transactions on Evolutionary Computation, 18(4):577–601, 2014.

[23] K. Deb and D. Kalyanmoy. Multi-Objective Optimization Using Evolutionary Algorithms.

John Wiley & Sons, Inc., New York, NY, USA, 2001.

170

BIBLIOGRAPHY

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic

algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[25] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test problems for evolutionary

multi-objective optimization. Technical report, Computer Engineering and Networks Labo-

ratory (TIK), Swiss Federal Institute of Technology (ETH), 2001.

[26] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin. Learning for computation offloading in mobile

edge computing. IEEE Transactions on Communications, 66(12):6353–6367, 2018.

[27] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek. Offloading in mobile edge computing: Task

allocation and computational frequency scaling. IEEE Transactions on Communications,

65(8):3571–3584, 2017.

[28] J. Du, L. Zhao, J. Feng, and X. Chu. Computation offloading and resource allocation in

mixed fog/cloud computing systems with min-max fairness guarantee. IEEE Transactions on

Communications, 66(4):1594–1608, 2018.

[29] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li. Resource allocation and computation offload-

ing with data security for mobile edge computing. Future Generation Computer Systems,

100:531–541, 2019.

[30] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang. Efficient and se-

cure multi-user multi-task computation offloading for mobile-edge computing in mobile iot

networks. IEEE Transactions on Network and Service Management, 17(4):2410–2422, 2020.

[31] Z. Fan, Y. Fang, W. Li, J. Lu, X. Cai, and C. Wei. A comparative study of constrained multi-

objective evolutionary algorithms on constrained multi-objective optimization problems. In

2017 IEEE Congress on Evolutionary Computation (CEC), pages 209–216. IEEE, 2017.

[32] Z. Fan, W. Li, X. Cai, H. Huang, Y. Fang, Y. You, J. Mo, C. Wei, and E. Goodman. An im-

proved epsilon constraint-handling method in moea/d for cmops with large infeasible regions.

Soft Computing, 23(23):12491–12510, 2019.

[33] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman. Push and pull

search for solving constrained multi-objective optimization problems. Swarm and Evolution-

ary Computation, 44:665–679, 2019.

[34] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman. Difficulty ad-

justable and scalable constrained multiobjective test problem toolkit. Evolutionary computa-

tion, 28(3):339–378, 2020.

[35] Z. Fan, Z. Wang, W. Li, Y. Yuan, Y. You, Z. Yang, F. Sun, and J. Ruan. Push and pull

search embedded in an m2m framework for solving constrained multi-objective optimization

problems. Swarm and Evolutionary Computation, 54:100651, 2020.

171

BIBLIOGRAPHY

[36] I. Giagkiozis, R. C. Purshouse, and P. J. Fleming. Towards understanding the cost of adapta-

tion in decomposition-based optimization algorithms. In 2013 IEEE International Conference

on Systems, Man, and Cybernetics, pages 615–620. IEEE, 2013.

[37] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya. An application placement technique

for concurrent iot applications in edge and fog computing environments. IEEE Transactions

on Mobile Computing, 2020.

[38] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung. An efficient computation offloading man-

agement scheme in the densely deployed small cell networks with mobile edge computing.

IEEE/ACM Transactions on Networking, 26(6):2651–2664, 2018.

[39] D. Han, W. Du, W. Du, Y. Jin, and C. Wu. An adaptive decomposition-based evolutionary

algorithm for many-objective optimization. Information Sciences, 491:204–222, 2019.

[40] C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, and X. Yao. Accelerating large-scale

multiobjective optimization via problem reformulation. IEEE Transactions on Evolutionary

Computation, 23(6):949–961, 2019.

[41] Z. He, G. G. Yen, and J. Zhang. Fuzzy-based pareto optimality for many-objective evolution-

ary algorithms. IEEE Transactions on Evolutionary Computation, 18(2):269–285, 2013.

[42] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural

Computation, 14(8):1771–1800, 2002.

[43] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu. Multi-server multi-user multi-task com-

putation offloading for mobile edge computing networks. Sensors, 19(6):1446, 2019.

[44] S. Huband, P. Hingston, L. Barone, and L. While. A review of multiobjective test prob-

lems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation,

10(5):477–506, 2006.

[45] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima. Performance of decomposition-based

many-objective algorithms strongly depends on pareto front shapes. IEEE Transactions on

Evolutionary Computation, 21(2):169–190, 2017.

[46] H. Jain and K. Deb. An evolutionary many-objective optimization algorithm using reference-

point based nondominated sorting approach, part ii: handling constraints and extending to an

adaptive approach. IEEE Transactions on Evolutionary Computation, 18(4):602–622, 2014.

[47] S. Jiang, H. Li, J. Guo, M. Zhong, S. Yang, M. Kaiser, and N. Krasnogor. Area: An adap-

tive reference-set based evolutionary algorithm for multiobjective optimisation. Information

Sciences, 515:365–387, 2020.

[48] S. Jiang and S. Yang. A strength pareto evolutionary algorithm based on reference direc-

tion for multiobjective and many-objective optimization. IEEE Transactions on Evolutionary

172

BIBLIOGRAPHY

Computation, 21(3):329–346, 2017.

[49] D. Karaboga. An idea based on honey bee swarm for numerical optimization. Technical

report, Erciyes University, Engineering Faculty Computer Engineering Department, 2005.

[50] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of the Interna-

tional Conference on Neural Networks, volume 4, pages 1942–1948, Perth, 1995.

[51] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed. Edge computing: A survey.

Future Generation Computer Systems, 97:219 – 235, 2019.

[52] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

[53] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M. Steinbrecher. Computational Intelli-

gence - A Methodological Introduction Second Edition. Springer, 2016.

[54] L. Kuang, T. Gong, S. OuYang, H. Gao, and S. Deng. Offloading decision methods for

multiple users with structured tasks in edge computing for smart cities. Future Generation

Computer Systems, 105:717–729, 2020.

[55] B. Li, J. Li, K. Tang, and X. Yao. Many-objective evolutionary algorithms: A survey. ACM

Computing Surveys (CSUR), 48(1):13, 2015.

[56] B. Li, K. Tang, J. Li, and X. Yao. Stochastic ranking algorithm for many-objective opti-

mization based on multiple indicators. IEEE Transactions on Evolutionary Computation,

20(6):924–938, 2016.

[57] H. Li, J. Sun, Q. Zhang, and Y. Shui. Adjustment of weight vectors of penalty-based boundary

intersection method in moea/d. In International Conference on Evolutionary Multi-Criterion

Optimization, pages 91–100. Springer, 2019.

[58] H. Li and Q. Zhang. Multiobjective optimization problems with complicated pareto sets,

moea/d and nsga-ii. IEEE Transactions on Evolutionary Computation, 13(2):284–302, 2009.

[59] K. Li, R. Chen, G. Fu, and X. Yao. Two-archive evolutionary algorithm for constrained

multiobjective optimization. IEEE Transactions on Evolutionary Computation, 23(2):303–

315, 2018.

[60] K. Li, K. Deb, Q. Zhang, and S. Kwong. An evolutionary many-objective optimization algo-

rithm based on dominance and decomposition. IEEE Transactions on Evolutionary Compu-

tation, 19(5):694–716, 2015.

[61] K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang. Stable matching-based selection in evo-

lutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation,

18(6):909–923, 2013.

[62] M. Li, S. Yang, and X. Liu. Shift-based density estimation for pareto-based algorithms in

173

BIBLIOGRAPHY

many-objective optimization. IEEE Transactions on Evolutionary Computation, 18(3):348–

365, 2013.

[63] M. Li and X. Yao. What weights work for you? adapting weights for any pareto front shape in

decomposition-based evolutionary multiobjective optimisation. Evolutionary Computation,

28(2):227–253, 2020.

[64] H.-L. Liu, F. Gu, and Q. Zhang. Decomposition of a multiobjective optimization problem

into a number of simple multiobjective subproblems. IEEE Transactions on Evolutionary

Computation, 18(3):450–455, 2013.

[65] Y. Liu, Y. Hu, N. Zhu, K. Li, J. Zou, and M. Li. A decomposition-based multiobjective

evolutionary algorithm with weights updated adaptively. Information Sciences, 2021.

[66] Z.-Z. Liu and Y. Wang. Handling constrained multiobjective optimization problems with

constraints in both the decision and objective spaces. IEEE Transactions on Evolutionary

Computation, 23(5):870–884, 2019.

[67] X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong. A multiobjective evolu-

tionary algorithm based on decision variable analyses for multiobjective optimization prob-

lems with large-scale variables. IEEE Transactions on Evolutionary Computation, 20(2):275–

298, 2016.

[68] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi. Optimal joint scheduling and cloud

offloading for mobile applications. IEEE Transactions on Cloud Computing, 7(2):301–313,

2019.

[69] S. Mane and M. R. N. Rao. Many-objective optimization: Problems and evolutionary al-

gorithms–a short review. International Journal of Applied Engineering Research, 12(20),

2017.

[70] P. M. Mell and T. Grance. SP 800-145. The NIST Definition of Cloud Computing. National

Institute of Standards & Technology, 2011.

[71] A. P. Miettinen and J. K. Nurminen. Energy efficiency of mobile clients in cloud computing.

HotCloud, 10(4-4):19, 2010.

[72] M. Patel, B. Naughton, C. Chan, et al. Mobile-edge computing—introductory technical white

paper. White Paper, Mobile-edge Computing (MEC) Industry Initiative, 2014.

[73] K. Peng, H. Huang, S. Wan, and V. C. Leung. End-edge-cloud collaborative computation

offloading for multiple mobile users in heterogeneous edge-server environment. Wireless

Networks, pages 1–12, 2020.

[74] R. C. Purshouse and P. J. Fleming. On the evolutionary optimization of many conflicting

objectives. IEEE Transactions on Evolutionary Computation, 11(6):770–784, 2007.

174

BIBLIOGRAPHY

[75] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu. Moea/d with adaptive weight adjustment.

Evolutionary computation, 22(2):231–264, 2014.

[76] M. Reyes-Sierra, C. C. Coello, et al. Multi-objective particle swarm optimizers: A survey of

the state-of-the-art. International Journal of Computational Intelligence Research, 2(3):287–

308, 2006.

[77] G. Rozenberg, T. H. W. Back, and J. N. Kok. Handbook of natural computing. Kybernetes,

40(3/4):20–69, 2012.

[78] I. Sahu and U. S. Pandey. Mobile cloud computing: Issues and challenges. In 2018 Inter-

national Conference on Advances in Computing, Communication Control and Networking

(ICACCCN), pages 247–250, 2018.

[79] O. Schutze, X. Esquivel, A. Lara, and C. A. C. Coello. Using the averaged hausdorff distance

as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on

Evolutionary Computation, 16(4):504–522, 2012.

[80] I. Sheikh and O. Das. Modeling the effect of parallel execution on multi-site computation

offloading in mobile cloud computing. In Computer Performance Engineering, pages 219–

234, 2018.

[81] B. W. Silverman. Density estimation for statistics and data analysis, volume 26. CRC press,

1986.

[82] D. Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013.

[83] Y. Sun, G. G. Yen, and Z. Yi. Igd indicator-based evolutionary algorithm for many-objective

optimization problems. IEEE Transactions on Evolutionary Computation, 23(2):173–187,

2018.

[84] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin. An indicator-based multiobjective evolu-

tionary algorithm with reference point adaptation for better versatility. IEEE Transactions on

Evolutionary Computation, 22(4):609–622, 2017.

[85] Y. Tian, R. Cheng, X. Zhang, and Y. Jin. Platemo: A matlab platform for evolutionary

multi-objective optimization [educational forum]. IEEE Computational Intelligence Maga-

zine, 12(4):73–87, 2017.

[86] Y. Tian, R. Cheng, X. Zhang, M. Li, and Y. Jin. Diversity assessment of multi-objective

evolutionary algorithms: Performance metric and benchmark problems [research frontier].

IEEE Computational Intelligence Magazine, 14(3):61–74, 2019.

[87] Y. Tian, R. Cheng, X. Zhang, Y. Su, and Y. Jin. A strengthened dominance relation consider-

ing convergence and diversity for evolutionary many-objective optimization. IEEE Transac-

tions on Evolutionary Computation, 23(2):331–345, 2018.

175

BIBLIOGRAPHY

[88] Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin. Solving large-scale multiobjective opti-

mization problems with sparse optimal solutions via unsupervised neural networks. IEEE

Transactions on Cybernetics, pages 1–14, 2020.

[89] Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin. A coevolutionary framework for con-

strained multiobjective optimization problems. IEEE Transactions on Evolutionary Compu-

tation, 25(1):102–116, 2021.

[90] Y. Tian, X. Zhang, C. Wang, and Y. Jin. An evolutionary algorithm for large-scale sparse

multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,

24(2):380–393, 2020.

[91] Y. Tian, Y. Zhang, Y. Su, X. Zhang, K. C. Tan, and Y. Jin. Balancing objective optimization

and constraint satisfaction in constrained evolutionary multi-objective optimization. IEEE

Transactions on Cybernetics, 2020.

[92] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh. A survey of multiobjective evolution-

ary algorithms based on decomposition. IEEE Transactions on Evolutionary Computation,

21(3):440–462, 2017.

[93] D. A. V. Veldhuizen and G. B. Lamont. Multiobjective evolutionary algorithm research: A

history and analysis, 1998.

[94] P. A. Vikhar. Evolutionary algorithms: A critical review and its future prospects. In 2016

International Conference on Global Trends in Signal Processing, Information Computing

and Communication (ICGTSPICC), 2016.

[95] R. Wang, Q. Zhang, and T. Zhang. Decomposition-based algorithms using pareto adaptive

scalarizing methods. IEEE Transactions on Evolutionary Computation, 20(6):821–837, 2016.

[96] L. While, P. Hingston, L. Barone, and S. Huband. A faster algorithm for calculating hyper-

volume. IEEE Transactions on Evolutionary Computation, 10(1):29–38, 2006.

[97] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema. Constraint handling in multiobjective

evolutionary optimization. IEEE Transactions on Evolutionary Computation, 13(3):514–525,

2009.

[98] H. Wu. Analysis of offloading decision making in mobile cloud computing. PhD thesis, Freien

Universität Berlin, 2015.

[99] H. Wu. Multi-objective decision-making for mobile cloud offloading: A survey. IEEE Access,

6:3962–3976, 2018.

[100] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu. Collaborate edge and cloud computing with

distributed deep learning for smart city internet of things. IEEE Internet of Things Journal,

7(9):8099–8110, 2020.

176

BIBLIOGRAPHY

[101] Y. Xiang, Y. Zhou, M. Li, and Z. Chen. A vector angle-based evolutionary algorithm for un-

constrained many-objective optimization. IEEE Transactions on Evolutionary Computation,

21(1):131–152, 2016.

[102] Y. Xiang, Y. Zhou, X. Yang, and H. Huang. A many-objective evolutionary algorithm

with pareto-adaptive reference points. IEEE Transactions on Evolutionary Computation,

24(1):99–113, 2020.

[103] H. Xu, B. Xue, and M. Zhang. A duplication analysis based evolutionary algorithm for bi-

objective feature selection. IEEE Transactions on Evolutionary Computation, 2020.

[104] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi. A computation offloading

method over big data for iot-enabled cloud-edge computing. Future Generation Computer

Systems, 95:522–533, 2019.

[105] S. Yang, S. Jiang, and Y. Jiang. Improving the multiobjective evolutionary algorithm based

on decomposition with new penalty schemes. Soft Computing, 21(16):4677–4691, 2017.

[106] S. Yang, M. Li, X. Liu, and J. Zheng. A grid-based evolutionary algorithm for many-objective

optimization. IEEE Transactions on Evolutionary Computation, 17(5):721–736, 2013.

[107] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang. Intelligent edge: Leveraging deep

imitation learning for mobile edge computation offloading. IEEE Wireless Communications,

27(1):92–99, 2020.

[108] J. Yuan, H.-L. Liu, F. Gu, Q. Zhang, and Z. He. Investigating the properties of indicators and

an evolutionary many-objective algorithm based on a promising region. IEEE Transactions

on Evolutionary Computation, 2020.

[109] Y. Yuan, H. Xu, and B. Wang. An improved nsga-iii procedure for evolutionary many-

objective optimization. In Proceedings of the 2014 Annual Conference on Genetic and Evo-

lutionary Computation, GECCO ’14, pages 661–668, New York, NY, USA, 2014. ACM.

[110] Y. Yuan, H. Xu, B. Wang, and X. Yao. A new dominance relation-based evolutionary al-

gorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation,

20(1):16–37, 2015.

[111] Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao. Balancing convergence and diversity in

decomposition-based many-objective optimizers. IEEE Transactions on Evolutionary Com-

putation, 20(2):180–198, 2015.

[112] J. Zhang and L. Xing. A survey of multiobjective evolutionary algorithms. In 2017 IEEE

International Conference on Computational Science and Engineering (CSE) and IEEE In-

ternational Conference on Embedded and Ubiquitous Computing (EUC), volume 1, pages

93–100, July 2017.

177

BIBLIOGRAPHY

[113] Q. Zhang and H. Li. Moea/d: A multiobjective evolutionary algorithm based on decomposi-

tion. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

[114] X. Zhang, Y. Tian, R. Cheng, and Y. Jin. A decision variable clustering-based evolutionary

algorithm for large-scale many-objective optimization. IEEE Transactions on Evolutionary

Computation, 22(1):97–112, 2018.

[115] X. Zhang, Y. Tian, and Y. Jin. A knee point-driven evolutionary algorithm for many-objective

optimization. IEEE Transactions on Evolutionary Computation, 19(6):761–776, 2014.

[116] A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, and Q. Zhang. Multiobjective evolutionary algorithms:

A survey of the state of the art. Swarm & Evolutionary Computation, 1(1):32–49, 2011.

[117] Y. Zhou, M. Zhu, J. Wang, Z. Zhang, Y. Xiang, and J. Zhang. Tri-goal evolution frame-

work for constrained many-objective optimization. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 50(8):3086–3099, 2020.

[118] Q. Zhu, Q. Zhang, and Q. Lin. A constrained multiobjective evolutionary algorithm with

detect-and-escape strategy. IEEE Transactions on Evolutionary Computation, 24(5):938–

947, 2020.

[119] H. Zille. Large-scale Multi-objective Optimisation: New Approaches and a Classification of

the State-of-the-Art. PhD thesis, Otto von Guericke University Magdeburg, 2019.

[120] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima. A framework for large-scale multiob-

jective optimization based on problem transformation. IEEE Transactions on Evolutionary

Computation, 22(2):260–275, 2018.

[121] H. Zille and S. Mostaghim. Linear search mechanism for multi- and many-objective optimi-

sation. In EMO, 2019.

[122] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms:

Empirical results. Evolutionary computation, 8(2):173–195, 2000.

[123] E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In International

Conference on Parallel Problem Solving from Nature, pages 832–842. Springer, 2004.

[124] E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving the strength pareto evolutionary

algorithm. TIK-report, 103, 2001.

[125] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca. Performance

assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on

evolutionary computation, 7(2):117–132, 2003.

178

List of Figures

1.1 Mobile edge-cloud offloading architecture . 5

1.2 Main research challenges and solutions in this dissertation 6

2.1 The PF of two-objective optimization problem . 13

2.2 The true Pareto fronts of five ZDT test instances 19

2.3 GD and IGD calculation . 23

2.4 HV calculation . 24

2.5 Non-dominated sorting and crowding distance in NSGA-II 26

2.6 Procedure of the CCMO algorithm . 27

2.7 Outline of the LMEA algorithm . 28

3.1 Illustration of penalty-based boundary intersection (PBI) approach 35

3.2 Final solutions obtained by MOEA/D-ABC, NSGA-II, MOEA/D-TCH, and MOEA/D-

DE on ZDT4 . 42

3.3 Final solutions obtained by MOEA/D-ABC, NSGA-II, MOEA/D-TCH, and MOEA/D-

DE on DTLZ1 . 43

3.4 Final solutions obtained by MOEA/D-ABC-N, MOEA/D-TCH-N, and MOEA/D-

TCH on SZDT2 and SDTLZ1 . 45

3.5 Final solutions obtained by MOEA/D-ABC and MOEA/D-PBI on DTLZ5 and DTLZ6 46

4.1 The flowchart of DBEA-AWV . 52

4.2 Adaptive weight vectors for Pareto fronts with different scales 54

4.3 The obtained Pareto fronts of six decomposition approaches on SDTLZ1 55

4.4 The obtained Pareto fronts of three decomposition approaches on WFG4 56

4.5 The replacement strategy with a cluster of K solutions 57

179

LIST OF FIGURES

4.6 The IGD values obtained by different algorithms 60

4.7 The obtained Pareto fronts of tested algorithms on 3-objective SDTLZ3 61

4.8 The HV values obtained by different algorithms 63

4.9 The obtained Pareto fronts of tested algorithms on 10-objective DTLZ1 64

4.10 The obtained Pareto fronts of tested algorithms on 10-objective SDTLZ3 65

4.11 The average HV values obtained by DBEA-AWV with different K 66

4.12 The average HV values obtained by DBEA-AWV with different fr 66

5.1 The performance of different decomposition approaches in MOEA/D on IMOP1 . 71

5.2 The performance of different decomposition approaches in MOEA/D on IDTLZ1 . 72

5.3 Illustration of the reference points . 77

5.4 The non-dominated solution set with the median IGD value obtained by MOEA/D,

MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on 3-objective MaF3 . . 81

5.5 The non-dominated solution set with the median IGD value obtained by MOEA/D,

MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on 3-objective DTLZ7 . . 82

5.6 The non-dominated solution set with the median HV value obtained by MOEA/D,

MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on 3-objective MaF4 . . 84

5.7 The non-dominated solution set with the median HV value obtained by MOEA/D,

MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on 10-objective IDTLZ1 85

6.1 The flowchart of PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE 90

6.2 The non-dominated solution set with the medium IGD value obtained by TiGE-2,

NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, CMOEA-MS, PPS-NSGA-II, and

PPS-SPEA2 on LIR-CMOP7 . 98

6.3 The non-dominated solution set with the medium IGD value obtained by PPS-

SPEA2-SDE on LIR-CMOP7, DAS-CMOP9, and DOC6 99

6.4 The non-dominated solution set with the medium IGD value obtained by TiGE-2,

NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, CMOEA-MS, PPS-NSGA-II, and

PPS-SPEA2 on DAS-CMOP9 . 101

6.5 The non-dominated solution set with the medium IGD value obtained by TiGE-2,

NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO, CMOEA-MS, PPS-NSGA-II, and

PPS-SPEA2 on DOC6 . 103

7.1 System model of local-edge-cloud computation offloading 109

180

LIST OF FIGURES

7.2 The non-dominated solution set with the medium HV value obtained by TiGE-2,

NSGA-II, PPS-MOEA/D, ToP, CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-

SPEA2-SDE on different offloading problems . 116

7.3 Offloading gain of different offloading schemes for w = 0.2 117

7.4 Offloading gain of different offloading schemes for w = 0.5 117

7.5 Offloading gain of different offloading schemes for w = 0.8 117

7.6 System cost and offloading gain on different offloading schemes under different

number of tasks . 118

7.7 System cost and offloading gain on different offloading schemes under different

wireless bandwidth . 119

7.8 System cost and offloading gain on different offloading schemes under different edge

server CPU frequency . 119

7.9 System cost and offloading gain on different offloading schemes under different

types of applications . 120

8.1 RBM structure . 122

8.2 System model of computation offloading with heterogeneous cloud 124

8.3 Reduce and recover of solutions . 129

8.4 The non-dominated solution set with the medium HV value obtained by NSGA-II,

SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1 and ELSMO-2 on 1000-dimensional

offloading problem . 135

8.5 The non-dominated solution set with the medium HV value obtained by NSGA-II,

SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1 and ELSMO-2 on 5000-dimensional

offloading problem . 136

8.6 The non-dominated solution set with the medium HV value obtained by NSGA-

II, SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1 and ELSMO-2 on 10000-

dimensional offloading problem . 137

8.7 Offloading gain of different offloading schemes for w = 0.2 138

8.8 Offloading gain of different offloading schemes for w = 0.5 139

8.9 Offloading gain of different offloading schemes for w = 0.8 139

9.1 A task offloading framework in the IoT-edge-cloud computing network 142

9.2 The non-dominated solution set with the medium HV value obtained by NSGA-

II, NSGA-III, NSGA-II/SDR, AREA, PREA, and MCOEA on N = 10, 100, 200

offloading problems . 157

181

LIST OF FIGURES

9.3 The Pareto fronts of the N = 100 computation offloading model with regard to

compression, security and mobility . 158

9.4 Offloading gain of different offloading schemes for w = 0.2 159

9.5 Offloading gain of different offloading schemes for w = 0.5 159

9.6 Offloading gain of different offloading schemes for w = 0.8 160

9.7 System cost and offloading gain on different offloading schemes under different

average data size . 160

9.8 System cost and offloading gain on different offloading schemes under different edge

server CPU frequency . 161

9.9 System cost and offloading gain on different offloading schemes under different

types of applications . 161

182

List of Tables

2.1 The scaling factor . 20

2.2 Different properties of a list of benchmark suites 21

2.3 Classification of different optimization algorithms 25

3.1 Parameters for crossover and mutation . 41

3.2 IGD values for MOEA/D-ABC, NSGA-II, MOEA/D-TCH, and MOEA/D-DE on

ZDT and DTLZ test instances . 44

3.3 IGD values for MOEA/D-ABC-N, MOEA/D-TCH-N, and MOEA/D-TCH on SZDT1-

2 and SDTLZ1-2 test instances . 44

3.4 IGD values for MOEA/D-ABC and MOEA/D-PBI on DTLZ5 and DTLZ6 test in-

stances . 47

4.1 The population size . 58

4.2 The IGD values obtained by tested algorithms . 59

4.3 The HV values obtained by tested algorithms . 62

5.1 The IGD values obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA

and AMAWV on test problems . 80

5.2 The HV values obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA

and AMAWV on test problems . 83

6.1 The IGD values obtained by TiGE-2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO,

CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on the LIR-CMOP

benchmark suite. The best result in each row is highlighted. 97

183

LIST OF TABLES

6.2 The IGD values obtained by TiGE-2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO,

CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on the DAS-CMOP

benchmark suite. The best result in each row is highlighted. 100

6.3 The IGD values obtained by TiGE-2, NSGA-II, C-TAEA, PPS-MOEA/D, ToP, CCMO,

CMOEA-MS, PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on the DOC bench-

mark suite. The best result in each row is highlighted. ‘N/A’ indicates that no feasi-

ble solution is found. 102

7.1 Key notations . 110

7.2 Application complexity . 114

7.3 The HV values obtained by TiGE-2, NSGA-II, PPS-MOEA/D, ToP, CMOEA-MS,

PPS-NSGA-II, PPS-SPEA2 and PPS-SPEA2-SDE on five offloading problems. The

best result in each row is highlighted. ‘N/A’ indicates that no feasible solution is found.115

8.1 Important notations . 125

8.2 Parameter values . 132

8.3 The HV values obtained by NSGA-II, SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-

1 and ELSMO-2 on offloading problems . 134

9.1 Summary of notations . 144

9.2 The HV values obtained by NSGA-II, NSGA-III, NSGA-II/SDR, AREA, PREA

and MCOEA on ten computation offloading problems 156

184

Glossary

CDTLZ convex DTLZ

CMOEA constrained multi-objective evolutionary algorithm

CMOP constrained multi-objective optimization problem

COS cloud offloading scheme

DAS-CMOP difficulty-adjustable and scalable CMOP

DOC decision and objective constraints

DTLZ Deb, Thiele, Laumanns and Zitzler

EA evolutionary algorithm

EOS edge offloading scheme

GD generational distance

HV hypervolume

IDTLZ inverted DTLZ

IGD inverted generational distance

IoT Internet of Things

LAN local area network

LIR-CMOP CMOP with large infeasible regions

LOS local offloading scheme

LSMOP large-scale multi-objective optimization problem

MCC mobile cloud computing

MD mobile device

185

LIST OF TABLES

MEC mobile edge computing

MOP multi-objective optimization problem

MaOP many-objective optimization problem

MOEA multi-objective evolutionary algorithm

PF Pareto front

PPS push and pull search

QoS quality of service

RAN radio access network

RBM restricted Boltzmann machine

ROS random offloading scheme

SDTLZ scaled DTLZ

SMOP sparse multi-objective optimization problem

SZDT scaled ZDT

WAN wide area network

ZDT Zitzler, Deb and Thiele

186

List of Publications

Peng, G., Wu, H., Wu, H., & Wolter, K. Constrained Multi-objective Optimization for IoT-enabled

Computation Offloading in Collaborative Edge and Cloud Computing. IEEE Internet of Things

Journal, doi: 10.1109/JIOT.2021.3067732, 2021.

Peng, G., Wu, H., Wu, H., & Wolter, K. Evolutionary Large-scale Sparse Multi-objective Optimiza-

tion for Collaborative Edge-cloud Computation Offloading. In Proceedings of the 12th International

Joint Conference on Computational Intelligence, 1:100-111, 2020.

Peng, G., & Wolter, K. A Novel Archive Maintenance for Adapting Weight Vectors in Decomposition-

based Multi-objective Evolutionary Algorithms. In 2020 IEEE Congress on Evolutionary Compu-

tation (pp. 1-8). IEEE, 2020.

Peng, G., & Wolter, K. A Decomposition-Based Evolutionary Algorithm with Adaptive Weight

Vectors for Multi- and Many-objective Optimization. Applications of Evolutionary Computation-

23rd European Conference, EvoApplications 2020. Springer, 2020. (Outstanding Students of the

EvoStar 2020)

Wu, H., Shang, Z., Peng, G., & Wolter, K. A Reactive Batching Strategy of Apache Kafka for Reli-

able Stream Processing in Real-time. In 31st IEEE International Symposium on Software Reliability

Engineering (ISSRE 2020) (pp. 207-217). IEEE, 2020.

Shang, Z., Wu, H., Peng, G., & Wolter, K. Dynamic Load Balancing in the Control Plane of

Software-Defined Networks. In 19th IEEE International Conference on Communication Technology

(ICCT 2019) (pp. 947-953). IEEE, 2019.

Peng, G.. Multi-objective Optimization Research and Applied in Cloud Computing. In 2019 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW) (pp. 97-99).

IEEE, 2019.

187

LIST OF TABLES

Peng, G., Shang, Z., & Wolter, K. A Multiobjective Artificial Bee Colony Algorithm based on

Decomposition. In Proceedings of the 11th International Joint Conference on Computational Intel-

ligence (pp. 188-195). SciTePress, 2019.

Peng, G. & Wolter, K. Efficient Task Scheduling in Cloud Computing Using an Improved Parti-

cle Swarm Optimization Algorithm. In Proceedings of the 9th International Conference on Cloud

Computing and Services Science (CLOSER 2019) (pp. 58-67). SciTePress, 2019.

Peng, G., Wu, H., Wu, H., & Wolter, K. Dynamic and Secure Multi-Objective Computation Of-

floading for IoT-Edge-Cloud Orchestrated Computing Networks. Unpublished, 2021.

188

About the Author

Guang Peng received both his bachelor and master degrees from Xi’an Jiaotong University, China

in 2014 and 2016, respectively. He joined in Dependable Distributed Systems group of Freie Uni-

versität Berlin, Germany, supervised by Prof. Dr. Katinka Wolter since 2018. His research interests

include multi- and many-objective optimization, intelligent computation, deep learning and mobile

cloud/edge computing.

189

	Abstract
	Acknowledgement
	I Introduction
	Basic Problems
	Problem Statement
	Main Research Challenges
	Contributions
	Thesis Structure

	Background and Related Work
	Multi-objective Optimization
	Multi-objective Evolutionary Algorithm
	Benchmark Suites
	Evaluation Metrics
	Computation Offloading Optimization
	Related Work
	Evolutionary Multi-objective Optimization
	Computation Offloading Optimization Schemes

	Summary

	II Evolutionary Multi-objective Optimization
	A Multi-objective Artificial Bee Colony Algorithm
	Classical Decomposition Approaches
	The Artificial Bee Colony Algorithm
	The Proposed MOEA/D-ABC
	General Framework
	Modified Tchebycheff Approach
	The ABC Operator
	Adaptive Normalization
	Computational Complexity

	Experimental Studies
	Experiment Settings
	Normalized Test Problems
	Scaled Test Problems
	MOEA/D-ABC VS MOEA/D-PBI

	Summary

	A Many-objective Decomposition-based Algorithm
	Compared Decomposition Approaches
	The Proposed DBEA-AWV
	General Framework
	Adaptive Weight Vectors
	Replacement Strategy
	Computational Complexity

	Experimental Studies
	Experimental Design
	Comparative Results on MOPs
	Comparative Results on MaOPs
	Parameter Sensitivity Analysis

	Summary

	An Adaptive Algorithm for Irregular Pareto Fronts
	Irregular Pareto Fronts
	The Proposed AMAWV
	General Framework
	Archive Maintenance
	Weight Vector Adaptation
	Computational Complexity

	Experimental Studies
	Experimental Design
	Experimental Results

	Summary

	Three Constrained Algorithms with Better Versatility
	PPS Framework
	The Proposed PPS-NSGA-II/SPEA2/SPEA2-SDE
	General Framework
	PPS-NSGA-II
	PPS-SPEA2
	PPS-SPEA2-SDE
	Computational Complexity

	Simulations on Benchmark Problems
	Parameter Settings
	Simulation Results

	Summary

	III Optimization in Offloading
	Constrained Multi-objective Optimization for Offloading
	Constrained Offloading Model
	System Model
	Communication Model
	Computation Model
	Problem Formulation

	Performance Evaluation
	Experimental Setup
	Convergence Analysis
	Performance of Different Offloading Schemes
	Impact of Different Parameters
	Impact of Different Types of Applications

	Summary

	Large-scale Offloading in Edge-Cloud Computing
	Restricted Boltzmann Machine
	Large-scale Offloading Model
	System Model
	Local Computing Model
	Edge Computing Model
	Cloud Computing Model
	Problem Formulation

	The Proposed ELSMO
	General Framework
	The Proposed ELSMO-1
	The Proposed ELSMO-2
	Computational Complexity

	Performance Evaluation
	Experimental Settings
	Comparison with Other MOEAs
	Comparison with Other Offloading Schemes

	Summary

	Dynamic and Secure Multi-objective Offloading
	Dynamic and Secure Offloading Model
	System Overview
	Offloading Decision Model
	Compression
	Security
	Mobility
	Problem Formulation

	The Proposed MCOEA
	General Framework
	Crossover Operator
	Mutation Operator
	Computational Complexity

	Performance Evaluation
	Experiment Profile
	Convergence Analysis
	Compression Security Mobility Analysis
	Comparison with Different Offloading Schemes
	Impact of System Parameters

	Summary

	IV Concluding Remarks
	Conclusions and Outlook
	Conclusions
	Outlook

	Bibliography
	List of Figures
	List of Tables
	Glossary
	List of Publications
	About the Author

