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Simple Summary: Egg production is one of the most vital axes in the poultry industry. During the
late laying period, the egg production continuously decreases, and pauses among the sequence of
egg laying increases; however, the feed costs remain constant. Several attempts were carried out to
improve the reproductive performance of laying hens by decreasing the prolactin level in the blood;
an increase in this hormone initiates the onset of incubation behavior in chickens. In this study, we
investigated the potential use of nano-bromocriptine to the improve egg production performance
in laying hens. The use of alginate-bromocriptine leads to a significant reduction in the prolactin
expression in the pituitary gland, which in turn allows the elongation in sequences and reduction in
pauses, as well as the feed per dozen egg in laying hens. Further studies are needed to assess the
impacts of nano-bromocriptine on other performance parameters. Thus, the improvement of egg
production persistency must also go hand in hand with sustainable egg quality and the maintenance
of the birds’ health.

Abstract: The current study aimed to investigate the potential use of nano-bromocriptine in improv-
ing the laying performance of late laying hens by modulating the prolactin gene expression. A total
of 150 NOVOgen brown laying hens aged 70 weeks were randomly allocated into three groups of
50 birds each. The first group was kept as a control, while the second and the third groups were
treated with bromocriptine and nano-bromocriptine, respectively, at a dose of 100 µg/kg body weight
per week. The pause days, egg production, feed per dozen egg, and Haugh unit were determined on
a monthly basis. Also, the relative prolactin gene expression in the pituitary gland was quantified
using qPCR and the number of the ovarian follicles was determined after slaughtering at the 84th
week of age. It was found that nano-bromocriptine and bromocriptine improved egg laying perfor-
mance with minimal pause days, reduced feed per dozen egg, and depressed the relative prolactin
gene expression; however, nano-bromocriptine treatment was significantly effective compared to
bromocriptine. In conclusion, nano-bromocriptine might be beneficial for elongating sequences and
reducing pauses.
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1. Introduction

Although the global table eggs production has increased over the past decade to
76.7 million tonnes in 2018 [1], further improvement of egg production performance is
urgently needed to fulfill the high demand for animal proteins. This highlights the urgent
need to keep the laying persistency with sustainable egg production and quality that
goes hand in hand with maintaining health and animal welfare, by considering the bird’s
physiology, nutritional requirements, management system, reproductive status, and breed
selection. Although the extreme efforts which have been done to keep the persistency
of egg production, a reduction in egg production accompanied by a deterioration of egg
quality are usually common at or around 72 weeks of age [2]. During this period, the
egg production continuously decreased and pauses among the sequence of egg laying
increased with constant feed costs, causing huge economic losses.

Prolactin belongs to adenohypophysis hormones, is one of the most blamed factors
accompanied by a progressive reduction of egg laying performance during the late laying
period. This hormone is progressively increased by the time in plasma of late laying hens.
It prevents gonadotrophin, which stimulates ovulation as well as estrogen production
at the ovarian level [3]. The ovarian tissues in laying hens targeted the prolactin as it
expressed the prolactin receptor mRNA [4]. So far, prolactin inhibits estradiol secretion
in white ovarian follicles. However, it may improve or depress steroidogenesis in yellow
ovarian follicles depended upon the level of prolactin dose, the type of the follicular
layer secreting steroids, the order of the ovarian follicle in the ovulation hierarchy, and
the phase of the ovulation cycle [5]. Increasing prolactin level during the active stage of
laying is accompanied by the appearance of broodiness and cessation of egg production [6].
Several attempts were carried out to improve the reproductive performance of laying hens
via decreasing prolactin using recombinant-derived chicken prolactin fusion protein or
anti-vasoactive intestinal polypeptide serum to prevent broodiness in laying hens [7,8].
Others tried to depress prolactin chemically using a dopamine agonist, bromocriptine, an
ergot derivative [9–11]. The release of prolactin from the adenohypophysis is governed
by dopamine as it prevents the stimulatory effect of the vasoactive intestinal peptide on
prolactin secretion. Therefore, bromocriptine as a dopamine agonist could be used to
overcome the broodiness behaviors in laying hens [8]. Indeed, subcutaneous injection
of bromocriptine in laying hens during the 17th to 36th week of life increases the egg
production and depresses the prolactin production during the laying cycle up to the 72nd
week of age [3].

Nevertheless, due to the low bioavailability of bromocriptine [12], there is a great de-
mand for more convenient, effective, and safe ways for drug delivery. Nano-drug delivery
systems could be a promising alternative to extend the half-life time of active principles
and to sustain its delivery to the target sites [12–16]. It was found that nanocomposites
reduced the dose of the drug and the desired biological activity could be obtained with
minimal side effects. Therefore, the present study aimed to synthesize, and characterize,
alginate-bromocriptine nanocomposite as well as to assess its efficacy on egg laying per-
formance during the late laying stage. Moreover, its modulatory effect on the prolactin
hormone gene expression in the pituitary gland was studied.

2. Materials and Methods
2.1. Preparation of Alginate-Bromocriptine Nano-Composite

The alginate-bromocriptine nano-composite was prepared according to Siddique
et al. [12]. Briefly, 100 mg of 2-Bromo-α-ergocryptine (Sigma-Aldrich, St. Louis, MO,
USA) was dissolved in 5 mL ethanol and added portion wise to sodium alginate solution,
previously prepared by dissolving 0.1 g of sodium alginate (Fisher Scientific, Waltham, MA,
USA) in 100 mL distilled water with stirring. The addition process was performed drop by
drop over 30 min with stirring and worming at 40 ◦C. The mixture was then heated at 50 ◦C
under ultra-sonication at 100 W with 35 kHz for 45 min. The obtained nano-composite
solution was air-dried then stored at 4 ◦C, dry, and dark conditions.
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The formation and the morphology of alginate-bromocriptine nano-composite were
characterized by transmutation electron microscopy (TEM, JEM-2100, JEOL- Tokyo Japan)
and the average size of the prepared nano-composite was estimated. The Fourier Transform
Infrared Spectrophotometer (FTIR) spectra were analyzed using a spectrometer (JASCO,
Tokyo, Japan) in the range of 400–4000 cm−1. Potassium bromide discs (KBr) (5 mg of
particles, 100 mg KBr pellets) were used as reference material. The optical properties of the
bromocriptine and alginate-bromocriptine nanocomposite were investigated by measuring
the UV-visible spectrophotometer (JASCO spectrophotometer, Tokyo, Japan) in the range
of 200–800 nm.

2.2. Experimental Assessment of the Efficacy of Bromocriptine and Alginate-Nano-Bromocriptine
2.2.1. Ethical Approval

All procedures of the experiment were conducted under the ethical guidelines of the
Institutional Animal Care and Use Committee (IACUC), Faculty of Veterinary Medicine,
University of Sadat City, Egypt (Ethical approval number: VUSC-017-1-19).

2.2.2. Experimental Design

One hundred fifty laying hens of NOVOgen brown strain of 70 weeks age were
selected from a local commercial layer farm in Egypt based on good feathers, body weight
(mean = 1800± 150 g), and free from any abnormalities. Birds were randomly allocated into
3 groups of 50 birds per each. Hens were allowed to have 2 weeks acclimatization period.
Chickens in the first group were treated with saline and kept as control, while chickens
kept in the second and third groups were treated with bromocriptine (2-bromo-alpha-
ergocriptine, Sigma-Aldrich, St. Louis, MO, USA) and the prepared nano-bromocriptine,
respectively, at a dose of 100 µg/kg BW/week according to Reddy et al. [17] for 12 weeks
(from 72nd to 84th week of age). Each group was subdivided into two subgroups; the first
subgroup was treated orally, whereas the second subgroup was treated subcutaneously
underneath the wing. Hens were kept under the standard laying conditions on the litter
floor system of sawdust equipped with automatic drinker and feeding systems. The feed
containing 16% crude protein (corn-soybean meal of 16% CP, 2900 kcal ME/kg diet) and
120 g/hen/day was used, fresh-water give at ad libitum. The photoperiod was kept at 16 h
of light/day, achieved via an automatic lighting system. The temperature of the house was
kept at 24 ± 3 ◦C.

2.2.3. Egg Production Performance

Eggs were collected and recorded daily from each group at 12 AM. Pause days, egg
production%, feed intake, and feed per dozen eggs were daily evaluated for each subgroup.
Pause days were daily estimated for each laying hen as the hens were separately reared in
deep litter system. Also, twelve eggs were randomly selected from each group/subgroup
at 76th, 80th, 84th/week of age to determine the Haugh unit according to Haugh [18]
using the formula: Haugh unit (HU) = 100× log

(
H − 1.7W0.37 + 7.6

)
, where “H” is the

albumen height and “W” is the egg weight.
At the 84th week of age, all hens were slaughtered by manual cervical dislocation

then dressed. The ovary was investigated to estimate the number of normal large yellow
follicles (LYF) (>10 mm diameter), small yellow follicles (SYF) (5–10 mm diameter), and
large white follicles (LWF) (3–5 mm diameter) according to Renema et al. [19].

2.2.4. Prolactin Gene Expression in Pituitary Gland Using qRT-PCR

Just after slaughtering, the pituitary gland was collected randomly from 5 hens/subgroup.
The RNA extraction was carried out using a TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer and the cDNA was formed from total RNA using Maxima
First Strand cDNA Synthesis Kit (Life Technologies, Carlsbad, CA, USA). The PRLE2F:
5′-GTTTGTTTCTGGCGGTTC-3′, and PRLE2R: 5′-AAATTCATTGAATATTTCTGAAG-3′

primers were used to amplify 181 bp fragment of prolactin gene [20], while the QGAPDHF:
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5′-CTGCCGTCCTCTCTGGC-3′ and QGAPDHR: 5′-GACAGTGCCCTTGAAGT GT-3′

primers were used as an internal control to amplify 119 bp fragment of glyceraldehyde
3-phosphate dehydrogenase gene [21]. The qPCR was performed in duplicate in a final
volume of 25 µL nuclease-free water containing 12.5 µL of Platinum SYBR Green qPCR
supermix, 0.05 µL of ROX reference dye (Invitrogen, Carlsbad, CA, USA), 0.2 µM of each
primer, 2 µL of cDNA using a 7500 Fast Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA). The cycler program was 1× 95 ◦C/10 min, and 40× (95 ◦C/30 s,
57 ◦C/1 min and 72 ◦C for 30 s). The melting curve of a single peak was determined and
used for the gene expression analysis. The normalization was done using the GAPDH
as an endogenous control. The relative quantification was carried out using the 2−∆∆CT

method [22].

2.3. Statistical Analysis

The data were collected and enrolled into statistical analysis using SAS software
(SAS User’s Guide: Statistics, Version 8.1 Edition, 2000, SAS Inst. Inc., Cary, NC, USA).
Percentage data were subjected to arcsine transformation. Then the data were analyzed
using two ways ANOVA of the General Linear Models (GLM) procedures of SAS software
according to the following statistical model:

Yijk = µ+ αi + βj + (αβ)ij + εijk

where, Yijk = overall observation, µ = overall mean, αi was the treatment effect i = 1,
2, 3 for control, bromocriptine, and nanobromocriptine treatments, βj was the route of
administration j = 1, 2 for oral, and injection rout of administrations, (αβ)ij was the
interaction between treatments and route of administration and εijk was the random error.
Tukey test was used as mean separation test and results were expressed as least square
means ± SE. The level of significance was seated at (p < 0.05).

3. Results
3.1. Analysis of Alginate-Bromocriptine

The FTIR spectroscopy of bromocriptine and alginate-bromocriptine composite gave
information about chemical bonding to confirm the purity and the formation of the alginate-
bromocriptine nanocomposite. The FTIR spectrum displayed bands at 3500 cm−1, corre-
sponding to the OH bending of the hydroxyl group. The stretching vibration appeared
as bands at 2300 cm−1, 1500 cm−1 and 1200 cm−1, and are attributed to -CO, C=O, and
C-O-C bonds, respectively. The FTIR spectroscopy pattern of the alginate-bromocriptine
nanocomposite revealed a band at 700 cm−1, corresponding to -CH bending; this confirms
a bond formation between alginate and bromocriptine (Figure 1).

The TEM analysis of the prepared alginate-bromocriptine nanocomposite is shown in
Figure 2. The alginate-bromocriptine nanocomposite particles are semi-spherical in shape
with a size of 20 to 36 nm, and uniformly distributed. The average particle size is up to
33 nm.
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Figure 2. Transmission electron microscope image of alginate-bromocriptine nanocomposite with
scale 200 nm at 25 ◦C.

The optical properties of the bromocriptine and alginate-bromocriptine nanocomposite
measured in the wavelength range of 300–900 nm showed a strong absorption band at
366 nm, corresponding to the pure bromocriptine, in addition to a low absorption band
at the visible region (Figure 3A,B). Alginate-bromocriptine nanocomposite did not show
a significant shift where the strong absorption band appeared at 362 nm. These results
revealed a decrease in the bandgap due to the crystallite size of the prepared nanoparticles.
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3.2. Assessment of the Efficacy of Bromocriptine and Nano-Bromocriptine on Egg
Production Performance
3.2.1. Pause Days, Egg Production Percentage, and Feed per Dozen Egg

The total number of pause days routinely decreased in nano-bromocriptine treated
chickens compared to those treated with bromocriptine and control. This trend ap-
peared clearly over the entire experimental period. The lowest numbers of pause days
were 5.38 ± 0.33, 5.93 ± 0.26, and 7.27 ± 0.30 days in chickens treated with alginate-
bromocriptine nanocomposite at the 76th, 80th, and 84th week of age, respectively. Fur-
thermore, the oral administration showed the best pause days compared to the injection
route. Thus, the lowest number of pause days in the hens treated orally with alginate-
bromocriptine nanocomposite were 3.93 ± 0.35, 5.29 ± 0.35, and 6.46 ± 0.44 days at the
76th, 80th, and 84th week of age, respectively (Table 1).

Table 1. Effects of bromocriptine and nano-bromocriptine on pause days and egg production percent of late laying hens.

Parameter
Pause Days (Day) Egg/Hen/D (%)

76th Week 80th Week 84th Week 76th Week 80th Week 84th Week

Treatment
Control (n = 50) 11.07 ± 0.26 a 10.00 ± 0.25 a 11.56 ± 0.34 a 61.42 ± 0.95 c 61.90 ± 0.78 c 51.16 ± 1.42 b

Bromocriptine (n = 50) 7.05 ± 0.32 b 6.89 ± 0.28 b 8.20 ± 0.35 b 71.55 ± 1.25 b 71.11 ± 1.01 b 65.54 ± 1.71 a

Nano-bromocriptine (n = 50) 5.38 ± 0.33 c 5.93 ± 0.26 c 7.27 ± 0.30 c 78.33 ± 1.26 a 74.54 ± 1.16 a 68.13 ± 1.45 a

Administration
Orally (n = 75) 7.14 ± 0.39 b 7.15 ± 0.32 b 8.94 ± 0.36 73.37 ± 1.26 a 71.04 ± 1.12 a 62.41 ± 1.62 a

Injection (n = 75) 8.52 ± 0.32 a 8.06 ± 0.24 a 9.08 ± 0.31 67.49 ± 1.04 b 67.33 ± 0.78 b 60.82 ± 1.44 a

Treatment χ
administration

Control (oral, n = 25) 11.11 ± 0.37 a 10.07 ± 0.37 a 11.50 ± 0.48 a 61.15 ± 1.34 d 61.56 ± 1.12 c 51.65 ± 1.99 c

Control (injection, n = 25) 11.04 ± 0.38 a 9.93 ± 0.35 a 11.63 ± 0.48 a 61.69 ± 1.37 d 62.25 ± 1.09 c 50.67 ± 2.05 c

Bromocriptine (oral, n = 25) 6.39 ± 0.37 c 6.11 ± 0.44 c 8.86 ± 0.53 b 74.71 ± 1.50 b 72.75 ± 1.81 b 63.04 ± 2.62 b

Bromocriptine
(injection, n = 25) 7.71 ± 0.49 b 7.68 ± 0.28 b 7.54 ± 0.42 c,d 68.39 ± 1.87 c 69.46 ± 0.84 b 68.05 ± 2.12 a,b

Nano-bromocriptine
(oral, n = 25) 3.93 ± 0.35 d 5.29 ± 0.35 c 6.46 ± 0.44 d 84.26 ± 1.28 a 78.80 ± 1.34 a 72.52 ± 1.92 a

Nano-bromocriptine
(injection, n = 25) 6.82 ± 0.41 c 6.57 ± 0.36 c 8.07 ± 0.34 b,c 72.40 ± 1.58 b,c 70.29 ± 1.55 b 63.75 ± 1.78 b

p-value
Treatment <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Administration <0.0001 <0.0026 <0.7091 <0.0001 <0.0007 <0.3572
Interaction <0.0014 <0.0425 <0.0062 <0.0003 <0.0032 <0.0052

Values are presented as least square mean ± SE. a–d Means within the same column for each parameter with different superscripts are
statistically different at p < 0.05 (Two-way ANOVA, Tukey post-hoc test).

The nano-bromocriptine treated hens recorded the highest egg production percentage
(78.33 ± 1.26 and 74.54 ± 1.16) at the 76th and 80th week of life, respectively, compared to
the bromocriptine treated (71.55 ± 1.25 and 71.11 ± 1.11%) or control (61.42 ± 0.95% and
61.9 ± 0.78) hens (Table 1). However, at the 84th week of age, both nano-bromocriptine
(68.13 ± 1.45) and bromocriptine (65.54 ± 1.71%) treated hens sustained a higher egg
production percentage compared to the non-treated hens (51.16 ± 1.42%). On the other
hand, the oral administration of nano-bromocriptine sustained the highest egg production
percentage (84.26 ± 1.28, 78.80 ± 1.34 and 72.52 ± 1.92, at 76th, 80th, and 84th week-old,
respectively).



Animals 2021, 11, 2842 7 of 12

3.2.2. Feed Consumption per Dozen Egg, and Haugh Unit

The feed per dozen egg was significantly varied among different bromocriptine forms
and control groups (Table 2). Both the bromocriptine and nano-bromocriptine treated hens
exhibited a significant reduction in feed per dozen egg compared to the control group
over the entire experimental period (p < 0.0001). Alginate-bromocriptine nanocomposite
treatment significantly reduced the feed per dozen egg (1.87 ± 0.03 and 1.96 ± 0.03 kg,
respectively) at the 76th and 80th week of age, followed by bromocriptine treatment
(2.06 ± 0.05 and 2.05 ± 0.03 kg, respectively) and control (2.38 ± 0.04 and 2.35 ± 0.03 kg,
respectively). The birds that received oral nano-bromocriptine sustained the lowest feed
per dozen egg values (1.72 ± 0.03; 1.84 ± 0.03; 2.02 ± 0.06 kg at the 76th, 80th, and 84th
week of age, respectively) compared to the other administration methods.

Table 2. Effects of bromocriptine and nano-bromocriptine on feed consumption per dozen egg and Haugh unit of late
laying hens.

Parameter
Feed/Dozen Egg (kg) Haugh Unit

76th Week 80th Week 84th Week 76th Week 80th Week 84th Week

Treatment
Control (n = 50) 2.38 ± 0.04 a 2.35 ± 0.03 a 2.94 ± 0.11 a 76.70 ± 0.53 77.01 ± 1.19 83.06 ± 1.16 a

Bromocriptine (n = 50) 2.06 ± 0.05 b 2.05 ± 0.03 b 2.29 ± 0.08 b 75.63 ± 1.74 77.29 ± 1.39 78.99 ± 1.16 b

Nano-bromocriptine (n = 50) 1.87 ± 0.03 c 1.96 ± 0.03 c 2.16 ± 0.05 b 76.24 ± 1.60 75.20 ± 0.84 76.82 ± 1.08 b

Administration
Orally (n = 75) 2.02 ± 0.04 b 2.07 ± 0.03 b 2.44 ± 0.08 a 75.12 ± 0.58 76.70 ± 0.90 79.21 ± 0.92

Injection (n = 75) 2.18 ± 0.04 a 2.16 ± 0.03 a 2.48 ± 0.07 a 77.26 ± 1.52 76.30 ± 1.03 80.04 ± 0.93

Treatment χ
administration

Control (oral, n = 25) 2.39 ± 0.05 a 2.36 ± 0.04 a 2.91 ± 0.15 a 76.83 ± 0.72 77.99 ± 2.07 83.29 ± 1.58 a

Control (injection, n = 25) 2.37 ± 0.05 a 2.33 ± 0.04 a 2.96 ± 0.16 a 76.58 ± 0.88 76.02 ± 0.80 82.83 ± 1.70 a,b

Bromocriptine (oral, n = 25) 1.95 ± 0.04 b,c 2.02 ± 0.05 b 2.41 ± 0.14 b 74.50 ± 0.85 75.75 ± 1.63 75.28 ± 1.77 b,c

Bromocriptine
(injection, n = 25) 2.17 ± 0.08 b 2.08 ± 0.03 b 2.17 ± 0.08 b,c 76.76 ± 3.49 78.83 ± 2.19 82.71 ± 1.49 a

Nano-bromocriptine
(oral, n = 25) 1.72 ± 0.03 c 1.84 ± 0.03 c 2.02 ± 0.06 c 74.04 ± 1.08 76.35 ± 0.92 79.06 ± 1.41 b,c

Nano-bromocriptine
(injection, n = 25) 2.02 ± 0.05 b 2.08 ± 0.05 b 2.30 ± 0.07 b,c 78.44 ± 2.81 74.05 ± 1.28 74.58 ± 1.64 c

p-value
Treatment <0.0001 <0.0001 <0.0001 <0.8726 <0.3834 <0.0007

Administration <0.0002 <0.0079 <0.7266 <0.2117 <0.7665 <0.5290
Interaction <0.0083 <0.0066 <0.0473 <0.5373 <0.1923 <0.0013

Values are presented as least square mean ± SE. a–c Means within the same column for each parameter with different superscripts are
statistically different at p < 0.05 (Two-way ANOVA, Tukey post-hoc test).

The Haugh unit possessed no significant differences among different treatments at the
76th and 80th week of age (Table 2). In contrast, the Haugh unit at the 84th week of age
was significantly (p < 0.0007) increased in the non-treated birds (83.06 ± 1.16) compared
to both the bromocriptine (78.99 ± 1.16) and nano-bromocriptine (76.82 ± 1.08) treated
groups.

3.2.3. Ovarian Follicles, and Prolactin Gene Expression in the Pituitary Gland Tissue

The number of different types of ovarian follicles varied according to the use of
alginate-bromocriptine nanocomposite or bromocriptine during the late laying phase
(Table 3). The groups treated with bromocriptine and nano-bromocriptine showed signif-
icantly higher numbers of LYF (5.9 ± 0.19 and 6.3 ± 0.15, respectively) compared to the
control group (5.33 ± 0.2). However, a non-significant increase in SYF and decrease in LWF
were found in chickens treated with nano-bromocriptine.
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Table 3. Effects of bromocriptine and nano-bromocriptine on ovarian follicles of late laying hens.

Parameter
Ovarian Follicles

LYF SYF LWF

Treatment
Control (n = 50) 5.33 ± 0.20 b 5.85 ± 0.63 8.93 ± 1.20

Bromocriptine (n = 50) 5.90 ± 0.19 a 6.40 ± 1.37 6.80 ± 0.81
Nano-bromocriptine (n = 50) 6.30 ± 0.15 a 8.10 ± 0.95 6.80 ± 0.88

Administration
Orally (n = 75) 5.87 ± 0.13 6.73 ± 1.02 7.33 ± 0.87

Injection (n = 75) 5.82 ± 0.19 6.83 ± 0.68 7.68 ± 0.75

Treatment χ
administration

Control (oral, n = 25) 5.40 ± 0.27 6.20 ± 0.97 8.60 ± 1.66
Control (injection, n = 25) 5.25 ± 0.31 5.50 ± 0.87 9.25 ± 1.97

Bromocriptine (oral, n = 25) 6.00 ± 0.21 6.60 ± 2.64 6.60 ± 1.60
Bromocriptine (injection, n = 25) 5.80 ± 0.33 6.20 ± 1.20 7.00 ± 0.63

Nano-bromocriptine (oral, n = 25) 6.20 ± 0.13 7.40 ± 1.69 6.80 ± 1.39
Nano-bromocriptine (injection, n = 25) 6.40 ± 0.27 8.80 ± 0.97 6.80 ± 1.24

p-value
Treatment <0.0021 <0.3429 <0.2705

Administration <0.8141 <0.9385 <0.7695
Interaction <0.6965 <0.7694 <0.9749

LYF: number of normal large yellow follicles (>10 mm diameter); SYF: number of small yellow follicles (5–10 mm diameter); LWF: number
of large white follicles (3–5 mm diameter). Values are presented as least square mean ± SE. a–b means within the same column for each
parameter with different superscripts are statistically different at p < 0.05 (Two-way ANOVA, Tukey post-hoc test).

Additionally, the expression of the prolactin gene was determined in the pituitary
gland tissues of late laying hens (Figure 4). The findings of the prolactin gene expression
showed obvious depression in response to the alginate-bromocriptine nanocomposite
treated group. Both bromocriptine and nano-bromocriptine exhibited a significant de-
pression of prolactin gene expression in treated birds. Furthermore, the findings revealed
that the depression of prolactin gene expression was enhanced via the injection route of
administration in bromocriptine-treated birds (p < 0.05). However, there were no significant
differences between the two routes in the groups treated with nano-bromocriptine.
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the 2−∆∆CT method (n = 5). Different superscripts indicated significant differences at p < 0.05. Error
bars indicate the standard error of the mean.
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4. Discussion

Eggs are important food for the human population because of their inexpensive price
and high nutrient value. There is a huge demand for animal protein supply that could be
covered with eggs [23]. In the present investigation, we tried to modulate the level of the
prolactin gene expression in hens during their late laying phase using a minimal dose of
bromocriptine and nano-bromocriptine.

The alginate nanocomposites have recently received much attention as drug delivery
nanoparticles [14]. It has efficient biodegradability, biocompatibility, and mucoadhesive-
ness nature making them superior natural polymers that are ready to use as a drug delivery
nanocomposite for target tissue [24]. The formulation used is highly advantageous for
maximizing the effectiveness of the drug on target tissues. In our study, the alginate-
bromocriptine nano-composite was synthesized and characterized. The prepared particle
size ranged from 20 to 36 nm. The size of nanoparticles is a critical criterion for the crossing
of the mucosal tissue barriers and the enhancement of the cellular uptake [25]. The size
of most nanoparticles ranged between 50–250 nm [26,27]. However, the average size of
alginate-bromocriptine nanocomposite could reach 20 nm [12]. The biological activity of
bromocriptine and the prepared nano-bromocriptine was carried out in the 70 week old
NOVOgen brown hens. Our findings revealed that alginate-bromocriptine nano-composite
improved the egg laying performance in late laying hens, thus treated hens sustained
the highest egg production, the lowest pause days, and the lowest feed per dozen egg
compared to the negative control and bromocriptine treated birds. This could be due to
rapid gut absorption and bioavailability of the alginate-bromocriptine nano-composite
compared to bromocriptine. It was reported that nano-drugs could be accumulated in the
target tissue with longer blood circulation time and binding properties [28]. Moreover, the
drug nano-particles crossed efficiently from blood vessels and lymphatics. Furthermore,
nano-drugs had positive charges that could be attracted to the negative charges of mucin,
this property may improve the transportation and absorption of the drug through the
epithelial membranes [29].

Furthermore, bromocriptine increased significantly egg laying performance compared
with control, in terms of egg production percentage, reduction of pause days, and feed per
dozen egg. The same findings were proved in earlier studies [3,10,11,17,30,31]. This could
be due to the lower circulating prolactin in the bromocriptine and alginate-bromocriptine
nanocomposite treated hens, thus the increase of prolactin above its physiological range
resulting in a subsequent decrease in circulating gonadotropins, regression of the ovarian
functions, ending of the reproductive phase of the laying hens, and altered it to the brooding
phase [32]. However, there is one significant limitation in this study: it was not possible to
determine both plasma level of luteinizing hormone (LH) and sex steroids.

Interestingly, significant increases in LYF numbers were reported in bromocriptine
and alginate-bromocriptine nanocomposite treated birds. This may explain the higher
egg production percentages that were observed in these groups. These findings could be
attributed to the low level of the circulating prolactin hormone in treated birds. Prolactin
depressed the development of ovarian follicles to reach the final stage through interfer-
ence with the follicular steroidogenesis in avian species [33]. However, the outcomes
suggested that the Haugh unit was significantly decreased in response to bromocriptine
and alginate-bromocriptine nanocomposite treatment. In contrast, Banu et al. reported
that bromocriptine treatment did not affect the Haugh unit of the eggs of laying hens [31].
This outcome may belong to high egg production sustained in such groups compared with
control.

Oral administration may enhance the alginate-bromocriptine nanocomposite effects.
This could be due to the high absorption of alginate-bromocriptine nanocomposite particles
in the chicken gut compared with bromocriptine. Caster et al. found that oral and intra-
venous routes were the most common routes of administration of the nano-drugs rather
than the transdermal route [34]. Furthermore, the oral administration of bromocriptine is
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rapidly and incompletely absorbed in animals. However, this rapidly absorbed portion is
highly metabolized in the liver, so its bioavailability is rapidly declined [35].

Nano-drug had many advantages properties, such as improved solubility, efficacy,
tissue selectivity, and reduced toxicity compared to the conventional drugs [34,36–38].
This could explain why the alginate-bromocriptine nanocomposite depressed the relative
prolactin gene expression in the pituitary gland compared with bromocriptine. More-
over, the injectable route of administration of bromocriptine sustained lower prolactin
gene expression compared with the oral route. Linearly, it was reported that injection
of bromocriptine frequently induced a prolonged normoprolactinemia compared to oral
administration [39]. In contrast, there were no significant differences between the two
different routes of alginate-bromocriptine nanocomposite administration, highlighting the
high absorption and bioavailability of nanoform.

5. Conclusions

Nano-bromocriptine could be used to improve the egg production performance in late
laying hens. The same effects were obtained with bromocriptine but with lower efficacy
than its nanoform. Further studies about its impact on other performance and health
parameters such as carcass quality, blood parameters, LH plasma concentration and sex
steroids as well as liver functions are in progress.
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