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Topologically-mediated energy release by relativistic antiferromagnetic solitons
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Magnetic solitons offer functionalities as information carriers in multiple spintronic and magnonic appli-
cations. However, their potential for nanoscale energy transport has not been revealed. Here we demonstrate
that antiferromagnetic solitons, e.g., domain walls, can uptake, transport, and release energy. The key for this
functionality resides in their relativistic kinematics; their self-energy increases with velocity due to Lorentz
contraction of the soliton and their dynamics can be accelerated up to the effective speed of light of the
magnetic medium. Furthermore, their classification in robust topological classes allows us to selectively release
this energy back into the medium by colliding solitons with opposite topology. Our work uncovers important
energy-related aspects of the physics of antiferromagnetic solitons and opens up the attractive possibility for
spin-based nanoscale and ultrafast energy transport devices.
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I. INTRODUCTION

Solutions for an efficient control of energy in nanoelectron-
ics are based on identifying the prevailing carriers and transfer
mechanisms of energy at relevant time and length scales. A
plethora of concepts based on the electron properties have
been proposed for efficient transport and release of energy at
the nanoscale [1]. Spin-based devices offer additional func-
tionalities for nanoelectronics [2]. Magnonic devices based
on the collective spin wave properties are proposed as low
dissipation components which can enable compact electronics
in the future [3]. Particularly, they offer efficient information
transport and are promising for nontraditional computation ar-
chitectures. Localized spin structures have also been discussed
broadly as information carriers [4,5] or more rarely as station-
ary energy storing devices [6–9], however the possibility of
their use as energy carriers is barely known.

A well-determined free energy is stored in localized mag-
netic textures—noncollinear spin structures—such as domain
walls (DWs), vortices, and skyrmions, whose stability is
grounded to their nontrivial topology [10–13]. These mag-
netic solitons (MSs) already play a pivotal role for the
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development of spin-based applications such as processing
[4,5], sensing [14], storing information [15], as well as
radio-frequency [16] and neuroinspired devices [17,18]. The
simplest example of a MS is the DW, which separates mag-
netic domains magnetized in opposite directions [19]. The
exchange energy stored in the DW can be transported by mov-
ing the DW with magnetic fields [20], spin currents [21,22],
spin waves [23–25], or even thermal gradients [26,27]. The
only way to change the energy of a DW is by controlling
its width. As the angle between neighboring atomic spin in-
creases (corresponding to a width reduction), the exchange
energy arising from their interaction increases.

Thus, efficient and ultrafast means for loading, transport-
ing, and extracting the free energy at magnetic textures are
missing. Our proposal relies on the unique dynamical prop-
erties of DWs (MSs) in antiferromagnetic (AFM) materials
[28–32]. Since they obey the relativistic kinematics, their
width and energy strongly depend on the soliton velocity
[Fig. 1(a)], which results in a significant increase of magnetic
energy in the system. Differently to DWs in ferromagnets,
which are prone to deformation at relatively low velocities
[19,33–36], AFM DWs offer the possibility to transport their
self-energy at speeds close to the effective speed of light of
the medium c [37] [Fig. 1(a)]. As they preserve their shape
through time, these MSs enable long-range coherent energy
transport [38,39]. Notably, since the relative orientation of
atomic spins within the DWs can be classified into two distinct
topological classes [Fig. 1(b)], here we demonstrate the possi-
bility of topologically-mediated energy release by collision of
two relativistic AFM DWs [Figs. 1(c) and 1(d)]. In AFMs, the
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FIG. 1. (a) A magnetic domain wall (DW) is a region of width �0 at rest, which separates two magnetic domains. In AFMs DWs can be
driven up to relativistic speeds vs resulting in the Lorentz contraction of the DW, � = �0γL, and the increase of the self-energy, E (vs) = E0/γL,
where γL = √

1 − (vs/c)2. (b) DWs can hold two spin winding numbers Q = ±1, which are degenerated in energy. The winding number is
defined by the integral over the x axis of the topological density, −∇xφ(x), where φ(x) is the magnetization azimuthal (in-plane) angle and x is
the DW propagation direction. For Q = 1, at x → −∞, starting at φ = π/2, the path (blue arrow) to ∞, φ = −π/2 defines its topology. For
Q = −1, φ(−∞) = −π/2 and φ(∞) = π/2. (c) Schematic representation of two DWs with the same winding number, Q = +1 and Q = +1,
approaching each other in an accelerated motion until collision. After collision DWs stop. (d) During the motion of the DWs the self-energy
increases due to Lorentz contraction caused by the increase of their speed. After collision, the self-energy stored at the DWs is partially
discharged. (e) Schematic representation of two DWs with the opposite winding number, Q = +1 and Q = −1, approaching each other in an
accelerated motion until collision. After collision DWs annihilate and a breather appears. (f) During the motion of the DWs the self-energy rises
due to Lorentz contraction caused by the increase of their speed. After collision, the self-energy stored at the DWs is completely discharged.

role played by the photons in special relativity corresponds
to the magnons, and c corresponds to their maximum group
velocity. A direct consequence of special relativity is that
the MSs’ width at rest, �0, contracts as its velocity vs → c,
described by Lorentz factor γL; � = γL�0, where γL(vs) =√

1 − (vs/c)2. An immediate consequence is that MSs’ en-
ergy can also be represented in a relativistic form given by

Eexc(vs) = E0√
1 − (vs/c)2

, (1)

where E0 corresponds to the MSs’ energy at rest [Fig. 1(a)].
Thus, the relativistic nature of AFM solitons offers the

possibility to “charge” them by just increasing their velocity.
This energy uptake process is considerably fast since the AFM
soliton reaches its maximum velocity energy in only a few
picoseconds due to its small inertia [27] allowing for ultrafast
optical excitation [40,41]. Theoretically at those speeds the
DW can contract down to a few nanometers [42] [Fig. 1(a)].
Importantly, relativistic soliton physics is not only a theoret-
ical construct, but indirect experimental verification has been
recently achieved in ferrimagnetic insulators [43]. Although
propagation at relativistic velocities of individual AFM DWs
has been investigated theoretically, their interactions with
each other and the role of topology remain unexplored.

A continuous deformation of the order parameter into
a different topological class is by principle impossible in
infinitely extended films [44] and difficult in confined ge-
ometries with sizes larger than the characteristic exchange
correlation length. Regarding energy release, access to the en-
ergy transported by the MSs is only possible via topologically
conserved processes, namely, for those where the so-called
topological charge (winding number) Q of the magnetic

medium is conserved. For instance, for a one-dimensional
(1D) DW, the topological charge is defined as the integral
over the space of the winding number density, w(x, t ) =
−∇xφ(x, t ). Here φ(x, t ) is the in-plane angle of the spin at
location x at time t of the spin configuration along the 1D
line of the propagation direction along the x axis [Fig. 1(b)].
The total winding number or topological charge is expressed
as: Q = 1

π

∫
w(x, t )dx. Therefore, a DW in a system can exist

with only two distinct topological flavors, Q = ±1 [Fig. 1(b)].
It is important to note that the homogeneous state corresponds
to Q0 = 0 since φ(x, t ) = constant. This means that one DW
(Q = ±1) would not decay into the ground energy state (Q0 =
0) even though it might correspond to a lower energy level
(when thermal activation processes could be neglected). How-
ever, when two DWs are present in the system two scenarios
are possible. When two DWs of the same topology (Q1 = +1
and Q2 = +1) are driven to collide, they cannot collapse into
an homogeneous state [Fig. 1(c)]. Transfer of their energy into
the system is only partial, and most of it remains within the
spin system [Fig. 1(d)]. However, when at least two DWs
with opposite topological charge (Q1 = +1 and Q2 = −1)
are forced to collide [Fig. 1(e)], a recombination process is
accessible both from energy and topological arguments as
now Q0 = Q1 + Q2 = 0. In such a case, the DWs recom-
bine [Fig. 1(f)], and the energy at the DWs is completely
accessible.

Since the stability of a MS and the output of their collisions
are rooted in topological arguments, from now on we refer to a
MS as a topological magnetic soliton (TMS). In this work we
show that AFM solitons can be “loaded” by magnetic energy,
transport, and release. We pay special attention to the energy
release process, by investigating the outcome of the collision
of two high-energy AFM DWs. Our results unambiguously
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demonstrate the role of topology and relativistic nature of
AFM TMS in these processes.

II. COLLISION OF TWO DOMAIN WALLS

Self-energy and interaction energy

To describe 1D magnetic DWs, it is convenient to introduce
the Walker-like symmetric rigid profile, given by

φi(x, t ) = 2 arctan exp

[
Qi(x − Xi(t ))

�

]
, (2)

the expression of which is characterized by the DW topolog-
ical charge Qi, the central position of the soliton Xi, and its
DW width � [20,39]. We consider a system consisting of two
DWs, denoted through i = 1, 2 indices, with DW topological
charges and central positions Q1,2 and X1,2, respectively. In
this case, the combined profile of the system is given by

φ(x, t ) =
∑

i

φi(x, t ) = 2 arctan exp

[
Q1(x − X1(t ))

�

]

+ 2 arctan exp

[
Q2(x − X2(t ))

�

]
. (3)

The total exchange energy, Eexc, composed of both mag-
netic textures for the case of a 1D spin chain, can be
expressed as

Eexc = a2
0A

∫ +∞

−∞

(∑
i

∂xφi(x, t )

)2

dx, (4)

where A represents the effective exchange stiffness of the
system, a0 is the in-plane lattice constant [32], and where ∂x

expresses the spatial derivative along the xth spatial direction
of the profile of each DW, the latter being given by

∂xφi(x, t ) = Qi

�
sech

(
x − Xi(t )

�

)
. (5)

Taking into account Eq. (5), it is possible to explicitly write
the terms inside the integral of Eq. (4) as follows:(∑

i

∂xφi(x, t )

)2

= 1

�2

[
sech2

(
x − X1(t )

�

)
+ sech2

(
x − X2(t )

�

)

+ 2Q1Q2sech

(
x − X1(t )

�

)
sech

(
x − X2(t )

�

)]
. (6)

Substituting in Eq. (4), it is possible to identify different
exchange-based contributions to the system. Each DW self-
energy Ei

exc is therefore given by

Ei
exc = a2

0A

�2

∫ +∞

−∞
sech2

(
x − Xi(t )

�

)
dx. (7)

An additional energy contribution comes from the exchange
interaction energy between both DWs, E1,2

exc , which is ex-
pressed as

E1,2
exc = 2Q1Q2a2

0A

�2

∫ +∞

−∞
sech

(
x − X1(t )

�

)

FIG. 2. Time dependence of the self-energy of the two antiferro-
magnetic domain walls (DWs) when subject to a spin-orbit field HSO,
which ramps up from HSO = 0 to HSO = 60 mT in 10 fs, in the case
of two solitons with opposite topological charges, which entails their
annihilation when they are conducted towards each other, which im-
plies the liberation of the self-energy of both textures. The red dashed
line represents the sum of the static self-energy of the two DWs,
E0 = 2Ei

exc(HSO = 0) = 4a2
0A/�0, where A represents the effective

exchange stiffness of the medium, a0 is the in-plane lattice constant,
and �0 expresses the DW width at rest, according to Eq. (9), which
is taken as a zero reference for the time evolution of the exchange
energy of the system.

× sech

(
x − X2(t )

�

)
dx, (8)

which allows for writing the total energy Eexc as the sum
of the following independent exchange contributions: Eexc =
E1

exc + E2
exc + E1,2

exc . Analyzing the individual contributions to
the exchange energy by the magnetic textures, expressed in
Eq. (7), it is possible to obtain that

Ei
exc = 2a2

0A

�
, (9)

so if the self-energy of both textures is taken into account,
we can see that, regardless of their topological charge Qi,
both contributions will be equal, giving rise to E1

exc + E2
exc =

2Ei
exc = 4a2

0A/�, since the involved hyperbolic function is an
even function. The time evolution of the self-energy Ei

exc as a
function of the relativistic contraction when subject to a spin-
orbit (SO) field HSO is shown in Fig. 2. Therefore, a DW has
a self-energy that is defined by intrinsic material dependent
magnetic parameters, such as exchange and anisotropy energy
terms. Therefore, no clear mechanism can be envisioned to se-
lectively modify on demand the energy stored in DWs without
changing their intrinsic magnetic parameters.

III. RESULTS AND DISCUSSION

A. Simulations of the collision of two domain walls

We quantify and determine the energy flow dynamics asso-
ciated to the DW motion and the collision of two high energy
DWs in the AFM metal Mn2Au. This material presents a
high Néel temperature of circa 1500 K [45] and an efficient
electric control of the DW motion [32,42,46]. Upon passing
an electrical current along the basal planes, the so-called in-
verse spin galvanic effect [47] produces a staggered local spin
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TABLE I. Literature values for material parameters relevant for
modeling the spin dynamics [45,50]. kB is Boltzmann’s constant.

Ji1k−1
B Ji2k−1

B Ji3k−1
B K2⊥ K2‖ K4⊥ K4‖

(K) (K) (K) (J) (J) (J) (J)

−396 −532 115 −1.303 × 10-22 7K4‖ 2K4‖ 1.855 × 10−25

accumulation with opposite polarities in each sublattice which
creates a local staggered spin-orbit (SO) field perpendicular
to the current direction. The dynamics of a DW induced by
SO torques can be described by the Landau-Lifshitz-Gilbert
(LLG) equation for the atomistic spin dynamics.

We perform atomistic spin dynamics simulations for the
full Mn2Au crystal structure. A unit cell is replicated along
the x direction 6000 times representing circa 2 μm of physi-
cal spin space. The system has periodic boundary conditions
imposed along the y direction while open boundaries are con-
sidered along the x and z directions. The configuration energy
is constituted by three exchange interactions (two antiferro-
magnetic and one ferromagnetic), magnetocrystalline energy
contributions, and the SO field (Supplemental Material [48]).
The total energy E is:

E = −2
∑
〈i< j〉

Ji jSi · S j − K2⊥
∑

i

(Si · ẑ)2 − K2‖
∑

i

(Si · ŷ)2

− K4⊥
2

∑
i

(Si · ẑ)4 − K4‖
2

∑
i

[
(Si · û1)4 + (Si · û2)4

]
−μ0μs

∑
i

Si · Hso
i . (10)

The first term on the right-hand side is the exchange energy
where Ji j is the exchange coefficient along the considered
bonds [42,49]. The second and third terms are the uniaxial
hard and easy anisotropies of strengths K2⊥ and K2‖, respec-
tively, while the fourth and fifth terms collectively describe
tetragonal anisotropy. For the in-plane part of the tetragonal
anisotropy, u1 = [110] and u2 = [11̄0]. Finally, μ0 and μs

are the magnetic permeability in vacuum and the magnetic
moment, respectively, and Hso

i is the SO field applied at each
atomic site. We have used μs = 4 μB [45], with μB being the
Bohr magneton. The time evolution of a unit vector spin at
site i, Si, is simulated by solving the Landau-Lifshitz-Gilbert
equation:

dSi

dt
= −γ Si × Heff

i − γαG Si × (
Si × Heff

i

)
, (11)

where γ is the gyromagnetic ratio of a free electron (2.21 ×
105 m/As), αG is the Gilbert damping set here to 0.001, and
Heff

i is the effective field evaluated at each spin site in time
using Eq. (10) as Heff

i = −1
μ0μs

δE
δSi

. The system of equations,
Eq. (11), is solved by a fifth order Runge-Kutta method.
Material constants used are summarized in Table I.

To follow the motion of a DW in a stripe with a long
dimension parallel to the x axis, it is sufficient to monitor
the mx projection of the magnetization along the track. The
initial condition in our computational model corresponds to
two DWs separated by approximately 1.5 μm. The SO field
generated by the laterally injected electrical current acts onto

FIG. 3. Model simulations of the collision of two domain walls
(DWs) in Mn2Au. (a),(b) Spatiotemporal diagram of the dynamics
of the process showing the DWs collision and the corresponding
output. (a) Two DWs with opposite topological charges result after
the collision in a dispersing breather. (b) Two DWs with the same
topological charges after the collision stop and increase their size. A
finite x component of the magnetization, mx , represents the position
and extension of the DWs. Subplots (a1),(b1), (a2),(b2), and (a3),(b3)
are cuts of the color map in (a) and (b) for three characteristic times
t = 14, 16, and 18 ps, respectively.

the DWs through the Zeeman energy. In order to reduce the
Zeeman energy, the magnetic domain between the two DWs
shrinks, moving both DWs towards each other. The DWs
reach their final velocities of around 42.4 km/s for a SO field
of 60 mT with a ramping time of 10 fs in only a couple of
picoseconds. This speed constitutes ∼98% of the maximum
magnon velocity c for Mn2Au. For the range of SO fields
investigated, the DW width reduces from 20 nm to 4 nm due
to the Lorentz contraction. This leads to an increase of a 500%
of the DWs energy which can be transported [Figs. 2 and
1(a)]. Notably, DWs are very stable with no visible spin-wave
generation at these high velocities. Circa 15 ps later both
DWs reach each other [Figs. 3(a) and 3(b)] and collide. Two
scenarios arise depending upon the topological charge carried
by them and topology conservation laws.

Specifically, when Q1 = −Q2 = 1, topological charge con-
servation rules allow the DWs to recombine leading to a
homogeneous state Q0 = 0 [Fig. 3(a)]. At an instant prior
to the collision (t = 14 ps), both DWs are well defined
[Fig. 3(a1)], close to the moment at which they annihilate
each other (t = 16 ps) the two DW profiles merge [Fig. 3(a2)],
and some time after their disappearance as individual entities
(t = 18 ps), a bounded dispersing stationary breather mode is
observed [Fig. 3(a3)].

Interestingly, a breather mode [39] is created out of the col-
lision between the two solitons, which is localized in the space
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time by a cone defined by the trajectory of each DW before the
collision [Fig. 1(e)]. No spin perturbations can exist outside
this cone. We observe that the past magnon cone behaves
like the future magnon cone in reverse, however, differently
to relativity, spin perturbations lie behind the DW motion,
namely outside the cone [51]. Importantly, the breather mode
attenuation time is given by the exchange relaxation time
scale: 2αGγ JAFM/μs ≈ 3–4 ps. In layered AFM, such as
Mn2Au, JAFM represents the effective exchange interaction
between layers. This sets an ultrafast discharge timescale. For
more details of the dynamics see also Supplemental Material
[48].

When Q1 = Q2 = 1, topological charge conservation rules
do not allow for DWs to recombine leading to the homoge-
neous state (Q0 = 0). Similar to the previous scenario, at an
instant prior to the collision (t = 14 ps), both DWs are well
defined [Fig. 3(b1)]. After the collision, the DWs stop their
rectilinear motion (conservation of momentum) (t = 16 ps)
[Fig. 3(b2)] hence the Lorentz factor γL ≈ 1, and as a con-
sequence the DWs, widen almost instantaneously but start
to oscillate around their final position emitting spin waves
(t = 18 ps) [Fig. 3(b3)]. The final state, i.e., DW widths and
separation, however, depends on energetic considerations.

B. Stationary state of the two domain walls (Q1 = Q2)
after collision

One can calculate the energy of the couple of DWs by
solving the integral given by Eq. (8), which represents the DW
interaction, and is more complicated to solve than the other
two terms corresponding to the self-energy. To solve it, we
use the following trigonometric relationship

cosh (ξ1) cosh (ξ2) = a + a cosh (2ξ1) + b sinh (2ξ1), (12)

where ξi = (x − Xi(t ))/�, and

a = 1

2
cosh

(
X1(t ) − X2(t )

�

)
, (13)

b = 1

2
sinh

(
X1(t ) − X2(t )

�

)
. (14)

The integral in Eq. (8) reduces to

E1,2
exc = 2Q1Q2a2

0A

�2

∫ +∞

−∞

dx

a + a cosh (2ξ1) + b sinh (2ξ1)

= 2Q1Q2a2
0A

�2
I, (15)

where the integral I can be rewritten as the following sum of
terms

I = �

2

∫ +∞

0

[
dξ

a + a cosh(ξ ) + b sinh(ξ )

+ dξ

a + a cosh(ξ ) − b sinh(ξ )

]

= �

2
[I (a, a, b) + I (a, a,−b)]. (16)

This integral has a tabulated solution [52], given by

I (a, a,±b) = ±1

b
ln

(
a ± b

a

)
. (17)

FIG. 4. (a) Sketch of two domain walls (DWs) with the same chi-
rality Q = +1 under the action of an SO field HSO. They move driven
by SO field antiparallel to the central magnetic domain (blue box).
(b) DWs move until collision. After the collision, both DWs remain
at an equilibrium distance from each other. (c) Schematic illustration
of the role played by the exchange E 1,2

exc and Zeeman EZee energies.
While the exchange energy tries to separate DW1 and DW2, the
Zeeman energy forces them to stay as close as possible. (d) Zeeman
(blue line) and exchange (orange line) energies as a function of the
relative distance between DW1 and DW2 for an applied SO field of
20 mT. (e) Comparison between analytical Eq. (21) and numerically
extracted stable distances between DW1 and DW2 as a function of
the applied SO field.

Thus, using the relation 2 atanh(x) = ln[(1 + x)/(1 − x)], the
integral can be rewritten as

I = 2(X1(t ) − X2(t )) csch

(
X1(t ) − X2(t )

�

)
, (18)

and, subsequently, Eq. (15) can be expressed as

E1,2
exc = 4Q1Q2a2

0A(X1(t ) − X2(t ))
�2

csch

(
X1(t ) − X2(t )

�

)
.

(19)
Summarizing all the exchange contributions of the system,

taking into account Eqs. (9) and (19), Eq. (4) takes the func-
tional form

Eexc = 4a2
0A

�

+ 4Q1Q2a2
0A(X1(t ) − X2(t ))

�2
csch

(
X1(t ) − X2(t )

�

)
.

(20)

When both DWs have opposite topological charge (Q1 +
Q2 = 0), there exists a continuous transformation that permits
both DWs to recombine giving rise to a uniform magnetic
state. However, when Q1 + Q2 = 2 [see Figs. 4(a) and 4(b)],
there exists a region between both DWs whose polarization
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is antiparallel to HSO. As a consequence, the Zeeman energy
EZee pushes the DWs together in order to minimize the related
energy [see Fig. 4(c)]. On the other hand, there also exists
a repulsive interaction between DW1 and DW2 due to the
exchange interaction E1,2

exc given by Eq. (19). This results in
an expansion of the magnetic domain separating both DWs.
Note that the central spins of each DW are antiparallel to each
other, which implies that, to minimize the exchange energy,
both magnetic textures have to be as far as possible from the
other. The competition between these two forces, which leads
to a stable distance among the two DWs, as shown in Fig. 4(b),
can be expressed as

�E = μ0Msa
2
0HSO(X1 − X2)

+ 4Q1Q2a2
0A(X1 − X2)

�2
csch

(
X1 − X2

�

)
, (21)

where μ0 is the vacuum permeability and Ms represents the
volumetric saturation magnetization [32]. Figure 4(d) shows
the dependence of the Zeeman and exchange energies as a
function of the relative distance between two DWs (DW1 and
DW2) with the same topological charge for an applied SO
field of 20 mT. As the SO field and magnetic domain between
the two DWs is antiparallel, the minimum energy corresponds
to a zero distance between the DWs. The opposite happens
with the exchange energy; the smaller the distance between
the two DWs, the larger the exchange energy (A > 0). One
can see [black dashed line in Fig. 4(d)] that when accounting
for the exchange and the Zeeman energies, a global minimum
appears which corresponds to a stable configuration distance
between DW1 and DW2. A comparison between the stable
distance among the two DWs as a function of the applied
SO field extracted from numerical simulations and Eq. (21)
is shown in Fig. 4(e). It can be observed that starting for the
larger SO field (60 mT), the stable distance increases as the SO
field is reduced, meaning that the Zeeman force needs more
extension of the magnetic domain to compensate the repulsion
between the DWs.

C. Energy flow from the collision of two DWs

A fundamental question needs to be addressed: How much
energy from the moving DWs is accessible to the external
environment? The magnetic energy flow during the DWs col-
lision involves the electron and lattice systems. To further
quantify this process, we use a kinetic model where both
local and nonlocal electron, phonon, and spin relaxations
are included [42]. The dynamics of the electron and lattice
vibrations (phonons) energies (expressed as their “effective
quasiequilibrium temperatures” which can be a measurable
quantity) are described by the two temperature model (TTM)
[53] [Fig. 5(a)].

The fundamental assumption here is that the magnetic free
energy flows directly into the electron system due to the metal-
lic nature of Mn2Au [Fig. 5(a)].

Cel
dTel

dt
= −gel−ph(Tel − Tph ) + ∂

∂x
κ

∂Tel

∂x
+ q̇

Cph
dTph

dt
= gel−ph(Tel − Tph ). (22)

FIG. 5. (a) Stored energy at two domain walls (DWs) with oppo-
site topology can be transferred to the electron system by colliding
them. Besides q̇dyn, an additional topologically-mediated transfer
mechanism opens up, q̇topo, when the winding of the DWs are op-
posite. The electron and lattice are coupled via electron-phonon
coupling, gel-ph. (b) Color map of the spatiotemporal distribution of
the rate of heat dissipation caused by the motion of the DWs. At the
collision (zoomed in inset), an explosion of heat occurs due to the
recombination of DWs. Subplots (b1)/(c1), (b2)/(c2), and (b3)/(c3)
represent the spatial distribution of �Tel along the track for three
characteristic times: 14, 16, and 18 picoseconds, respectively.

The electron system receives an input of energy from the
DW motion due to the magnetic friction (spin-Peltier effect
[42]), spin-wave attenuation, and DW collision, all of them
quantified by the Rayleigh dissipation functional q̇ = ηṡ2,
where s represents the spin. η = μsαG/γ , where γ is the
gyromagnetic ratio. Since the electron system has a much
lower specific heat (Cel = γelTel) than the lattice (Cph), the
electron system heats up almost instantaneously at a tem-
perature that is larger than the lattice. The lattice heats only
indirectly due to the coupling to the hot electrons via the
electron-phonon coupling gel-ph [Fig. 5(a)]. The lateral ther-
mal electron diffusion (defined by the parameter κ) is also
included. We assume room temperature parameters [42]. The
details of the electron and phonon temperature dynamics can
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FIG. 6. (a) Time evolution of the stored energy at the DWs. Before domain wall (DW) collision (yellow circle), energy increases as the
velocity of the DWs accelerates. After collision (yellow circle), for Q1 = −Q2, there is a complete release of stored energy, while for Q1 = Q2,
a partial release of stored energy takes place. The difference of stored-energy release is defined as �Etopo = �E (Q1, −Q1) − �E (Q1, Q1).
(b) The maximum (at the collision) temperature increase of the electron system as a function of the reduced DW width, �/�0. The shaded area
defines the topological effect �T el

topo = �Tel (Q1,−Q1) − �Tel (Q1, Q1). (c) The maximum (at the collision) temperature increase of the phonon

system, as a function of the reduced DW width. The shaded area defines the topological effect �T ph
topo = �Tph(Q1, −Q1) − �Tph(Q1, Q1).

be visualized in Supplemental Material [48] for the two topo-
logical classes presented above.

Moving magnetic textures release energy to external
medium by magnetic friction (spin-Peltier effect) [42].
For a stationary moving DW, the maximum heat is re-
leased at the DW center and the rate of its density q̇ is
defined by

q̇dyn,stat = μs

γ
αG

(vs

�

)2
. (23)

We observe [Figs. 5(b) and 5(c)] that while the DWs move
towards each other, their dissipation rates are equal, q̇1 = q̇2,
and closely follow Eq. (23). Before the collision [Figs. 5(b),
5(c), 5(b1), and 5(c1)], two well-defined electron temperature
peaks can be clearly observed, corresponding to the DW po-
sitions. As DWs approach each other closer, their shapes are
affected by their mutual interaction and individual topology.
Spin-wave generation is also observed. Remarkably, DWs
positions are clearly defined until the collision, marked by two
separate �Tel peaks.

When Q1 = Q2, at the instant of DWs collision, due
to the repulsion effect, their positions never merge [visi-
ble as a white spot in the dissipated energy in the inset of
Fig. 5(c)]. After the collision, DWs velocities change and
the energy excess redistributes between different subsystems
via spin wave emission, electron-phonon coupling, and lateral
thermal conduction. This leads to a small energy peak
[Fig. 5(c2)]. Since DWs remain well-defined separate entities
during the entire dynamics, we identify this process as a
purely dynamical energy release q̇dyn, the same as the spin-
Peltier effect in moving magnetic textures [42] but for a more
complex situation.

On the contrary, when Q1 = −Q2, at the moment of DW
relativistic collision [t = 16 ps, Fig. 5(b2)], there is a large
temperature boost [visible as a dark spot in the dissipated
energy in the inset of Fig. 5(b)] which adds to the temper-
ature increase from magnetic friction q̇dyn. Since this effect
is caused by the annihilation of TMS subject to special

topological rules, we call this process topological energy re-
lease (q̇topo). Soon after [t = 18 ps, Fig. 5(b3)], we again
observe attenuation of �Tel at the collision site due to the
energy redistribution via electron-phonon coupling and lateral
thermal conduction. On a longer timescale the breather dis-
perses causing lateral spin waves which finally attenuate,
passing the energy to electron and phonon systems.

The stored energy in the DW increases as the DW accel-
erates to reach their maximum velocity given by the SO field
[Fig. 6(a)]. Interestingly, the dynamics of DW energies resem-
bles that of the electric capacitor charging and discharging.
Control of the amount of energy released into the medium is
possible using high-energy AFM DWs. Since the self-energy
of the individual DWs follows the special relativity Eq. (1),
one can adjust it by modifying the width of the DW at the
moment of the collision �c [Figs. 6(b) and 6(c)]. The variation
of the self-energy of the DWs before and after the collision,
�Ecol, depends on both �c/�0 and their relative winding
numbers Q1, Q2. From our calculations, for relatively large
velocities, close to c, the reduction of � can reach relative
values of �c/�0 ≈ 0.2. For the system parameters considered
here, for collisions events with Q1Q2 < 1 occurring at the
highest velocities (corresponding to SO field = 60 mT), we es-
timate the transferred energy �Etopo ∼ 35 meV. In particular,
we define topological energy variation in terms of the cor-
responding temperatures as �T el(ph)

topo = �Tel(ph)(Q1,−Q1) −
�Tel(ph)(Q1, Q1), represented in Fig. 6 as a function of the
DW width. We predict a measurable phonon temperature dif-
ference between the two topologically distinct DW collision
processes, �T ph

topo = 0.05 K.
One can easily estimate the size of the energy release spot

by noticing that the relaxation time of the spin dynamics
(Supplemental Material [48]) is ≈3–4 ps. For example, for
the case considered here, vs ∼ 42.4 km/s, the energy is re-
leased at a region of around 120–160 nm [Figs. 5(b1)/5(c1)
to 5(b3)/5(c3)]. Collisions at slower velocities permit us to
narrow down the spot size, but at the same time the released
energy will be smaller. Moreover, despite the intrinsic diffi-
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culties to measure magnetic signal in AFMs, the temperature
traceability unveiled by our proposal opens the door to track
experimentally the location of topological magnetic solitons
and their interactions in AFMs.

IV. CONCLUSION

We show that TMSs can be used as energy carriers, in par-
ticular AFM DWs can uptake, transport, and release energy.
Our work allows us to unveil mechanisms of these processes.
In a first step, we have demonstrated that relativistic kinemat-
ics of AFM TMS permits ultrafast energy uptake. This process
is based on the relativistic DW contraction which allows up
to a fivefold increase of the exchange energy present at the
DW. Next, thanks to the soliton nature of AF DWs, they
can propagate along the material allowing long-range energy
transport. Finally, topologically conserved collisions of two
DWs which allow for annihilation processes can serve as a
transfer protocol to make use of the energy transported by the
AF DWs in a fast manner.

The energy uptake, transport, and release mechanisms
considered here are universal for any type of AFM TMS
(skyrmions, vortices, etc.) and may also occur in ferro-
magnetic TMSs, if they could be accelerated to very high
velocities avoiding the Walker breakdown. Recently, practi-
cal realization of relativistic kinematics in isolated magnetic
solitons has been demonstrated [43]. Thus, extending those
experiments to collisions of TMSs moving at relativistic
speeds should be straightforward.

Our proposal also opens the door to ultrafast energy man-
agement at the nanoscale for future nanoelectronics. AFM
TMS have the potential to become a new niche for energy
transport devices based on electron’s spin rather than on its
charge. In comparison to other topological (nonmagnetic) de-
fects, our approach avoids the inconvenience of overcoming
any energy barrier for the particle-antiparticle recombination
processes which are secured due to topological and energetic
arguments. The energy release time is in the picosecond time
scale and depends on inherent material properties, opening the
door for further fine tuning of this intrinsic time.
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