
Unbiased post-error slowing in interference tasks: A confound
and a simple solution

Jan Derrfuss1 & Claudia Danielmeier1 & Tilmann A. Klein2,3,4
& Adrian G. Fischer2,5 & Markus Ullsperger2,3

Accepted: 1 July 2021
# The Author(s) 2021

Abstract
We typically slow down after committing an error, an effect termed post-error slowing (PES). Traditionally, PES has been
calculated by subtracting post-correct from post-error RTs. Dutilh et al. (Journal of Mathematical Psychology, 56(3), 208-216,
2012), however, showed PES values calculated in this way are potentially biased. Therefore, they proposed to compute robust
PES scores by subtracting pre-error RTs from post-error RTs. Based on data from a large-scale study using the flanker task, we
show that both traditional and robust PES estimates can be biased. The source of the bias are differential imbalances in the
percentage of congruent vs. incongruent post-correct, pre-error, and post-error trials. Specifically, we found that post-correct, pre-
error, and post-error trials weremore likely to be congruent than incongruent, with the size of the imbalance depending on the trial
type as well as the length of the response-stimulus interval (RSI). In our study, for trials preceded by a 700-ms RSI, the
percentages of congruent trials were 62% for post-correct trials, 66% for pre-error trials, and 56% for post-error trials. Relative
to unbiased estimates, these imbalances inflated traditional PES estimates by 37% (9 ms) and robust PES estimates by 42% (16
ms) when individual-participant means were calculated. When individual-participant medians were calculated, the biases were
even more pronounced (40% and 50% inflation, respectively). To obtain unbiased PES scores for interference tasks, we propose
to compute unweighted individual-participant means by initially calculating mean RTs for congruent and incongruent trials
separately, before averaging congruent and incongruent mean RTs to calculate means for post-correct, pre-error and post-error
trials.
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Introduction

For successful goal-directed behavior, it is important to adjust
our actions when they are not going according to plan, for
instance, when we have committed an error. There are several

neural and behavioral post-error adjustments (Danielmeier &
Ullsperger, 2011; Ullsperger et al., 2014), with post-error
slowing (PES), a slowing of reaction times after errors, being
the most frequently reported behavioral modulation.
Interestingly, it has recently been shown that smaller PES ef-
fects in the lab are associated with more self-control failures in
real life (Kronke et al., 2018). Furthermore, changes in PES
have been associated with a range of different developmental
or mental disorders. Altered PES effects have been shown in
children with autism spectrum disorders (Sokhadze et al., 2010;
Vlamings et al., 2008) and ADHD (Balogh & Czobor, 2016;
Klein et al., 2013; Schachar et al., 2004), as well as in borderline
personality disorders (Saunders et al., 2016), and in metham-
phetamine addicts (Liang et al., 2018). PES effects in individ-
uals diagnosed with schizophrenia are mixed, with some stud-
ies showing reduced or absent PES (Alain et al., 2002; Carter
et al., 2001; Kerns et al., 2005;Moran et al., 2018), while others
report intact (Kopp & Rist, 1999; Laurens et al., 2003;
Mathalon et al., 2002) or even increased PES (Nunez
Castellar et al., 2012). Recently, post-error adjustments became
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part of the research domain criteria for investigating cognitive
control in mental disorders (https://www.nimh.nih.gov/
research-priorities/rdoc/constructs/rdoc-matrix.shtml; Kozak &
Cuthbert, 2016). As PES is being used to characterize and
evaluate neurodevelopmental and mental health disorders, it is
important that this measure is as precise and unbiased as
possible.

As noted by Schroder et al. (2020), to date there is no stan-
dard way to calculate PES. Traditionally, PES has been calcu-
lated by subtracting the mean post-correct RT (RTpost-correct)
from the mean post-error RT (RTpost-error), with the constraint
that post-correct and post-error trials must also be correct trials.
However, as pointed out by Dutilh et al. (2012), PES calculated
with this traditional methodmight be biased due to performance
fluctuations: depending on how a participant's performance
changes over the course of the experiment, one could either
obtain spuriously increased or decreased PES values. For in-
stance, if a participant gets tired towards the end of the exper-
iment, more errors will occur, and RTs will be slower. Thus,
most post-error trials will come from the last part of the exper-
iment when RTs were slower overall, whereas most post-
correct trials will come from earlier phases of the experiment
when RTs were generally faster. With the traditional method of
calculating PES, this situation would lead to inflated PES
values. Another example described by Dutilh et al. (2012), that
could lead to spuriously diminished PES values, would be if an
individual shows changes in response caution over the course
of the experiment. In phases where a participant responds more
carefully, hardly any errors might occur, but response times
would be quite long. If this individual later responds less care-
fully, RTs might get shorter, but response accuracy might drop
as well. In this scenario, most post-error trials would originate
from a phase with shorter RTs overall, whereas most post-
correct trials would originate from phases with longer RTs,
leading to decreased PES values with PEStraditional. In line with
this, a recent study by Schroder et al. (2020) concluded that
PEStraditional tends to underestimate the magnitude of PES.
Both confounds can occur when errors are not uniformly dis-
tributed across the experiment. To counteract these confounds,
Dutilh et al. (2012) suggested a different quantification method,
PESrobust, where only those post-correct trials that are also pre-
error trials are taken into account (PESrobust = RTpost-error -
RTpre-error). Thus, post-error and post-correct trials will originate
from the same time periods within an experiment.

While the method of calculating PESrobust as described by
Dutilh et al. (2012) addresses potential biases caused by the
fact that errors might not be spread out evenly across an ex-
periment, it does not explicitly address a potential bias that
arises when researchers use interference tasks (such as the
flanker task or the Stroop task) to study performance monitor-
ing (Dutilh et al. used a task without an interference compo-
nent). Of importance for the remainder of this article, when
researchers have employed interference tasks to study PES in

the past, PES was not calculated separately for congruent and
incongruent trials, but as composite measure across congruen-
cy conditions. Of course, reaction times in congruent trials are
typically shorter than reaction times in incongruent trials. Due
to this difference in RTs, a difference in the ratio of congruent
and incongruent trials before and after errors will lead to bi-
ased PES estimates (see Table 1). Such an imbalance could be
a consequence of the conflict adaptation effect (Gratton et al.,
1992). Gratton et al. showed that the congruency of the pre-
vious trial can modulate RTs and error rates of the current trial
and that error rates tend to be higher after congruent than after
incongruent trials (see also Pastotter et al., 2013; Van der
Borght et al., 2014).

For traditional PES analyses, post-correct trials are used as
a baseline. When post-correct RTs in interference tasks were
computed in past studies, typically all post-correct trial RTs
were indiscriminately averaged. However, assuming 50% of
the trials are congruent and 50% are incongruent, there is
some potential for bias here as well: Because error rates are
higher in incongruent trials, there will be more congruent than
incongruent post-correct trials. To illustrate this point, imag-
ine a participant performs 101 trials and commits an error on
20 trials, 16 of which are incongruent and four congruent.
Assuming trial order is random, post-error trials should on
average be equally frequently congruent and incongruent.
This leaves us with up to 60 post-correct trials for analysis
(101 trials – (20 error trials + 20 post-error trials + first trial)).
Of these, 36 will be congruent (50 congruent trials – (four
congruent error trials + 10 congruent post-error trials)) and
only 24 incongruent (50 incongruent trials – (16 incongruent
error trials + 10 incongruent post-error trials)). Thus, simply
averaging all post-correct trials will result in a biased estimate.
Finally, estimates of post-error RTs might be biased as well:
Again, there might be more congruent than incongruent post-
error trials, due to the fact that an incongruent post-error trial is
more likely to be incorrect and would thus be excluded from
the trials eligible as post-error trials.

In the present article, using data from a large-scale study of
the Eriksen flanker task (Danielmeier et al., 2009; Eriksen &
Eriksen, 1974), we set out to investigate biases in traditional
and robust PES when pre-error, post-correct, and post-error
RTs are calculated without taking imbalances in the percent-
age of congruent and incongruent trials into account. We will
investigate if these imbalances depend on response-stimulus
intervals (RSIs). Taking RSI into account for PES calculations
is important as it has previously been shown that PES strongly
depends on RSIs, with shorter RSIs leading to more PES
(Buzzell et al., 2017; Danielmeier & Ullsperger, 2011;
Jentzsch & Dudschig, 2009). Therefore, our analysis will
match the RSI length before post-error trials and the RSI be-
fore post-correct trials (traditional PES)/pre-error trials (robust
PES) when calculating PES. In addition, we will investigate
the degree of bias in PES for when means or medians are
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calculated at the level of individual participants. Finally, we
will use synthetic data to explore biases across a range of
imbalances and interference effects. Throughout the paper,
we will show that these biases can easily be corrected by
averaging congruent and incongruent trials separately before
averaging these condition-specific means to calculate an over-
all mean.

Method

Participants

This study is based on a dataset that has been reported else-
where (Fischer et al., 2016; Fischer et al., 2018). The initial
sample consisted of 803 individuals (409 males, 394 females;
age range: 18–40 years, mean age: 23.99 years; SD: 3.89; 33
left-handers). A total of 388 datasets were collected at the
Radboud University of Nijmegen, all remaining datasets were
collected at the Max Planck Institute for Human Cognitive
and Brain Sciences in Leipzig, using identical code and equip-
ment. Study procedures were approved by the ethics commit-
tees in Nijmegen (ECG04032011) and at the University of
Leipzig (285-09-141209). To be included in the study, partic-
ipants needed to meet the following criteria: no history of
psychiatric or neurological disease; no regular use of psycho-
tropic medication; no relevant history of drug abuse (con-
sumption within the last month or more than five times in
lifetime; without cannabis); no regular consumption of canna-
bis (more than three times per month); no alcohol intake on the

day of the study. Our task performance criteria (see below for
details) led to the exclusion of 450 individuals for the analysis
based on individual-participant means. Thus, the final sample
consisted of 353 individuals (172 males, 181 females) be-
tween 18 and 37 years of age (mean: 23.59 years, SD: 3.66),
13 of whom were left-handed. For the analysis based on
individual-participant medians, 385 participants were exclud-
ed, resulting in a final sample size of 418 individuals (197
males, 221 females; mean age: 23.67 years, SD: 3.72, range:
18 to 38 years, 18 left-handed).

Task

A speeded arrow-version of the Eriksen Flanker task was
employed (for a figure illustrating the task, see Fischer et al.,
2018). Participants were instructed to respond as quickly and
accurately as possible to the direction (left or right) of a cen-
trally presented target arrow that appeared on screen for 33
ms. They responded with their left or right thumb, correspond-
ing to the arrow direction, on a custom-made hand-held re-
sponse box. Participants were also instructed to ignore four
flanking arrows that appeared above and below the target
83 ms earlier. The size of all arrows was 1.9° × 1.3° of visual
angle. The task consisted of 1088 trials, with a self-paced
break after every 200 trials. On half of the trials, the direction
of flankers and target was the same (congruent trials), whereas
they pointed in opposite directions on the other half (incon-
gruent trials). The distance between flanker and target stimuli
was either close (flanker-target distance: 3.5° and 1.75° for
distal and proximal distractor arrows, respectively) or far

Table 1 Hypothetical example illustrating the effect of an imbalance in
congruent and incongruent trial numbers on robust PES estimation. In this
example, the participant made 20 errors, so there are 20 pre-error and 20
post-error trials. For simplicity, we assume that all congruent RTs before
errors were 1,000 ms long, that all incongruent RTs before errors were
1,200 ms long, and that the participant slowed down 100 ms in each
condition after they committed an error. A) If there is no imbalance, a

simple averaging approach arrives at the correct PES estimate. B) If there
is an imbalance (in this example, there are relatively more congruent pre-
error trials than post-error trials), a simple averaging approach
overestimates the PES effect. C) This bias is absent if the RTs for the
individual conditions are averaged before pre-error and post-error means
are calculated

Pre-error trials Post-error trials PESrobust

A) Equal percentage of con and incon trials before and after errors con: 10 × 1,000 ms con: 10 × 1,100 ms

incon: 10 × 1,200 ms incon: 10 × 1,300 ms

mean: 1,100 ms mean: 1,200 ms 100 ms

B) Imbalance (no bias correction) con: 15 × 1,000 ms con: 10 × 1,100 ms

incon: 5 × 1,200 ms incon: 10 × 1,300 ms

mean: 1,050 ms mean: 1,200 ms 150 ms

C) Imbalance (with bias correction) con: 15 × 1,000 ms con: 10 × 1,100 ms

incon: 5 × 1,200 ms incon: 10 × 1,300 ms

con mean: 1,000 ms con mean: 1,100 ms

incon mean: 1,200 ms incon mean: 1,300 ms

mean of means: 1,100 ms mean of means: 1,200 ms 100 ms

Abbrev.: con congruent, incon incongruent, PESrobust robust post-error slowing
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(6.5° and 4°). The time between the response and the onset of
the next trial (response-stimulus interval, RSI) was either short
(250 ms) or long (700 ms). Half of the congruent trials were
preceded by a short and the other half by a long RSI (same for
incongruent trials), and half of the far trials were preceded by a
short, and the other half by a long RSI (same for close trials).
Thus, the task combined the factors flanker-target congruency
(congruent or incongruent), RSI (short or long) and flanker-
target distance (close or far). The trial order was pseudo-
random with counterbalanced transition probabilities for con-
gruency and flanker-target distance.

Procedure

The flanker task data were acquired within a larger project in
the context of a set of other tasks (time estimation task, odd-
ball task, resting state EEG measure) that are not reported
here. Electroencephalography data were collected simulta-
neously but are not included here. The order of the different
tasks was randomized between participants. Participants sat in
a dimly lit EEG recording chamber while performing the task.
The overall task duration across all different tasks was roughly
90 min. Written informed consent was obtained from each
participant before inclusion in the study and subjects received
either financial compensation or course credits.

Data analysis

The analyses reported here focus exclusively on close trials as
studies employing the flanker task typically present flankers
directly adjacent to the target. Our data and analysis repository
(see below) also includes an analysis of the far trials.

Trial types were defined as follows: Error trialswere trials
with incorrect responses (i.e., trials with no response before
the deadline were not taken into account for the present anal-
yses). Post-correct trials were correct trials that followed an-
other correct trial. Pre-error trials were correct trials that
followed a correct trial and preceded an error.Post-error trials
were correct trials that followed an error and preceded a cor-
rect trial. These definitions made sure that single correct trials
between two errors were excluded from the analysis (catego-
rization for these trials would be ambiguous as they were both
post-error and pre-error trials).

We calculated four types of PES: uncorrected traditional
PES, corrected traditional PES, uncorrected robust PES, and
corrected robust PES. For each participant, trials relevant for
the analyses were categorized along three dimensions: trial
type (post-correct, pre-error, post-error; note that some post-
correct trials are also pre-error trials), congruency (congruent,
incongruent), and RSI (short, long). The relevant RSI was
always the RSI that preceded a given trial. For example, when
referring to a pre-error trial as a "short RSI" trial, this indicates
that the pre-error trial was preceded by a short RSI.

We performed two different sets of analyses, one based on
mean RTs and one based on median RTs on the individual-
subject level. For the mean-based analysis, the different types
of PES were calculated for a given participant as follows:

PEStrad;uncorr ¼ RTpost−error−RTpost−correct

PEStrad;corr ¼ RTpost−error;incon þ RTpost−error;con

2

 !

−
RTpost−correct;incon þ RTpost−correct;con

2

 !

PESrobust;uncorr ¼ RTpost−error−RTpre−error

PESrobust;corr ¼ RTpost−error;incon þ RTpost−error;con

2

 !

−
RTpre−error;incon þ RTpre−error;con

2

 !

ð1Þ

For uncorrected PES scores, congruent and incongruent
trials were first concatenated and then averaged. For corrected
PES scores, congruent and incongruent RTs were initially
averaged separately, thus removing any bias caused by imbal-
ances in trial numbers. To calculate PES for the group, indi-
vidual participant PES scores were averaged. All calculations
were done for each RSI separately.

For the median-based analysis, medians were calculated on
the individual-participant level. For uncorrected PES scores,
congruent and incongruent trials were concatenated before the
median was calculated. For corrected PES scores, medians for
congruent and incongruent RTs were calculated separately
before averaging the two medians. To calculate PES for the
group, individual participant PES scores were averaged. All
calculations were done for each RSI separately.

In our analyses, we removed trials immediately following
breaks, and all trials with RTs below 100 ms or above 1500
ms. To be included in the analysis, a participant was required
to have at least five congruent and incongruent pre-error and
post-error trials in each RSI condition (short and long; i.e., a
minimum of 20 errors in close trials, corresponding to a min-
imum error rate of 3.7%). For the analysis based on individual
participant means, we removed outlier RTs using the median
absolute deviation (scale factor 1.4826, threshold 2.5; Leys
et al., 2013). As the median is insensitive to outliers, outlier
rejection was not performed for the analysis based on individ-
ual participant medians. Overall, 425 participants in the mean-
based analysis and 504 participants in the median-based anal-
ysis had sufficient trial numbers (as no outliers RTs were
rejected, more participants achieved the five-trial criterion in
the median-based analysis). We also investigated if there were
any participants who did not show an overall interference
effect in correct trials, or made more errors in congruent as
compared to incongruent trials. No such participants were
identified. As a final criterion, we required a minimum accu-
racy of 80% on congruent trials, and 60% on incongruent
trials. Based on this criterion, for the mean-based analysis a
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further 72 participants were excluded, resulting in the final
sample size of 353 participants. For the median-based analy-
sis, a further 86 participants were excluded, resulting in the
final sample size of 418 participants.

Data were analyzed using custom-written scripts in Python (v.
3.7.7) using Jupyter notebook (v. 6.0.3, https://jupyter.org/),
Pandas (v. 1.0.3, https://pandas.pydata.org/), seaborn (v. 0.10.1,
https://seaborn.pydata.org/), and pingouin (v. 0.3.11, https://
pingouin-stats.org/). Error bars shown in figures were
calculated using seaborn and correspond to 95% multilevel
bootstrapped CIs based on 1000 iterations. The multilevel
bootstrapping approach first resampled participants and then
observations within participants to account for the repeated-
measures design. The kernel density estimates were calculated
using the default settings in seaborn. The data and analysis scripts
are available at https://doi.org/10.24352/ub.ovgu-2021-024.

Results

Pre-error trials

Robust PES uses pre-error trials as a baseline. Therefore, we
initially investigated if there was an imbalance in the number
of congruent and incongruent pre-error trials. We found that
this was indeed the case (see Fig. 1). Pre-error trials were more
frequently congruent, both when the RSI before the pre-error
trial was short (58.3% congruent), and when it was long RSI
(66.1% congruent). A repeated-measures ANOVA showed
that this imbalance was significant: There was a main effect
of congruency, F(1, 352) = 1077, p < .001, η2p = 0.75, and an

interaction of congruency x RSI, F(1, 352) = 175, p < .001, η2p
= 0.33 (as the average percentage for each RSI must be 50%,
there can be no main effect of RSI). Post hoc t tests showed
that the percentage of congruent trials as compared to

incongruent trials was higher at both RSIs. In addition, the
percentage of congruent trials was higher at the long RSI as
compared to the short RSI (all post hoc p's < .001). These
results indicate that an error is more likely preceded by a
congruent trial than an incongruent trial, in particular if the
RSI before the pre-error trial is long.

Note that these results refer to the RSI before the pre-error
trial, not the RSI before the error trial. We focus on the RSI
before the pre-error trial because it is this RSI that needs to be
matched to the RSI before the post-error trial for robust PES
calculations. For example, RTs in post-error trials preceded by
short RSIs should be compared to RTs in pre-error trials also
preceded by short RSIs. Below, we show in more detail that
RTs in general as well as PES in particular depend on RSI (see
Table 3).

Which factors are driving the imbalance in favor of con-
gruent pre-error trials? To briefly reiterate, when calculating
PES a pre-error trial is a correct trial that follows another
correct trial (otherwise the categorizationwould be ambiguous
as the trial in question would be both a pre-error and a post-
error trial) and precedes an error trial. We can investigate the
impact of these constraints on the imbalance by successively
removing them. This is shown in Table 2. The results show
that removing constraints reduces the imbalance in favor of
congruent trials at short and long RSIs. However, even when
neither the pre-error nor the error–2 trial must be correct, pre-
error trials are still more likely to be congruent. In our study,
the error rate after long RSI congruent trials was 18.6 vs.
14.9% after long RSI incongruent trials, in line with the con-
flict adaptation effect.

Post-correct trials

Traditional PES uses post-correct trials which are them-
selves correct as a baseline. As error rates for incongruent
trials are higher (29.9 vs. 5.0% for congruent), there will
also be more congruent than incongruent correct post-
correct trials (see Introduction). Figure 2 depicts the imbal-
ance for post-correct trials preceded by short or long RSIs.
As expected, post-correct trials were more frequently con-
gruent, both when the RSI before the pre-error trial was
short (54.2% congruent), and when it was long RSI
(62.2% congruent). A repeated-measures ANOVA showed
that this imbalance was significant: There was a main ef-
fect of congruency, F(1, 352) = 3653, p < .001, η2p = 0.91,

and an interaction of congruency x RSI, F(1, 352) = 1299,
p < .001, η2p = 0.79. Post hoc t tests showed that the per-

centage of congruent trials as compared to incongruent
trials was higher at both RSIs. In addition, the percentage
of congruent trials was higher at the long RSI as compared
to the short RSI (all post hoc p's < .001).

Fig. 1 Percentage of congruent (con) and incongruent (incon) pre-error
trials depending on the response-stimulus interval (RSI) before the pre-
error trial. The dashed line at 50% represents the expected percentages
when no imbalance is present. Results show that pre-error trials were
more likely to be congruent, especially when the RSI before the pre-
error trial was long. Error bars represent 95% CIs
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Post-error trials

Next, we investigated if there was also an imbalance for post-
error trials. We found that also post-error trials tended to be
congruent. For short RSIs, 51.3% of the trials were congruent,
and for long RSIs, 56.3% of the trials were congruent (Fig. 3).
A repeated-measures ANOVA showed that this imbalance
was significant: There was a main effect of congruency, F(1,
352) = 117, p < .001, η2p = 0.25, and an interaction of congru-

ency x RSI, F(1, 352) = 54, p < .001, η2p = 0.13. Post hoc t tests
showed that the percentage of congruent trials as compared to
incongruent trials was higher at both RSIs (although the effect
at the short RSI was only just significant after Bonferroni
correction at p = .047). In addition, the percentage of congru-
ent trials was higher at the long RSI as compared to the short
RSI (all other post hoc p's < .001). Note that congruent and
incongruent trials (irrespective of accuracy) occurred equally
frequently after an error (e.g., 50.3% of post-error trials pre-
ceded by a long RSI were congruent). The bias is caused by
the fact that PES calculations only take into account correct

post-error trials, and correct post-error trials are more often
congruent than incongruent.

Taken together, these results show that at least in a Eriksen
flanker paradigm consisting of 50% congruent and 50% in-
congruent trials in pseudorandomized order where transition
frequencies are counterbalanced, the number of congruent and
incongruent pre-error trials, post-correct trials as well as post-
error trials is not balanced. Thus, mean RTs that do not take
this imbalance into account will be biased. In addition, as the
degree of imbalance differs for pre-error/post-correct (the
baseline conditions for robust and traditional PES, respective-
ly) and post-error trials, measures computed based on these
mean RTs (such as PES) will also be biased. Below we ex-
plore the consequences of not correcting this bias.

PES based on individual-subject means

We now address the question how the imbalances de-
scribed above affect PES values. For the analyses reported
in this section, mean RTs (as opposed to the medians that
will be considered below) were computed for individual
participants. These means were then averaged to calculate
group means (Table 3). As described in the Data analysis
section, we compared four types of PES calculations: un-
corrected traditional PES, corrected traditional PES, uncor-
rected robust PES and corrected robust PES. We found, as
did Dutilh et al. (2012), that PES estimates were generally
smaller when using the traditional approach (Table 3).
More importantly, and in line with the imbalances reported
above, our results showed that uncorrected PES estimates
(i.e., PES estimates based on simple concatenation of con-
gruent and incongruent trials) tended to be higher than
corrected robust PES estimates. Comparing traditional un-
corrected and corrected PES, there was no bias at the short
RSI, which is in line with the fact that congruency

Table 2. Percentages of congruent pre-error trials for the post-error
slowing analysis and when relaxing constraints required for the post-
error slowing analysis

Constraints Percentage of congruent pre-error trials

Short RSI Long RSI

Pre-error trial and error–2 trial
correct (see Fig. 1)

58.3 66.1

Pre-error trial correct
(but not error–2 trial)

58.2 65.7

Error–2 trial correct
(but not pre-error trial)

54.6 57.8

Neither pre-error nor error–2
trial must be correct

54.5 57.8

Fig. 2 Percentage of congruent (con) and incongruent (incon) post-
correct trials depending on the response-stimulus interval (RSI) before
the post-correct trial. The dashed line at 50% represents the expected
percentages when no imbalance is present. Results show that post-
correct trials were more likely to be congruent, especially when the RSI
before the pre-error trial was long. Error bars represent 95% CIs

Fig. 3 Percentage of congruent (con) and incongruent (incon) post-error
trials depending on the response-stimulus interval (RSI) before the post-
error trial. The dashed line at 50% represents the expected percentages
when no imbalance is present. Results show that post-error trials tended to
be congruent, especially when the RSI before the post-error trial was long.
Error bars represent 95% CIs
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imbalances for short RSI post-error trials and post-correct
trials were small (51.3 and 54.2% congruent, respectively).
However, traditional PES did overestimate PES at the long
RSI (9 ms bias, 37% increase relative to the corrected val-
ue, Cohen's dZ = 0.51). Comparing robust uncorrected and
corrected PES, the overestimation was very small at the
short RSI (4ms bias, 4.4% increase relative to the corrected
value, Cohen's dZ = 0.18), but more pronounced at the long
RSI (16ms bias, 42% increase relative to the corrected
value, Cohen's dZ = 0.71).

Overall, bias for uncorrected vs. corrected traditional PES
was either absent (short RSI) or moderate (long RSI).
However, a moderate overall bias could be the result of more
substantial misestimates on the individual participant level if
the misestimates sometimes underestimate and sometimes
overestimate the actual PES effect. This would be particularly
problematic for studies planning correlational across-
participant analyses that include PES effects as a variable as
here individual PES values determine the size of the correla-
tion. To determine individual biases, we subtracted individual
PEStrad,corr from PEStrad,uncorr values. Figure 4 shows the
resulting traditional PES bias for all 353 participants, separate-
ly for the short and long RSI. The means of these distributions
correspond to the biases mentioned above (i.e., 0 ms and 9
ms). The SD is 18 ms for the short RSI and 17 ms for the long

RSI. The results indicate that the degree of bias is somewhat
variable between participants and that substantial individual
misestimates occur even for short RSIs without a mean overall
bias.

To determine individual biases for robust PES, we
subtracted individual PESrobust,corr from PESrobust,uncorr
values. Figure 5 shows the resulting robust PES bias for all
participants, separately for the short and long RSI. The means
of these distributions correspond to the biases mentioned
above (i.e., 4 and 16 ms). The SD is 20 ms for the short RSI
and 23ms for the long RSI. The results show that the degree of
bias is highly variable between participants and that even for
the short RSI substantial misestimates occur.

Taken together, these results show that uncorrected PES
values tend to overestimate PES in our task. This overestima-
tion was negligible for the short RSI, but more pronounced for
the long RSI. In addition, the interindividual variability of bias
is substantial, even for trials preceded by short RSIs.

PES based on individual-subject medians

We also investigated how the calculations of medians at the
individual participant level would affect the PES bias. These
medians were then averaged to calculate group means
(Table 4). As mentioned above, the absence of outlier RT

Table 3 Means of mean RTs in ms (± SD) for the conditions used to calculate post-error slowing (PES)

PES short RSI PES long RSI

Traduncorr Tradcorr Robustuncorr Robustcorr Traduncorr Tradcorr Robustuncorr Robustcorr

Post-error 459 (65) 459 (65) 459 (65) 459 (65) 374 (42) 377 (41) 374 (42) 377 (41)

Post-correct/pre-error1 385 (35) 385 (34) 364 (35) 368 (33) 341 (27) 353 (26) 320 (31) 339 (31)

PES 74 (48) 74 (49) 95 (52) 91 (53) 33 (31) 24 (29) 54 (36) 38 (34)

1 Post-correct trials are used for the traditional PES calculation, pre-error trials for the robust approach.

Abbr.: RSI = response-stimulus interval; Trad = traditional PES calculation; corr = corrected; uncorr = uncorrected

Fig. 4 Bias for uncorrected traditional PES values for all participants
based on individual-subject means, separately for short and long RSI. A
bias of 0 indicates that uncorrected and corrected traditional PES values
did not differ. Negative values indicate that the uncorrected approach
underestimated PES, and positive values that it overestimated PES

Fig. 5 Bias for uncorrected robust PES values for all participants based
on individual-subject means, separately for short and long RSI. A bias of
0 indicates that uncorrected and corrected robust PES values did not
differ. Negative values indicate that the uncorrected approach
underestimated PES, and positive values that it overestimated PES
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rejection led to the inclusion of more participants in this anal-
ysis. However, this had only a very minor effect on the pre-
error and post-error imbalances reported in Figs. 1, 2, and 3
(all changes < 1%) and the imbalances are therefore not
displayed again. As above, we compared four types of PES
calculations: uncorrected traditional PES, corrected traditional
PES, uncorrected robust PES and corrected robust PES.
Comparing traditional uncorrected and corrected PES, there
was a small bias at the short RSI. In this case, the uncorrected
measure underestimated PES (– 5 ms bias, 6.7% decrease
relative to corrected value, Cohen's dZ = – 0.25). However,
traditional PES did overestimate PES at the long RSI (10ms
bias, 40% increase relative to the corrected value, Cohen's dZ
= 0.40). Comparing robust uncorrected and corrected PES,
there was a negligible bias of 1 ms at the short RSI. The bias
at the long RSI (20 ms, 54% increase relative to corrected
value, Cohen's dZ = 0.67), however, was even more pro-
nounced than for the mean-based analysis.

Again, we investigated the interindividual variability of
bias. Figure 6 shows the resulting traditional PES bias when
medians are calculated for individual participants, separately
for the short and long RSI. The means of these distributions
correspond to the biases mentioned above (i.e., – 5 ms and 10
ms). The SD is 21 ms for the short RSI and 24 ms for the long
RSI. The results indicate that the degree of bias is somewhat

variable between participants and that substantial individual
misestimates occur even for the short RSI that has a very small
overall bias.

Figure 7 shows the uncorrected robust PES bias, separately
for the short and long RSI. The means of these distributions
correspond to the biases mentioned above (i.e., 1 and 20 ms).
The SD is 26 ms for short RSI, and 30 ms for the long RSI.
Again, these results show that the bias for individual partici-
pants is highly variable (even if, as for the short RSI, there is
only negligible overall bias).

Taken together, when calculating medians on an individual-
subject level, these results show that not taking the imbalance of
congruent and incongruent pre-error and post-error trials into
account can lead to large PES biases in the flanker task.
However, even if the overall mean uncorrected robust PES effect
is essentially unbiased (such as at the short RSI), individual PES
estimates can nevertheless be severely biased.

Causes of bias

The bias is a consequence of not taking the differential imbal-
ances in congruent and incongruent trial numbers before and
after errors into account, leading to the calculation of a weight-
ed average of the two distributions. Below, we demonstrate

Table 4 Means of median RTs in ms (± SD) for the conditions used to calculate post-error slowing (PES)

PES short RSI PES long RSI

Traduncorr Tradcorr Robustuncorr Robustcorr Traduncorr Tradcorr Robustuncorr Robustcorr

Post-error 458 (63) 459 (64) 458 (63) 459 (64) 374 (42) 377 (38) 374 (42) 377 (38)

Post-correct/pre-error1 389 (35) 385 (35) 367 (38) 369 (32) 339 (31) 352 (25) 317 (35) 340 (29)

PES 69 (47) 74 (48) 91 (51) 90 (52) 35 (34) 25 (27) 57 (41) 37 (32)

1 Post-correct trials are used for the traditional PES calculation, pre-error trials for the robust approach.

Abbr.: RSI = response-stimulus interval; Trad = traditional PES calculation; corr = corrected; uncorr = uncorrected

Fig. 6 Bias for uncorrected traditional PES values for all participants
based on individual-subject medians, separately for short and long RSI.
A bias of 0 indicates that uncorrected and corrected traditional PES values
did not differ. Negative values indicate that the uncorrected approach
underestimated PES, and positive values that it overestimated PES

Fig. 7 Degree of bias for uncorrected robust PES values for all
participants based on individual-subject medians, separately for short
and long RSI. A value of 0 indicates that uncorrected and corrected robust
PES values did not differ. Negative values indicate that the uncorrected
approach underestimated PES, and positive values that it overestimated
PES
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the degree of bias for a range of different interference effects
and imbalances. For these demonstrations, we make the sim-
plifying assumptions that RTs are normally distributed and
that congruent and incongruent RTs have the same SD.
When the mean for an individual participant is computed
without correcting for an imbalance, the degree of RT bias is
a linear function of the interference effect (i.e., the RT differ-
ence for incongruent and congruent trials) and the imbalance.
The bias for a given participant can be calculated using the
following formula:

RTbias ¼ RTincon−RTcon

100
� deviation from 50% ð2Þ

For example, an interference effect of 100 ms and an im-
balance of 70% congruent and 30% incongruent trials (corre-
sponding to a 20% deviation from 50%) will result in an RT
bias of 20 ms. Figure 8 demonstrates the degree of bias for
different interference effects (0–200 ms), SDs (50 and 100
ms), and imbalances (55%/45% to 70%/30% congruent/in-
congruent, in 5% steps). Apart from the interference effect,
the range of values was chosen based on the values typically
observed in our data. We extended the range of interference
effects to 200 ms to show the potential bias for tasks with
larger interference effects than those found in the flanker task.
Note that for the mean, the bias is independent of the SD.

Our data from the flanker task showed that the PES bias
was more pronounced when medians were computed as com-
pared to means. The reason for this becomes clear when
inspecting Fig. 8: In the presence of an imbalance, calculating
medians always results in a degree of bias at least as strong as
that observed for the mean. In addition, this bias rapidly and
non-linearly increases for larger interference effects. Finally,
for medians, the bias also depends on the SD, with smaller

SDs leading to increased degrees of bias. That smaller SDs
lead to more bias can be understood by returning to our hypo-
thetical example from the introduction. In Table 1B, in the
absence of variability, even an imbalance of a single trial
would result in a median identical to the median of the distri-
bution with more trials when the two distributions are mixed.
In our example, this would lead to a median of 1000 ms for
pre-error trials, thus overestimating PES by 200 ms (as com-
pared to 150 ms when the mean is calculated). This effect
becomes less pronounced if the two distributions overlap
more.

Discussion

The present article presents an approach to calculating unbi-
ased post-error slowing (PES) for tasks in which the frequency
of conditions used for calculating PES is not balanced before
or after errors. Using data from a large-scale flanker study, we
found that pre-error, post-correct and post-error trials were
more frequently congruent than incongruent, in particular for
trials preceded by long response-stimulus intervals (RSIs). For
pre-error trials, this is in line with studies investigating the
conflict adaptation effect. It has been shown previously that
error rates are higher after congruent than after incongruent
trials (e.g., Bugg, 2008; Eichele et al., 2010) meaning that
more errors are preceded by congruent than incongruent trials.
As reaction times typically differ between congruent and in-
congruent trials, these imbalances in trial types can lead to
biases in PES estimation. In our paradigm, these biases were
negligible for the short RSI (250 ms). However, they were
more pronounced at the long RSI (700 ms). Both traditional
PES estimates and robust PES estimates were affected by
these biases. The uncorrected traditional approach

Fig. 8 Degree of bias for mixtures of two normal distributions with
different means (mean difference = Interference), imbalances (line
colors), central tendencies (line types), and SDs (panels). If the central
tendency measure is the mean, bias is a linear function of interference and

imbalance. If the median is calculated, bias is a non-linear function of
interference, imbalance, and SD. As explained in the text, all biases illus-
trated here can easily be corrected by calculating unweighted means
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overestimated PES at the long RSI by 37% (9 ms) when
means were computed at the individual-participant level and
by 40% (10 ms) when medians were calculated. The uncor-
rected robust approach overestimated PES at the long RSI by
42% (16 ms) when means were computed at the individual-
participant level and by 54% (20 ms) when medians were
calculated. We also showed that there is substantial variability
in bias observed across participants (cf. Figs. 4, 5, 6 and 7),
even when the overall bias is small or absent. This artefactual
variability would add noise to correlational analyses, which
would be a particular problem in studies with small samples.
Removing this artefactual variability is in particular warranted
if post-error adjustments are to be used as part of the research
domain criteria for investigating cognitive control in mental
disorders (Kozak & Cuthbert, 2016).

While the observed PES biases were relatively small in
absolute numbers, these biases could be further amplified in
paradigms that show larger interference effects than the flank-
er task or in paradigms that use longer RSIs (cf. Fig. 8). At
present, we can only speculate about how pronounced the
biases might be for other interference paradigms such as the
Stroop task. However, all interference paradigms combine
easier and harder conditions, thus it can be assumed that other
paradigms will also present with an overrepresentation of cor-
rect trials coming from the easier condition. Moreover, the
conflict adaptation effect is assumed to be a general feature
of our cognitive system (e.g., Botvinick et al., 2001;
Ullsperger et al., 2014), which would again suggest that sim-
ilar imbalances will be found with other paradigms.

Importantly, it is not possible to avoid the observed
PES biases by careful counterbalancing of conditions be-
fore the experiment. The biases are a consequence of dif-
ferences in speed and accuracy associated with the exper-
imental conditions. Thus, the confounds result from the
behaviour of the participants, not from confounds in or-
dering conditions.

Fortunately, correcting for the confounds by calculating
unbiased PES estimates is straightforward. At the heart of
the bias lies the calculation of PES based on mixtures of un-
equally weighted distributions (i.e., a larger number of fast
congruent trials is combined with a smaller number of slow
incongruent trials before the mean is computed). To remove
the bias, means should be computed separately for congruent
and incongruent trials, before averaging these means to calcu-
late an overall mean (see Steinhauser & Andersen, 2019, for a
related approach).

As mentioned previously, the bias we describe is only an
issue for paradigms with multiple conditions. If all pre-error
and post-error trials belong to the same condition (see Dutilh
et al., 2012), there can be no imbalance. Notably, using para-
digms with multiple conditions has another consequence: It is
possible that pre-error and post-error trials belong to different

conditions. For example, in our study the pre-error trial could
have been preceded by a long RSI and the post-error trial by a
short RSI. This issue is not specific to our unbiased robust
PES approach, but applies to any approach using pre-error
and post-error trials to calculate PES in a paradigm with more
than one condition. Could this create confounds similar to the
ones described by Dutilh et al. (2012) for traditional PES
calculations? Specifically, Dutilh et al. argued that decreases
in motivation over time could lead to spurious PES and de-
creases in response caution over time to spurious post-error
speeding. We argue that confounds analogous to those for
traditional PES calculations do not exist for robust PES cal-
culations in paradigms with multiple conditions. For tradition-
al PES calculations, the confounds exist because the frequen-
cy with which post-correct trials and post-error trials occur can
vary across the course of the experiment. For example, in the
case of spurious PES, many post-error RTs will come from the
later phase of the experiment where the participant was less
motivated and produced slow responses and many errors. This
is different for the robust PES approach for paradigms with
multiple conditions: Even though the pre-error and post-error
trials might not belong to the same condition, both will always
be directly adjacent to an error and thus cannot be derived
from different phases of the experiment where motivation or
response caution differed.

In conclusion, our results show that traditional and ro-
bust measures of PES in flanker tasks are likely biased if
congruent and incongruent trials are combined and aver-
aged. This bias stems from the fact that (a) congruent
trials are faster than incongruent trials and (b) the percent-
age of congruent trials differs across conditions used to
calculate PES (i.e., post-correct, pre-error and post-error
trials). A simple solution to correcting this confound is to
separately average congruent and incongruent RTs before
calculating an overall average.
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