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IV. Abstract 

IV.I Abstract (English) 

Introduction. Hepatocellular carcinoma (HCC) is one of the most common cancers 

worldwide and still lacks effective treatment for its advanced stages. While kinase 

inhibitors (KIs) have had first successes as systemic therapies, they only provide 

moderately improved prognosis compared to the best palliative care. Discovering more 

effective drugs – especially for targeted therapies – is a time-consuming and costly 

process. In recent decades, computational methods have therefore been increasingly 

integrated into drug research and development.  

The aim of this thesis was to determine the kinase inhibitory and anticancer effects of a 

panel of new potential tyrosine kinase inhibitors (thiophenes and bromobenzenes) using 

a combined in silico and in vitro approach. 

Methods. Three computational ligand- (SwissTargetPrediction) and structure-based 

(@TOME, iRAISE) target prediction methods were applied for the most promising 

thiophene (Thio-Iva). Correlated results (with additional targets relevant for HCC) were 

verified with a radiometric kinase activity assay (Eurofins KinaseProfilerTM). Docking 

studies (SeeSAR) were performed to investigate the binding mode and structure-activity 

relationship of all the novel compounds to Thio-Iva’s identified main target VEGFR2. 

Additional molecular dynamics simulations (Desmond) were performed for Thio-Iva to 

verify the binding hypothesis. Potential toxicities and ADME properties of Thio-Iva and 

the most promising bromobenzene Briva were investigated with predictive computational 

webservices (eMolTox, SwissADME). Cell culture experiments were performed with HCC 

cell lines (HepG2, Huh-7) to investigate Thio-Iva’s and Briva’s growth inhibitory effects 

(crystal violet assay), acute unspecific toxicity (LDH release measurement) and activation 

of apoptotic pathways (caspase-3 activity assay).  

Results and discussion. Six out of the 43 kinase targets selected for in vitro evaluation 

showed inhibition by Thio-Iva of over 50% (VEGFR1, VEGFR2, Pim-1, Pim-2, CLK1 and 

c-Kit). These results indicate some selectiveness, but most importantly the high inhibitory 

activity of Thio-Iva on VEGFR2 (89% at 10 µM) and VEGFR1 (75%). Docking studies 

with VEGFR2 showed a stable binding pose of Thio-Iva with a hydrogen bond at the 

important hinge region of VEGFR2. This pose stayed consistent over a molecular 

dynamics simulation of 100 ns, rationalizing the biological activity observed on this target. 
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There were few predicted toxic properties of Thio-Iva and Briva, which was 

complemented by the low toxicity measured in the wet lab experiments. Cell culture 

experiments also showed pronounced growth inhibitory effects and the induction of 

apoptosis by the two compounds on HCC cells. Overall, these results indicate that Thio-

Iva in particular could be a promising lead compound for VEGFR2/multikinase inhibitors 

with strong anticancer activity. 

IV.II Abstract (German) 

Einleitung. Das hepatozelluläre Karzinom (HCC) ist eine der häufigsten Krebsformen 

weltweit, und es fehlt immer noch an effektiven Therapien für fortgeschrittene Stadien. 

Zwar konnten Kinase-Inhibitoren (KIs) erste Erfolge als systemische Therapien erzielen, 

jedoch bieten sie nur eine moderat verbesserte Prognose im Vergleich zur besten 

palliativen Versorgung. Die Suche nach effektiveren Medikamenten – insbesondere für 

zielgerichtete Therapien (Targeted Therapies) – ist ein zeitaufwändiger und kostspieliger 

Prozess. In den letzten Jahrzehnten wurden daher zunehmend computergestützte 

Methoden in die Arzneimittelforschung und -entwicklung integriert.  

Ziel dieser Arbeit war es, die kinaseinhibitorische und krebshemmende Wirkung eines 

Panels neuer potentieller Tyrosinkinase-Inhibitoren (Thiophene und Brombenzole) mit 

einem kombinierten Ansatz aus in silico und in vitro Methoden zu bestimmen. 

Methoden. Zur Target-Vorhersage wurden drei bioinformatische liganden- 

(SwissTargetPrediction) und strukturbasierte (@TOME, iRAISE) Methoden für das 

vielversprechendste Thiophen Thio-Iva eingesetzt. Korrelierte Ergebnisse (mit 

zusätzlichen Targets mit Relevanz für HCC) wurden mit einem radiometrischen Kinase-

Aktivitätsassay (Eurofins KinaseProfilerTM) verifiziert. Um den Bindungsmodus und die 

Struktur-Aktivitäts-Beziehung der neuen Moleküle zu Thio-Ivas identifiziertem Haupt-

Target VEGFR2 zu untersuchen, wurden Docking Studien (SeeSAR) durchgeführt. Für 

Thio-Iva wurden zusätzliche molekulardynamische Simulationen (Desmond) zur 

Verifikation der Bindungshypothese eingesetzt. Potentielle Toxizitäten und ADME-

Eigenschaften der Moleküle wurden anhand des Thiophens Thio-Iva und des 

vielversprechendsten Brombenzols Briva mit prädiktiven bioinformatischen Webservern 

(eMolTox, SwissADME) untersucht. Zellkulturexperimente zur biologischen Validierung 

der beiden Moleküle Thio-Iva und Briva hinsichtlich Wachstumsinhibition (Kristallviolett-
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Assay), Apoptose (Caspase-3 Aktivitätsassay) und unspezifischer Toxizität (LDH-

Freisetzungs-Assay) wurden an HCC-Zelllinen (HepG2, Huh-7) durchgeführt. 

Ergebnisse und Diskussion. Sechs der 43 Kinase-Targets, die für die in vitro 

Evaluierung ausgewählt wurden, zeigten eine Inhibition durch Thio-Iva von über 50% 

(VEGFR1, VEGFR2, Pim-1, Pim-2, CLK1 und c-Kit). Diese Ergebnisse weisen auf eine 

gewisse Selektivität, aber insbesondere auf eine hohe inhibitorische Aktivität von Thio-

Iva gegen VEGFR2 (89% bei 10 µM) und VEGFR1 (75%) hin. Docking Studien mit 

VEGFR2 zeigten einen stabilen Bindungsmodus von Thio-Iva, mit einer 

Wasserstoffbrückenbindung and der wichtigen Hinge-Region von VEGFR2. Dieser 

Bindungsmodus blieb auch über eine molekulardynamische Simulation von 100 ns 

konsistent, was mit der beobachteten biologischen Aktivität an diesem Target 

übereinstimmt. Sowohl für Thio-Iva als auch für Briva wurden nur wenige toxische 

Eigenschaften vorhergesagt, was durch die geringe unspezifischen Toxizität in den 

eigenen Zellkultur-Untersuchungen ergänzt wurde. Zellkulturexperimente zeigten auch 

eine starke wachstumsinhibierende und Apoptose-induzierende Wirkung der beiden 

Moleküle in HCC Zelllinien. Insgesamt zeigten diese Ergebnisse, dass insbesondere 

Thio-Iva eine vielversprechende Leitstruktur für VEGFR2/Multikinase-Inhibitoren mit 

starker Antitumor-Wirkung darstellen könnte. 
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1 Introduction 

1.1 Hepatocellular Carcinoma 

1.1.1 Epidemiology and Etiology 

Hepatocellular carcinoma (HCC) accounts for approximately 75% of primary liver cancers 

(1), which are considered the sixth most common cancer type worldwide, with rising 

incidence rates over the past few decades (2). Incidence for HCC is particularly rising in 

North America, Europe, and Australia, while some studies have reported a decrease in 

China (3) and Japan (4). HCC most commonly occurs as a result of liver disease and 

cirrhosis, which in turn is most often caused by alcoholic liver disease, viral infections 

such as hepatitis B and C, and non-alcoholic steatosis hepatis (NASH) (5). While 

reduction of viral risk factors have been tentatively successful, the emergence of 

widespread obesity and diabetes has led to a changing epidemiology of liver cancers (1). 

1.1.2 Pathology 

HCC develops in hepatocytes, most often as a result of oxidative stress and inflammation 

due to chronic liver disease (1). In western countries, up to 90% of HCC develops in 

cirrhotic livers (5). Development of HCC without underlying cirrhosis is less well 

understood, with at least part of these cases arising from malignant transformation of 

hepatocellular adenomas (6). While a number of genetic and epigenetic changes have 

been observed in HCC (Figure 1), there has not been a single driver of disease identified 

(7). HCC can be classified into a proliferative and a nonproliferative group, with the 

proliferative group often showing changes of signaling activity in the RAS, mTOR and IGF 

pathways, while the nonproliferative group is more heterogenous (7). A complex network 

of signaling pathways has been shown to be dysregulated in HCC in general, including 

the MAPK, Pi3K/AKT, JAK/STAT, TGFBR and WNT/b-catenin pathways (7). Growth 

factors also play an important role in the development of disease in HCC and many other 

cancers, and their receptors (such as EGFR (epidermal growth factor receptor) or VEGFR 

(vascular endothelial growth factor receptor)) have been widely explored as molecular 

targets in drug design (8).  



13 
 

 
Figure 1. Pathways frequently dysregulated in HCC. Image from de Rosamel et al. (7). 

 

1.1.3 Clinical Presentation and Diagnosis 

Symptoms caused by HCC can vary widely. Patients undergoing regular screenings 

might be completely asymptomatic at time of diagnosis, while other patients can present 

with abdominal pain, weight loss, early saturation, a palpable mass, decompensation of 

previously stable liver cirrhosis, and paraneoplastic syndromes (9). These include 

hypoglycemia, erythrocytosis, hypercalcemia, diarrhea and skin changes, and are often 

associated with poor prognosis (10). 

Regular screening for liver lesions (commonly with ultrasound and serological markers) 

is generally recommended for patients with liver cirrhosis, as well as those with chronic 

hepatitis B (11). Other high-risk groups in terms of family history, ethnicity and age may 

be included in surveillance programs, depending on different national guidelines. The 

objective is to diagnose patients at an early stage of disease to improve prognosis and 

applicability of therapeutic options (11).  

Diagnosis in high-risk patients can be attempted with imaging methods like dynamic 

contrast-enhanced computer tomography, magnetic resonance imaging or ultrasound. 

Depending on the specific characteristics of contrast-enhancement, diagnosis of HCC 

may be possible without biopsy in this patient group (11). Patients without chronic liver 

disease are more likely to present with benign lesions or liver metastases of other tumor 

entities than with HCC (11). Therefore, diagnosis for this group additionally includes 
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screening for previously undetected liver disease and other malignancies. The final 

diagnostic option is a liver biopsy, which is generally recommended in order to verify the 

diagnosis for patients at low-risk for HCC (11). Once HCC is diagnosed, staging is 

recommended, based on extent of disease, liver function and overall health according to 

the BCLC (Barcelona-Clinic-Liver Cancer) classification (11). 

1.1.4 Therapy and Prognosis 

As HCC is frequently diagnosed in advanced stages and the patient’s liver function can 

be reduced due to cirrhosis, treatment options are often limited. While the primary choice 

of therapy is surgical resection, this is recommended only for patients in the early or very 

early stage of disease. In the absence of cirrhosis and limited tumor spread (early stage), 

liver transplantation can also be attempted (11).  

If surgery is not an option, there are a number of alternative treatment methods including 

local approaches (ablation, irreversible electroporation, embolization, radiation therapy 

and stereotactic radiation therapy) and systemic chemotherapy (with cytotoxic agents, 

molecularly targeted therapies or immunotherapy) (11, 12). Systemic chemotherapy is 

currently mainly restricted to cases of unresectable, advanced HCC, when liver-focused 

treatments such as ablation and embolization are not feasible. The median life 

expectancy for patients with advanced HCC is 6-8 months without treatment (11), and 

systemic treatment with conventional cytotoxic chemotherapy is considered mostly 

ineffective and poorly tolerated by patients with decreased liver function (11, 13).  

Only the emergence of the kinase inhibitor (KI) sorafenib (FDA-approved (Food and Drug 

Administration) for HCC in 2005) – and some others since then – has led to survival 

benefit as compared to best supportive care in a palliative setting (14). Following the 

success of the KIs, new research has also shown promise for immune checkpoint 

inhibitors, with the combination therapy of the monoclonal antibodies atezolizumab and 

bevacizumab showing improved outcomes for patients with liver cirrhosis no worse than 

Child-Pugh class A (15) when compared to monotherapy with sorafenib (16). 

Individual choice of treatment can be made with algorithms based on liver cirrhosis, tumor 

size and location, portal vein affectation and other criteria (11). Considering the current 

surge of systemic therapies under investigation, suitable patients should be given the 

option to enroll in ongoing studies (12). If that is not possible or desired, patients should 

receive immune checkpoint inhibitors or kinase inhibitors (12). Prognosis is variable 
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depending on tumor extent, liver function and overall health, but HCC in general has a 

very high mortality rate, second only to pancreatic cancer (17). 

1.2 Drug Design 

1.2.1 Drug Discovery and Development 

The process of bringing a new drug to market is considered extremely time and resource 

demanding. A recent investigation estimated the median investment to bring a single drug 

to market in the United States at 985.3 million US dollars (18), while other estimations 

range as high as 2.6 billion US dollars (19). Additionally, getting a new medicine to 

patients is estimated to take up to 15 years (20). A major cause for this is the failure of 

projects at different stages due to safety or efficacy shortcomings (19).  

Generally, drug discovery approaches can be divided into forward and reverse 

pharmacology (21). In the classical approach of forward pharmacology, a compound’s 

therapeutic effect is observed first, and in subsequent investigations the mechanism of 

action is determined. The rational drug discovery approach of reverse pharmacology 

utilizes the knowledge of disease pathways to identify key proteins which are then 

specifically targeted with new compounds. After their effect on the intended targets has 

been established, their functional activity within cells and organisms is investigated. While 

there is a strong focus on developing more selective drugs to reduce toxicity and side 

effects with this approach, it has also been used to target multiple connected proteins. 

This approach – called network pharmacology – takes the interconnectedness of disease 

pathways into consideration (22).  

Drug discovery consists of target identification, high-throughput screening (HTS) for 

potentially active ligands (hits), and subsequent hit-to-lead optimization (19). After 

promising drug candidates are identified, they are moved on to the drug development 

pipeline. Drug development consists of a preclinical phase and four to five clinical phases 

(23, 24). Preclinical testing and drug discovery are often considered as one process. This 

includes in silico, in vitro and in vivo experiments to determine the efficacy, toxicity and 

pharmacokinetics of potential drugs (25). In this phase, human immortalized cell lines (in 

vitro) and model organisms (in vivo) are commonly used. Cell lines derived from different 

tissues are grown, treated with potential drugs and studied for their reactions. This 

includes not only observation of growth inhibition or cell death, but also changes in the 

expression or activation of proteins, as well as the modulation of signaling pathways. Drug 



16 
 

effects on subcellular structures can also be studied in cell-free systems, e.g., when 

looking at enzymatic or protein interactions with specific assays. As a last preclinical step, 

systemic effects of a drug can be observed in animal studies before it enters clinical 

studies (25). To start clinical testing, investigational new drug (IND) studies (phase 0 or 

I) may be performed with very low dosages and small numbers of participants to get early 

data on bioavailability and pharmacokinetics. Phase I studies have a similar setup, with 

an increasing subtherapeutic dose range administered to 20-100 healthy volunteers (or 

cancer patients for cancer drugs). In Phase II studies, the drug is given to 100-300 

patients with a specific disease to determine efficacy and side effects at a therapeutic 

dose. Before a drug can be approved for the market, phase III trials with large numbers 

of participants must be successfully performed. After a drug has entered the market, 

surveillance continues in Phase IV studies to detect potential long-term effects (23).  

1.2.2 Computer-Aided Drug Discovery (CADD) 

As described above, the process of drug discovery and development is time-consuming 

and costly. In recent decades, computer-based (in silico) methods have become an 

integral part of industrial and academic research (26, 27). Traditionally, new drug 

candidates had to be chemically synthesized or purchased from chemical libraries (28) 

and tested in vitro to obtain rational information about their efficacy, selectivity and 

potential toxicity. Computational methods can be applied independently of drug synthesis, 

and with the increasing computational power of hardware and improved algorithms, a 

near infinite number of calculations can be performed within reasonable timeframes. This 

allows the prioritizing of more promising compounds for biological testing prior to 

synthesis, ideally leading to drug candidates with higher chances of success in 

subsequent phases of drug discovery. A wide variety of computational methods have 

been developed to this end. Beyond following the linear process of CADD (Figure 2), 

many computational methods can be applied at any stage of drug discovery and medical 

research in general. 

Target identification relates to the process of finding potentially druggable targets that are 

either responsible for the development of a disease, or whose manipulation might 

influence the symptoms or course of a disease. Once the targets of interest have been 

identified, ligand- and structure-based drug discovery approaches can be applied.  

This step usually consists of the screening of large compound libraries against the 

target(s) of interest. The results lead to so called hits, or compounds predicted to be 
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bioactive towards certain targets. These are considered as the most promising molecules 

to be optimized into drugs. The subsequent stages of lead generation, including 

compound optimization of potency and selectivity, consideration of ADMET properties 

(absorption, distribution, metabolism, excretion and toxicity), and in vitro verification of in 

silico predictions are often done in parallel.  

In the following chapters, the concepts of ligand- and structure-based computational 

methods will be elucidated (29). 

 
Figure 2. CADD pipeline applied before or in parallel to starting in vitro testing. Schematic representation 
based on Leelananda et al. (19). 

 

1.2.2.1 Structure-based approaches 

Structure-based approaches utilize the 3D structures of proteins, most prominently for 

molecular docking (Figure 3) and scoring (30). This allows for virtual high-throughput 

screening of potential ligands to a certain protein, as well as inverse screening to detect 

the potential targets and off-targets of certain drug candidates. Furthermore, the specific 

ligand-target interactions and structure-activity relationships (SAR) can be studied in 

more depth. Protein structures are often acquired by x-ray crystallography, and 

alternative methods include NMR (nuclear magnetic resonance) and electron microscopy 

(31). If structures have not been determined by experimental methods, computational 

methods such as homology modelling, fold recognition or de novo modelling can also be 

useful (19). The acquired structural data of a desired target can then be prepared for use 

in docking studies. In a first step, the binding site is defined either manually by selecting 

each amino acid residue involved, or by the docking program based on a (co-crystallized) 

ligand or automatic detection of empty pockets. Next, compounds under investigation are 

placed into the binding pocket. Depending on the desired outcome (quantity in high-

throughput screening vs. quality in structure-activity relationship (SAR) analysis), 

algorithms with varying complexity can be used. 
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Figure 3. Simplified workflow of the docking process. Example shown with one of the compounds 
investigated in this work (Thio-Iva) and a crystal structure of VEGFR2 (3VHE). Images created with 
SeeSAR (SeeSAR version 10.2; BioSolveIT GmbH, Sankt Augustin, Germany, 2020 (32, 33)) and 
MarvinSketch (MarvinSketch 17.02.13.0, 2017, ChemAxon (34)).  

 

During or after docking, the generated poses of the ligand within the binding pocket are 

scored based on a range of criteria such as hydrogen bonds, hydrophobic interaction, 

clashes, coverage of the binding pocket and dehydration (29, 33). 

Potential shortcomings of current docking software are the limited consideration of protein 

flexibility as well as the limited availability and quality-differences of crystal structures for 

more or less ‘popular’ targets (35). To improve on the former, molecular dynamics 

simulations attempt to simulate the movements and interactions of an entire protein and 

its ligands in a solvent (30). While this method takes protein flexibility into account to a 

certain degree, it requires a lot more computational power than docking.  

1.2.2.2 Ligand-based approaches 

Ligand-based approaches can be applied independently of the availability of protein 

structures. In these approaches, public or in-house databases of ligands with known 

biological activities are utilized, such as ChEMBL (36). All of the following methods are 

based on the assumption that similar molecules tend to bind to similar targets and/or 

trigger similar biological effects (37). Depending on the demands of each specific method, 

the molecules’ properties are translated into descriptors, which can then be used to 

compare the molecules computationally. Figure 4 shows different ways to describe a 

small molecule using the example of one of the compounds investigated in this work. The 

ligand can be encoded in sequential text formats like SMILES (Simplified Molecular Input 

Line Entry Specification) (38), while physiochemical features and molecular fingerprints 

describe the global or local properties of the molecule. Molecular fingerprints encode 

substructures of molecules and are often created by starting at one atom and analyzing 
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its adjacent atoms in a circular (e.g. Morgan fingerprints), path-based (e.g. FP2) or tree-

based fashion. This process is then repeated for every atom in the molecule. Another way 

of generating molecular fingerprints is by creating a list of predefined molecular patterns 

(e.g. encoded via SMARTS – SMiles ARbitrary Target Specification (39)) which are either 

present or absent in the query molecule. This type of fingerprint (e.g. MACCS – Molecular 

ACCess System) is then expressed as a binary bit string. 3D descriptors include 

conformational information about the ligand as well as additional features rooted in the 

three-dimensional arrangement such as electrostatic information or lipophilicity (e.g. 

ES5D – electroshape 5D). Similarity between molecules based on these global properties 

or substructures can be calculated with different methods. For example, the Tanimoto 

similarity between two molecules can be calculated by dividing the number of fingerprint 

patterns present in both compounds by the total number of fingerprint patterns (40). 

 
Figure 4. Different ways of describing molecules. Shown using the example of Thio-Iva, a compound 
explored in this thesis. Global descriptors based on SwissADME (41), SMARTS queries from Daylight 
Chemical Information System, Inc. (39). Images created with MarvinSketch (34) and PyMOL (The PyMOL 
Molecular Graphics System, Version 2.0 Schrödinger, LLC (42)), MACCS fingerprint created with Python 
RDKit (43). 
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The most direct ligand-based approach is similarity search, which is based on the simple 

premise that structurally similar compounds will tend to bind to similar targets. For this 

approach, novel compounds are screened against a database of experimentally tested 

ligands. Potential activities are identified based on the query ligand’s molecular similarity 

to ligands known to have a specific biological activity or target. Related approaches with 

increased complexity are pharmacophore modelling (44) and quantitative structure-

activity relationship (QSAR) models (45). QSAR models predict the activity of new 

compounds by applying a statistical model that relates the molecular descriptors to the 

(bio)activity. Most machine learning applications in drug discovery are also based on 

ligand information and require training of models with a dataset consisting of – in the 

classification setting – biologically active and inactive molecules. Once a model has been 

trained and evaluated (e.g. in cross-validation studies), it can be applied to predict the 

likelihood of a new compound to be active (19). 

One of the main limitations of any ligand-based approach is the availability of data from 

biologically evaluated ligands against the targets of interest, which can lead to a bias 

towards more established targets (29). 

1.3 Protein Kinase Inhibitors 

1.3.1 Human Protein Kinases 

Protein kinases are a group of transferases that play a major role in many essential cell 

processes. Their purpose is to catalyze phosphorylation processes (transfer of a 

phosphoryl group from adenosine triphosphate (ATP) to substrates) of proteins (often 

other kinases) (46). Protein kinases are frequently involved in networks of intracellular 

cascading signaling pathways, serving to amplify the original signal, and also to integrate 

different signals (47). The roughly 555 human kinases identified so far can be divided into 

a main class and a smaller group of atypical kinases, which lack genetic similarity despite 

expressing kinase-like activity (46). The commonly used classification into further groups, 

families, and subfamilies was established by Manning et al. (48), mainly based on the 

sequence similarity of their catalytic domains. The nine groups of the typical kinases are: 

AGC (PKA-, PKG- and PKC-containing families), CAMK (calcium/calmodulin-dependent 

protein kinase), CK1 (casein kinase 1), CMGC (CDK-, MAPK-, GSK3- and CLK-

containing families), Other, RGC (receptor guanylate cyclase), STE (homologues of yeast 
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sterile 7, sterile 11, sterile 20 kinases), TK (tyrosine kinases) and TKL (tyrosine-like 

kinases). 

Due to their importance in physiological processes as well as in the development of 

disease (including cancer) when dysregulated, kinases have become an important area 

of research for targeted therapies (49). 

1.3.2 Definition and Classifications 

Most of the clinically approved protein kinase inhibitors (PKIs) are so called small 

molecule kinase inhibitors, referring to their low molecular weight of under 500 g/mol (50). 

An example of one of the few non-small molecule kinase inhibiting drugs is the 

monoclonal antibody Cetuximab used against EGFR-expressing colorectal cancer and 

head and neck cancer (51). 

The first small molecule kinase inhibitor was clinically approved in 1999, and as of the 

14th of April 2021, 65 are FDA-approved small molecule PKIs (52). 50 of them have 

tyrosine kinases as primary targets, four have the dual specificity kinase MEK1/2 as a 

primary target, and the remaining 11 target serine/threonine kinases (52, 53).  

PKIs can be classified into type I to VI as summarized by Roskoski in 2016 (Table 1) (54). 

Type I and II are designed to bind in the ATP pocket region, while type III and IV bind 

allosterically. Type V inhibitors can bind to two separate regions at the same time 

(typically the ATP pocket and an allosteric site) (55). Type VI inhibitors bind covalently to 

the kinase, as opposed to type I-V, which all bind noncovalently. Of the FDA-approved 

PKIs, almost half are considered to be type I or II inhibitors. The defining difference 

between these two classes is the conformation of the DFG motif (D: Aspartate, F: 

Phenylalanine, G: Glycine). This conserved sequence of amino acids is placed at the 

beginning of the activation loop of kinases and can be observed in two major 

conformations: DFG-in and DFG-out. DFG-in occurs mostly in active kinase 

conformations, while DFG-out is considered an inactive conformation where the 

Phenylalanine occupies parts of the ATP-binding pocket (56). 

While both type I and II PKIs bind in the region of the ATP-binding pocket, type I inhibitors 

bind kinases in a DFG-in conformation, while type II inhibitors bind to a dormant kinase 

with a DFG-out conformation.  
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Table 1. Classification of small molecule protein kinase inhibitors as defined by Roskoski (53). 

Type Binding mode characteristics FDA approved examples 

I ATP pocket – DFG-in Gefitinib (2003) 

II ATP pocket – DFG-out Sorafenib (2005) 

III Allosteric site adjacent to ATP pocket Trametinib (2013) 

IV Allosteric site distant from ATP pocket Temsirolimus (2007) 

V Bivalent to two separate areas  –  

VI Covalent Afatinib (2013) 

 

The main challenges for developing new kinase inhibitors are selectivity and development 

of resistance. Selectivity of type I and II inhibitors can be challenging due to the high 

conservation of the ATP-binding pocket. While the potential additional targets can cause 

unwanted side effects, they may also sometimes work in a synergistic way (22). Targeting 

one specific target can be especially useful when it has a disease-driving mutation (57).  

Drug resistance can develop due to mutations within the cancer cells (58, 59). One 

example of a frequently occurring mutation is the EGFR-mutation T790M, which impairs 

drug binding of EGFR inhibitors such as Gefitinib or Erlotinib (58). Ways around such 

mutations are developing type III or IV inhibitors that bind to other sites of EGFR, or type 

VI inhibitors that bind covalently. 

1.3.3 Current Clinical Applications 

As dysregulation of protein kinases plays a major role in the development of neoplastic 

(and many other) diseases, many of them have become the focus of targeted therapies 

(35). Indications range from solid and nonsolid cancers to rheumatoid arthritis and 

glaucoma. However, the majority of kinase inhibitors are used against neoplastic disease 

(60). Current cancer applications of different kinase inhibitors include many forms of 

leukemia and lymphoma, different forms of lung, breast, colorectal, pancreatic, thyroid, 

renal, and urothelial, as well as hepatocellular and cholangiocarcinoma, gastrointestinal 

stromal tumors, melanoma, neuroendocrine tumors, sarcomas and selected brain tumors 

(60). 

The indication for a targeted therapy with a kinase inhibitor is often dependent on the 

genetic aberrations of the individual cancer, and some (Entrecitinib, Larotrectinib) are 

even approved for a specific mutation (NTRK (neurotrophic receptor tyrosine kinase) 

fusion) rather than a specific tumor (52). Depending on the cancer type and mutational 

status, PKIs can be applied as first line and potentially curative therapy (e.g. chronic 
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myeloid leukemia (57)), while in other cases only a moderate increase in life expectancy 

and/or quality of life can be achieved (e.g. advanced HCC (11)).  

1.3.4 Novel Potential Tyrosine Kinase Inhibitors 

A panel of new potential tyrosine kinase inhibitors (TKIs) was proposed and synthesized 

by our research partners at the Organic Chemistry Laboratory, University of Bayreuth. 

The molecular structure was derived from the tyrphostin RG-13022 (Figure 5, A), which 

has shown inhibitory effects on the EGFR and PDGFR in previous studies (61, 62). 

Tyrphostins are a group of type I/II TKIs derived from the naturally occurring TKI erbstatin 

(Figure 5, A) (63). The proposed panel consisted of two subgroups of compounds with 

distinct core structures (Figure 5, B). For the first subgroup, the pyridine ring of RG-13022 

was replaced by a thiophene, for the second set it was replaced by a bromobenzene. The 

methoxy groups at the benzene ring were replaced by a range of different modifications. 

In preliminary assessments performed by the chemistry laboratory, Thio-Iva and Briva 

appeared to be the most promising members of the thiophene- and bromobenzene 

derivatives, respectively. 

Over the course of this project, more derivates of the thiophene subset were generated 

(Figure 5, B, compounds 1a, 1e, 1i and 1j). The entire thiophene subset was examined 

more deeply by our lab group (64), with some data from this thesis included in the 

publication (see preface). 
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Figure 5. A 2D depictions of naturally occurring TKI Erbstatin and Tyrphostin RG-13022 B 2D depictions 
of the compounds investigated in this work, showing the six initially proposed compounds and four 
compounds (*) from the appended panel (64). The most promising one from each subgroup (Thio-Iva and 
Briva) were investigated more deeply in this work. 
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1.4 Research Aim 

HCC is a disease with poor prognosis, and treatment options for advanced HCC are still 

very limited. Developing highly effective kinase inhibitors for HCC and understanding their 

target landscape is therefore an important and current research goal. For this work, newly 

synthesized compounds with potential tyrosine kinase inhibitory activity were investigated 

with in silico and in vitro methods. 

The aim of this study was to gather knowledge on the suitability of the new compounds 

as potential therapeutic agents, and to elucidate their potential molecular (kinase) targets 

as well as their anticancer efficacy and mode of action in HCC cell models. 

 

This main goal was broken down into several subgoals: 

- Investigate how the novel compounds exert their function by identifying key 

tyrosine kinase targets as well as potential unexpected (off-)targets 

- Understand how they inhibit (bind to) the identified target kinases to investigate 

the structure-activity relationship of the most promising compounds with their 

respective target structures, and potentially optimize them in the future 

- Determine the growth inhibitory activity of the novel compounds in HCC cells 

- Predict and evaluate the compounds’ potential interaction with cells and 

organisms, including ADME properties, unspecific and unwanted toxicities and 

induction or inhibition of signaling pathways including apoptotic pathways 

While investigating the potential of the proposed compounds as kinase inhibitors for 

anticancer therapy, it was also possible to evaluate the transferability of in silico 

predictions to in vitro results.  
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2 Materials and Methods 

In this thesis, a panel of ten compounds was investigated with a range of in silico and in 

vitro methods. Due to prioritization of the two lead compounds Thio-Iva and Briva in the 

initial panel and the later addition of the compounds 1a, 1e, 1i and 1j, not all methods 

were applied for all compounds. Table 2 gives a short overview of the different methods 

applied to each individual compound. 

Table 2. Overview of methods used in this work by compound investigated. 

  
Thio-Iva  

1c 
Thio-Van  

1d 
Thio-Dam 

1b 1a 1e 1i 1j Briva  Brova  Bro-Dam  
SwissTargetPrediction yes no no no no no no yes no no 

@TOME screening yes no no no no no no yes no no 

iRAISE screening yes no no no no no no no no no 

Docking studies yes yes yes yes yes yes yes yes yes yes 

MD simulations yes no no no no no no no no no 

SwissADME yes no no no no no no yes no no 

eMolTox yes no no no no no no yes no no 

Growth inhibition yes no* no* no* no* no* no* yes no no** 

Caspase-3 activity yes no no* no* no* no no yes no no** 

LDH release yes no no* no* no no no yes no no** 

Kinase Assay yes no yes yes no no no yes no no** 
* Similar or identical experiment performed by our lab group in Schaller et. al (64). 
** compound not suitable for wet lab evaluation. 

2.1 In Silico Studies 

2.1.1 Target Prediction 

When developing new compounds, in silico prediction of potential targets and off-targets 

assist in identifying potential expected or unexpected therapeutic applications. This helps 

us to understand biological effects and predict potential side effects due to binding 

promiscuity. For this process, both ligand- and structure-based approaches can be 

applied.  

In this work, three different tools were used in combination. As a ligand-based method, 

SwissTargetPrediction was employed, developed by the Swiss Institute of Bioinformatics 

(65, 66). For structure-based prediction, the inverse screening software iRAISE (RApid 

Index-based Screening Engine, version 1.0.2, developed by the University of Hamburg, 

Center for Bioinformatics) (67), and the screening service LIST v3 (Large-scale Inverse 

Screening Tool for protein kinases (Human)) provided by the @TOME (@utomatic 

Threading Optimization Modeling and Evaluation) platform (68) were used.  
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2.1.1.1 Ligand-Based: SwissTargetPrediction 

The screening server SwissTargetPrediction investigates the 2D and 3D similarity of input 

ligands to compounds with known in vitro activity data in the ChEMBL Library (ChEMBL23 

in the version used (66)). Compound-target data points from ChEMBL are included in the 

prediction database if the activity against the target is derived from direct binding protein 

assays and the compound contains less than 80 heavy atoms. Data from five organisms 

are included (human, mouse, rat, cow and horse). Finally, only active compound-target 

pairs are of interest for this target prediction method. SwissTargetPrediction considers a 

compound to be active on a target if the IC50 (inhibitory concentration where activity is 

reduced to 50%) or comparable value is below 10 µM. To compare the query compounds 

to this dataset of known actives (compounds deposited on the ChEMBL database and 

classified as active on a specific target), molecular fingerprints (FP2 for 2D and ES5D for 

3D) are generated. Acceptable similarity of each known active to the query molecule is 

determined by a Tanimoto index above 0.65 for 2D similarity and a Manhattan-based 

similarity of more than 0.85 in 3D (65). For each target in the database, all active 

compounds similar to the query ligand above the described thresholds are collected and 

their scores and frequency are compiled to a probability score. The higher the predicted 

score, the higher the likelihood that this is a potential target for the queried compound. 

Results from the server include a list of the top 100 potential protein targets, as well as 

the similar known actives per target found for the query compound.  

For this work, the two lead compounds Thio-Iva and Briva were screened with 

SwissTargetPrediction (69). The respective SMILES were added as the query input and 

the species was set to homo sapiens. The list of predicted targets as well as information 

on the known actives were downloaded and further analyzed manually. 

2.1.1.2 Structure-Based: @TOME and iRAISE Screening 

@TOME Screening 

The @TOME kinase screening service LIST v3 (68, 70), which is based on the previously 

published KinDOCK server (71), attempts to dock query ligands into kinase structures. 

The kinase library consists of crystal structures of kinase-ligand complexes and homology 

models previously created with the @TOME pipeline (68). For the docking, it takes into 

consideration not only the protein alone, but also the position and contacts of the co-

crystallized ligand. Docking poses for the queried compounds are calculated with the 
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PLANTS docking software, developed by the University of Tuebingen (72), with a 

weighting applied to favor poses similar to those of the co-crystallized ligands. 

A predicted affinity (pKd – predicted dissociation constant) is calculated from a 

combination of scoring functions (PLANTS, MedusaScore (73), X-score (74) and DSX 

(75)). The theoretical ligand position error (LPE) is calculated with a machine learning 

model trained on crystal structures (SVM Torch (76)) as an approximation of reliability of 

the predicted binding poses. The LPE is a theoretical RMSD (Root-mean-square 

deviation) between size, shape, position and interactions of the query ligand and ligands 

from crystallographic homologous complexes (70). The best pKd and LPE for each kinase 

is given in the results overview, and individual results for each crystal structure can 

additionally be acquired. 

The @TOME kinase screening of Thio-Iva and Briva was performed with LIST v3 and 

the database version ‘PK_HUMAN_I90_2019M4 (Apr 2019)’ (77). All 241 available 

kinases (Figure 6) were screened with the preset standard parameters, changing only the 

speed of the PLANTS docking algorithm to highest reliability. The top scoring results 

returned by the server were analyzed with Excel, while docking poses and multiple other 

descriptors calculated by LIST v3 were not further investigated for this work. 

 
Figure 6. Percentages of kinase groups represented in the kinase library of the @TOME screening service 
LIST v3. Classification according to KinHub (78).  

 

iRAISE Screening 

The iRAISE inverse screening tool is designed to screen a compound of interest against 

a database of potential targets to identify the targets it will most likely interact with. The 

target database is prepared by the user according to the structures of interest for the 

screening. Protein structures in the form of PDB (protein data bank) files are downloaded, 
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and in a registration procedure the binding sites are defined, usually by the co-crystallized 

reference ligand(s) with a radius of 6.5 Å. These sites as well as the compound(s) of 

interest are then described by calculating so called triangle descriptors, which take into 

consideration steric and pharmacophoric properties. Through this, the representation of 

both active site and ligand are reduced to their essential properties, allowing for rapid 

screening. The docking strategy is based on matching the triangle descriptors, 

superimposing the structures based on this match and scoring the resulting ligand pose 

in the target protein. The scoring cascade includes steps to filter out unlikely poses based 

on clashes, reference (ligand) score cut-off and ligand/pocket coverage. Through this, an 

interaction score is created for each pose. 

For this thesis, iRAISE was applied with the support of Pratik Dhakal, MSc Bioinformatics, 

who was involved in the selection and preparation of crystal structures programmatically, 

as well as the running of the iRAISE software (which required calculations on an HPC 

cluster infrastructure). He was not part of the post-screening redocking and analysis of 

data. 

The iRAISE screening was performed for the main compound Thio-Iva against tyrosine 

kinases (TKs), which were the most likely target group (since the investigated compound 

is derived from a tyrphostin structure) to limit computational load. 

Screening database preparation: First, all crystal structures deposited on the human 

proteome on Uniprot (79, 80) were downloaded from the RCSB Protein Data Bank (81, 

82). Next, suitable crystal structures were selected using the kinase information available 

through the KLIFS database (83). The final database was restricted to contain only crystal 

structures of kinases from the TK group, which have been co-crystallized with a ligand (to 

allow for automatic binding site annotation).  

This resulted in a final panel of 796 protein structures from 56 different tyrosine kinases 

grouped into 24 kinase families (Figure 7). They were prepared for screening by splitting 

the chains and aligning the structures (to allow for ease of comparison in the analysis of 

results) and entered into the registration procedure as described above. 

Compound preparation: The structure of the ligand Thio-Iva was drawn with 

MarvinSketch (MarvinSketch 17.02.13.0, 2017, ChemAxon (34)), transformed into a 3D 

structure, saved as a spatial data file (SDF) and supplied as input for the iRAISE 

screening. 

iRAISE screening: The screening was performed on Curta, a general-purpose high-

performance computer at ZEDAT, Freie Universität Berlin (84), with the standard 
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parameters as described above. Results of the successfully docked structures were 

exported as a list reporting predicted energy scores, as well as the SDFs of the best 5 

poses per target generated in the inverse screening.  

SeeSAR post-screening analysis: For each kinase, the crystal structure with the highest 

scoring pose was used for redocking of the five top scoring poses with SeeSAR (SeeSAR 

version 5.5; BioSolveIT GmbH, Sankt Augustin, Germany, 2017; see Chapter 2.1.2 for 

detailed background of the method) and ten more poses were generated. This was done 

to increase reliability of the inverse screening. The generated binding modes and 

estimated affinities were then analyzed manually. 

 
Figure 7. Number of crystal structures per kinase family in the panel screened for targets of Thio-Iva with 
iRAISE. 

 

2.1.2 SeeSAR Docking  

After specific targets have been identified, the structure-based approach of protein-ligand 

docking and scoring can be used to predict possible binding poses and binding affinities 

(expressed as scores), as well as investigate how the ligand interacts with its target. 

Docking studies were performed with the BioSolveIT software SeeSAR (SeeSAR version 

10.2; BioSolveIT GmbH, Sankt Augustin, Germany, 2020). As a first step, the target 

protein structure is loaded and a binding pocket defined, either by automatically detecting 

empty pockets or by using a ligand (usually the co-crystallized one). SeeSAR’s docking 

strategy is based on the FlexX docking algorithm (32). With this algorithm, the input 

ligands are split into fragments that are then placed into the binding pocket, after which a 

pre-scoring takes place. The ligand is then built up from the base fragment by adding one 

fragment after another, and the individual solutions are continually scored in the binding 
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site. The best overall solutions for the fully rebuilt molecule poses will then be shown as 

output to the user. In the most current version of FlexX, an additional algorithm called the 

single interaction scan has been added (85). Poses from both algorithms are combined 

in order to increase the diversity of the output. 

The evaluation of each docking pose is done with the HYDE scoring function (33). This 

scoring algorithm takes into account the hydrogen bonds formed between the docked 

ligand and its protein target, as well as the dehydration energies of the protein-ligand 

complex. The latter term is based on the fact that both ligand and protein are in an 

aqueous solution before the binding process. During binding, both are desolvated to a 

certain degree when encountering each other. While this is considered a 

disadvantageous effect for the stability of the binding pose, newly established hydrogen 

bonds and removal of water from hydrophobic areas of protein and ligand can counter 

that effect and lead to a gain in energy. 

Docking studies for this thesis were performed as redocking of iRAISE screening results 

for target prediction (as detailed in Chapter 2.1.1.2), but more extensively for SAR 

analysis with all ten compounds on VEGFR2 as the target exhibiting the strongest 

inhibition by Thio-Iva in vitro (see Chapter 3.1.2). In the following, the process for the 

VEGFR2 docking is explained in detail. 

Compound preparation: As a first step, the ten new compounds were drawn with 

MarvinSketch (MarvinSketch 17.02.13.0, 2017, ChemAxon (34)) and transformed into a 

3D structure within the same software to represent the compound library. 

Structure selection and preparation: First, a search for suitable VEGFR2 structures was 

performed using the KLIFS database (86, 87). Structures were filtered for VEGFR2 

(‘KDR’) structures with the criteria ‘Human’, ‘Ligand bound’, a KLIFS quality score 

between 7 and 10 and a crystal structure resolution below 2.0 Å. The remaining 13 

structures were investigated manually for mutations, chain interruptions (amino acid 

residues that were not resolved in the X-Ray structure) and DFG conformations. 

Employing these criteria, the structure 3VHE was chosen (88). Due to the structural 

similarity of the newly proposed compounds to tyrphostins, it was assumed that they 

would most likely act as type I/II kinase inhibitors (89). Therefore, the ATP-binding pocket 

was chosen as the binding site for docking. 

Docking and scoring: For initial docking, the structure was prepared in SeeSAR as 

follows. The binding site of the VEGFR2 structure 3VHE was defined by the co-

crystallized ligand 42Q in the ATP-binding-pocket, including amino acid residues within a 
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radius of 6.5 Å. Docking was performed without pharmacophore restrictions, the number 

of maximum solutions was increased to 500, and all other settings were left at default. 

The prepared compound library consisting of the ten new compounds was loaded. 

Additionally, 42Q was redocked for quality control, and RMSD from the co-crystallized 

pose was calculated with the PyMOL function pair_fit (42). 

The inbuilt HYDE scoring function was applied and used for prioritization of binding poses. 

Postprocessing: For all ten ligands, the 50 highest-ranking binding poses were further 

analyzed within SeeSAR. Selected high scoring poses together with the crystal structure 

were imported into LigandScout 4.4, a program specialized in 3D pharmacophore 

generation and detailed analysis of compounds and their interactions with 

macromolecules (90). In this project it was used to automatically create pharmacophores 

(used to analyze and visualize the ligand-protein interactions) and to minimize the 

energies of the systems using MMFF94 (Merck Molecular Force Field 94).  

2.1.3 Molecular Dynamics Simulations 

Since most docking methods do not account for the intrinsic flexibility of protein structure, 

e.g. upon ligand binding, promising binding poses can be further validated with molecular 

dynamics (MD) simulations. MD simulations were performed with the simulation software 

Desmond 6.1.013 (Schrödinger Suite 2020-1) (91). Desmond aims for high performance 

and efficiency by applying parallel algorithms (92) and numerical methods (91, 93). For 

each simulated time step, the forces for each particle (usually one atom) are calculated 

with a forcefield (a model specifying the potential energy of a system based on the atomic 

coordinates). Once this step (called force computation) is completed, the resulting 

changes in position and velocities of the atoms are calculated according to basic laws of 

physics (Newton’s laws of motion) in the step called integration.  

MD simulations were performed with the help of Dr. David Schaller, who was involved in 

preparation of the crystal structure and ligand, as well as running the MD simulation 

programmatically. The simulation was done with Thio-Iva and VEGFR2, the most 

strongly inhibited target in the radiometric kinase assay (see Chapter 3.1.2). 

Preparation: To prepare the protein structure 3VHE for the simulation, a python script was 

used integrating the tools OESpruce, OEChem and OEGrid from the OpenEye toolkit 

2020.1.0 (94). In this step, chain interruptions, missing atoms and residues were detected 

and filled, and the ends of the amino acid chain of the crystallized structure were capped. 

The prepared structure, together with the predicted docking poses of Thio-Iva (generated 
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with SeeSAR and energy minimized with LigandScout, see Chapter 3.2.1), was then 

further prepared with Maestro 12.3.013 (Schrödinger Suite 2020-1). The system was set 

up with the OPLS (Optimized Potential for Liquid Simulations) forcefield (2005) (95). The 

protein charge was neutralized with 4 Cl- ions and up to 0.15 M KCl, and a cubic SPC 

(simple point-charge) water box with 10 Å padding was added. 

MD simulation: The simulations were run on Curta, a general-purpose high-performance 

computer at ZEDAT, Freie Universität Berlin (84). They were performed with periodic 

boundary conditions, the default equilibration scheme and at a temperature of 300 K. The 

duration was 100 ns and frames were written every 100 ps, resulting in a total of 1,001 

frames. Simulations were performed for three potential binding modes of Thio-Iva 

predicted by SeeSAR. The simulations were evaluated for stability of the binding pose, 

and the most stable one (starting pose Thio-Iva_032) was run two additional times with 

a change in configuration to account for different random starting points. This was done 

by changing the seed (used to generate the starting speed of atoms) from the arbitrary 

number 2007 in the first simulation to 2008 and 2009.  

Postprocessing: The most stable simulation was further analyzed with VMD (Visual 

Molecular Dynamics) version 1.9.3 (96). The inbuilt RMSD Trajectory tool was used to 

align the results (each timestep) to the backbone of the protein in the first frame, as well 

as for subsequent analysis of the RMSD of the ligand over time. Key interactions were 

analyzed by measuring the distance between the interacting atoms over time. 

2.1.4 ADMET Prediction Models 

2.1.4.1 eMolTox 

To predict potential toxicity of the novel compounds, the web server eMolTox was used 

(97, 98). This server offers a structural alert search for potentially problematic 

substructures, where the query compound is screened against publicly available 

structural alert datasets (Figure 8, A). As a more complex prediction method, eMolTox 

employs machine learning (ML) based models that predict a wide range of toxicities 

based on molecular descriptors. As described in the introduction, such ML models are 

trained on a set of compounds with known activity or effect on the investigated toxic 

endpoints. To build prediction models, eMolTox uses circular fingerprints (2048-bit 

ECFP4 (extended connectivity fingerprint)) and 196 physiochemical descriptors. Machine 
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learning models based on random forests and conformational prediction are trained and 

applied to make predictions for any input ligand.  

Notably in this application, a special technique called conformal prediction is applied that 

allows for confidence estimations of the predictions. In short, the confidence is measured 

by comparing the predicted scores of a query molecule to the scores of previously seen 

molecules.  

The model compiles extensive toxicology data from 174 publicly available sources, which 

includes in vivo and in vitro data ranging from unspecific acute oral toxicity to activities on 

specific proteins whose inhibition/activation is known to regularly lead to potentially 

unwanted effects (such as CYP450 interaction) (Figure 8, B).  

To apply eMolTox to the novel compounds, SMILES of Thio-Iva and Briva were given 

as input information. Toxicity prediction was run for all available alerts and analyzed in 

detail at a later point. The 169 toxic endpoints available at the time of the screening were 

defined by an action (e.g. activity on a specific enzyme) and assigned to one or multiple 

injuries (mostly affected organ systems). For the analysis of the results, toxic endpoints 

were grouped according to the injuries defined by eMolTox. Exceptions were made for 

animal experiments, which were all classified according to their action (acute oral toxicity). 

Lungs and respiratory injuries were grouped together, as were peripheral, central, and 

nervous systems, carcinogenicity and cancer, as well as the endocrine system and one 

reproductive injury described as endocrine disruption.  
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Figure 8. A Distribution of the 2,173 potential toxic substructure alerts detectable with eMolTox 
B Distribution of injury categories of ML based eMolTox toxicity screening. 

 

2.1.4.2 SwissADME 

The webservice SwissADME was used to calculate ADME properties and the 

druglikeness of the lead compounds (41, 99). It is a tool developed by the Swiss Institute 

of Bioinformatics and compiles a wide range of adapted methodologies from many 

different sources, as well as models generated by the Swiss Institute for Bioinformatics. 

Many of these models are based on machine learning, whereby molecules with specific 

traits are used to train a model to predict the presence of these traits in an unknown 

compound. Other endpoints are calculated with formulas established in drug discovery 

based on statistical observation of favorable or unfavorable properties of potential future 

drugs. The combination of these prediction models allows for the prediction of a wide 

range of properties, including physiochemical descriptors, parameters concerning 

druglikeness, chemical accessibility as well as ADME properties and structural alerts. The 

aim of this tool is to provide a quick overview of these properties for potential drugs without 

requiring in vitro testing. 

For this thesis, the SMILES of Thio-Iva and Briva were used as input files, and selected 

results were downloaded and analysed further.  
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2.2 In Vitro Studies  

2.2.1 Enzymatic Kinase Assay 

Enzymatic kinase profiling was performed with a commercial radiometric assay 

(KinaseProfilerTM) by Eurofins. This cell-free kinase assay tests the enzyme inhibitory 

activity of a compound for a wide selection of kinases. The test was performed in 

duplicates with an ATP concentration of 10 µM. The compounds were provided to 

Eurofins at a concentration of 10 mM dissolved in DMSO. 

Thio-Iva was screened against a customized panel of 43 targets that were chosen from 

in silico predictions and for HCC relevance (Table 3, see Chapter 3.1.1.3) with a 

compound concentration of 10 µM. Separately, an IC50 determination for the inhibitory 

activity of VEGFR2 was performed with nine concentrations of Thio-Iva ranging from 

0.003 µM to 30 µM. Additionally, Briva, Thio-Dam and 1a were screened against 

VEGFR1 (Flt1), VEGFR2 (KDR), Pim-1, Pim-2, c-Kit, CLK1 and EGFR at a concentration 

of 10 µM. 

Table 3. Targets selected for Thio-Iva screening with Eurofins KinaseProfilerTM. 

Kinase target In silico HCC Kinase target In silico HCC Kinase target In silico HCC 

KDR(h) X X PDGFRα(h) X 
 

TGFBR1(h) X 
 

Flt1(h) X 
 

Arg(h) 
 

X PDK1(h) 
 

X 

Pim-1(h) 
 

X MEK1(h) X 
 

JNK2α2(h) 
 

X 

CLK1(h) 
 

X BTK(h) 
 

X mTOR(h) X 
 

cKit(h) X X ACK1(h) X 
 

Tie2 (h) 
 

X 

Pim-2(h) 
 

X B-Raf(h) 
 

X Bmx(h) X 
 

Aurora-B(h) 
 

X PDGFRβ(h) X X FGFR3(h) 
 

X 

TrkA(h) 
 

X FGFR1(h) X X JNK3(h) 
 

X 

cSRC(h) 
 

X FGFR2(h) X X CSK(h) X 
 

Lyn(h) 
 

X Plk1(h) 
 

X IGF-1R(h) 
 

X 

Abl(h) 
 

X Tec(h) act. X 
 

GSK3β(h) 
 

X 

EGFR(h) X 
 

JAK1(h) X 
 

Met(h) X X 

CDK2/cyclinA(h) 
 

X IGF-1R(h) act. X 
 

EphB4(h) 
 

X 

CDK2/cyclinE(h) 
 

X JAK2(h) X 
    

Ret(h) 
 

X Plk3(h) X 
    

In silico: target included due to in silico target prediction – HCC: target included due to relevance to HCC. 
(h) human. 

2.2.2 Cell Culture 

All cell-based experiments were conducted with HepG2 (ATCC® HB-8065) and Huh-7 

(JCRB#0403) cells, both categorized as epithelial-like hepatocellular carcinoma cell lines 

by the ATCC® and JCRB cell banks, respectively. However, the HepG2 cell line has been 

shown to originate from hepatoblastoma cells (100) and can be found with different 

classifications in literature. Here, both cell lines will be referred to as hepatocellular 
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carcinoma cells, as the original classification has not officially been changed, and the 

molecular makeup of both cell lines is quite well researched. 

The cells were kept in an incubator (37°C, 5% CO2 and 95% humidity) in RPMI 1640 

medium (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 

100 U/ml penicillin (Gibco), 100 µg/ml streptomycin, 2 mM L-glutamine (Gibco) and 10% 

fetal bovine serum (Sigma Aldrich, Darmstadt, Germany).  

2.2.3 Crystal Violet Assay 

Growth inhibition was determined by measuring treatment-induced changes in the cell 

number of HepG2 and Huh-7 cells using crystal violet assays. The method is based on 

the staining of cellular DNA with the dye crystal violet. Due to the stable amount of DNA 

per cell, differences in the amount of DNA in the probes are linear to changes in the in 

cell numbers. Therefore, staining of the DNA with crystal violet can be used as readout 

for the determination of growth inhibition (101). For this thesis, 5,000 cells/well were 

seeded in 96-well plates and maintained for adherence in an incubator for one day before 

treatment (or at a density of 1,500 cells/well three days before treatment). The cells were 

then treated with the compounds at different concentrations in sextuplet for each 

condition. After 0, 24, 48 and 72 hours, the cells were fixated and stained as follows. First, 

the wells were washed with 200 µl of PBS (phosphate buffered saline), then filled with 

100 µl 1% glutaraldehyde solution and incubated for 15 minutes at room temperature to 

fix the cells in the wells. After washing the wells again with 200 µl of PBS, 100µl of 1g/L 

crystal violet solution was added to the wells, and the plates were incubated for 30 

minutes at room temperature in the dark. After the incubation period, the unbound dye 

was washed out with moving water for 30 minutes. After thorough drying of the plates, 

the bound crystal violet was dissolved with 100 µl of 0.2% Triton X-100 (Sigma) solution 

overnight. The optical density of the wells was then measured at a wavelength of 570 nm 

with a Dynex MRXe Microplate Reader. 

2.2.4 LDH Assay 

The Cytotoxicity Detection Kit (LDH) (Roche, Mannheim, Germany) was used according 

to the manufacturer’s protocol to determine unspecific cytotoxicity of the new compounds 

after 12 and 24h of treatment. In this test, the release of lactate dehydrogenase (LDH) 

into the supernatant of the cell culture medium is measured and compared between 

treated and untreated cells. 
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Cells were seeded out in 96-well plates at a density of 5,000 cells per well and treated 

with Thio-Iva and Briva, as well as with 2% Triton for positive control after 24 hours. For 

this step, RPMI medium with only 1% fetal bovine serum was used to reduce background 

noise. After another 12 and 24 hours, respectively, 100 µl of medium was pipetted from 

the wells containing the cells onto a new plate, and then 100 µl of reaction mixture was 

added (cytotoxicity dye solution and catalyst solution at a relation of 45:1). The mix was 

then incubated for 30 minutes at room temperature in the dark. Next, absorbance of the 

samples at a wavelength of 490 nm was measured with a Dynex MRXe Microplate 

Reader. 

2.2.5 Caspase-3 Activity Assay 

As a marker for apoptotic cell death, activity of caspase-3 in treated cells was measured 

compared to untreated control cells with the Caspase-3 Cellular Activity Assay Kit 

(Calbiochem/Merck KgaA, Darmstadt, Germany). For this, the specific substrate 

acetylated Ac-DEVD (N-acetyl-Aspartate-Glutamine-Valine-Aspartate) was used, which 

is linked to the Fluorophore AMC (7-amino-4-methylcoumarin). Caspase-3 contained in 

the samples cleaves the substrate Ac-DEVD-AMC, so that the released AMC becomes 

fluorescent. In order to put this fluorescence signal into relation to the overall protein 

concentration in each sample, additional protein determination was performed (PierceTM 

BCA Protein Assay Kit, Thermo Fisher, IL, USA). 

Cells were seeded out in a range of densities, either in 6-well plates or 10 cm petri dishes, 

to achieve the desired cell density and volume for the different time points and cell lines. 

HepG2 cells were seeded out at densities of 50,000-400,000 cells 2 to 4 days before 

treatment, and Huh-7 cells at densities of 200,000-800,000 cells 2 to 3 days before 

treatment. 

Cells were treated with increasing concentrations of Thio-Iva and Briva, and after 12, 24 

or 48 hours they were harvested and frozen at -20°C. After being frozen for at least 24 

hours, cell pellets were lysed with 280 µl lysis buffer for 30 minutes and centrifuged for 

15 minutes at high speed. The supernatant was transferred and used for protein 

determination and caspase-3 Ac-DEVD-AMC reaction. 

For protein determination, 20 µl of cell lysate was pipetted onto a 96-well plate in 

duplicates, and the same was done for a BSA protein standard row (0-2,000 µg/ml). 100 

µl of reaction solution (solutions A and B at a relation of 50:1) was added to each well 
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and incubated for 30 minutes at 37°C. Extinction was then measured at 570 nm with a 

Dynex MRXe Microplate Reader. 

For caspase-3 activity determination, 100 µl of lysate per well was mixed with substrate 

solution (1 µg Substrate in 100 µl HEPES-buffer) on a 96-well plate. After mixing, the 

plate was incubated for 1 hour at 37°C. Fluorescence was measured with a Varioskan 

Flash 40053 microplate luminometer (Thermo Fisher Scientific, Waltham, MA, USA) with 

an emission wavelength of 350 nm and an excitation wavelength of 450 nm. 

2.2.6 Statistical Analysis 

For all cell culture experiments, statistical analysis was performed with the data 

transformed into percentage of positive/negative control. Dose response curves for 

inhibitory effects were fitted with nonlinear regression with an inhibitor or (log)inhibitor vs. 

normalized response model in GraphPad Prism 9.1.0. IC50 values were calculated with 

this method for crystal violet assays and Eurofins IC50 determination. 

3-way-ANOVA was performed for the crystal violet assay and caspase-3 activity assay 

for each cell line separately with the factors time, dose and compound. As the assumption 

of homogeneity of variance was not fulfilled according to Levene’s test, statistical analysis 

of these experiments is considered exploratory, not confirmatory. For the LDH assay, the 

more robust one-way Welch’s ANOVA was performed for each time point with Dunnett’s 

T3 multiple comparisons test.  

Results were considered significant at a p-value < 0.05. All statistical analyses except the 

fitting of dose response curves were performed with IBM SPSS Statistics 26. 
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3 Results  

3.1 Target Identification 

As a first step, the hypothesis of the compounds being (tyrosine) kinase inhibitors was 

investigated by performing in silico target prediction and subsequent verification with a 

radiometric assay.  

3.1.1 Target Prediction 

Target prediction studies were performed from both a ligand- and a structure-based 

perspective. For the subsequent in vitro verification screening, the results from the 

different tools for our lead structure Thio-Iva were combined and the resulting panel was 

expanded with kinases relevant to the pathomechanism of HCC. 

3.1.1.1 Ligand-Based Target Prediction  

Potential targets for Thio-Iva and Briva were predicted using the web server 

SwissTargetPrediction, which calculates similarities to compounds with known actives 

based on their molecular structures. The screening took into consideration all protein 

families with available data of bioactive compounds. 

Figure 9 shows an overview of target classes represented in the results (top 100 predicted 

targets) found for Thio-Iva (A) and Briva (B). Note that the targets were grouped 

according to the BRENDA Comprehensive Enzyme Information System (102). The group 

‘non-enzyme target’ includes proteins such as ion channels, structural proteins or G 

protein-coupled receptors. 
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Figure 9. Target classes of top 100 targets predicted by SwissTargetPrediction for Thio-Iva (A) and Briva 
(B), classified according to the BRENDA Comprehensive Enzyme Information System (102). The total 
number is higher than 100 due to IRE1 being classified as both a transferase and a hydrolase, and GSTA1 
as an oxyreductase, transferase and isomerase. 

 

Kinases, a subgroup of transferases, represented the largest predicted target family for 

both compounds (36 targets for Thio-Iva and 34 targets for Briva) and were therefore 

further investigated. Table 4 shows the kinase results for Thio-Iva and Briva, 

respectively. 17 of the kinases were predicted as potential targets for both compounds.  

Table 4. Prediction by SwissTargetPrediction of potential kinase targets of Thio-Iva and Briva. 

Thio-Iva    Briva    
ABL1 Erk1 KDR PDHK1 ABL1 CLK2 ILK PLK1 
AKT1 FGFR1 KIT PIM1 AKT1 CLK3 IRE1 PLK4 
AurB FGFR3 LYN PIM2 BRAF CLK4 JAK1 RAF1 
BRAF GSK3A MET PKCa BRK DYRK1A JAK2 RET 
BTK GSK3B MSK1 PLK1 CDC2 DYRK1B JNK1 smMLCK 
CDC2 ILK p38a PLK4 CDK2 EGFR JNK2 SRC 
CDK2 IRE1 p70S6K RET CDK5 GSK3A JNK3  
CLK1 JNK2 PDGFRa RSK2 CK2a1 GSK3B NEK1  
DAPK3 JNK3 PDGFRb SRC CLK1 HGK p38a  

Kinases predicted as targets for both compounds are shown in bold. Kinase names unified to naming 
convention used by KinHub (78) and sorted alphabetically. 

 

Investigation of known actives similar to Thio-Iva and Briva showed that generally, many 

more similar 2D structures were found for Briva than for Thio-Iva, while more similar 3D 

structures were found for Thio-Iva than for Briva. For the subgroup of kinases, the 

amount of 3D similar known actives found was more alike, and 2D similarity was detected 
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for only one target (35 known actives of EGFR similar to Briva). Table 5 shows the known 

actives with the highest similarity score overall and within the kinase subgroup. 

Compound CHEMBL67027 (also called RG-13022) is featured in this table despite its low 

similarity score, as it is the tyrphostin on which the panel of compounds investigated in 

this thesis is based on. 

Table 5. Examples of known actives most similar to Thio-Iva and Briva in 2D and 3D as predicted by 
SwissTargetPrediction. 

Thio-Iva Target 2D1 Known active  Notes 

 ALOX5 0.70 CHEMBL413324 

 

Also inhibits 
COX, 2nd 
highest 3D 
similarity (0.89) 

 Target 3D2 Known active    

 

 

DHFR 0.90 CHEMBL2163553 

 

Also inhibits 
TYSY 

 BTK 0.88 CHEMBL3685421 

 

Kinase with 
highest 
similarity score 

Briva Target 2D1 Known active    

  EGFR 0.74 CHEMBL489147  

 

Highest 
similarity score 
overall and in 
kinases 

 

 

 

EGFR 0.60 CHEMBL67027  

 

Also inhibits 
PDGF 

 Target 3D2 Known active    

 EGFR 0.85 CHEMBL2442327  

 

  

1 2D similarity shown as Tanimoto index. 2 3D similarity shown as Manhattan-based similarity score. Images 
created with MarvinSketch (34). 
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3.1.1.2 Structure-Based Target Prediction 

@TOME Screening 

The structure-based target prediction screening with @TOME was performed with all 241 

available kinases for Thio-Iva and Briva. The largest group in the kinase screening library 

was tyrosine kinases with 22%. 

As scores are returned for all available targets, a selection of higher scoring targets – 

more likely to represent true targets – was made. For Thio-Iva, predictions with a 

predicted affinity of less than 5 nm pKd and an LPE of 3 or higher (indicating a ‘dubious’ 

binding mode as suggested on the screening service website (77)) were excluded in this 

step. These criteria left 94 kinases (Table 6) predicted for Thio-Iva for further analysis.  

Table 6. Selected @TOME screening results for Thio-Iva. 

Kinase pKd Kinase pKd Kinase pKd Kinase pKd Kinase pKd 
PAK2 6.1 TRKA 5.5 CASK 5.4 DAPK2 5.2 JNK2 5.1 
PKN1 6.0 MST1 5.5 IRE1 5.4 JNK3 5.1 ACTR2B 5.1 
FGFR1 5.9 MAP2K1 5.5 ITK 5.3 CaMKK2 5.1 PAK6 5.0 
BIKE 5.9 MST2 5.5 MINK 5.3 TTK 5.1 TAK1 5.0 
CDK2 5.9 CHED 5.5 MAP3K5 5.3 KHS2 5.1 PKACa 5.0 
COT 5.9 Wee1B 5.5 AurB 5.3 DRAK2 5.1 GSK3B 5.0 
SgK085 5.9 RET 5.4 CRK7 5.3 TIE2 5.1 EphB4 5.0 
CDK5 5.8 TNIK 5.4 CLK3 5.3 PHKg2 5.1 RSK2 5.0 
DYRK3 5.8 ABL2 5.4 JAK1 5.3 CK1d 5.1 PKCt 5.0 
PLK3 5.8 HGK 5.4 BMX 5.3 IGF1R 5.1 TBK1 5.0 
CK2a2 5.7 VRK1 5.4 CDKL2 5.3 CLK2 5.1 LIMK1 5.0 
RIPK1 5.7 PDK1 5.4 MST3 5.2 TGFbR2 5.1 Erk2 5.0 
AMPKa2 5.6 PDPK2P1 5.4 SLK 5.2 Wnk3 5.1 PIM2 5.0 
CHK2 5.5 CDKL3 5.4 CaMK1g 5.2 ULK3 5.1 FYN 5.0 
IRAK4 5.5 CaMKK1 5.4 TGFbR1 5.2 FGFR2 5.1 PCTAIRE

1 
5.0 

PIM1 5.5 CLK1 5.4 CDK6 5.2 RSK1_b 5.1 AKT2 5.0 
AurA 5.5 ACK 5.4 TAO2 5.2 KDR 5.1 MPSK1 5.0 
ULK1 5.5 BMPR1B 5.4 PLK1 5.2 HPK1 5.1 RAF1 5.0 
MET 5.5 MAP2K6 5.4 MST4 5.2 CSK 5.1   

Kinases appearing in both Thio-Iva and Briva screening shown in bold. Kinase names unified to naming 
convention used by KinHub (78). 1 Missing in KinHub, HGNC name (103) used instead.  
pKD Predicted affinity as calculated by @TOME server. 

 

For Briva, a higher pKd was observed for more kinases compared to Thio-Iva, with the 

highest pKd of Briva on MYT1 with 7.1, as compared to Thio-Iva on PAK2 with 6.1. To 

achieve a similar rate of most likely targets as for Thio-Iva (about 40%), the minimal pKd 

to include targets in the analysis was increased to 5.8, which lead to 96 included kinases 

(Table 7). 
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Table 7. Selected @TOME screening results for Briva. 

Kinase pKd Kinase pKd Kinase pKd Kinase pKd Kinase pKd 

MYT1 7.0 CK2a2 6.4 Wee1 6.2 HGK 6.0 CK1e 5.9 
CDK5 6.8 TYK2 6.4 Haspin 6.2 CK2a1 6.0 ULK1 5.9 
CaMKK2 6.8 CDK9 6.4 AAK1 6.2 ITK 6.0 AMPKa1 5.9 
ABL2 6.8 CDKL3 6.4 TTBK1 6.2 ZAP70 6.0 CHK2 5.8 
ABL1 6.8 AurA 6.3 PLK4 6.2 DYRK2 6.0 NEK2 5.8 
TRKA 6.8 FGFR2 6.3 CLK2 6.2 VRK2 6.0 CSNK2A31 5.8 
PKN1 6.8 RIPK2 6.3 p38g 6.2 ACTR2B 6.0 CaMK2g 5.8 
COT 6.8 TIE2 6.3 CaMK1g 6.2 MAPKAPK3 6.0 TTK 5.8 
BIKE 6.8 IRE1 6.3 PIM1 6.1 FYN 6.0 CaMK2d 5.8 
CaMKK1 6.7 MST1 6.3 CHK1 6.1 JAK2 6.0 CK1d 5.8 
CHED 6.7 JAK3 6.3 MELK 6.1 Wnk3 6.0 CSK 5.8 
DYRK3 6.7 p70S6K 6.3 AMPKa2 6.1 TAK1 5.9 PKCi 5.8 
PAK2 6.6 FLT1 6.3 TGFbR1 6.1 EphB4 5.9 BMX 5.8 
CRK7 6.6 IRAK4 6.2 CDK6 6.1 JNK1 5.9 KDR 5.8 
MAP2K1 6.6 MST3 6.2 MAP3K5 6.1 SLK 5.9 SgK085 5.8 
TNIK 6.5 CDK2 6.2 CLK3 6.1 JNK3 5.9 ALK4 5.8 
MINK 6.5 MAPKAPK2 6.2 DYRK1A 6.1 Erk2 5.9  

 

FGFR1 6.5 MNK2 6.2 VRK1 6.0 LIMK1 5.9  
 

TGFbR2 6.5 ZAK 6.2 RET 6.0 ACK 5.9  
 

MST2 6.5 KHS2 6.2 EphA3 6.0 PKCa 5.9  
 

Kinases appearing in both Thio-Iva and Briva screening shown in bold. Kinase names unified to naming 
convention used by KinHub (78). 1 Missing in KinHub, HGNC name (103) used instead. 
pKD Predicted affinity as calculated by @TOME server. 

 

Of the potentially targeted kinases predicted, 59 were for both compounds, 35 were only 

for Thio-Iva and 37 were only for Briva. To determine if some kinase families were more 

prevalent in the prediction for Thio-Iva and Briva compared to the complete screened 

dataset, distribution of predicted targets was analyzed (Figure 10). A deviation of more 

than 10% from the average prediction rate (~40%) over all groups was observed for 

atypical kinases (with none of the seven available kinases predicted as a target), as well 

as for AGC, where only 27% were predicted as potential targets for Thio-Iva, and only 

15% for Briva. Targets from the group STE were enriched compared to the overall results 

for Thio-Iva (61%). For Briva, the enriched groups were CMGC (51%) and CK1 (83%). 

Note that the representation of some groups in this screening is quite small, such as 

atypical kinases (eight members) and CK1 (six members). 
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Figure 10. Results of @TOME target prediction by kinase families. Left axis: Absolute numbers of kinases 
screened and predicted for Thio-Iva and Briva – Right axis: Percentage of kinases predicted for each 
compound per kinase family, shown as deviation from the mean of predicted kinases. 

 

iRAISE Screening  

A screening of Thio-Iva against 796 crystal structures from 56 tyrosine kinases was 

performed with iRAISE. For 714 crystal structures from 54 TKs, poses and their scores 

could be obtained with this method. Subsequent SeeSAR redocking was performed for 

the structure with the highest scoring pose per kinase and evaluated according to the 

inbuilt HYDE scoring function. Results showed a range of estimated affinities (Table 8). 

While HYDE scores (the lower, the better) varied strongly across kinases, plausible 

binding modes could be generated in almost all visually inspected crystal structures.  

Table 8. Results of iRAISE screening and SeeSAR redocking for Thio-Iva. 

Kinases PDB EA (in µM) Kinases PDB EA (in µM) Kinases PDB EA (in µM) 
FMS 4R7H 0.10 - 8.89 TYK2_b 3ZON 2.08 - 206.70 FYN 2DQ7 10.58 - 1051 
KIT 3G0F 0.17 - 16.48 FLT1 3HNG 2.10 - 208.63 FES 3BKB 10.66 - 1059 
EphA7 3DKO 0.18 - 17.42 SRC 1YOL 2.69 - 267.20 IGF1R 3QQU 12.25 - 1217 
ErbB2 3RCD 0.21 - 21.16 BMX 3SXR 2.80 - 278.64 DDR1 4CKR 13.71 - 1362. 
ErbB4 3BBT 0.33 - 32.84 LYN 3A4O 3.14 - 312.16 JAK3 4QT1 21.19 - 2106 
TRKA 4PMM 0.36 - 35.52 SYK 4I0T 3.34 - 331.87 TYK2 3LXN 30.28 - 3008 
TRKC 3V5Q 0.36 - 35.88 INSR 5E1S 3.48 - 345.55 EphA2 1MQB 31.67 - 3147 
MET 3CTH 0.46 - 45.16 ACK 4ID7 3.76 - 373.82 FAK 4GU9 31.67 - 3147 
BRK 5DA3 0.49 - 48.64 CSK 1BYG 3.95 - 392.81 JAK1 4K6Z 61.27 - 6087 
TIE2 2WQB 0.53 - 52.99 ErbB3 3LMG 3.97 - 394.24 RON 3PLS 210.92 - 20957 
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ALK 3LCS 0.88 - 87.26 FGFR1 4UWB 4.64 - 460.63 EphA3 4G2F 216.88 - 21549 
KDR 3U6J 0.96 - 95.09 FGFR2 2Q0B 4.73 - 469.47 ROS 3ZBF 314.24 - 31221 
LCK 2HCK 0.97 - 96.06 EphB4 3ZEW 5.35 - 531.09 FGFR4 4TYI 385.33 - 38285 
PDGFRb 3LCD 0.97 - 96.65 TRKB 4AT3 5.77 - 573.26 ITK 4PPB 446.28 - 44341 
FLT3 4RT7 1.09 - 108.18 MER 4MH7 7.63 - 758.39 RET 2IVT 450.21 - 44731 
PYK2 3FZT 1.23 - 122.31 ABL2 2XYN 8.58 - 852.72 JAK2 4BBE 459.51 - 45655 
BTK 4ZLY 1.30 - 128.72 ABL1 2G2F 8.69 - 863.38 ZAP70 4K2R 2.7x105 - 2.7x107 
HCK 3VS7 1.31 - 129.70 EGFR 5CAP 10.21 - 1013 FGFR3 4K33 2.1x106 - 2.1x108 
EA Estimated Affinity as calculated with the HYDE scoring function by SeeSAR. 
Kinases with favourable binding pose as highest scoring pose shown in bold. Kinase names unified to 
naming convention used by KinHub (78). 

 

Manual investigation of the binding poses showed that in 41 out of the 54 screened 

kinases the top scoring pose formed a hydrogen bond at the hinge region (Figure 11). In 

23 of these targets, the top scoring pose formed this hydrogen bond with the nitril group 

of Thio-Iva, which was considered the most favorable binding pose (104). In 13 kinases, 

the top scoring pose did not express an interaction with the hinge region at all. Of the 31 

targets where the top scoring pose did not show an interaction between the nitril and the 

hinge region, alternative poses were investigated. For 14 of these targets, a lower scoring 

pose existed that formed a hydrogen bond with the nitril at the hinge region. Only for the 

six targets with the lowest scoring top pose (Table 8) was there also no pose interacting 

at the hinge region. 

 
Figure 11. Observed poses (SeeSAR) of Thio-Iva in crystal structures of 54 different kinase targets. 
Binding properties are shown for the top scoring pose (left pie). For the 31 kinases where the top pose’s 
interaction at the hinge region was not a hydrogen bond with the nitril group of Thio-Iva, interactions of the 
best alternative pose were investigated (right pie). 
 

3.1.1.3 Correlation of In Silico Target Predictions 

To increase the reliability of our computational target predictions, the results for the lead 

compound Thio-Iva from all three in silico prediction methods were combined. 

Figure 12 shows the selected results on a human kinome tree generated by KinMap (78). 

The following targets were included from each method: (i) 35 targets from the iRAISE 
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screening that passed subsequent manual evaluation with SeeSAR, exhibiting an 

estimated affinity of below 10 – 1000 µM; (ii) 94 out of the 241 kinases screened with 

@Tome that fulfilled the two thresholds of a minimum of 5 nm pKd and a LPE of less than 

3; (iii) Using the ligand-based similarity approach with SwissTargetPrediction, all kinases 

with any known actives above the similarity thresholds were included.  

All targets that were suggested by more than one method were included in the final list. 

The ranking within each method was not taken into consideration. This resulted in a final 

list of 29 computationally predicted targets. Note that due to irregularities within the 

different naming conventions used in the screening methods, IRE1 and RSK2 were 

accidentally not included in the final list, despite appearing in more than one method, and 

PDK1 was included needlessly. 

Furthermore, 20 targets known to be relevant for HCC were identified from literature (7), 

14 of which were not already represented in the correlated in silico target prediction list 

(however, 9 of the 14 appeared in exactly one of the computational target prediction 

methods). They were therefore added to the final list of 43 targets, which were 

subsequently experimentally evaluated by radiometric kinase assays (see Chapter 3.1.2). 
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Figure 12. Visual representation of Thio-Iva targets selected for in vitro testing (green), predicted by more 
than one prediction method (circles), targets included due to relevance to HCC (squares), and targets 
predicted by one screening method only (triangles). 1 Kinase not present on KinMap.  
Source: KinMap. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com). 
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3.1.2 Kinase Profiling  

A set of 43 targets (see Chapter 3.1.1.3) was screened with the KinaseProfilerTM to 

identify Thio-Iva’s targets and to evaluate the prediction power of the in silico methods. 

Results showed more than 50% inhibition of kinase activity by 10 µM Thio-Iva for six out 

of the 43 tested kinases (Figure 13 and Figure 14). 

Figure 13. Visual representation of Eurofins KinaseProfilerTM results for Thio-Iva at 10 µM (43 Kinases).  
Source: KinMap. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com). 
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The strongest inhibition was observed for VEGFR2 (89%) and VEGFR1 (75%). The other 

four strongly inhibited kinases were Pim-1 (71%) and Pim-2 (60%), as well as CLK1 (69%) 

and c-Kit (61%). These six targets, as well as EGFR, were then also screened for the 

inhibitory effects of Thio-Dam, 1a and Briva (Figure 14). Interestingly, Thio-Dam showed 

strong inhibition of VEGFR2 (86%), while not inhibiting the other six kinases by more than 

50%. 1a exhibited no effect on VEGFR2, and only inhibited CLK1 by more than 50% 

(68%). For Briva the effects were less pronounced than Thio-Iva, with only three 

(VEGFR2 (56%), CLK1 (67%) and c-KIT (62%)) of the seven targets inhibited by more 

than 50%. 

 
Figure 14. Eurofins KinaseProfilerTM results for Thio-Iva, Thio-Dam, 1a and Briva at a concentration of 10 
µM. Kinase selection based on Thio-Iva results, with EGFR added independently. Data given as 
percentage of uninhibited control (mean with individual data points). 

 

An additional concentration row for IC50 determination of Thio-Iva on the most strongly 

inhibited kinase VEGFR2 (Figure 15) was performed by Eurofins. The calculated IC50 

amounted to 2.81 µM. 
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Figure 15. VEGFR2 activity in relation to concentration of Thio-Iva. Data shown as individual data points 
and curve fitted with nonlinear regression. 

 

3.2 Structure-Activity Relationship 

3.2.1 Docking Studies 

To better understand how the compounds exhibit their effect on Thio-Iva’s potential main 

target VEGFR2, molecular docking was performed for all ten proposed compounds 

shown in Figure 5, B, i.e., the thiophenes Thio-Iva, Thio-Van, Thio-Dam, 1a, 1e, 1i and 

1j, as well as the bromobenzenes Briva, Brova and Bro-Dam. VEGFR2 was chosen 

following the results of the computational target prediction and subsequent kinase-assay 

evaluation for the lead compound Thio-Iva (see Chapter 3.1.2). 

As a proof of concept for the docking tool (SeeSAR), the co-crystallized ligand of the 

crystal structure 3VHE (42Q) was redocked and showed a stable predicted pose with an 

RMSD of 2.2 Å when compared to the co-crystallized ligand position. 

Results of the docking studies for the ten compounds against VEGFR2 (on the crystal 

structure 3VHE) were investigated according to estimated affinities predicted by HYDE 

scoring, as well as by visual inspection. The highest scoring docking poses for each 

compound are shown in Table 9. Additional poses for Thio-Iva were included to illustrate 

some of the observed variable binding modes. The 2nd highest scoring pose of Thio-Dam 

and the 6th for Bro-Dam were also included, as for these compounds, these were the 

highest scoring poses with a hydrogen bond formed between the compound’s nitril and 

the backbone nitrogen of cysteine 919. Interaction with the hinge region is an essential 

feature of ATP binding, and often observed in clinically successful inhibitors (104). 
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Table 9. Selected docking results for 3VHE.  

Compounds EA (SeeSAR) H-bonds  

Thio-Iva_075 14.60 – 1450.19 nM Cys919 
Thio-Iva_111 29.27 – 2908.34 nM Cys919, Asp1046 

Thio-Iva_032  35.37 – 3514.07 nM Cys919, Asp1046 

Thio-Van_115 48.96 - 4864.40 nM Cys919 
Thio-Dam_104 33.14 - 3292.22 nM Gly841 
Thio-Dam_47 46.28 - 4598.48 nM Cys919 
1a_69 194.53 - 19327.59 nM Cys919 
1e_31 0.41 - 40.67 nM Cys919 
1j_12 23.51 - 2336.11 nM Cys919, Phe1047 

1i_28 24.87 - 2470.97 nM Cys919, Glu885 

Briva_17 26.04 – 2587.05 nM Cys919, Leu840 
Brova_25 34.27 - 3404.51 nM Cys919 
Bro-Dam_107 9.20 - 913.62 nM (H2O-Asp1046) 
Bro-Dam_106 13.70 – 1361.65 nM Cys919, Glu885 

Numbering of compounds according to SeeSAR generated pose (random). EA Estimated Affinities 
according to HYDE scoring function in SeeSAR – H-bonds predicted by both SeeSAR and LigandScout 
shown in bold. H-bond in () only predicted by SeeSAR.  

 

Figures 16 and 17 show 3D and 2D depictions of the highest scoring binding pose 

interacting at the hinge region for each compound. For some compounds (Thio-Iva, Thio-

Van, Brova and 1e), this pose was also the most frequent orientation among the 50 

highest scoring poses. In others (notably 1a, 1i and 1j), the top scoring pose was not 

frequent at all. The top poses of only two compounds (Thio-Dam and Bro-Dam) had no 

hinge region interaction, while the top scoring poses of all the others formed a hydrogen 

bond with their nitril to cysteine 919. 

 

 
Figure 16. Overlay of all thiophenes (A) and all bromobenzenes (B) in their highest scoring pose interacting 
with the hinge region of VEGFR2. Images created with LigandScout. 
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Figure 17. 2D images of highest scoring binding pose for each compound in VEGFR2 (3VHE). Frequency 
of pose in the 50 highest scoring poses shown in percentage at the bottom left. Images created with 
LigandScout. Arrows indicate hydrogen bonds (green: donor, red: acceptor), yellow indicates hydrophobic 
interaction, blue a positive ionizable area. 
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In Figure 18 predicted high scoring binding poses of Thio-Iva are shown to illustrate the 

variations of this compound’s most frequent pose. The three binding poses depicted were 

later used as starting positions for molecular dynamics simulations (see Chapter 3.2.2). 

 
Figure 18. ATP-binding pocket of VEGFR2 (3VHE) with predicted binding poses of Thio-Iva. Images 
created with LigandScout. 

 

A detailed analysis of the 50 highest scoring poses for all ten compounds is summarized 

in Table 10. Results show that of all the compounds investigated, Thio-Iva and 1e were 

docked most consistently, with 49 of 50 poses forming a hydrogen bond between the nitril 

group of the ligand and the backbone nitrogen of cysteine 919 at the hinge region of 

VEGFR2. For Thio-Iva, 33 out of 50 poses formed a hydrogen bond of the nitril group 

with the backbone nitrogen of cysteine 919 at the hinge region, and the thiophene ring 

turned towards the solvent (Figure 18). 16 poses still formed the same hydrogen bond, 

but the entire molecule was flipped by 180°, with the thiophene ring oriented towards the 

back pocket. Only one of the top 50 poses of Thio-Iva formed no hydrogen bond at the 

hinge region.  

Thio-Van and Thio-Dam also showed the majority of the first 50 poses docking in this 

orientation. However, for these compounds more poses than for Thio-Iva and 1e were 
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predicted to have no interaction to the hinge region. For the compounds 1a, 1i and 1j, the 

majority of the top 50 generated poses showed no interaction at the hinge region. The 

compound group with the bromobenzene showed less consistent binding modes 

compared to Thio-Iva overall, with Bro-Dam showing most consistent results and a 

preference to turn the bromine towards the solvent to a similar extent as the thiophene in 

Thio-Dam. Meanwhile, almost half of the top 50 predicted poses for Briva and Brova 

showed no interaction at the hinge region, and the remaining ones showed a preference 

to turn the bromine towards the back pocket. Only two compounds, Briva and Thio-Van, 

presented some poses with their hydroxy group forming a hydrogen bond with the hinge 

region. 

Table 10. Analysis of top 50 docking poses according to SeeSAR for all ten investigated compounds. 

Interaction at Hinge region Thio-Iva Thio-Van Thio-Dam 1a 1e 1i 1j Briva Brova Bro-Dam 

H-bond with nitril group 49 32 30 8 49 5 12 22 29 37 

 S/Br towards solvent 33 19 30 8 32 5 12 4 11 31 

 S/Br towards back pocket 16 13 0 0 17 0 0 18 18 6 

H-bond with hydroxy group 0 7 0 0 0 0 0 5 0 0 

No interaction 1 11 20 42 1 45 37 23 21 13 

Poses of compounds with high consistency (> 30 poses in same position) marked in bold. 

 

3.2.2 Molecular Dynamics Simulations 

To analyze the interaction of the lead compound Thio-Iva with the target protein 

VEGFR2, molecular dynamics simulations were performed with Desmond 6.1.013 (91). 

Of the three investigated binding modes of Thio-Iva (075, 111 and 032) previously 

created with SeeSAR, Thio-Iva_032 stayed most consistently in the binding pocket, and 

two more repeats with random starting speeds were performed. Results of the most stable 

MD in terms of RMSD of protein and compound (Thio-Iva_032_2) were further 

investigated. Figure 19 shows an overlay of pictures taken every 10 ns as a visual 

representation of a stable binding pose with Thio-Iva remaining consistently in the same 

orientation inside the binding pocket over the entire time simulated. 
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Figure 19. Overlay of snapshots taken every 10 ns from MD simulation of Thio-Iva_032_2 in the structure 
3VHE. Image created with PyMOL (42). 

 

The RMSD of the protein and the ligand over time is shown in Figure 20, A. This is a 

measure of the average distance between atoms when superimposed onto the first frame 

of the MD simulation, thereby quantitatively describing the change in position over time. 

After a first jump in RMSD (correlating to the start increase in temperature of the simulated 

system) the RMSD of 3VHE stayed very stable. The ligand Thio-Iva also remained below 

a deviation of 4 Å over 97.2% of frames. However, at frame 497 there is a notable 

increase in RMSD, which corresponds to a change in position of Thio-Iva while remaining 

in the binding pocket. Within 2 ns, the molecule reverts to its initial position, with only the 

thiophene ring flipped by 180° for the remainder of the simulation. 

The distance of Thio-Iva’s nitril group to the cysteine 919 of 3VHE, corresponding to the 

essential hydrogen bond at the hinge region of VEGFR2, is illustrated in Figure 20, B. 

The distance remained below 3.8 Å over 99% of the simulation, the maximum distance 

proposed by Wolber et al. (90) to allow for a stable hydrogen bond interaction in crystal 

structures. The other hydrogen bond predicted for the binding pose used for the 

simulation was between Thio-Iva’s hydroxy group and the backbone nitrogen of the 

aspartate 1046 (Figure 18). This bond appeared less stable over the time simulated, with 

only 2 frames where the distance between the interaction partners was below 3.8 Å. 

When investigating the distance to potential alternative interacting atoms in the region, 

the most consistent proximity was observed between the oxygen of the hydroxy group 

and the backbone oxygen of aspartate 1046 (Figure 20, B, Asp1046:O-1). There, the 

distance remained below 3.8 Å for 77% of frames.  
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Figure 20. Analysis of MD simulation. A Graph showing the RMSD over time for 3VHE (grey) and Thio-
Iva (green, showing each individual data point as well as the moving average over 10 frames). B Distance 
of donor and acceptor in the critical H-bond at the hinge region and a second potential interaction area 
close to the DFG motif. Nomenclature: Cys: Cysteine, Asp: Aspartate, N: Nitrogen, 1: Oxygen of the 
hydroxy group, 2: Oxygen of methoxy group.  

 

3.3 Cell Growth Inhibition 

The growth inhibitory effects of Thio-Iva and Briva on HepG2 and Huh-7 cells were 

studied with crystal violet assays over a total of 72 hours. Results showed a strong time- 

and dose-dependent inhibitory effect of both substances in both cell lines (Figure 21). 

Exploratory 3-way ANOVA tests showed a significant difference in means depending on 

the factors of time, dose, and compound in both cell lines. The difference in compound 

efficacy is illustrated by Briva needing to be dosed twice as high as Thio-Iva to achieve 

the same effect at most time points and for both cell lines.  
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Figure 21. Growth inhibition of HepG2 (A) and Huh-7 (B) cells treated with Thio-Iva and Briva, shown as 
percentage of untreated control (mean ± SEM of at least n=4).  

 

Table 11 shows the IC50 values (concentration at which 50% inhibition of proliferation 

was achieved) after 48 hours. The growth inhibitory effect of Thio-Iva was more 

pronounced than that of Briva, with IC50 values in the submicromolar range after 48 

hours. 

Briva’s IC50 values were close to 1 µM, and interestingly, the compound seemed to have 

a growth stimulatory effect at very low concentrations after 24 hours in Huh-7 cells (Figure 

21, B). As a model for non-malignant liver cells, our partner laboratory at the Johannes 

Gutenberg University investigated the growth inhibitory effects of Thio-Iva and Briva on 

the AML-12 cell model (Table 11). Growth inhibitory effects in these non-malignant liver 
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cells were less pronounced than in the HCC models HepG2 and Huh-7. The IC50 value 

for Thio-Iva was more than threefold higher in the nonmalignant cells than the highest 

from the cancer cell lines, while for Briva it was almost sixfold higher.  

Table 11. IC50 values (in µM) after 48 hours. 

Results shown as mean ± SEM of at least n=4. 1 Data taken from Schaller et. al (64), 2 Unpublished data 
acquired by the same methods as for Thio-Iva. 

 

3.4 Mode of Action and ADMET properties 

3.4.1 In Silico ADME Evaluation 

To get an overview of the lead compounds' properties relevant to their processing in the 

body, SwissADME was applied. SwissADME’s bioavailability radar (Figure 22) shows a 

quick summary of six important physiochemical properties. Lipophilicity, size, polarity, 

solubility, and flexibility were all within the ranges of desired drug properties. The only 

property outside the desired range for both compounds was saturation. This 

measurement indicates the fraction of sp3 hybridized carbons of total carbons. It has been 

shown that this fraction increases in drugs from preclinical stages to drug approval, and 

is thus assumed favorable (above 0.25 in SwissADME) for developing successful 

compounds (105). The fractions reported for Thio-Iva and Briva correspond to one 

carbon in each compound being sp3 hybridized, indicating the carbon in the 

hydroxymethyl group of the two lead compounds. 

 HepG2 Huh-7 AML-12 

Thio-Iva 0.54 ± 0.06 0.38 ± 0.05 1.81 ± 0.311 

Briva 1.16 ± 0.24 0.97 ± 0.18 6.78 ± 1.372 
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Figure 22. Bioavailability radar for Thio-Iva (A) and Briva (B) provided by SwissADME. 

 

Table 12 shows the most relevant additional results provided by SwissADME. The 

pharmacokinetics analysis predicted high absorption in the gastrointestinal tract for both 

compounds, while only Briva was predicted to pass the blood brain barrier. Neither 

compound was predicted to be a substrate of the P-glycoprotein, but some members of 

the Cytochrome P450 family were predicted to be inhibited by the compounds. 

Leadlikeness is defined as 250-350 g/mol molecular weight, a XLOGP below or equal to 

3.5 and a maximum of seven rotatable bonds (106). Thio-Iva fulfilled all those criteria, 

while Briva’s XLOG3 was considered too high. 

Table 12. Selected results from SwissADME for Thio-Iva and Briva, evaluated further in this thesis. 

Physiochemical Properties  Thio-Iva Briva Pharmacokinetics Thio-Iva Briva 

#Heavy atoms 18 20 GI absorption High High 

#Aromatic heavy atoms 11 12 BBB permeant No Yes 

#H-bond acceptors 3 3 Pgp substrate No No 

#H-bond donors 1 1 CYP1A2 inhibitor Yes Yes 

Molar Refractivity 72.76 82.58 CYP2C19 inhibitor Yes Yes 

Lipophilicity     CYP2C9 inhibitor Yes Yes 

iLOGP 2.61 3 CYP2D6 inhibitor No No 

XLOGP3 3.03 4.01 CYP3A4 inhibitor No Yes 

WLOGP 3.42 4.12 Druglikeness     

MLOGP 1.56 3.05 Lipinski  Yes Yes 

Silicos-IT Log P 3.92 3.98 Ghose  Yes Yes 

Consensus Log P 2.91 3.63 Veber  Yes Yes 

Water Solubility     Egan  Yes Yes 

ESOL Log S -3.6 -4.66 Muegge Yes Yes 

ESOL Class Soluble Mod. Sol. Bioavailability Score 0.55 0.55 
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Ali Log S -4.41 -4.83 Medicinal Chemistry     

Ali Class Mod. Sol. Mod. Sol. Brenk #alerts 1 1 2 

Silicos-IT LogSw -3.92 -5.47 Leadlikeness #violations 2 0 1 

Silicos-IT class Soluble Mod. Sol. Synthetic Accessibility 2.62 2.36 
1 Brenk alerts: conjugated nitrile group, stilbene (Briva only) – 2 Leadlikeness violation: XLOGP3>3.5  
Mod. Sol.: Moderately soluble 

 

3.4.2 In Silico Toxicity Prediction 

The new compounds were investigated for potential toxic effects with the tools of the 

eMolTox server, providing a structural alert screening as well as several machine learning 

models based on fingerprint similarity.  

Screening for structural alerts of the two compounds showed alerts from 14 of the 23 alert 

sources (Table 13), but the majority of problematic substructures were found in more than 

one source. Including these redundant alerts, only 1.6% of all 2,173 potential alerts were 

found in any of the two compounds. There were 14 potentially toxic substructures 

detected in Thio-Iva and 17 in Briva (Table 14). 12 of them were identical substructures 

present in both compounds.  

Table 13. Alert sources of eMolTox screening for toxic substructure alerts. 

Alert source Thio-Iva Briva  Thio-Iva Briva 
Chelating agents X X Pat Walters 

Alerts 

  
Acute Aquatic Toxicity X X Glaxo - - 
Covalent Bind With Protein X X Dundee X X 
Respiratory Sensitization - - BMS X X 
Mitochondrial Toxicity - - PAINS - - 
Non genotoxic carcinogenicity - X 

 

SureChEMBL - - 
Skin sensitization X X MLSMR X X 
Alert from Top200 Drug X X Inpharmatica - X 
Genotoxic carcinogenicity mutagenicity - - LINT - X 
Kidney Toxicity - -    
Hepatotoxicity X X    
Developmental and mitochondrial toxicity - -    
Covalent Bind With DNA X X    
Idiosyncratic toxicity Metabolic activation X X    
Potential electrophilic agents X X    

X at least one structural alert detected, - no structural alerts detected. 

 

The most frequently appearing structural alerts from the different segments of the Thio-

Iva and Briva concerned the nitril group, the thiophene and the bromobenzene, as well 

as variations of the benzene ring with different substituents. 
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Table 14. Substructure alerts detected by eMolTox for Thio-Iva and Briva. 

Substructure Detected in Database Compound 

 

Potential electrophilic agents, Covalent Bond With Protein, 
Covalent Bond with DNA, Dundee, Acute aquatic toxicity 

Both 

 

Potential electrophilic agents, Covalent Bond With Protein, 
Covalent Bond with DNA 

Both 

 

Hepatotoxicity, Top200 Drug, Skin sensitization Both 

 
Idiosyncratic toxicity metabolic activation, Top200 Drug Thio-Iva 

 

Top200 Drug, Potential electrophilic agents Both 

 

Top200 Drug, Non genotoxic carcinogenicity Briva 

 

Top200 Drug, Dundee Briva 

 

Chelating agents, Skin sensitization Both 

 
BMS Thio-Iva 

     
Top200 Drug Both 

 
Idiosyncratic toxicity/metabolic activation Both 

 
MLSMR Both 

 

LINT Briva 

 

Inpharmatica Briva 

    
Skin sensitization Both 

 

In the machine learning based toxic prediction model of eMolTox, only 5% of the 169 

potentially toxic endpoints tested were predicted to be possibly relevant for Thio-Iva, and 

for Briva it was 8% (Figure 23, A, B). While almost half of the screened toxic endpoints 

could not be confidently predicted by the server (‘inconclusive’), 46% for Thio-Iva and 

44% for Briva were predicted to be unaffected by the respective ligand. These results are 

comparable to clinically approved kinase inhibitors such as sorafenib or gefitinib (data not 
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shown). For Thio-Iva, six of the nine positive (toxic) injury predictions concerned liver 

toxicity (Figure 23, C). For Briva, eight out of 15 concerned the liver, while three potential 

toxicities were related to the endocrine system (Figure 23, D). There was no potential 

toxicity predicted for kidneys, immune, blood, gastrointestinal or respiratory system. 

 

 
Figure 23. Potential toxicity of Thio-Iva (A, C) and Briva (B, D) as predicted by eMolTox. A and B show 
percentages of toxic endpoints, C and D show absolute numbers of predictions for each injury category. 
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3.4.3 Acute Cytotoxicity  

Unspecific toxicity of the new compounds was examined with a cellular assay measuring 

LDH (lactate dehydrogenase) release. LDH is an enzyme ubiquitously present in the 

cytosol and gets released from cells when the cell membrane loses its integrity. Cells 

treated with Thio-Iva or Briva (with concentrations ranging from 0.5 to 10 µM) for up to 

24h did not show significantly increased LDH release as compared to untreated controls 

(Figure 24). The lack of meaningful increase of LDH in the medium of the treated samples 

suggests that there is no immediate unspecific cytotoxicity caused by the two compounds. 

 
Figure 24. LDH release of HepG2 (A) and Huh-7 (B) cells treated with Thio-Iva and Briva, shown as 
percentage of maximum cell lysis (mean ± SEM of n=3). 
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3.4.4 Induction of Apoptosis 

To investigate alternative modes of cell death, involvement of apoptotic pathways in the 

growth inhibitory effect of the compounds was determined by measuring caspase-3 

activity after treatment with Thio-Iva or Briva. Results showed a strong increase in 

caspase-3 activity in the treated cells compared to base activity detected in untreated 

controls (Figure 25). The effect was time- and dose-dependent for both tested compounds 

and both cell lines. Statistical analysis with a 3-way ANOVA test for each cell line showed 

significance for the factor time and dose, but not the different compounds.  

This may point to the process of apoptosis playing a role in the growth inhibitory effects 

observed. 

 

 
Figure 25. Caspase-3 activity of HepG2 (A) and Huh-7 (B) cells treated with Thio-Iva and Briva. Results 
shown as percentage of untreated controls (mean ± SEM of n=3).   
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4 Discussion 

In this thesis, a panel of potential new kinase inhibitors was investigated for their target 

selectivity and anticancer potential. The two lead compounds from each subset – the 

thiophene Thio-Iva and the bromobenzene Briva – were investigated more in detail. First 

data on these two compounds suggest that they act as multi-kinase inhibitors with strong 

growth inhibitory effects on HCC cells and a promising toxicity profile.  

Thio-Iva strongly inhibited six kinases (most notably VEGFR2) in a kinase activity assay 

of 43 targets preselected by computational screenings and HCC relevance. Briva 

inhibited five of Thio-Iva’s main targets, and inhibition of these kinases could explain the 

strong growth-inhibitory and apoptosis-inducing effects observed for both compounds in 

vitro. Pronounced differences in VEGFR2 inhibition between some members of the panel 

were rationalized with in silico docking studies. Some of the compounds also exhibited 

inhibition of targets outside the tyrosine kinase family including Pim kinases, which have 

been suggested as promising co-targets to potentially interrupt escape mechanisms over 

the Pim pathway and delay resistance (107). 

For both Thio-Iva and Briva there were few in silico predicted toxicities, and in vitro 

immediate unspecific toxicity in HCC cells was low. Additional predicted ADME properties 

– such as pharmacokinetics, lipophilicity, solubility and druglikeness – showed favorable 

anticancer drug potential. 

4.1 Kinase Targets 

To gain a better understanding of how the novel compounds function on a protein level, 

a process was employed consisting of in silico target identification and subsequent in vitro 

verification. This was done extensively for Thio-Iva, the lead compound of the thiophene 

subgroup, and to a lesser extent for Briva, the lead compound of the bromobenzene 

subgroup. 

A panel of 43 potential targets of Thio-Iva was created for in vitro testing, including 29 

computationally predicted targets, complemented with 14 additional targets relevant for 

HCC biology. Results of the subsequent radiometric kinase assay showed six kinases to 

be inhibited by Thio-Iva at a concentration of 10 µM by more than 50%. This indicates a 

selective kinase inhibition by Thio-Iva. Of the six identified targets, three were tyrosine 

kinases (TK) (VEGFR2 (89% inhibition), VEGFR1 (75%) and c-Kit (61%)), two were 
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Ca2+/calmodulin-dependent protein kinases (CAMK) (Pim-1 (71%) and Pim-2 (60%)) and 

one was a CDC-like kinase (CLK) (CLK1 (69%)). 

Two more thiophenes (Thio-Dam and 1a) and the bromobenzene Briva were tested on 

seven targets, including Thio-Iva’s top targets and EGFR (a known target of Tyrphostin 

RG-13022, from which the compound panel was originally derived). Results for Thio-

Dam and 1a showed that despite their high molecular similarity, they displayed distinctly 

different – and mostly lower – inhibitory activities on these kinases compared to Thio-Iva. 

Thio-Dam showed a similarly strong inhibition of VEGFR2 as Thio-Iva, but no inhibition 

below 50% kinase activity for the other six targets. 1a showed no effect on VEGFR2, and 

only showed moderate inhibition below 50% for CLK1. While Briva showed some effects 

on five of Thio-Iva’s six main targets (notably VEGFR2, CLK1 and c-KIT), they were 

mostly less pronounced, with the strongest inhibition being on CLK1 (67%).  

Interestingly, none of the tested compounds inhibited EGFR to below 50% activity, which 

was unexpected since the compounds were derived from the EGFR-inhibiting Tyrphostin 

RG-13022. 

Differences in VEGFR2 inhibition are further discussed in the results of the docking 

studies, where the compounds most active on VEGFR2 also showed the most consistent 

binding poses over the top scored 50 poses (see Chapter 4.3).  

 

The strongest effect of Thio-Iva was observed for the two VEGF receptors VEGFR2 and 

VEGFR1. VEGF and its receptors play an important role in tumor growth and 

angiogenesis, and VEGFR2 is often overexpressed in solid tumors, including HCC (108). 

When a tumor exceeds a few millimeters in size, its center becomes hypoxic and 

increased levels of VEGF are released (109). Depending on the speed of tumor growth, 

the center can become necrotic, and induce proliferation of blood vessels via immune 

and inflammatory processes (110). VEGFR2 has been identified as the most relevant to 

angiogenesis in physiological as well as pathological processes, including blood-vessel 

formation in tumors (111). VEGFR1 plays a major role in hematopoietic cells and normal 

blood vessel development (109). However, cross-talk of VEGFR1 with VEGFR2 and a 

potential involvement in pathological angiogenesis has been suggested and is still under 

investigation (109, 112). Due to these reasons, VEGFR2 has become a target of high 

interest for anticancer drugs (96), and happens to be a main target of all four small 

molecule KIs which are currently FDA-approved for medical treatment of HCC (52, 113). 
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Another target that was strongly inhibited by Thio-Iva is c-Kit (mast/stem cell growth 

factor receptor), a TK relevant for cell proliferation and survival. Upregulation as well as 

mutations of c-KIT are expressed in some cancers, and thus c-Kit is under investigation 

as a target for cancer therapy. Currently, one TKI (Ripretinib) targeting c-KIT and PDGFR 

has already been approved by the FDA for treatment of gastrointestinal stromal tumors 

(52).  

The proto-oncogene serine/threonine-protein kinases Pim-1 and Pim-2 belong to the 

kinase family CAMK. They are relevant for many cellular processes such as cell cycle 

regulation, inflammation, and cell death. Pim kinases are strongly expressed in several 

tumors and appear to serve as an escape mechanism from other targeted therapies. Pim-

1 has been shown to be overexpressed in HCC (114) and was associated with higher 

metastatic potential. Consequently, Pim has emerged as an interesting target for 

combination treatment approaches with other targeted therapies to overcome drug 

resistance and immune evasion of cancer cells (107).  

CLK1 (CDC2-like kinase 1) is a dual specificity protein kinase involved in the regulation 

of RNA splicing in the nucleus, and has been suggested as a target for the treatment of 

various diseases such as Alzheimer’s disease (115) or Duchenne muscular dystrophy 

(116). There has been some research conducted into CLK1 inhibitors as anticancer drugs 

(117), with the CLK inhibitor SM08502 recently entering clinical trials for advanced solid 

tumors (118). 

Taken together, all these kinase targets have some relevance in the search for new 

anticancer therapy, and Thio-Iva’s pronounced inhibition of VEGFR and Pim kinases 

appears especially promising and relevant for targeted therapy of HCC and solid tumors 

in general. 

4.2 Evaluation of In Silico Target Prediction 

Assessing the predictive value of computational screening for potential targets of Thio-

Iva revealed that five out of the six strongly inhibited kinases were predicted by in silico 

screening methods. Each of the kinases was predicted by one ligand-based method 

(SwissTargetPrediction) and at least one structure-based method (@TOME, iRAISE).  

Of the 23 targets selected only by in silico methods, three (Pim-1, Pim-2, CLK1) were 

inhibited in vitro, while of the 14 targets selected only for HCC relevance, one (VEGFR1) 

was inhibited in vitro. Of the six targets included based on both computational and 
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biological investigation, two (VEGFR2, c-Kit) were inhibited in vitro. This shows that while 

a combined approach appears most effective, in silico target prediction not only 

recognizes the more established targets but has the potential to point towards less 

expected targets. 

As the lead compound from the bromobenzene subgroup, Briva was also investigated 

with the in silico target prediction methods SwissTargetPrediction and @TOME. The 

predicted targets differed strongly to those of Thio-Iva, with four of Thio-Iva’s top targets 

predicted by one of the methods, but none of them by both. This was in part reflected by 

the initial in vitro verification of Briva activity on Thio-Iva’s top targets and EGFR. It 

seems likely that there are other targets relevant for Briva’s notable anticancer effect in 

cell culture experiments. Further investigations, including a full in silico target prediction 

with subsequent in vitro verification would be necessary to get a sufficient profile on Briva. 

4.3 Interaction with VEGFR2 

After protein targets were identified, the next aim was to investigate the structure-activity 

relationship of the compounds and their target(s). To elucidate a binding hypothesis that 

can explain the experimental findings, docking studies were performed on VEGFR2 as 

Thio-Iva’s most strongly inhibited target. All compounds were docked to study how the 

difference in compound structures across the panel could affect the inhibitory effects on 

VEGFR. To verify the most prominent binding mode for the most potent inhibitor Thio-

Iva, additional molecular dynamics simulations were performed. 

The most favorable predicted binding pose of Thio-Iva in the ATP-binding pocket of 

VEGFR2 formed a consistent hydrogen bonding pattern between the nitril of the 

compound and the backbone nitrogen of the cysteine 919 at the hinge region (throughout 

the investigated top 50 poses and the 100 ns MD simulation). Hydrogen bonding 

interaction with the hinge region of kinases is a feature of ATP-binding (also common 

among successful inhibitors) that helps to anchor the molecule in the binding site (104). 

Generally, hydrogen bonds formed with the rigid backbone of the protein are considered 

more stable and less influenced by side chain mutations than bonds formed with the more 

flexible sidechains (119). 

The additional hydrophilic interaction of the hydroxy group of Thio-Iva with the aspartate 

1046 close to the DFG motif was shown to be more variable between docking with 

SeeSAR and analysis in LigandScout, as well as over time in the MD simulation. This 
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interaction could also be strongly dependent on the conformation of the DFG motif in the 

crystal structure used (DFG-out). As high-quality crystal structures of DFG-in (considered 

active) conformations were not available at the time of investigation, reliable dockings 

with this alternative could not be performed. This made it impossible to explore further if 

our compounds could be potential type I rather than type II KIs. However, it has been 

shown that many VEGFR2 inhibitors bind to the DGF-out (inactive) kinase conformation 

(120). 

Analysis of the docking results of the other nine compounds showed consistency of 

preferable binding modes, especially for the thiophene 1e, but also for Thio-Van and 

Thio-Dam. Calculated binding modes for 1a, 1i and 1j were more variable, suggesting 

that VEGFR2 may not be one of their main targets. The bromobenzenes (Briva, Brova 

and Bro-Dam) showed less consistent results overall, with Bro-Dam showing the highest 

consistency within this subgroup.  

These results matched the results of the radiometric kinase assay for the tested 

compounds Thio-Iva, Thio-Dam, 1a and Briva. The compounds with more consistent 

binding modes (Thio-Iva and Thio-Dam) also showed higher inhibitory effect on VEGFR2 

in vitro. 

To further decipher the SAR of the compounds based on the generated docking poses 

and measured inhibitory activity, the differences in functional groups of the compounds 

were analysed. Thio-Iva and Briva both have a hydroxy group with potential for additional 

hydrogen bonding towards the DFG motif, while Thio-Dam has a dimethylamine group 

that could account for additional hydrophobic contacts in the back pocket. The compound 

that did not show any inhibition of VEGFR2 is 1a, which is missing the hydroxy group of 

the two lead compounds, and with it the ability to form hydrogen bonds towards the DFG 

motif. Looking at the difference between Thio-Iva’s and Briva’s activity on VEGFR2, their 

defining feature (thiophene vs. bromobenzene rings) is oriented towards the solvent in 

the favored binding pose. The bigger hydrophobic bromobenzene could be 

disadvantageous for binding affinity in the investigated structure. Depending on the depth 

and makeup of the entrance area of the ATP-binding pocket in different kinases, this 

feature could strongly influence overall fit. This is supported by Briva showing some – 

but less – activity on most of Thio-Iva’s targets. 

Overall, the docking results together with in vitro verification indicate that Thio-Iva is a 

VEGFR2 inhibitor with potential to be optimized for an even more specific fit by extending 

it towards the back pocket. 
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4.4 Growth Inhibitory Effects and Modes of Action 

In addition to determining the compounds’ kinase inhibitory effects, this thesis aimed to 

determine the anticancer effects on HCC cell lines and the potential contributions of 

apoptosis and unspecific toxicity. Regarding the further development of the novel 

compounds into drugs, additional properties influencing the compounds’ suitability in 

terms of absorption, distribution, metabolism, excretion, and toxicity (ADMET) were 

bioinformatically investigated.  

Thio-Iva and Briva showed strong growth inhibitory effects on HCC cells, while their 

effect on normal liver cells was comparably low, indicating a tumor-selective mode of 

action of the compounds. While unspecific cytotoxic effects of the compounds remained 

low, there was a substantial induction of caspase-3 activity. This may indicate that 

apoptosis plays a role as an underlying mode of action against HCC cells, while unspecific 

cytotoxic effects may not be a prominent factor in the cell death-inducing effects of the 

compounds.  

Unspecific toxicity is an unwanted feature in anticancer drugs as it causes tissue necrosis 

and accompanying inflammatory processes, which puts a greater strain on the organism 

(121). Apoptosis is a physiological process of the body to dispose of dysfunctional cells, 

and generally leads to less inflammatory reactions than necrosis. During cancer 

development tumor cells often lose their ability to undergo apoptosis due to changes in 

the expression and balanced regulation of pro- and anti-apoptotic proteins. The 

reinitiation of apoptosis is therefore a desirable feature for effective anticancer drugs with 

reduced side effects (122). In this regard, Thio-Iva and Briva showed promising results, 

with pronounced dose- and time-dependent growth inhibitory and apoptosis-inducing 

effects in the investigated HCC cell models.  

VEGFR2 stimulation has been shown to lead to anti-apoptotic signaling, and inhibition of 

this pathway has been suggested to play a role in the clinical efficacy of VEGFR2 

inhibitors (123). The observed effects of growth inhibition in general and induction of 

apoptosis specifically may therefore be related to the inhibition of VEGFR2 and other 

kinases. However, further investigations are needed to clarify the specific mode of 

apoptosis induction (intrinsic/extrinsic apoptosis) and related signaling events in terms of 

mitochondrial involvement by the novel compounds. 
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Evaluation of ADMET properties showed an overall positive property profile for both 

compounds, but especially for Thio-Iva. Of the general criteria for druglikeness 

established by the screening tool SwissADME, both investigated compounds fulfilled 

requirements on size, lipophilicity, solubility, polarity, and flexibility. Only the saturation of 

the compounds (specified by fraction of sp3 hybridized carbons) was considered too low. 

A rate of over 25% has been specified as favorable for potential drugs (105). This could 

be addressed when further developing and optimizing the compounds in the future. 

In the screening for toxic substructure alerts, the most frequently detected potentially 

problematic one was the conjugated nitril group. While the concept of avoiding such 

substructures in drug design and thereby eliminating toxicity is appealing, these warnings 

are not necessarily based on proven causality. While being aware of problematic 

substructures and their potential effects is valuable, avoiding all alerts does not seem to 

be a feasible approach. At least one structural alert can be found in many recently 

approved small molecule inhibitors (124).  

Bioinformatic screening for toxicities based on fingerprint similarity revealed no increased 

indication for potential toxic side effects of Thio-Iva and Briva compared to clinically 

approved KIs. 

4.5 Conclusions 

A combined in silico and in vitro strategy was explored to identify and characterize kinase 

inhibitory and antineoplastic effects of novel potential tyrosine kinase inhibitors. 

When screening for kinases inhibited by the novel compounds, targets were successfully 

narrowed down for Thio-Iva by applying a combination of in silico prediction methods. 

Six of the 43 kinases suggested were experimentally verified as major targets of Thio-

Iva. This showcases how a combination of in silico and in vitro methods can be a time- 

and cost-efficient strategy in drug discovery when applied with care. 

Testing the successful targets with the similar, yet slightly different members of the panel 

(Thio-Dam, 1a and Briva) revealed that despite their molecular similarity, they expressed 

distinctly different activities. 

The structure-activity relationship of the compounds to the most strongly inhibited kinase 

VEGFR2 was further investigated in computational docking studies. This offered an 

opportunity to investigate and visualize the differences in interactions formed with 

VEGFR2 caused by small modifications of the molecules. At the same time, Thio-Iva’s 
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specific binding mode – and its stability over time – was analyzed in depth. This 

knowledge can serve as a basis for potential compound optimization in the future, as both 

investigated lead compounds are well below the maximum threshold of 500 g/mol for 

small molecule inhibitors. Potential optimization could address druglikeness issues such 

as the compounds’ saturation, target selectivity and potency. Increased selectivity and 

potency could be achieved by extending the molecules towards the back pocket to create 

a better and more selective fit with certain kinases.  

As there is still a strong need for highly effective therapy for advanced HCC, the data of 

this work may serve as a promising starting point for further development of novel 

therapeutic compounds based on a combined approach of bioinformatical analysis and 

biological evaluation.  

First testing of the novel compounds on HCC cells showed their strong growth inhibitory 

potential, low unspecific toxicity, and induction of apoptosis. Nevertheless, further 

experiments should be performed to identify the involved pathways and mode of action 

of the promising new compounds in more depth.  
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