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Pesticide application is an important stressor to non-target species and can
profoundly affect ecosystem functioning. Debates continue on the choice
of agricultural practices regarding their environmental impact, and organic
farming is considered less detrimental compared to conventional practices.
Nevertheless, comparative studies on the impacts of both agricultural
approaches on the genetic adaptation of non-target species are lacking. We
assessed to what extent organic and conventional agriculture elicit local gen-
etic adaptation of populations of a non-target aquatic species, Daphnia
magna. We tested for genetic differences in sensitivity of different D. magna
populations (n=7), originating from ponds surrounded by conventional
and organic agriculture as well as nature reserves, to pesticides used
either in conventional (chlorpyrifos) or organic agriculture (deltamethrin
and copper sulfate). The results indicate that D. magna populations differen-
tially adapt to local pesticide use. Populations show increased resistance to
chlorpyrifos as the percentage of conventional agriculture in the surround-
ing landscape increases, whereas populations from organic agriculture
sites are more resistant to deltamethrin. While organic agriculture is con-
sidered less harmful for non-target species than conventional, both types
of agriculture shape the evolution of pesticide resistance in non-target
species in a specific manner, reflecting the differences in selection pressure.

1. Introduction

Current agriculture strongly relies on the use of agrochemicals, including pesticides
[1,2]. However, such practice represents a particularly concerning threat to natural
communities. Pesticides can move from the application site and enter the surround-
ing terrestrial and aquatic ecosystems via runoff and spray drift [3-5], and thereby
affect non-target species and impact ecosystem structure and functioning [6-9]. For
example, pesticide exposure was shown to affect macroinvertebrate community
composition and decrease leaf-litter decompositions in streams in Europe [9].
Pesticide exposure can have lethal [10] as well as sub-lethal effects, such as
phenotypic changes in life-history traits [11], behaviour [12] and physiology
[13]. For instance, exposure to chlorpyrifos (CPF) decreased Daphnia carinata
survival and, at lower concentrations, negatively affected reproductive par-
ameters, like timing until first brood production and number of offspring
[11]. However, populations can show increased tolerance to pesticides, achieved
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either via phenotypic plasticity or via genetic adaptations. In
the presence of substantial genetic variation, populations
exposed to pesticides can genetically adapt to the toxicant
via selection for the most tolerant individuals and an increase
in resistant allele frequencies [14,15]. For instance, Gammarus
pulex amphipods from agricultural streams evolved a con-
siderably higher resistance to clothianidin (neonicotinoid)
compared to amphipods from pristine streams [16]. However,
several studies have also reported that increased resistance to
pesticide can entail fitness costs to individuals [17,18], which
may compromise the stability of ecosystems and ecosystem
services provisioning.

In an effort to address the environmental concerns associated
with pesticide applications in conventional agriculture, organic
farming has been increasingly presented as a more benign
alternative. Organic agriculture has been highly promoted
under the EU Common Agricultural Policy (2014-2020), as it
relies on the use of organic fertilizers and a restricted set of pes-
ticides [19]. Most commonly applied pesticides in organic
agriculture are compounds extracted from natural sources,
such as pyrethrins, with the exception of some synthetic pro-
ducts such as copper sulfate (CS) and some pyrethroids.
Nevertheless, the toxicity of pesticides used in organic agricul-
ture can be comparable to that of conventional pesticides
[20,21]. So far, no studies have tested whether organic and con-
ventional pesticide use differentially drive genetic adaptation
in life history, behaviour or physiology of non-target species.

Ponds are abundant ecosystems in agricultural landscapes,
and substantially contribute to regional biodiversity [22] and
ecosystem services [23,24]. Their ecological quality is largely
determined by local surrounding land use [25]. Large-bodied
zooplankton, such as Daphnia magna and Daphnia pulex, are par-
ticularly valuable organisms in pond communities as they play a
key role in pond food webs by exerting top-down control on pri-
mary producers, and in turn being an important food source for
macro-invertebrates and vertebrates [26]. Their fast generation
time and the possibility to work with clones (i.e. from cyclical
parthenogenesis) make Daphnia a very suitable model organism
in ecotoxicology [27,28], ecology and evolutionary biology
[26,29,30]. Daphnia species are generally common in farmland
ponds and are therefore frequently exposed to pesticides. Earlier
studies reveal that this can lead to evolved pesticide resistance
[31,32]. For example, intensive agriculture around ponds leads
to evolved increased tolerance to carbaryl (carbamate) in
D. magna populations [32]. While evolutionary responses to con-
ventional pesticides are ubiquitously assessed across a large
range of non-target animals [18,31,33,34], it remains unanswered
to what extent these responses compare to those caused by pes-
ticides allowed in organic agriculture. There is a need to assess
whether and how organic agriculture drives adaptive pesticide
resistance in non-target populations, in order to better evaluate
the potential impact of organic agriculture on wildlife.

We tested for differential genetic adaption of D. magna
populations to pesticides used in conventional and organic
farming using a laboratory common garden toxicity assay.
Five clonal lineages of seven D. magna populations from agri-
cultural areas with either of the two pesticide application
strategies, or from non-agricultural natural sites, were
exposed to a range of concentrations of both conventional
(CPF) and organic pesticides (deltamethrin, hereafter DTM;
CS). We assessed median effective concentrations for each
pesticide across all clones and populations. We hypothesize
that Daphnia populations differ in their tolerance to pesticides

to match the pesticide strategy applied in the surroundings of [ 2 |

the ponds from where they originate. More specifically, we
predict populations from ponds in agricultural sites under
conventional pesticide management to be more resistant to
CPF compared to populations from organic farmlands or
nature reserves. Conversely, we expect that populations in
organic farmland have evolved a higher resistance to CS
and DTM compared to populations from areas of convention-
al agriculture and nature reserves. We predict populations
from ponds in nature reserves to have the lowest overall
pesticide tolerance.

2. Material and methods

() Daphnia magna study populations and
pre-experimental rearing conditions

We sampled seven D. magna populations from ponds located in
Western Flanders (Belgium). Five ponds were located in agricul-
tural farmland either under conventional (three ponds: ‘C1’, ‘C2’
and ‘C3’) or organic farming management (two ponds: ‘O1” and
‘O2’); two populations originated from ponds in nature reserves
(‘N1’, 'N2’) (electronic supplementary material, table S1). The
percentage of area under organic and conventional agriculture
in a perimeter of 200 m around each pond was determined by
combining GIS data (‘Watervlakken’ blue layer; available at Geo-
punt Vlaanderen, https://www.geopunt.be/; [35]) with the
annual agricultural parcel registration data of the Department
of Agriculture and Fisheries (see electronic supplementary
material, table S1). Land use in a perimeter of 200 m has been
shown to be highly relevant with respect to the physico-chemical
and biotic characteristics of small ponds [25]. We reared and
identified five clonal lineages per population (n=7x5=35
clonal lineages) (see detailed information in electronic
supplementary material, material and methods section).

Clonal lineages were maintained for at least six generations
under standardized pre-experimental laboratory conditions
(16:8 light:dark photoperiod, reared in dechlorinated tap
water at 20 +1°C, and fed with the green algae Acutodesmus
obliquus at a concentration of 1 x 10> cells ml™! twice per week).
Subsequently, clones used in this experiment were grown
under experimental standardized conditions for two generations
to minimize the interference from (grand)maternal effects on
experimental responses. Four replicated cultures of each clonal
lineage were established using parthenogenetically produced off-
spring, with five individuals raised in 500 ml glass jars filled with
24 h aged dechlorinated tap water, and kept at 20 + 1°C under a
16: 8 light : dark photoperiod. Seventy per cent of the medium
was refreshed every second day, after which food concentrations
were restored to 1x 10° cells ml™".

(b) Pesticide acute toxicity experiments: pesticides and

experimental design
(i) Pesticides

We established dose-response curves for all 35 clonal lineages for
three different pesticides: DTM, CS and CPF. DTM (CAS 52918-
63-5, purity greater than 98%, Sigma-Aldrich) is a synthetic
pyrethroid insecticide with a similar chemical structure as that
of pyrethrins [36]. DTM is used worldwide and together with
lamba-cyhalothrin are the only pyrethroid compounds (bio-
synthesis via the plant Tanacetum cinerariaefolium [37]), that are
allowed in organic agriculture under the EU Commission
Regulation (EC) No 889/2008 [38]. Pyrethroids have the same
neurotoxic properties as pyrethrins [39]; they disrupt the
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function of voltage-gated sodium channels, preventing the tran-
sition from an opened state (active) to a closed state (inactive)
after the action potential has been initiated [36,40,41]. CS (penta-
hydrated) (CAS 7758-99-8, VWR international) is used in organic
agriculture as a herbicide, fungicide, root killer, algaecide and in
some cases a molluscicide and bactericide [42], and is known to
accumulate in the environment [43]. Although copper is an
essential element for most organisms, it can lead to oxidative
stress, DNA damage, denaturation of proteins and deactivation
of enzymes when present at high concentrations [44-46]. CPF
(CAS 2921-88-2, purity greater than 99%, Sigma-Aldrich) is a
broad-spectrum organophosphorus insecticide commonly used
in conventional agriculture [47]. Organophosphorus insecticides
act as acetylcholinesterase inhibitors, which evokes neurotoxic
responses [27].

(ii) Acute toxicity assays and median effective

concentration (ECsp)

We followed the OECD 202 guideline for acute immobilization tests
in Daphnia sp. [48]. Five juveniles (less than 24 h old) were inoculated
in 100 ml vials filled with 50 ml of test solution. The individuals were
not fed during the exposure and were kept at 20+ 1°C and 16:8
light : dark photoperiod. We quantified the number of immobilized
individuals after 48 h by gently agitating the jar and checking for
movement for 15s. We scored immobilization for all 35 clones
when exposed to seven concentrations of each pesticide (DTM:
0.04-2.56 pg 17!, CS: 17.675-1131.2 ug 1! and CPF: 0.094-6 pg 17,
electronic supplementary material, table S2) plus a solvent control.
Each clone x pesticide x concentration combination was replicated
three times, with replicates originating from three out of the
four original replicate jars (individually cultured lineages) of each
clonal lineage available, and all replicate x pesticide concentra-
tion combinations were randomized through time (electronic
supplementary material, figure S1).

The chosen ranges for each pesticide were based on the
Pesticide Action Network database (see http://www.pestici-
deinfo.org/ and https://cfpub.epa.gov/ecotox/index.cfm). We
selected an initial environmentally relevant concentration,
which was then compared with ECs, values from the literature.
For CPF and DTM, we ultimately selected a published ECs,
value (48 h exposure) that was derived from a methodologically
strong study. More specifically, for CPF, Palma et al. [49] reported
an ECs) of 0.74 pg 17! for D. magna. For DTM, the concentrations
were chosen based Toumi et al. [50], reporting ECsy values of
0.32 ug 17" and 0.63 pg 17! for two different D. magna strains. In
the case of CS, the concentrations (ECsy 141.4 pg 1™ were
selected after a short pilot experiment that allowed us to correct
our previously selected concentrations based on literature (ECs
10.5-70.7 pg 1! [51]) because these had proven too low to
detect a response in our clones. The selected ECs, values for
each pesticide was accompanied by three higher and three
lower concentrations, each time obtained by either multiplying
or dividing the flanking concentrations by two (electronic
supplementary material, table S52).

(c) Statistical analyses
All analyses were performed in R v. 4.0.2 [52].

Median effective concentrations (ECsg) for CPE DTM and CS
were estimated by a four-parameter log-logistic model using the
‘drc’ package [53], resulting in four response parameters: the
slope, lower limit, upper limit and ECs of the dose-response
curve. ECs values were used in the statistical analyses.

Considering pond selection, the amount of organic agricul-
ture in the immediate surroundings of the ponds was either
very low (0%, for conventional agriculture and natural ponds)
or high (greater than 80%, for organic agricultural ponds). By
contrast, the percentage of conventional agriculture varied

more gradually, from 0% (natural ponds) to greater than 75%
(conventional agriculture), with organic farmland ponds show-
ing intermediate (49% and 50%) amounts of conventional
agriculture. Taking this small-scale heterogeneity into account
in the analysis is important, as it is possible that the populations
obtained from organic agriculture had a certain degree of
exposure to the pesticide regime of conventional agriculture.
In reverse, our populations from conventional agriculture have
never been surrounded by organic farming and were thus
likely not exposed to organic pesticides. Therefore, a categorical
approach, in which populations are categorized as organic, con-
ventional or natural, according to the surrounding local land use
type is better suited to analyse the response to pesticides in
organic farming, such as DTM and CS. To test whether popu-
lations exposed to organic farming showed different ECs,
values for certain pesticides than populations from conventional
agriculture or nature reserves, we carried out a linear mixed-
effect model with land use type as a fixed effect, and population
(nested in land use type) and clone (nested in population) as
random effects. For CPE however, it is important to consider
the land use around each pond as a gradient of increased
intensity of conventional agriculture. To test for the effect of con-
ventional agriculture on ECs, values, we constructed a linear
mixed-effect model including the percentage of conventional
agriculture at 200 m radius around each pond as a continuous
explanatory variable, with clone nested in population as a
random effect. For transparency, we report on patterns observed
in both analyses for all pesticides.

Model assumptions were checked visually by plotting residuals
versus fitted values and normal Q-Q plots, and deviations from nor-
mality were formally tested with the Shapiro-Wilk test, both in the
analyses using land use type (fixed effect) and percentage of land
use types around the ponds (continuous explanatory variable).
ECsy of the three pesticides were log-transformed to better meet
assumptions of normality. All linear mixed-effect models were
fitted using the Ime4’ [54] package, and p-values and approximate
F-test statistics were computed using the ‘car’ package [55].
We used restricted maximum-likelihood estimation method
and corrected the degrees of freedom for fixed effects using the
Kenward-Roger approximation. Pairwise comparisons were
analysed using Tukey HS post hoc testing with the package ‘mult-
comp’[56]. The significance of random effects was tested using the
package ‘ImerTest’ [57].

3. Results

Specific model parameter estimates (slope, lower limit, upper
limit, ECs) after ECs, estimation for each population group
(nature, conventional, organic) and for each pesticide (CPE
DTM and CS) are given in electronic supplementary material,
table S3, and visually presented in figure 1a,c,e).

(a) Resistance to pesticides used in organic agriculture
In the categorical analyses, ECs, for DTM (figure 14,b) differed
significantly between the land use types (Fp401=9.971,
p=0.028; electronic supplementary material, table S4). Popu-
lations located in agricultural landscapes with organic
pesticide management showed a higher average ECs, for DTM
compared to those from populations inhabiting ponds in con-
ventional agricultural sites or nature reserves, indicating a
genetic increase in DTM resistance in these populations. Post
hoc comparison revealed significant differences in response to
DTM between organic and conventional agriculture (0.877 esti-
mate difference, p <0.001), and between organic agriculture
and nature reserve (0.592 estimate difference, p =0.015). The
random effect of population did not significantly contribute to
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Figure 1. Logarithmic concentration (g - response (immobilization at 48 h) curves (a,c.e) and average ECs, values (backtransformed) = Cl. (b,d,f), as assessed
in a common garden rearing experiment using D. magna, for DTM (a,b), CS (c.d) and CPF (e,f) for each land use type (nature reserve: diamonds, conventional
agriculture: triangles, organic agriculture: circles) in which the ponds, from which the D. magna study populations were isolated, were located. Shadowed areas in
the left panels corresponds to 95% Cl. (a—d) Panels represented in colour correspond to the pesticides allowed in organic agriculture (DTM and CS), and (e,f) panels
in grey correspond to pesticide allowed in conventional agriculture (CPF). (Online version in colour.)

observed variation in resistance to DTM (d.f. =1, p = 0.293; elec- Population as random effect did not significantly contribute
tronic supplementary material, table S4), nor did clone (d.f. =1, to observed variation in CS resistance (d.f.=1, p=0.922);
p=0.179). neither did clone (d.f.=1, p=0.14).

The ECsy values for CS did not differ between the Despite the fact that the gradual analysis is less ideal for
land use types (main effect land use type, F;4147=0.9231, testing the effect of organic agriculture in our study (see

p=0.466; electronic supplementary material, table S4). Material and methods), we still observed a significant effect
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Figure 2. Pesticide resistance expressed as ECs, (median effective concentration) in response to the percentage of agricultural land use type (conventional: (a),
organic: (b,¢)) within a 200 m radius around the ponds from which study populations of D. magna were collected. Categorical classifications of populations based on
land use type are indicated in colour; nature reserves: pink, conventional agriculture: blue and organic agriculture: green. Large circles represent the mean ECs, per
clone in each population and small circles represent the ECs, values of each replicate. (a) Panel represented in colour corresponds to the pesticides used in
conventional agriculture (CPF), and (b,c) panels in grey correspond to pesticides used in organic agriculture (DTM and CS). (Online version in colour.)

of organic agriculture on the ECsy values for DTM, with an
increase in tolerance with increasing amounts of organic agricul-
ture in a perimeter of 200 m around the ponds (F; 33 737 = 24.465,
p <0.001; electronic supplementary material, table S5; figure 2b).
The random effect of clone (nested in population) was significant
(d.f. =1, p=0.015; electronic supplementary material, table S5).
By contrast, resistance to CS did not correlate with the amount
of organic agriculture in the surroundings of the pond
(F1,32944=0.291, p=0.593) (figure 2c). The random effect of
clone (nested in population) was not significant (d.f. =1, p = 0.11).

(b) Resistance to pesticides used in conventional

agriculture
The results for the linear mixed model relating ECsy of CPF to
the amount of conventional agriculture revealed a significant
increase of resistance to CPF along with a gradient of increas-
ing amounts of conventional agriculture in the vicinity of
the pond (F,33=4.38, p=0.044; electronic supplementary
material, table S5; figure 2a). For this model, the random

effect clone (nested in population) was significant (d.f.=1,
p =0.003; electronic supplementary material, table S5), indi-
cating overall among-clonal variation in CPF resistance
across populations.

For the linear mixed model using categorical land use
type (conventional, organic, nature reserve), D. magna
clones obtained from conventional agriculture farms did
not show higher ECs, for CPF compared to the individuals
obtained from organic farms and natural reserves (F;s; =
2.097, p=0.139; electronic supplementary material, table S4;
figure lef). The population did not significantly contribute
to the observed variation in CPF tolerance in this model
and was omitted from further analysis for reasons of model
simplification. There was, however, significant variation
among clones within populations (d.f. =1, p=0.02).

4. Discussion

We investigated the genetic adaptation of D. magna to pesti-
cide applications in organic and conventional agriculture.
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Using acute toxicity assays, we assessed D. magna resistance
to the pesticides DTM and CS, allowed in organic agriculture,
and CPE one of the pesticides most commonly associated
with conventional agriculture worldwide [58,59]. We found
differential genetic adaptation of D. magna populations to
both agricultural practices. Specifically, across all studied
populations, populations from ponds located in organic agri-
culture sites evolved the highest resistance to DTM. Similarly,
we observed a higher resistance to CPF in populations with
the increasing amount of conventional agriculture near the
pond. No signal of genetic adaptation was found for CS.
Our results reveal highly heterogeneous pesticide adaptation
to the specific local agricultural practice type in a non-target
freshwater species and highlight the capacity of non-target
key interactors to genetically adapt to not only conventional,
but also organic agriculture practices.

There is mounting evidence that Daphnia can adapt to
global change drivers, including climate change [60,61], urban-
ization [62], metal pollution [63] and the application of
conventional pesticides [32,64]. Pesticide use from conventional
agriculture was shown to drive genetic adaptation in several
other organism groups, including macro-invertebrates [16],
mosquitos [65] and amphibians [33,34]. Our results on the
adaptation of D. magna to CPF are in line with earlier studies
on D. magna by Coors et al. [32] and Jansen et al. [31]. However,
the increased conversion from conventional to organic agricul-
tural practices under the EU Common Agricultural Policy
raises the unanswered questions of whether and how the appli-
cation of pesticides allowed in organic agriculture similarly
shapes genetic adaptation in non-target organisms. The
selected organic farms from which our clones were isolated
have been under organic agricultural practices for 8 (popu-
lation O1) and 9 years (population O2), meaning that, within
this period, the populations residing in those ponds were able
to evolve resistance to DTM.

Although CS is a pesticide commonly used in organic agri-
culture [21], no differences were found between the resistance
of the populations from the different types of land use and
thus no genetic adaptation in populations from organic farm-
lands. When compared to reported 48 h ECs, values of CS for
D. magna (9.4-140 pg 17") [66-71], the values obtained in our
study are higher, for all three land use types (221-254 pg17™),
implying a higher resistance to CS. One important aspect to
consider is that copper shows speciation in freshwater
environments [72-74]. This can affect the bioavailability of
copper in the water column. Small variations in water chem-
istry between studies, such as pH, can affect this speciation
process, and this can lead to differences in sensitivity [75].
Another possible explanation for this is the presence of
copper in the soils across the larger region of our study area
(see European Commission report EUR 27607 EN [76]).
Although effective concentrations of copper can depend on
the soil type [77,78], there is a high abundance of different
sources of copper contamination in Flanders, including agri-
cultural manuring [78], and also, particularly in Western
Flanders, residues from First World War weaponry [79]. It is,
therefore, plausible that the Daphnia populations included in
this study have had high exposure to copper, resulting in
evolved overall higher resistance to CS across all populations.
Resurrection ecology [80-82], in which dormant D. magna rest-
ing stages from the past could be hatched and compared to
current populations for their resistance to CS, could shed
new light on this, but was beyond the scope of our study.

While organic agriculture relies on a restricted set of pes-
ticides of a more natural origin [19], our results show that
they can affect natural biota and non-target species equally
strong as those of conventional farming. Some authors
argue that, despite being derived from natural compounds,
pesticides allowed in organic agriculture can be highly
toxic [20,83,84]. Our results show that an increase of land
dominated by conventional agriculture translates into an
increased resistance to CPF in D. magna populations, whereas
being surrounded by organic agriculture translates into an
increased resistance to DTM. Our study is based on a limited
number of populations, but clearly indicates that adaptive
evolution in response to organic agriculture does occur,
similarly to observations for conventional agriculture. In
addition, it should be emphasized that one can only quantify
genetic adaptation in populations that persist, whereas
studies like ours do not show to what extent populations
and species disappeared from the same habitats because
they could not adapt, or not quickly enough. Organisms
with longer generation times and lower evolutionary poten-
tial might fail to adapt to pesticides, or adaptation may
take long time. Importantly, the adaptation to both pesticides
seems to be independent. While cross-resistance to multiple
pesticides has been observed, including in the flour beetle
Tribolium castaneum, which showed resistance to organopho-
sphorus as well as pyrethrins and pyrethroid insecticides
[85], it was not observed in the current study (results section
Cross-tolerance or trade-off in pesticide resistance, electronic
supplementary material, figure S2). Briefly, the populations
that displayed a higher CPF tolerance did not have a higher
resistance to DTM, nor vice versa. This observation that
there is no cross-tolerance for CPF and DTM and that DTM
seems to be quite toxic indicates that, in terms of pesticides,
the transition from conventional to organic agriculture
might pose additional stress to non-target organisms.

While adaptive pesticide resistance can facilitate the
short-term persistence of populations in the presence of a pes-
ticide [32], it can entail a series of trade-offs that potentially
impede long-term persistence in changing environments
[17,18]. For instance, evolved carbaryl tolerance in Daphnia
comes at a cost of a higher susceptibility to pathogens and
parasites [17]. Furthermore, energy investment in detoxifica-
tion mechanisms can imply a reduction of energy fluxes to
important life-history traits, such as reproduction [86,87]
and development time [88]. Moreover, clonal sorting and
population size reductions during strong selection may
erode the genetic diversity of the population and reduce
effective population sizes, causing a risk for inbreeding [89],
which can hinder the population’s capability to adapt to
other stressors. Cambronero et al. [90] showed that negative
impacts of historical exposure to carbamate increased when
combined with a rise of temperature. D. magna are key gra-
zers in standing waters such as lakes and ponds [26].
Reduced population growth rates and densities of popu-
lations of large-bodied zooplankton grazers such as Daphnia
might result in a decrease in the top-down control of phyto-
plankton growth [91,92] and thus increase the likelihood of
formation of noxious blooms in eutrophying systems [93].
While rapid evolution in D. magna thus can enable persist-
ence in landscapes with organic and conventional farming
practices, the impact on ecosystem stability and functioning
as a consequence of potential costs and trade-offs needs to
be further assessed.
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Our study demonstrates that D. magna populations isolated
from ponds located in agricultural areas genetically adapt
to the pesticides associated with the local agricultural man-
agement practices, more specifically conventional or organic
agriculture. This local genetic adaptation translated into an
increased resistance of D. magna from organic farms to
DTM, and a positive correlation between tolerance to CPF
and the amount of conventional agriculture near the ponds.
This highlights the highly localized and heterogeneous
impact of pesticide use from both conventional and organic
agriculture on evolutionary processes in non-target species,
which should be considered in our efforts to reduce the
environmental footprint of agriculture.

Data are available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.pvmcvdnmh [94].
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