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Abstract 

The connection between organ mechanical properties and disease has been widely 

recognized. Accurately measuring the mechanical properties of tissues contributes to 

the diagnosis and research of diseases. Indentation nanotechnology is often used to 

measure the stiffness of tough biomaterials. But it is still unknown about its reliability in 

analyzing soft biomaterials. In addition, it is not clear whether some lipids are able to 

become potential targets for regulating organ physiology and pathophysiology. In order 

to investigate the reliability of nanoindentation technology in soft biomaterials, we used 

a displacement-controlled nanoindenter to double measure the stiffness of several liver, 

kidney, uterus and spleen samples reaped from C57BL/6N mice, and compared the 

variations between test and retest via intraclass correlation coefficients (ICCs), within-

subject coefficients of variation (COVs) and Bland-Altman plots. According to the 

analysis results, we found that among the three stiffness calculation models of Hertzian, 

JKR, and Oliver & Pharr, the results calculated only in the Hertzian model can 

consistently provide reliability (ICC>0.8, COV<15%). In addition, for the purpose to 

explore the lipids that may cause fibrosis of human organs, the expression level of 

certain lipids in both red blood cell (RBC) and plasma between some healthy people 

and chronic kidney disease (CKD) patients was compared. Furthermore, we also 

explored whether dialysis has an effect on the lipid levels in RBC and plasma of CKD 

patients. After testing all lipids by LC–MS/MS spectrometry, we found that the 

expression of some lipids in the blood of healthy people and CKD patients was different, 

and dialysis treatment was also able to cause alterations in several blood lipid levels of 

CKD patients. In conclusion, it revealed that the nanoindentation technique we used to 

measure the hardness of the liver, kidney, uterus and spleen is feasible and the Hertzian 

model provides the most reliable way to measure the stiffness of organs in vitro. Besides, 

these lipid metabolites could be potential targets for organ fibrosis formation due to their 

ability in impacting different hemodynamic and metabolic in various physiological or 

morbid conditions. Our studies are able to provide theoretical foundation and technical 

support for future research on organ fibrotic diseases. 
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Zusammenfassung 

Der Zusammenhang zwischen den mechanischen Eigenschaften von Organen und 

Krankheiten ist weithin bekannt. Die genaue Messung der mechanischen 

Eigenschaften von Geweben trägt zur Diagnose und Erforschung von Krankheiten bei. 

Indentation Nanotechnologie wird häufig verwendet, um die Steifigkeit von zähen 

Biomaterialien zu messen. Über seine Zuverlässigkeit bei der Analyse weicher 

Biomaterialien ist jedoch noch nichts bekannt. Darüber hinaus ist nicht klar, ob einige 

Lipide potenzielle Ziele für die Regulierung der Organphysiologie und Pathophysiologie 

werden können. Um die Zuverlässigkeit der Nanoindentation-Technologie in weichen 

Biomaterialien zu untersuchen, haben wir einen verdrängungskontrollierten 

Nanoindenter verwendet, um die Steifigkeit mehrerer Leber-, Nieren-, Uterus- und 

Milzproben, die von C57BL/6N-Mäusen gewonnen wurden, doppelt zu messen und die 

Variationen zwischen Test und Retest verglichen über Intraklassen-

Korrelationskoeffizienten (ICCs), Innersubjekt-Variationskoeffizienten (COVs) und 

Bland-Altman-Plots. Den Analyseergebnissen zufolge haben wir festgestellt, dass von 

den drei Steifigkeitsberechnungsmodellen von Hertzian, JKR und Oliver & Pharr die nur 

im Hertzschen Modell berechneten Ergebnisse konsistent eine Zuverlässigkeit bieten 

(ICC>0,8, COV<15%). Um die Lipide zu erforschen, die eine Fibrose menschlicher 

Organe verursachen können, wurde außerdem der Expressionsspiegel bestimmter 

Lipide sowohl in den roten Blutkörperchen (RBC) als auch im Plasma zwischen einigen 

gesunden Menschen und Patienten mit chronischer Nierenerkrankung (CKD) 

verglichen. Darüber hinaus untersuchten wir auch, ob die Dialyse einen Einfluss auf die 

Lipidspiegel in Erythrozyten und Plasma von CKD-Patienten hat. Nachdem wir alle 

Lipide durch LC-MS/MS-Spektrometrie getestet hatten, stellten wir fest, dass die 

Expression einiger Lipide im Blut von gesunden Menschen und von CNE-Patienten 

unterschiedlich war und die Dialysebehandlung auch in der Lage war, verschiedene 

Blutfettwerte von CNE-Patienten zu verändern. Zusammenfassend zeigte sich, dass 

die von uns verwendete Nanoindentation-Technik zur Messung der Härte von Leber, 

Niere, Gebärmutter und Milz machbar ist und das Hertzsche Modell die zuverlässigste 

Methode zur Messung der Steifigkeit von Organen in vitro bietet. Außerdem könnten 

diese Lipidmetaboliten potenzielle Ziele für die Bildung von Organfibrose sein, da sie 

verschiedene hämodynamische und metabolische Faktoren unter verschiedenen 

physiologischen oder morbiden Bedingungen beeinflussen können. Unsere Studien 
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sind in der Lage, die zukünftige Forschung zu organfibrotischen Erkrankungen 

theoretisch fundiert und technisch zu unterstützen. 
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1. Introduction 

Changes in the stiffness of tissues or cells influences the physiological function or 

structure of certain organs in the body. Similarly, diseases are also able to alter organs 

stiffness and thus affect the progression of the illness. For example, heart and arteries of 

patients with cardiovascular diseases present varying degrees of hardening [1-2]. The 

connection between aortic stiffness and cardiac dysfunction in patients with inflammatory 

bowel disease has been confirmed [3]. The therapeutic strategy and effect to hepatitis 

virus have a significant impact on the patients liver stiffness [4-5]. The arterial stiffness of 

patients with different degrees of chronic kidney disease showed parallel changes [6]. 

The hardness of the central arteries are significantly affected by type 2 diabetes [7].  

Multiple technologies have been applied in clinical diagnosis to detect changes in 

patients organs stiffness, examples include ultrasound, instantaneous elastography, 

magnetic resonance elastography, acoustic radiation force pulse elastography and point 

shear wave elastography [8-15]. In addition to vivo measurements, varieties of  

techniques have been utilized for characterizing the stiffness of some biomaterials ex vivo. 

Mark R. Buckley et al. utilized a technique that combines force measurement, shear 

testing and confocal imaging to study articular cartilage shear properties [16]. Damien 

Cuvelier et al. studied some biomechanical characteristics of tethers via a combined 

device of micropipette manipulation and optical tweezers [17]. AFM was applied by 

Kozaburo Hayashi and Mayumi Iwata in measuring the stiffness of cancer cells [18]. 

Yuhui Li et al. presented a magnetic mechanical testing system in viscoelastic tensile 

testing for micrometer-scale biological materials [19]. D.B. MacManus et al. developed a 

custom-made micro-indentation device to study brain tissue local mechanical properties 

[20]. Badar Rashid et al. used a high-rate tension device to obtain brain tissue dynamic 

properties in extension at different strain rates [21].  

Piuma nanoindenter is an advanced technology to be used in testing the elastic 

properties of biomaterials. This facility has been applied to measure the mechanical 

properties of hard organs like bones and cartilage [22-25]. However, since only very few 

studies [26-30] reported the utilization of nanoindentation technology in the elasticity 

measurement of soft biomaterials, the strategy for analyzing the stiffness of organs ex 

vivo by this technology is still unclear. In our study, we took mouse kidney, liver, spleen 

and uterus to analyze the feasibility of nanoindentation technology in soft biomaterials. 
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Prostaglandins (PGS) and other eicosanes, such as leukotrienes (LTs), 

thromboalkanes (TXs), hydro(peroxy) fatty acids (or oxylipins) and epoxides, are lipid 

peroxidation products of 20-carbon (eicosa-) polyunsaturated fatty acids (PUFA). They 

are produced by three independent enzyme families, cytochrome P450 (CYP) 

expoygenases, cyclooxygenase (COX) and lipoxygenase (LOX), which catalyse lipid 

peroxidation in regio-specific products and a highly regulated manner generating stereo 

(Figure 1). Their expression is highly localized to tissues and varies in response to 

inflammatory activation that affects the fibrosis of the target organs. According to the cell 

type, the main products of COX, LOX and CYP are metabolized into secondary 

eicosanoids and their metabolites, some of which have strong biological activity (Figure 

1). The main metabolic pathways of PUFA epoxides are the incorporation of their 

phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide 

hydrolase (sEH) [31]. 

Oxipides play an important role in our bodies, but sometimes they can have harmful 

effects [32-34]. Therefore, it has clinical significance in practical practice because of the 

biological activity of these products. For example, dihydroxy eicosatrienoic acid (DHETs) 

and epoxyeicosatrienoic acids (EETs) are considered candidates for vascular dilatation 

endothelial-derived hyperpolarization factors (EDHFs) [35], whose release is activated by 

shear stress and Ca2+- via the CYP pathway [36-37]. While epoxyoctadecenoic acids 

(EpOMEs) and their diols decrease the functional recovery of cardiac post-ischemic [38], 

5-HETE stimulates neutrophil chemotaxis and degranulation [39-41] and inhibits 

endothelial prostaglandin I2 (PGI2) production with consecutive effects on platelet 

aggregation and vasotonus [42]. PGs is believed to be an essential ingredient in healing 

wounds, tissues and fibrosis [43-44]. Researches on the relationship between other lipids 

and organ fibrosis are limited. In our study, we tested all epoxides derived from 

cytochromes P450 monooxygenase and lipoxygenase (LOX)/CYP ω/(ω-1)-hydroxylase 

pathways in chronic kidney disease and hemodialysis treatment patients to see whether 

they could be taken as potential drug targets to regulate organ physiology and 

pathophysiology, in particular organ fibrosis. 
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Figure 1: 12- and 15-lipoxygenase (LOX) / CYP (omega-1)-hydroxylase and 

cytochrome P450 epoxygenase (CYP) pathways. Arachidonic (AA), linoleic (LA), 

docosahexaenoic acids (DHA) and eicosapentaenoic (EPA) are converted by CYP 

epoxygenase to epoxyeicosatrienoic acid (EETs), epoxyoctadecenoic acids (EpOMEs, 

e.g. 12,13-EpOME), epoxydocosapentaenoic acids (EDPs) and epoxyeicosatetraenoic 

acids (EEQs). EETs, EEQs, EDPs and EpOMEs can be converted to 

dihydroxyeicosatrienoic acids (DHETs, e.g. 5,6-DHET), dihydroxyctadecenoic acids 

(DiHOMEs), dihydroxydocosapentaenoic acids (DiHDPAs) and 

dihydroxyeicosatetraenoic acids (DiHETEs, e.g. 5,6-DiHETE, 17,18-DiHETE) by soluble 

epoxide hydrolase (sEH). EPA, LA, DHA, and AA are converted to 

hydroxyoctadecadienoic acids (HODEs), hydroperoxylinoleic acids (HpODEs), lipoxin A 

(LXA), leukotriene B (LTB), hydroxydocosahexaenoic acids (HDHAs), 

hydroxyeicosatetraenoic acids (HETEs) and hydroperoxyeicosatetraenoic acids 

(HPETEs) by LOX, CYP omega/(omega-1)- peroxidase and hydroxylase pathways. The 

changes of EPA, LA, DHA, and AA are tracked by the metabolites measured in these 

pathways. (This figure was cited from [45]). 
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2. Methodology 

2.1  Animals and Matrigen hydrogels:  

The strain of mice included in this study is C57BL/6N. For kidney and spleen, 2 mice 

of each sex and age (5 week-, 10 week-, 20 week- and 30 week-old) were used. For liver, 

five 5 week-old (3 males, 2 females), five 5 week-old (2 males, 3 females), six 20 week-

old (2 males, 4 females) and four 30 week-old (2 males, 2 females) mice were used. In 

terms of the uterus, eight mice were used in the experiment, all of which were about 100 

days old. The experiment was authorized by the animal welfare officers at the Max 

Delbrück Center for Molecular Medicine (MDC) (No. X 9011/19) and the local animal care 

committee (LAGeSo, Berlin, Germany). 

Ten hydrogels (Softwell, Matrigen, Matrigen Life Technologies, Brea, CA) in different 

stiffness (1x1 kPa, 1x2 kPa, 2x4 kPa, 1x8 kPa, 3x12 kPa and 2x25 kPa) were taken as 

quality control. 

2.2  Tissues preparation: 

Front and back profiles of both left and right kidneys were dissected and measured. 

Left lobe of liver, intact spleen and opened left uterine horn were harvested for indentation. 

It is critical to clean all the impurities around tissues without damaging their essence. 

Shellac (Sigma) was used for immobilization of all biomaterials. PBS (NaCl 0.137 M, KCl 

0.0027 M, Na2HPO4 0.01 M, KH2PO4 0.0018 M; pH 7.4) was the medium for all samples 

in the experiment. 

2.3  Nanoindentation and stiffness determination: 

For the measurement of stiffness, we used the nanoindenter instrument (Piuma; 

Optics11, Amsterdam, The Netherlands) contained a ferrule-top cantilever probe [46-47] 

(Figure 2A) with 50 µm radius and 0.5 N/m cantilever stiffness. The probe should focus 

on a flat and wide area on tissue surface (Figure 2B) after calibration. Each gel was 

indented 25 times (5x5 matrix) in an 800x800 μm grid scan with 200 µm distance between 

measurements. Kidney, liver and spleen samples were indented with 9 indentations (3x3 

matrix) in a 200x200 μm grid scan. In uterus, three indentation matrixes with 4 single 

indentations in 100x100 μm grid were tested in proximal, middle and distal parts of uterus, 

respectively. The applied indentation scheme consists of a 4-second loading phase at an 
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indentation depth of 8000 nm, holding for 1 second, and then a 4-second unloading phase. 

All scans were performed twice for reliability analysis. 

The mean value of the scan results from four renal sections of each mouse was 

presented as the elasticity of kidney. The average value of all results in each scan was 

taken as the stiffness for gel, liver and spleen. Uterine hardness was expressed by the 

mean results from three scans. All indentation values were processed and exported by 

Piuma Dataviewer version 2.2 (Piuma; Optics11, Amsterdam, The Netherlands). 

2.4  Volunteers and patients: 

The dialysis study had 15 healthy volunteers (6 men and 9 women) and 15 patients 

with CKD (7 men and 8 women) receiving routine hemodialysis signed an informed 

consent form outlining the treatment to be taken and the possible risks involved. None of 

the healthy control subjects received medication. The healthy subjects were 50+18 years 

old and the hemodialysis (HD) patients were 47+12 years old. BMI was 24.8+3.4 kg/m2 

and 24.7+4.6 kg/m2, respectively. The use of humans in this study was approved by the 

Charité University Medicine institutional review board. 

2.5  Human blood samples treatment: 

For healthy subjects and patients with CKD in the dialysis treatment study, venous 

blood from each healthy subject was collected by subcutaneous arm venipuncture in 

sitting status. Blood samples from the fistula arm were collected from dialysis patients 

before the beginning of dialysis (pre-HD) and at the end of dialysis (5-15min before the 

end of dialysis, post-HD). Patients received dialysis 3 times a week, lasting 3 hours 45 

minutes to 5 hours, based on a high-throughput AK200 dialyzer (Gambro GmbH, 

Hechingen, Germany). All samples were analyzed for plasma oxylipins and RBC lipids. 

All lipidomics was performed using liquid chromatography tandem mass (LC–MS/MS) 

spectrometry. 

2.6  Statistical analysis: 

The reliability analysis of the test-retest depends on the results of Bland-Altman plot 

[48-49], Within-subject coefficient of variations (COVs) and Intraclass correlation 

coefficients (ICCs). In general, the difference value of test-retest results in Bland-Altman 

plot is between 95% limits of agreement, and/or ICC is greater than 0.8, and/or COV is 

less than 15%, which indicates that there is good reliability between test and retest. 
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The values of CKDs were compared with those of the control group by the Mann-

Whitney test or the t-test. The paired t-test or paired Wilcoxon test was used to compare 

pre-HD and post-HD values. To determine the statistical differences between the four 

epoxide metabolites present in the cycle after hydrolysis, the Friedman’s test was used, 

followed by the Dunn’s multiple comparison test. 0.05 was selected as level significance 

(P). All data were expressed as Mean + SD. 

All analyses were performed using MedCalc 19.3 software (Belgium), SPSS 19.0 

(Chicago, USA) or GraphPad Prism 7.0 (San Diego, USA). 

 

For a complete description of the methods see: 

G. Wu, M. Gotthardt, and M. Gollasch, Assessment of nanoindentation in stiffness 

measurement of soft biomaterials: kidney, liver, spleen and uterus. Sci Rep, 2020. 10(1): 

p. 18784. 

B. Gollasch, G. Wu, I. Dogan, M. Rothe, M. Gollasch, and F. C. Luft, Effects of 

hemodialysis on plasma oxylipins. Physiol Rep, 2020. 8(12): p. e14447. 

B. Gollasch, G. Wu, T. Liu, I. Dogan, M. Rothe, M. Gollasch, and F. C. Luft, Hemodialysis 

and erythrocyte epoxy fatty acids. Physiol Rep, 2020. 8(20): p. e14601. 
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3. Results 

3.1  Stiffness determination in different models: 

All results were calculated in three different models, which are Oliver & Pharr, JKR 

and Hertzian models.  

The effective Young’s modulus (Eff) calculation in Hertzian model [50-51] (Figure 

2C, D, F) follows equation: 

 𝐸𝑓𝑓=
𝑃∗3/4

√𝑅∙ℎ𝑡
3 2⁄  

In JKR model [52] (Figure 2C, D, G), equations used for the calculation of Eff are: 

ℎ𝑡 − ℎ0 =
𝑎0
2

𝑅

(

 
1 + √1 −

𝑃
𝑃𝑎𝑑ℎ

2

)

 

4
3

−
2

3

𝑎0
2

𝑅

(

 
1 + √1 −

𝑃
𝑃𝑎𝑑ℎ

2

)

 

1
3

 

𝑃𝑎𝑑ℎ = −
3

2
𝜋∆𝑟𝑅 

𝐸𝑓𝑓 =
9𝜋𝑅2∆𝑟

2𝑎0
3  

When no sticky is displayed in the unload section, there would be no result from this 

model as no fit is applicable (Figure 2E). 

Eff in Oliver & Pharr model [53-54] (Figure 2C, D, H) was processed by using the 

following formula: 

𝐸𝑓𝑓 =
𝑑𝑃

𝑑ℎ

1

2√𝑅(ℎ𝑡 + ℎ𝑟)
 

The JKR model, the Hertzian model, and the Oliver & Pharr model were fitted at 

100%, 100%, and 65-85%, respectively. 

In addition to Eff, Young’s modulus (E) also enable present stiffness. Poisson’s ratio 

[55] 𝜈 relates Eff and E by the following equation: 

𝐸𝑓𝑓 =
𝐸

1 − 𝑣2
 

Due to the unknown of tissues’ material property and the Poisson’s ratios, we 

determined both Eff and E for each biomaterial. We took the default value (0.5) in Piuma 

software for Poisson’s ratio. 
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Figure 2: Effective Young’s modulus calculational principle. (A) Components of probe 

and localization between the probe and tissue. (B) Focuse of the nanoindenter probe. (C) 

Schematic diagram from loading to unloading indentation. (D) Schematic diagram of load-

indentation. (E) Non-adhesion indentation. (F) Indentation in Hertzian model (100% fit). 

(G) Indentation in JKR model (100% fit). (H) Indentation in Oliver & Pharr model (65-85% 

fit). (This figure was cited from [56]). 

3.2  Stiffness reliability of Matrigen hydrogels and organs: 

As shown in the Bland-Altman diagram of the hydrogel (Figure 3), it revealed that 

almost all of the retest differences were within the 95% concordant range (-1.96 SD to 

1.96 SD).In addition, ICC values of all models were greater than 0.8 and COV values 

were less than 15% (Table 1), indicating that the three models all provided reliable results 

for gel samples. 
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Figure 3. Bland-Altman plot of Matrigen hydogels. (A) Bland-Altman plot of Eff in Hertzian 

model. (B) Bland-Altman plot of Eff in JKR model. (C) Bland-Altman plot of Eff in Oliver & 

Pharr model. (D) Bland-Altman plot of E in Hertzian model. (E) Bland-Altman plot of E in 

JKR model. (F) Bland-Altman plot of E in Oliver & Pharr model. (This figure was cited 

from [56]). 

 

Table 1. Reliability of test-retest in Matrigen gels 

 ICC, 95% CI COV (%) 

Eff in Hertzian 0.9986 (0.9948,0.9997) 5.0666 

Eff in JKR 0.9978 (0.9900,0.9996) 5.8171 

Eff in Oliver & Pharr 0.9964 (0.9865, 0.9991) 8.3703 

E in Hertzian 0.9986 (0.9948,0.9997) 5.0665 

E in JKR 0.9978 (0.9900,0.9996) 5.8171 

E in Oliver & Pharr 0.9964 (0.9865,0.9991) 8.3787 

Note: Values in bold indicate that they are in the good reliability range. 

(This table was cited from [56]). 
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In the kidney, only Hertzian model has ICC value greater than 0.8 and COV less than 

15%, while other models do not show the character (Table 2). 

Table 2. Reliability of test-retest in kidney 

 ICC, 95% CI COV (%) 

Eff in Hertzian 0.9686 (0.9124,0.9889) 5.0723 

Eff in JKR 0.5951 (-0.1287,0.8572) 18.2387 

Eff in Oliver & Pharr 0.5929 (-0.1347,0.8565) 16.6833 

E in Hertzian 0.9693 (0.9143,0.9892) 5.0194 

E in JKR 0.6699 (0.07971,0.8836) 16.0643 

E in Oliver & Pharr 0.6422 (0.002628,0.8738) 16.2013 

Note: Values in bold indicate that they are in the good reliability range. 

(This table was cited from [56]). 

 

In the liver, only the Hertzian model has ICCs of E and Eff that consistently exceeds 

0.8, while the Oliver & Pharr and JKR models do not. The COVs of Hertzian and Oliver & 

Pharr models were less than 15%, while the COVs of JKR model were not (Table 3).  

Table 3. Reliability of test-retest in liver 

 ICC, 95% CI COV (%) 

Eff in Hertzian 0.9303 (0.8269,0.9722) 5.0091 

Eff in JKR 0.6240 (0.06673,0.8501) 19.1874 

Eff in Oliver & Pharr 0.7507 (0.3811,0.9006) 12.0356 

E in Hertzian 0.9251 (0.8142,0.9702) 5.1724 

E in JKR 0.6078 (0.02648,0.8437) 20.5038 

E in Oliver & Pharr 0.8048 (0.5155,0.9222) 10.0323 

Note: Values in bold indicate that they are in the good reliability range. 

(This table was cited from [56]). 
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In the spleen, ICCs of Eff and E were consistently greater than 0.8 in Hertzian and 

JKR models, but not in Olivier & Pharr model. The COVs of E and Eff in Hertzian model 

were less than 15%, but not in other models(Table 4). 

Table 4. Reliability of test-retest in spleen 

 ICC, 95% CI COV (%) 

Eff in Hertzian 0.9924 (0.9787,0.9973) 3.1172 

Eff in JKR 0.8675 (0.6307,0.9533) 15.0115 

Eff in Oliver & Pharr 0.3334 (-0.8583,0.7649) 20.3557 

E in Hertzian 0.9931 (0.9807,0.9976) 2.9890 

E in JKR 0.5113 (-0.3622,0.8277) 27.1063 

E in Oliver & Pharr -0.3404 (-2.7364,0.5274) 42.3569 

Note: Values in bold indicate that they are in the good reliability range. 

(This table was cited from [56]). 

 

In the uterus, the Oliver & Pharr and Hertzian models had ICC values greater than 

0.8, while the JKR model had ICC values less than 0.8. In contrast, only the Hertzian 

model had COVs less than 15%, while the other models did not(Table 5). 

Table 5. Reliability of test-retest in uterus 

 ICC, 95% CI COV (%) 

Eff in Hertzian 0.9861 (0.9371,0.9972) 11.6893 

Eff in JKR 0.7926 (0.0607,0.9577) 64.4623 

Eff in Oliver & Pharr 0.8295 (0.2278,0.9652) 34.7149 

E in Hertzian 0.9780 (0.9002,0.9955) 14.1841 

E in JKR 0.7512 (-0.1267,0.9492) 71.0078 

E in Oliver & Pharr 0.8778 (0.4465,0.9751) 31.8501 

Note: Values in bold indicate that they are in the good reliability range. 
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(This table was cited from [56]). 

 

Similar to the Matrigen hydrogels, Bland-Altman diagrams of the kidney, liver, spleen, 

and uterus showed only a few difference for Eff and E out of the 95% concordant limit in 

all models.  

3.3  Lipids in CKD: 

In plasma, we detected increased 9,10-EpOME, 12,13-EpOME, 8,9-EET, 5,6-EET, 

14,15-EET, 11,12-EET, 11,12-EEQ, 5,6-EEQ, 17,18-EEQ, 14,15-EEQ, 14,15-DiHETE, 

10,11-EDP, 7,8-EDP, 19,20-EDP, 16,17-EDP, 5,6-DHET, 19-HEPE, 5-HEPE and 12-

HEPE total levels and 13,14-EDP, 9-HEPE, 8-HEPE, 18-HEPE, 12-HEPE, 16-HDHA, 10-

HDHA, 20-HDHA and 17-HDHA free levels in our end-stage renal disease (ESRD) 

patients, compared to the healthy subjects. Moreover, 9,10-DiHOME, 13-HODE, 11,12-

DHET, 8,9-DHET, 8-HETE, 14,15-DHET, 11-HETE, 9-HETE, 15-HETE, 12-HETE, 19-

HETE, 16-HETE, 8-HEPE, 20-HETE, 15-HEPE, 9-HEPE, 4-HDHA, 18-HEPE, 8-HDHA, 

7-HDHA, 11-HDHA, 10-HDHA, 14-HDHA, 13-HDHA, 20-HDHA, 16-HDHA and 17-HDHA  

total levels and 9,10-DiHOME, 5,6-EET, 11,12-EET, 11,12-DiHETE, 17,18-DiHETE, 

14,15-DiHETE, 11-HETE, 9-HETE, 15-HETE, 12-HETE, 15-HEPE, 14-HDHA and 13-

HDHA free levels were decreased in our ESRD patients, compared to healthy volunteers. 

In addition, all total level individual metabolite diol/epoxide ratios in CKD patients were 

lower than controls. And total level EpOMEs and EDPs are better metabolized into their 

diols than EETs and EEQs in CKD patients (DiHOMEs/EpOMEs = DiHDPA/EDPs > 

DHETs/EETs = DiHETEs/EEQs). 

In RBCs, CKD patients showed increased total levels of various epoxides, namely 

14,15-DHET, 8,9-DHET, 11,12-EEQ, 5,6-EEQ, 17,18-EEQ, 14,15-EEQ, 13,14-DiHDPA, 

7,8-DiHDPA, 5-HETE, 16,17-DiHDPA, 9-HETE, 8-HETE, 12-HETE, 11-HETE, 19-HETE 

and 15-HETE, and free levels of several lipids, namely 13-HODE, 8-HETE, 5-HETE, 11-

HETE, 9-HETE, 15-HETE, 12-HETE, 5-HEPE, 16-HETE, 9-HEPE, 8-HEPE, 15-HEPE, 

12-HEPE, 4-HDHA, 18-HEPE, 8-HDHA, 7-HDHA, 11-HDHA, 10-HDHA, 14-HDHA, 13-

HDHA, 17-HDHA, 16-HDHA, 22-HDHA and 21-HDHA. We also found that various 

oxylipins total levels (19,20-EDP, 10,11-DiHDPA) and free levels (such as 5,6-EEQ, 8,9-

EET and 14,15-EET) were decreased in the CKD patients. Regarding hydrolysis 

efficiency of these lipids, ESRD patients showed increased ratios for DHETs/EETs and 

DiHDPAs/EDPs in total level. In fact, compared to total level EETs and EEQs, EpOMEs 
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and EDPs are preferentially metabolized into their diols in controls (DiHOMEs/EpOMEs 

= DiHDPA/EDPs > DHETs/EETs = DiHETEs/EEQs). 

3.4  Lipids in hemodialysis: 

In plasma, hemodialysis treatment increases the majority of epoxy-metabolites in 

total level, including 13-HODE, 12,13-EpOME, 9,10-EpOME, 12,13-DiHOME, 9,10-

DiHOME, 14,15-EET, 5,6-EET, 11,12-DHET, 8,9-DHET, 11,12-EEQ, 8,9-EEQ, 17,18-

EEQ, 14,15-EEQ, 17,18-DiHETE, 14,15-DiHETE, 10,11-EDP, 7,8-EDP, 16,17-EDP, 

13,14-EDP, 7,8-DiHDPA, 19,20-EDP, 13,14-DiHDPA, 10,11-DiHDPA, 19,20-DiHDPA, 

16,17-DiHDPA, 20-HETE, 15-HEPE, 5-HEPE, 18-HEPE, 11-HDHA and 7-HDHA, and 

several free level lipids including 9,10-DiHOME, 11,12-EET, 16,17-EDP and 19,20-

DiHDPA. Moreover, hemodialysis only decreased 19-HEPE in total level and 12-HpETE 

in free level. Nevertheless, ratios of diols/epoxides were not influenced by hemodialysis. 

In RBCs, hemodialysis treatment increased several CYP epoxides and LOX/CYP 

ω/(ω-1)-hydroxylase metabolites in free state, such as 13-HODE, 11,12-DHET, 8-HETE, 

5-HETE, 11-HETE, 9-HETE, 5-HEPE, 15-HETE, 10-HDHA, 8-HDHA, 17-HDHA, 13-

HDHA and 16-HDHA. However, the diols/epoxides ratios were not altered due to dialysis. 

 

For a complete description of the results see: 

G. Wu, M. Gotthardt, and M. Gollasch, Assessment of nanoindentation in stiffness 

measurement of soft biomaterials: kidney, liver, spleen and uterus. Sci Rep, 2020. 10(1): 

p. 18784. 

B. Gollasch, G. Wu, I. Dogan, M. Rothe, M. Gollasch, and F. C. Luft, Effects of 

hemodialysis on plasma oxylipins. Physiol Rep, 2020. 8(12): p. e14447. 

B. Gollasch, G. Wu, T. Liu, I. Dogan, M. Rothe, M. Gollasch, and F. C. Luft, Hemodialysis 

and erythrocyte epoxy fatty acids. Physiol Rep, 2020. 8(20): p. e14601. 
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4. Discussion 

4.1  Hard and soft biomaterials: 

Piuma nanoindentation technology has been reported to measure the hardness of 

tough organs in animals (such as ear [25], bone [24], septum [25], ala nasi [25], articular 

cartilage [23] and knee joint [22]) and human tissues (like fibrotic intestinal tissue [29], 

donor cornea [26], particularly calcified aneurysmal abdominal aortas [28], pancreatic 

acellular scaffolds [30] and soft plates [27]). The feasibility and reliability of this technology 

in measuring the hardness of soft biomaterials ex vivo has not been confirmed. Compared 

with hard biomaterials, the viscoelasticity and structural complexity of soft biomaterials 

are more likely to cause deviations in the results of nanoindentation. Our research is the 

first to use this technique to test the stiffness of vitro soft biological organs in mice, which 

are often used to simulate human and animal diseases. 

Our Bland-Altman plots, ICCs and COVs proved that the stiffness test results of 

hydrogels have perfect reliability, indicating that the gel can be used as a reference for 

the quality control of the hardness measurement results. Therefore, through the reliability 

analysis of other soft tissues, we concluded that nanoindentation technology can work 

well on these soft biological materials. All in all, we have indeed overcome the possible 

technical limitations of nanoindentation technology to measure the stiffness of soft organs 

by selecting the appropriate measurement model and using appropriate methods to 

prepare samples. 

4.2  Reliability in different models and specimens: 

Since the results in Bland-Altman plots are qualified, the reliability of the results from 

kidney, liver, spleen and uterine stiffness in different models can only be verified by 

comparing COVs and ICCs. Among these four organs, the data of Hertzian model are 

consistent with the quantitative standards of ICCs and COVs, indicating the results are 

reliable. Results from JKR or Oliver & Pharr models do not always meet high quality 

criteria. The reason for the observed differences may depend on the differences in 

viscosity of the sample in the unloaded state. For example, in the JKR model, even on 

the same sample, there are some points sticking, while some single indentations are not 

adhered, as shown in Figure 2E, which could increase the difference between the test 

and the retest. Therefore, our results uncover that the Hertzian model can best calculate 

the stiffness of the four organs. Remarkably, other researchers chose this model in their 
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measurements [26-28], while other related studies did not report which model they used 

[29-30].  

Additionally, comparing the uterus results with the other three organs’, it reveals that 

even in the Hertzian model, the COV values of the uterus are 11.6893% in Eff and 

14.1844% in E. These values are very close to the threshold and much higher than the 

COVs of the other three organs in the Hertzian model, indicating that the variability 

between repeated measurements of the uterus is higher than that of the spleen, liver and 

kidney. The most likely reason for these results is that the uterus is thinner and smaller 

than the other three organs. During the experiment, we noticed that the edges of the 

uterus were easily rolled up due to its small and size, which is expected to affect the 

measurement results. Therefore, it is possible that this method is more reliable in 

measuring the hardness of thick and large soft organs ex vivo. 

4.3  Limitations of nanoindentation: 

In addition to the system operation and measurement strategy, the successful 

application of nanoindentation also highly depends on factors such as shape, preparation 

and fixation of tissue. Since the device can only recognize flat and stable surface, it is 

unable to test irregular tissues. For example, for tissue with marginal barriers, this 

technology is impossible to test its sunk surface. The lumpy surface affects not only the 

accuracy of the measurement results, but also damages the cantilever of the probe due 

to jamming. Furthermore, the calculation of hardness is also affected by the condition of 

the sample. For instance, if the surface to be measured is inclined, the contact area would 

not be fully pressed by the tip of the probe, which means that the lost depth and force 

may cause stiffness measurement errors. Globose organs are also unable to be tested 

because they cannot be stabilized during the measurement. In short, it is critical that the 

tested tissue needs to be prepared into an appropriate shape and size. 

When the tissue is manually transformed into a testable material, it is unknown 

whether its elasticity maintains the same characteristics as the original organ, and 

whether a part of the organ's elasticity can represent its overall elasticity. Therefore, in 

some cases, in vivo testing may be better or even the only option to discover the 

mechanical properties of organs. However, in vivo testing may be interfered and affected 

by other factors during the measurement process, so it may be an advantage that 

nanoindenter could directly contact with the target material in measurement. 
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4.4  Lipids in regulating organ physiology and pathophysiology: 

The release of EETs and their diols (DHETs) may affect blood pressure and vascular 

tone, reduce inflammation and produce pro-fibrinolysis [57-59]. Several recent studies 

reported EETs activate smooth muscle BKCa channels [60] and produce vasodilation [61]. 

It has been speculated that elevated levels of EETs in the body's blood and tissues may 

also have harmful cardiovascular side effects, such as an increased risk of ischemic 

stroke [62] and in humans, the recurrence rate of atrial fibrillation after catheter ablation 

was higher [63], and survival was reduced in mice after cardiac arrest and 

cardiopulmonary resuscitation [64]. Experimental evidence suggests that inhibition of 

sEH alters EETs levels, which can prevent the development of atherosclerosis, 

hypertension, fatty liver, heart failure and organ fibrosis [65]. 

Both EEQs and EDPs are potent vasodilators [66-69]. EDPs have antiangiogenic 

[70], anti-fibrotic [71] and protective effect on functional recovery after ischemia, at least 

by maintaining mitochondrial function and reducing inflammation [72-73].Their diols 

(DiHDPAs)  may also be bioactive and may play a beneficial role in arrhythmias [74]. 

DiHDPAs dilate coronary microvessels with similar potency to EEQ isomers in canine and 

porcine models [75] and their inhibition on human platelet aggregation has a low efficacy 

on EDPs and EEQs [76]. HETEs are involved in many chronic diseases such as 

cardiovascular disease, inflammation, obesity, cancer and kidney disease [32]. There 

was a demonstration that a novel omega-3 fatty acid metabolite 19,20-EDP contributes 

to prevent unilateral ureteral obstruction induced renal fibrosis in mice [71]. 

Recent findings suggest that EpOMEs exhibit cardio-depressant [77-79] and 

vasoactive properties [80]. New data also suggest that their diols (DiHOMEs) cause 

detrimental effects on post-ischemic cardiac function [81-82]. Besides, it has been proved 

that several DiHOMEs could be potential biomarkers for liver cirrhosis prediction [83]. 

4.5  Future perspectives: 

At present, there is no standardized procedure for nanoindentation of biomaterials. 

Thus, we are not sure whether it will become an indispensable tool in the biomechanical 

research of soft organs and tissues. However, with the deepening of research and 

development of this technology, we hope that it will have a great opportunity to be applied 

in multiple research fields, such as physiology and pathophysiology of soft organs. 

Based on our research and other studies, we can clarify that numerous lipids have 

significant effects on the physiology and pathophysiology of certain organs. More of their 
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mechanism of action will be uncovered so that we can use these lipids as regulatory 

targets for certain diseases to make corresponding animal disease models. And with the 

support of nanoindenter, the changes in the mechanical properties of specific organs in 

these disease models would also be well explored. 
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