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On the relation between Pressure and Coupling Potential in
Adaptive Resolution Simulations of Open Systems in
contact with a Reservoir

Abbas Gholami, Rupert Klein, and Luigi Delle Site*

In a previous paper, a precise relation between the chemical potential of a fully
atomistic simulation and the simulation of an open system in the adaptive
resolution method (AdResS) was identified. The starting point was the
equivalence derived from the statistical partition functions between the grand
potentials, 𝛀, of the open system and of the equivalent subregion in the fully
atomistic simulation of reference. In this work, instead, the authors treat the
identity for the grand potential based on the thermodynamic relation
𝛀 = −pV and investigate the behavior of the pressure in the coupling region
of the adaptive resolution method (AdResS). The authors confirm the physical
consistency of the method for determining the chemical potential described
by the previous work and strengthen it further by identifying a clear numerical
relation between the potential that couples the open system to the reservoir
on the one hand and the local pressure of the reference fully atomistic system
on the other hand. Such a relation is of crucial importance in the perspective
of coupling the AdResS method for open system to the continuum
hydrodynamic regime.

1. Introduction

In a previous work,[1] we have investigated the microscopic ori-
gin of several thermodynamic quantities at the coupling bound-
ary of a system of Lennard-Jones (LJ) particles with a reser-
voir of non-interacting tracers. The adaptive resolution technique
(AdResS)[2–4] was employed, as a technical set-up, for running
the numerical simulations. The aim of the work was to show
that the AdResS scheme translates, accurately and efficiently, the
statistical mechanics principles of open systems into a conve-
nient numerical simulation tool. A pictorial representation of the
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AdResS set up is reported in Figure 1 and
the relevant details of the method will be re-
ported later on in a specific section. For the
current discussion, it is sufficient to con-
sider that the technique allows for the ex-
change of particles between the atomisti-
cally resolved region (AT) and the reser-
voir region (TR) where particles are not in-
teracting. The exchange occurs through an
interface region (Δ) within which a pre-
scribed external potential (potential of the
thermodynamic force) and a thermostat en-
force the equilibration of the atomistic re-
gion to the same thermodynamic state as
that of the fully atomistic simulation of ref-
erence. The study consisted in comparing
thermodynamic properties of a subsystem
of a fully atomistic simulation with those of
the equivalent atomistically resolved region
in the AdResS set-up, and it concludes the
physical consistency of the AdResS scheme
with the statistical mechanics model of an
open system.

The starting assumption was that the subregion of the fully
atomistic simulation (equivalent to the AT region) and the AT
region in AdResS are both open regions whose particles follow
the grand canonical distribution. Since the aim of AdResS is to
reproduce the same statistical and thermodynamic properties of
the target fully atomistic simulation in the AT region, the equiv-
alence of the particle statistical distributions implies some direct
relation between the chemical potentials of the two simulations.
Indeed, the study led to the conclusion that the coupling strat-
egy, through the external potential, balances the difference in
chemical potential between the fully atomistic and an AdResS
simulation without the thermodynamic force. This result justi-
fies, under the grand canonical assumption, the role of AdResS
as a technical tool to simulate open systems in a physically con-
sistent manner. Although it has been numerically verified that
AdResS follows the grand canonical distribution (grand canon-
ical AdResS)[2,5,6] there may be alternative approaches which,
without explicitly requiring the grand canonical hypothesis, can
complement that of ref. [1] and thus further strengthen the role of
AdResS as a tool which is consistent with the physical principles
of open systems.
In this context, the aim of this work is to explore an ap-

proach which is complementary to those already considered
and involves a thermodynamic quantity, the pressure, without
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Figure 1. Comparison of the AdResS and reference set-ups. a) The refer-
ence full atomistic set-up with high resolution through the whole domain.
b) The AdResS set-up with the atomistic region AT, the interface region
Δ, and the TR reservoir region; here, the ith particle interacts with the jth
particle through a pair potential Uij = U(qj − qi). The one-body thermody-
namic force, Fth(qi), acts on all particles in theΔ ∪ TR region and enforces
the desired thermodynamic equilibrium in the region of interest. c) The di-
rection n perpendicular to the coupling surface at theΔ/TR interface along
which acts the thermodynamic force.

requesting the grand canonical hypothesis. The pressure is,
with temperature and density, a key thermodynamic quantity
in molecular simulation. We show in detail that the coupling
strategy of AdResS, through the introduction of an external
potential, correctly balances the difference in pressure in the
adaptive set up w.r.t, the fully atomistic value of reference.

2. The AdResS Method: Basics

In the AdResS set-up, the simulation box is divided into three re-
gions: the AT region at atomistic resolution (region of physical
interest), the coupling region Δ, where particles have atomistic
resolution, but with additional/artificial coupling features to the
large reservoir, and TR, the reservoir of non-interacting point-
particles known as tracers (see Figure 1). Particles can freely
move fromone region to the other and automatically change their
molecular resolution according to the resolution that character-
izes the region in which they are instantaneously located.
In terms of interactions, molecules of the AT region have stan-

dard atomistic two-body potentials among themselves and with
molecules in Δ, and vice versa, but there is no direct interaction
with the tracers in TR. Tracers and particles in Δ experience an
additional one-body force, called thermodynamic force, along the
direction n perpendicular to the coupling surface at the Δ/TR in-
terface, Fth(q) = Fth(q)n for positions q. This force, together with
the action of a thermostat in these regions, implements an effec-
tive coupling to the rest of the universe outside the AT region. The
total interaction potential reads: Utot = UAT

tot +
∑

qj∈Δ∪TR
𝜑th(qj) with

the potential 𝜑th(q) such that Fth(q) = −∇𝜑th(q) and 𝜑th(q) = 0
in the AT region, q ∈ AT. For the discussion here, it suffices to
know that the thermodynamic force is calculated such that the
particle density in the atomistic region is equal to a prescribed

value of reference. It has been shown[1,5,7,8] that the constraint on
the density profile, through the thermodynamic force in Δ ∪ TR,
induces the thermodynamic equilibrium of the atomistic region
w.r.t. conditions of reference of a fully atomistic simulation.

3. Pressure Calculation in an Open System

In our previous work,[1] the starting point was the microscopic
definition of the AT ∪ Δ region in AdResS as an open system
with grand potential Ω, embedded in the TR region as a reser-
voir. This grand potential is defined in microscopic terms under
the hypothesis that AT ∪ Δ is characterized by a grand canoni-

cal partition function for the particles: Ω = −kBT ln(
∞∑
N=0

e𝛽𝜇NQN),

where 𝜇, T , andQN are the chemical potential at equilibrium, the
temperature, and the canonical partition function (at a given par-
ticle number N), respectively, and 𝛽 = 1∕kBT with kB being the
Boltzmann’s constant. Since we compare a fully atomistic set-up
with the AdResS set-up and they are partitioned in space in the
same way, to prove the equivalence of the grand potential of ref-
erence with the grand potential in the AdResS set-up, in essence,
the quantity to check is the pressure. The virial equation (Equa-
tion (1)) defines the pressure as the sum of its particles kinetic
and interparticle force contributions in a homogeneous system
with no external forces.[9–11] For a system of volume V , this rela-
tion can be expressed as[12,13]

p = 1
3V

(∑
i

mivi.vi +
∑
i

ri.f i

)
(1)

wheremi, ri, and vi are each particle’s mass, position, and velocity
respectively, and f i is the total interparticle force acting on each
particle. While Equation (1) can be applied to the fully atomistic
system, the calculation of the pressure in AdResS is not straight-
forward. The reason lies in the abrupt change of resolution with
sharp boundary effects and the action of an external force field
(thermodynamic force).
There are several methods for deriving Equation (1), they all

use the idea of isotropy and/or homogeneity of the system in their
derivations and directly consider the scalar pressure, instead of
the stress tensor. The stress tensor should instead be used for in-
homogeneous and anisotropic systems.[14] In general, there are
two methods for deriving the pressure: i) through the thermo-
dynamic relation p = −𝜕F∕𝜕V|T = kBT(

𝜕

𝜕V
logQN(V, T))T , with F

being the Helmholtz free energy andQN being the canonical par-
tition function or its equivalent[15]; ii) a direct mechanical calcu-
lation by summing up the kinetic (momentum carried by parti-
cles) and potential (interparticle force f ij acting between pairs of
particles) contributions to the pressure (see Figure 2). However,
while the use of the thermodynamic relation is possible only in
the limit of thermodynamic equilibrium for homogeneous sys-
tems, the secondmethod can instead be applied in AdResS, using
particle trajectories, to calculate the stresses. In inhomogeneous
and anisotropic systems, the stress tensor is position and direc-
tion dependent. The most appropriate formal treatment in this
case consists of writing the inhomogeneity in terms of the stress
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Figure 2. Pressure calculation in a volume element in the simulation domain of a molecular system according to the idea of moving test planes. The
red surface is located in the middle of the volume element and the stress tensor elements can be calculated by adding the pressure resulted from the
interaction force between those particles on the opposite sides of the plane to the kinetic contribution of all particles within the volume element.

tensor[16] at the position, r, in space, P(r), which can be split into
kinetic and potential contributions[14]:

P(r) = PK (r) + PU(r) (2)

with components

P =
⎛⎜⎜⎝
𝜎xx 𝜏xy 𝜏xz
𝜏yx 𝜎yy 𝜏yz
𝜏zx 𝜏zy 𝜎zz

⎞⎟⎟⎠ (3)

where the 𝜎ii and 𝜏ij are the normal and shear components of the
tensor respectively.
The stress tensor can be defined by the interparticle force act-

ing across a moving test surface along the simulation domain
(see Figure 2). The kinetic contribution accounts for the particles’
momentumwhile they cross the test surface and as it depends on
each particle’s location, it is a single particle property and can be
localized in space. The potential term corresponds to the inter-
action forces due to the interaction of particles on the opposite
sides of the surface. This part is not local since it depends on the
location of both particles[14] (see also Figure 2).
Irving and Kirkwood[17] introduced a new approach for the

calculation of the pressure and stress tensor by starting from
a statistical mechanical derivation of the equations of hydrody-
namics and making a particular selection for the particles that
contribute to the inter-particle force. Accordingly, only pairs of
particles which satisfy the condition that the line connecting
their centers of mass passes through the test surface contribute
to the local force. With this definition they obtained a localized
form for the potential contribution of the pressure. For a system
with planar symmetry and no-flow condition (like in the AdResS
set-up in refs. [1, 4]), all non-diagonal elements of the stress
tensor (Equation (3)) must be zero on average as there is no
shear stress in equilibrium due to the lack of velocity gradient
and motion between hypothetical liquid layers.[18] Moreover, the
change of resolution is happening along, say, the x-axis, so the
normal component of the stress tensor will be PN(r) = 𝜎xx(r) and
the tangential components are identical due to the symmetry
PT (r) = 𝜎yy(r) = 𝜎zz(r). Finally, the scalar pressure is defined
as p = (𝜎xx + 𝜎yy + 𝜎zz)∕3 = (PN + 2PT )∕3.[18,19] In this context,
Irving and Kirkwood proposed the following expressions for the

normal and transverse components of the stress tensor[17,20,21]:

PN(x) =

𝜚(x)kBT − 1
2A

⟨∑
i≠j

|xij|
rij

U′(rij)Θ

(
x − xi
xij

)
Θ

(
xj − x

xij

)⟩
(4)

PT (x) =

𝜚(x)kBT − 1
4A

⟨∑
i≠j

y2ij + z2ij
rij

U′(rij)|xij| Θ

(
x − xi
xij

)
Θ

(
xj − x

xij

)⟩
(5)

where Θ is the Heaviside step function. The first term on the
right-hand side of Equations (4) and (5) is the kinetic con-
tribution which can be calculated by taking into account the
local temperature in the small volume element around the test
plane and is equivalent to the kinetic contribution in the virial
equation (Equation (1)), that is, 1

3V
⟨∑i miv

2
i ⟩. The other terms in

Equations (4) and (5) involve the interaction of pairs of particles
and express the fact that when two particles i and j are located
on the same side of the surface, the potential contribution of the
pressure will be zero and when they are on the opposite sides,
the corresponding interparticle force will be considered in the
related stress tensor component.
We will use Equations (4) and (5) to determine the pressure in

AdResS and compare the results with those obtained in a fully
atomistic simulation by the same relations and also using the
virial relation for the homogeneous system (Equation (1)). The
comparison shows the consistency of AdResS as a tool to simu-
late open systems.

4. Numerical Results

In this section, we report the technical details and the numerical
results of the simulations. In the following, the AdResS set-up
and its technical details are presented, and then the pressure in
the domain is calculated based on the discussedmethodology. Fi-
nally, a relation between the pressure function and the thermody-
namic force needed to balance that pressure difference is shown.
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Figure 3. Density profiles 𝜚(x) along the direction of change of resolution for four different cases at reduced densities indicated in the figures and reduced
temperature of T∗ = 1.5. The blue and red curves indicate the density profile in AdResS set-up before and after application of thermodynamic force
respectively. The proper thermodynamic force is found through an iterative procedure (Equation (6)) by an initial choice of F(0)

th
(x) = 0 (corresponding

to the blue line) and continued till reaching a satisfactory deviation of 2% (corresponding to the red line) from the target constant density (indicated by
black line). The transition regions are marked by gray shadings.

4.1. Technical Details of The Simulation

We use the same technical set-up of ref. [1]. Below, we briefly
summarize the key aspects and invite the interested reader to
consult our previous work for specific details. We have consid-
ered four Lennard-Jones liquid systems each at a different ther-
modynamic state point, namely: number densities 𝜚∗ := 𝜚𝜎3 ≈
0.20, 0.25, 0.30, and 0.37, corresponding to particle numbers
N = 8 k, 10 k, 12 k, and 15 k at the reduced temperature of
T∗ := kBT∕𝜀 = 1.5 which is well above the liquid-vapour criti-
cal point.
A fully atomistic simulation of reference for all test cases has

been performed, followed by an adaptive resolution simulation
for each state point. In the equilibration run, the correspond-
ing thermodynamic force was determined by the iterative
formula[8]:

Fk+1
th (x) = Fk

th(x) − c

(
m

𝜅T𝜚
2
0

)
∇𝜚k(x) (6)

with m being the particle mass, 𝜅T the thermal compressibility,
𝜚0 the target density, and c a prefactor for controlling the con-

vergence rate. According to ref. [8], the above mentioned exter-
nal force is derived in such a way that compensates the pressure
difference generated by the drift force resulting from the addi-
tion/change of resolution compared to the reference fully atom-
istic set-up, that is, Fth(x) =

m
𝜚0
∇p(x) with p(x) being the pressure

of the system as a function of position. In addition, the required
external potential relates to the calculated thermodynamic force
byFth(x) = −∇𝜑th(x); thus, the added external potential to the sys-
tem (𝜑th(x)) is expected to compensate the needed energy to keep
the pressure of the system unchanged while progressing towards
a multi-resolution domain. This property has been investigated
later (see Figure 8).
The density profile for each case is shown in Figure 3. The

AdResS set-up for each case was then validated in the produc-
tion runwith the comparison to the corresponding fully atomistic
case of the calculated radial distribution function, g(r), and prob-
ability of finding N particles p(N) in the region of interest (AT)
(see Figures 4 and 5). The criteria of validation of AdResS used
above have been shown to ensure the numerical consistency of
AdResS as a tool to properly simulate basic structural and statisti-
cal properties of the AT region (i.e., the region of interest).[4,22–24]

Once the numerical set-up of AdResS has been validated, one can
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Figure 4. Radial distribution function (g(r)) for fully atomistic simulation
of reference (red line) and AdResS simulation (blue markers). These data
correspond to the LJ fluid at the reduced density of 𝜚∗ = 0.198 and reduced
temperature of T∗ = 1.5. The same level of agreement was found for the
other thermodynamic state points treated and for this reason they are not
shown.

Figure 5. Probability of finding N particles in the high resolution region
(AT region) for fully atomistic simulation of reference (red) and AdResS
(blue) at the reduced density of 𝜚∗ = 0.198 and reduced temperature of
T∗ = 1.5. For each case, a Gaussian distribution is fitted to the calculated
data and the close-up of the data around the average particles number in
AT region is shown in the inset. The same level of agreement was found
for the other thermodynamic state points treated and for this reason they
are not shown.

proceed with the calculation of the pressure using the formulas
discussed in the previous section. The corresponding results are
reported in the next section.

4.2. Numerical Calculations for The Pressure

At first, as a traditional way to calculate the pressure in molecular
systems, we have computed the pressure in the fully atomistic
simulation of reference, pref ., considering it a homogeneous
system and thus using the virial relation (Equation (1)). The

Figure 6. The value of scalar pressure in full-atomistic and AdResS sim-
ulations at four different thermodynamic state points. These values are
calculated based on the virial method for reference set-up (black line) and
Irving-Kirkwood relations for reference (red line)) and AdResS (blue line)
simulations.

results are shown in Table 1. Next, we have applied the test planes
approach introduced above to the fully atomistic system as well.
We considered a test planemoving into the simulation domain of
the system and compute both potential and kinetic contributions
of the normal and tangential components of the stress tensor
through a spatial and temporal average (Pat

N and Pat
T in table 1).

They have been calculated by using trajectory data of particles
which are recorded every 10𝜏 during an MD run for the duration
of 104𝜏 with each time step being equal to 0.002𝜏. It is note-
worthy to mention that we have considered periodic boundary
conditions for calculating the interparticle distances in all equa-
tions. In addition, only particles within a certain distance from
the test planes (=rcut−off ) have been considered for calculations in
order to implement the effect of cut-off radius, that is, 2.5𝜎. Once
we have determined the abovementioned quantities for the refer-
ence fully atomistic system, we employed the same approach for
the AdResS simulation and determined Pad

N and Pad
T (in table 1).

As can be seen from table 1, the method of planes is actu-
ally calculating the pressure in a satisfactory manner. Moreover,
the agreement between the values of the fully atomistic simu-
lation and the AdResS simulation in Figure 6 confirms, from a
straightforward thermodynamic point of view, the equality of the
corresponding grand potentials. Thus, the AT region of AdResS
is thermodynamically compatible with the equivalent subregion
in a fully atomistic simulation. However, the values calculated
of the pressure in Figure 6 correspond to the average pressure
and the condition of equality of the grand potentials represents
only a necessary condition of compatibility. A more powerful cri-
terion would be a space dependent check of consistency between
the AdResS set-up and the desired thermodynamic equilibrium.
This calculation is reported in the following section.

4.3. Relation between the Potential of Thermodynamic Force and
Pressure

One of the key roles of the thermodynamic force is to calibrate the
pressure in the region of interest in order to produce the same
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Table 1. Results of pressure calculation based on the plane approach presented in this work.

𝜚∗ pref PatN PadN PatT PadT pat pad

0.198 0.181 ± 0.007 0.183 ± 0.007 0.184 ± 0.006 0.181 ± 0.012 0.183 ± 0.015 0.182 ± 0.010 0.183 ± 0.012

0.247 0.202 ± 0.010 0.208 ± 0.006 0.207 ± 0.007 0.203 ± 0.014 0.205 ± 0.013 0.205 ± 0.011 0.206 ± 0.011

0.296 0.220 ± 0.013 0.218 ± 0.008 0.221 ± 0.007 0.224 ± 0.015 0.218 ± 0.012 0.222 ± 0.013 0.219 ± 0.010

0.370 0.254 ± 0.015 0.251 ± 0.010 0.255 ± 0.008 0.252 ± 0.014 0.256 ± 0.014 0.252 ± 0.013 0.253 ± 0.012

The second column (pref ) is the pressure of the fully atomistic simulation of reference, based on virial relation (Equation (1)) as a traditional method for calculating pressure

in molecular systems. The rest are the scalar pressure (pat and pad) and stress tensor components (PatN , P
at
T , P

ad
N , and PadT ) in AdResS and fully atomistic simulations which are

calculated by Irving-Kirkwood relations (Equations (4) and (5)).

Figure 7. The pressure profile for all cases for AdResS and fully atomistic simulation of reference. The black line represents the scalar pressure in the full
atomistic simulation of reference whose calculation is based on the virial equation. The red and blue lines represent the pressure in the fully atomistic
and in the adaptive resolution simulations, respectively. This latter calculation is based on Irving-Kirkwood relations (Equations (4) and (5)). The gray
areas are showing the coupling region Δ while the AT region is located in the middle of the box.

grand potential as that of the corresponding fully atomistic sim-
ulation of reference. Since the thermodynamic force is applied to
the system only inΔ region, onemay see its effect on the pressure
as a function of the position along the axis of change of resolution
(x). In fact, it is possible to calculate the stress tensor components
as a function of x in both full-atomistic and AdResS set-ups by
using the relations of Irving-Kirkwood (Equations (4) and (5)) for
normal and transverse components which both include kinetic
and potential contributions of the pressure. The corresponding
functions are shown in Figure 7.

As we see in Figure 7, the pressure in the AT region and in
the equivalent subregion of the fully atomistic simulation is
pointwise compatible, within the usual numerical fluctuations.
Interestingly, despite the close agreement in the AT region, in
the Δ region the difference is rather drastic. In order to see the
effect of thermodynamic force and change of resolution on the
resulting pressure difference, we plotted the energy correspond-
ing to the pressure difference (by normalizing the pressure
with the local density), that can be interpreted as the required
energy to keep the pressure of the system unchanged while
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Figure 8. Comparison of the required energy to compensate the pressure difference resulted by the change of resolution (i.e., normalised by the local
density) indicated by blue line and the potential of the thermodynamic force integrated from the calculated thermodynamic force specified by red line.
The shadowed region represents the amount of numerical fluctuation due to the explicit calculation. Instead, the potential of thermodynamic force does
not carry numerical fluctuations since once it is determined it is used as a fixed function in the production runs.

adding new resolution to the system, on top of the potential of
thermodynamic force, 𝜑th(q), that is calculated by integrating
the required thermodynamic force for each case (see Figure 8).
A denser liquid with a larger deviation in density profile

(see Figure 3) and consequently larger difference in pressure
profile (see Figure 7) requires a stronger external potential to
reproduce the same behaviour as the reference set-up and adjust
the pressure in the high-resolution region to get the same grand
potential. Interestingly, in all cases the energy matches, within
its numerical fluctuation (shadowed area), with the curve of
the potential of the thermodynamic force. This result is very
relevant because it allows the direct pointwise identification of
the potential of the thermodynamic force with the energy related
to the pressure and thus it assures that the balancing process
will always lead to the correct pointwise pressure in the AT
region. In turn, such a finding fully complements the results of
our previous work: the AT region reproduces the grand potential
of the equivalent subregion of the reference simulation either
through a microscopic statistical analysis involving directly its
partition function, or from a straightforward thermodynamic
point of view through the calculation of the pressure and its
pointwise comparison with the reference system.
It must be reported that previous work has explored the con-

nection of the pressure with the balancing potential in similar
simulation set ups.[25–27] An artificial global Hamiltonian was de-

signed and a corresponding semi-empirical statistical ensemble
defined; the ensemble used does not have a well defined phys-
ical meaning and thus it does not allow a direct derivation of
thermodynamic relations (see detailed discussion in refs. [3, 28]).
The thermodynamic relations proposed in refs. [25–27] are rather
intuitive and do not offer a clear physical interpretation. In this
work we have gone beyond the artificial global Hamiltonian and
defined a physically rigorous Hamiltonian of the open system.
The corresponding statistical derivation of its physical quanti-
ties is, as consequence, rigorously done in the grand canonical
ensemble for the high resolution region. Our derivation is then
carefully (point-wise) tested with several numerical tests. Thus
the results shown here, together with those of ref. [1] represent
actually an evolution that contains the approach of refs. [25–27]
and frames the AdResS techniques within the more general the-
ory of open systems (see also discussion in ref. [29]).

5. Conclusions

The AdResS method has evolved from a numerical algorithm
for coupling different resolutions with the main aim of saving
computational resources to a more general framework for prop-
erly treating open systems embedded in a large environment
at well defined thermodynamic conditions. The passage from a
convenient, but empirical, numerical tool[30,31] to a theoretically
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well defined model of open system involves a rigorous math-
ematical treatment[32] and a computational simplification that
allows high transferability of the algorithm from one simulation
software to another.[4,33] In between, the theoretical principles
and their efficient numerical implementation need to be care-
fully tested and need to show consistency w.r.t. to statistical and
thermodynamic properties of primary relevance in simulation.
The previous work[1] and the current work have the task of
showing in detail the physical consistency of the model via its
numerical implementation. In this work, we have investigated
the behaviour of the stress tensor and its link to the coupling
force (potential) which is one of the main characteristics of the
AdResS model. The results show full physical consistency with
the physical principle of a proper open system. Furthermore,
the knowledge of the link between local pressure and potential
of the thermodynamic in the Δ region opens access to further
conceptual and numerical scenarios. For example, the results of
the current study are crucial for designing coupling conditions
of the AdResS to hydrodynamics and fluctuating hydrodynamics
regulated by field equations (continuum). In this respect, the
current paper contributes in a meaningful manner to the devel-
opment of AdResS as a method of molecular dynamics for open
systems.
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