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1. Introduction (Einleitung) 
 

Cells interact with their cellular and non-cellular environment. Growth, expansion, survival, and death 

of a cell depend on a bouquet of cell-extrinsic factors that may be organism-intrinsic (microenvironment) 

or organism-extrinsic (all environmental influences, e.g. viruses, microorganisms, nutrition, toxic 

agents, medication, radiation). Of note, human cells acquire coding mutations starting at the beginning 

of life(1, 2), but some resulting phenotypic features will only have selective advantage, increase fitness, 

or become clinically “visible” under the influence of certain cell-extrinsic stressors. Analysis of these 

complex genotype – phenotype relations in response to various stressors and in various hematologic 

settings spanning both premalignant (clonal hematopoiesis) and malignant conditions (diffuse large B 

cell lymphoma (DLBCL), mantle cell lymphoma (MCL), primary and secondary myelofibrosis (MF), 

secondary acute myeloid leukemia (AML)) is the overarching topic of this assembly of research papers. 

1.1 B cell lymphomas 

B cell lymphomas are a heterogeneous group of neoplasms arising from various maturation stages of 

physiological B cells and respective precursors. Lymphoid neoplasms are classified according to the 

World Health Organization (WHO) classification. The classification is updated in regular intervals to 

ensure incorporation of latest clinical and scientific achievements (3). DLBCL and MCL were 

investigated for this work and described in detail below.  

1.1.1 DLBCL, not otherwise specified (NOS) 

DLBCL not otherwise specified (NOS) are a heterogeneous group of aggressive lymphomas and disease 

courses are fatal without treatment. They are the most frequent B cell neoplasms in humans with an 

incidence of 7/100.000(3, 4). About 50% of patients can be cured with rituximab-based 

immunochemotherapy(5). 

Gene expression profiling (GEP), i.e. phenotypic, analyses have revealed distinct subgroups based on 

the cell of origin (COO) of the neoplasm. “Germinal center B cell-like” (GCB) DLBCL express genes 

also known to be expressed in normal germinal center B cells. In most cases, they are associated with 

good response to R-CHOP chemotherapy (rituximab, cyclophosphamide, hydroxydaunorubicine, 

vincristine, prednisone/prednisolone) and favorable prognosis compared to “activated B cell like” 
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(ABC) DLBCL. GCB DLBCL often have translocated BCL2 and carry mutations in EZH2(3). ABC 

DLBCL express genes associated with physiologic activated B cells or plasmablasts. They are typically 

characterized by chronic nuclear factor kappa B (NFκB) signaling (outlined in detail in 1.1.3), poorer 

response to rituximab-based immunochemotherapy and unfavorable prognosis(5-7). Hence, great efforts 

are made to improve dismal outcome of ABC DLBCL, for example, to more specifically target 

dysregulated NFκB signaling(8-10), which is also outlined in section 1.1.5. A third group of DLBCL 

does not match criteria for either category(7). Since comprehensive gene expression analyses are 

difficult to be broadly implemented in routine diagnostics for various reasons, efforts have been made 

to simplify sub-classification. The “Hans classifier” based on immunohistochemical analysis of CD10, 

BCL6, MUM1, FOXP1, Cyclin D2, and BCL2 distinguishes “GCB” and “non-GCB” DLBCL(11). 

Though classification according to the Hans classifier is not completely identical with classification 

according to GEP, it has turned out to be a useful tool in routine diagnostics(3).  

Other phenotypic features of relevance include the expression of MYC and BCL2. Genotypic sub-

classification probably yields great potential, but is not yet part of the current WHO classification(3) 

(also see section 1.1.4.1).  

1.1.2 MCL 

MCL is a B cell neoplasm mostly characterized by the translocation t(11;14) (q13;q32), which 

juxtaposes CCND1 to the IGH gene and results in overexpression of Cyclin D1 (12) and can be 

considered a disease defining event. Patients with MCL are mostly of older age, predominantly male 

and usually present in advanced stage of disease. SOX11 expression status correlates with clinical 

course, with absence of SOX11 representing a more indolent disease(3, 13, 14). Depending on clinical 

features, age, and fitness of the patient, MCL are treated with immunochemotherapy, high dose 

chemotherapy followed by autologous stem cell transplantation(15) or chemo-free regimens including 

rituximab, lenalidomide, ibrutinib, and temsirolimus in the relapsed/refractory situation(16-19). 

1.1.3 NFκB pathway 

Constitutive activation of the NFκB signaling pathway is a key pathogenic event in various B cell 

malignancies. In general, we distinguish a canonical (or classical) and non-canonical (or alternative) 

NFκB pathway. 
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NFκB comprises a family of transcription factors: p50 and its precursor p105, p52 and its precursor 

p100, p65 (=RelA), RelB, and c-Rel. In B cells, NFκB transcription factors play an important 

physiological role in the control of genes associated with proliferation, differentiation, survival, 

apoptosis, and immune and stress response. Usually, they are kept inactive in the cytoplasm by the 

inhibitor of kappa B (IκB)(20, 21). Upstream activation of NFκB signaling leads to phosphorylation of 

the α-subunit of IκB (IκBα) by the IκB kinase (IKK)(22), leading to release of the NFκB subunits and 

subsequent translocation to the nucleus. p65, p50, and c-Rel nuclear homo- or heterodimers are typically 

activated by signaling through the canonical NFκB pathway. Activation and assembly of p100 (and its 

degraded form p52) and RelB is seen when the non-canonical pathway is activated(20, 21). 

In the healthy B cell, antigen binding to the B cell receptor (BCR) leads to activation of the canonical 

NFκB pathway by phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) of 

the BCR subunits CD79A and CD79B by a SRC family kinase. This leads to further activation of a 

series of downstream kinases involving SYK, PI3K, BTK, PLCγ, and PKCβ. PKCβ then phosphorylates 

the scaffold protein CARD11, initiating the formation of a multiprotein complex consisting of CARD11, 

MALT1, BCL10, and the ubiquitin ligase TRAF6, finally leading to activation of IKK and release of 

NFκB transcription factors by IκB. Alternatively, the canonical NFκB pathway can be activated through 

toll like receptors (TLR). The TLR adapter molecule MYD88 then interacts with TRAF6 supported by 

IRAKs, finally leading to IKK activation and nuclear translocation of NFκB transcription factors (5). 

A20 is a negative regulator of NFκB activation(23).   

Signaling through the non-canonical pathway depends on stabilization of NFκB inducing kinase (NIK 

= mitogen-activated protein kinase 14/MAP3K14) and subsequent IKKα phosphorylation, finally 

leading to the partial degradation of p100 to p52 and nuclear translocation of the heterodimer p52/RelB. 

In the resting cell, NIK is destabilized by a protein complex consisting of cIAP1/2 (=BIRC2/3), TRAF2 

and TRAF3. Upon activation through tumor necrosis factor (TNF) family receptors, the cIAP1/2 and 

TRAF2/3 proteins assemble at the receptor, are subject to ubiquitination and proteasomal degradation, 

and hence are no longer capable of NIK destabilization(20).  
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1.1.4 Mutations in B cell malignancies 

Due to the central role of NFκB signaling in B cell biology, oncogenic mutations in genes encoding 

proteins essential for NFκB pathways are a frequently seen in B cell malignancies. In the following, 

oncogenic mutations in NFκB pathway members in DLBCL and MCL are presented.   

1.1.4.1 NFκB mutations in DLBCL 

In DLBCL, mutations of NFκB pathway components are frequent. Addiction to chronic NFκB signaling 

is a key characteristic of mostly ABC DLBCL and respective mutations are therefore predominantly 

found in this subtype(5). Oncogenic mutations in NFκB pathway members were first discovered using 

either targeted sequencing of NFκB pathway genes in preselected ABC DLBCL patients samples(24) 

or RNA interference screens in DLBCL cell lines with subsequent sequencing of genes that had turned 

out to be vital(25-28). Using this approach, it could be shown that approximately 10% of ABC DLBCL 

harbor activating mutations in the coiled-coil domain of CARD11, resulting in permanent activation of 

all downstream NFκB pathway activity(26). Likewise, mutations in the ITAMs of either CD79A or 

CD79B can be found in approximately 20% of ABC DLBCL, leading to chronic activation of BCR 

signaling including the NFκB pathway(27). About 30% of all ABC DLBCL harbor the activating 

MYD88L265P mutation and one third of these lymphomas has a concurrent CD79A or CD79B 

mutation(28). Interestingly, these mutations seem to cooperate by multiprotein supercomplex formation, 

explaining the high above average sensitivity of MYD88/CD79A or MYD88/CD79B double mutant 

lymphomas to ibrutinib(29). Inactivating mutations in A20, a gene encoding a negative regulator of 

NFκB, can be found in approximately 30% of ABC DLBCL(24).  

Mutations in CD79B, MYD88 as well as CD79B/MYD88 double mutants have been more frequently 

detected in lymphomas of immune-privileged sites, such as the central nervous system and testes. 

Various studies report high percentages of mutations in these genes in DLBCL occurring at these 

sites(30-33).  

As outlined above, for two decades, DLBCL were mostly classified according to their gene-expression 

phenotype, using either array-based classifiers or reduced-scale classifiers such as the Hans classifier(3). 

However, next generation sequencing techniques have led to more comprehensive genotypic 

characterization of DLBCL, leading to new genetic – yet preclinical – classifiers of DLBCL. In an 
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approach by Schmitz and colleagues, 47% of all 574 investigated DLBCL samples could be classified 

into one of four distinct genetic subgroups. Of note, MYD88/CD79A or MYD88/CD79B double mutants 

account for a distinct category termed MCD accounting for 8% of all DLBCL, with 96% of MCD cases 

being ABC DLBCL by gene expression analysis and 23% of ABC DLBCL can be classified as MCD. 

Other mutations associated with NFκB signaling were particularly frequent in the BN2 group (defined 

by BCL6 fusions and NOTCH2 mutations) that accounted for 15% of all DLBCL. Interestingly, only 

41% of BN2 cases were classified as ABC DLBCL by gene expression data, whereas 40% accounted 

for “unclassified” cases, indicating that mutations in NFκB pathway components are not exclusively of 

pathogenic relevance in ABC DLBCL(34). In another study, Chapuy and colleagues reported 

comprehensive genetic analysis of 304 DLBCL cases and subsequent classification into five different 

genetic clusters. Comparable to the study by Schmitz and colleagues, mutations of NFκB pathway 

components were enriched in defined clusters and predominantly found in cluster 1 and cluster 5, which 

were also enriched for ABC DLBCL(35). 

1.1.4.2 NFκB pathway activation in MCL 

Chronic signaling through the BCR and activation of the canonical NFκB pathway also plays an 

important role in the biology of MCL(36, 37). Approximately two thirds of MCL cases are sensitive to 

BTK inhibition, making ibrutinib a powerful agent in the therapy of MCL(19, 38). Though 

comprehensive sequencing studies have revealed mutations in BCR/canonical NFκB pathway members 

such as A20(39) or CARD11(40, 41), these are not as frequent as in ABC DLBCL and do, for most parts, 

not explain the addiction of MCL to chronic NFκB signaling(42). Therefore, stimulation of the BCR by 

(auto)antigens has been discussed as pathogenic mechanism for at least a subset of MCL(37, 43).  

Signaling through the non-canonical NFκB pathway is essential for another subset of MCL and 

identification and description of this pathogenically relevant mechanism including oncogenic mutations 

is part of this work and will be presented in chapter 2.1.1.  

1.1.5 BCR/NFκB pathway inhibition 

As signaling through the NFκB pathway is essential for a wide range of B cell lymphomas, selective 

pharmacologic targeting of pathway components has become a major therapeutic strategy. Inhibition of 

kinases in close proximity to the BCR – first of all inhibition of BTK – have revolutionized lymphoma 
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treatment, as they lead to impressive and often long-lasting clinical responses in relevant subsets of 

patients with B cell lymphoma addicted to chronic NFκB signaling(19, 42, 44, 45). In addition, a series 

of selective inhibitors used in (pre)clinical studies inhibiting, for example, SYK(46), PKCβ, and IKK, 

have contributed to deepen our understanding of BCR/NFκB pathway (patho)biology. 

One of the clinically most relevant agents is the BTK inhibitor ibrutinib. Ibrutinib covalently binds to 

BTK and interrupts signaling through the NFκB pathway(47). Clinical trials have documented 

impressive responses in various B cell lymphomas and is for example standard care in first line treatment 

of chronic lymphocytic leukemia (CLL)(48, 49). With regard to relapsed or refractory ABC DLBCL,  

an overall response rate (ORR) of 37% and a complete response rate of 10% was reported. In contrast, 

GCB DLBCL only have an ORR of 5%(44). In relapsed or refractory MCL, the ORR is described as 

68-78% and complete response rate as 21-33%, respectively(19, 45). By now, the more selective, second 

generation BTK inhibitors acalabrutinib, tirabrutinib, and zanubrutinib have gained or are in process of 

gaining agency approval(50, 51). 

The kinase PKCβ is located downstream of BTK and its activity is essential for activation of the 

canonical NFκB pathway. Inhibition of PKCβ by the PKCβ inhibitor enzastaurin has shown therapeutic 

benefit in some patients with relapsed or refractory DLBCL(52) and MCL(53), but maintenance therapy 

with enzastaurin in high-risk DLBCL did not improve disease free survival in a randomized phase III 

trial(54). In addition, in preclinical studies, the PKCβ inhibitor sotrastaurin (STN) has shown activity in 

ABC DLBCL cell lines with mutant CD79A or CD79B, but not in those with mutant CARD11, again 

highlighting the addiction of ABC DLBCL to chronic NFκB signaling. As CARD11 is located 

downstream of PKCβ, PKCβ inhibition remains without consequence in the presence of mutant 

CARD11(55). As described in detail in part 2.1.1 of this work and in a later study by Rauert-Wunderlich 

and colleagues, sotrastaurin is also effective in a subset of MCL(56, 57).   

As outlined above, both canonical and non-canonical NFκB pathways lead to IKK activation and 

subsequent translocation of NFκB subunits to the nucleus. Hence, IKK inhibition is toxic to lymphomas 

addicted to either pathway activation. As clinical safety profiles of IKK inhibitors of these agents seem 



Habilitationsschrift – Mareike Frick 
 

Seite 11 von 101 

to be rather disadvantageous, implementation of IKK inhibitors in the clinical setting remains 

problematic(58). However, they are valuable tools in preclinical research(25, 55, 56). 

1.2 Clonal hematopoiesis 

Clonal hematopoiesis is a condition – not disease – defined by the presence of acquired, cancer-

associated mutations in the blood of predominantly elderly individuals without hematologic malignancy. 

It first gained broad attention when in 2014 three large studies almost in parallel reported this 

phenomenon in huge population studies comprising more than 32,000 individuals(59-61). Mutations 

appear in an age-dependent manner with a strong increase in mutational frequency in the elderly 

population. We now know that a substantial part of all individuals older than 60 years harbor clonal 

hematopoiesis(59, 60, 62). When reporting on clonal hematopoiesis, different definitions and 

terminologies have been established, complicating reports on frequencies and prevalence. While “clonal 

hematopoiesis” describes the condition in general, “clonal hematopoiesis of indeterminate potential” or 

“CHIP” is used only if the respective clone has a variant allele frequency (VAF) of at least 2%(63). It is 

estimated that about 10-20% of individuals of 60 years and older harbor CHIP(64).  In contrast, “age 

related clonal hematopoiesis” or “ARCH” is used without VAF cut-off(65) and depending on 

sequencing depth, mutations with a very low VAF can be detected in almost all individuals(66). Though 

a VAF cut-off of 2% as used for CHIP could be to a certain extent perceived as arbitrary, it mirrors 

considerations regarding biological relevance and technical limitations of reliable detection of clones at 

the time this definition was established. Discussion about the meaningfulness of VAF cut-offs is still 

controversial and from a technical point of view the detection of much smaller clones is now possible 

with acceptable effort(62, 65). However, the classical definition of CHIP is widely used and published 

and all publications on clonal hematopoiesis that are part of this work (2.2.1 and 2.2.2) use the definition 

of CHIP.  

CHIP mutations can be predominantly found in several functional groups of genes, comprising 

epigenetic modifiers, genes associated with the spliceosome, signal transduction, and DNA repair. 

Epigenetic modifiers regulate transcription by modification of DNA and histones. They constitute the 

largest group of mutated genes with DNA-methyltransferase 3A (DNMT3A), Ten-Eleven Translocation-

2 (TET2), and Additional sex combs-like 1 (ASXL1) accounting for most mutations in this group. 
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DNMT3A is the gene that is by far most frequently mutated in CHIP(59-61). It encodes a de novo DNA 

methyltransferase that modifies unmethylated DNA(67). TET2 catalyzes the conversion of 5-methyl-C 

(5mC) of DNA to 5-hydroxyl-methyl-C (5hmC), a process regulating DNA methylation patterns(68). 

In pre-clinical models, mutations in DNMT3A and TET2 lead to increased self-renewal capacities, 

reduced differentiation (DNTM3A and TET2), and immortalization (DNMT3A) of hematopoietic stem 

cells (HSCs), but rarely cause full malignant disease(68-72). In contrast, ASXL1 mutations cause 

hypocellularity and myelodysplasia(73). Other pathways associated with CHIP involve the spliceosome 

(e.g. SF3B1, SRSF2, U2AF1), DNA repair (e.g. TP53, PPM1D), and signal transduction (e.g. MYD88, 

JAK2)(59, 60, 74). As outlined in detail below, these mutations are also commonly found in 

hematological malignancies like AML, myelodysplastic syndromes (MDS), myeloproliferative 

neoplasms (MPN), and lymphomas(75-78) 

Though clonal hematopoiesis itself is not a disease, it is associated with an increased risk for various 

adverse medical conditions, as increased risk of hematologic cancer and cardiovascular disease, finally 

leading to a significantly decreased overall survival(59, 60).  

1.2.1 Clonal hematopoiesis as premalignant condition 

Clonal hematopoiesis is a premalignant state, as individuals harboring this condition have a substantially 

increased risk to develop a full hematologic malignancy. Though most individuals with clonal 

hematopoiesis will never be diagnosed with hematologic disease, hazard ratio for the development of 

blood or lymphoid cancer is clearly above 10 (11.1 in (60) or 12.9 in (59)). Pathogenically, this is 

explained by the stepwise acquisition of additional genetic aberrations that increase clonal fitness and 

lead to malignant transformation(63, 74). Of note, various external stressors can promote this 

disadvantageous evolution as further explained in section 1.4.2.1.  

Newer studies have refined the characteristics of clonal hematopoiesis that promote leukemic 

progression to AML, underlining the heterogeneous nature of the conditions subsumed under this term. 

They report mutations in genes associated with the spliceosome (e.g. U2AF1, SRSF2, SF3B1), IDH1, 

IDH2, and TP53 to be associated with higher risk of leukemic transformation(79-81). With regard to the 

most frequently mutated genes DNMT3A and TET2, Abelson and colleagues could not find an increased 

risk of AML(79). In contrast, the studies performed by Desai and colleagues could find an increased 
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risk of leukemic progression for DNMT3A and TET2 mutations(80), while Young and colleagues 

identified an increased risk for DNMT3A R882H/C mutations only(81). In addition, clone size and 

number of mutations were uniformly reported to increase the risk of transformation(79-81).  

With regard to unexplained cytopenias that do not fulfill the diagnostic criteria of MDS, discovery of 

CHIP led to the newly established term “clonal cytopenia of undetermined significance” (CCUS), which 

comprises a subgroup of “idiopathic cytopenia of undetermined significance” (ICUS) patients who have 

co-occurring CHIP. In this definition, CCUS is a condition intermediate between CHIP and MDS(63).  

1.2.2 Clonal hematopoiesis and its interrelatedness with inflammatory conditions  

Individuals with CHIP are at much higher risk to suffer from cardiovascular disease(60, 82) and other 

inflammatory processes such as chronic obstructive pulmonary disease (COPD)(83, 84) and ANCA 

associated vasculitis(85).  

While it was first assumed that the presence of CHIP simply might be indicative of a (pre-)aged 

phenotype with increased risk for age-associated conditions including cardiovascular diseases, we now 

consider CHIP to be part of a complex interplay between clonal mutations, inflammation and aging 

(“inflammaging”)(86-88).  

 In vitro functional research has proven a direct pathogenic link between CHIP and atherosclerosis for 

mutations in the TET2 gene. Fuster and colleagues were the first to show that atherosclerosis-prone, 

low-density lipoprotein receptor–deficient (Ldlr–/–) mice with partial Tet2 deficiency had an 

accelerated course of atherosclerosis compared to control mice. Of note, VAFs of the mutant Tet2 were 

comparable to mean VAFs observed in humans. Pathogenically, the increased size of atherosclerotic 

plaques could be explained by altered monocyte/macrophage activity by showing increased NLRP3 

inflammasome–mediated interleukin-1β (IL-1β) secretion and a consecutive enhanced chronic 

inflammatory condition(89). Similar functional studies were reported by Jaiswal and colleagues with 

concordant results(82). In line with these results, in an exploratory analysis, patients with mutant TET2 

showed a superior response to therapy with the monoclonal antibody against IL-1β canakinumab 

following myocardial infarction and increased levels of C-reactive protein(90, 91).  
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With regard to the most frequently mutated gene DNMT3A, in vivo analyses in mice with CRISPR-

mediated Dnmt3a inactivation have shown increased evasion of the myocardium by macrophages and 

increased expression of inflammation markers following angiotensin II induced cardiac dysfunction, 

probably leading to impaired resolution of inflammation(92). This observation could potentially explain 

the higher re-hospitalization rate and poorer outcome of patients with DNMT3A mutations and chronic 

heart failures(93). In summary, however, functional connections between DNMT3A and cardiovascular 

disease are yet less clear than for mutant TET2. For JAK2 mutations, elevated risk of cardiovascular 

disease(82) and thrombotic events is described, probably due to increased early lesion formation and 

neutrophil extracellular traps (NET)(87, 94). Likewise, in a murine model, atherosclerotic plaque 

formation and inflammation were enhanced by the presence of Jak2V617F mutation(95).  

With regard to other frequently mutated genes such as ASXL1 and SF3B1 very little is known about the 

impact on innate immune cells/inflammation and causal connection with cardiovascular disease(87). 

Therefore, in summary, description of the interrelatedness of CHIP, aging and inflammatory conditions 

like atherosclerosis is still in the beginning. 

1.3 Myelofibrosis 

Myelofibrosis (MF) is a rare disease with an incidence of about 1.5/100,000 persons/year. It affects 

mostly elderly individuals who typically present with hepatosplenomegaly, anemia, early satiety and 

hypercatabolic symptoms including fatigue, fever, night sweats, bone pain, and weight loss(96). MF 

belongs to the classical BCR-ABL1-negative chronic myeloproliferative neoplasm (MPN). This group 

of hematologic disorders also includes essential thrombocythemia (ET) and polycythemia vera 

(PV)(97). MF can either appear de novo (primary MF [PMF]) or following ET or PV (post-ET or post-

PV MF)(98). Pathogenically, it is a clonal proliferation of pluripotent hematopoietic stem cells. The 

abnormal cell population releases cytokines and growth factors in the bone marrow that lead to marrow 

fibrosis and stroma changes, alterations that finally lead to colonization of extramedullary organs such 

as the spleen and liver by hematopoietic cells. Leukemic transformation occurs in about 20% of MF 

patients and is a detrimental factor for the high variability observed in the clinical course of MF 

patients(96).  
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1.3.1 Mutational landscape of myelofibrosis 

MPN are characterized by constitutive activation of the JAK-STAT (janus kinase-signal transducer and 

activator of transcription) pathway caused by somatic mutations. Approximately 50-60% of PMF and 

ET patients carry the activating V617F mutation in janus kinase 2 (JAK2). In PV, even 95% of patients 

harbor the JAK2 V617F mutation(99-101). Frequent copy-number neutral loss of heterozygosity of a 

fragment of the short arm of chromosome 9 (9pLOH) leads to homozygosity of JAK2 mutations (101, 

102). JAK2 is a non-receptor tyrosine kinase and JAK2 V617F mutations leads to constitutive activation 

of the associated the pathway involving STATs, ultimately resulting in enhanced cell proliferation(103). 

Mutations in calreticulin (CALR) and the thrombopoietin receptor (= myeloproliferative leukemia 

protein/MPL) have also been identified to be pathogenically relevant in JAK2 wildtype MPN. These 

mutations likewise lead to constitutive activation of JAK-STAT signaling(77, 104-106) and are usually 

mutually exclusive(107). CALR mutations can be found in approximately 25-30% of PMF(77, 104, 107).  

Though activation of the JAK-STAT pathway is considered to be the key pathogenic event in BCR-

ABL negative MPN(107), JAK2 mutations can sometimes be found in the healthy elderly population 

with clonal hematopoiesis(59, 60) (see section 1.2), indicating that additional pathogenic events are 

necessary for disease initiation and progression of myelofibrosis. Comprehensive, next generation 

sequencing studies have revealed the complex and diverse mutational landscapes underlying MF. Most 

mutated genes are not specific for MF, as recurrent mutations can be found in other hematologic 

neoplasms and clonal hematopoiesis. Epigenetic modifiers, particularly TET2, ASXL1, DNMT3A, IDH1, 

IDH2 and EZH2 and genes encoding components of the spliceosome machinery like SRSF2, SF3B1 and 

U2AF1 are the functional groups most frequently mutated(77, 107-109). These mutations often seem to 

shape the course of the disease in terms of progression and/or transformation to secondary AML. 

Progression to secondary AML is an extremely disadvantageous event in MF and is associated with the 

presence of mutations in various genes, as for example ASXL1, EZH2, SRSF2, IDH1/2, CBL, NRAS, 

NF1, TP53, and IKZF1 (107, 108, 110).  

1.3.2 Current treatments of myelofibrosis 

Currently, allogeneic stem cell transplantation is the only curative treatment available for MF(111). As 

two large phase III trials (COMFORT-I and COMFORT-II) highlighted, the oral JAK inhibitor 
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ruxolitinib can effectively control constitutional symptoms and splenomegaly. Interestingly, response to 

treatment with JAK inhibitors is effective in MF patients with and without a JAK2V617F mutation. 

(112, 113). However, ruxolitinib does not appear to reduce the rate of leukemic transformation(113, 

114). In addition, ruxolitinib-therapy rarely leads to molecular remissions in MF. Changes in JAK2 allele 

burden are usually minor and do not mirror the clinical benefit(115, 116).  

 

1.4 Genotype – phenotype relationships in response to cell-extrinsic stressors 

While genotype is defined as the nucleic acid or polypeptide sequence, phenotype is understood as the 

trait of a cell or organism. Phenotypic descriptions can range from molecular to organism scale. Mapping 

of genotype – phenotype relationships has multiple implications. In hemato-oncology, it is of great use 

to characterize the fitness – or clinical aggressiveness – of individual mutations or to predict response 

to pharmacological measures(117). In this line, genotype – phenotype correlations are also of high 

interest when studying the influence of cell-extrinsic stressors.  

Though the differentiation of cell-extrinsic stressors into organism-intrinsic and organism-extrinsic 

factors has its limitations due to border-crossing effects (e.g. microenvironmental changes induced by 

chemotherapy or infection), the following explanations make use of this categorization for reasons of 

clarity. 

1.4.1 Organism-intrinsic factors: the microenvironment 

(Tumor) microenvironment is the non-malignant surrounding of (pre)malignant cells, including stromal 

and immune cells, extracellular matrix and cytokines. In the last years we have come to understand that 

cancer cells cannot be observed in an isolated fashion, but that the surrounding plays a vital role for the 

fate of a malignant cell(118). 

1.4.1.1 Lymphoma microenvironment 

Though lymphoma are the malignant counterparts of normal lymphocytes and hence are often found in 

structures related to the immune system such as lymph nodes, spleen and bone marrow, they can occur 

at virtually all sites of the human body(3). With regard to DLBCL, occurrence at various specific 

localizations – predominantly extranodal sites – is associated with characteristic genetic lesions(34), 
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pinpointing to selection and survival benefits of malignant cells with certain unique phenotypic features 

in a certain microenvironment. While certain microenvironments such as the gastrointestinal system 

provide a multitude of allo-antigens by ingested food and microorganisms(119), barrier-protected, 

immune-privileged tissues, provide a relatively stimulus-poor microenvironment with additional 

protection against pathogens and inflammatory processes(31, 120). In this work, relation of primary 

anatomical occurrence of DLBCL and association with certain genetic alterations was investigated 

(section 2.1.2). 

1.4.1.2 CHIP and the microenvironment 

It is estimated that protein coding mutations in HSC occur with a rate of 1 in 10 years per HSC(121, 

122). Most of these mutations are considered to be neutral or disadvantageous to the HSC and its 

progeny and hence do not play a major role in the constitution of the blood cells. However, in some 

cases, mutations confer selective advantage to the cells thus leading to measurable clonal expansion and 

over-representation of a certain clone within the pool of blood cells(123-125). While cell-intrinsic 

mechanisms of selective advantage like increased self-renewal and proliferation have been well-

described (described in detail in section 1.2), cell-extrinsic factors leading to selective, over-proportional 

growth and evolution also need to be considered. The bone marrow niche – physiological home of the 

HSC – changes with age and under environmental influences with regard to composition of the cellular 

and extracellular components as well as to the cytokine milieu. Specifically, aging is accompanied by 

chronic, low-grade inflammation, measurable, for example, by increased levels of TNF-α, IL-6, IL-1β, 

and C-reactive protein (122, 126-128). Interestingly, the presence of clonal hematopoiesis was shown 

to be associated with increased levels of IL-6(129) and TNF-α(130). In addition, various preclinical 

mouse studies have shown a preferential expansion Tet2 mutant cells in the presence of inflammatory 

cytokines(131, 132) and of Dnmt3a mutant HSCs in the aged bone marrow(133). In summary, these 

observations pinpoint to the fact that certain phenotypic features of the mutated cells gain selective 

advantage and favor clonal expansion in the aging and/or inflamed bone marrow.  
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1.4.2 Therapeutic interventions as extrinsic stressors 

1.4.2.1 Chemotherapy and radiation therapy 

Chemotherapy and/or radiation therapy are key components of almost all anti-cancer therapies. 

However, their mode of action is not specific to cancer cells, as almost all rapidly dividing cells – 

malignant or benign – are swept away. Therefore, application of chemotherapy (and radiation, if bone 

marrow is within the radiation field) and subsequent blood cell reconstitution imposes strong replicative 

stress on the hematopoietic cells(134). This fact raises the question whether subtle differences in the 

HCS clones, e.g. clonal hematopoiesis, gain relevance by the bottleneck effect caused by the therapeutic 

measures. Possible scenarios include a differential sensitivity to the therapeutic agent, hence leading to 

different degrees of extinction or, in case of equal sensitivity, competitive advantage and over-

proportional expansion of a clone during reconstitution(135). Before our study was published (section 

2.2.1), three papers had described an association of therapy related myeloid neoplasms with the presence 

of clonal hematopoiesis before initiation of primary chemotherapy(136-138). TP53 was identified as a 

gene conferring particular vulnerability for TMN to the affected patients(136, 137). Regarding the 

potential association with other complications associated with (radio-)chemotherapy, as for example 

necessity of dose reduction, transfusions, and neutropenic complications, no systematic analyses were 

published to the best of our knowledge. 

1.4.2.2 Targeted therapy 

While chemo- or radiotherapy are rather unspecific in their mode of action, the opposite is true (and 

already implied in the terminology) for targeted therapies. Effectiveness of targeted therapies first 

requires a powerful target that is key to oncogenic signaling or other oncogenic mechanisms, often 

compared with Achilles’ heel. Once the target is identified and attacked, malignant cells are usually 

deprived of their basis of survival. However, even with the same diagnosis, usually not all patients 

respond to targeted therapies, indicating that for a subset, the stressor “targeted therapy” is not effective 

due to primary resistance. Primary resistance is often difficult to predict with current routine diagnostics 

– though efforts to broadly implement precision medicine make this a realistic vision – and identification 

of underlying mechanisms is often arduous(139, 140). Concerning MCL, ibrutinib is a powerful 

therapeutic component, but about one third of MCL do not respond to ibrutinib indicating primary 
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resistance(19). Our study introduced in section 2.1.1 untangles the underlying genotypic differences and 

suggests alternative targets.  

Secondary resistance is frequent and implies that the malignant cells lose sensitivity of a previously 

effective treatment. In this scenario, clonal evolution and dynamics come into the play. Secondary 

resistance implies that malignant diseases are not static, but change due to selective pressure of a 

therapeutic agent. There are at least four scenarios for secondary resistance: Resistance of the target by 

mutations, re-activation of the oncogenic pathway by mutations in downstream pathway-components, 

bypass of the oncogenic pathway, and transformation of the underlying disease(141). Clonal dynamics 

and tumor evolution under the JAK inhibitor ruxolitinib were studied in section 2.2.3. 

1.4.2.3 Hematopoietic stem cell transplantation 

Autologous and allogeneic HSC transplantation constitute a very exceptional therapeutic setting, as 

hematopoiesis is completely (myeloablative) or nearly completely (reduced-intensity conditioning/RIC) 

eradicated by conditioning therapy and rebuilt by the own (autologous) or foreign (allogeneic) HSCs 

transplanted after completion of conditioning therapy. In both settings, HSCs are confronted with a bone 

marrow microenvironment altered by the preceding conditioning therapy, in the case of allogeneic 

transplantation even in a foreign setting. In addition, patients after HSC transplantation are highly 

vulnerable for infections and many other adverse events, and receive plenty of supportive 

medication(142). All these circumstances can potentially influence hematopoietic reconstitution and the 

role of clonal hematopoiesis in this setting was almost unexplored. Before our study (presented in 2.2.2) 

it had been shown for autologous transplantations that the presence of clonal hematopoiesis in the 

transplanted HSCs, was associated with an increased risk of TMN, with mutations in TP53 and PPM1D 

being of particular relevance(74). In addition, unexplained cytopenias after allogeneic transplantation 

were shown to be often due to donor clonal hematopoiesis(143). Case reports hinted at an increased risk 

of donor cell leukemia (DCL) derived from clonal mutations in the transplanted HSCs(144). Of note, 

by the nature of allogeneic transplantation, it is difficult to draw clear boundaries with regard to the 

rather artificial categorization of “organism-intrinsic” and “organism-extrinsic” stressors, particularly 

with regard to foreign microenvironmental influences. However, leaving semantic discussions behind, 

the investigation of the role of donor clonal hematopoiesis in the context of allogeneic transplantation 
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is of high clinical relevance. As the age of graft recipients steadily increases due to improvements in the 

peri-transplantational setting(145), the number of elderly related donors rises in parallel(146), leaving 

us with a growing pool of donors with high risk of clonal hematopoiesis. With regard to important 

outcome parameters like overall survival, relapse risks, severe complications like acute and chronic graft 

versus host disease (GvHD), and infections, no data was available before our study.  
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2. Own original work (Eigene Arbeiten) 
 

Scientific questions 

The following, scientific questions connect the individual pieces of research presented in this collection 

of papers:  

1) Which are the genotypic and phenotypic/functional differences in lymphoma sharing the same 

diagnosis (MCL) but showing differential sensitivity to targeted therapy? (section 2.1.1) 

2) In various specific hematologic circumstances (DLBCL, CHIP), are certain 

genotypes/phenotypes selected or gain advantage in a specific microenvironment (specific 

anatomical location, altered bone marrow after allogeneic transplantation) and what are the 

clinical consequences? (sections 2.1.2 and 2.2.2) 

3) In various specific hematologic conditions (CHIP, myelofibrosis), are certain 

genotypes/phenotypes selected or gain advantage under therapeutic pressure (i.e. (radio-

)chemotherapy, allogeneic transplantation, targeted therapy) and what are the clinical 

consequences? (sections 2.2.1 – 2.2.3) 

4) How do genotypes evolve under selective pressure on their phenotype? (sections 2.2.1 -2.2.3)  
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2.1 Genotype – phenotype relationships in B cell lymphoma 

2.1.1 Genotypic differences in MCL cause differential sensitivity to inhibition of BCR/NFκB 
signaling 

 
Rahal R*, Frick M*, Romero R, Korn JM, Kridel R, Chan FC, Meissner B, Bhang HE, Ruddy D, 
Kauffmann A, Farsidjani A, Derti A, Rakiec D, Naylor T, Pfister E, Kovats S, Kim S, Dietze K, Dörken 
B, Steidl C, Tzankov A, Hummel M, Monahan J, Morrissey MP, Fritsch C, Sellers WR, Cooke VG, 
Gascoyne RD, Lenz G, Stegmeier F. 
Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell 
lymphoma. Nature Medicine. Jan 2014, 20(1):87-92. DOI: 10.1038/nm.3435 *equal contribution 
 

My research on genotypic-phenotypic relationships started with a study investigating primary drug 

resistance in MCL with respect to targeted therapies attacking BCR/NFκB signaling. From clinical 

observations, it was reported that about two thirds of MCL patients respond extraordinary well to 

BCR/NFκB inhibition with the BTK inhibitor ibrutinib while about one third of patients had no clinical 

benefit(19). The molecular background for these diverging responses was unknown. Our data from 

pharmacological profiling using 119 cell lines from hematological malignancies and 16 compounds 

were in line with these reports, as only a subset of MCL cell lines was sensitive to BCR/ NFκB inhibition 

with the PKC inhibitor sotrastaurin and the BTK inhibitor ibrutinib. Further functional studies confirmed 

two distinct phenotypes of MCL: One that was sensitive to BCR/NFκB inhibition and one that was not. 

Surprisingly, both MCL types were sensitive to IKKβ/NFκB inhibition, indicating addiction to NFκB 

signaling across all MCL cell lines. Transcriptome sequencing revealed mutations in components of the 

non-canonical NFκB pathway in insensitive cell lines, and extensive functional analyses confirmed 

addiction of ibrutinib/STN insensitive cell lines to non-canonical NFκB signaling. Targeted sequencing 

of 165 MCL patients confirmed mutations in BIRC3, TRAF2, and MAP3K14 (all components of the 

non-canonical NFκB pathway) in 15% of patients.  

Therefore, our study provides an in-depth genetic and functional dissection of MCL with different 

phenotypic responses (highly sensitive versus insensitive) with respect to inhibition of BCR/NFκB 

signaling. To our knowledge, it was the first publication describing and providing functional analyses 

regarding activation of the non-canonical NFκB pathway by oncogenic mutations as an alternative 

pathogenic mechanism in MCL.  



Habilitationsschrift – Mareike Frick 
 

Seite 23 von 101 

https://doi.org/10.1038/nm.3435  

  



Habilitationsschrift – Mareike Frick 
 

Seite 24 von 101 

  



Habilitationsschrift – Mareike Frick 
 

Seite 25 von 101 

  



Habilitationsschrift – Mareike Frick 
 

Seite 26 von 101 

  



Habilitationsschrift – Mareike Frick 
 

Seite 27 von 101 

  



Habilitationsschrift – Mareike Frick 
 

Seite 28 von 101 

  



Habilitationsschrift – Mareike Frick 
 

Seite 29 von 101 

  



Habilitationsschrift – Mareike Frick 
 

Seite 30 von 101 

  



Habilitationsschrift – Mareike Frick 
 

Seite 31 von 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Habilitationsschrift – Mareike Frick 
 

Seite 32 von 101 

2.1.2 Anatomical location of DLBCL is associated with distinct genetic features 

 
Frick M, Bettstetter M, Bertz S, Schwarz-Furlan S, Hartmann A, Richter T, Lenze D, Hummel M, 
Dreyling M, Lenz G, Gaumann A. 
Mutational frequencies of CD79B and MYD88 vary greatly between primary testicular DLBCL and 
gastrointestinal DLBCL. Leukemia & Lymphoma. May 2018, 59(5):1260-1263  
DOI: 10.1080/10428194.2017.1370546  

 

In our next study, we investigated distinct genetic features associated with chronic canonical NFκB 

pathway activation with regard to anatomical presentation of DLBCL. In total, 335 DLBCL samples 

were screened for mutations in CD79A, CD79B, and MYD88 using Sanger sequencing or real time PCR 

high resolution melting analysis (HRMA). Our study cohort included 208 nodal DLBCL and 95 

extranodal DLBCL, of which 15 were primary testicular lymphoma (PTL) and 38 had gastrointestinal 

manifestation. Interestingly, mutational frequencies in CD79A, CD79B, and MYD88 greatly varied in 

the subgroup of extranodal DLBCL. While mutations in the respective genes were frequent in PTL 

(CD79B:10/14 evaluable, MYD88:11/14 evaluable), they occurred clearly below average in the 

subgroup of DLBCL with gastrointestinal manifestation (CD79B: 2/37 evaluable, MYD88:1/35 

evaluable). In the subgroup of PTL, lymphoma with mutations in both CD79B and MYD88 were 

particularly frequent (9/13 evaluable for both genes), pinpointing to an addiction to canonical NFκB 

pathway activation, which is even enhanced by known synergistic effects of these mutations(29). With 

regard to DLBCL, subclassification into GCB/ABC DLBCL (GEP) or GCB/non-GCB DLBCL (Hans-

classifier), PTL were mostly of ABC/non-GCB origin, which is in line with reports linking mutations in 

CD79A, CD79B, and MYD88 with ABC DLBCL phenotype(27, 28).  

Our findings support the idea that specific genetic lesions and associated phenotypes gain selective 

advantage in a specific microenvironment. While testes are considered an immune-privileged site, the 

opposite is true for the gastrointestinal system, where a multitude of antigens from food and 

microorganisms is present.  

In view of possible clinical implementations, our study could be of help to identify DLBCL 

subpopulations suitable for further investigation of pharmacological BCR/NFκB pathway inhibition 

based on their anatomical presentation.  
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2.2 Clinical impact, clonal dynamics and evolution in response to extrinsic stressors in CHIP and 
myelofibrosis 

With few exceptions, hemato-oncologic treatment strategies can be classified as organism-extrinsic 

stressors. Therapeutic measures used in cancer patients undoubtedly impose heavy external stress on 

hematopoietic stem cells. In order to investigate if and how these measures interfere with the clonal 

dynamics, evolution and selection processes of CHIP and myelofibrosis, and to objectify if these 

processes have an impact on important standard clinical outcome parameters, the following three studies 

were performed. Of note, all three studies include serial measurements of patient samples to observe 

long-term clonal dynamics and determine the impact of various stressors on a time dimension scale.  

2.2.1 Role of CHIP in the context of radio-chemotherapy 

 

Arends CM, Galan-Sousa J, Hoyer K, Chan W, Jäger M, Yoshida K, Seemann R, Noerenberg D, 
Waldhueter N, Fleischer-Notter H, Christen F, Schmitt CA, Dörken B, Pelzer U, Sinn M, Zemojtel T, 
Ogawa S, Märdian S, Schreiber A, Kunitz A, Krüger U, Bullinger L, Mylonas E, Frick M*, Damm F*. 
Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia. Sep 
2018, 32(9):1908-1919 DOI: 10.1038/s41375-018-0047-7 *equal contribution 
 

As CHIP is a frequent condition in the elderly population, additional information on potential effects of 

CHIP in the setting of anti-cancer treatments is urgently needed. This is particularly true, as cancer 

incidence likewise increases with age(147). To our knowledge, this study was the first to investigate the 

immediate effects of CHIP and (radio-)chemotherapy on elderly patients.  

In our study, 72 patients with non-hematological cancer who were 55 years of age or older were screened 

for the presence of CHIP prior to (radio-)chemotherapy initiation using a targeted gene panel covering 

genes frequently mutated in clonal hematopoiesis and hematologic malignancy (TruSight Myeloid Panel 

and Customized TruSight Myeloid Panel , Illumina, San Diego, USA). Twenty-two patients harbored a 

total of 33 mutations, with DNMT3A (n = 13) and TET2 (n = 5) being the most frequently mutated genes. 

Mutations were verified using an amplicon based targeted deep sequencing approach or digital droplet 

PCR. Follow-up samples were obtained after several cycles of (radio-)chemotherapy and 32 of the 33 

mutations could be tracked by targeted deep sequencing over treatment courses. We could observe three 

different patterns of clonal dynamics: While 12 of 13 DNMT3A mutations remained stable (defined as 
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< 50% change in baseline VAF), suggesting minor clinical relevance, we could observe clonal expansion 

in six cases including a PPM1D mutation. In contrast, seven clones had a decreasing VAFs, including 

all three cases with mutated SF3B1.  

Correlation with clinical data indicated that patients with antecedent CHIP required chemotherapy dose 

reductions more frequently. Taking solely DNMT3A mutated cases aside due to postulated minor clinical 

relevance, patients with CHIP mutations other than DNMT3A were significantly more likely to present 

with lower hemoglobin levels after six cycles of chemotherapy (P = .017) and hence to be in the need 

of red blood cell transfusions (P = .025).  Though more homogeneous, larger, and prospective studies 

are needed, these findings indicate that depending on the mutated gene, CHIP does have an impact on 

the immediate clinical outcome, as clonal mutations seem to be capable of influencing the way HSCs 

react to the external stressor “radio-chemotherapy”.  

Apart from analysis of clonal dynamics in the context of (radio-)chemotherapy, our study also provided 

valuable insights into clonal expansion patterns within the hematopoietic differentiation tree using 

targeted sequencing of flow-sorted hematopoietic subfractions. Major findings are the predominant 

expansion of CHIP mutations into the myelo-monocytic compartment, with underrepresentation in B 

and particularly T cells, but not NK cells, and, in cases with more than one mutation, expansion patterns 

indicating both monoclonality and oligoclonality.  
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2.2.2 Role of donor CHIP in the context of allogeneic hematopoietic stem cell transplantation 

Frick M*, Chan W*, Arends CM, Hablesreiter R, Halik A, Heuser M, Michonneau D, Blau O, Hoyer 
K, Christen F, Galan-Sousa J, Noerenberg D, Wais V, Stadler M, Yoshida K, Schetelig J, Schuler E, 
Thol F, Clappier E, Christopeit M, Ayuk F, Bornhäuser M, Blau IW, Ogawa S, Zemojtel T, Gerbitz A, 
Wagner EM,  Spriewald BM, Schrezenmeier H, Kuchenbauer F, Kobbe G, Wiesneth M, Koldehoff M, 
Socié G, Kroeger N, Bullinger L, Thiede C, Damm F. 
Role of donor clonal hematopoiesis in allogeneic hematopoietic stem cell transplantation. Journal of 
Clinical Oncology. 2019 Feb 10;37(5):375-385. DOI: 10.1200/JCO.2018.79.2184  *equal contribution 
 

In a second paper, we explored the impact of donor CHIP in the setting of allogeneic HSC 

transplantation from a related older donor. While HSCs are not directly exposed to high doses of 

chemotherapy in the setting of allogeneic transplantation, they have to engraft and proliferate in a foreign 

microenvironment altered by conditioning regimen and frequent infections(142). These circumstances 

likely impose heavy stress on the transplanted HSCs and the role of donor CHIP in this setting was 

almost unexplored before our study. One study related donor CHIP to unexplained cytopenias after 

transplantation(143) and case report data linked donor CHIP and donor cell leukemia(144). However, 

systematic and comprehensive analyses regarding various essential standard transplantation outcome 

parameters and clonal dynamics were lacking.  

We therefore designed a retrospective study including 500 older (55 years or older) related donors from 

nine transplantation centers in Germany and France. Donors were screened for CHIP in pre-transplant 

blood samples using customized versions of the Trusight Myeloid Panel (Illumina, San Diego, USA), 

and donor CHIP status was correlated with standard outcome parameters. Whenever available, 

mutations were tracked in the recipient post transplantation.  

Ninety-two clonal mutations were detected in 80 donors with a median VAF of 5.9%. While overall 

survival was not affected with regard to donor CHIP status (HR: 0.88; 95% CI, 0.65 to 1.321; P = .434), 

cumulative incidence of chronic GvHD was significantly increased (HR: 1.73; 95% CI, 1.21 to 2.49; P 

= .003). On the contrary, cumulative incidence of relapse or progression (CIRP) was significantly lower 

in the presence of donor CHIP (HR, 0.62; 95% CI, 0.40 to 0.97; P = .027). These findings remain 

significant after adjustment for confounders and are indicative of an increased inflammatory activity of 
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or evoked by donor CHIP in the setting of allogeneic HSC transplantation. Of note, non-relapse 

mortality was not affected by the presence of donor CHIP. 

Tracking of clonal mutations proved engraftment of 24 of 25 clones and showed a disproportionate 

expansion in half of them, suggesting proliferative advantages and in this biologically exceptional 

setting. In addition, two cases of donor cell leukemia arising from a donor CHIP clone were 

comprehensively characterized with regard to clonal evolution and malignant transformation, including 

whole exome sequencing in one case. No cases of donor cell leukemia were detected in recipients 

transplanted from donors without CHIP.  

In summary, our study was the first comprehensive analysis of the effects of donor CHIP in the setting 

of allogeneic transplantation. Our results indicate that CHIP clones tend to respond differently than 

unmutated HSCs to the multitude of stressors associated with allogeneic transplantation, as deduced 

from the significant differences in the cumulative incidences of cGvHD and CIRP. Future clinical trials 

and functional analyses are urgently warranted to further refine our knowledge on the role of donor 

CHIP in the setting of allogeneic HSC transplantation.  
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2.2.3 Clonal evolution of myelofibrosis under ruxolitinib therapy 

Mylonas E*, Yoshida K*, Frick M*, Hoyer K, Christen F, Kaeda J, Obenaus M, Noerenberg D, Hennch 
C, Chan W,  Ochi Y, Shiraishi Y, Shiozawa Y, Zenz T, Oakes CC, Sawitzki B, Schwarz M, Bullinger 
L, le Coutre P, Rose-Zerilli M,  Ogawa S, Damm F. 
Single-cell analysis based dissection of clonality in myelofibrosis. Nature Communications. 2020 Jan 
11(1):73 DOI: 10.1038/s41467-019-13892-x *equal contribution 
 

Not only CHIP clones come under pressured by therapeutic measures implemented in hemato-oncology, 

pre-existing hematologic malignancies can likewise evolve under external stressors. As we know from 

various contexts, targeted therapies can function as bottleneck and promote the selection of resistant 

clones(148). When evolving, some diseases become more aggressive. This is the case with 

myelofibrosis, where disease evolution can lead to transformation into secondary AML(96).  

To explore the clonal dynamics and evolution of myelofibrosis treated with the JAK inhibitor 

ruxolitinib, we obtained serial peripheral blood samples from 15 patients with primary or secondary 

myelofibrosis who all received ruxolitinib treatment. The mean follow-up time was 3.9 years. Three 

patients suffered from disease progression: two had transformation into secondary AML and one had 

evidence of disease acceleration.  

Whole exome sequencing was performed for 42 time points, allowing the description of new and 

vanishing mutations and clonal dynamics. Targeted deep sequencing with a mean coverage of 15,250 

reads/amplicon was then implemented to more precisely determine VAFs even at low mutational 

burden. Data obtained from the exomes and targeted sequencing were then used for calculations of copy 

number aberrations and mutation clusters. While genomic complexity increased over time, ruxolitinib 

did not seem to specifically increase evolutionary pressure, as JAK2 and CALR mutational burdens 

remained at relatively high levels in most patients. In line with these molecular observations, clinical 

disease courses were stable in these patients. However, in those patients with disease progression under 

ruxolitinib treatment, we observed greater genetic heterogeneity and mutations in genes associated with 

Ras-Raf-MEK-ERK signaling. Of note, aggressive mutations could be detected at low VAFs months 

before transformation was clinically diagnosed. In addition, one patient acquired a JAK2 R867Q 

mutation associated with resistance to ruxolitinib(149).  
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Single cell sequencing data provided additional insights into clonal architecture of myelofibrosis. Using 

phylogenetic reconstruction, we could show that loss of heterozygosity and parallel evolution are 

frequent features of clonal diversification in myelofibrosis.  
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3. Discussion (Diskussion) 
 

3.1 Genotype – phenotype relationships in MCL and DLBCL 

3.1.1 Genotypic – phenotypic differences in MCL – clinical implications with regard to targeted 
therapy 

Our study presented in section 2.1.1 provides a comprehensive genetic and functional analysis of MCL 

with primary resistance to BCR/NFκB inhibition by STN/ibrutinib. Of note, these phenotypic 

differences with regard to activation of either the canonical or non-canonical NFκB pathway had not 

become clinically apparent before implementation of specific compounds, underlining the fact that 

certain traits only gain visibility under certain stressors. MCL cases with mutations in BIRC3(150) and 

TRAF2(151) had been described in two sequencing studies published in 2013, and several later 

sequencing studies performed in MCL confirmed our results, as they likewise report recurrent mutations 

in BIRC3 and TRAF2(41, 152-154). 

Two years after our study was published in 2014, the WHO revised its classification of lymphoid 

neoplasms, now differentiating two subtypes of MCL based on phenotypic differences. The 

conventional or classical MCL (cMCL) has unmutated/minimally mutated IGHV and mostly expresses 

SOX11, and the leukemic, non-nodal MCL (nnMCL) with mutated IGHV which usually does not 

express SOX11 and has a rather indolent clinical course(3). A recent study published by Nadeu and 

colleagues investigated genetic and epigenetic characteristic of both subtypes using a combination of 

various high-throughput techniques. Of 82 MCL investigated, 61 (=74%) were cMCL and 21 (=26%) 

were nnMCL. Mutations in BIRC3 were more frequent in cMCL (16/61 = 26.2%) than in nnMCL (2/21 

= 9.5%)(41), but statistical significance was not reached (p = 0.11, Chi-Square, calculated by the author). 

Therefore, additional studies are required to evaluate how canonical and non-canonical NFκB pathway 

activation is distributed within the new, phenotype-based sub-classification of MCL by the WHO.  

Identification of activation of the alternative NFκB pathway by oncogenic mutations as mechanism of 

primary resistance to BTK inhibition in MCL bares great therapeutic potential, as it both offers a 

possibility to predict response by pre-therapeutic mutation testing and indicates potential novel targets. 

However, it is important to note that activation of the alternative NFκB pathway by oncogenic mutations 

constitutes an important but by far not the only mechanism of resistance to BTK inhibition. Other 
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mechanisms of primary and/or acquired resistance include mutations in BTK or downstream 

components of the canonical NFκB pathway, as well as mutations in the PI3K/mTOR pathway, TP53, 

CCDN1, or epigenetic modifiers(155-157). In addition, there are further mechanisms of drug resistance 

beyond genetic evolution and selection of resistant clones. For example, interaction of MCL cells with 

the tumor microenvironment leading to adaptive reprogramming of the kinome and bypass of the 

canonical NFκB signaling by activation of PI3K-AKT-mTOR and integrin-1β signaling has been 

described as another mechanism of ibrutinib resistance(158).  

There are various strategies to overcome ibrutinib resistance in MCL. Selective pharmacologic targeting 

of alternative NFκB signaling by a NIK inhibitor or targeting of the converging part of both NFκB 

pathways by an IKKβ inhibitor has shown relevant activity in our preclinical in vitro and in vivo models. 

However, implementation of NIK or IKKβ inhibitors in the clinical setting yet face substantial problems 

due to challenging drug design and toxicity(159). Therefore, current concepts favor, for example, the 

use of BCL2 inhibitors such as venetoclax(160, 161), the CDK4/6 inhibitor palbociclib(162), and the 

anti-CD19 directed chimeric antigen receptor T (CAR-T) cell product brexucabtagene autoleucel(163). 

In summary, our work contributes to the further understanding of the pathogenesis of phenotypically 

different MCL and provides valuable information on potential therapeutic targets. Therefore, with regard 

to future implications of our study, the identified and functionally characterized oncogenic mutations 

should be part of diagnostic targeted sequencing panels for MCL to more precisely characterize 

genotypic properties and prospectively evaluate and/or predict response to therapy.  

3.1.2 Highly different mutation patterns in DLBCL – considerations on anatomical lymphoma 
presentation and associated microenvironmental influences as intrinsic stressors 

Various research papers, including section 2.1.2 of this work have described over-average occurrence 

of characteristic mutations in DLBCL with regard to anatomical manifestation. Specifically, lymphoma 

of immune-privileged sites such as PCNSL and PTL show a much higher rate o.f mutations in the TLR-

adaptor molecule MYD88 and the BCR subunit CD79B(30-33). In line with these reports, the cohort 

investigated in section 2.1.2 comprised 15 PTL, with 11/14 (79%) of evaluable samples having 

mutations in MYD88, 10/14 (71%) of evaluable samples having mutations in CD79B, and 9/14 (64%) 

of evaluable samples having both(85). In addition, the high frequency of mutations in MYD88 and/or 
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CD79B is in line with the reported over-representation of ABC phenotypes in PTL(164), also matching 

the MCD DLBCL subtype that was described later by Schmitz and colleagues(34) or C5 subtype later 

described by Chapuy and colleagues(35).  

Looking for a possible explanation, we have to understand what defines the immune-privilege of the 

testes. Post-meiotic spermatids have a haploid chromosome set and express possible autoantigens. As 

inflammatory processes could be of harm to the developing sperm, baring the danger of infertility, 

Sertoli cells form the blood-testes barrier (or seminiferous epithelium) that provides protection against 

microorganisms and immune cells(165). To fight microorganisms without invasion of immune cells, 

Sertoli cells can release various defense molecules (e.g. defensins and interferons)(166). A possible 

explanation for the remarkably homogeneous landscape of oncogenic lesions in PTL – and lymphoma 

of other immune-privileged sites such as brain and eye – could therefore be suspected in the stimulus-

poor microenvironment of this immune-privileged site. Only those B cells that obtain pro-survival and 

pro-proliferative NFκB pathway signals through acquired BCR-independent NFκB signaling generated 

by mutations in MYD88 and/or CD79B can survive and proliferate(31). Other authors hypothesize that 

due to high mutational load and ongoing somatic hypermutation, PTL are highly immunogenic but can 

escape immune surveillance most likely in immune-privileged sites(120, 167). 

On the contrary, mutations in MYD88 and CD79B occurred clearly below-average in lymphoma of the 

gastrointestinal system (2/37 and 1/35 evaluable cases) in our study. This is in line with data reported 

by Kraan and colleagues(31). Two groundbreaking next generation sequencing studies by Schmitz and 

colleagues(34) and Chapuy and colleagues(35) did not introduce a separate subgroup of DLBCL of 

gastrointestinal origin, prohibiting comparison of our data with these valuable datasets. By its nature, 

the gastrointestinal system is rich in allo-antigens both from ingested materials and 

microorganisms(119), building a microenvironment fundamentally different from the immune-

privileged sites discussed above. Extranodal lymphoma frequently arise from the gastrointestinal 

system, with DLBCL being the most frequent NHL entity(119, 168, 169). Occurrence of at least a 

subgroup of gastrointestinal DLBCL is associated with clinically relevant inflammatory processes such 

as chronic infection with Helicobacter pylori(168, 170), though associations with further pathogens are 

not as well documented as for example for mucosa associated tissue lymphoma (MALT). However, with 
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the emergence of high-throughput microbiome research in the last decade, we yield promising new 

techniques for the systematic description of possible further associations. Though functional proof is 

lacking, we can hypothesize that the abundance of antigens present in the gastrointestinal system can 

lead to chronic stimulation of B cells and activation of BCR signaling, which then promotes and/or 

sustains proliferations of malignant clones, bypassing the necessity of oncogenic mutations activating 

associated pathways.  

In conclusion, different anatomical localizations representing highly divergent microenvironments 

promote the selection of different genetic subtypes of DLBCL, most probably reflecting different 

biological needs of the malignant cells in terms BCR stimulation in an antigen-poor or antigen-rich 

surrounding, respectively. In terms of clinical relevance, different genotypes at different anatomical 

locations can be predictive for the response to specific targeted therapies, as for example, ibrutinib, 

which is a knowledge particularly relevant as long as targeted sequencing of oncogenic genes is not 

everywhere part of routine diagnostics.   

3.2 Genotype – phenotype relations in Clonal hematopoiesis/CHIP 

3.2.1 Radio-Chemo 

To our knowledge our study introduced in 2.2.1 was one of the first to investigate the impact of (radio-

)chemotherapy on the clonal evolution of CHIP. Considering the fact that about 10-15% of individuals 

older than 60 years have CHIP, it is easy to estimate that also a substantial part of elderly cancer patients 

in need of (radio-)chemotherapy is affected by this condition, highlighting the clinical relevance of this 

investigation.  

Our study allows a differentiated view on the urgent question if CHIP clones exhibit specific patterns of 

expansion or extinction in response to the bottleneck effect evoked by myelotoxic therapies. Of note, 

clones harboring mutations in the most frequently mutated gene DNMT3A showed a stable clone size 

over the course of therapy in 12 of 13 cases, indicating minor clinical relevance of DNMT3A mutations 

in this setting. This notion is also supported by the fact that the presence of CHIP in general was not 

associated with complications or adverse events with the exception of an increased need of 

chemotherapy dose reductions. However, when excluding mutations in DNMT3A due to postulated 

minor clinical significance in this specific setting, we suspect premature exhaustion of at least the 
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erythroid cells, mirrored in significantly lower hemoglobin levels (P = .017) and an increased transfusion 

necessity (P = 0.25, after adjustment for confounders) after six cycles of therapy.  

Other studies primarily focused on the risk of developing therapy associated myeloid neoplasms (TMN), 

while effects of clonal hematopoiesis on treatment related toxicities or adverse events were not 

systematically investigated. These studies uniformly report an in increase in clone size of PPM1D and 

TP53 mutations(138, 171, 172) in the context of classic chemotherapy. This was most impressively 

shown in a very recent study by Bolton and colleagues, in which 10.138 individuals with cancer were 

screened for CHIP in pre- or post-therapeutic samples. While ASXL1 mutations were significantly 

associated with smoking, mutations in PPM1D, TP53, and CHEK2 were enriched by previous cytotoxic 

therapy. Of note, this was not the case for mutations in the epigenetic modifiers DNMT3A and TET2, or 

the splicing regulators SF3B1, SRSF2, and U2AF1(138). Among the six expanding clones in our study, 

we find a PPM1D mutation, while another PPM1D mutation and a TP53 mutation remained stable 

according to our definition (< 50% increase in VAF). 

Our prospective study is limited by the heterogeneous chemotherapeutic regimes applied in a relatively 

small number of cases and a follow-up time that is too short to evaluate risk of TMN. However, together 

with data generated by other studies, characteristic profiles of individual CHIP mutations in response to 

specific stressors become apparent. While mutations in DNMT3A and TET2 are rather associated with 

increased HSC self-renewal in conditions involving inflammatory processes (also see section 1.2.2), 

mutations in DNA repair genes such as TP53 and PPM1D lead to increased survival, consecutive clonal 

expansion and clonal evolution in the context of cytotoxic stress. Together, these factors culminate in a 

dramatically increased risk of therapy associated myeloid neoplasm (TMN)(74, 136, 137, 173, 174). But 

while the presence of a TP53 or PPM1D mutation is a clear intrinsic risk factor for future TMN, the 

type of cytotoxic agent applied also plays an important role. Though additional studies are needed to 

precisely determine the risk of TMN for individual mutation – drug combinations, we already know that 

platinum and topoisomerase II inhibitors are associated with a high risk of TMN in the presence of TP53 

and PPM1D mutations(138, 173). The same is true for therapeutic radiation(138).  
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In summary, our study was one of the first to untangle the role of CHIP in the context of (radio-

)chemotherapy. As shown by us and other studies, a differentiated view on the risks of CHIP in this 

setting is required that both considers the mutated gene (or even type of mutation) and the type of stressor 

(specific cytotoxic reagent, dosage, etc.) administered. To more precisely evaluate this complex 

interplay, joint efforts and the integration of respective analyses in prospective clinical trials are needed. 

The same is of course true for the effect of clonal mutations in the presence of targeted therapies (and 

other novel agents) as a type of external stressor with different principle of action (further discussed in 

section 3.3 for paper 2.2.3). Further knowledge about the interplay of clonal mutations and specific 

therapies will enable physicians to weigh up the short-term (e.g. necessity of dose reduction, 

transfusions) and long-term (e.g. TMN) risks for each patient, and hence design a “hand-tailored” 

regimen best fitting the individual prerequisites and needs of the patient.  

3.2.2 Microenvironmental stressors 

In our study presented in 2.2.2 investigating the role of donor CHIP in the setting of allogeneic 

transplantation, CHIP clones are likewise exposed to heavy stressors. Like all transplanted HSCs, they 

have to newly engraft in a foreign bone marrow that has previously been subjected to highly toxic 

conditioning therapy, repopulate this empty niche and reconstitute the complete hematopoietic system, 

and in parallel deal with additional stressors caused by treatment related complications like organ 

failures or  viral, bacterial, fungal or parasite infections leading to inflammation. As outlined in 1.2.2, 

inflammatory processes, aging, and clonal hematopoiesis are closely linked, but cause and consequence 

relationships yet need to be untangled.  

In our study, we observed engraftment of all but one CHIP clone (SF3B1 mutation in R041) followed 

by sequential analyses of pre- and post-transplantation samples. Moreover, more than half of these 

clones showed a disproportionate expansion in the recipient compared to the donor VAF, indicating 

increased proliferative activity of the mutated clones compared to the wildtype ones. Of note, among 

the clones with disproportionate expansion, we find six with a DNMT3A mutation, two with a TET2 

mutation, and one with an SRSF2 mutation. Successful engraftment of clonal hematopoiesis with 

increased clone size in the recipient were also described in a later study(175). 
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From murine models we know that inflammatory cytokines promote the expansion Tet2 mutated 

clones(131, 132). Likewise, the presence of TET2 and DNMT3A mutations is associated with increased 

levels of IL-6 and TNFα in humans, respectively(129). Keeping the plethora of possible and frequent 

complications of allogeneic HSC transplantation in mind, it is not surprising that levels of inflammatory 

cytokines are elevated in the bone marrow microenvironment after conditioning therapy compared to 

healthy individuals(176). It is therefore reasonable to hypothesize that the successful engraftment and 

over-average expansion of DNTM3A and TET2 mutated HSCs is due to their known increased capability 

of self-renewal which receives an additional boost by the inflamed microenvironment. On the contrary, 

the pro-inflammatory microenvironment does not regularly seem to induce new clonal mutations in 

HSCs transplanted from a young donor to elderly recipients, as shown by a recent study by Heumüller 

and colleagues(177). This allows the conclusion that HSCs with pre-existing mutations – best studied 

for DNMT3A and TET2 – find a microenvironment particularly favorable with regard to clonal 

expansion in the context of allogeneic transplantation, but the rate of newly induced mutations does not 

seem to be increased. Clonal evolution and malignant transformation of pre-existing CHIP clones should 

however be excluded from this model.  

Inflammation not only seems to support the engraftment and expansion of clonal hematopoiesis – clonal 

hematopoiesis itself promotes the release of pro-inflammatory cytokines and activity of immune cells. 

This was shown in various studies for mutations in Dnmt3a and Tet2(82, 129, 178, 179). In specific, in 

murine models, the presence of Dnmt3a and Tet2 mutant clones led to increased levels of IL-1β,  IL-6, 

IL-13, and TNFα(82, 179). We can therefore postulate a positive feedback loop – or vicious circle – 

with an inflamed milieu promoting the expansion of various mutations of clonal hematopoiesis, which 

in return sustain and enhance inflammation(122). This hypothesis is further supported by one of our key 

findings: The cumulative incidence of chronic graft versus host disease (cGvHD) – a severe 

inflammatory complication with reactivity of the transplanted immune system against structures of the 

recipient(142) – is significantly higher in recipients transplanted from a donor with CHIP, in particular 

with a DNMT3A mutation. In return, incidence of relapse or disease progression after transplantation in 

patients with residual disease is significantly lower. This beneficial fact is most likely due to the well-

described graft versus leukemia (GvL) effect that often goes in line with GvHD and can be considered 
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the positive side of the coin(142). The association of CHIP with GvHD was also described by Oran and 

colleagues, though their yet not fully published data (last update: 5th January 2021) suggests an increased 

incidence of acute GvHD rather than chronic GvHD(180). 

Though functional analyses are required to dissect the causal relation between CHIP and cGvHD/GvL, 

the data generated in our study strongly support the idea that the presence of CHIP clones, especially 

DNMT3A and TET2 mutations, is promoted by and itself promotes inflammatory processes. Yet, with 

our current knowledge, it is still too early to judge how this ultimately affects patients in general and 

how a sensible risk stratification could look like. Risks (increased risk of cGvHD) and benefits (reduced 

risk of relapse/progression) seem to be quite balanced, at least, if the unchanged overall survival 

observed in our study is taken as outcome parameter of greatest meaningfulness.  

At this point, it is important to address the fact that the presence of donor CHIP is associated with an 

increased risk of donor cell leukemia in our study. Though the two cases observed have no impact on 

overall survival strata with regard to donor CHIP status, successful engraftment, clonal evolution and 

malignant transformation of the transplanted clone are of devastating consequence for the affected 

recipient. Future studies should therefore carefully monitor the occurrence of DCL to identify additional 

factors that drive malignant transformation in the presence of donor CHIP. Conceivable factors could 

be mutations in specific genes, as well as extrinsic stressors such as conditioning regimens applied, 

medication, radiation, infections, and smoking.   

3.3 Myelofibrosis – Disease evolution in the context of JAK-targeting therapy 

As delineated for the development of DCL from donor HSCs with CHIP, hematologic malignancies are 

dynamic diseases following Darwinian principles. Disease evolution can therefore be understood as an 

interplay of mutagenesis and selection processes by intrinsic and extrinsic stressors(181). Therapeutic 

actions, especially those with a targeted mode of action, hence bare the threat to select for resistant 

subclones, as for example seen in CML(148), and unintentionally promote unfavorable disease 

progression.  

Myelofibrosis bares the inherent risk to progress to secondary AML with dismal prognosis(96). Factors 

promoting leukemic transformation by imposing evolutionary pressure on the malignant cells are 
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therefore of great clinical interest. Though long-term data do not seem to indicate an increased risk for 

leukemic progression of ruxolitinib therapy compared to best available therapy – in fact, a decreased 

risk is discussed – current data prohibit final conclusions, as long-term data from the COMFORT-II  

trial also include cross-overs of the control study population to the treatment arm(182).  

Our study provides valuable insights into the clonal architecture, and subclonal evolution and dynamics 

of 15 patients with primary or secondary myelofibrosis treated with ruxolitinib over a cumulative time 

of 58.5 years. With a mean follow-up of 3.9 years/patient and samples from 42 time points, our data 

allow a detailed insight into various disease courses (stable diseases, progression, leukemic 

transformation) using whole exome sequencing with additional resolution at single cell level.  

The study further supports the above described notion that disease progression and leukemic 

transformation are not the result of extrinsic selection pressure imposed by targeted JAK inhibition, but 

rather the result of aggressive subclones that are detectable long time before progression and gain 

predominance over less aggressive clones. As already described, JAK2 mutational burden usually 

remains stable or decreases only slightly under ruxolitinib therapy(115), making ruxolitinib an effective, 

but palliative treatment to relieve MF associated symptoms. In our study, we likewise observe only two 

molecular remissions, while JAK2V617F mutations and CALR mutations remain well detectable in the 

rest of patients despite durable clinical responses.  

We observed one subclonal JAK2 mutation (R867Q) associated with ruxolitinib resistance(149) in a 

patient who died of sepsis in disease progression. As shown by single cell analysis of CD34+ cells and 

targeted sequencing of flow-sorted hematopoietic sub-fractions, this mutation particularly dominates the 

stem cell compartment, while a clone with classical JAK2V617F mutation and a mutation in KRAS 

occupies only minor clonal space in the stem cell compartment, but significantly expands into the 

monocytic compartment. Disease progression in this patient might therefore indeed be due to potential 

selective advantage of the ruxolitinib resistant clone in the presence of ruxolitinib as external stressor. 

However, our data provide evidence that there are major, ruxolitinib independent, cell-intrinsic factors 

that favor disease progression. First, we see increased genomic instability in terms of mutational 

frequencies and copy number alterations in those patients who progress compared to those with stable 
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disease. And second, all three patients with disease progression yielded clones harboring mutations in 

the RAS-RAF-MEK-ERK pathway: two patients in NRAS and one patient in KRAS. In other myeloid 

diseases, mutations in these genes are known drivers of progression and indicate poor prognosis(183, 

184), hence a similar role in myelofibrosis is probable.  

With the data available, it is impossible to rule out a role of ruxolitinib as external stressor in disease 

progression for any patient. Importantly, with regard to the high-resolution molecular data provided by 

our study, we have to note that for ethical reasons, data for an untreated control population are not 

available. However, improved overall survival(182) (with the known limitations of the clinical trials) 

and our molecular data strongly argue against ruxolitinib as major stressor in genetic evolution and 

disease progression.  
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4. Summary (Zusammenfassung) 
 

This series of research papers explores the influence of various stressors on genotype – phenotype 

relationships in the context of premalignant and malignant hematologic conditions. Mutations translate 

into phenotypic changes and exposure to organism-intrinsic or organism-extrinsic stressors may reveal 

differences in clonal fitness with preferential expansion of clones harboring certain traits, as well as 

primary or secondary drug resistance. Investigation of the effects of pharmacological and other medical 

interventions on genotype and phenotype is of particular relevance, as this may have profound clinical 

consequences and therefore is part of the responsibility and due diligence we owe our patients.  

Using in-depth genetic and functional analysis of MCL cell lines, mouse models, and patient samples, 

we comprehensively characterized the genetic background of an important mechanism responsible for 

primary resistance to the BTK inhibitor ibrutinib in mantle cell lymphoma. Here, activation of the non-

canonical NFκB pathway was for the first time described as mechanism of primary resistance to 

ibrutinib. In another research paper, mutational patterns known to be responsible for chronic active 

NFκB signaling and potentially predictive of response to targeted BCR/NFκB inhibition were described 

in DLBCL with respect to anatomical location. Likewise, clonal evolution of primary and secondary 

myelofibrosis and genetic background of leukemic transformation under the JAK inhibitor ruxolitinib 

were characterized in long-term serial patient samples using whole exome sequencing, ultra-deep 

targeted sequencing and single cell analysis. With regard to the premalignant condition of clonal 

hematopoiesis, we described clinical outcome and genetic evolution under the pressure of myelotoxic 

therapies and allogeneic hematopoietic stem cell transplantation. Interestingly, mutations in the most 

frequently mutated gene DNMT3A rarely show clonal expansion and seem to be of minor clinical 

relevance under the pressure of cytotoxic therapies. In contrast, they are associated with immunological 

effects in the context of allogeneic transplantation, as we observe an increased cumulative incidence of 

cGvHD and a reduced cumulative incidence of relapse and progression. The later is most probably due 

to an enhanced GvL reaction when donor CHIP is present in allogeneic HSCs. In addition, 

disproportionate clonal expansion can be observed in about have of all donor CHIP cases.  
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Together, these findings indicate mutation and context specific behavior of (pre)malignant 

hematopoietic cells, underlining the need of individual mutation – stressor and genotype – phenotype 

investigations to approach the overall goal of individualized precision medicine.  
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