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ABSTRACT

The use of coarse-grained (CG) models is a popular approach to study complex biomolecular systems. By reducing the number of degrees of
freedom, a CG model can explore long time- and length-scales inaccessible to computational models at higher resolution. If a CG model is
designed by formally integrating out some of the system’s degrees of freedom, one expects multi-body interactions to emerge in the effective
CG model’s energy function. In practice, it has been shown that the inclusion of multi-body terms indeed improves the accuracy of a CG
model. However, no general approach has been proposed to systematically construct a CG effective energy that includes arbitrary orders of
multi-body terms. In this work, we propose a neural network based approach to address this point and construct a CG model as a multi-
body expansion. By applying this approach to a small protein, we evaluate the relative importance of the different multi-body terms in the
definition of an accurate model. We observe a slow convergence in the multi-body expansion, where up to five-body interactions are needed
to reproduce the free energy of an atomistic model.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). hitps://doi.org/10.1063/5.0041022

. INTRODUCTION

Molecular dynamics (MD) is a well-established tool for study-
ing biomolecular systems. Atomistic MD can be used to characterize
protein configurational changes, folding, and binding of small to
intermediate-sized proteins (hundreds of residues) on timescales of
milliseconds.'” When combined with recent methodological and
algorithmic advances, even longer timescales can be reached.””
However, despite this progress, MD is still limited to relatively fast
and localized processes, when considering biological length- and
timescales.

Various methods have been developed to push the boundaries
of the time- and length-scales accessible by MD. Enhanced sampling

methods promote the exploration of conformation space and the
transition between long-lived (metastable) states in order to obtain
converged estimates of free energy landscapes that are beyond the
reach of naive MD simulations. Examples include umbrella sam-
pling,”" parallel tempering,” "> or adaptive sampling.”"” "> Alter-
natively, instead of expediting free energy landscape exploration,
the free energy landscape itself can be simplified by defining and
applying a molecular model with a coarse-grained (CG) repre-
sentation.'” *' By using coarse-graining to reduce the degrees of
freedom in the molecular system, simulations can be significantly
sped up. Because coarse-graining necessarily omits some physic-
ochemical details, it is crucial to choose a CG strategy designed
to preserve the properties of interest to the researcher. Even if
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some chemical details are missing in the CG representation, one
can argue that a successful CG model allows us to focus on
the most important physical factors associated with the system
behavior."”

In practice, the definition of a CG model consists of two steps:
first, multiple atoms are mapped onto CG sites, often referred to as
“beads.” Then, an effective CG Hamiltonian is defined as a func-
tion of the bead coordinates. These steps are interconnected and
are both important for the success of a CG model.”” Although mul-
tiple algorithmic strategies have been proposed for the CG map-
ping,” *° they are most commonly based on physical and chemi-
cal intuition, and the optimization of the CG mapping is still an
open area of research.” The definition of an effective Hamilto-
nian for a given CG mapping depends on the goal of the coarse-
grained model. As some of the information is necessarily lost
upon coarse-graining, CG models must be designed such that cer-
tain targeted properties of the molecular system are retained and
can be computed from both the all-atom and the CG ensem-
bles. Depending on the subject of study, this can be accomplished
by using top-down, bottom-up, or knowledge-based models.”” In
top-down methods, a CG model is defined to optimally repro-
duce a set of global (macroscopic) observables.'”*~*" In contrast,
bottom-up CG methods are designed to preserve specific micro-
scopic properties of an atomistic or first-principles model while
coarse-graining, e.g., thermodynamic properties'”'*"'** or kinetic
properties. ”

When designing a CG model, one of the main difficulties is
that the CG Hamiltonian should, in principle, include multi-body
interaction terms among the beads in the system.”* * Traditionally,
CG Hamiltonians for protein systems have been defined as a com-
bination of functional forms similar to the ones used in atomistic
forcefields, that is, harmonic bonds, angle and dihedral terms, and
non-bonded two-body interactions (see, e.g., Refs. 29, 39, and 40).
Multi-body terms have been added in CG models as a correction’' "’
or by considering the physical nature of the corresponding interac-
tions, as for instance, water-mediated potentials.m'% However, the
multi-body terms are often crucial to reproduce the system’s behav-
ior correctly. For instance, an early study with a CG water model
including three-body interactions showed the importance of many-
body terms.” Larini et al. designed a CG model by parameterizing
specific forms of two-body and three-body energy functions and
have shown that they perform significantly better than the ones
parameterized with only two-body potentials.”* A more general and
systematic approach, which does not require the choice of a spe-
cific three-body functional form, was developed by Das and Ander-
sen."”" When tested on the modeling of SPC/E water, this approach
obtained a significant improvement in the model accuracy.” Addi-
tionally, Andrienko and co-workers have shown that the inclusion of
many-body terms into a CG model can result in substantial changes
in the two-body interactions, making them much more attractive
at short distances.”’ By first parameterizing the two-body poten-
tial and then introducing three-body terms as a correction, these
authors have demonstrated that three-body interactions are essen-
tial to reproduce structural properties of liquid water.”’ Four-body
terms have also been taken into account in a CG model energy, by
considering dihedral potentials between sets of four atoms,’’”” and
higher-body terms have been built by means of statistical contact
potentials.”™
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Many-body terms can also be included in a CG poten-
tial by using kernel-based machine learning methods, such the
Gaussian approximation potentials pioneered by Csanyi and co-
workers. It has been shown that CG molecular models designed
using this framework are able to describe many-body interactions
and are much more accurate than models only using pair poten-
tials.”” Scherer and co-workers have also described a number of
kernel-based strategies to parameterize the traditional force field
of molecular liquids, and they have showed that a model with
two- and three-body machine learned potentials is computation-
ally efficient and correctly recovers two- and three-body distribution
functions.”’

Alternative approaches have been proposed to take into
account multi-body terms. For instance, multi-body corrections can
be included by utilizing virtual sites in a CG mapping scheme.”
In the ultra-coarse-grained (UCG) theory, standard single-state CG
beads are mixed with “special” CG beads with rapidly adjusting
internal states. In theory, this approach can effectively account for
multi-body effects in the CG model, but it is limited by the choices
for the functional forms of the interactions.” UCG representations
are equivalent to interacting-particle reaction dynamics (iPRD),"
which were obtained as fine-grained representations of particle-
based reaction dynamics rather than coarse-grained representations
of molecular systems.

In recent work, by our group”®* and others,””*** a differ-
ent philosophy has been employed to take into account multi-
body effects in CG modeling: namely, taking advantage of the
ability of modern machine learning techniques to approximate
arbitrary complex multi-body functions. Given the recent success
in the use of these techniques for the definition of the classical
energy function from quantum mechanical calculations,” " a sim-
ilar idea has been applied for coarse-graining. To this end, we
have used both neural networks (CGnets)®"*” and kernel methods®
as universal function approximators that can represent complex
many-body terms on top of lower order terms. We have demon-
strated on several simple systems and a mini-protein that, thanks
to the general modeling of the full n-body interaction potential
allowed by these techniques, it is possible to design CG models
that accurately reproduce the free energy landscape of atomistic
models #1628

In the present work, we employ general CGnets and a multi-
body CGnet architecture in order to analyze to which degree multi-
body interactions are required to represent accurate coarse-grained
force fields. We find that, on a test miniprotein, correction terms
limited to three-body interactions are not sufficient for a CG model
to reproduce the free energy of an atomistic model. Even if they
are very small with respect to the two-body and three-body con-
tributions, four-body terms and chirality information are needed
to at least qualitatively reproduce the free energy landscape of the
miniprotein considered here. Furthermore, five-body terms are nec-
essary to quantitatively reproduce the free energy. Surprisingly, not
only do additional terms beyond five-body not further improve the
CG model (according to the mean square distance from the refer-
ence free energy landscape), but a model including up to five-body
interactions outperforms our original CGnet model, which in theory
allows for interactions at any order.”’ We believe that this archi-
tectural restriction of the multi-body interactions up to a certain
order acts as an implicit regularization on the CG model that reduces

61,62
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overfitting, producing a smoother free energy landscape and better
agreement with the atomistic model.

Although this approach is applied to a single system and we
cannot directly generalize the results to different systems, the multi-
body decomposition presented here opens the way to the formula-
tion of more general and accurate CG models and to the understand-
ing of the key physical ingredients, shaping the energy landscape of
a CG protein model.

Il. THEORY AND METHODS
A. Coarse-graining with thermodynamic consistency

Bottom-up methods are said to be “thermodynamically consis-
tent” if the free energy landscape of the resulting CG model matches
the corresponding free energy landscape of the fine-grained model
(when projected in the same space). One approach to enforce ther-
modynamic consistency is the so-called multi-scale coarse-graining
method (MS-CG) proposed by Noid, Voth, and colleaguesf““% It
has been proven that, under certain restrictions of the CG map,
the thermodynamically consistent CG model can be uniquely iden-
tified from the set of all possible CG energy functions by mini-
mizing the mean square error (MSE) between the instantaneous
atomistic forces projected onto the CG space and the CG forces.”
This procedure, originally developed in the atomistic context for
ab initio data,” is called “force matching” and was first employed
in the CG context in Ref. 18. However, the force matching MSE can
never be reduced to 0. This is because each point in CG space cor-
responds to an ensemble of atomistic configurations, and the CG
force cannot match each instantaneous force of an all-atom con-
figuration mapping to the same CG configuration. Thus, the forces
calculated from the thermodynamically consistent CG model cor-
respond to the mean atomistic force computed on that ensemble
of atomistic configurations weighted by their Boltzmann factors.”
Therefore, the minimum MSE obtained through force matching
in the CG context is strictly larger than 0 for any non-trivial CG
mapping. In a statistical machine learning framework, this mini-
mum MSE corresponds to the estimator noise.”’ In this section,
we briefly describe the theory behind the force matching method
for coarse-graining.

A configuration of an all-atom protein system consisting of N,
atoms can be represented by a vector r € R*, If the representation
is coarse-grained, the atomistic configuration is mapped into a lower
dimensional vector x via the mapping function,

x=&(r) e R, (1)

where ncg < N, is the number of beads in the CG system. The
mapping scheme & depends on the specific system under study.”
Here, we assume that the CG mapping is given and that it captures
the most important structural features of the molecule. We further
assume that £ is linear, i.e., the mapping is a linear transformation of
variables defined by the coarse-graining matrix & € RN+, 5o that
x = Er. In the following, we use a matrix & whose elements are only
zeros and ones: in other words, the CG mapping is a slicing of the
configurational space of the atomistic model.

We indicate the CG energy function as U(x; 0), where 6 are
parameters that need to be optimized. The parameterization of
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U(x; 0) can be realized in different ways, i.e., through the com-
bination of fixed functional forms or through machine learning
approaches.” >

Here, we employ a neural network architecture to represent
U(x; 0) and we seek to optimize the network parameters 0 to obtain
the thermodynamically consistent energy function for a given CG
system. This means that we wish to identify the parameters that best
satisfy the following equation:

U(x;0) = —ksTln p“°(x) + const, 2

where kg is the Boltzmann constant, T is the temperature, and pCG (x)
is the probability density distribution in the CG space, given by the
marginalization of the probability density of the atomistic model,
pCG(X) _ f #(r)a(x f(r))dr’ 3)
[ u(r)dr
where u(r) = exp(=V(r)/ksT) is the Boltzmann weight associated
with the atomistic energy V(r).”

It is important to note that even if the atomistic energy V(r)
contains mostly pairwise interactions, by enforcing Eq. (2), multi-
body terms emerge in the thermodynamically consistent energy of a
CG model, by effect of the dimensionality reduction.

Various methods have been proposed to satisfy Eq. (3) as best
as possible, such as relative entropy’’ and force matching.'*"” In this
work, we design protein CG models by means of the force matching
method.

In practice, force matching optimizes the parameters 6 in the
CG potential U(x; 0) through the minimization of the functional,"**’

x'(0) = (|Ex(F(r)) + VU(ER,0)|*),, (4)

where —VU(x; 0) is the CG force field, Er(F(r)) is the instantaneous
all-atom force projected onto the CG space,” and {-), is the weighted
average over the equilibrium distribution of the atomistic model, i.e.,
r ~ u(r). With our assumptions on the CG mapping, the projection
of the forces becomes Er = E.

It can be proven that the CG potential minimizing (4) in the
space of all possible functions satisfies thermodynamical consistency
(2) in the limit of infinite sampling.'**”

B. Multi-body terms in the CG potential

In principle, the MS-CG approach allows us to find the cor-
rect thermodynamically consistent CG energy function if the MSE is
minimized in the space of all possible functions, including multi-
body terms. However, in practice, the CG model is usually opti-
mized variationally in the space spanned by only two-body (or
few-body) functions.” For an all-atom system with N, atoms, the
atomistic potential energy of the system V(r) is usually expressed as
the sum of non-bonded pairwise interactions (e.g., Lennard-Jones
and Coulomb) and local terms such as harmonic bond, angle, and
dihedral potentials. In general, the CG energy U(x, 6) can then be
decomposed as follows:

U(x0) = Uxi, %, .., x:360) = > UP (x,6), (5)
k=2
where x;, with i € {1, 2, ..., n}, indicates the coordinate of the ith

CG bead. U¥(x, 6) indicates a functional form involving k-body
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interactions and can be further decomposed as

u® (x,0) = U(k)(xl,xz, .. > Xn3 0)
= Z Sivinoie (Xip> Xiys - - - Xy )5 (6)
{ivsinsn i}
where {i, i, ..., ix} € {1, 2, ..., n} indicates all possible combina-
tions of k indexes chosen from the full set {1, 2, ..., n} and f;,i,...;,

are non-decomposable k-body functions (i.e., they cannot be writ-
ten as the sum of lower order functions). Note that we do not include
k=11n (5) as (i) only relative energies matter, and thus, the energy U
is defined up to an additive constant, and (ii) we assume the absence
of external forces, and thus, the energy only depends on internal
coordinates.

Traditional CG approaches only include lower order terms for
the non-bonded interactions, that is, the effective CG potential usu-
ally contains only U® and sometimes U®) terms in the decomposi-
tion (6), as discussed in the Introduction. In this work, we focus on
the effect of higher order terms in CG protein models and extend our
previously proposed deep learning framework (CGnets)®' to explic-
itly learn the terms U™® for any k in a thermodynamically consistent
potential U(x, 6).

C. Constructing a multi-body CG model
using neural networks

In our previous work,”' we proposed CGnet, a deep learning
framework, to model a thermodynamically consistent CG poten-
tial from all-atom molecular dynamics trajectories. In this work,
we extend CGnet to extract the different n-body contributions
explicitly, i.e., by means of a multi-body expansion.

We create a set of several different models to explore the con-
tributions of the multi-body terms in the CG energy. We start the
multi-body expansion (5) by considering the two-body contribu-
tion. A similar two-body network was also employed in our previous
work®! to define what we called “the spline model,” which was used
as a comparison to CGnet. In practice, as shown in Fig. 1(a), the
Cartesian coordinates x of the CG system are first transformed into
a set of roto-translational invariant features y. Then, each single

(a) (b)

2-body net

Featurization
<
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TABLE 1. Hyperparameters of the neural network for different models.

Network No. of neurons/ Lipschitz
Model depth layer reg. strength
CGnet 5 250 4.0
2-body 3 60 5.0
2, 3-body 3 60 5.0
2, 3, 4-body 3 80 5.0
2, 3,4C-body 4 80 5.0
2,3, 4C, 5-body 3 70 5.0

feature is passed separately through an individual network [(indi-
cated as “two-body unit” in Fig. 1(a)]. The features considered here
consist of all the pairwise distances and cos(¢) and sin(¢)) of each
dihedral angle ¢ spanned by four continuous beads. In addition, all
the angles defined by three adjacent beads, all the bonds between
two adjacent beads, and excluded volume terms are passed through
the prior energy unit, which precomputes a prior potential as pre-
viously described.”’ The excluded volume repulsive terms take the
form Zij(%)c, where rj; is the distance between CG beads i and j for

all pairs (i, j) connected by >3 bonds. The excluded volume radius o
and exponent c are fixed to the values obtained in previous work:"’
0 =5.5 A and ¢ = 6. The prior energy terms serve as a physical con-
straint and act as a regularization, ensuring that trajectories gener-
ated by the learned potential lie within physical meaningful regions.
The sum of the energy resulting from all the two-body units, the
dihedral units, and the prior energy is the CG energy of the two-body
model.

We then consider the next term in expansion (5), by includ-
ing three-body terms. That is, once the two-body CGnet is trained,
we fix its weights, and three-body contributions are added to the
fixed two-body CGnet. The three-body contributions are added by
defining three-body unit networks (see Fig. 1, with k = 3): each unit
network takes as input the three pairwise distances among a set of

n

three beads for each of the ( )

3 sets that can be selected from the total

2,...,k-body net

< FIG. 1. (a) Neural network structure for
- u © ||f : :

g @ ] () the two-body CG potential. The input to
é T f(x) k-body Unit 1 a given two-body unit is a single pairwise
IS - 0 : distance between a pair of CG beads.
3 - S (b) Neural network structure for a muli-
R el Walié @ body CG potential up to order k. The
— L inputs to a given k-body unit are all pair-

2-bod * L Y
wise distances within a given set of k CG

beads.
Net
— Single o Energy All Feat Net
= Feature, y, Unit i Term, U, frome iﬁfff.es Unit Tirr]rirgm
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n beads of the system. The training of the network is similar to the
two-body model. However, now, only the three-body unit networks
are trained, while the pre-trained two-body network is kept fixed, in
order to obtain a three-body correction to the two-body model. The
whole network defines the U"™?(x) + U (x) terms of the multi-
body expansion (5), and we refer to it as the “2, 3-body model” in
the following. Note that in the 2, 3-body model, we do not include
a prior energy unit explicitly because it is already included in the
two-body model.

We continue to extend the network this way to model expan-
sion (5) by adding higher order corrections, as shown in Fig. 1(b).
At the k-body order, the purple colored blocks in Fig. 1(b) indicate
the previously trained networks, up to the k — 1-order, that are kept

(@) All atom
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fixed when training the k-body network units. At the kth order, there
are (Z) k-body units in the network (light blue blocks in Fig. 1).

Each of the units takes as input the k(k — 1)/2 pairwise distances
among a set of k CG beads selected among the n beads of the system.
The sum of the outputs of all the k-body network units captures the
U™ (x) term in Eq. (5), and each k-body unit captures a fi ..
non-decomposable function in Eq. (6). The entire model captures
the UMD (x) + - + U™F(x) terms of the multi-body expansion
Eq. (5). We refer to the entire model as “2, ..., k-body model” in
the following.

For the special case of 2, 3, 4-body models, we define both a
non-chiral model and a chiral model. If we consider the six pairwise

} 20

All atom h/

|

cG

F(X)o e
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FIG. 2. Free energy landscapes associated with the trained multi-body CG models as a function of the two slowest time-lagged independent components of the all-atom
simulation. (a) Reference free energy from the all-atom model and representative molecular structures for each of the three metastable states. (b) Full CGnet, (c) two-body
model, (d) 2, 3-body model, (e) 2, 3, 4-body model with no chirality, (f) chiral 2, 3, 4C-body model, and (g) 2, 3, 4C, 5-body model. The free energies are reported in units of

kgT.
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distances corresponding to a group of four beads (quadrupole), they
do not uniquely define the configuration of the beads as arrange-
ments of different chiralities are consistent with the same set of
distances. We define a chiral four-body network including up to
four-body interactions but with additional information that encodes
chirality: we also consider the dihedral angles defined by each set of
four CG beads. For each dihedral angle ¢ spanned by four beads, we
include cos(¢) and sin(¢) as additional features entering the corre-
sponding four-body unit. We refer to the four-body chiral model as
the “2, 3, 4C-body model” in the rest of this paper.

With this approach, we could, in principle, construct models
at any order, up to k = n, as shown in Fig. 1: once a 2, 3, ...,

" dif-

(
ferent k-body unit networks to it. However, the number of k-body
units increases rapidly with k, and the memory requirements for the
training become quickly prohibitive. In this work, we consider up to
five-body terms in expansion (5) and compare the results with the
“vanilla” CGnet where interactions up to any order are included (as
all the input features enter one large dense neural network).

(k — 1)-body model is trained, we keep it fixed and add

D. Training and simulation of the multi-body models

For the two-body CG model, a three-stage fivefold cross-
validation is conducted to find the optimal hyperparameters (net-
work depth, the number of nodes per layer, and Lipschitz regulariza-
tion strength) of the network units as follows. In the first stage, we fix
the number of neural per layer and Lipschitz regularization strength
as some finite value, only sweeping the number of network layers.
For each hyperparameter combination, we conduct fivefold cross-
validation and we identify the optimal hyperparameters as the ones
associated with the smallest cross-validation score. By sweeping the
number of network layers, we identify the optimal network depth.
In the second stage, we fix the number of network layers to the opti-
mal value and sweep the number of nodes per layer, while fixing the
Lipschitz regularization strength. We then identify the optimal net-
work width as the minimum cross-validation score. In the third
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stage, we proceed similarly by fixing the network depth and width
to the optimal values and sweeping on the value of the Lipschitz
regularization strength and identifying its optimal value with the
one associated with the minimum cross-validation score. The Adam
optimizer with a mini-batch stochastic gradient descent is used to
train the network units.”””’ The hyperparameters resulting from
cross-validation are reported in Table I. When the optimal hyperpa-
rameters are selected, the final energy model is defined as the average
of the five models corresponding to each fold in the cross-validation
at the optimal values of the hyperparameters.

For the multi-body models, we follow the same cross-validation
procedure as for the two-body model to obtain the optimal values
of the hyperparameters. However, at each order, only the hyperpa-
rameters for the network unit that is added are optimized by cross-
validation, while the underlying lower order networks are kept the
same as in the lower order models. For example, the 2, 3-body model
contains the two-body network previously trained and additional
three-body units (see Fig. 1). In the 2, 3-body model, the hyperpa-
rameters of the additional three-body network units are optimized
(the same hyperparameters are used in each unit), while the two-
body component is kept fixed. As higher order units describe more
complex interactions, their network structures are not necessarily
the same at every order.

After a multi-body CGnet model has been obtained, we simu-
late it by numerically integrating the overdamped Langevin dynam-
ics equation with the corresponding CG potential to generate trajec-
tories and explore the free energy landscape,

b

kBTVU(x[) +V21Dn, (7)

Xtr =Xt — T
where x; (Xt+7) is a CG configuration at time ¢ (¢t + 7), 7 is the
time step, D is the diffusion constant, and # is a Gaussian ran-
dom variable with zero-mean and unit-standard deviation. As in our
previous work,”" to sample the effective multi-body potential more
efficiently, we generate 100 independent trajectories in parallel, with
initial configurations randomly sampled from the original dataset.
In order to visualize and compare the results, in the following, we
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FIG. 3. (a) Cross-validation error (blue bars) and free energy mean square error, MSE (red bars), for the different CG models studied. The units for the CV-error are
[kcal/(mol - A)]?, while the free energy MSE is measured in (kzT)?. (b) KL divergence between the equilibrium distribution of the different CG models studied and the

reference atomistic model.
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project the trajectories of each model onto the space spanned by two
collective coordinates: the first two TICA coordinates’”” of the all-
atom system. Free energy surfaces (Fig. 2) are then computed as the
negative logarithm of a two-dimensional histogram over the TICA
coordinates.

lll. RESULTS

We apply the multi-body decomposition described above to
study a series of CG models for chignolin, a 10 amino acid
mini-protein [Fig. 2(a)].”’ The reference all-atom trajectories were
obtained by simulating the system with 1881 water molecules for
a total of 5820 atoms. All the CG models studied here consist of
10 beads, located at the position of the C, atoms along the protein
backbone [Fig. 2(a)]. The reference all-atom free energy, shown in
Fig. 2(a), exhibits three minima, where minimum A corresponds to
the folded state, B corresponds to the unfolded state, and C cor-
responds to the misfolded state. Typical configurations from these
three states are shown in Fig. 2(a).

Figure 3 reports the cross-validation error, the free energy MSE,
and the KL divergence (computed as in our previous work®’) of each
model with respect to the reference atomistic model [Fig. 2(a)]. Sev-
eral notable results are apparent from Fig. 3: first, the multi-body
CG expansion converges slowly, while the 2, 3-body model presents
a significant improvement over the two-body model; the errors are
still larger than the corresponding ones for the “vanilla” CGnet up
to the 2, 3, 4C-body model. More quantitatively, while the addition
of three-body interactions lowers the MSE of a little more than one
kpT, the difference in MSE between the 2, 3, 4C, 5-body model and
the 2, 3-body model is still about 1/2 kzT. The slow convergence is
quite evident also in the gradual reduction of the KL divergence with
the addition of multi-body terms [Fig. 3(b)].

Additionally, in all three measures of the error reported, the
errors associated with the 2, 3, 4C, 5-body model are smaller than
for the vanilla CGnet model: the neural network potential includ-
ing up to five-body terms appears to outperform the neural network
potential where higher order interactions are included. The same
trend appears in the learning curves of these models: the validation
error for the 2, 3, 4C, 5-body model is smaller than the validation
error of CGNet at every step of the training. This result suggests
that the original CGnet overfits the training data and that the multi-
body expansion acts as a useful form of implicit regularization or
inductive bias.

Free energy landscapes associated with the different models are
obtained by means of overdamped Langevin simulations (Sec. IT D)
and are shown in Fig. 2, together with the reference free energy land-
scape of the all-atom model [Fig. 2(a)] and of the original CGnet
[Fig. 2(b)]. The comparison of these free energy landscapes echoes
the results illustrated by Fig. 3. While the two-body model [Fig. 4(c)]
does not show a separation between the folded and unfolded states
of the protein, the addition of three-body terms in the 2, 3-body
model allows us to clearly identify the folded, unfolded, and mis-
folded states on the free energy landscape [Fig. 4(d)]. The free energy
landscape becomes progressively closer to the reference one when
four-body [Fig. 4(e)] and chiral four-body interactions [Fig. 4(f)]
are added, and it is in good quantitative agreement for the 2, 3,
4C, 5-body model [Fig. 4(g)]. The free energy landscape of the lat-
ter is smoother and visually closer to the reference than the original
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CGnet model, supporting the hypothesis of a regularizing role of the
multi-body expansion.

It is interesting to consider the CG potential energy contribu-
tion to the free energy for the different models. In Fig. 4, we report
the values of the CG energy for all configurations sampled by the
all-atom model, projected onto the same two-dimensional space of
the first two TICA coordinates obtained from the all-atom data.
Figures 4(a)-(c), 4(f), 4(i), and 4(I) show the total CG energy of the
different models, including the original CGnet [Fig. 4(a)]. The differ-
ent energy landscapes appear all surprisingly similar, with only the
two-body model being clearly different from the others: all energy
surfaces show a significant energy minimum corresponding to the
folded state and an additional minimum corresponding to the mis-
folded state, while the configurations in the unfolded state have sig-
nificantly higher energy. However, the small differences among these
energy landscapes are associated with markedly different free energy
landscapes. Figures 4(d), 4(g), 4(j), and 4(m) show the incremental
differences in CG energy corresponding to the different terms in the
multi-body expansion (5). As the energy differences are relatively
small with respect to the energy gap between folded and unfolded
states, Figs. 4(e), 4(h), 4(k), and 4(n) show the same CG energies
with a color scale zooming in a smaller energy range.

IV. CONCLUSIONS

We have presented the results of a multi-body expansion of
a CG model for a small protein, chignolin. This is made possible
by constructing a neural network architecture for the CG poten-
tial in a manner resembling a multi-body energy expansion. Using
this approach, we can separate the different terms in the multi-
body expansion and evaluate their contribution to the energy and
free energy landscapes. Not surprisingly, CG potentials including
only pairwise interactions (in addition to angle and dihedral terms
between adjacent CG beads) fail to reproduce the correct folding
landscape of the protein, even at the qualitative level.

Perhaps more surprisingly, the CG multi-body expansion con-
verges slowly for our model miniprotein: Only when the CG poten-
tial includes up to five-body terms, the free energy associated with
the CG model appears remarkably similar to the reference all-atom
free energy as a function of the same collective coordinates. As only
one model system is studied here, we cannot easily generalize these
results. However, at least for the case of the system considered here,
such a slow convergence of the multi-body expansion is in contrast
to the fast convergence of the multi-body expansion, capturing the
behavior of the Born-Oppenheimer potential energy surface (PES).
In the latter, three-body terms can be as large as 15%-20% of the
total interaction energy, while four-body terms provide on average
only a 1% energy contribution.” This fast convergence has allowed
for the development of very accurate analytical models for the PES
of water from high-level quantum mechanical calculations for low-
order interactions. On the other hand, if a slow convergence of the
multi-body expansion also holds for other CG protein models, it
makes it more challenging to obtain explicit analytical expressions
for their effective energy functions. In principle, we expect that,
when extended to the recently proposed transferable neural network
architecture for the design of CG models,’”*"" multi-body expansion
could disentangle the different contributions of interactions between
different groups of residues and analytical expression could then be

J. Chem. Phys. 154, 164113 (2021); doi: 10.1063/5.0041022
© Author(s) 2021

154, 164113-8


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

considered (e.g., by means of permutationally invariant polynomi-
als”). However, in addition to the slow convergence of the multi-
body expansion, the large number of combinations for the different
residues’ clusters makes this task much more daunting than what
has been possible for the characterization of bulk water PES.”*”° It
is important to note the different nature of the multi-body terms
in Born-Oppenheimer PES or CG models. In PES, such terms are
directly linked to the quantum mechanical description of the system
and the delocalized nature of the electronic structure. In CG models,
they emerge as a result of the renormalization of atomistic degrees of
freedom. We expect multi-body terms to play a more significant role
when the dimensionality reduction is strong. Here, we have used a
pretty aggressive coarse-graining scheme from a solvated atomistic
description to a Cy-only resolution. It is likely that even for the same
system, a different coarse-graining mapping could change the rela-
tive importance of the multi-body terms. We believe that the absence
or limited presence of multi-body terms in traditional CG models
has hindered the design of transferable CG models. It remains to be
seen how the inclusion of multi-body terms in the form of neural
network potentials changes the delicate balance between accuracy
and transferability in CG models.

It is also worth noting that, at least for the chignolin system con-
sidered here, a CG neural network model truncating the multi-body
expansion to five-body terms performs better than a model with a
CG energy built as a fully connected neural network, which, in prin-
ciple, includes interactions at any order. This result suggests a pos-
sible overfitting of the CGnet potential and the implicit regularizing
effect of the multi-body expansion.

In terms of computational cost, MD simulations with CG neu-
ral network potentials are still slower (by about a factor of 10) than
MD simulations with conventional CG potentials where the poten-
tial energy is composed of pairwise interactions with a given func-
tional form or tabulated values. However, CG neural network mod-
els are already faster (by a factor 5-50 depending on the system
and on the network architecture) than the corresponding atomistic
model in explicit solvent. The studies that have so far been presented
with CG neural network potentials are still exploratory in nature,
and no significant effort has been devoted to the code optimization
for simulation speed. We believe that this problem will be addressed
in the near future as this field matures.

This study was performed using the small protein chignolin as
a model system. We can only speculate if the conclusions from this
study will also apply to larger proteins; future work will address this
question.
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