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Abstract
Fatty acid products derived from cytochromes P450 (CYP) monooxygenase and li-
poxygenase (LOX)/CYP ω/(ω-1)-hydroxylase pathways are a superclass of lipid me-
diators with potent bioactivities. Whether or not the chronic kidney disease (CKD) 
and hemodialysis treatments performed on end-stage renal disease (ESRD) patients 
affect RBC epoxy fatty acids profiles remains unknown. Measuring the products 
solely in plasma is suboptimal. Since such determinations invariably ignore red 
blood cells (RBCs) that make up 3 kg of the circulating blood. RBCs are potential 
reservoirs for epoxy fatty acids that regulate cardiovascular function. We studied 15 
healthy persons and 15 ESRD patients undergoing regular hemodialysis treatments. 
We measured epoxides derived from CYP monooxygenase and metabolites derived 
from LOX/CYP ω/(ω-1)-hydroxylase pathways in RBCs by LC–MS/MS tandem 
mass spectrometry. Our data demonstrate that various CYP epoxides and LOX/CYP 
ω/(ω-1)-hydroxylase products are increased in RBCs of ESRD patients, compared 
to control subjects, including dihydroxyeicosatrienoic acids (DHETs), epoxyeicosa-
tetraenoic acids (EEQs), dihydroxydocosapentaenoic acids (DiHDPAs), and hydrox-
yeicosatetraenoic acids (HETEs). Hemodialysis treatment did not affect the majority 
of those metabolites. Nevertheless, we detected more pronounced changes in free 
metabolite levels in RBCs after dialysis, as compared with the total RBC compart-
ment. These findings indicate that free RBC eicosanoids should be considered more 
dynamic or vulnerable in CKD.
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1  |   INTRODUCTION

Chronic kidney disease (CKD) is a risk factor for the compos-
ite outcome of all-cause mortality and cardiovascular disease 
(Weiner et al., 2004). Although mortality and cardiovascular 
disease burden have decreased for end-stage renal disease 
(ESRD) hemodialysis patients in the United States, the 5-year 
mortality is still ~50% (McGill et  al.,  2019), Most of these 
deaths are related to cardiovascular disease (CVD) (Felasa | 
Federation for Laboratory Animal Science Associations, 2012; 
Luft, 2000). Dietary omega-3 (n-3) fatty acid intake is asso-
ciated with a reduced CVD risk (Harris et al., 2008; Huang 
et  al.,  2011; InterAct Consortium et  al.,  2011). Erythrocyte 
red-blood-cell (RBC) n-3 fatty-acid status is inversely related 
to cardiovascular events, such as cardiac arrhythmias, myocar-
dial infarction, and sudden cardiac death (Bucher et al., 2002).

Epoxides and hydro(pero)xy fatty acids (or oxylipins) are 
lipid peroxidation products of polyunsaturated fatty acids 
(PUFA), including C18:2 linoleic (LA), C20:0 arachidonic 
(AA), C20:5 n-3 eicosapentaenoic (EPA), and C22:5 n-3 
docosahexaenoic acids (DHA). These products are derived 
from CYP monooxygenase, cyclooxygenase (COX), and 
LOX/CYP ω/(ω-1)-hydroxylase pathways, which catalyze 
the production in a highly tissue-dependent and regioiso-
mer-specific manner (Figure 1). The resulting products are 
epoxyoctadecenoic acids (EpOMEs), epoxyeicosatrienoic 
acid (EETs), epoxyeicosatetraenoic acids (EEQs), epoxy-
docosapentaenoic acids (EDPs), hydroperoxylinoleic acids 
(HpODEs), hydroxyoctadecadienoic acids (HODEs), hy-
droxydocosahexaenoic acids (HDHAs), hydroperoxyeico-
satetraenoic acids (HPETEs), and hydroxyeicosatetraenoic 
acids (HETEs) (Figure 1). EpOMEs, EETs, EEQs, and EDPs 
are converted depending on cell type, into secondary eico-
sanoids and their metabolites. The major metabolic route of 
CYP epoxides is incorporation into phospholipids and hydro-
lysis to corresponding diols by the enzyme soluble epoxide 
hydrolase (sEH) (Spector & Kim, 2015). CYP-derived EETs 
and other epoxides, such as 17,18-EEQ, serve as endotheli-
um-derived hyperpolarizing factors (EDHFs) to cause vaso-
dilation (Campbell et al., 1996; Hercule et al., 2007; Hu & 
Kim,  1993). Recently, RBCs (~3  kg in human body) have 
been identified as a reservoir for CYP epoxides, in particu-
lar EETs, which on release may act in a vasoregulatory ca-
pacity (Jiang et al., 2010, 2011). Maximal exercise has been 
found to increase such erythro-epoxides in RBCs, including 
9,10-EpOME, 12,13-EpOME, 5,6-EET, 11,12-EET, 14,15-
EET, 16,17-EDP, and 19,20-EDP (Gollasch et  al.,  2019). 
Furthermore, sEH in the RBC and the resulting increase in 
EETs presumably contribute to a greater degree on regional 
blood flow than sEH inhibition localized in the arterial wall 
(Jiang et  al.,  2011; Yu et  al.,  2004). Nonetheless, the im-
pact of epoxy and hydroxy fatty acids measurements in the 
RBCs for the prediction of CVD and mortality have not been 

previously elucidated. Whether or not CKD or hemodialysis 
treatment itself affect RBC-epoxids and hydroxy metabolites 
remains unknown. We tested the hypotheses that CKD and 
hemodialysis treatments performed on end-stage renal dis-
ease (ESRD) patients affect RBC epoxy fatty acids profiles.

2  |   METHODS

The Charité University Medicine Institutional Review Board 
approved this duly registered study (ClinicalTrials.gov, 
Identifier: NCT03857984). Recruitment was primarily via per-
son-to-person interview. Prior to participation in the study, 15 
healthy volunteers (6 male and 9 female) and 15 CKD patients 
(7 male and 8 female) undergoing regular hemodialysis treat-
ment signed informed consent forms which outlined the treat-
ments to be taken and the possible risks involved. All healthy 
control subjects were not taking medications. Venous blood 
was collected in each healthy subject by subcutaneous arm vein 
puncture in the sitting position. In the group of dialyzed patients 
(CKD group), all the blood samples were collected on the fis-
tula arm right before beginning of the dialysis (starting of the 
HD, pre-HD) and at the end of the dialysis (5–15 min before 
termination, post-HD). Patients underwent thrice-weekly dialy-
sis, which lasted from 3 hr 45 min to 5 hr, based on high flux 
AK 200 dialyzers (Gambro GmbH, Hechingen, Germany). All 
samples were analyzed for RBC lipids. All blood samples were 
obtained by 4°C precooled EDTA vacuum extraction tube sys-
tems. Cells were separated from plasma by centrifugation for 
10 min at 1,000–2,000 g using a refrigerated centrifuge RBCs 
were separated from EDTA blood by centrifugation as previ-
ously described (Gollasch, et al., 2020). RBC lipidomics was 
performed using LC–MS/MS tandem mass spectrometry as de-
scribed in (Fischer et al., 2014; Gollasch et al., 2019; Gollasch 
et al., 2019). Concentrations are given in nanogram/g.

Descriptive statistics were calculated and variables were 
examined for meeting assumptions of normal distribution 
without skewness and kurtosis. In order to determine statis-
tical significance, t test or Mann–Whitney test was used to 
compare the values of CKD versus control groups. Paired t-
test or paired Wilcoxon test were used to compare pre-HD 
versus post-HD values. In order to determine statistical signif-
icance between the four classes of epoxy-metabolites hydro-
lyzed to appear in the circulation, Friedman's test followed by 
applying Dunn's multiple comparison test was used. In order 
to determine statistical significance between the four classes 
of epoxy-metabolites hydrolyzed to appear in the circulation, 
Friedman's test followed by applying Dunn's multiple com-
parison test was used. The analysis included Mauchly's test of 
sphericity followed by applying the test of within-subjects ef-
fects with Greenhouse–Geisser correction to ensure spheric-
ity assumption (Gollasch et al., 2019; Gollasch et al., 2019). 
The .05 level of significance (p) was chosen. All data are 
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presented as mean  ±  SD. All statistical analyses were per-
formed using SPSS Statistics software (IBM Corporation) or 
All-Therapy statistics beta (AICBT Ltd).

3  |   RESULTS

3.1  |  Clinical characteristics

The age between ESRD patients and the healthy subjects was 
not different (50 ± 18 years vs. 47 ± 12 years, respectively, 

p > .05, n = 15 each). The body mass indices between the 
two groups were also not different (24.8  ±  3.4  kg/m2 and 
24.7 ± 4.6 kg/m2, respectively, p > .05, n = 15 each). The 
patients in the group CKD were diagnosed for the following 
conditions: diabetes mellitus (n = 4 patients), hypertension 
(n  =  3), membranous glomerulonephritis (n  =  2), autoso-
mal dominant polycystic kidney disease (n  =  1), other or 
unknown (n  =  5). Major cardiovascular complications in 
the CKD group included peripheral artery disease (n = 3), 
cardiovascular (n = 2) and cerebrovascular (n = 1) events. 
Subjects were Caucasians, with the exception of one Black 

F I G U R E  1   Hypothetic influence of CKD and hemodialysis associated with shear stress, red blood cell (RBC)-dialyzer interactions, red 
blood cell (RBC)-endothelial interactions, and oxidative stress affecting the content of cytochrome P450 epoxygenase (CYP) and 12- and 
15-lipoxygenase (LOX)/CYP omega-hydroxylase metabolites in RBCs. The scheme illustrates the epoxide and hydroxy metabolites pathways 
studied. Linoleic (LA), arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) are converted to epoxyoctadecenoic 
acids (EpOMEs, e.g., 9,10-EpOME), epoxyeicosatrienoic acid (EETs, e.g., 8,9-EET), epoxyeicosatetraenoic acids (EEQs, e.g., 17,18-EEQ), and 
epoxydocosapentaenoic acids (EDPs, e.g., 17,18-EDP and 19,20-EDP) by CYP, respectively. EpOMEs, EETs, EEQs, and EDPs are converted to 
dihydroxyctadecenoic acids (DiHOMEs, e.g., 9,10-DiHOME), dihydroxyeicosatrienoic acids (DHETs, e.g., 8,9-DHET), dihydroxyeicosatetraenoic 
acids (DiHETEs), and dihydroxydocosapentaenoic acids (DiHDPAs, e.g., 7,8-DiHDPA), respectively, by the soluble epoxide hydrolase (sEH) 
enzyme. LA, AA, EPA, and DHA are converted to hydroperoxylinoleic acids (HpODEs), hydroxyoctadecadienoic acids (HODEs, e.g., 13-HODE), 
hydroxydocosahexaenoic acids (HDHAs), hydroperoxyeicosatetraenoic acids (HPETEs), and hydroxyeicosatetraenoic acids (HETEs, e.g., 12-
HETE and 15-HETE) by LOX, CYP omega/(omega-1)-hydroxylase and peroxidase pathways. The metabolites measured within these pathways 
track the changes observed. Arrows demarcate metabolic pathways evaluated
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patient in the CKD group and one Asian subject in the control 
group.

3.2  |  RBC epoxy and hydroxy metabolites 
in CKD

We first determined the total levels of various CYP epox-
ides and LOX/CYP ω/(ω-1)-hydroxylase products in RBCs 
of the HD patients (Table 1) and compared the results with 
the healthy control subjects. Total CYP epoxides were an-
alyzed for each member (Table  1A) and together within 
the four subclasses (Table 2A). RBCs of hemodialysis pa-
tients showed increased total levels of various individual 
CYP epoxides, namely 8,9-DHET, 14,15-DHET, 5,6-
EEQ, 11,12-EEQ, 14,15-EEQ, 17,18-EEQ, 7,8-DiHDPA, 
10,11-DiHDPA, 13,14-DiHDPA, and 16,17-DiHDPA in 
the RBCs (Table 1A). EpOMEs, DiHOMEs, EETs, EDPs 
(with exception of 19,20-EDP), and DiHETEs were not 
different between both groups (Table 1A). Free CYP epox-
ides in the RBCs were also not different or only slightly 
decreased (8,9-EET, 14,15-EET, and 5,6-EEQ) in RBCs 
of hemodialysis patients. Nonetheless, our analysis of 
the four CYP epoxide classes demonstrates that ESRD 
patients can be discriminated from controls by charac-
teristic increases in three epoxide classes, that is, signa-
tures, namely increased levels of total DHETs, EEQs, 
and DiHDPAs in the RBCs, that is, 5,6-DHET+8,9-
DHET+11,12-DHET+14,15-DHET, 5,6-EEQ+8,9-
EEQ+11,12-EEQ+14,15-EEQ+17,18-EEQ, and 
7,8-DiHDPA+10,11-DiHDPA+13,14-DiHDPA+16,17-
DiHDPA+19,20-DiHDPA (Table 2A). We next inspected 
the total levels of various LOX/CYP ω/(ω-1)-hydroxylase 
products in RBCs of the HD patients (Table 1A). We found 
that 5-HETE, 8-HETE, 9-HETE, 11-HETE, 12-HETE, 15-
HETE, and 19-HETE levels were increased in the hemodi-
alysis patients, whereas 13-HODE, 16-HETE, 17-HETE, 
18-HETE, 20-HETE, 12 -HpETE, 5-HEPE, 8-HEPE, 
9-HEPE, 12-HEPE, 15-HEPE, 18-HEPE, 19-HEPE, 20-
HEPE, 4-HDHA, 7-HDHA, 8-HDHA, 10-HDHA, 11-
HDHA, 13-HDHA, 14-HDHA, 16-HDHA, 17-HDHA, 
20-HDHA, 21-HDHA, and 22-HDHA levels, were nor-
mal or nondetectable (Table 1A). Of note, free LOX/CYP 
ω/(ω-1)-hydroxylase products were generally increased 
in RBCs of hemodialysis patients, with exception of 17-
HETE, 18-HETE, 19-HETE, 20-HETE, 12-HpETE, 19-
HEPE, 20-HEPE, and 20-HDHA which were normal or 
non-detectable (Table 1B). Together, the findings indicate 
that ESRD patients show an altered RBC fatty acid me-
tabolite status, that is, individual signature, which shows 
the accumulation of three CYP epoxide classes (DHETs, 

EEQs, and DiHDPAs) and various HETEs and other LOX/
CYP ω/(ω-1) metabolites in RBCs, the latter mostly accu-
mulated in free state.

3.3  |  Ratios

The main route of EpOMEs, EETs, EEQs, and EDPs metab-
olism in many cells is conversion into DiHOMEs, DHETs, 
dihydroxyeicosatetraenoic acids (DiHETEs), and dihy-
droxydocosapentaenoic acids (DiHDPAs) by the sEH, re-
spectively (Figure 1). To provide possible insights into the 
nature of the observed accumulation of DHETs, EEQs, and 
DiHDPAs in RBCs of ESRD patients, we calculated diol/
epoxide ratios in RBCs and compared the results with the 
control subjects (Table 2B). We found that the four classes 
of epoxy-metabolites are unequally hydrolyzed and appear 
in the RBCs (Table  2B for controls). Compared to EETs 
and EEQs (ratios diols/epoxy-metabolites, 0.0096 ± 0.0017 
vs. 0.0042  ±  0.00012, Dunn's multiple comparison test, 
p >  .05), EpOMEs and EDPs (ratios diols/epoxy-metabo-
lites, 0.1628 ± 0.0658 vs. 0.0244 ± 0.0053, Dunn's multi-
ple comparison test, p > .05) are preferentially metabolized 
into their diols. In fact, the following order of ratios was 
identified: DiHOMEs/EpOMEs=DiHDPA/EDPs>DHETs/
EETs=DiHETEs/EEQs (Dunn's multiple comparison test, 
p < .05). ESRD patients showed increased ratios for DHET/
EET and DiHDPA/EDP, which indicates that increased 
sEH activity preferred for EET and EDP substrate classes 
in vivo may have caused the observed accumulation of 
8,9-DHET, 14,15-DHET, 7,8-DiHDPA, 10,11-DiHDPA, 
13,14-DiHDPA, and 16,17-DiHDPA in the RBCs in ESRD. 
The observed accumulation of EEQs is unlikely to result 
from changes in sEH activity (Table 2B) or accumulation 
of eicosapentaenoic acid (EPA) as EPA levels are not in-
creased in RBCs of our patients (Gollasch et  al.,  2020) 
(Figure 1).

3.4  |  Effects of hemodialysis

With the exception of 7,8-DiHDPA, the data (Table 3) dem-
onstrate no change of total CYP epoxides and LOX/CYP ω/
(ω-1)-hydroxylase metabolites in response to a single dialysis 
(Table 3A). Accordingly, the diol/epoxide ratios were not al-
tered (Table 4). However, hemodialysis treatment increased 
several CYP epoxides and LOX/CYP ω/(ω-1)-hydroxylase 
metabolites in free state, such as 11,12-DHET, 13-HODE, 
5-HETE, 8-HETE, 9-HETE, 11-HETE, 15-HETE, 5-HEPE, 
8-HDHA, 10-HDHA, 13-HDHA, 16-HDHA, and 17-HDHA 
(Table 3B).
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T A B L E  1   Comparison of epoxy- and hydroxy-metabolites between control subjects versus CKD patients before hemodialysis (HD) (n = 15 
each)

Amount (ng/g) Control (Mean ± SD) HD (mean ± SD)
p value, t test  
(#Mann-Whitney test)

(A) Total metabolites in RBCs

CYP epoxy-metabolites

(a) EpOMEs/DiHOMES

9,10-EpOME 29.36 ± 12.01 25.48 ± 6.59 .267#

12,13-EpOME 13.67 ± 9.22 10.62 ± 6.16 .305#

9,10-DiHOME 4.12 ± 1.30 5.13 ± 1.92 .081#

12,13-DiHOME 2.26 ± 0.90 2.92 ± 1.45 .161#

(b) EETs/DiHOMEs

5,6-EET 170.67 ± 29.90 148.54 ± 44.94 .124

8,9-EET 39.03 ± 6.25 39.90 ± 9.00 .761

11,12-EET 39.46 ± 5.51 37.86 ± 11.98 .644

14,15-EET 66.17 ± 11.64 59.58 ± 22.69 .328

5,6-DHET 0.89 ± 0.17 0.98 ± 0.43 .457

8,9-DHET 1.07 ± 0.23 2.03 ± 1.81 .001#

11,12-DHET 0.62 ± 0.14 0.96 ± 0.61 .081#

14,15-DHET 0.40 ± 0.05 0.51 ± 0.16 .030

(c) EEQs/DiHETEs

5,6-EEQ 41.54 ± 13.39 51.78 ± 98.53 .019#

8,9-EEQ 2.48 ± 0.89 3.51 ± 6.41 .126#

11,12-EEQ 2.09 ± 0.68 2.56 ± 4.74 .016#

14,15-EEQ 1.44 ± 0.48 1.91 ± 3.57 .041#

17,18-EEQ 3.25 ± 1.03 3.90 ± 7.31 .021#

5,6-DiHETE 0.21 ± 0.10 0.28 ± 0.49 .202#

8,9-DiHETE 0.01 ± 0.01 0.01 ± 0.01 .776#

11,12-DiHETE 0.01 ± 0.01 0.01 ± 0.01 .677#

14,15-DiHETE 0.01 ± 0.01 0.01 ± 0.01 .697#

17,18-DiHETE 0.01 ± 0.01 0.01 ± 0.01 .787#

(d) EDPs/DiHDPAs

7,8-EDP 15.58 ± 4.55 18.16 ± 12.19 .838#

10,11-EDP 1.22 ± 0.43 1.35 ± 0.47 .463

13,14-EDP 0.39 ± 0.25 0.44 ± 0.15 .158#

16,17-EDP 4.49 ± 1.34 4.72 ± 1.78 .967#

19,20-EDP 6.72 ± 4.26 4.22 ± 1.52 .026#

7,8-DiHDPA 0.21 ± 0.10 0.40 ± 0.30 .041#

10,11-DiHDPA 0.50 ± 0.20 0.09 ± 0.05 .007

13,14-DiHDPA 0.08 ± 0.02 0.11 ± 0.04 .037#

16,17-DiHDPA 0.14 ± 0.03 0.19 ± 0.06 .022

19,20-DiHDPA 0.20 ± 0.07 0.26 ± 0.16 .187#

LOX/CYP ω/(ω−1) metabolites

13-HODE 69.46 ± 19.97 77.47 ± 18,89 .098#

5-HETE 38.43 ± 7.90 53.45 ± 14.83 .002

8-HETE 27.30 ± 5.72 35.11 ± 10.20 .015

9-HETE 27.49 ± 4.72 37.84 ± 9.77 .001

11-HETE 41.90 ± 7.00 54.16 ± 14.84 .009

12-HETE 32.71 ± 5.66 43.47 ± 12.68 .007

(Continues)
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(Continues)

Amount (ng/g) Control (Mean ± SD) HD (mean ± SD)
p value, t test  
(#Mann-Whitney test)

15-HETE 74.29 ± 14.38 93.95 ± 24.59 .012

16-HETE 4.60 ± 0.82 4.91 ± 1.43 .461

17-HETE 0.18 ± 0.03 0.22 ± 0.10 .512#

18-HETE 0.24 ± 0.05 0.32 ± 0.21 .461#

19-HETE 0.26 ± 0.11 0.42 ± 0.11 .001#

20-HETE 0.59 ± 0.09 0.62 ± 0.08 .371

12-HpETE n.d. n.d. n/a

5-HEPE 1.47 ± 0.51 2.05 ± 2.64 .838#

8-HEPE 0.75 ± 0.31 1.15 ± 1.55 .744#

9-HEPE 0.93 ± 0.37 1.35 ± 1.64 .744#

12-HEPE 1.38 ± 0.52 2.15 ± 3.12 .935#

15-HEPE 1.18 ± 0.41 2.06 ± 2.74 .345#

18-HEPE 3.19 ± 1.30 5.28 ± 7.10 .567#

19-HEPE 1.32 ± 0.50 1.89 ± 2.80 .902#

20-HEPE n.d. n.d. n/a

4-HDHA 9.11 ± 2.99 11.20 ± 4.61 .267#

7-HDHA 4.56 ± 1.36 5.90 ± 2.69 .137#

8-HDHA 5.27 ± 1.77 7.16 ± 3.11 .061#

10-HDHA 6.39 ± 1.99 8.05 ± 3.79 .148

11-HDHA 7.38 ± 2.41 9.43 ± 4.47 .217#

13-HDHA 9.35 ± 2.80 10.43 ± 4.20 .414

14-HDHA 5.41 ± 1.75 6.82 ± 3.38 .345#

16-HDHA 8.79 ± 2.69 9.80 ± 3.88 .486#

17-HDHA 12.98 ± 3.97 15.55 ± 6.92 .227

20-HDHA 19.16 ± 5.89 22.57 ± 9.88 .261

21-HDHA 3.04 ± 1.18 3.76 ± 1.70 .184

22-HDHA n.d. n.d. n/a

(B) Free metabolites in RBCs

CYP epoxy-metabolites

(a) EpOMEs/DiHOMES

9,10-EpOME 1.42 ± 0.59 1.79 ± 1.00 .367#

12,13-EpOME 1.22 ± 0.63 1.25 ± 0.91 .624#

9,10-DiHOME 0.43 ± 0.29 0.52 ± 0.34 .595#

12,13-DiHOME 1.70 ± 0.96 2.20 ± 1.52 .412#

(b) EETs/DiHOMEs

5,6-EET 0.55 ± 0.21 0.45 ± 0.19 .170

8,9-EET 0.12 ± 0.06 0.06 ± 0.04 .013#

11,12-EET 0.24 ± 0.07 0.20 ± 0.08 .100

14,15-EET 1.08 ± 0.40 0.74 ± 0.36 .015#

5,6-DHET n.d. n.d. n/a

8,9-DHET n.d. n.d. n/a

11,12-DHET 0.01 ± 0.01 0.01 ± 0.01 .467

14,15-DHET 0.01 ± 0.01 0.01 ± 0.01 .074#

(c) EEQs/DiHETEs

5,6-EEQ 1.29 ± 1.14 0.90 ± 3.39 .010#

8,9-EEQ 0.22 ± 0.12 0.31 ± 0.50 .351#

T A B L E  1   (Continued)
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Amount (ng/g) Control (Mean ± SD) HD (mean ± SD)
p value, t test  
(#Mann-Whitney test)

11,12-EEQ 0.06 ± 0.04 0.07 ± 0.14 .116#

14,15-EEQ 0.14 ± 0.10 0.20 ± 0.23 .851#

17,18-EEQ 0.39 ± 0.19 0.53 ± 1.02 .217#

5,6-DiHETE n.d. n.d. n/a

8,9-DiHETE n.d. n.d. n/a

11,12-DiHETE n.d. n.d. n/a

14,15-DiHETE 0.01 ± 0.01 0.01 ± 0.04 .285#

17,18-DiHETE 0.04 ± 0.02 0.11 ± 0.23 .902#

(d) EDPs/DiHDPAs

7,8-EDP 0.12 ± 0.05 0.17 ± 0.17 .539#

10,11-EDP 0.01 ± 0.01 0.01 ± 0.01 .222#

13,14-EDP n.d. n.d. n/a

16,17-EDP n.d. n.d. n/a

19,20-EDP 0.06 ± 0.05 0.11 ± 0.22 .505#

7,8-DiHDPA n.d. n.d. n/a

10,11-DiHDPA n.d. n.d. n/a

13,14-DiHDPA n.d. n.d. n/a

16,17-DiHDPA 0.01 ± 0.01 0.02 ± 0.01 .461#

19,20-DiHDPA 0.12 ± 0.06 0.15 ± 0.14 .744#

LOX/CYP ω/(ω−1) metabolites

13-HODE 8.96 ± 4.64 36.76 ± 31.23 <.001#

5-HETE 0.21 ± 0.07 0.60 ± 0.37 <.001#

8-HETE 0.28 ± 0.14 0.90 ± 0.59 <.001#

9-HETE 0.55 ± 0.32 1.85 ± 1.46 <.001#

11-HETE 0.84 ± 0.32 2.66 ± 1.64 <.001#

12-HETE 4.23 ± 2.53 28.11 ± 33.78 <.001#

15-HETE 0.65 ± 0.25 2.15 ± 1.05 <.001

16-HETE 0.10 ± 0.03 0.15 ± 0.06 .003

17-HETE n.d. n.d. n/a

18-HETE n.d. n.d. n/a

19-HETE n.d. n.d. n/a

20-HETE 0.10 ± 0.05 0.10 ± 0.04 .877

12-HpETE n.d. n.d. n/a

5-HEPE 0.03 ± 0.02 0.14 ± 0.34 .021#

8-HEPE 0.04 ± 0.03 0.32 ± 0.87 <.001#

9-HEPE 0.05 ± 0.04 0.35 ± 0.96 .003#

12-HEPE 0.97 ± 0.52 8.06 ± 14.72 .006#

15-HEPE 0.06 ± 0.04 0.70 ± 1.82 <.001#

18-HEPE 0.12 ± 0.06 1.52 ± 3.96 <.001#

19-HEPE 0.03 ± 0.02 0.22 ± 0.69 .367#

20-HEPE n.d. n.d. n/a

4-HDHA 0.03 ± 0.02 0.18 ± 0.32 .001#

7-HDHA 0.02 ± 0.01 0.11 ± 0.05 .001#

8-HDHA 0.04 ± 0.02 0.22 ± 0.35 <.001#

10-HDHA 0.06 ± 0.03 0.63 ± 1.07 <.001#

11-HDHA 0.19 ± 0.08 0.87 ± 1.32 <.001#

T A B L E  1   (Continued)
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T A B L E  2   Comparison of epoxy-metabolites and their ratios between control subjects versus CKD patients before hemodialysis (HD) (n = 15 
each)

(A) Concentrations of individual total epoxides together or their respective diols in RBCs

Epoxides or Diols (ng/g) Control (Mean ± SD) HD (Mean ± SD)
p-value, Mann-
Whitney test

9,10-EpOME+12,13-EpOME 43.03 ± 21.07 36.10 ± 10.60 .3195

9,10-DiHOME+12,13-DiHOME 6.377 ± 2.104 8.049 ± 3.178 .0971

5,6-EET+8,9-EET+11,12 EET+14,15-EET 315.3 ± 51.27 285.9 ± 86.25 .2998

5,6-DHET+8,9-DHET+11,12-DHET+14,15-DHET 2.986 ± 0.5208 4.477 ± 2.789 .0421

5,6-EEQ+8,9-EEQ+11,12-EEQ+14,15-
EEQ+17,18-EEQ

50.81 ± 16.35 63.65 ± 120.5 .0225

5,6-DiHETE+8,9-DiHETE+11,12-DiHETE+14,15-
DiHETE+17,18-DiHETE

0.2153 ± 0.1021 0.3420 ± 0.7263 .1835

7,8-EDP+10,11-EDP+13,14-EDP+16,17-
EDP+19,20-EDP

28.40 ± 9.805 28.86 ± 14.26 .6187

7,8-DiHDPA+10,11-DiHDPA+13,14-
DiHDPA+16,17-DiHDPA+19,20-DiHDPA

0.6813 ± 0.2123 1.039 ± 0.5678 .0464

(B) Ratios estimated using total concentrations of epoxides and diols in RBCs

Ratios Control (Mean ± SD) HD (Mean ± SD)
p-value, Mann-
Whitney test

Ratio (9,10-DiHOME+12,13-DiHOME)/
(9,10-EpOME+12,13-EpOME)

0.1628 ± 0.06583 0.2425 ± 0.1255 .0564

Ratio (5,6-DHET+8,9-DHET+11,12-
DHET+14,15-DHET)/(5,6-EET+8,9-EET+11,12 
EET+14,15-EET)

0.0096 ± 0.001705 0.01652 ± 0.009067 .0279

Ratio (5,6-DiHETE+8,9-DiHETE+11,12-
DiHETE+14,15-DiHETE+17,18-DiHETE)/
(5,6-EEQ+8,9-EEQ+11,12-EEQ+14,15-
EEQ+17,18-EEQ)

0.00416 ± 0.001188 0.005927 ± 0.004070 .2627

Ratio (7,8-DiHDPA+10,11-DiHDPA+13,14-
DiHDPA+16,17-DiHDPA+19,20-DiHDPA)/
(7,8-EDP+10,11-EDP+13,14-EDP+16,17-
EDP+19,20-EDP)

0.02445 ± 0.005347 0.03765 ± 0.01382 .0025

Note: Bold font indicates statistical significance.

Amount (ng/g) Control (Mean ± SD) HD (mean ± SD)
p value, t test  
(#Mann-Whitney test)

13-HDHA 0.08 ± 0.04 0.44 ± 0.61 <.001#

14-HDHA 0.35 ± 0.17 2.81 ± 3.60 <.001#

16-HDHA 0.07 ± 0.03 0.37 ± 0.63 <.001#

17-HDHA 0.42 ± 0.15 2.59 ± 4.22 <.001#

20-HDHA 0.27 ± 0.09 0.67 ± 1.00 .050#

21-HDHA 0.11 ± 0.05 0.42 ± 0.59 .002#

22-HDHA 0.72 ± 0.29 1.27 ± 0.71 .013

Note: Bold font indicates statistical significance.
Abbreviations: n.d., not detected; n/a, not applicable.

T A B L E  1   (Continued)
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T A B L E  3   Effects of hemodialysis on epoxy- and hydroxy-metabolites in the CKD patients before (pre-HD) and at cessation (post-HD) of 
hemodialysis (n = 15 each)

Amount, (ng/g) Pre-HD (Mean ± SD) Post-HD (mean ± SD)
p value, paired t test (#paired 
Wilcoxon test)

(A) Total metabolites in RBCs

CYP epoxy-metabolites

(a) EpOMEs/DiHOMES

9,10-EpOME 25.48 ± 6.59 25.91 ± 5.94 .802

12,13-EpOME 10.62 ± 6.16 11.52 ± 7.93 .307#

9,10-DiHOME 5.13 ± 1.92 5.27 ± 1.42 .623

12,13-DiHOME 2.92 ± 1.45 3.00 ± 0.90 .914

(b) EETs/DiHOMEs

5,6-EET 148.54 ± 44.94 162.71 ± 46.95 .198

8,9-EET 39.90 ± 9.00 43.76 ± 8.50 .134

11,12-EET 37.86 ± 11.98 41.54 ± 11.54 .112

14,15-EET 59.58 ± 22.69 63.97 ± 21.75 .162

5,6-DHET 0.98 ± 0.43 1.06 ± 0.43 .117

8,9-DHET 2.03 ± 1.81 2.13 ± 1.67 .112#

11,12-DHET 0.96 ± 0.61 0.99 ± 0.50 .334#

14,15-DHET 0.51 ± 0.16 0.53 ± 0.12 .148

(c) EEQs/DiHETEs

8,9-EEQ 3.51 ± 6.41 3.39 ± 5.75 1.000#

5,6-EEQ 51.78 ± 98.53 45.89 ± 69.79 .650#

11,12-EEQ 2.56 ± 4.74 2.40 ± 3.49 .125#

14,15-EEQ 1.91 ± 3.5 1.66 ± 2.55 .910#

17,18-EEQ 3.90 ± 7.31 3.66 ± 5.81 .460#

5,6-DiHETE 0.28 ± 0.49 0.24 ± 0.32 .733#

8,9-DiHETE n.d. n.d. n/a

11,12-DiHETE n.d. n.d. n/a

14,15-DiHETE n.d. n.d. n/a

17,18-DiHETE n.d. n.d. n/a

(d) EDPs/DiHDPAs

7,8-EDP 18.16 ± 12.19 19.48 ± 12.59 .307#

10,11-EDP 1.35 ± 0.47 1.50 ± 0.73 .427#

13,14-EDP 0.44 ± 0.15 0.52 ± 0.31 .551#

16,17-EDP 4.72 ± 1.78 5.46 ± 2.50 .078#

19,20-EDP 4.22 ± 1.52 5.14 ± 2.84 .109

7,8-DiHDPA 0.40 ± 0.30 0.48 ± 0.42 .036#

10,11-DiHDPA 0.09 ± 0.05 0.10 ± 0.07 .256#

13,14-DiHDPA 0.11 ± 0.04 0.12 ± 0.04 .363#

16,17-DiHDPA 0.19 ± 0.06 0.20 ± 0.07 .124

19,20-DiHDPA 0.26 ± 0.16 0.27 ± 0.14 .173#

LOX/CYP ω/(ω−1) metabolites

13-HODE 77.47 ± 18,89 82.00 ± 18.35 .391

5-HETE 53.45 ± 14.83 56.62 ± 10.08 .295

8-HETE 35.11 ± 10.20 36.63 ± 7.23 .379

(Continues)
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Amount, (ng/g) Pre-HD (Mean ± SD) Post-HD (mean ± SD)
p value, paired t test (#paired 
Wilcoxon test)

9-HETE 37.84 ± 9.77 39.89 ± 7.07 .268

11-HETE 54.16 ± 14.84 56.92 ± 10.96 .323

12-HETE 43.47 ± 12.68 45.33 ± 8.36 .466

15-HETE 93.95 ± 24.59 99.31 ± 18.34 .281

16-HETE 4.91 ± 1.43 5.14 ± 1.08 .412

17-HETE 0.22 ± 0.10 0.22 ± 0.08 .363#

18-HETE 0.32 ± 0.21 0.34 ± 0.23 .112#

19-HETE 0.42 ± 0.11 0.49 ± 0.17 .085

20-HETE 0.62 ± 0.08 0.65 ± 0.23 .602

12-HpETE n.d. n.d.

5-HEPE 2.05 ± 2.64 2.30 ± 3.25 .281#

8-HEPE 1.15 ± 1.55 1.26 ± 1.88 .363#

9-HEPE 1.35 ± 1.64 1.51 ± 2.11 .281#

12-HEPE 2.15 ± 3.12 2.29 ± 3.38 .307#

15-HEPE 2.06 ± 2.74 2.23 ± 2.95 .053#

18-HEPE 5.28 ± 7.10 5.63 ± 7.64 .140#

19-HEPE 1.89 ± 2.80 1.80 ± 2.32 .910#

20-HEPE n.d. n.d.

4-HDHA 11.20 ± 4.61 12.71 ± 5.81 .140#

7-HDHA 5.90 ± 2.69 6.33 ± 2.85 .233#

8-HDHA 7.16 ± 3.11 7.74 ± 3.35 .112#

10-HDHA 8.05 ± 3.79 8.57 ± 3.93 .334#

11-HDHA 9.43 ± 4.47 10.03 ± 4.90 .140#

13-HDHA 10.43 ± 4.20 11.22 ± 4.95 .173#

14-HDHA 6.82 ± 3.38 7.41 ± 3.41 .156#

16-HDHA 9.80 ± 3.88 10.55 ± 4.14 .112#

17-HDHA 15.55 ± 6.92 16.83 ± 7.47 .078#

20-HDHA 22.57 ± 9.88 24.53 ± 10.60 .112#

21-HDHA 3.76 ± 1.70 3.71 ± 1.32 .790

22-HDHA n.d. n.d. n/a

(B) Free metabolites in RBCs

CYP epoxy-metabolites

(a) EpOMEs/DiHOMES

9,10-EpOME 1.79 ± 1.00 2.08 ± 0.48 .156#

12,13-EpOME 1.25 ± 0.91 1.89 ± 0.88 .053#

9,10-DiHOME 0.52 ± 0.34 0.65 ± 0.29 .147

12,13-DiHOME 2.20 ± 1.52 2.91 ± 1.87 .256#

(b) EETs/DiHOMEs

5,6-EET 0.45 ± 0.19 0.54 ± 0.21 .114

8,9-EET 0.06 ± 0.04 0.07 ± 0.10 .480#

11,12-EET 0.20 ± 0.08 0.21 ± 0.06 .654

14,15-EET 0.74 ± 0.36 0.93 ± 0.35 .100#

5,6-DHET <0.01 ± 0.01 <0.01 ± 0.01 n/a

T A B L E  3   (Continued)
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Amount, (ng/g) Pre-HD (Mean ± SD) Post-HD (mean ± SD)
p value, paired t test (#paired 
Wilcoxon test)

8,9-DHET 0.02 ± 0.01 0.03 ± 0.03 .131#

11,12-DHET <0.02 ± 0.01 0.02 ± 0.01 .005

14,15-DHET 0.01 ± 0.01 0.02 ± 0.01 .427#

(c) EEQs/DiHETEs

5,6-EEQ 0.90 ± 3.39 1.08 ± 3.52 .068#

8,9-EEQ 0.31 ± 0.50 0.20 ± 0.55 .128#

11,12-EEQ 0.07 ± 0.14 0.07 ± 0.09 .424#

14,15-EEQ 0.20 ± 0.23 0.17 ± 0.24 .477#

17,18-EEQ 0.53 ± 1.02 0.49 ± 0.80 .955#

5,6-DiHETE <0.01 ± 0.01 <0.01 ± 0.01 .477

8,9-DiHETE <0.01 <0.01 n/a

11,12-DiHETE <0.01 <0.01 n/a

14,15-DiHETE 0.01 ± 0.04 0.02 ± 0.04 .394#

17,18-DiHETE 0.11 ± 0.23 0.16 ± 0.38 .394#

(d) EDPs/DiHDPAs

7,8-EDP 0.17 ± 0.17 0.22 ± 0.18 .112#

10,11-EDP 0.01 ± 0.01 0.01 ± 0.01 .463#

13,14-EDP n.d. n.d. n/a

16,17-EDP n.d. n.d. n/a

19,20-EDP 0.11 ± 0.22 0.09 + 0.09 .507#

7,8-DiHDPA n.d. n.d. n/a

10,11-DiHDPA <0.01 ± 0.01 <0.01 ± 0.01 n/a

13,14-DiHDPA <0.01 ± 0.01 0.01 ± 0.01 .465#

16,17-DiHDPA 0.02 ± 0.01 0.03 ± 0.02 .140#

19,20-DiHDPA 0.15 ± 0.14 0.18 ± 0.18 .334#

LOX/CYP ω/(ω−1) metabolites

13-HODE 36.76 ± 31.23 45.70 ± 31.56 .031#

5-HETE 0.60 ± 0.37 0.85 ± 0.53 .023#

8-HETE 0.90 ± 0.59 1.24 ± 0.83 .008#

9-HETE 1.85 ± 1.46 2.51 ± 1.84 .031#

11-HETE 2.66 ± 1.64 3.37 ± 2.16 .017#

12-HETE 28.11 ± 33.78 34.20 ± 33.78 .334#

15-HETE 2.15 ± 1.05 2.78 ± 1.54 .008#

16-HETE 0.15 ± 0.06 0.15 ± 0.04 .999

17-HETE n.d. n.d. n/a

18-HETE n.d. n.d. n/a

19-HETE n.d. n.d. n/a

20-HETE 0.10 + 0.04 0.12 ± 0.06 .155

12-HpETE n.d. n.d. n/a

5-HEPE 0.14 ± 0.34 0.18 ± 0.45 .031#

8-HEPE 0.32 ± 0.87 0.35 ± 0.98 .394#

9-HEPE 0.35 ± 0.96 0.42 ± 1.14 .112#

12-HEPE 8.06 ± 14.72 10.61 ± 21.49 .191#

15-HEPE 0.70 ± 1.82 0.75 ± 1.96 .307#

T A B L E  3   (Continued)
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4  |   DISCUSSION

Our data demonstrate that RBCs of ESRD patients accu-
mulated three CYP epoxide classes (DHETs, EEQs, and 
DiHDPAs) and various HETEs, including 5-HETE, 8-HETE, 
9-HETE, 11-HETE, 12-HETE, 15-HETE, and 19-HETE, 
compared to control subjects. Furthermore, hemodialysis 
treatment is insufficient to change the total concentrations 
of these and other LOX/CYP metabolites in RBCs of ESRD 
patients. Since the four subclasses of CYP epoxy metabo-
lites increase in plasma after the dialysis treatment (Gollasch 
et  al.,  2020), we suggest that total CYP metabolites in 
RBCs are relatively invulnerable in CKD and hemodialysis 

(possibly due to slow exchange). Of note, ESRD is associ-
ated with increased levels of several free CYP epoxides and 
LOX/CYP ω/(ω-1)-hydroxylase metabolites in RBCs. Since 
several of those mediators are also increased by hemodialysis 
treatment itself, we suggest that free RBC eicosanoids con-
stitute a fraction of lipid mediators, which are particularly 
vulnerable in CKD and hemodialysis. The extent to which 
the RBC eicosanoids exhibit beneficial or detrimental car-
diovascular effects in CKD, possibly in comprehensive lipid-
omic (patho)physiological networks, remains to be explored. 
Nonetheless, our results indicate that RBCs could represent 
a reservoir for PUFA CYP epoxy-metabolites and LOX/
CYP hydroxy metabolites, which on release may act in a 

Amount, (ng/g) Pre-HD (Mean ± SD) Post-HD (mean ± SD)
p value, paired t test (#paired 
Wilcoxon test)

18-HEPE 1.52 ± 3.96 1.53 ± 3.96 .776#

19-HEPE 0.22 ± 0.69 0.21 ± 0.64 .955#

20-HEPE n.d. n.d. n/a

4-HDHA 0.18 ± 0.32 0.25 ± 0.45 .061#

7-HDHA 0.11 ± 0.05 0.15 ± 0.28 .112#

8-HDHA 0.22 ± 0.35 0.31 ± 0.49 .031#

10-HDHA 0.63 ± 1.07 0.79 ± 1.39 .023#

11-HDHA 0.87 ± 1.32 1.07 ± 1.60 .100#

13-HDHA 0.44 ± 0.61 0.55 ± 0.74 .036#

14-HDHA 2.81 ± 3.60 3.40 ± 4.40 .078#

16-HDHA 0.37 ± 0.63 0.50 ± 0.93 .012#

17-HDHA 2.59 ± 4.22 3.35 ± 5.24 .031#

20-HDHA 0.67 ± 1.00 0.83 ± 1.37 .112#

21-HDHA 0.42 ± 0.59 0.48 ± 0.68 .256#

22-HDHA 1.27 ± 0.71 1.30 ± 0.78 .837

Note: Bold font indicates statistical significance.

T A B L E  3   (Continued)

T A B L E  4   Effects of hemodialysis on epoxide and their respective diol ratios in the CKD patients before (pre-HD) and at cessation (post-HD) 
of hemodialysis (n = 15 each). Ratios were estimated using total concentrations of epoxides and diols in RBCs

Ratios Pre-HD (Mean ± SD) Post-HD (Mean ± SD)
p-value, Paired 
Wilcoxon test)

Ratio (9,10-DiHOME+12,13-DiHOME)/
(9,10-EpOME+12,13-EpOME)

0.2425 ± 0.1255 0.2435 ± 0.1043 .8904

Ratio (5,6-DHET+8,9-DHET+11,12-DHET+14,15-
DHET)/(5,6-EET+8,9-EET+11,12 EET+14,15-EET)

0.01652 ± 0.009067 0.01623 ± 0.008816 .8647

Ratio (5,6-DiHETE+8,9-DiHETE+14,15-
DiHETE+17,18-DiHETE)/(5,6-EEQ+8,9-
EEQ+11,12-EEQ+14,15-EEQ+17,18-EEQ)

0.005927 ± 0.004070 0.005647 ± 0.003565 .4896

Ratio (7,8-DiHDPA+10,11-DiHDPA+13,14-
DiHDPA+16,17-DiHDPA+19,20-DiHDPA)/
(7,8-EDP+10,11-EDP+13,14-EDP+16,17-
EDP+19,20-EDP)

0.03765 ± 0.01382 0.03873 ± 0.01658 .4887
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vasoregulatory capacity to affect cardiovascular responses in 
hemodialysis patients.

4.1  |  EETs

RBCs are reservoir of EETs which on release may act in a vas-
oregulatory capacity (Jiang et  al.,  2010, 2011). In addition to 
serving as carriers of O2, RBCs are known to regulate the mi-
crovascular perfusion by liberating adenosine triphosphate 
(ATP) and EETs upon exposure to a low O2 environment (Jiang 
et al., 2010; Sprague et al., 2010). The release of EETs is activated 
by P2X7 receptor stimulation via ATP to cause the circulatory re-
sponse (Jiang et al., 2007). RBCs are believed to serve as a source 
of plasma EETs, which are esterified to the phospholipids of lipo-
proteins. Therefore, levels of free EETs in plasma are found to be 
low (~3% of circulating EETs) (Jiang et al., 2010, 2011). Erythro-
EETs are produced by direct oxidation of AA and the monooxyge-
nase-like activity of hemoglobin (Jiang et al., 2010, 2011, 2012). 
On release, EETs and their diols (DHETs) produce vasodilation 
(Hercule et al., 2009; Lu et al., 2001), are pro-fibrinolytic and re-
duce inflammation (Jiang et al., 2010, 2011, 2012). Exhaustive 
exercise increases the circulating levels of 5,6-DHET (Gollasch 
et al., 2019). In this study, we were able to demonstrate that RBCs 
of ESRD patients show increased accumulation of total DHETs. 
In particular, we observed increases in total concentrations of 8,9-
DHET and 14,15-DHET in the RBCs. Hemodialysis did not af-
fect this accumulation. It remains unknown whether RBCs are 
capable of liberating erythro-DHETs into the blood and/or tissues 
in kidney patients. Our results indicate that CKD affects the RBC 
reservoir for DHETs, but not EETs, which on release may affect 
the cardiovascular response.

4.2  |  Other PUFA metabolites

We observed increases in total concentrations of EEQs (5,6-
EEQ, 11,12-EEQ, 14,15-EEQ, 17,18-EEQ) and EDP/DiHDPAs 
(19,20-EDP, 7,8-DiHDPA, 10,11- DiHDPA, 13,14-DiHDPA, 
16,17-DiHDPA) and HETEs (5-HETE, 8-HETE, 9-HETE, 
11-HETE, 12-HETE, 15-HETE, 19-HETE) in RBCs of our 
ESRD patients. Little is known about the functions of EEQs and 
EDPs. Both EEQs and EDPs are potent vasodilators (Hercule 
et  al.,  2007; Lauterbach et  al.,  2002; Morin et  al.,  2011; Ulu 
et al., 2014). EDPs have antiangiogenic (McDougle et al., 2017), 
anti-fibrotic (Sharma et al., 2016) and protective effects in post-
ischemic functional recovery, at least in particular by maintain-
ing mitochondrial function and reducing inflammatory responses 
(Arnold et al., 2010; Darwesh et al., 2019). It is possible that their 
diols (DiHDPAs) are also biologically active and may exert 
beneficial effects in cardiac arrhythmias (Zhang et  al.,  2016). 
DiHDPAs dilate coronary microvessels with similar potency to 
EEQ isomers in canine and porcine models (Zhang et al., 2001) 

and inhibit human platelet aggregation with moderately lower 
potency to EDPs and EEQs (VanRollins, 1995). Specific 17,18-
EEQ analogs are in development to serve as novel antiarrhyth-
mic agents (Adebesin et al., 2019). HETEs are involved in many 
chronic diseases such as inflammation, obesity, cardiovascu-
lar disease, kidney disease, and cancer, for review see (Gabbs 
et al., 2015). Nonetheless, it remains unknown whether RBCs are 
capable of liberating EEQs, DiHDPAs, or HETEs into blood or 
tissues. Our data indicate that both metabolite classes are novel 
candidates potentially released by RBCs to exhibit cardiovascu-
lar effects in health and CKD.

Surprisingly, we did detect increases in various free CYP 
epoxides and LOX/CYP ω/(ω-1)-hydroxylase metabolites 
in RBCs in ESRD, which were augmented by hemodialy-
sis. The mechanism by which CKD and hemodialysis raises 
the levels of those erythro-metabolites is not known. Since 
those metabolites cannot be synthesized endogenously in 
appreciable amounts, accelerated release into and uptake 
from plasma could be a possible explanation. The more pro-
nounced changes observed in free metabolite levels within 
the RBCs, as compared with the total RBC compartment, 
indicate that free erythro-eicosanoids should be considered 
more dynamic or vulnerable with respect to metabolite flux. 
The design of our study does not differentiate between patient 
groups undergoing long-term dialysis therapy with regard to 
the specific underlying renal disease. Nevertheless, the im-
pact of those epoxides and hydroxy metabolites has yet to be 
integrated into a (patho)physiological context.

5  |   CONCLUSIONS

Our results show that CKD affects the levels of numerous CYP 
epoxides and hydroxy metabolites (DHETs, EEQs, DiHDPAs, 
and HETEs) in circulating RBCs compared to control sub-
jects, which on release may act in a vasoregulatory capacity. 
Although hemodialysis treatment was insufficient to change 
the majority of those total metabolites, we detected pronounced 
changes in free metabolite levels within the ESRD RBCs and in 
response to hemodialysis, indicating that free erythro-epoxides 
could also contribute to the cardiovascular risk, for example, 
in diabetes or hypertension. More research is needed to deter-
mine the contribution of RBC epoxy- and hydroxy-metabolites 
to cardiac performance and blood pressure regulation in health, 
cardiovascular, and specific kidney diseases.
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