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A B S T R A C T   

Ixodid ticks (Acari:Ixodidae) are essential vectors of tick-borne diseases in Japan. In this study, we characterized 
the population genetic structure and inferred genetic divergence in two widespread and abundant ixodid species, 
Ixodes ovatus and Haemaphysalis flava. Our hypothesis was that genetic divergence would be high in I. ovatus 
because of the low mobility of their small rodent hosts of immature I. ovatus would limit their gene flow 
compared to more mobile avian hosts of immature H. flava. We collected 320 adult I. ovatus from 29 locations 
and 223 adult H. flava from 17 locations across Niigata Prefecture, Japan, and investigated their genetic structure 
using DNA sequences from fragments of two mitochondrial gene regions, cox1 and the 16S rRNA gene. For 
I. ovatus, pairwise FST and analysis of molecular variance (AMOVA) analyses of cox1 and 16S sequences indicated 
significant genetic variation among populations, whereas both markers showed non-significant genetic variation 
among locations for H. flava. A cox1 gene tree and haplotype network revealed three genetic groups of I. ovatus. 
One of these groups consisted of haplotypes distributed at lower altitudes (251–471 m.a.s.l.). The cox1 sequences 
of I. ovatus from Japan clustered separately from I. ovatus sequences reported from China, suggesting the po-
tential for cryptic species in Japan. Our results support our hypothesis and suggest that the host preference of 
ticks at the immature stage may influence the genetic structure of the ticks. This information may be important 
for understanding the tick-host interactions in the field to better understand the tick-borne disease transmission 
and in designing an effective tick control program.   
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1. Introduction 

Tick-borne diseases are a public health concern, and their control is 
often challenging because of the complex interactions between ticks and 
their vertebrate hosts in a changing environment (Dantas-Torres et al., 
2012). Population genetic studies can shed light on the dispersal pat-
terns of ticks, including the direction, distance, and potential factors 
influencing movement, by estimating gene flow between tick pop-
ulations (McCoy, 2008; Araya-Anchetta et al., 2015). If high levels of 
gene flow are observed, there might be a greater chance of colonizing 
new areas or re-colonizing areas once vector control programs have been 
carried out. 

Due to the small size of ticks and their vulnerability to harsh envi-
ronments while not living on the host, tick dispersal is complex and 
closely linked to its host movement (Falco and Fish, 1991; McCoy et al., 
2001; Oliver et al., 2017). While host mobility can affect the genetic 
structure of tick populations, its effects are not consistent. Studies of 
Ixodes scapularis (Qiu et al., 2002) and Ornithodoros coriaceus (Teglas 
et al., 2006) have reported low levels of gene flow despite the high 
mobility of their hosts. In the study of Teglas et al. (2006), ticks were 
collected in sites that are separated by potential geographic barriers to 
dispersal. Other studies have reported low levels of gene flow in ticks 
with less mobile hosts (e.g., smaller mammals) and high levels of gene 
flow in ticks with highly mobile hosts (Araya-Anchetta et al., 2015). For 
example, high levels of gene flow observed in Amblyomma americanum 
(Linnaeus, 1767) and A. triste (Koch, 1844) (Acari, Ixodidae) across 
spatial scales ranging from 137,000 km2 to 2.78 million km2 was 
attributed to their hosts' dispersal capabilities (large mammals and 
birds) (Mixson et al., 2006; Trout et al., 2010; Guglielmone et al., 2013). 
Lampo et al. (2015) observed low levels of gene flow in A. dissimile 
(Koch, 1844) and concluded this was the result of its hosts' low mobility 
(small mammals, reptiles, and salamanders). 

Tick-borne disease is an increasing public health concern in Japan, 
affecting humans and animals (Yamaji et al., 2018). Eight genera of ticks 
have been recorded from Japan, composed of 47 species: 43 belonging 
to Ixodidae and four to Argasidae (Fujita et al., 2006). Of these 47 
species, 21 parasitize humans (Okino et al., 2010). Ixodes ovatus (Neu-
mann, 1899) is the primary vector of the causative agents of Lyme 
borreliosis (Miyamoto et al., 1993) and Haemaphysalis flava (Neumann, 
1897) is a vector of the causative agents of severe fever with thrombo-
cytopenia syndrome (SFTS) and Japanese spotted fever (JSF) (Yu et al., 
2014; Yamaji et al., 2018; Arai et al., 2021). Yamaguti et al. (1971) 
observed that hares (Leporidae) were the primary hosts of adult I. ovatus, 
but that larger mammals (e.g., cows and horses) also acted as hosts. The 
hosts of immature I. ovatus were small rodents. Yamaguti et al. (1971) 
also found that the primary hosts of adult H. flava were cows, dogs, 
horses, wild boar, bear, and deer, while birds were the hosts of imma-
tures. Despite this understanding of host differences, and the potential 
for host differences to be reflected in tick gene flow, we are aware of no 
comparative population genetic studies of these two important vectors. 
In addition to population genetic structure, genetic analysis may also 
reveal the presence of cryptic species, where morphologically identified 
individuals might represent more than one species (Fegan and Prior, 
2005). Previous studies of I. holocyclus (Neumann, 1899) (Song et al., 
2011), Rhipicephalus appendiculatus (Neumann, 1901) (Kanduma et al., 
2016), and I. ovatus (Li et al., 2018) have indicated the presence of 
cryptic species based on haplotype differences observed within 
morphological species. 

Here, we studied the population genetic structure of I. ovatus and H. 
flava in Niigata Prefecture, Japan, using DNA sequences from the 
mitochondrial cox1 and the 16S rRNA genes. We also examined the 
potential for the presence of cryptic species using the same data. We 
hypothesized that I. ovatus and H. flava would display contrasting pop-
ulation genetic structures based on the species having hosts of different 
mobility. The relatively low mobility of I. ovatus hosts, mainly hares at 
the adult tick stage and small mammals during the immature stage, 

could lead to significant genetic divergence among populations at the 
scale of our study. In contrast, the relatively high mobility of H. flava 
hosts, large mammals at the adult stage and birds at the immature stage, 
could lead to higher levels of gene flow and, therefore, lower genetic 
divergence among populations. We chose to examine these species 
because of the reported differences in host mobility and proposed 
occurrence of cryptic species. Both I. ovatus and H. flava have wide 
geographic distributions and occur throughout our study region. 

2. Material and methods 

2.1. Study site, collection, sampling, and identification 

From April 2016 until November 2017, ticks were collected using 
standard flagging methods (Ginsberg and Ewing, 1989) at 29 sites 
(Fig. 1) (Additional File 1. Table S1) across Niigata Prefecture, Japan. 
Ticks were collected 2 to 14 times in 6 core sites among the 29 sites, 
other sites were collected only once. (Additional File 2. Table S2). Site 
altitude ranged from 8 to 1402 m.a.s.l. (mean = 350) and the geographic 
distance between sites ranged from 8.83 to 247.65 km (mean = 77.36). 
Collected ticks were stored in microcentrifuge tubes with 70% ethanol at 
4 ◦C. We identified the developmental stage, sex, and morphological 
species identification using a stereomicroscope and identification keys 
of Yamaguti et al. (1971). 

2.2. DNA extraction, PCR amplification, and sequencing 

Genomic DNA (I. ovatus n = 320; H. flava n = 223) from each iden-
tified adult tick was extracted using Isogenome DNA extraction kits 
(Nippon Gene Co. Ltd., Tokyo, Japan) following the manufacturer's 
recommended protocol. Other species were excluded from this study. 
Before DNA extraction, each tick was washed with alcohol and a PBS 
solution. DNA concentration and quality were checked using a Nano-
Drop™ 2000 Spectrophotometer (Thermo Scientific™). Fragments of 
these mitochondrial genes were analyzed by polymerase chain reaction 
(PCR): cox1 (658 base pairs) using the primer pairs LCO-1490 (5′ - 
GGTCAACAAATCATAAAGATATTGG - 3′) and HCO1–2198 (5′ – 
AAACTTCAGGGTGACCAAAAAATCA - 3′) (Folmer et al., 1994); 16S 
(407 base pairs) using the primer pairs 16S + 1 (5′ – CTGCTCAAT-
GAATATTTAAATTGC - 3′) and 16S-1 (5′

Fig. 1. Map of the 29 sampling sites used for this study. Populations (A to H) 
were composed of multiple sites (labeled 1 to 29) and used for the population 
genetic analysis. 
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-CGGTCTAAACTCAGATCATGTAGG - 3′) (Tian et al., 2011). PCR am-
plifications were performed in a final volume of 10 μl with 1 μl of 
genomic DNA. The PCR reaction for both markers was composed of the 
following: 10× Ex Taq buffer, 25 mM MgCl2, 2.5 mM dNTP, 10 μm of 
forward and reverse primers, and five U/μl of TaKaRa Ex Taq™ (Takara 
Bio Inc.). The cox1 PCR amplification was as follows: an initial dena-
turation of 94 ◦C for 2 min, denaturation of 94 ◦C for 30 s, annealing of 
38 ◦C for 30 s, an extension of 72 ◦C for 1 min for 30 cycles, and a final 
extension of 72 ◦C for 10 min. The 16S amplification followed the pro-
tocol of (Tian et al., 2011) with some modifications (94 ◦C for 3 min; 30 
cycles of 94 ◦C for 30 s, 50 ◦C for 40 s, 72 ◦C for 40 s; and 72 ◦C for 5 
min). PCR products were purified using the QIAquick 96 PCR Purifica-
tion Kit (Qiagen) following the manufacturer's instructions, and 
sequenced in both directions by Eurofin Genomics, Inc., Tokyo, Japan. 

2.3. Sequence data analysis 

We assembled forward and reverse reads for each individual using 
CodonCode Aligner version 1.2.4 software (https://www.codoncode. 
com/aligner/). We observed no ambiguous bases and manually 
removed low-quality bases at the start and end of the reads. Multiple 
sequence alignments were done using the MAFFT online program with 
default settings (https://mafft.cbrc.jp/alignment/server/). To ensure 
sequence quality and to verify morphological species identification, we 
compared our sequences against reference sequences from GenBank 
using BLASTn. The alignment (cox1 = 658 bp; 16S = 407 bp) quality was 
checked for each fragment and cox1 sequences were translated into 
amino acids to confirm the absence of stop codons in Mesquite version 
3.5 (Maddison and Maddison, 2011). 

2.4. Population genetic analysis 

For the population genetic analysis, sites were combined if they had 
fewer than eight individuals and were separated by a geographic dis-
tance of 8.83 to 79.81 km (mean = 44.00 km). This was done because 
the accurate estimation of allele frequencies is difficult for small pop-
ulations. This resulted in a total of 8 populations (A to H) (Additional 
File 1 Table S1). Some sites were excluded from the population genetic 
analysis because of the small sample size (< 8 individuals) and the fact 
that there were no close sites. 

The size of the aligned data matrix used in analyzing both I. ovatus 
and H. flava sequences was 658 bp for cox1 and 407 bp for 16S. We 
analyzed the sequences of the two markers separately for both H. flava 
and I. ovatus using DNASp version 6.12.03 (Rozas et al., 2017) and 
calculated the following parameters: number of haplotypes (nh), the 
average number of polymorphic sites (s), and average number of 
nucleotide differences (k). The haplotype diversity (h) and nucleotide 
diversity (π) were calculated in Arlequin version 3.5.2.2 (Excoffier and 
Lischer, 2010). The population genetic structure within and among 
populations was assessed by analysis of molecular variance (AMOVA) 
performed in Arlequin with 9999 permutations. Pairwise genetic dif-
ferentiation between populations was assessed by calculating the pair-
wise FST values using Arlequin. The neutrality test of Tajima's D was 
carried out using DNAsp software, to determine if the populations have 
undergone recent expansions or bottlenecks. 

To determine if the genetic differentiation was influenced by 
geographical distance or altitudinal differences among populations, we 
performed Mantel Test in GenAlEx version 6.51b2 (Peakall and Smouse, 
2006). Two tests per species and marker were conducted. First, we 
compared pairwise genetic (pairwise FST values) and geographical dis-
tances (km). Second, we compared the pairwise genetic distance (FST 
values) with altitudinal differences (m.a.s.l.) calculated from GenAlex 
version 6.51b2. The geographic distances were obtained from the 
geographic midpoint using the online calculator (http://www.geomidp 
oint.com/) of the populations using the GPS coordinates (latitude and 
longitude) of each site recorded during the sampling. Altitude was 

calculated as the mean altitude of all the sites making up a given pop-
ulation. All Mantel tests were assessed using 9999 permutations for the 
significance of the correlation. 

Genetic relationships among populations were visualized using the 
unweighted pair group with the arithmetic mean (UPGMA) cluster 
method using the APE package (Paradis and Schliep, 2018) and R pro-
gram (R Development Core Team, 2016). To create a dendrogram, we 
used the genetic distance matrix (pairwise FST values) generated from 
GenAlEx. 

2.5. Haplotype network and phylogenetic analyses 

To evaluate the relationship among haplotypes, we constructed a 
haplotype network on the PopART program version 1.7 for each marker 
(cox1 and 16S) and species (I. ovatus and H. flava (http://popart.otago. 
ac.nz/index.shtml) using the median-joining (MJ) network algorithm 
(Bandelt et al., 1999). We performed a Bayesian phylogenetic analysis 
using BEAST version 1.10.4 (Drummond and Rambaut, 2007) to deter-
mine the phylogenetic structure of I. ovatus cox1 haplotypes within 
Niigata Prefecture. Additional sequences from China (see below) were 
also included in the Bayesian analysis. We used the HKY substitution 
model with the estimated base frequencies. A strict clock model was 
employed, and a coalescent prior was used as the tree prior. A maximum 
clade credibility tree was acquired using TreeAnnotator v1.10.4 from 
the many trees obtained from BEAUti v1.10.4, with 90% of trees used as 
burn-in. The maximum clade credibility tree was viewed using FigTree 
v1.4.4. 

We constructed maximum likelihood (ML) gene trees for cox1 and 
16S sequences of I. ovatus and H. flava using PhyML version 3.1 (Guin-
don and Gascuel, 2003) default settings. We calculated the node support 
using ML bootstrap. We applied HKY and GTR nucleotide substitution 
models for cox1 and 16S, respectively, as suggested by jModelTest 
version 2 (Darriba et al., 2012). Additional sequences from China 
(MH208506, MH208512, MH208514, MH208522, MH208515–19, 
MH208524, MH208531, MH208574, MH208577, MH208579, 
MH208681–87, MH208689–93, MH208706, KU664519(Li et al., 
2018)), Japan (Hokkaido AB231670, U95900; Yamanashi AB819241, 
AB819243 and Aomori AB819244) (Norris et al., 1999; Mitani et al., 
2007; Takano et al., 2014) were included to check for the presence of 
cryptic species. Some GenBank sequences have a different length as 
compared to our sequences. We used MAFFT alignment to align the 
sequences. We then checked the sequences in Mesquite software and 
trimmed the sequences for them to have the same length and we also 
checked for the presence of stop codons. The final length of the trimmed 
matrix used for the ML tree is 658 bp for cox1 and 407 bp for 16S. We 
used Ixodes canisuga as an outgroup because it is closely related to 
I. ovatus and H. flava (KY962023 and KY962074; Hornok et al., 2015). 

3. Results 

A total of 2374 individual ticks was collected. Adult and immature 
Ixodes nipponensis (Kitaoka and Saito, 1967), I. persulcatus (Shulze, 
1930), I. monospinus, and Dermacantor taiwanensis (Sugimoto, 1936) 
were also identified and used for another research study. The number of 
I. ovatus ranged from 1 to 36 adults per site and were more successfully 
sequenced for cox1 (307/320; 95.9%) than for 16S (284/320; 88.8%) 
(Additional File 1 Table S1). The number of H. flava ranged from 1 to 77 
adults per site and sequencing was also more successful for cox1 (220/ 
223; 98.7%) than for 16S (172/223; 77.1%)(Additional File 1 Table S1). 
For the population genetic analysis, in which populations consisted of 
combined sites (see above) the number of individuals were as follows: 
cox1 I. ovatus (28 to 62), 16S I. ovatus (24 to 66), cox1 H. flava (8 to 81) 
and 16S H.flava (8 to 76) (Additional File 1 Table S1). There were 60 and 
63 cox1 haplotypes and 24 and 40 16S haplotypes in I. ovatus and 
H. flava, respectively (Table 1). Haplotype diversity (h) per population 
ranged from 0.582 to 0.964, and nucleotide diversity (π) per population 
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ranged from 0.000 to 0.096 among markers and species (Additional File 
1 Table S1). The demographic inference in both H. flava and I. ovatus 
showed statistically significant negative Tajima D's values in both 
markers (Table 1). 

We found significant global FST values (p < 0.01) for I. ovatus with 
values of 0.3801 in cox1 and 0.0378 in 16S (Table 2). In contrast, both 
cox1 and 16S markers of H. flava indicated no significant genetic dif-
ferentiation. AMOVA results revealed a high among-population diver-
gence in I. ovatus cox1 (38.01%) compared to 16S (3.78%). The AMOVA 
results in H. flava revealed low divergence at both cox1 (1.81%) and 16S 
(0.78%) markers. Pairwise FST values (0.0963 to 0.6808) of cox1 for 
I. ovatus were significant between most pairs of populations, such as 
between populations B and D and populations F and D (Additional File 3 
Table S3). We also observed significant genetic differences in 16S 
I. ovatus sequences (range 0.0514 to 0.0949)(Additional File 3 Table S3). 
Pairwise FST values from the cox1 marker of H. flava showed significant 
genetic differences among a few population pairs including A and C, C 
and E, and D and E; 16S was significant between A and C (Additional File 
4 Table S4). Mantel tests showed no significant isolation by geographic 
distance in I. ovatus (cox1 r = 0.108, p = 0.269; 16S r = 0.518, p = 0.065) 
(Additional File 5 Fig. S1, a and b) or isolation by altitudinal difference 
(cox1 r = − 0.066, p = 0.225; 1S r = − 0.023, p = 0.577). The same was 
true for H. flava (distance: cox1 r = 0.444, p = 0.130; 16S r = 0.355, p =
0.189; altitude: r = 0.092, p = 0.30; 16S r = 0.217, p = 0.06) (Additional 
File 5 Fig. S1, c and d). 

The UPGMA cluster dendrogram constructed from the pairwise FST 
values of I. ovatus for the cox1 marker (Fig. 2) revealed two genetic 
clusters among the seven populations. Population H is not included in 
this analysis because the sample number is less than 8 individuals. 
Cluster 1 (populations A, B, and F) included populations in the northern 
and southern sites (Fig. 3) and were distributed in mountainous areas 
with higher elevations. Cluster 2 included populations from the more 
western sites. We observed no evidence of genetic clustering on the 
dendrogram of I. ovatus using 16S, or for either marker in H. flava 
(Additional File 6 Fig. S2; Additional File 7 Fig. S3; Additional File 8 
Fig. S4). The Bayesian tree of Japanese I. ovatus cox1 haplotypes (Fig. 4) 
and the haplotype network with the additional sequences from China 
(Fig. 5) showed similar patterns of 4 genetic groups within Japan. Two 
haplotypes of I. ovatus were distinct from all others (Hap59 and Hap60) 
(Fig. 5; Additional File 9 Fig. S5) and were found in sampling site 6 (Pop 
A) and sampling site 26 (Pop G). The Bayesian tree of I. ovatus cox1 
haplotype sequences with reference sequences from China also 

displayed the four genetic groups (Additional File 10 Fig. S6). The 16S 
haplotype network of I. ovatus (Additional File 11 Fig. S7) and both the 
cox1 (Additional File 12 Fig. S8) and 16S (Additional File 13 Fig. S9) 
networks in H. flava did not reveal any distinct genetic groups. 

Evidence for a putative I. ovatus species complex was identified in the 
cox1 ML tree based on the presence of three distinct haplotype groups: 
group 1 which included published sequences from Southwestern China, 
group 2 which contained the 58 Japan haplotypes including the two 
divergent haplotypes (Hap 60 and Hap 59), and group 3 which also 
included sequences from west China (Fig. 6). The published haplotype 
from Hokkaido, Northern Japan (Mitani et al., 2007) occurred within 
group 2. In the I. ovatus 16S tree (Additional File 14 Fig. S10), our Nii-
gata sequences were grouped with published haplotypes from Yama-
nashi Prefecture, located south of the study area, and from Aomori 
Prefecture (Takano et al., 2014) and from Hokkaido (Norris et al., 1999), 
both of which are north of the study area. The cox1 tree for H. flava 
(Additional File 15 Fig. S11) were similar to reference sequences from 
China KY021800 – KY021807, KY021810 – KY021819 and KY003181 
(Li et al., 2018; Unpublished results from NCBI); JQ625688 – JQ625689, 
JF758632 and JQ737097 (Lu et al., 2013) and JG737097 (Gou, H., 
Guan, G., Yin, H. and Luo, J.; unpublished results from NCBI). The 
H. flava 16S haplotype sequences (Additional File 16 Fig. S12) were 
similar to reference sequences from Japan (Kagoshima, Aomori, Fukui, 
Yamanashi, Kagawa, and Ehime Prefectures (Takano et al., 2014)) and 
China (KC844858 –KC844867 (Cheng et al., 2013); KX450280 
–KX450282 (Zhang, Y., Cui, Y., Peng, Y., Yan, Y., Wang, X. and Ning, C. 
Liu, Q., Zhang, Y. and Zhu, D.; unpublished results from NCBI); 
MG696720 (Zheng, W., Chen, S. and Chen, H.; unpublished results from 
NCBI) and KP324926 (Liu, Q., Zhang, Y. and Zhu, D.; unpublished re-
sults from NCBI)). 

4. Discussion 

4.1. Contrasting population genetic structures between I. ovatus and 
H. flava 

Our results supported our hypothesis that I. ovatus may display high 
levels of genetic divergence among populations because of its low host 
mobility. The significant global FST estimates in I. ovatus cox1 (0.3801) 
and 16S (0.0378) revealed population differentiation as supported by 
AMOVA results of high among population variation (38.01%) in I. ovatus 
cox1. Although, there is higher between population variation (61.99%) 

Table 1 
Summary of cox1 and 16S haplotype diversity of adult I. ovatus and adult H. flava populations in Niigata Prefecture, Japan.  

Marker Species n nh s k h (min – max) π (min – max) Tajima's D 

cox1 I. ovatus 307 60 65 2.728 0.852 (0.582–0.871) 0.004 (0.002–0.004) − 2.598 * 
H. flava 220 63 60 1.472 0.789 (0.718–0.964) 0.002 (0.718–0.964) − 2.193* 

16S I. ovatus 284 24 22 0.699 0.442 (0.074–0.712) 0.001 (0.000–0.712) − 2.226* 
H. flava 172 40 49 2.447 0.835 (0.731–0.964) 0.006 (0.005–0.007) − 2.143* 

Abbreviations: n sample size; nh number of haplotypes; s number of polymorphic sites; k mean; number of nucleotide differences; h haplotype diversity (minimum- 
maximum values); π nucleotide diversity (minimum-maximum); * p < 0.01. 

Table 2 
Analysis of molecular variance (AMOVA) using cox1 and 16S of adult I. ovatus and adult H. flava populations.  

Marker Species  df ss vc pv FST 

cox1 I. ovatus Among populations 6 144.45 0.5562 Va 38.01 0.3801* 
Within populations 229 262.17 0.9071 Vb 61.99 

H. flava Among populations 4 4.9 0.0135 Va 1.81 0.0181 
Within populations 213 156.12 0.7321 Vb 98.19 

16S I. ovatus Among populations 6 5.12 0.0133 Va 3.78 0.0378* 
Within populations 272 91.83 0.3376 Vb 96.22 

H. flava Among populations 4 5.74 0.0092 Va 0.78 0.0079 
Within populations 164 191.31 1.1665 Vb 99.22 

Abbreviations: df degrees of freedom; ss sum of squares; vc variance component where Va, Vb and Vc are associate covariance components; pv percentage variation; * 
p < 0.01. 
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in AMOVA for I. ovatus cox1 this is likely to occur because of the large 
sample size per population. This doesn't suggest that the among popu-
lation variation in I. ovatus is limited since we observe higher among 
population variation in I. ovatus cox1 as compared to H. flava. The host 
preference of I. ovatus may also contribute to their being separated into 
four genetic groups in the Bayesian gene tree and the haplotype 
network. Haplotypes from groups 2 and 3 were primarily from low 
altitudinal areas, whereas ticks from group 1 were found in high-altitude 
areas. We assume that the large mammalian hosts of I. ovatus such as 
cows and horses have enabled the group 1 ticks to reach high elevation 
areas. The distribution of the type of hosts may also affect altitude, 
influencing the formation of groups 1, 2, and 3 in the cox1 I.ovatus 
dendrogram. 

On the other hand, the homogenized population genetic structure 
observed in H. flava might be because of the combined high host 
mobility of large mammals at the ticks' adult stage and the avian 
mediated dispersal at the immature stage. Twenty-eight species of birds 
were previously reported as hosts of immature H. flava from Japan, 
mainly from the order Passeriformes (Yamauchi and Takeno, 2000). 
Large mammals and birds may have expansive habitats ranges that may 
allow high gene flow of H. flava between the locations in Niigata, as 

previously observed in Amblyomma americanum populations (Reichard 
et al., 2005; Mixson et al., 2006; Trout et al., 2010) and I. ricinus (Casati 
et al., 2008). 

In addition to host mobility, several alternative factors can affect tick 
dispersal patterns, including tick behavior, biology, and ecology. A 
previous comparison of Hyalomma rufipes (Koch, 1844) and A. hebraeum 
(Koch, 1844) also revealed contrasting genetic patterns despite the two 
species having similar, highly mobile hosts (Cangi et al., 2013). The 
contrasting genetic patterns might be due to the species-specific survival 
rates of immature ticks after having detached from their host (Cangi 
et al., 2013; Cumming, 1999; Estrada-Peña, 2015; Needham and Teel, 
1986). Population genetic structure can also be influenced by assortative 
mating (e.g., I. ricinus), wherein mating is not random but is more likely 
between genetically similar individuals, resulting in increased genetic 
divergence (Kempf et al., 2009). Our study does not have supporting 
data to test these alternative factors; thus, we suggest future studies 
analyze these factors further. 

A significant negative Tajima D value means there is an abundance of 
rare alleles. This can result from selective sweeps or from expansion 
after a bottleneck. The fact that Tajima D's values was significant and 
that there was no IBD can be interpreted to mean that populations are 
not in drift-gene flow equipibrium. This might be because we have 
cryptic species as seen in I. ovatus cox1 ML tree. 

Only a few population pairs of I. ovatus showed significant genetic 
differentiation at the 16S marker. This is likely due to its low nucleotide 
diversity (nd = 0.001) compared to cox1 (nd = 0.004). Such a pattern 
has been reported in other studies, where 16S did not provide suitable 
levels of variation for population-level analysis of A. ovale (Koch, 1844) 
(Bitencourth et al., 2019) and R. microplus (Canestrini, 1888) (Burger 
et al., 2014; Low et al., 2015). Nonetheless, the 16S data did support the 
finding of genetic variation in I. ovatus populations (Table 1), and the 
inclusion of 16S allowed for the comparison of other published 16S se-
quences for many more regions of Japan (Takano et al., 2014; Norris 
et al., 1999) and in China (Cheng et al., 2013). We also observed greater 
success in the PCR amplification and sequencing of cox1 compared to 
16S. This could be the result of variation at primer binding sites. 

Understanding the genetic structure and gene flow of I. ovatus and 
H. flava can provide insights in predicting the spread of tick-borne dis-
eases (Sato et al., 2021). In addition, population genetic information can 
be used to design effective vector control programs and reveal tick 
dispersal mechanisms. For example, the high levels of gene flow we 
observed in H. flava suggest a higher probability of newly colonizing 
areas or recolonizing areas that were subject to tick control programs 
(McCoy, 2008). 

Fig. 2. Clustering of adult I. ovatus populations in Niigata Prefecture, Japan, based on an unweighted pair group method with the arithmetic mean (UPGMA) 
dendrogram of the pairwise genetic distance (FST) of cox1 among 7 populations. 

Fig. 3. The distribution of the two genetic clusters of I. ovatus as observed in 
the UPGMA cluster dendrogram (Fig. 2) of cox1 sequences from Nii-
gata Prefecture. 
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4.2. Species complex formation in I. ovatus cox1 sequences 

Our cox1 I. ovatus gene tree showed Japanese individuals to form a 

distinct group from haplotypes from Southwestern China (Li et al., 
2018). Despite the high genetic divergence in I. ovatus in our data set, we 
found that the haplotypes from Niigata were very similar to published 

Fig. 4. Bayesian gene tree of I. ovatus cox1 haplotypes from Japan. Posterior probability values are indicated above the branches.  

Fig. 5. Median-joining cox1 haplotype network of I. ovatus haplotypes including published sequences from China. Each circle represents a unique haplotype and the 
lines correspond to mutations. The group number is linked to the groups shown in Fig. 4. 
For easier visualization, the mutation steps (n = 70) were marked as. 
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sequences from Hokkaido in northern Japan. This may indicate that 
these ticks originated from a diverse set of geographical locations in 
Japan, which might be transported by its hosts or are undergoing recent 
population expansion from northern Japan (Hokkaido) to central Japan 
(Niigata) vice versa. We found three groups (China 1, Japan, and China 
2) and two slightly divergent cox1 haplotypes (Hap 60 and 59) in the 
Japan group of I. ovatus in Niigata. Considering two or more cryptic 
species can be concealed in one morphologically described species 
(Bitencourth et al., 2019), the occurrence of the three groups and the 
divergent haplotypes suggests that I. ovatus may be a species complex. It 
can be inferred that China 1 and China 2 might have a longer evolu-
tionary time than Japan. The co-existence of a species in the same 
geographic area may explain the occurrence of the species complex. One 
of the limitations of this study is that both Chinese and Japanese in-
dividuals were collected in a limited geographical area. We suggest that 
future studies sample and sequence more individuals from other loca-
tions. Extensive geographical sampling can lead to improved taxonomic 
understanding, as indicated in the study of Liu et al. (2013) on 
R. sanguineus (Latreille, 1806). Previous studies have also observed 
species complexes in Ixodes and Rhipicephalus (Xu et al., 2003; Song 
et al., 2011; Burger et al., 2014; Li et al., 2018;), suggesting that 
morphological criteria for tick species differentiation alone can be 
equivocal, and that genetic analysis is essential. Future studies should 
take an integrative approach that includes morphology, genetics, 
biology, and ecological traits (Dantas-Torres et al., 2012). 

5. Conclusions 

In summary, our findings revealed contrasting patterns of population 

genetic structure of I. ovatus and H. flava in Niigata Prefecture, Japan. 
The greater genetic divergence among populations in I. ovatus might 
result from the restricted movement of its small mammalian hosts dur-
ing its development, while the homogenous structure in H. flava might 
be due to the more widespread movement of its avian and large 
mammalian hosts. Although our results suggest that the host preference 
of immature ticks may influence the population genetic structure of 
adult ticks due to their higher ability to survive into adult stage 
(Needham and Teel, 1986; Cumming, 1999; Estrada-Peña, 2015), we 
can only infer that the host mobility affects genetic structure. Since the 
present study only focused on adults of I. ovatus and H. flava, studying 
immature ticks and population structuring should be explored by future 
studies. Understanding the population genetic structure of ticks such as 
I. ovatus and H. flava can inform studies of their distribution and the 
control of tick-borne diseases. Even though I. ovatus populations were 
genetically structured within Niigata, a published haplotype from 
Hokkaido was also found, indicating that widespread dispersal is 
possible. The occurrence of three genetic groups and the divergent cox1 
haplotypes in I. ovatus emphasizes the need for additional research into 
the existence of a species complex of I. ovatus populations in Japan. 
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Not applicable. 

Fig. 6. Maximum likelihood gene tree of 
cox1 sequences of I. ovatus that includes 
published sequences from China and Japan, 
and I. canisuga as an outgroup. Support 
values are indicated above the branches. 
Green background indicates Japanese hap-
lotypes from this study; yellow indicates 
published sequences from China (Li et al., 
2018); red indicates published sequence 
from Hokkaido, Japan (Mitani et al., 2007); 
blue indicates divergent Japanese haplo-
types from this study (Hap 59, Hap 60); 
purple indicates I. canisuga outgroup.   
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