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Summary

Smart-wheelchair navigation is a daunting problem even when autonomous cars
are slowly taking on the roads. Smart-wheelchairs ought to navigate in highly
unstructured and diverse indoor and outdoor conditions that lack the conventions
that simplify autonomous car driving. Furthermore, smart-wheelchairs have as-
tringent limitations to the size, weight, energetic consumption, and cost of the
components used for autonomous navigation. Despite the challenge, the devel-
opment of smart assistive technology is necessary because the number of users is
likely to rise due to demographic tendencies.

This dissertation explores the use of the visual compass algorithm VCA for
outdoor route-following with a smart-wheelchair. The VCA infers the travel direc-
tion by aligning the current-view with snapshots stored in a visual memory. Image
matching is performed using simple IDFs on low-resolution panoramic images, as
inspired by insect navigation findings.

The VCA is an attractive alternative because it only requires an omnidirec-
tional camera and modest computational resources. Nevertheless, the algorithm
suffers from well-known limitations, and its performance for tasks like smart-
wheelchair navigation is poorly understood because most studies evaluated have
focused on highly controlled conditions.

This investigation presents three extensions to the VCA. The first one is the
use of texture-based representations of the panoramic images to reduce aliasing.
Then, the TVCC, which enables the use of multiple representations and IDF's.
The third extension introduces KT, i.e., using visual memories to navigate with
a different setup than the one used to acquire them, which is an essential aspect
of large-scale applications. Furthermore, this dissertation presents an algorithm
to correct off-route translational error without resorting to multiscale analysis or
probatory movements.



Zusammenfassung

Autonomes Rollstuhlfahren ist ein extrem komplexes Problem. Besonders zu dem
Zeitpunkt, an dem autonome Autos langsam die Strafen iibernehmen. Autonome
Rollstiihle sollen in sehr unstrukturierten und diversen Umgebungen (innen und
auken) fahren kénnen. Solche Umgebungen bieten oftmals nicht, die expliziten
Regeln und Infrastrukturen, die das Autofahren vereinfachen. Dazu sollten, au-
tonome Rollstiihle klein, leicht, energie-effizient und giinstig bleiben, damit Men-
schen, die einen bendtigen, sich einen leisten kénnen. Deshalb, sind manche Kom-
ponenten, die zurzeit in autonomen Autos verwendet werden, nicht fiir autonome
Rollstiihle geeignet. Trotz dieser Herausforderung, ist es nétig, die Entwicklung in-
telligenter unterstiitzender Technologie anzutreiben, weil die Benutzeranzahl auf-
grund demographischer Tendenzen steigen wird.

Diese Dissertation befasst sich mit der Anwendung des ,Visual Compass Algo-
rithm (VCA)“ fiir Aufen Route-folgen. Der Algorithmus berechnet die Fahrtrich-
tung durch die Anpassung zweier panoramischer Bilder. FEins davon, wird am
Zielort im Voraus aufgenommen, wihrend das zweite eine aktuelle Beobachtung
des Roboters darstellt. Die Bildanpassung erfolgt durch eine simple “Image Dis-
tance Function (IDF)”, in niedriger Auflésung panoramischer Bilder. Das Ver-
fahren wurde von Forschungsergebnissen aus der Insektennavigation inspiriert.

Der VCA ist attraktiv fiir autonome Rollstiihle, weil er nur zwei panoramische
Bilder fiir die Berechnungen braucht, und weil er nur eine niedrige Rechenleistung
bendtigt, um die Echtzeitlaufzeit zu erreichen. Allerdings, hat das VCA mehrere
Einschrankungen. Diese Dissertation stellt drei Erweiterungen fiir das VCA dar.
In der ersten Erweiterung, werden panoramische Bilder anhand einer Textur
repriasentiert, um den Aliasing-Effekt zu reduzieren. Die zweite Erweiterung er-
moglicht multiple Représentationen der panoramischen Bilder und der IDF zu
kombinieren. Die dritte Erweiterung “Knowledge Transfer” (KT), ermoglicht es
zu navigieren, wenn die “Visual Memories” und “Current-Views” von verschiedenen
Kamerakonfigurationen aufgenommen werden. KT wird als wichtige Vorausset-
zung fiir Grofanwendungen dargestellt. Diese Dissertation prisentiert also einen
Algorithmus, mit dem man Translationsfehler korrigieren kann.
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Chapter 1

Introduction

The ability to travel autonomously is the defining characteristic of mobile robots.
Progress in this area has been significant in the last decades, due in part to the
growing interest in the development of autonomous cars. However, autonomous
navigation is still a challenging problem, especially when the technology used for it
is limited !, and when highly unstructured and diverse environments are involved.

Vision-based navigation offers an attractive alternative because cameras pro-
vide dense measurements of the environment. Nevertheless, they are inexpensive,
lightweight, compact, and require little power to operate compared to other types
of sensors. Unfortunately, extracting navigation relevant information from raw
images is challenging due to a myriad of nuances.

This investigation addresses the problem of visual route-following in an appli-
cation, where highly unstructured and diverse environments are the norm, and in
which the benefits of a vision-based navigation system are particularly attractive:
smart-wheelchair outdoor navigation.

The results presented are based on the VCA, formulated initially to study
visual navigation in insects (Zeil et al., 2003). In its pure form, the VCA esti-
mates the relative orientation of two low-resolution panoramic images captured
at nearby locations. It provides two outputs: a relative heading and a similarity
measure that correlates locally with the spatial distance between the locations
where the images were captured. A robot can use that information to home to
a spatial location (Zeil et al., 2003) and follow a route employing consecutive
homing operations to intermediate waypoints (Smith et al., 2008).

The VCA has the advantage of being relatively simple: It does not require
object identification or other high-level cognitive capabilities. Additionally, it ex-
ecutes with low latency, even on modest hardware. The evaluation was performed
on data acquired using the smart-wheelchair ROSStuhl, developed as part of the
author’s doctoral studies, and on simulated data where appropriate.

'For example, highly accurate GPS and range sensors greatly simplify the problem but are
not adequate for all applications.



Chapter 1. Introduction

1.1 The Need for Smart-Wheelchairs

The exact reasons why a person requires a wheelchair are complex and diverse.
However, they can be summarized into a single one: that person lacks mobility.
That lack of mobility has profound consequences because it reduces a person’s
ability to engage in ADL, and makes them dependent on other’s assistance. For
example, let us consider financial implications as an example. People with mobility
limitations often find themselves in a dire situation, because they are twice as likely
to be unemployed, especially if their disability is chronic and severe. For example,
male-households under disability suffer a 68 % income decrease within ten years of
disability onset, and also reductions in after-tax income and food consumption. As
of 2011, most persons with disabilities lived in rural areas in developing countries
(Meyer and Mok, 2019; World Health Organization and others, 2011).

Smart-wheelchairs and other smart-assistance technologies will become in-
creasingly important because the number of potential users is expected to in-
crease. The main reasons behind are the aging of the world’s population and
the prevalence of mobility-limiting conditions? in the elderly. The current demo-
graphic trends indicate that their numbers, and the proportion of the population
they represent, will double globally by 2050 (Pollack, 2005), see Table 1.1.

Country | percentage in 2000 | percentage by 2050
Japan 23.3 42.4
India 7.5 20.1
Italy 24.1 40.6
Germany | 23.2 34.5
USA 16.1 25.5
Mexico 6.9 26.2
Colombia | 6.9 22.7
Botswana | 4.2 6.0
Ethiopia | 4.6 7.7
Brazil 7.8 25.9
Fiji 5.7 22.7
Jordan 4.6 19.0

Table 1.1: Percentage of population over 60 compared between 2000 and 2050 (Pollack,
2005).

Traditional-wheelchairs® offer only a partial solution because there are per-
sons who cannot use them. Intuition may suggest that the inability to use a
traditional wheelchair occurs only in the most severe cases, but moderate ones

2Like Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple scle-
rosis

3 Traditional-wheelchairs depend on a human operator to navigate. Manual-wheelchairs rely
entirely on the user (using his arms) for steering and propulsion. In contrast, power-wheelchairs
have motors that are controlled by the user through a control interface, like a joystick (Leaman
and La, 2017).



1.2. Smart-Wheelchair in the Age of Autonomous Cars

can be sufficient. Those include motor disabilities (like fatigue and weakness),
visual disabilities (like visual field neglect or loss), and cognitive ones (executive
reasoning deficits or impaired attention). Smart-wheelchairs could improve the
outlook of persons with disabilities who cannot operate a traditional-wheelchair
because they navigate without the intervention of the user. In the US, the number
of potential users for such systems due to a medical condition was estimated to
be approximately two million in 2008 (Simpson et al., 2008). At the same time, it
would reduce the demand for caretakers, which are insufficient, as 20 to 40 % of
the persons with disabilities do not receive adequate assistance, even in wealthy
countries (Meyer and Mok, 2019).

1.2 Smart-Wheelchair in the Age of Autonomous
Cars

Smart-wheelchairs and autonomous cars are related problems because they share
a common goal: to produce “intelligent” vehicles that navigate by themselves.
However, both applications differ greatly in many ways, when seen in detail. Re-
garding the driving conditions, smart-wheelchairs must operate in less structured
and more diverse environments than autonomous cars. A fully autonomous car
would have to drive mostly in highways, cities, rural areas, and parking lots.
It is still a daunting problem, but in general, they can be expected to operate
under well-established traffic rules and with infrastructure especially crafted for
that purpose. In the case of fully functional smart-wheelchairs, they would have
to cover environments as diverse as sidewalks, restaurants, elevators, hospitals,
metro stations, supermarkets, as well as boarding in and out of public transporta-
tion systems. The features in those environments vary greatly, and the conven-
tions that simplify navigation of autonomous cars, e.g., lane markings (or lanes
whatsoever), traffic signs, and rules, cannot be taken for granted. There are also
important differences regarding the users. Perhaps the most remarkable is that
the availability of a safety-driver, an assumption still present in autonomous cars,
would not be suitable for smart-wheelchairs. As discussed earlier in this chapter,
the main reason why people would require a smart-wheelchair is that they cannot
operate a traditional-wheelchair themselves. Hence, some smart-wheelchair users
would not be reliable safety drivers. Completely eliminating any human-provided
safety is perhaps not foreseeable in the near future. However, it would have to
occur at some point so that smart-wheelchairs fully serve the people who need
them most.

Moreover, the equipment suitable for autonomous driving is more limited in
smart-wheelchairs, because they have less space and power to host them, and
because the footprint of the smart-wheelchair should remain small enough to nav-
igate through narrow areas. Deployment is yet another major difference. While
shared autonomous cars are seen as an attractive possibility to reduce the num-
ber of vehicles on the streets (Lang and Mohnen, 2019), smart-wheelchairs would
be more useful if each user had a dedicated smart-wheelchair. Consequently, the
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overall system cost has to remain low, mainly because, as discussed earlier, people
with disabilities often find themselves in a dire financial situation.

Given the above, smart-wheelchair navigation can be considered to be a more
challenging problem than autonomous driving for cars. Despite recent testing of
smart-wheelchairs, one in a hospital in Singapur, and one in an airport in Japan
(Scudellari, 2017), smart-wheelchair technology has failed to reached widespread
use (Leaman and La, 2017). According to Narin et al. (2018) this is not only
due to the problem being more difficult than self-driving cars but also because
of a mismatch between the research community agenda and the real needs and
desires of smart-wheelchair users. The authors suggest lowering the short-term
expectations of smart-wheelchairs in order to attain easier yet useful goals. Recent
developments even advocate for a cooperative approach between the autonomous
navigation system and the smart-wheelchair user (Fearn et al., 2019).

1.3 Problem Statement

Route-following using the VCA is often posed as successive homing operations to
intermediate waypoints (Smith et al., 2007; Stone et al., 2018). The problem can
be decomposed into two complementary subtasks: localization and homing. Lo-
calization consists of identifying the closest waypoint to the robot by finding the
snapshot in a visual memory that better approximates the robot’s location. Hom-
ing consists of moving towards that waypoint by visual servoing. Both processes
rely on the alignment of the current-view and a snapshot (previously captured
when the robot was at the waypoint). Image alignment is performed using an
IDF that yields the relative orientation between both images and a measure of
how different they are. Algorithms like the VCA are advantageous for applica-
tions that involve navigation in unstructured environments because it does not
rely on the identification of landmarks. Previous results on the VCA provided en-
couraging results, but have also exposed some of the limitations of the algorithm
(Zeil et al., 2003; Labrosse, 2006; Baddeley et al., 2011; Ardin et al., 2015). A
common problem is that most evaluations were performed under highly controlled
conditions. Thus, it is arguable that the performance of the VCA in challenging
outdoor conditions is poorly understood. Moreover, several aspects that would
make the VCA more usable for real-world applications are unresolved.

The first aspect is global localization, important because it would allow a
smart-wheelchair to navigate without a localization prior, as long as the robot is
nearby a waypoint. Additionally, global localization is necessary to correct off-
route deviations (Smith et al., 2008), which would invariably occur due to motor
noise and during the execution of obstacle avoidance maneuvers.

Localization failure detection is the second aspect. This aspect enables the
robot to know when it is lost. Although a robot “getting lost” is undesirable,
when that happens, the robot should know.

The third aspect is knowledge transfer, required when the setup used to acquire
visual memories and to navigate, are different. The lack of knowledge transfer
makes it necessary for each robot to have its own version of the visual memories.

4



1.4. Aim and Scope

The final aspect is that the VCA does not provide useful information to steer
the robot to correct off-route translational error. There are two current solutions
to this issue. The first one is to perform probatory translational movements to
infer the correct travel direction (Wystrach et al., 2012; Moller and Vardy, 2006a).
That solution emerged as an explanation for how insects navigate. However,
performing random movements is difficult and undesirable in smart-wheelchairs
because of their kinematic constraints and safety reasons. Another solution is to
use a more sophisticated algorithm that takes accounts for scale changes under
translation (Méller and Vardy, 2006b; Churchill and Vardy, 2008; Moller et al.,
2014).

1.4 Aim and Scope

Figure 1.1: The smart-wheelchair ROSStuhl.

The aim of this investigation is to study the VCA for outdoor smart-wheelchair
navigation, focusing on the aspects mentioned in the previous section. The eval-
uation is performed on data captured by a smart-wheelchair and on simulation
data that resembles the conditions of a smart-wheelchair navigating outdoors.

Regarding KT, this dissertation limits to introducing it as an essential problem
for real-world, large-scale applications and proposes a method to correct differ-
ences in intrinsic parameters. A complete KT, would likely also require to correct
other aspects, like extrinsic parameters, and even the robot’s footprint and kine-
matics. Some of these factors are briefly discussed later on, but this thesis does
not address them.

This dissertation presents the design of the smart-wheelchair ROSStuhl and
its route-following system. Unfortunately, the route-following system was not
formally evaluated, and the aspects mentioned in the previous section are not
covered by it.

The following general limitations in scope are found through this investigation.
This investigation does not involve temporal integration of information. Global lo-
calization and failure detection are performed at each step, independently of other
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results. Moreover, omnidirectional vision is the only sensor modality considered.
The route-following system of the ROSStuhl breaks this limitation in the sense
that the update of the localization hypothesis occurs only after wheel-odometry
estimates that the wheelchair has moved since the last update. Nevertheless, this
limitation is not present in the experimental results presented.

1.5 Thesis Contributions

This dissertation’s main contribution is the study of visual matching with the
VCA and texture primitives based on the well-known LBP operator(Ojala et al.,
1996, 2002). The second contribution is the TVCC algorithm, which allows merg-
ing the results of multiple VCA configurations. The fourth contribution is the
introduction of KT as an essential aspect in the area of holistic visual navigation
methods. The fourth contribution was the design and construction of the smart-
wheelchair ROSStuhl. The fifth contribution is to study the effects of using a
precise intrinsic model to unwrap panoramic images, instead of a naive model.



Chapter 2

Background and Related Work

2.1 Autonomous Navigation

Autonomous navigation is the ability by which a robot moves from its current
location to a goal. The exact requirements of a navigation system may change
between applications, but in general, a robot should navigate efficiently and safely.
There are four skills necessary for navigation (Siegwart et al., 2004).

The first skill, perception, consists of inferring state information by interpret-
ing sensory information. Perception is challenging for a variety of reasons, like
ambiguities in sensor information (aliasing), and differences between what ideal
and real sensors deliver. The second skill is cognition and consists of using a strat-
egy to reach the goal, given state information and knowledge of the environment.
Cognition includes problems like trajectory and route planning. Cognition is chal-
lenging because of imperfections in the state estimate of the robot and changes
in the environment. In dynamic environments, robots generally plan strategies at
different time horizons and readjust as necessary to cope with unexpected situa-
tions (Van Den Berg et al., 2006). The third skill, motion control, is used to move
the robot by modulating the output of its actuators. The last skill is localization
and allows the robot to know its location with respect to some reference. To that
end, a localization system generates localization hypotheses by correlating exte-
roceptive sensory information with a representation of the environment: a map.
Thrun et al. (2005) suggested the following four criteria to differentiate between
localization problems:

Local vs. global This criterion depends on the certainty of the robot on its
current pose.

Position tracking The robot is very certain of its pose from the beginning
and within a small margin of error. Therefore it only considers nearby
locations when updating the localization estimate.

Global localization The robot ignores its initial location, and it assumes
to be lost. The robot may have to consider a large number of candidate
locations to find its current one.
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Kidnapped robot The kidnapped robot problem can be seen as a more
challenging version of global localization because it requires the robot
to recognize when it is lost. The recognition of localization failures is
important, as it may help the robot to recover from them.

Static vs. dynamic In static environments, the only thing that changes in the
state of the world is the position of the robot. All other objects do not move
or change. In dynamic environments, objects other than the robot move
and change their configuration.

Active vs. Passive In passive localization, the robot infers its location only by
observing through its sensors. In active localization, the robot does not
only move to reach the goal but also to gather information to improve its
localization estimate.

Single vs. multiple-robot The first is the most common type and involves only
one robot. In the second, multiple robots may share information to improve
their localization estimates.

Another important aspect of localization is the type of representation used in
the map. There are two main types:

Quantitative (metric) represent the world in terms of physical dimensions.
The certainty grid is probably the best-known example of this category
(Moravec and Elfes, 1985). The map consists of a rectangular grid whose
cells represent a region of the environment. Each cell has a numeric value
that indicates whether the region is free, occupied, or if such information is
unknown.

Qualitative (topological) represent the world in a graph-like structure, where
nodes represent places, and edges represented reachability between places
Dudek et al. (1978); Mataric (1990); Liu et al. (2012).

Both types of representations have benefits and drawbacks, and there is no
superior one. Quantitative representations are fine-grained but do not scale well
to large environments. In contrast, qualitative representations are coarse but scale
better. However, the drawbacks can be overcome by combining both representa-
tion types (Chatila and Laumond, 1985; Kuipers and Byun, 1991; Thrun et al.,
1998).

Given the discussion above, it is clear that setting hard boundaries between
the four skills is difficult because they may interoperate to different degrees. For
example, closed-loop control requires a feedback signal (perception) so that the
robot can evaluate the outcome of its actions(Kolter et al., 2010). Likewise, active-
localization methods execute motor commands not only to move towards the goal
but also with the intent of improving the localization hypothesis. The reader
might find it conflicting that localization is posed as a separate skill because just
as perception, its goal is to estimate state information. However, it is generally

8



2.2. Visual Route-Following

treated separately because it is such a fundamental issue in navigation. It is
perception limited to one type of state information: the location of the robot.
In contrast, perception covers a wide range of state information types, like the
ego-motion of the robot, and the detection and tracking of various types of objects.

2.2 Visual Route-Following

A spatial memory stores sensory information that is associated with real-world
locations and can be used to revisit them. In the context of this dissertation, the
spatial memories contain visual information, which is convenient because it can
be perceived passively from vast distances. Locations may be called either home
if treated in isolation, or waypoint if they are part of a route.

Visual spatial navigation involves several problems that can be enlisted as fol-
lows in order of increasing complexity (Stone et al., 2018). Recognizing whether
a location is revisited comes first. Second, visual servoing using a beacon, i.e.,
a salient visual feature placed at home, as reference. Third, visual servoing us-
ing visual landmarks observable from home. Route-following comes in fourth
place. In that case, the visual memory contains information about multiple inter-
linked waypoints that constitute a route. The robot travels along the route from
beginning to end by sequentially homing through the waypoints. In this investi-
gation, for example, there is one omnidirectional image (referred to as a snapshot
(Cartwright and Collett, 1983, 1987)) associated with each waypoint. Although
not mentioned by Stone et al. (2018), following a route made from segments of
multiple visual memories could be placed fifth. According to the definitions pro-
vided in Section 2.1, route-following uses a qualitative representation because a
route is a graph in which each node is a waypoint, and edges link pairs of con-
secutive waypoints. Since a reliable initial localization prior is often assumed,
the problem is generally addressed as pose tracking. However, it can incorporate
global localization and robot kidnapping if necessary, see Section 4.1.

2.3 Omnidirectional Cameras for Visual Naviga-
tion

Omnidirectional cameras have a FOV that covers at least one hemisphere . To
the best of the author’s knowledge, they were introduced in robotics by Yagi and
Kawato (1990) and have gained popularity ever since. Omnidirectional cameras
are especially useful for navigation because thanks to their large FOV, visual
landmarks are more likely to remain visible under varying viewpoint, and because
they are arguably less likely to experience significant occlusion, see Paya et al.
(2017) for a review. Figure 3.9 shows example images captured with such cameras.
In this sense, it is important to differentiate between two representations. In the

LCameras with a FOV narrower than one hemisphere are called directional throughout this
document to avoid confusion.
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first one, simply called omnidirectional image, elevation runs along radial scanlines
w.r.t the center of the image, and azimuth along the circumference. In the second
representation, called panoramic image, elevation runs along the vertical axis and
azimuth along the horizontal axis. Omnidirectional images are transformed into
panoramic images through a process called unwrapping, see Section 4.5.1.

(b)

Figure 2.1: 2.1a an omnidirectional image. 2.1b a panoramic image obtained by unwrap-
ping the omnidirectional image.

Three types of omnidirectional cameras can be differentiated depending on the
principle used to achieve a large FOV. Dioptric omnidirectional cameras, often
called fisheye, rely on refraction in a similar way as directional cameras. However,
they have a comparatively smaller focal length and more powerful lenses. See
Figure 2.2b. Catadioptric omnidirectional cameras are based on the principle of
reflection and are constructed by pointing a directional camera towards a curved
mirror. There are different mirror shapes with different properties, e.g., conic,
elliptic, hyperbolic, parabolic, spherical (Scaramuzza et al., 2006a), and also sys-
tems that have mirrors of composite shapes (Franz et al., 2008). See Figure 2.2a.
Polydioptric omnidirectional cameras produce omnidirectional images by stitching
multiple images acquired with directional cameras at different viewpoints. The
advantage of this type of omnidirectional cameras is that they can acquire higher
resolution images. However, they are considerably more expensive and bulky
because they either need of mechanical elements to move a single camera, or a
ruggedized construction to hold the directional cameras, triggering mechanisms,
and computational resources to stitch the images. This investigation uses only
catadioptric and dioptric omnidirectional cameras because they are better suited
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for smart-wheelchairs due to price and size constraints and because the VCA used
in this dissertation operates on low-resolution images, see Section 2.4.

I v ‘

(¢) (b)

Figure 2.2: 2.2a A hyperbolic mirror used for catadioptric omnidirectional image acqui-
sition. 2.2b A dioptric omnidirectional camera. See Section 3.1.8 for details.

2.3.1 Optical Flow in Omnidirectional Images

Optical flow is the distribution of velocities of apparent displacement of visual
stimuli that emerge from the motion of the observer and the objects on the scene
(Gibson, 1950). The VCA presented in Section 2.4 relies on regularities of the
optical flow in panoramic images under planar motion. Therefore, it is helpful
to understand them before going into details of the algorithm. This discussion
limits to the planar motion case in static environments. Section 4.5 contains a
brief discussion on the effects of non-planar motion.

When an omnidirectional camera moves, the pixel coordinates of scene objects
change. Under pure rotation, pixel coordinates displace horizontally with uniform
magnitude and direction. The magnitude of that displacement correlates with
the magnitude of rotation. Regarding its direction, if the omnidirectional camera
rotates to the left, the visual information shifts horizontally to the right and
conversely. No scale changes occur in this type of motion. See Figures 2.3a and
2.3b.

The case of pure translation is more complex because the magnitudes of dis-
placement depend not only on the movement itself but also on the depth structure
of the environment: distant objects displace less in the visual field than nearby
ones. This effect is known as parallax. Moreover, translation induces changes in
scale. Visual information expands from the center of expansion (in the direction
of translation), and contracts towards the center of contraction (in the direction
opposite to movement). Figures 2.3c¢ and 2.3d show the optical flow resulting by
moving the camera forward. Thus, visual information expands from the center
of the panoramic image and contracts towards its borders. Notice how visual in-
formation moves in opposite directions on both sides, and the elevation and scale
changes.

When rotation and translation occur together, the optical flow is a combination
of the ones produced by the individual motions. For example, in Figures 2.3e and
2.3f, rotation is dominant in the sense that horizontal displacements occur in the
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same direction, but scale and elevation changes due to translation are noticeable.
Because of that, if translation is of low magnitude, and especially if the scene
contains mostly distant objects, the rotational optical flow would be dominant.

12
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Figure 2.3: Optical flow under planar motion. Omnidirectional images on the left, and
the corresponding panoramic images on the right. The arrows show the optical flow for
visual landmarks at two different distances. Closer ones on red, farther ones on blue.
2.3a and 2.3b pure rotation. 2.3c and 2.3d pure translation (forward). 2.3d and 2.3e a
combination of the two motions presented above.
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2.4 The Visual Compass Algorithm (VCA)

The VCA was introduced by (Zeil et al., 2003) to investigate the image matching
mechanisms used by insects, see Section2.5. In its pure form, the algorithm infers
the relative orientation between two panoramic images captured at nearby loca-
tions and measures how different they are in terms of an IDF. That information
can be used to perform homing, especially because IDF values obtained by align-
ing a current-view and a snapshot correlated with the spatial distance between the
current location and home. This principle has been extended to perform visual
route-following, and also to localize the against multiple candidate waypoints, and
also to detect failures. Such extensions are presented in Section 4.1.

The VCA relies on the regularity of optical flow under planar motion and the
dominance of rotation in the presence of translation discussed in Section 2.3.1.
The algorithm is defined as a function v that estimates the relative heading be-
tween two panoramic images I and I’ of size W x H, by finding an azimuthal
alignment that minimizes an IDF. The alignment process consists of an exhaus-
tive iterative search over a space of azimuth rotations?. At each iteration, the
algorithm calculates the distance between I and a version of I’ that has been ro-
tated 6 degrees in azimuth using the function rotate. The best alignment occurs
at the azimuth angle that produces the minimum IDF value:

o(I,I') = argeminz'df(l,rotate(]’,@)). (2.1)

The VCA belongs to the holistic methods for visual navigation, characterized
by using IDF's that operate at the pixel-level, instead of first identifying a sparse
set of visual features to work with (See Section 2.6.1). Two common IDFs are the
SSD (Zeil et al., 2003) and the SAD(Wystrach et al., 2016) defined in Equations 2.2
and 2.3, respectively.

H-1W-1

SSD(I,I') = Z > (L —1,)° (2.2)
i=0 j=0
H-1W-1

SAD(I, T W P33 Ly — 1] (2.3)

The VCA performs efficiently even in modest hardware because it is used
on low-resolution panoramic images and because rotations in azimuth appear as
shifts in the columns of panoramic images. Moreover, the search space is relatively
small because the rotations are performed in terms of full pixel shifts so that
interpolation is not necessary. Let s be a function that maps the j-th column of
a panoramic image to the corresponding column after a shift of § pixels wrapping
around at the image borders.

s(3,0) = (j + 6) mod W. (2.4)

2The IDF is sometimes called rIDF, because of this (Wystrach et al., 2016).
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Then, let shift be a function that shifts all the columns of an image by d
pixels. The i-th row and j-th column are denoted as I'(i, j) for clarity.

I/<075<075>> I/(O7S(175)) I/(07S(W_ 175))
(1, (0,6 I'(1,s(1,6 I'(1,s(W—1,6
gy = | TEOOD) TWeE) o LW 1)
I'(H—-1,s(0,0)) I'(H—-1,s(1,0)) ... I'(H—1,s(W —1,9))

(2.5)

Putting the concepts above together, the VCA can be defined as follows:
v(I,1") = argmin idf (I, shift(I',9)). (2.6)

6=0...W—1

Through the rest of the document, ¢ will be used to denote the shift that
produces the best alignment between the two images:

§=v(I,1), (2.7)

and d will be used to denote the IDF value at which the best alignment occurs:

d = idf (I, shift(I',5)). (2.8)

In the VCA implemented in this investigation, column shifts are pre-computed
and stored in a look-up table, and the rotation of images is done implicitly by
shifting the coordinates inside of the IDF instead of producing new images. Such
optimizations and simplifications are common practice (Stiirzl and Mallot, 2002;
Moller, 2009). However, the VCA is treated conceptually as above to avoid over-
complicating the notation with implementation details.
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I I I I I
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azimuth (deg)

Figure 2.4: Example of alignment using the VCA. From top to bottom: the snapshot,
the current-view, and the IDF values at each possible rotation (shift). The vertical red
line indicates orientation 0 in the snapshot and the corresponding orientation in the
current-view according to the minimum IDF value.

2.5 Insect Navigation

The VCA was inspired by research on insect navigation. This section provides
a brief overview of findings on how insects use visual information to navigate.
The overall narrative revolves around the idea that insects solve navigation using
simple strategies. The content is aimed primarily at roboticists or computer scien-
tists, who may not be acquainted with a broader context. Section 2.5.3 discusses
some controversies in insect navigation to avoid giving the misleading impression
that insects are simple and well understood by science. The interested reader is
referred to Wehner (2003); Freas et al. (2018); Graham and Philippides (2017);
Freas et al. (2018), for a comprehensive yet succinct treatment on the topic.

Despite the progress of the last decades, autonomous navigation in unstruc-
tured environments is still considered very challenging. Navigation is by no means
a recent problem though, and evolution found solutions for it long before the first
vertebrates appeared. Unsurprisingly, some roboticists are interested in replicat-
ing the astonishing navigation capabilities of animals in robots. As pointed out by
Gaussier et al. (2000), this lead to a fruitful cooperation in which hypothesis on an-
imal navigation are tested and refined through robotics or simulation experiments,
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and in which biomimetic robots and algorithms are consequently developed. For
example Graham and Philippides (2014); Song et al. (2013); Jeong et al. (2006);
Srinivasan et al. (1999); Weber et al. (1999); Stiirzl and Méller (2007); Labrosse
(2007); Moller et al. (2014), to name a few.

The most relevant findings in the context of this dissertation come from the
study of how insects use vision to navigate. At first glance, insects may seem like
humble creatures when compared with humans or other large animals, but they
are a notorious example of evolutionary success and excellent navigators. They
are also particularly convenient to study because some species (bees and ants
especially) have specialized foragers whose main activity is to navigate between
the nest and food sources along somewhat stable routes.

According to Graham and Philippides (2017), the study of insects may also
result important to understand navigation in larger animals, because navigation
strategies are likely phylogenetically spread, and because the study of insects is
not plagued with unnecessary assumptions on the contribution that high-level
processes, like object identification, have to navigation. Thereby, insects are more
likely to be studied using a bottom-up approach, which favors simple explanations
that rest on minimal assumptions.

2.5.1 Properties of Insect Eyes

Insects have compound eyes formed of multiple “mini-eyes” called ommatidia. In
overly simplified terms, each ommatidium has a lens that projects incoming light
against a sensing organ called rhabdom, which sends information to the brain via
an optical nerve. Compound eyes provide insects with a panoramic FOV of low
resolution. The resolution of compound eyes depends on a variety of structural
and environmental characteristics. Structural characteristics include the interom-
matidial angle, optical quality, and rhabdom dimensions, whereas environmental
ones include the illumination level and movement (Land, 1997b).

Despite their low resolution, compound eyes have remarkable properties like
high acuity to motion, infinite depth of field, and low optical aberration (Warrant
and Nilsson, 2006, Chapter 5). Compound eyes are also an example of evolution-
ary preservation because their design has been present for at least 500 million
years (Buschbeck and Friedrich, 2008). Nevertheless, the basic design has gone
through a variety of specializations at different levels. For example, in the case of
interommatidial angles, some known variabilities are as follows. Variability over
a single eye can be found in the Cataglyphis Fortis ants, in which the interom-
matidial angles are nearly constant if measured horizontally, but range from ~ 3
degrees in a foveal band at the center of the eye, to ~ 7 degrees at the borders
when measured vertically (Zollikofer et al., 1995). Regarding differences at the
species level, the males, but not the females of the Syritta Pipiens fly have a region
of higher resolution at the center of the eyes useful for tracking females (Collett
and Land, 1975a). Differences across species are even more dramatic, ranging
from approximately 0.24 degrees for dragonflies to the tenths of a degree in the
Apterygota (Land, 1997a).
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After reviewing some peculiarities of insect eyes, it is natural to wonder what
insects perceive. The results of Horridge (2009) suggest that some of the basic
elements of visual perception, like color, are available to insects (Cheng et al.,
1986; Chittka, 2004). It has also been suggested that they derive higher-level
information from raw visual information. For example, insects that see in the
UV range could easily segment the skyline and use it as a cue for navigation
(Von Frisch, 1967; Basten and Mallot, 2010; Wystrach et al., 2012). Although
depth perception is arguably advantageous for navigation, insects do not seem to
possess the necessary mechanisms to estimate it (Papi, 2012, pp. 45). Instead,
evidence suggests that they judge distances in terms of optical flow (Cheng et al.,
1987; Vardy and Moller, 2005; Dittmar et al., 2010). Locust, for example, could
be tricked to misestimate distances by manipulating the optical flow they perceive
(Sobel, 1990). Likewise, bees misestimate distance if the scale of visual content
used for optical flow estimation is altered (Esch and Burns, 1995). In a more
dramatic example, they have been observed to drawn while flying over a calm

lake that does not provide the necessary structure for optical flow estimation
(Von Frisch, 1967).

2.5.2 Environmental Representation and Image Matching

Central foraging insects navigate along idiosyncratic routes between the nest and
the food source. Decades of research indicate that insects recognize and approach
places using visual information, among others. To that end, they store information
perceived by their eyes in some internal representation while being at a place and
later correlate it with current information. Early work by Wehner (1972) suggested
that the internal representation is the raw retinal image and that the correlation
consists of simple element-wise comparisons.

Regarding the flexibility of the matching process, evidence suggests that insects
do not have intra- and inter-eye transfer, i.e., they can not match visual informa-
tion when projected at different retinal positions. Therefore, insects move to align
the snapshot and the current-view instead of simulating view-point changes as
the VCA (Wehner and Flatt, 1977; Collett and Land, 1975b; Wehner et al., 1996;
Narendra and Ramirez-Esquivel, 2017; Freas et al., 2018). Thus some authors
have suggested that insects may represent a place by storing multiple snapshots
captured at different view-points to compensate (Judd and Collett, 1998).

Insects also seem to use different parts of the visual field for image match-
ing, depending on the environmental conditions. For example, the ant Melopho-
rus Bagoti and some bees (Wehner, 1972) use the panorama contour (Graham
and Cheng, 2009), whereas the ant Paltothyreus Tarsatus, who lives in environ-
ments covered by large trees, matches information from the canopy patterns above
(Holldobler, 1980). The experiments of Wystrach et al. (2016) on simulation also
support that different parts of the visual field are more useful than others. Fur-
thermore, the authors described that increasing resolution does not necessarily
improve image matching performance as intuition may dictate.

As mentioned in Section 2.5.1, there is a rich variability in the properties of
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compound eyes. Behavioral studies also suggest that there are differences in the
navigation capabilities of different insects. For example, the navigation perfor-
mance of the bull ant (Myrmecia pyriformis) is easily disruptable by slight modi-
fications of the configuration of visual landmarks observable from the nest (Naren-
dra and Ramirez-Esquivel, 2017). In contrast, the red honey ants (Melophorus
bagoti) habituate quickly to such changes (Freas et al., 2017; A. and Ken, 2017).

2.5.3 The Ongoing Debate on Insect Navigation

Despite the progress in understanding insects and their navigation capabilities,
conclusive findings have been elusive. One particular question that raises signif-
icant controversy is whether insects use cognitive maps (Bennett, 1996; Cheung
et al., 2014; Collett and Collett, 2006). The reason is in part because there are
no agreements on how those maps are supposed to look like, but also because
of inherent difficulties in testing related hypotheses (Collett and Collett, 2006).
Moreover, some criticisms against the cognitive map hypothesis stem from the
bottom-up approach because behaviors attributable to cognitive maps, like merg-
ing multiple routes or taking shortcuts (Miiller and Wehner, 1988), may also be
explained by simpler mechanisms like path integration (Menzel et al., 1998).

Another problem arises from the use of controlled environments for experimen-
tation, because they present simple visual stimuli to the insects. Such settings
are convenient to eliminate sources of uncontrolled variance. However, it has been
noted that simple changes, like the use of landmarks with more complex textures,
may lead to behaviors that would not be observed otherwise (Dittmar et al., 2011).

The final example relates the use of low resolution, an idea traceable to Mallock
(1894), who studied the theoretical boundaries for compound eye resolution due
to diffraction. Recently, Juusola et al. (2017) challenged that widely accepted idea
by proposing that flies have hyperacute vision thanks to microsaccadic sampling.
A claiming of that magnitude would probably require further validation, and if
validated, it would have a profound impact on how insects are understood. For
example, even a more conservative acuity estimate would be sufficient for the fruit
flies to identify each other visually (Schneider et al., 2018).

2.6 Visual Navigation and Holistic Methods

Visual navigation is a rich field of study. Thus, there is a large variety of ap-
proaches that are differentiated mainly on how they process images to extract
navigation relevant information, the precise nature of that information, and how
they use it to navigate. This section provides a brief overview, with emphasis on
holistic approaches, to which the VCA (Section 2.4) belongs. Figure 2.5 shows a
modified version of the classification presented in Méller et al. (2010), with the
difference that it includes the 3D visual compass (Differt, 2017). The classification
has a tree structure that goes from general at the root to the specific at the leaves.
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Figure 2.5: Classification of wvisual navigation approaches proposed by Mdller et al.
(2014). This version augments the original classification to include the 3D compass.

At each level, two types of approaches are discussed, and the next level expands
only on the type that finally leads to the VCA.

The first level of the classification differentiates between qualitative and quan-
titative, discussed in Section 2.1. Methods at the second level are differentiated by
the mechanism used to estimate the motor command for homing. In associative
methods, the snapshots readily contain the motor commands to execute when the
robot is at the respective location (Nelson, 1991; Gaussier et al., 1997). The main
disadvantage of associative methods is that they require a dense sampling of the
environment. In contrast, guidance methods offer a more flexible solution because
they infer the motor commands from current-view and snapshots by estimating
the view-point difference. At the third level, the classification takes into consider-
ation how methods reuse information. Feature tracking methods take advantage
of either temporal or spatial information that improves matching efficiency (Argy-
ros et al., 2005; Remazeilles et al., 2006). Local homing methods, in contrast, do
not exploit such information. Each alignment between current-view and snapshot
is performed without prior information on the placement of visual landmarks in
the image.

At the fourth level, local homing methods are split into two categories, de-
pending on whether they use intensity or depth information to operate. Depth
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methods rely on sensors that can measure depth by some principle. Having depth
placed at this level may appear conflicting with level one, which contains qualita-
tive (metric) methods. The reason is that depth at the fourth level is used as a
visual feature and is not integrated into a 3D reconstruction of the environment
as it would occur at the first level (Stiirzl and Mallot, 2002; Franz et al., 2007).
Intensity methods are further divided into holistic and correspondence methods.
Since holistic methods are the focus of this dissertation, there is a section de-
voted to them and their alternative. Then, different types of holistic methods are
discussed.

2.6.1 Holistic and Correspondence Methods

The general approach in correspondence methods is to detect visual landmarks
of interest first and then create a descriptor for each of them. Image matching
occurs by matching those descriptors. The most common examples of this cat-
egory are human-crafted descriptors used to describe points, like SIFT (Lowe,
2004; Churchill and Vardy, 2008; Liu et al., 2012), and to a lesser extent, other
types of visual features like lines (Scaramuzza et al., 2009). However, there have
also been attempts at learning the descriptors (Carlevaris-Bianco and Eustice,
2014; Lourenco et al., 2012; Masci et al., 2014). Correspondence methods have
historically received most of the attention. However, they still present some lim-
itations. Feature matching using descriptors like SIFT is less reliable with om-
nidirectional and panoramic images because of nonlinearities induced by optical
distortion. There have been attempts to overcome that problem (Lourenco et al.,
2012; Masci et al., 2014), but a generic solution is still missing. The third problem
is that visual features may be sparse, and thus a large proportion of the visual
content is not considered when comparing images.

In contrast, holistic methods operate on images as a whole. There are different
variations to the concept, but in general, they do not resort to the identification
and description of individual landmarks as in correspondence methods. They
have been greatly influenced by findings in insect navigation, especially regarding
the use of low-resolution retinal images to represent places and image matching
based on element-wise comparisons. They have received less interest historically
than correspondence methods and are thus arguably less mature. However, they
are gaining momentum. Holistic methods have been reported to compare and
even outperform the more mature correspondence methods in some situations,
including unstructured environments (Differt, 2017), and being more robust to
inaccuracies in the camera models (Scaramuzza and Siegwart, 2008). Moreover,
holistic methods are faster (Fleer and Moller, 2017; Differt, 2017) and better
suited for applications with scarce computational resources. Holistic methods can
be further categorized into parameter methods, Descend in Image Distances (DID)
methods, and warping.

Parameter methods represent and match images using a parameter vector.
In contrast to correspondence methods, in parameter methods, there is only one
parameter vector that represents the whole image instead of multiple ones to

21



Chapter 2. Background and Related Work

represent individual visual features. The Average Landmark Vector (ALV) is
a classic example of this category (Lambrinos et al., 2000). In the ALV, the
landmark vectors of individual visual landmarks in the image, i.e., a unit vector
pointing in the direction of the landmark, are averaged to create the parameter
vector. During homing, the homing vector is found by subtracting the AVL of
the current-view and the ALV previously obtained at the reference. In its original
formulation, the ALV requires compass-aligned images and reliable segmentation.
Later, Hafner and Moller (2001) used Hebbian learning to learn a navigation
strategy that mimics the ALV but does not depend on segmentation. Over the
years, some variants of ALV have been created, like the Average Correctional
Vector (ACV) (Weber et al., 1999; Smith et al., 2008) and the Distance Estimated
Landmark Vector (DELV) (Yu and Kim, 2011).

Descent in Image Distance (DID) methods match images by comparing their
pixel values using an IDFs that is not viewpoint invariant. DID methods are
active (Section 2.1) because the robot has to move to evaluate the IDFs from
different viewpoints and resemble thus the lack of intra- and inter-eye transfer
of information in insects eyes, see Section 2.5.2. Two recent examples of this
category encode routes as a whole without explicit representation of individual
waypoints. Baddeley et al. (2011) proposed to use an Adaboost classifier and
Haar-like features. The positive class represents that the current direction would
make the robot advance along the route, and conversely for the negative class.
Philippides et al. (2015) developed a similar approach using a neural network
that learns the relevant features instead of choosing from a predefined set.

Multiple snapshot methods use multiple images to represent each location.
Moller et al. (2014) considered these methods as the most biologically plausible
of the given categorization. Gaussier et al. (2000) presents an interesting example
of this category, based on a neural network to encode multiple snapshots.

Warping methods, similarly to DID methods, infer the homing vector using
pixel-wise IDFs. However, they do not require probatory movements because
they evaluate the IDFs on images that simulate the viewpoint changes. Rofer
and Ofer (1997) presented an early image-based homing algorithm that operated
on omnidirectional rings of pixels captured at the horizon. Franz et al. (1998a,b)
used a similar method, with the difference that the ring contained the column
averages of intensity values.

Later developments involved the use of panoramic images instead of rings of
pixels. There are two particular publications that the author considers highly
influential in this context. Zeil et al. (2003) used the VCA on natural images and
performed an extensive analysis of the IDFs. The authors concluded that visual
homing is feasible in outdoor environments using simple pixel-wise metrics, i.e.,
without extracting high-level features. They also provided a detailed experimental
analysis on how the frequency of the visual content and the spatial arrangement of
the objects in the scene affect the IDFs. A few years later, Stiirzl and Zeil (2007)
extended that study focusing on the effects that contrast and the 3D structure of
the scene have on IDFs. The authors demonstrated how the catchment area of a
location grows as the depth of the objects in the scene increases, and how simple
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operations result effective to provide illumination invariance to IDFs. Scaramuzza
and Siegwart (2008) used the VCA on RGB images. The authors constrained the
computation to the front and back sectors of the omnidirectional images because
they had the most stable scale in their experimental conditions.

The authors justified their use of a holistic method, instead of a correspon-
dence method, because of their robustness to errors in the camera calibration
model. The estimation of a compass alignment in frequency domain also consti-
tutes an important advance because it reduces the computational resources needed
(Morbidi and Caron, 2017).

Other important investigations that provided useful insights on a variety of
aspects of the VCA include the following. Wystrach et al. (2016) studied the
effects of varying image resolution on the visual compass algorithm. Remarkably,
the results suggest that the intuitive trade-off between resolution and accuracy did
not occur in their data. Instead, lower resolutions increased performance. Other
interesting results came from Ardin et al. (2015) and Raderschall et al. (2016),
who evaluated the effects of off-plane rotation.

The algorithms discussed so far are not invariant to the 3D structure of the
environment and have the so-called equidistant assumption described by Franz
et al. (1998b). This assumption is present because the algorithms compare pixel
values directly. Even in static environments, perfect pixel correspondence could
only be achieved under pure rotation. However, when translation is present,
perfect pixel correspondences are not possible because of the changes in scale and
because of the effects of parallax.

Later efforts addressed the invariance to the 3D structure of the scene. Im-
portant developments include the simulation of translational viewpoint changes
on the perceived scale of the visual content (Labrosse, 2007; Bellotto et al., 2008;
Méller, 2009; Moller et al., 2014).

All the methods described so far in this section depend on the planar-motion
assumption. There algorithms that can recover 3-axis rotations from omnidirec-
tional images and are referred to as 3D compass. Because of the computational
requirements, these type of methods are implemented in frequency domain using
spherical harmonics (Makadia and Daniilidis, 2003, 2006; Friedrich et al., 2008;
Differt, 2017). However, the research in this area is more limited than for robots
under planar motion assumption. Other types of methods have targeted the use
of skyline, for example using Zernike moments (Stone et al., 2018).
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Figure 3.1: The smart-wheelchair ROSStuhl developed during this investigation.

The smart-wheelchair ROSStuhl was created as part of this investigation to
acquire experimental data and to implement a route-following system on a real
robot. Initially, this investigation intended to be a continuation of the “Alleine”
smart-wheelchair (Nauth, 2014; Llarena and Rojas, 2016), which focused on indoor
navigation using metrics maps and a lidar. Instead, the ROSStuhl is presented as
a different system because the transition to outdoors required an almost complete
hardware redesign. Likewise, the software was implemented from scratch to en-
able the transition to Linux and ROS (see below) because the software of Alleine
was monolithic, and parts of it executed only on Windows. Parts of the experi-
mental evaluation presented in Chapter 5 uses data acquired with the ROSStuhl.
Unfortunately, that analysis was performed offline. The route-following system
described throughout this chapter was only used for short demos and was not
formally evaluated.

The route-following system of the ROSStuhl uses the VCA for pose-tracking.
Thus, some of the novel concepts presented in Chapter 4 are not part of the
implementation. Nonetheless, the system improves over the most puristic use of
the VCA in three aspects. The first one is that it localizes the ROSStuhl in the
neighborhood of a localization prior, which is arguably more robust than localizing

25



Chapter 3. The Smart-Wheelchair ROSStuhl

against a single snapshot (Zhang and Kleeman, 2009). The second improvement
is that the panorama of textons representation is supported (see Section 4.3.1).
Finally, the system is more flexible in the sense that it can travel along routes that
were not explicitly demonstrated by merging segments of multiple demonstrations,
see Figure 3.2. Figure 3.3 on page 27 contains a block diagram of the complete
system. The elements thereby depicted are explained through the remaining of
the chapter. The reader is advised to revisit the diagram as necessary.

e vvmeseeeneaneae et Y -
Gas station Bus stop

Figure 3.2: The route-following system of the ROSStuhl allows traveling along routes
that pass along a set of places of interest by combining segments of visual memories
that have place annotations. The colors of the dotted lines represent different visual
memories, and the dots represent their snapshots. On the right, a graph that represents
the conmectivity between places used by the planner described in Section 3.2.2. Other
examples of topological maps with omnidirectional images can be found, for example, in
(Franz et al., 1998a; Goedemé et al., 2005).

There were two main criteria involved in the design of the ROSStuhl. The first
criterion was to favor the use of low-cost hardware because of the price constraints
inherent to the application, see Section 1.2. The second criterion was to create
a robot using modern practices suitable for rapid prototyping. To that end, the
author decided to implement the software of the ROSStuhl using ROS?, a popular
software platform for the development of modular and portable robotics applica-
tions. The author also considers that this decision follows a growing interest in
developing assistance technology with ROS (Li et al., 2013; Nasri et al., 2016;
Grewal et al., 2017). The integration with ROS even served as inspiration for
naming the smart-wheelchair. The name ROSStuhl resembles the German word
for wheelchair (Rollstuhl) and translates to English as “ROS chair”.

The ROSStuhl is described through the remainder of this chapter in terms
of hardware, the software used to interact with the hardware (base system), and
the route-following system. Although the reader is not assumed to be a ROS
user, basic knowledge of the ROS-specific terminology would greatly simplify the
discussion. Thus, the relevant concepts are summarized as follows.

lyos.org
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A process that operates under ROS is called a node. Data structures called
messages are passed asynchronously between nodes through buses called topics.
A node that sends messages to a topic is called a publisher, whereas a node that
receives them is called a subscriber. Synchronous and asynchronous RMI are
called services and actions, respectively. Nodes that provide services or actions
are called servers, and the nodes that execute them are called clients. In both
cases, the client can send data structures as input arguments and retrieve others as
return values. Beyond synchronicity, services and actions differ in the sense that
the latter provide feedback messages during execution, and can be requested to
abort execution, whereas the former do not provide such functionalities. Topics,
services, and actions are identified and accessed by unique names arranged in
a namespace hierarchy. For example, in topic /sensors/omnicamera/image raw,
/sensors and /sensors/omnicamera are namespaces, being the former the parent
of the latter. Messages, the input and output values of actions and services, and
the feedback messages of actions have static data types. For example, the topic
/sensors/omnicamera/image raw may be of type sensor _msgs/Image, a standard
message type used to transfer images. Besides the payload, the message types used
in this dissertation have a header that contains a timestamp to reference the data
temporarily and the name of the coordinate frame used to reference the data
spatially.

3.1 Hardware and Base System

3.1.1 The Xeno Power-Wheelchair by Otto Bock ®

Critical obstacle height 5 cm

Maximum passenger weight 136 kg

Maximum slope 17 % (= 10 °)

Maximum speed 10 kmh=!

Energetic travel autonomy 35 km

Batteries 24 volts (2 x 12 volts in series)

Table 3.1: Power-wheelchair specifications (Bock). The specifications of the ROSStuhl
smart-wheelchair deviate because of the weight and power consumption of the components
used for autonomous navigation.

The ROSStuhl was built by adapting a Xeno power-wheelchair fabricated
by Otto Bock ®, with the specifications listed in Table 3.1(Bock). The power-
wheelchair is controlled manually through a control interface that includes a joy-
stick and several buttons, see Figure 3.4. The power-wheelchair also has an em-
bedded computer called controller module that translates input events into motor
commands depending on configurable speed level and monitors the state of the
system. In terms of kinematics, the power-wheelchair consists of a differential
drive with four wheels: the two rear wheels can rotate at different velocities and
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directions. The two front wheels rotate to comply with the movement elicited by
the rear wheels.

m Jo o ; Status

Warning

Left blinker

Lights
5

Joystick

Figure 3.4: The control interface included with the Xeno power-wheelchair. The status
display shows the battery level and the current speed level (2).

The hardware components used for route-following can be grouped into four
categories. First, the power infrastructure which consists of a DC/AC sinusoidal
inverter with a maximum power of 300 watts, several voltage AC/DC converters,
and a powered USB hub. The second group consists of connectivity infrastructure,
including a five port Gigabit Ethernet switch (Netgear), 2 WiFi adapters (ASUS,
and Alfa Network), and the USB hubs mentioned above, which has six powered
USB 3 ports for data transfer. The final component is a USB to CAN adapter
fabricated by PEAK system. The third group consists of sensors, including one
magnetic encoder (0.7 degrees of angular resolution) attached to each rear wheel, a
microcontroller that processes the encoder pulses and sends that information to a
serial port. These components were inherited from the Alleine smart-wheelchair.
Alleine’s lidar is also attached to the chassis but is not used in the ROSStuhl.
Additionally, the ROSStuhl has a low-cost GPS (Breakout v3 by Adafruit) with
a position accuracy of 1.8 meters and an IMU MPU 6050. The data of both
sensors is processed by an Arduino Nano microcontroller that sends it to the
ROSStuhl through a serial port connection. The data received from the serial
port connections mentioned above is processed by ROS nodes that convert it and
publishes it as standard ROS messages. The most important sensors, i.e., the
omnidirectional cameras, are described in Section 3.1.3. The fourth group has
two devices used to interact with the route-following system: a 12.1 inch Faytech
T12 SW resistive touchscreen used to interact with the navigation GUI, and the
emergency button. Finally, the fifth group has a single member: the navigation
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computer. The navigation computer is a Gigabit GB-BXi5G3-760 with an Intel
Core 15-4200H 2.8GHz/3.40 GHz processor, 16 GB of primary storage, 512 TB
SSD of secondary storage, and an NVIDIA GeForce GTX 760 GPU. This computer
is more powerful than strictly necessary for navigation. However, the additional
processing power resulted useful for outdoors development, see Figure 3.5 and
Figure 3.6.

Xeno Power-Wheelchair!
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Figure 3.5: The hardware of the autonomous navigation module, and its interactions
with the power-wheelchair.

3.1.2 Interaction with the Power-Wheelchair

The navigation computer interacts with the controller module via CAN bus. To
that end, the CAN bus protocol was abstracted in a C+-+ library called xenocan 2
developed as part of this investigation. The xenocan library provides the following
functionalities.

First, it polls status information periodically, e.g., voltage of the batteries,
input events of the control interface, and the state of the lights, and sends it

2Implemented using sockeCAN https://www.kernel.org/doc/Documentation /networking /can.txt.
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Figure 3.6: Most components used for autonomous navigation are stored underneath the
seat.

to a user-defined callback for further processing. The second functionality al-
lows controlling the power-wheelchair by injecting virtual joystick messages in the
CAN-bus. The third functionality consists of switching between autonomous driv-
ing and manual mode when the horn button of the controller interface is pressed.
Finally, the fourth functionality ensures that the speed level remains constant at a
predefined value during autonomous driving. Maintaining the speed level constant
is crucial for safety because the velocity controller (see below) is parameterized to
operate at a particular speed level.

The xenocan library is wrapped by a ROS node, referred to as xeno interface,
that exposes its functionality to ROS. Status messages, including whether the
system is in autonomous or manual mode, are published periodically to a topic
using a custom-defined message type. The same node reads joystick messages from
a dedicated topic of type sensor msgs/Joy, converts them to CAN messages, and
injects them in the CAN bus to move the ROSStuhl when it is in autonomous
mode.

Directly commanding the ROSStuhl using virtual joystick commands is in-
convenient because the same virtual joystick command may result in very dif-
ferent accelerations depending on the properties of the ground, payload of the
smart-wheelchair, etc. Therefore, the ROSStuhl implements a velocity controller
(PID, using diff drive controller package #). The velocity controller subscribes
to a topic of type geometry msgs/Twist, containing the desired linear and an-
gular velocities for the vehicle. Then, it estimates the error between desired and
actual velocities (using wheel-odometry, which arrives through a topic of type
nav_msgs/Odometry.) and produces a virtual joystick message that gradually
reduces the difference.

The ROSStuhl also provides a generic stop interface through which any node
can stop the system by publishing to a topic. The availability of such an interface
simplifies the implementation of some use cases for a route-following robot by
decoupling the logic used to stop. For example, a tour guide can be implemented

3http://wiki.ros.org/diff drive controller
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by visiting places of interest in order, stopping at each of them, reading something
about the place aloud, and then continuing to the next one. In the case of a
delivery robot, the robot would travel to the collection location, stop and wait
until the payload is retrieved, and then drive back to the base.

3.1.3 Omnidirectional Cameras and Calibration Message

The ROSStuhl has two omnidirectional cameras, see Figure 3.7 and Figure 3.9.
The first one is a Kodak SP360, see Figure 3.10. This camera has a FOV of
214 degrees and fisheye optics. It produces 1024 x 1024 px images at 8 fps via
WiFi. Because of the latency, the Kodak SP360 is of limited value for autonomous
navigation. Nevertheless, it resulted adequate for experimental data acquisition
due to its low cost and the quality of the images it produces. It was also used
for route-following at low speeds before an omnidirectional camera with a higher
framerate (see below) was available.

The second omnidirectional camera, called LoReNav, was constructed as part
of this investigation, see Figure 3.8. LoReNav is a catadioptric omnidirectional
camera with a hyperbolic mirror (VS-C450MR-TK by Vstone). The mirror has
an approximate FOV of 210 degrees, configured to produce images of 640 x
480 pixels at 30 fps via USB. LoReNav has a housing and a sun cover. The
housing holds the directional camera, and hyperbolic mirror in place, and provides
a micro-USB port for connectivity. The bottom of the housing has a 1/4 inch
UNC screw thread and a pivot pin. Thereby, LoReNav can be attached using
standard photographic equipment. The sun cover protects the omnidirectional
camera against direct sunlight. The directional camera sees both the hat and
the mirror. The omnidirectional sees both the mirror and part of the sun cover.
Because of that, the bottom side of the sun cover is covered with mirrors to avoid
biasing the auto-exposure control.

The omnidirectional cameras are calibrated using a naive model used to un-
wrap, scale and, crop the VFOV of the panoramic images, see Section 4.5.1. The
calibration parameters are passed to the relevant components using a custom
message type called OmniCameralnfo, whose fields are provided in Table 3.2. A
dedicated node publishes the parameters for each omnidirectional camera, at the
same frequency and with identical timestamps as the images they model. By de-
fault, the topics of OmniCameralnfo messages are located in the same namespace
as the image topics.
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Figure 3.7: Omnidirectional cameras mounted on the ROSStuhl. The one above is the
LoReNav camera, a catadioptric camera with a hyperbolic mirror. The sun cover reduces
direct exposure to the sunlight. Its lower side is covered with mirrors to prevent biasing
the exposure controller. The omnidirectional camera below is a Kodak SP360.

(a) (b) (c)

Figure 3.8: Building elements of the LoReNav camera. 38.8a closeup of the camera
without the hat. 3.8b bottom of the camera. This side has a standard 1/4 UNC thread

and a pivot pin used to fixate it to a standard camera plate. 3.8¢ VS-C450MR hyperbolic
MATrToT.
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Figure 3.9: Omnidirectional images acquired at nearly the same time. On the left, by
the LoReNav, and on the right by the Kodak SP360.

(b) (c)

Figure 3.10: Kodak SP360 fish eye camera. 3.10a the camera mounted on the ROSStuhl.
3.10b close up of the camera. 3.10c bottom of the camera. A bull’s eye level was glued
to the camera to facilitate its alignment.

Names Type Description

header Header Header containing timestamp and name of the
coordinate frame

model string Name of the camera, e.g., “Kodak SP360”

version string Unique identifier of the camera setup (based on
date)

optics string Optics. “fisheye”, “hyperbolic”, etc.

fov float32 FOV in radians

pole float32[2] | Pixel coordinates of the image center

radius float32 Radius in pixels respect the pole, at which there
is only valid image data

border radius | float32 Radius in pixels respect the pole, to the border
of the omnidirectional image

orientation string “upward” or “downward”

Table 3.2: Fields of the OmniCamiInfo message used to transmit calibration parameters
of the naive model, see Section 4.5.1.
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3.2 Route-Following System

Chapter 2 covered the theoretical foundations of visual route-following using the
VCA. This chapter describes how those ideas were implemented into a modu-
lar route-following system. The route-following system relies on visual memories
annotated with places of interest that were visited in each of them. Visual mem-
ories are acquired with the help of a human demonstrator that drives the smart-
wheelchair and tags place of interest using a dedicated GUI (see Section 3.2.2)
whilst the smart-wheelchair records the data received by its sensors (see Sec-
tion 3.2.1).

For route-following, the user defines a travel itinerary that contains the names
of the places the route has to pass through and the order in which they have to be
visited. Then, the itinerary is sent to the route-following planner that outputs a
synthetic visual memory definition. Route-following consists of traveling through
the waypoints defined by the snapshots in the synthetic visual memory using
the feedback of the VCA to control the smart-wheelchair, see Section 3.2.2 and
Section 3.2.3.

3.2.1 Visual Memory Storage and Indexer

The route-following system stores sensor information and place names using ROS-
bags, a standard format used to store serialized ROS messages organized in topics.
The storage is arranged in three directories called: raw, snapshots and, places.
The data of each demonstration session is stored in a separate bag with corre-
sponding names in each of the storages.

The rosbags of the raw directory contain sensor information at full sampling
rate. The essential topics in them are the omnidirectional images, the corre-
sponding OmniCamlInfo messages, and the wheel odometry. Additionally, they
also contain GPS and IMU data, albeit it is not used for navigation. The rosbags
in this storage are not used for route-following because operating on them takes
prohibitively long. In the experience of the author, merely opening a full rate
bag may take minutes. Moreover, they are regularly moved to a different storage
medium to free space in the hard drive of the navigation computer.

The rosbags in the snapshot directory serve as visual memories. They contain
the same information as the rosbags in the raw storage, downsampled so that there
is only one message in every topic for every 0.5 meters of travel distance. The
bags in the places directory contain a single topic of timestamped strings. Each
of those messages denotes the name of the place of interest the smart-wheelchair
was at, at a certain time.

The route-following system also has a component called indexer that regularly
scans the snapshots and places storage. During that process, the indexer collects
information on what visual memories are present, what places where visited, and
the snapshots and places correspondences. The indexer makes that information
available to other components via a ROS service.
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3.2.2 Route-Following Server, Planner, and Remotes

The functionalities necessary for route-following are implemented in different ROS
nodes. The route-following action server is the most important of them, in the
sense that it orchestrates the functioning of the others. The route-following action
server receives the itinerary from the user, queries the planner, configures the
remaining components, and allows to abort route-following operations.

The route planner is implemented as a service. It receives an itinerary as
input and outputs a plan in the form of a synthetic visual memory definition.
The itinerary consists of a list of places to visit, e.g., (A, B,C), and the plan
consists of visual route segments that travel from A to B and from B to C. The
place at the beginning of each segment is considered as an intermediate origin and
the place at the end as an intermediate goal. For example, B is in the intermediate
goal when traveling from A to B, and an intermediate origin, when traveling from
B to C.

The planner uses the information provided by the indexer to create an undi-
rected graph in which nodes are places, and edges are visual memory segments
that connect them, see Figure 3.2. Each edge is assigned a weight that corre-
sponds to the number of snapshots in the segment. Since the distance between
snapshots is fixed, the weights of the graph correlate with travel distance. Finally,
the planner uses Dijkstra’s algorithm to search for the path of minimum cost in
the graph that connects all the places in the itinerary. Thus, plans are generated
to minimize travel distance because the snapshot bags are spatially filtered by it,
see Section 3.2.1. A synthetic visual memory definition is a list of visual memory
segment, each containing the following fields:

Visual memory name The name of the visual memory in the snapshots storage
that contains the segment.

Start time Timestamp of the start of the segment, i.e., when the ROSStuhl
was at the intermediate origin place, according to the rosbag in the places
storage.

End time Timestamp of the end of the segment, i.e., when the ROSStuhl was
at the intermediate place, according to the rosbag in the places storage.

Reverse A binary field indicating whether the desired travel direction is reversed,
respect the direction traveled during demonstration. This field would be true
if the visual memory was captured while traveling from place A to place B,
whereas the itinerary request to travel from B to A.

The interaction with the route-following action server is simplified for the
programmer thanks to an abstract Python class called Remote. There are cur-
rently three specializations of the Remote. The first in the form of an interactive
command-line program. The second acts as a proxy between the ROS ecosystem
and non-ROS clients using UDP.
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The third specialization is found in the navigation GUI developed using Kivy 4,
following a minimalistic design with high-contrast colors and large visual elements
to ease outdoor operation. The GUI has three sections and displays only one at
any given time, depending on the situation. The first section is used to request
route-following operations and provides a menu to define itineraries and a but-
ton to initiate navigation. The second section is automatically activated during
route-following, and displays feedback of the operation, and allows canceling it by
pressing a button. The third section is used for demonstration. To that end, the
demonstrator selects the names of the places of interest along the route from a
menu, presses the start button, and starts driving. In the background, the GUI
starts recording sensor data in a new bag in the raw storage. While driving, the
demonstrator is presented with a list of places that have to be visited. Every time
a place of interest is reached, the demonstrator informs the GUI by pressing a
button. Arrival to places is recorded in a rosbag in the places storage. Once the
last place is reached, the GUI software stops recording and filters the raw bag,
creating thus a new bag in the snapshots storage.

3.2.3 Image Aligner, Localization System, and
Route-Following Controller

The image aligner loads a synthetic visual memory definition on request of the
route-following action server. Hereby, the image aligner concatenates the individ-
ual segments into a single visual memory. If the travel direction of a segment is
reversed, the planner concatenates the snapshots of that segment in inverse order.
After loading, the image aligner executes the VCA on the current-view delivered
by an omnidirectional camera and each of the snapshots in a subwindow of the
synthetic visual memory. The resulting relative headings and IDF values, along
with the timestamps at which the snapshots were captured and their indexes in
the synthetic visual memory, are published to a topic.

The localization system subscribes to the topic just mentioned and finds the
snapshot that has the smallest IDF value. The index associated with that snapshot
serves as localization hypothesis. Then, the localization system sets the start and
end of the subwindow so that they are centered around the localization hypothesis
using a ROS service of the image aligner. The localization system only allows
changes in the localization hypothesis if the smart-wheelchair has traveled at least
0.2 m (according to odometry) since the last update.

The localization system also publishes a list of the places that have been
reached so far to a topic. It assumes that a place has been reached if the in-
dex of the localization hypothesis is larger or equal than the corresponding index
in the synthetic visual memory. The route-following action server listens to that
topic, and whenever a new place is added to the list, assumes that the robot is
currently located at that place and adds that information to its feedback messages.

Guidance is performed by the route-following controller. This component re-
ceives the relative heading of the localization hypothesis and calculates linear

4A toolbox for rapid development of touch-based applications using Python (kivy.org).
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and angular velocities used to command the smart-wheelchair. If the localization
hypothesis corresponds to a segment with inverted travel direction, the relative
heading is inverted accordingly by adding 7 radians to it. The estimation of ve-
locities is currently implemented using a simple heuristic. If the magnitude of
the relative heading is more than 30 degrees, the smart-wheelchair rotates on its
axis. If not, the linear velocity is inversely proportional to the magnitude of the
relative heading, and the angular velocity is proportional to it. The resulting de-
sired velocity values are passed to the velocity controller by publishing to a topic
of type geometry msgs/Twist. The boundaries for velocity and acceleration are
enforced already by the velocity controller. Thus, they do not have to be taken
into consideration by the route-following controller.

3.2.4 Image Representation Pipeline

The omnidirectional images go through multiple processing steps before being
passed to the VCA. Those steps are arranged in a pipeline that is defined using
the parameter server of ROS. A pipeline consists of a series of processes that take
a model and an image as input and output an updated version of them. The
first element receives the image and OmniCamlInfo from the omnidirectional cam-
era, transforms the image into another image (may also modify the model), and
pass its output to the next element. This process continues until the last element
is reached. The resulting images are then ready for the VCA. Figure 3.11 has
an example pipeline with three elements. The first element sets the minimum
and maximum VFOV of the image. The second element unwraps the omnidirec-
tional image into a panoramic image. The third downscales the panoramic image
to a lower resolution, and the last one transforms the panoramic image into a
panorama of textons. A similar concept is implemented in the evaluation toolbox
presented in Section 5.4, which contains the authoritative implementation. The
image preprocessing pipeline is implemented as a C++ library that is linked with
the image aligner for efficiency reasons.

$ rosparam get /visual_navigation/pipeline

ReducedVerticalFOV: {max_fov: 50.0, min_fov: -40.0}

Unwrap: None

LowResolution: {azimuth_resolution: 2.5, elevation_resolution: 2.5}
LBP: {points: 4, radius: 20.0, type: DEFAULT}

Figure 8.11: Preprocessing pipeline defined using ROS’s parameter server. The definition
1s interpreted during the instantiation of the image processing pipeline.
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Chapter 4

Aspects of the VCA for Real-World
Applications

Research on the VCA has provided many fruitful insights on the virtues and limi-
tations of the algorithm, especially for route-following as pose-tracking. However,
the study of the VCA has been mostly limited to conditions that do not resemble
those experienced by a smart-wheelchair navigating outdoors. Thus, the perfor-
mance of the VCA under such conditions is arguably poorly understood.

Moreover, the author proposes that the capabilities of the VCA require of some
extensions to make it more promising for real-world applications. This disserta-
tion considers the following extensions: Global localization, failure detection, and
knowledge transfer.

Global localization consists of finding the corresponding snapshot in a visual
memory given a current-view. Consequently, failure detection determines whether
that correspondence is correct. Knowledge transfer would allow visual memories
to be shared by multiple robots. This chapter also presents an algorithm to
cope with a well-known limitation of the VCA: it does not provide useful relative
heading estimation when the robot is displaced off-route unless a more complex
warping function is used (Moller and Vardy, 2006b; Churchill and Vardy, 2008;
Moller et al., 2014), or probatory movements are performed (Wystrach et al., 2012;
Méller and Vardy, 2006a).

4.1 Global Localization and Failure Detection

Given that the VCA is inspired by insect navigation, it results natural to wonder
whether insects can perform global localization, and detect failures. Evidence for
global localization insects can be found in Wehner et al. (1996). In their study,
the authors observed that ants deprived of path-integration information could
navigate along a route after being displaced. The authors suggested that that
was possible because insects memorized visual information along the entire route
and used it to navigate. Similar findings were reported by Kohler and Wehner
(2005); Narendra (2007a,b); Mangan and Webb (2012).

Regarding global localization with the VCA, Smith et al. (2008) measured its
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performance in the presence of off-route displacements due to motor noise. The
authors reported poor performance because the VCA only found the exact best
match ~ 50% of the time. Unfortunately, it is difficult to generalize their results
to outdoor navigation for two reasons. The first one is that they performed the
experiments in an indoor visually-dull environment that does not reflect the rich
texture present in outdoor scenes. The second reason is that the environment
only had nearby objects, which is particularly problematic for the VCA in its
pure formulation due to the effects of parallax. Moreover, it is questionable that
the perfect match is necessary for route following. In contrast, the results of
Baddeley et al. (2011) suggest that reliable global localization is possible with the
VCA. Ardin et al. (2015) later showed that global localization can be performed
with some robustness to non-planar viewpoint changes (pitch). Unfortunately,
both authors also used visually dull scenarios, but with a depth structure that
better resembles outdoor environments. The use of visually dull scenes is rooted
in the sensitivity of insect eyes to different wavelengths, which would allow them
to easily segment the sky and the foreground (Freas et al., 2017; Wystrach et al.,
2012; Stone et al., 2018; Basten and Mallot, 2010). However, performing such a
segmentation without specialized hardware would be difficult in a robot.

Regarding the detection of localization failures, two reported behaviors, i.e.,
search (Wehner et al., 1996) and backtracking (Wystrach et al., 2013), indicate
that it may be performed by insects. The existence of those behaviors makes
it reasonable to think of a mechanism that triggers their onset and termination:
when insects believe to be lost, they initiate a contingency behavior, perform it
until they believe to be localized again, and then continue navigating as usual.

Another related idea comes from Wystrach et al. (2012). The authors proposed
the use of different localization strategies that are used depending on the situation:
Raw visual information when traveling along the route and the skyline contours
when the robot is away from the route. In a similar fashion to the triggering of
contingency behaviors, it is reasonable to think that switching strategies requires
that insects either realize when to use each strategy or a way of merging multiple
ones into a single estimation.

4.2 Global Localization and Failure Detection Us-
ing a Tree of VCA Configurations

Global localization and failure detection are desirable skills for a robot, and more
so, in applications that rely on route-based representations of the environment.
The reason is that the reduced spatial coverage of the route-based representation
allows only for a relatively small margin for error. If the robot travels in the
wrong direction, it might easily stray away from the safety of the route, and
if far away enough, it may not be able to localize again. The implementation
of contingency behaviors like search or backtracking observed in insects carries
many complications in a robot. Thus, it is desirable that the robot remains on
the route and detects failures as soon as possible to avoid dangerous situations
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and the execution of contingency behaviors.

Given a current view ¢, global localization using a visual memory M = {m;},_,
with n snapshots, consists of finding the snapshot that corresponds to ¢ (Smith
et al., 2008; Baddeley et al., 2011; Ardin et al., 2015). Through the rest of the
document, d; denotes the IDF value of the best alignment between current-view
and the i-th snapshot in a visual memory. For example, the index of the snapshot
corresponding to c¢ is obtained by

[ = arg min d;, (4.1)
i=1..n

and d; is the corresponding IDF value !. Conveniently, the same concept can
be used to localize the robot in the vicinity of a localization prior by limiting the
search range to the snapshots around it. Localization failure detection can be
performed by classifying the localization hypothesis as either a success (positive
class) or a failure (negative class). For example, by applying a threshold 7 on the

IDF value

1 ifd <
p={ "a=T (4.2)
0 otherwise

This simple approach is attractive for several reasons. The first is that it
reuses the IDF value used to localize the robot, and thus the computational cost
of classification is negligible. The second is that it is flexible because it can be
used if the robot is localizing against a single snapshot, around the vicinity of a
localization prior, or against an entire visual memory.

The performance of Equations 4.1 and 4.2 is likely affected by factors including
look-alike places and appearance changes that occur between the acquisition of a
visual memory and route-following. Such factors are not under the control of the
robot. However, a robot using the VCA has control over two basic aspects that
affect how similar it considers two places to be: the IDF, and the representation
of the panoramic images. Through the rest of this document, a combination of
IDF and two parameterized representation functions (one for the snapshot and
one for the current-view) is called a configuration.

Research on the VCA so far considers representation as mutually exclusive.
Either one or the other is used, and if at all, they are compared against each
other. This view was challenged by Wystrach et al. (2012), who suggested that
ants may actually use different representations depending on the situation. The
authors also proposed a switching mechanism depending on a threshold on the
IDF value as in Equation 4.2. A similar use of a threshold was proposed by
(Nelson, 1991) as part of an associative method. This investigation develops on
those results and introduces the TVCC, which allows switching between multiple
VCA configurations.

IBiologists favor route representations that do not depend on explicit storage of waypoints
(Baddeley et al., 2011, 2012). However, the contents of this section are developed using an
explicit encoding because it is more convenient in robotics, as it facilitates operations like route
planning, see Section 3.2.2.
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The formalization begins by defining the VCA so that all elements involved are
given explicitly. Besides the IDF, the VCA also depends on two representation
functions r and r’, and their parameters ¢ and &', that transform the current-
view and snapshot into the images that are passed to the IDF. The distinction
becomes essential to the contents of Section 4.5. For now, assume that () = /()
and €0 = ¢,

The notation uses a superscript in parenthesis, not to be confused with a
power, to refer to the j-th among n VCA configurations. As before, a subscript
denotes the i-th snaphsot of a visual memory. Thus the VCA can be defined as:

v (¢, m;) = argmin idf Y (19 (¢, €9)), shi ft (19 (my, £9), 5)), (4.3)
5

5(3')

i

= oW (c,my), (4.4)

and

dgj) _ de(j)(r(j)(C7 g(j))7 shz’ft(r’(j)(mi, 5/(]‘))7 5(]’))), (4.5)

The TVCC consists of n VCA configurations, each with a corresponding
threshold

T = {0}’ (4.6)

j=1"
Classification consists of evaluating the threshold classifiers at each stage until

one passes the test. In that case, the localization is considered successful. If none
passes the test, the localization is considered a failure.

Pr=\/d” <19 (4.7)
j=1
dv <7

10

Figure 4.1: TVCC. The classification is performed in stages (from top to bottom), each
consisting of a threshold classifier. The evaluation of threshold test branches to the left
if true, and to the right if false in the figure. A localization hypothesis is considered as
successful if any stage of the TVCC passes the threshold test, and as failure otherwise.
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In the TVCC, each configuration leads to a different localization hypothesis
[. Hence, the computation can easily become prohibitively expensive if operating
on a large visual memory and if the deeper stages have to be evaluated regularly.
This problem can be prevented if two assumptions are met. The first assumption
is that the robot usually has a localization prior. Therefore, local localization
is generally sufficient. In the cases when local localization fails, then the search
range can be extended globally to find a new localization hypothesis that serves as
prior for the next steps. The second assumption is that the first stages correctly
classify successful localizations as such most of the time, inhibiting thereby the
execution of deeper stages 2.

This investigation does not provide a method for learning the TVCC. The
feasibility of the approach is evaluated on a model learned by brute force search,
see Sectionb.3. Future directions are discussed in Section 6.5.

4.3 Reducing Aliasing using Panoramic Images of
Labels

A good performing VCA configuration should allow reliable global localization
and failure detection. Intuitively, the chances of performing well at these tasks
can be increased by using configurations that are discriminative: corresponding
locations result in small IDF values and conversely. This dissertation proposes
the use of panoramic images of labels to that end. Thereby, pixel values are
labels that categorize the visual information of their neighborhood. There is an
important consideration in this respect. Recalling the contents of Section 2.3.1,
translation leads to changes in scale and pixel positions at which scene points are
projected. Thus, panoramic images of labels must provide some degree of scale
and position invariance so that images can be matched under translation. More
precisely, scale invariance means that corresponding scene points are assigned the
same labels, even if their apparent size on the image changes. Position invariance
means that corresponding pixels (after alignment) have the same label, even if
they only approximately image corresponding scene points. Both properties are
naturally present when working on gray level images because values of neighboring
pixels are often similar.

The proposed approach integrates seamlessly with the warping performed by
the VCA, up to the use of a new IDF. This modification is necessary because
panoramic images of labels contain categorical values. Thus, common IDFs like
SSD and SAD are not well suited to align them. This investigation proposes an
IDF called PLD, that takes values from 0 to 100

W—1H-1 )
100 1 if L £ 1,
PLD(I,I') = e W 4.8
( ) Z {0 otherwise (48)

2This assumption is analog yet opposite to that of the cascade classifier: early stages correctly
classify most false examples correctly.
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4.3.1 Panoramas of Textons using the LBP operator

The labeling of pixels is done in terms of texture, an idea partially inspired by the
results of Dittmar et al. (2010, 2011). In their publications, the authors studied
how texture affects the flying behavior of bees and concluded that image matching
in terms of texture explains flying behavior only if the texture is salient.

Nevertheless, the authors did not provide a clear definition of what they meant
by texture and used gray level images to explain flying behavior in terms of texture.
This is perhaps not surprising because the word texture is often used colloquially
and has been elusive of a unique formal definition (Coggins and Jain, 1985). This
investigation treats texture in a more formal way that emerged in the field of
texture analysis. Texture is considered as a property perceived in terms of basic
elements called textons (Julesz, 1981). This implies that, although texture can be
calculated from gray level images, it is not explicitly contained in them.

Thus, the textons define categories used for pixel labeling. Textons are ex-
tracted from gray level images using an established technique in texture analysis
called LBP (Ojala et al., 1996, 2002). Figure 4.5 shows the difference between
using PLD and panoramas of textons and SAD on raw images. The PLD leads
to a more salient IDF value at the best alignment and exhibits thus less aliasing.
The LBP operator takes a gray level image as input and outputs an LBP image®.
The pixel values of LBPs image, called LBP codes, can be seen as labels: each
value corresponds to the texture primitive that better describes the neighborhood
of that pixel. The derivation of four variants of the operator is presented to the
bare minimum. Please refer to the original sources for details.

In LBP, texture T', defined as a local property of a gray level image, is the
joint distribution of gray levels of a reference pixel g., and P (P > 1) surrounding
pixels sampled along a circle of radius R centered at g. (see Figure 4.2)

T:t(gmg()agla“'?gp—l)' (49)
2
g1 93 g1
/2 E{< 9.0 94 e g0
93 95 qr
g6

Figure 4.2: LBP operator parameterization examples. R defines the spatial extent around
the reference position g., and P defines the number of points sampled. On the left, for
P =4 and R=1. On the right for P =8 and R = 8.

3From now on, the terms panorama of textons, panorama of labels, and LBP image are used
indistinctively.
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After some manipulations of Equation 4.9, texture is approximated by a binary
pattern that is invariant to any monotonic gray level variation

T~ t(s(.g() - gc)a S(.gl - gc)7 () S(gP—l - gc))a (410)
where s(z) is a step function, i.e.,
1 ifxz>0
s(x) = o (4.11)
0 otherwise

The variants of the LBP operator presented differ in how the binary pattern
is translated into a label. In the first variant, denoted as LBPp g, the label is
obtained by simply converting the binary pattern to base 10, i.e.,

P-1
LBPpr = > s(gp — gc)2"- (4.12)
p=0
The second LBP variant is a rotation-invariant version of LBPp g and is de-
noted by LBPp, g, where ri stands for rotation invariant . In this variant, the
binary pattern is rearranged before the conversion to base 10 as

LBPp " = min {ROR(LBPpR,i)|i =0,1,..., P — 1}, (4.13)

where ROR(x, i) performs i circular bit-wise right shifts of the binary pattern
x. For example, the binary patterns 001005, 100005, and 000015, would all be
arranged as 00001, and have the label 1.

The two remaining LBP variants are called uniform. They differentiate be-
tween two types of bit patterns when converting the bit code into a code: uniform
and non-uniform. Uniform patterns are assigned a unique label, whereas non-
uniform patterns are all assigned a common code, different from those assigned
to uniform patterns. A binary pattern is considered uniform if it has at most two
spatial transitions from “on” to “off” or vice-versa with wrap-around (Ojala et al.,
2002), see Figure 4.3. For example, binary patterns 111115 and 000005 have zero
spatial transitions, whereas patterns 0000115 and 0011005 have two. Uniform LBP
variants are denoted with superscript u2 to differentiate them from non-uniform
ones.

Uniform LBP variants are convenient because they produce a smaller number
of labels, and yet they assign a unique label to most texture primitives found
in natural scenes. Just like before, there is one variant of uniform LBP that is
rotation invariant and one that is not. In the former, denoted as LBPp 712 the
label assigned to a uniform binary pattern consists of the number of “on” bits in
the pattern. The labels of the latter, denoted as LBPp, "2, are calculated using
Equation (4.12). For example, the binary pattern 000111, would have code 8 if
using LBPp z", and code 3 if using LBPRer.

4The notation used in this dissertation is slightly different to what is used in the original
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Figure 4.3: Uniform LBP codes LBPg, g™ Uniform LBP codes are those that have at
most two value transitions in the bit pattern. For example, there are only 9 uniform LBP
patterns (top row) among all 2P = 256 LBP patterns. From the second row to bottom,
some examples of non-uniform LBP codes. All of those patterns are assigned LBP code

9.
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4.3.2 Panorama of Column Histograms of Labels

The previous section proposed the use of the LBP operator to create panorama of
textons, which are then aligned using an ad-hoc IDF called PLD. That approach is
closely related to the so-called hLBPI (Yang and Chen, 2013), which is extremely

rare in practice.

Instead, the ubiquitous practice is to use LBP images to compute histogram-
based descriptors by concatenating multiple local histograms of LBP codes (Aho-
nen et al., 2004; Ojala et al., 1996; Yang and Chen, 2013). Interestingly, the use
of histogram-based descriptors stems from the necessity of position invariances
briefly mentioned in the previous section. In view of this, using histogram-based
descriptors can be seen as a corollary to the creating panorama of textons with

LBP.

This section introduces a representation called PCHL that is analog to LBP
descriptors but takes the horizontal wrap-around in panoramic images into con-

sideration, and integrates seamlessly with the VCA warping.

The process to create a PCHL image takes a panorama of textons of size
W x H and outputs a PCHL of size W X (¢n), where ¢ is the maximum number
of possible labels granted by the parameterization of the LBP operator, and n is
the number of vertical regions. Each column j of the PCHL is constructed by
concatenating n local histograms, each obtained from one of n vertical regions,
each of size s x (H/n) centered horizontally at j, see Figure 4.6.

sources, because simplifies identifying if an LBP variant is either rotation invariant or uniform

(explained later).
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(b)

Figure 4.4: Example of 4.4a snapshot and 4.4b current-view at high resolution before
further preprocessing, see Figure 4.5.

Figure 4.7 compares the panorama of textons with PLD against different pa-
rameterizations of glsPCHL. As seen, increasing n, causes the PCHL to approxi-
mate the values of the PLD (spatial information is better preserved). In contrast,
varying w leads to almost identical IDF values. In this case, no obvious advantage
of using this representation is noticeable. On the contrary, using PCHL increases
aliasing, in the form of multiple global minima. Figure 4.7 illustrates the same
comparison for global localization. Note that the global minima of the panorama
of textons is highly localized, whereas the global minima of PCHL is found in a
broad peak, besides of its IDFs showing multiple local minima.
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Figure 4.5: PLD on panorama of textons compared to SAD on raw images. 4.5a snapshot
and 4.5b current-view at low-resolution raw images (see Figure 4.4). 4.5¢ pizel-wise
differences at the best alignment in the SAD sense. 4.5d snapshot and 4.5e current-
view as panorama of textons, extracted from 4.5a and 4.5b, respectively. Both images
were artificially colored so that every label (LBP code) has a distinctive color. 4.5f
pizel-wise differences at the best alignment in the PLD sense. White pixels stand for
corresponding pizels with the same label, and conversely for black. Matching labels tend
to group together, though most of them do not match. 4.59 Normalized PLD and SAD
obtained during alignment. PLD with panorama of textons exhibits less aliasing in the
global minima.
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(b)

Figure 4.6: Histograms of textons computation with n = 2 and s = 5. 4.6a LBP image
used to compute a PCHL. 4.6b the resulting PCHL. The regions in red and blue corre-
spond to the same column, and likewise for those in green and cyan. The histograms
obtained by each region in the LBP image are concatenated to form the corresponding
column of the PCHL.
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Figure 4.7: Comparison of panorama of textons with normalized PLD and different
PCHL parameterizations with normalized SAD obtained from aligning two images. 4.7a
for fixzed w and varying n. 4.7b for fired n and varying w.
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Figure 4.8: Comparison of panorama of textons with normalized PLD and different
PCHL parameterizations with normalized SAD obtained during global localization, only
the IDF of best match is displayed. The true best match is the first snapshot (index 0)
4.7a for fired w and varying n. 4.7b for fired n and varying w.
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4.4 Estimation of Off-Route Translation Direction

The VCA results useful to calculate a corrective steering command to travel along
a route if the robot is on the route. Unfortunately, it is of limited usability to
bring back the robot to the route, i.e., to navigate towards the closest waypoint
after straying away. The reason for this is that the relative orientation estimated
by the VCA is relative to viewing direction while on-route. If the robot has
strayed away, the VCA would yield a relative orientation that causes the robot
to travel parallel to the route, instead of going back to it (Zeil et al., 2003), see
Figure. Wystrach et al. (2012); Méller and Vardy (2006a) proposed to perform
probatory translatory movements and use the IDF values obtained after them to
estimate the direction of travel based on the direction IDF change. If translating
in a direction decreases the IDF value, that direction leads to the goal, and vice-
versa, see Figure 4.9. Unfortunately, such movements may have to be performed
at random. Unfortunately, the performance of random movements is undesirable
in applications like smart-wheelchair navigation because they would render the
driving behavior less predictable, thus less safe (Surden and Williams, 2016).
Moreover, performing the necessary movements carries complications, especially
for non-holonomic robots like the ROSStuhl. Another complication of the random
movement approach is that it requires the acquisition conditions to be stable so
that the gradient of IDF reflects the direction of travel. However, this is hardly
expectable in real-world applications. Other authors have proposed the use of
more warping functions that operate on multiple scales (Moller and Vardy, 2006b;
Churchill and Vardy, 2008; Moller et al., 2014).

This section introduces an algorithm that estimates the direction of off-route
displacement given only a current-view ¢, and snapshot that represents a nearby
waypoint along the route m;. The benefit is that it does not rely on probatory
movements nor multi-scale analysis. The computation consists of the following
steps. First, c and m; are aligned using the relative rotation estimated by the VCA.
This step is analog to the “rotating on the spot” observed in ants by Wystrach
et al. (2012). The second step consists of computing the horizontal displacement
of corresponding columns, i.e., those for which IDF is minimal. Spurious matches
are filtered out using the ratio of IDF values of the best and second-best match,
similarly as when matching SIFT features (Lowe, 2004), and by the magnitude of
the displacements. Since this procedure is meant to be used to correct small off-
route deviations, the displacement can be expected to be constrained to relatively
low magnitudes for distant objects, i.e., those that are most likely to reoccur in
both images.

This process is performed independently over two subimages that correspond
to the front and back of the panoramic image because optical flow would have
opposite directions in them. Finally, the estimates of both regions are merged as

T, = t.(front(c), front(my),1) + t,(back(c), back(m;), —1), (4.14)
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where front and back extract the corresponding subimages from the snapshot
m; and the current-view c. front simply crops the image to preserve the area in
the center. back first rotates the image by 180 degrees in azimuth before cropping
in the same way. k provides invariance to the direction of perceived column
displacement, see Algorithm 1. The sign of T, is positive if the robot is placed to
the right of the route, and negative if it placed to the left.

Function t,(my, ¢, k):
input : A snapshot m; and a current-view c of size W x H px. k

should be positive for images around the focus of expansion,

and negative for images around the focus of contraction.
output: A real number whose sign indicates the direction of

horizontal optical flow, whose magnitude indicates

confidence.
P+0
N+ 0
fori <+ toW —1do
D« {}
A+ {}

for j < 0toW —1do
d + zdf(mm, C*J)
§ < k(i —j)
Append d to D
Append d to A
end
r < argsort(D)
sbr < log(D,,/ D,
if A, <5 Asbr <rthres AN A,, # 0 then
if 0 <0 then
\ P+ P+1/d
end
else
| N« N+1/d
end
end
end

return log(P, N)
Algorithm 1: Algorithm used to estimate the direction of off-route transla-

tion.
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Figure 4.9: SAD IDF values under pure off-route translation. The VCA only accounts
for orientation. Thus, under pure off-route translation, a robot navigating with the VCA
would move forward instead of going back to the route by minimizing the off-route trans-
lation. 4.9a snapshot. 4.9b and 4.9c current-views translated 0.8 m and -0.8 m w.r.t.
the snapshot, respectively. 4.9d SAD values obtained by aligning 4.9a with 4.9b and 4.9c.
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Figure 4.10: Optical flow under off-route translation. The optical flow at the front (green)
has the opposite sign as the spatial displacement, and optical flow at the back (cyan) has
the same sign. 4.10a optical flow resulting when the robot translates to the left. 4.10b
optical flow resulting when the robot translates to the right.
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4.5 Knowledge Transfer

Research on the VCA assumes that the same setup is used to capture the visual
memories and to navigate with them. That assumption is reasonable in biology,
but it is not adequate in robotics, and holding to it has negative implications. In
single-robot applications, the constant setup assumption may break, for example,
due to the replacement of a defective camera. In that case, it may be necessary to
capture all the visual memories again. In multiple robot applications, matters are
even worse because every robot comprises a unique setup, and therefore requires
a unique version of the visual memories. Thus, the constant setup assumption
inhibits the use of the VCA in real-world, large-scale applications because they
invariably involve multiple setups in one form or the other.

This investigation introduces KT as a problem of study in the context of the
VCA. KT consists of navigating when the setup used for visual memory acquisition
(called reference) and autonomous navigation (called alternative) are different and
of any steps that facilitate that process.

Before going into details, it is necessary to place KT for the VCA in the context
of related problems. First of all, KT is not a new problem in more general terms
because its importance is readily acknowledged in other types of navigation. For
example, to use 3D maps generated using expensive lidar sensors for localization
using low-cost monocular directional cameras (Wolcott and Eustice, 2014; Caselitz
et al., 2016), or directional stereo cameras (Xu et al., 2017). The problem also
relates to the omnidirectional stereo problem, which has been studied at least since
the late ninety nineties (Benosman et al., 1996; Gluckman and Nayar, 1998), and
continues to be an active research topic (Shih-Schon Lin and Bajecsy, 2003; Wang
et al., 2012). However, KT for the VCA is arguably a more difficult problem
than omnidirectional stereo because, in KT, it is not possible to use a structured
pattern for calibration and because of the complete lack of time synchronization
and stable arrangement of the omnidirectional cameras over time. Moreover,
stereo systems are generally designed using cameras that have nearly identical
intrinsic parameters, whereas this dissertation later shows, this needs not to be
the case for the VCA. It is also worth noting that there are previous investigations
on the VCA that, although they did not formulate KT as an explicit problem, set
a precedent to it. They are discussed where appropriate later in this section.

Navigating with different setups is a more challenging problem because it in-
volves all complications found when using the same setup, with the addition of
error sources due to setup differences. Fortunately, they are primarily system-
atic, and thus correctable. A complete KT requires correcting four types of error
sources, each related to different types of parameters. The types of parameters
are enlisted in order of increasing difficulty to solve. Each of them is described
next, assuming that they are the only difference between reference and alternative
setup.

The first type is the photometric characteristics of the image sensors. They
cause that corresponding scene points are assigned different intensity values. Pa-
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Figure 4.11: Two synthetic omnidirectional itmages captured at the exact same pose with
two different omnidirectional cameras. Alignment of images produced by different setups
has not yet be attempted with the visual compass algorithm, however it would greatly
simplify large-scale, real-world applications, like smart-wheelchair navigation.

rameters of this type include temporal dark noise, quantum efficiency, dynamic
range (Jéhne, 2010). They are placed first because they are, to some extent, ana-
log to navigating under different illumination conditions. Research in the VCA
shows that the algorithm performs well under those conditions using simple illu-
mination invariant representations (Zeil et al., 2003). Additionally, some of them,
like vignetting, can be corrected through a photometric calibration.

The second type relates to intrinsic parameters of the omnidirectional cam-
eras, like the distortion parameters and the field of view. Wystrach et al. (2016)
analyzed the effects of FOV and resolution, setting thus a precedent. They are
placed second, because similarly to the photometric parameters, they can be esti-
mated for each camera independently and because there are established methods
designed to estimate them. However, as discussed later on, research in the VCA
has neglected this aspect.

In the third place, there are the extrinsic parameters of the omnidirectional
camera, w.r.t. the coordinate system of the robot. An omnidirectional camera
used with the VCA has to be installed in a particular way: optical axis normal to
the ground plane and aligned with the axis of rotation of the robot. The yaw of
the sensor does not require a particular aligment, but it is generally aligned with
the xy plane in robot coordinates, and so that the forward direction of the robot
corresponds with the top of the omnidirectional image.

Although a perfect sensor alignment is hardly attainable in practice, it can
be expected to be precise, and thus discrepancies in pitch, roll, and yaw, and x
and y translation can be expected to be minimal. Translation along z is perhaps
the extrinsic parameters that may have a larger margin of variation. Previous
studies in the VCA can be considered as a precedent in this area. They can be
separated into two groups. The first group studied the effects of planar view-
point changes. That group constitutes the majority by a large margin because
the VCA is intended to operate under planar motion. The second group studied
the effects of non-planar view-point changes, i.e., along the z-axis (Freas et al.,
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2018), pitch(Ardin et al., 2015), and roll (Raderschall et al., 2016). The results
offer some insights that may be useful for KT: All types of viewpoint changes,
except for yaw, are detrimental to image matching. They cause the IDF values of
the best match to becomes less salient (increasing aliasing). Moreover, the size of
that effect consistently increases with the magnitude of the viewpoint change. This
type of parameters is considered more difficult because estimating the viewpoint
differences requires images acquired by both setups. The correlation between the
magnitude of viewpoint change and its impact on IDF makes it reasonable to
think of solving this problem using a gradient-based method. However, this was
not pursued covered in this investigation.

Finally, the fourth type is differences due to the embodiment of the robot,
including kinematics and the shape and size of the robot. For example, if the
reference setup was a small differential robot, and the alternative setup was a
large Ackerman robot, they may not be able to follow the same routes. In the
opinion of the author, differences of this type are probably the hardest to solve,
in part because the VCA does not use any kind of metric information for its
operation.

4.5.1 Intrinsic Rectification for the VCA

This investigation considers only intrinsic parameter differences. The author con-
siders it to be a sensible first step because it is arguably a simpler problem.
Moreover, this problem needs to be solved first, if at all, to produce panoramic
images of matching sizes to pass to the VCA and to simplify matters by removing
nonlinearities. Thus, correcting intrinsics is likely to simplify the correction of
extrinsic and can be seen as a preliminary step.

Furthermore, the role of intrinsic parameters has been neglected so far in
research of the VCA. The author is only aware of few publications that provide
details on the intrinsic model and the unwrapping procedure. During the latest
stages of writing this document, the author became aware of the work by Fleer
(2017), in which the authors use the Scaramuzza model to unwrap panoramic
images and perform intrinsic calibration of the camera to correct differences due
to intrinsic parameters. However, they did not use it with knowledge transfer in
consideration.

This seems justifiable because the VCA and similar have been found to perform
well without relying on a precise intrinsic model. In some cases, that robustness
to imprecisions in the model is a rationale behind the selection of those algorithms
(Scaramuzza and Siegwart, 2008).

However, this can hardly be expected if the reference and alternative setups
have very different intrinsic parameters. Moreover, even if a constant setup is
used, it is valid to question whether using a precise intrinsic model provides any
benefit.
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Unwrapping using a Naive Model

The intrinsic model is used in the VCA to unwrap the omnidirectional images, i.e.,
mapping the visual information of the omnidirectional image, into a panoramic
image. In the following, subscript p is used to distinguish symbols specific to the
panoramic image. Unwrapping can be understood as a simple polar to cylindrical
coordinate conversion. However, it is described with a seemingly overcomplicated
notation and unnecessary steps for reasons that will become apparent in the fol-
lowing two sections. Moreover, the model expects that the top and right of the
image correspond with the front and right of the robot, respectively. In cases
where that is not possible, the images have to be flipped first.

The main unwrapping process used in this dissertation relies on a naive model
with the following basic parameters. The pixel coordinates of the center of the
image t = (., y.)?, the AOV a, the radius of the border py,,, i.e., up to the AOV,
and the radius at which the image contains only valid pixels p,,q.. All parameters
are given in pixels, except for «, which is given in radians. The parameters of
the naive model are obtained by human intervention. « is taken directly from
the datasheet of the omnidirectional camera, whereas the other parameters are
labeled by hand. Besides, the model has two parameters that are derived from
the basic ones: the maximum resolutions in azimuth ¢*, and elevation 6*. The
panoramic image is unwrapped so that it contains only valid pixels (including
possible occlusions at the center). Therefore, its width and height are W), = 27 /¢*
and H, = «a/2/6%, respectively.

Coordinates of the omnidirectional image are denoted by u = (u,v)?, and the
coordinates of the panoramic image by u, = (uy,,v,)’. Panoramic image columns
relate to azimuth ¢ by

Wy

v==v (w-), (4.15)

and to elevation 6 by

0= 0" (W, —v,—1). (4.16)

In that way, azimuth zero is located at the center of the panoramic image,
with positive values to the left and negative values to the right in steps of ¥*.
Moreover elevation, starts at zero at the bottom and increases in steps of size 6*
towards the top.

Elevation value is converted to the corresponding radius p in the omnidirec-
tional image using the following equation

0
= —, 4.1
o= (4.17)

Finally, the polar coordinates (¢, p) are converted to omnidirectional image
coordinates

u = pcos (z/; + g) + X, (4.18)
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v = psin <¢ + g) + Ye. (4.19)

The naive model is only an approximation, as it disregards nuances present
in real omnidirectional cameras, like optical distortion and misalignment of the
image acquisition components. The clearest indication of that is the assumption
of a linear relation between radius and elevation in Equation 4.17. Nevertheless,
unwrapping omnidirectional images in this way a common practice. In the con-
texts of the VCA, this is the case because the algorithm is known to perform well
in the absence of a precise unwrapping. However, this practice may also be com-
mon in a broader context. For example, the omnidirectional camera calibration
toolbox (Scaramuzza et al., 2006b) provides code to unwrap panoramic images
using a simple polar to cylindrical coordinate conversion, despite the availability
of a precise model of the camera. However, using a naive model to unwrap images
is not appropriate in the context of KT for several reasons. The first reason is the
AOV of calibrated sensors may deviate from vendor specifications. The nuances of
real-world cameras may vary so that pixel correspondences cannot be maintained,
even if extrinsic parameters are kept equal. The following two sections describe
the model implemented in Scaramuzza et al. (2006b) and how it can be used to
unwrap panoramic images that preserve pixel correspondences.

Scaramuzza Omnidirectional Camera Model

Scaramuzza et al. (2006a) introduced an omnidirectional calibration model, re-
ferred to as the Scaramuzza model, and later released as a publicly available tool-
box that estimates its parameters (Scaramuzza et al., 2006b) ®>. One important
benefit of the Scaramuzza model is that it can represent different types of central
omnidirectional cameras using a common abstraction. Central cameras are those
that fulfill the single center of projection property, i.e., all rays pass through a
common point (the center of projection) before reaching the sensor. Examples of
such systems include the combination of a hyperbolic mirror and a perspective
camera, a parabolic mirror and a telecentric camera, and some types of fisheye
cameras®.

The Scaramuzza model allows calculating the direction of a scene point X,
given the sensor coordinates of its image u’ = (v/,v’). The first part of the model
corrects misalignments of the camera components by transforming the sensor coor-
dinates into ideal omnidirectional image coordinates u” = (u”,v")., i.e., perfectly
centered and with a circular border (see Figure 4.12)

@ ) - (Z il) W) - @)] = A7), (4.20)

where t = (z., y.) is the center of the image, and ¢, d, and e are the parameters
of linear map A. The relation between sensor coordinates u’, and a vector p that

5The definitions provided in this section are derived from the implemention in the toolbox.
6The model cannot calibrate fisheye cameras if their AOV exceeds 195 degrees.
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(e)

(b) (c)

Figure 4.12: Coordinate systems in the Scaramuzza model. 4.12a Ideal image coordi-
nates and viewpoint. 4.12c Ideal image coordinates, i.e. the omnidirectional is perfectly
centered and has a circular border. 4.12b Sensor coordinates. Real world cameras may
no produce ideal images due to misalignment of its component. The effect has been
exaggerated for illustrative purposes.
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emanates from the viewpoint O in the direction of a scene point X is defined, up
to a scaling factor A\, A > 0, by

" "

u
Aap=A[V | = v (4.21)
w// f(u// UH)

where f is a function that maps ideal coordinates to a distance along z, de-
pending on their distance w.r.t. the center. The authors define f as

f" V") = ag + aip” + agp™ + ... +axp™, (4.22)

where p” = Vu" + v, and {a;}, are the coefficients of an N-th degree
polynomial.

Unwrapping Panoramic Images using the Scaramuzza Model

This section proposes a procedure to unwrap panoramic images using the Scara-
muzza model. This has two main advantages over the approach based on the
naive method. The first one is that the Scamuzza method better resembles the
image acquisition of a real-world camera. The second is that the parameters of the
Scaramuzza model depend on human intervention, only to acquire the data used
for optimization. In contrast, the parameters of the naive method rely entirely on
a human.

Unwrapping with the Scaramuzza model also consists of transforming coor-
dinates in the panoramic image up = (uy,v,), into the corresponding sensor co-
ordinates of the omnidirectional image u’. The generation of panoramic image
coordinates and their conversion to azimuth and elevation are identical to the
naive model (see Equation 4.15 and Equation 4.16).

However, there are two key differences. The first one is that the Scaramuzza
model differentiates between sensor and ideal coordinates, whereas the naive ap-
proach makes no such distinction. The second is that radius and elevation are not
assumed to be linearly related. Instead, the radius corresponding to an elevation
is calculated as

p" = h(0). (4.23)

h is estimated by piecewiese linear interpolation between all elevations present
in the panoramic image, and the corresponding radii

0 =tan' (p", —f(u",0")), (4.24)

where tan~! is the two-argument inverse tangent function, called atan2 in
some programming languages. In the next step, the polar coordinates (¢, p”) are
converted to ideal omnidirectional image coordinates by

u” = p” cos <w + g) (4.25)
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"o T
V" = p’sin (w—l— 2) (4.26)

Finally, the ideal omnidirectional coordinates are converted to sensor coor-
dinates using A, and then referenced relative to the top-left corner by adding
t.

u = Au’ +t. (4.27)

The mapping performed by Equation 4.23 could have also been performed
using an inverse function f~! : p” — z that is part of the Scaramuzza model,
and then Equation 4.24. However, not all the calibration models used in this
dissertation were provided with the parameters for f~1. The Scaramuzza toolbox
provides a method for approximating f~!, but the author of this dissertation
found the piecewise linear interpolation explained above easier to implement and
adequate for panoramic image unwrapping.

4.5.2 Complete Pipeline

This section provides the complete procedure used to rectify panoramic images
acquired by different setups so that differences in intrinsic parameters have a
minimal impact on the IDF values. For simplicity, the procedure is explained as
if every step produced an intermediate result image. In practice, it is possible to
avoid the generation of intermediate images.

The first step consists of unwrapping each of the omnidirectional images as
described in the previous section.

(b)

Figure 4.13: Panoramic images unwrapped using the Scaramuzza method.  The
Zhang2006 camera is displayed in 4.13a and the Zivkovic2005 camera in 4.13b.

The second step consists of equalizing the FOV of the images. For this step,
let amin and g be the AOV that contains only valid pixels in the reference
setup. The corresponding symbols of the alternative setup are differentiated by a
tick in the following.

Both panoramic images have to be cropped so that they contain elevations
in the range [max(amin, @/ ! ae)]- The resulting elevation values

mzn) ’ min(amaz » Omaz
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are converted to a radius for each of the panoramic images using Equation 4.23.
After this step, both images show the same part of the scene. However, pixel
correspondences may not be accurate due to differences in resolution.

Figure 4.14: Panoramic image after vertical FOV equalization. Both images show the
same part of the scene. Note that the itmages were generated at full resolution in azimuth
and elevation. Because of that, the resolution in elevation and azimuth is different. The
Zhang2006 camera is displayed in 4.14a and the Zivkovic2005 camera in 4.14b.

The third step consists of equalizing the resolution by scaling the panoramic
images to a common resolution x*.

The scaling factors in azimuth and elevation of the reference image are cal-
culated as ¢ = & */y*, and 0=k * /0%, respectively. The scaling factors of the
alternative image are likewise calculated using its respective resolutions "™, and
0"™. After that, both images have the same size, and corresponding pixels in the
two images depict the same part of the scene. See Figure 4.15.

Figure 4.15: Panoramic image after resolution equalization. After this stage the images
can be processed with the visual compass algorithm because they have the same width and
height. Both images show the same part of the scene at the same resolution. Resolution
i azimuth and elevation was also equalized, thus the different aspect ratio compared to
the tmages in 4.14. The Zhang2006 camera is displayed in 4.15a and the Zivkovic2005
camera in 4.15b.

Figure 4.16 shows the IDF values obtained by aligning the images in Fig-
ure 4.15 using the SAD metric. Note that although the images appear identical,
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their IDF value at the best alignment is not zero. The reason for that is that
intensity values of the pixel are no identical.

301
<QC 201
1%}

104

-120 -60 0 60 120
azimuth (deg)

Figure 4.16: IDF wvalues resulting from using the SAD IDF on two panoramic images.
The last step of the pipeline consists of providing illumination invariance by

using an adequate representation. Figure 4.17 shows the IDF values obtained on
two different illumination invariant representations.
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Figure 4.17: IDF values of two intrinsically rectified images using illumination-invariant
representations. 4.17a using the SAD on images with zero-mean intensity. 4.17b using
the PLD on a panorama of textons extracted using LBPg 3
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Chapter 5

Experimental Evaluation

5.1 Global Localization Evaluation

The analysis is performed on data obtained by aligning all panoramic images of
two visual memories against each other. The images of one of the visual memories,
denoted by M, serve as snapshots, and the images of the other, denoted by C,
are used as current-views.

The results of alignment are summarized in two matrices, IDF matrix D &€
RIMIXICT and shift matrix S € NIMIXICI " The evaluation focuses only on the cor-
respondence of snapshots and current-views, and not on the relative orientation
estimation. Thus the S matrix is not used. Element D, ; contains the IDF value at
the best alignment between snapshot M, and current-view ¢;. The corresponding
element in S, contains the shift of the best alignment. The localization hypothesis
for the j-th current-view is obtained as [; = argmin; D, ;, see Section 4.1.

Moreover, the analysis requires of ground truth correspondences for the ele-
ments of M and C. Groundtruth is a vector g € NIl where each element g;
contains the true best match, i.e., m,, is the best match of ¢;. For real-world
data, ground truth was defined manually on key current-views, and the remaining
correspondences were obtained by interpolating the gaps using travel distance.
First, the correspondences at the start and end of M and C' are set. Then, the
remaining correspondences were interpolated, and the results inspected visually.
Further key correspondences were added in sections where the correspondences
are not correct, until all correspondences are deemed correct. In the case of syn-
thetic data, ground truth is known after generation because the world coordinates
of waypoints are precisely known. The localization error is calculated as

e =1l —g; (5.1)
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5.2 Global Localization and Failure Detection Eval-
uation

The performance of localization error detection is measured using recall at preci-
sion of 1, denoted by r@pl Milford et al. (2014). r@pl takes values in the range
[0..1] and represents the proportion of correct localizations without allowing for
false positives. The calculation of r@pl depends on two thresholds. The first one,
¢, represents the maximum allowed localization error magnitude, at which local-
ization is considered successful. The evaluation considers € values in the range
[0, 5], to assess the magnitude of global localization error necessary for the system
to detect a localization failure. A second threshold 7, represents the maximum
IDF value at which the robot considers to be localized successfully, see Section 4.1.
The value of 7 is calculated by brute force search, so that recall is maximized and
p = 1 is achieved, if possible, at each values of e. Evaluating both thresholds
together leads to four localization cases (see Table 5.1):

True positive (tp) The robot believes to be correctly localized when that is
indeed the case.

False positive (fp) The robot believes to be correctly localized when it is actu-
ally lost.

True Negative (tn) The robot believes to be lost when that is indeed the case.

False Negative (fn) The robot believes to be lost when it is actually correctly
localized.

‘ Dlj,j <7 Dlj,j > T
lej| < e tp fn
lej| > € fp tn

Table 5.1: Localization cases in terms of the localization hypothesis error and thresholds
€ and 7. Both conditions must evaluate to true for a case to occur.

Precision p and recall r are computed from the frequencies of localization cases
(denoted in capitals)

B TP (5 2)
P=TpiFp ‘
and
TP
B=gpirn (5:3)
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5.3 Assessment of the Feasibility of the TVCC

This section proposes a method to evaluate the feasibility of the TVCC, see Equa-
tion 4.6 and Equation 4.7. The TVCC would be deemed as feasible if using it
produces a considerable increase in failure detection performance, compared to
the best performing VCA configuration alone. The evaluation procedure simu-
lates the operation of the TVCC as using the following steps (see Table 5.2 for an
example):

1. Select the N best performing VCA configurations in terms of r@Qpl, and sort
them in order of descending performance. The selected VCA configurations,
their ordering, and the threshold € used to achieve r@pl define a TVCC
altogether.

2. The localization cases of a stage are replaced by those of a later stage in
cases where the condition d < € is false. Thus fn and tn are replaced tp.
fp are not present in the data because the stage thresholds do not allow so.
The replacement is performed in a greedy manner, i.e., only until a stage
provides a replacement.

3. r@pl is calculated from the resulting localization cases.

j 0 1 2 3
Stage 0 |[tp fn  tn tn
Stage 1 | tn  tp fn fn
Stage2 [fn fn  tn tn
Stage 3 |tp tp tp tn
Stage4 | tn  tp tp fn
Result |[tp tp tp tn

Table 5.2: Simulation of a TVCC with five stages. Localization cases are obtained from
the best five VCA configurations and are merged, simulating the operation of a TVCC.
In each case, the entry that remains in the result (replacement stops) is highlighted using
bold font. This example is only for illustration purposes. In the first and fourth cases
(=0, and j=3, respectively) no replacement was performed. In the second case (j=1) the
fn of the first stage was replaced by a tp found by stage 1. In the third case (7=2), a tn
of the first stage was replaced by a tp of stage 3.

Note that the procedure just described is bound to improve recall, and does not
affect precision, since fp cases are not allowed due to the restriction of achieving
precision of 1. Thus, all replacements would increase the number of ¢tp and reduce
the number of fn. The localization hypothesis used to evaluate the TVCC is
found in a similar way. It corresponds to the localization hypothesis of the stage
used for replacement. For example, in Table 5.2 [; is found by stage 0, [; by stage
1, I by stage 3, and I3 by 0.
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5.3.1 Whisker Plots

Some of the results are presented using whisker plots, a common representation
for unimodal distributions, see Figure 5.1. There are many whisker plot variants,
and to avoid confusion, the variant used in this dissertation is explained in the
following. See Frigge et al. (1989) for details.

Before explaining the plot, it is important to recall some basic concepts. Let
X = {:BZ}Z]\:O1 be a set of N observations. A percentile is a value in the range of
observations, below which a determined percentage of the observations fall. For
example, the 10th percentile is a value for which 10 % of the observations have a
smaller value. A quartile is a related term. The first ((Q);), second (Qs), and third
(Q3) quartiles correspond to the 25th, 50th, and 75th percentiles, respectively.
Conveniently, ()5 is the same as the median value and is used to represent the
mode. Spread is represented using the IQR, defined as IQR = (Q3— Q1. Therefore,
50% of the observations around the median are contained in the range defined by
the IQR, 25% between the median and (), and 25 % above the median and Q5.

In a whisker plot, (; and (3 are represented by a box, whose horizontal edges
are located at them, and the median is represented by a horizontal bar inside
the box. Besides representing the mode and spread of the distribution, whisker
plots also represent the range of observations. The lower limit corresponds to
the smallest observation x; that is greater than ) — 1.5 x IQR. Likewise, the
upper limit corresponds to the largest observation that has a value less than
Q3+ 1.5 x IQR. The lower- and upper-limit are connected to the box by vertical
bars called whiskers, from which the plots get their name. At the end of the
whiskers, there is another set of horizontal bars to denote the range of observations.

Observations beyond those limits are considered outliers and are represented
with markers placed at the observation values.
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51 4
4 Q3+15XIQR ..................................................................

—9 Q1~15>(1QR ..................................................................

Figure 5.1: Example of a whisker plot. The red dots represent the observations. They
are not strictly part of the whisker plot but were overlaid for illustrative purposes. Ob-
servations with equal values are grouped horizontally. In this plot, Q1 = 0.3 Q2 = 1.34
Qs = 1.8, and IQR = 1.5. The upper and lower limits at which observations are con-
stdered as inliers are displayed using dotted lines. There was a single outlier at 5.

5.4 VCA Offline Analysis Toolbox

The evaluation described in this section was performed using a toolbox devel-
oped as part of this investigation. Most of it is implemented using Python 3.
For efficiency reasons, the VCA was implemented using a superset of Cython that
simplifies defining IDF's and generates the necessary code. OpenMP and Python’s
multiprocessing module were used as appropriated to provide multithreading ca-
pabilities.

The toolbox provides several functionalities. First, it provides abstractions to
access visual memories and their snapshots. Visual memories are stored in an
ad-hoc filesystem hierarchy that uses PNG format for omnidirectional images and
CSV files for all other types of data, e.g., GPS and odometry.

The second functionality allows defining representation pipelines in terms of
simple building elements in a similar way as described in Section 3.2.4. Each
building block takes a snapshot as input and outputs a transformed version of it,
i.e., one with modified, added, or removed information.

The third functionality consists of aligning visual memories (using one as ref-
erence and another one as current-views as described at the beginning of the
chapter). To that end, the toolbox allows defining experiments in the form of com-
binations of VCA configurations and visual memory pairs. The results of those
experiments (matrices D and S) are stored in HDF format and can be accessed
using custom abstractions specially crafted for that purpose. Besides providing
access to the evaluation results, the abstractions can recreate the representation
pipelines used, regenerate the panoramic images used during the experiment, and
produce intermediate representations of the results that are useful for their eval-
uation.
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5.4.1 Image Preprocessing Pipeline and Representation El-
ements

The toolbox enables defining representation pipelines by chaining simple elements
together. Each of them receives as input a snapshot, which contains an image, a
calibration model, and other types of data useful for analysis. Produces a modified
version of the snapshot and passes it as input to the next element until the last
one is reached. The basic representation used in this dissertation is simply called
raw and consists of the steps listed below.

RGB image Returns an RGB omnidirectional image by loading it from sec-
ondary storage.

Grayscale converter Takes an RGB image and converts it to grayscale.

VFOV selector (optional) Selects a section of the VFOV based on two pa-
rameters that determine the lower and upper limits. This change is only
reflected in the calibration model, which would later affect unwrapping.

Scaramuzza model (optional) Changes to calibration model to the Scaramuzza
model described in Section 4.5.1. This element has to be called before the
unwrapper so that panoramic images are generated with accurate elevations
and azimuths.

Unwrapper Unwraps an omnidirectional image into a panoramic image using
the calibration model. All snapshots use the naive model by default.

Angular resolution downsampler Downsamples the panoramic image so that
it complies with desired azimuth and elevation resolutions.

More elaborated representations are created based on the raw one. The fol-
lowing additional representation elements are currently implemented.

Sobel (Vg ay,) Transforms a grayscale image into an image of gradients using
the Sobel operator. dx and dy defined the order of the partial derivatives,
and k the size if the kernel used for convolution.

Zero mean (N(0,0)) Returns an image with grayscale values centered at zero.
That image is obtained by subtracting the mean grayscale value. Provides
global illumination invariance.

Local zero mean (N, (0,0)) Returns an image with grayscale values locally cen-
tered at zero. That image is obtained by subtracting the mean grayscale
value calculated around each pixel. Provides local illumination invariance.

LBP (See Section 4.3.1 for notation) Transforms a gray level image into a
panorama of textons (LBP image). It takes three parameters. The number
of points to use P, the radius R, and the variant of LBP to use.
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PCHL (H(n,s)) Returns a PCHL, see Section 4.3.2. The LBP element has to
be calculated before this one. n defines the number of vertical regions, and s
their width. The details of the underlying LBP representation are provided
separately.

5.5 Visual Memories used for Evaluation

5.5.1 Synthetic Visual Memory Generation

Some of the experiments presented in this dissertation were performed on syn-
thetic data because it allows control over different aspects known to affect the
performance of the visual compass algorithm. These include: the relative place-
ment of the camera, the illumination conditions, the presence of dynamic objects,
and the 3D structure of the environment (Zeil et al., 2003; Stiirzl and Zeil, 2007;
Moller et al., 2014; Ardin et al., 2015; Raderschall et al., 2016; Freas et al., 2018).

Synthetic data is created using patched version of Blender! (refered from now
on simply as blender), that generates images that mimic those coming from real
omnidirectional cameras (Zichao Zhang et al., 2016). Blender was built from
source and patched inside a Docker container ? that mimics the execution envi-
ronment used when the patch was released. Omnidirectional images are rendered
using the Scaramuzza model described in Section 4.5.1.

The rendering of images was performed using a rendering toolbox developed
based on the patched blender version, using blender’s Python 3 scripting capa-
bilities. The rendering toolbox creates visual memories using the same format
understood by the VCA analysis toolbox presented in Section 5.4.

The rendering of omnidirectional is based on the Scaramuzza model. The
parameters for the two catadioptric cameras with hyperbolic mirrors used are
provided in Table 5.3. Examples of the synthetic images are provided in Sec-
tion 5.5.2.

The depth images contain points at infinity at the leaves of the trees, which are
filtered as follows. First, a binary image called “mask” is generated by thresholding
the depth image. “On” pixels correspond to infinity, and “off” pixels are closer than
infinity. Then, the opening morphological operator with a structuring element of
size 3 x 3 is applied to the mask image, and the result is stored in another image
called “filtered mask”. The filtering turns off the pixels of small “on” blobs. Then
another binary image called “mask difference” is generated. The “on” pixels in
that image are those that are different between the mask image and the filtered
mask. Finally, a new corrected depth image is generated. It is identical to the
original depth image with one difference. The depth values of the small blobs
at infinity were replaced by the median of valid depths (not at infinity) in their
surroundings, see Figure 5.2.

'blender.org
2docker.com
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Zhang Zivkovic

ap | —70.25584688010954 —1.314797 x 10?

aq 0 0

az | 0.0005433216164761568 1.848991 x 103

az | 2.102936744599082 x 107> | 2.251206 x 10—7

ay | —8.54310806364036 x 1072 | —7.343233 x 107!

c 1 0.999845

d |0 —1.314797 x 102
e 0 0.000008

z. | 0 0

Ye | O 0

W | 640 1024

H | 480 768

Table 5.3: Scaramuzza model parameters for two catadioptric cameras with hyperbolic
mirror. The parameters of the Zhang camera were obtained directly from the source
code of the blender patch (Zichao Zhang et al., 2016). The parameters for the Zivkovic
camera (Zivkovic and Booij, 2005) were obtained from one of the examples provided in
the omnidirectional calibration toolbox (Scaramuzza et al., 20060).

5.5.2 The Urban Canyon Visual Memories

The Urban Cayon visual memories were created using a 3D model provided by
Zichao Zhang et al. (2016), see Figure 5.3, and the procedure explained in the
previous section. All visual memories had exactly 657 snapshots. One route was
used as reference, and other routes parallel to the reference were used as current-
views. The current-view routes were rendered at +0.2, £0.4, and 0.8 meters
w.r.t. the reference. See Figure 5.4.

5.5.3 Real-Wold Visual Memories Captured with the
ROSStuhl

These visual memories were captured using the Kodak SP360 omnidirectional
camera using the GUI described in Section 3.2.2 and stored as described in Sec-
tion 3.2.1. Then, the rosbags of the snapshots storage were exported to the format
understood by the VCA evaluation toolbox before analysis. In all cases, the VFOV
was cropped to cover 45 degrees of elevation. The omnidirectional camera was
pointed upwards to make the illumination conditions more variable, especially
important because, in some cases, the timespan between image acquisition was
limited.

Each route was demonstrated twice to have a reference and current-view. Due
to limitations in the precision at which the human driver can retrace routes, off-
route translational error is likely present. The author considers it safe to assume
that off-route error remains well under 20 to 30 cm at all times due to the size
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of the vehicle, the navigable areas, and because the driver used environmental
features (like distance to the edge of sidewalks) as visual references while driving.
The number of snapshots has slight discrepancies between reference and current-
views because the wheel-odometry, used to select snapshots, provides only 2D
motion data and is error-prone on long distances.

5.5.4 The Steglitzl and Steglitz2 Visual Memories

These visual memories were captured in a busy urban area in the Steglitz district
of Berlin. The timespan between acquisition was of two hours, which allowed for
noticeable differences in the configuration of the sun, shadows, and clouds. The
scenery consists mostly of tall buildings and sporadic vegetation, pedestrians, and
cars, which provide short-term appearance changes. See Figure 5.5 for exam-
ples. The route started at coordinates 52°27'24.68"N 13°19'13.16E and covered
an approximate travel distance of ~ 730 meters. Steglitzl and Steglitz2 visual
memories contain 1444 and 1437 snapshots, respectively. See Figure 5.5.

5.5.5 GardenOvercast and GardenSunny Visual Memories

These visual memories were acquired at the Botanical Garden of the Freie Univer-
sitdt Berlin. The scenery consists mostly of vegetation and rustic roads. Dynamic
objects, like cars and pedestrians, were practically not present. However, these
visual memories are challenging for different reasons than the Steglitz ones. The
first reason is that the timespan between captures is two months, and the weather
was very different. Thus, drastic appearance changes are noticeable, e.g., the
shape of trees and the color and texture of the sky. Moreover, the route passes
through 3 planes that have places that look practically identical (disregarding
orientation). The route has a U-shape, and places located at one half of the U
look very similar to places at the corresponding position of the other half. Finally,
parts of the road were covered on cobblestone, and the wheelchair had to cross two
shallow irrigation canals, which induced different degrees of non-planar motion.
GardenOvercast has 298 snapshots, and GardenSunny has 304 snapshots. The
start of the route is at coordinates 52°27'20.60”"N 18°19'21.52E. See Figure 5.6.
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(c) (d)

(f)

# %

(9) (h)

Figure 5.2: Depth image preprocessing. RGB images in this figure are only presented for
the reader and are not involved in processing. In the case of depth images, darker pizels
are closer than lighter ones. 5.2a Omnidirectional RGB image. 5.2b Omnidirectional
depth image. 5.2c and 5.2d depict a zoomed part of the RGB and depth image that
serves as an example, respectively. Note the presence of small blobs of depths at infinity.
5.2e Binary mask, “on” pixzels indicate values at infinity, and “off” pizels indicate values
closer than infinity. 5.2f Binary mask filtered using a morphological operator to remowve
the small blobs at infinity. 5.2g depth image with the values at infinity replaced by the
median depth (not considering infinity values) of the surrounding pizels. 5.2h resulting
ommnidirectional depth image.
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Figure 5.8: The Urban Canyon 3D model used to generate synthetic data. The scenery
is that of a small city surrounded by mountains. The sky is rendered using a texture of
a partially cloudy sky. The model was provided by Zichao Zhang et al. (2016).
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Figure 5.4: Examples snapshots at corresponding locations for the UrbanCanyon wvi-
sual memories. The center colum shows the reference visual memory. The left and right
columns show snapshots acquired at -0.8 and 0.8 meters w.r.t. the reference, respec-
tively. The first and last rows show the snapshots at the beginning and end of the route,
respectively. The images were cropped horizontally.
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Figure 5.5: Ezample snapshots at corresponding locations. Steglitzl on the left and
Steglitz2 on the right. The first and last rows show the snapshot at the beginning and
end of the route, respectively.
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AU

Figure 5.6: Examples snapshots at corresponding locations. OuvercastGarden on the left,
and SunnyGarden on the right. The first and last rows show the snapshot at the beginning
and end of the route, respectively.
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5.6 VCA Configurations Evaluated

The experimental results evaluated the performance of different VCA configura-
tions. Configurations based on the panorama of texton use the PLD IDF, and
the remaining ones use SAD. Results are presented for two angular resolutions:
5.0 deg/px and 2.5 deg/px.

The N (0, o) representations are generated for k =€ {3,4,..,9}. The panorama
of textons are parameterized using all combinations of a set of P values, and a set
of R values. P take on values from 2 to 9 in increments of 1, and R takes on values
from 1 to 3 in increments of 0.5. Note that the same set R is used irregardless
of the angular resolution. Therefore, the FOV at which textons are sampled is
doubled in the 5.0 deg/px w.r.t the 2.5 deg/px configurations. The Sobel repre-
sentations are evaluated only using vertical edges (dz = 1) and for varying kernel
sizes between 3 and 9. Regarding the PCHL representations, they are evaluated
for n =1 and s values 1,3,5. The P and R and LBP variant used to extract the
underlying panorama of textons are selected depending on the situation.

5.7 Experimental Results

5.7.1 Panorama of Textons compared to Intensity Repre-
sentations

Global Localization and Localization Classification Performance using
Single Configurations

Steglitz Visual Memories

The top row of Figure 5.7 shows the global localization performance in terms of
the percentage of snapshots that reached a certain localization error magnitude
le|. Differences for the different values of |e| are mostly negligible regardless of
the representation. |e] = 0 &~ 40 % of the times, and |e|] < 1, =~ 80% of the
times. Differences due to resolution were of approximately 5 to 10% being the
representations based on 2.5 deg/px angular resolution the top performers.

Regarding the intensity-based representations, there are some interesting find-
ings. The IQR of V4, yconfigurations is so small that their whisker plots appear
as a line, which indicates different kernel size k£ did not have an effect on perfor-
mance. Notably, the raw configuration performed similar to the others, despite its
lack of illumination invariance. For 5.0 deg/px and |e| = 0, it even performs bet-
ter than the panorama of textons at the 75th percentile, and better than Ny (0, o)
and Vgz—1 4. This indicates that illumination differences in the visual memories
were not responsible for performance differences.. The panorama of textons rep-
resentations were the top performers. However, the difference respect to other
representations is also between 5 to 10 %. Figure 5.8 shows the performance of
the LBP parameterizations used to create panoramas of textons.
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Angular Resolution: 5.00 deg/px Angular Resolution: 2.50 deg/px

100 100
l raw I raw
80 B LBPpgr R0 B LBPpgr
mm LBPF mm LBPF
60 . Ni(0,0) 601 mm Ni(0,0)
xe Bl Vie-1x xe Bl Vi1
40 EE ﬁi.}._ 401 TP —
My - X X
20 ; 20
?? - —_ e -
H ¢ t
0 0
0 1 2 3 >4 0 1 2 3 >4
le] le|
(a) (b)
Angular resolution: 5.0 deg/px Angular resolution: 2.5 deg/px
1.04 Configuration Type 1.04 Configuration Type
B [SAD] raw I [SAD] raw ﬁ
0.8{ mmm [PLD] LBPpp 0.81 HEE [PLD]LBPpr
mm [PLD] LBP}; mm [PLD] LBPY;
2067 mmm [SAD] Ni(0,0) 2067 mmm [SAD] Ni(0,0) :,i_
= BN [SAD] Vi x = BN [SAD] Vi)
0.44 H 0.4 1
xS
0.2 ﬂ_ 0.2 L = =
- = L .
0.0 4+ —ah ii — ; I 0.0 L—ast —a = } I I
0 1 2 3 4 0 1 2 3 4
€
(c) (d)

Figure 5.7: Performance summary on the Stegtliz visual memories. Top row, global
localization: 5.7a and 5.7b configurations with 5.0 deg/pzx and 2.5 deg/pzx angular reso-
lution, respectively. Bottom row, localization classification performance: 5.7c and 5.7d,
configurations with 5.0 deg/px and 2.5 deg/pz angular resolution, respectively.

In contrast, localization classification performance in terms of r@pl varied
greatly depending on the configuration used, see bottom row of Figure 5.7. In
this case, the intensity-based representations performed poorly in general for all
e values. The best cases are found for € = 4 using 2.5 deg/px angular resolu-
tion: N (0,0) reached ~ 0.57 at its 75th percentile, whereas Vg,—1, reached
~ 0.55 approximately. In comparison, the panorama of textons performed bet-
ter, especially at 2.5 deg/px of angular resolution and for ¢ > 3. However, the
distributions have long tails and outliers towards the lower range, indicating that
several of the configurations performed poorly. See Figures 5.9 and 5.10 for details
on the performance of different parameterizations.
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Figure 5.8: Localization error for different parameterizations of the LBP operator on
the Steglitz visual memories. Using a resolution of 2.5 deg/px increased performance by
~ 10 % over configurations with resolution of 5.0 deg/pz. This shows the LBP operator
is robust to parameterization for global localization purposes.
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Figure 5.9: Localization classification performance in terms of r@pl. Poor performance
cases, found for € < 3. For e < 2 only 5 configurations found a suitable threshold € to
achieve precision of one. However, the recall level is so low that it rounds to zero with
two decimals of precision. For e = 2 all configurations reached precision 1 but the recall
is at most 0.15. For e = 3 most of the configurations had r@pl above 0.5, and one of

them reached up to 0.85.
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Figure 5.10: Localization classification performance in terms of r@pl for e = 4. Higher
resolution configurations perform notably better as they reach r@p1 above 0.9. Configura-
tions of corresponding P and R have similar performances, suggesting that the selection
of those parameters is more important than the selection of an LBP variant. Unfortu-
nately, there is not a clear pattern on how P and R affect performance. For example
LBPgo has r@pl = 0.72, the surrounding configurations are all above 0.8, but one of
them LBP725 has r@pl = 0.92.
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Garden Visual Memories
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Figure 5.11: Performance summary on the Garden visual memories. Top row, global lo-
calization performance: 5.11a and 5.11b, configurations with 2.5 deg/px and 5.0 deg/px
angular resolution, respectively. Bottom row, localization classification performance:
5.11c and 5.11d configurations with 2.5 deg/pz and 5.0 deg/px angular resolution, re-
spectively.

Figure 5.11 shows the whisker plots that summarize performance in these visual
memories. The top row shows global localization performance, and the bottom
row shows localization classification performance. Overall, performance was lower
in these visual memories than in the Steglitz ones. The localization hypothesis
had an error |e| = 0 only roughly 20% of the time, and |e| < 1 only ~ 60% of the
time. The intensity-based configurations with illumination invariance, i.e., Vgy—1 x
and N (0, o) were the best overall performers. The raw representation performed
comparably well for |e| = 0. However, it was the worst performer because a large
percentage of cases reached |e| > 4. The panorama of textons performed just
slightly worse than the Vg,—1, and Ny (0,0) for |e] < 3. However, they had a
large percentage of cases with |e| > 4 when using 5.0 deg/px angular resolution.
The percentage of those cases was lower with 2.5 deg/px angular resolution, but
still, illumination-invariant intensity-based representations performed better.
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Localization classification performed poorly (below 30 %) for all € values and
both angular resolutions evaluated. The only exceptions were found for ¢ = 4
and 2.5 deg/px angular resolution, where V4,—; j reached as much as 0.9 of r@pl,
followed by N} (0, o) that reaches 0.8 at the 75th percentile, and raw with = 0.7.
The panorama of textons were the worst performers and exhibited a large vari-
ability in the results, both in range and also in IQR. In this case, they performed
worse than the raw representations, indicating that illumination differences were
not responsible for the differences in localization classification.

Robustness to off-route Translation using Synthetic Visual Memories

In this part of the study, the different configurations are compared in terms of their
robustness to off-route translation. Figures 5.12 and 5.13 summarize performance
off-route error of -0.2 and 0.2 m, respectively. At this magnitude of off-route
translation, all the representations perform perfectly: global localization achieve
le| =0 100 % of the time, and localization classification always reached r@pl = 1
for e = 0.

Figures 5.14 and 5.15 summarize performance under off-route translational er-
ror of -0.8 and 0.8 m, respectively. In contrast to the results at £0.2 m, with £0.8
off-route translation, the results degrade drastically. Regarding global localiza-
tion, the localization error |e] < 1 almost 100 % of the time, and differences due
to resolution are approximately 10 %. Regarding localization classification, the
representations operating at 5.0 deg/px performed better. The raw representation
and some parameterizations of N (0,0) reached r@pl at ¢ = 2. The panorama
of textons performed better than the other representations for ¢ = 2. However,
for € > 2, they performed comparably well to the other representations only be-
yond the 75th percentile. This indicates that the panorama of textons required a
precise parameterization to perform well.
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Figure 5.12: Performance summary on UrbanCanyon visual memories for -0.2 m off-
route translation. Global localization performance: configurations 5.12a at 2.5 deg/px
angular resolution and 5.12b at 5.0 deg/pzx angular resolution. Localization classification
performance: 5.12¢ at 2.5 deg/px angular resolution and 5.12d 5.0 deg/pzx at angular

resolution.
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Figure 5.13: Performance summary on UrbanCanyon visual memories for 0.2 m off-
route translation. Global localization performance: configurations 5.13a at 2.5 deg/px
angular resolution and 5.13b at 5.0 deg/pz angular resolution. Localization classification
performance: 5.13¢ at 2.5 deg/px angular resolution and 5.13d 5.0 deg/pzx at angular

resolution.
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Figure 5.14: Performance summary on UrbanCanyon visual memories for -0.8 m off-
route translation. Global localization performance: configurations 5.14a at 2.5 deg/px
angular resolution and 5.14b at 5.0 deg/px angular resolution. Localization classification
performance: 5.14c at 2.5 deg/px angular resolution and 5.14d 5.0 deg/pzx at angular
resolution.
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Figure 5.15: Performance summary on UrbanCanyon visual memories for 0.8 m off-
route translation. Global localization performance: configurations 5.15a at 2.5 deg/px
angular resolution and 5.15b at 5.0 deg/pz angular resolution. Localization classification
performance: 5.15¢ at 2.5 deg/px angular resolution and 5.15d 5.0 deg/pzx at angular
resolution.
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5.7.2 Robustness to Off-route Translation using Synthetic
Data and Reduced VFOV

The previous results in synthetic visual memories had an major difference w.r.t.
those in the real world. In synthetic visual memories, configurations based on
5.0 deg/px angular resolution, reached r@pl = 1 for ¢ = 0 and small off-route
deviation (£0.2 m). Performance degraded considerably for a off-route translation
of £0.8. The off-route translation in real-world visual memories is not known,
but due to road vehicle sizes, its likely to be closer to £0.2 than 4+0.8 in general.
Specially in the Garden visual memories, as the road was barely wide enough
for the vehicle, and obstacle avoidance maneuvers were never necessary during
demonstration.

However, there were differences in the setup, especially regarding the VFOV. In
real-world visual memories, the VFOV was only of 45 degrees, with ~ 17 degrees
below the horizontal plane. In contrast, the synthetic visual memories had ~ 100
degrees of VFOV equally distributed above and below the horizontal plane. This
raises the question whether that large difference in VFOV was responsible for
differences in the results. To answer that question, the experiment presented in
the previous section was repeated with a VFOV that approximates that of the
real-world visual memories.

Figure 5.16 and Figure 5.17 show that under an off-route displacement of
+0.2 m, global localization still finds the correct corresponding snapshot 100 %
of the time. In contrast, some LBP parameterizations perform poorly, reaching
r@Qpl = 0.5.
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Figure 5.16: Performance summary on UrbanCanyon visual memories for -0.2 m off-
route translation with reduced VFOV. Global localization performance: configurations
5.16a at 2.5 deg/px angular resolution and 5.16b at 5.0 deg/pz angular resolution. Lo-
calization classification performance: 5.16¢ at 2.5 deg/pzx angular resolution and 5.16d
at 5.0 deg/pzx angular resolution.
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Angular Resolution: 5.00 deg/px Angular Resolution:  2.50 deg/px
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Figure 5.17: Performance summary on UrbanCanyon visual memories for 0.2 m off-
route translation with reduced VFOV. Global localization performance: configurations
5.17a at 2.5 deg/pz angular resolution and 5.17b at 5.0 deg/px angular resolution. Lo-
calization classification performance: 5.17c at 2.5 deg/pz angular resolution and 5.17d
at 5.0 deg/pzx angular resolution.

94



Angular Resolution:

5.00 deg/px

5.7. Experimental Results

Angular Resolution: 2.50 deg/px

100 100
N raw  raw
<0 B LBPppr 80 _ﬁi B LBPpj
T mm LBPy _ mm LBP},
60 ﬁ - mm Ni(0,0) 60 . V.(0,0)
NS B Vi-1x N e Vi-ix
40 ~ 40
20 = 20 *
0 ! %—_ oy 4 0 ! A L ey
0 1 2 3 >4 0 1 2 3 >4
lel le|
(a) (b)
Angular resolution: 5.0 deg/px Angular resolution: 2.5 deg/px
1.04 — = 1.01 — T
i '] —'I B ' '
0.8] Configuration Type ot 0.8 -
BN [SAD) raw U II
— (0G4 HEE [PLD]LBPpp * X} = 0.6 Configuration Type
& 2 - - ! 5 I [SAD] raw
"] i b, E it
0.41 W [SAD] N( 0 o) . 0.41 mm [PLD] LBPpéR
. u
- [SAD] . Tf ' 1 mmm [PLD] LBP,
0.2 + 0.2 T B [SAD] N:(0,0)
- - B [SAD] Vie=1x
0.0 L ==t , , ! , 0.0 ‘ ‘ ] ‘
0 1 2 3 4 0 1 2 3 4
€ €
(c) (d)

Figure 5.18: Performance summary on UrbanCanyon visual memories for -0.8 m off-

route translation with reduced VFOV. Global localization performance:

configurations

5.18a at 2.5 deg/px angular resolution and 5.18b at 5.0 deg/pz angular resolution. Lo-
calization classification performance: 5.18c at 2.5 deg/pzx angular resolution and 5.18d
at 5.0 deg/pzx angular resolution.
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Figure 5.19: Performance summary on UrbanCanyon visual memories for 0.8 m off-
route translation with reduced VFOV. Global localization performance: configurations
5.19a at 2.5 deg/pz angular resolution and 5.19b at 5.0 deg/pzx angular resolution. Lo-
calization classification performance: 5.19¢ at 2.5 deg/pz angular resolution and 5.19d
5.0 deg/px at angular resolution.
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Interpretation of the Results

Two important insights come forefront. The first one is that global localization is
barely affected by the choice of a configuration. In contrast, localization classifi-
cation performance depends on the configuration used and the environment. One
explanation for this is that global localization only necessitates the existence of a
global minimum in the neighborhood of the snapshot corresponding to a current
view. In contrast, localization classification based on thresholding of the IDF val-
ues has a more astringent requirement. It necessitates that correct classifications
(tp and tn) and wrong classifications (fp and fn) fall within non-overlapping
ranges of IDF values. That requirement is even more strict because of the use of
r@pl as metric because it willingly sacrifices recall for the sake of precision. Nev-
ertheless, in a real navigation scenario, this is a sensible choice, given the dangers
of navigating while lost and unaware of it.

Due to the nature of real-world data, it is not possible to completely isolate
all possible sources for differences in the results. However, it is possible to ap-
proximate an explanation given the knowledge of the acquisition conditions. In
real-world datasets, the human-demonstrator was driving at low speed and mainly
in a straight line. This likely helped to eliminate non-planar motions. Non-planar
motions due to ground properties were especially unlikely in the Steglitz visual
memories because the ground was predominantly flat. In the Garden visual mem-
ories, the road was not entirely flat, which likely induced low-magnitude non-
plannar motions due to vibrations. Moreover, the vehicle was moving over slopes,
which likely induced roll in the smart-wheelchair due to the action of gravity.
However, this does not seem to hinder matching in the sense that global localiza-
tion with the raw representation often confuses current-views with snapshots in
parts of the route with opposite slopes and aliased appearance. Thus, the author
considers it unlikely that ground properties were to blame.

Off-route translation is another factor that may have affected the results. The
experiments on simulation demonstrate that even under an ideal static environ-
ment, large off-route translation (£0.8 m) can severely hinder localization classi-
fication. However, the same experiments evidence that if the magnitude of such
translations is low, e.g., 0.2 m, then localization classification performance is not
affected. It is not possible to quantify the precise off-route translation present in
real-world datasets because of the lack of precise position information. However,
due to the size of the smart-wheelchair, and the size of the areas used for naviga-
tion, off-route translational error was unlikely larger than 20 to 30 cm in the worst
case. Thus, the author considers it as an unlikely source. In view of the above,
the author considers that the main source of differences was the appearance of
objects present in the scene and the existence of moving objects. In the Garden
visual memories, objects in the scene were static, and consisted pervasively of
the sky, the road, and vegetation. The coverage of the sky was also considerably
larger in these visual memories, given the lack of nearby tall structures. The
scene was practically unaltered despite the 2 months time span between captures.
However, the weather conditions were very different. Vg,—1, and N (0,0) per-
formed better than raw, meaning that illumination invariance was necessary for
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good performance. However, the panorama of textons performed poorly.

In the Steglitz datasets, the objects were buildings, roads, pedestrians and
cars, and the proportion of visible sky was smaller thanks to the presence of tall
buildings in large segments of the route. The texture present in these objects
is more structured than in the Garden visual memories, because it consists of
man-made objects. Thus, it appears as if these types of objects lead to a better
IDF values that comply with the requirements of localization classification. The
main distinctive characteristic of the Steglitz datasets, which was not present in
any other, was the presence of moving objects. Thus, the results suggest that the
panorama of textons were able to filter them out of the scene. However, this was
only possible when using the higher resolution (2.5 deg/px).

However, higher resolution is not necessarily helpful as exhibited by the results
of Section 5.7.1. In a static scene and under large off-route translational errors
(£0.8 m), higher resolution resulted detrimental to the results. The author of
this dissertation interprets these results based on Wystrach et al. (2016). The low
resolution was able to filter out details that are misleading to the image matching
process.

5.7.3 Performance of the PCHL

n good-performing panorama of textons represetations were selected based on the
results of previous section. Those representations were used to construct PCHL
with varying parameters. The results are summarized in the following table.
Global localization performance.
Localization classification performance.

5.7.4 Performance of the TVCC

The effects on localization classification performance is evaluated using the top n
configurations found in Section 5.7.1.

5.7.5 Evaluating the Need for a Precise Intrinsic Model

This section explores if, and to what extent, the use of a precise intrinsic model
for unwrapping improves image matching results, being all other things equal.
The experiment consists of evaluating the configurations used before on the Ur-
banCanyon visual memories with 0.8m off-route translation, and compare them
to the results presented in Section 5.7.1.
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Conclusions

6.1 Texture-based Representations for Holistic Meth-
ods

Research on the VCA has been historically conservative when it comes to the
configurations used. Most research has limited to use low-resolution raw images,
perhaps with simple preprocessing steps to achieve illumination invariance (Zeil
et al., 2003; Binding and Labrosse, 2006; Moller et al., 2014), or to the use of
skyline contours (Moller, 2002; Wystrach et al., 2012). This is probably not sur-
prising given the biological inspiration of the VCA. However, ever since Wehner
(1972) suggested that the visual memory of insects is formed by storing retino-
topic images, there has been a debate on what information is extracted from them
and used for navigation.

Dittmar et al. (2010) suggested the use of texture. However, the authors at-
tempted to explain their observations in terms of raw panoramic image matching.
This dissertation followed an approach that its author considers more grounded
in terms of texture analysis: panoramic images of textons. To the best of this
dissertation author’s knowledge, that approach had not been used with the VCA.
Moreover, using LBP images directly as representation, known as, Holistic LBP
Image (hLBPI), is extremely rare even in the most common application of LBP:
facial recognition (Yang and Chen, 2013). In most applications, LBP images are
an intermediate step towards the computation of a density-based descriptor. The
feasibility of using a similar approach with the VCA was also evaluated. However,
using the panorama of textons performed better than the PCHL representation.

Panorama of textons were the best performers among the representations eval-
uated in this dissertation: They provided the best results both in global localiza-
tion and in the detection of failure cases. All representations performed poorly on
failure detection in a highly symmetric environment. However, even in that case,
the panorama of textons produces a stronger signal.

The performance of the panorama of textons depends on the LBP variant and
its parameters. However, in general, non-rotation invariant variants performed
better than rotation invariant ones. This situation is analog to what has been
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already described using point-based feature descriptors (Valgren and Lilienthal,
2010).

Rotation invariance is detrimental to performance because that is not a view-
point variation generally present when navigating with a wheeled robot. However,
this may not be the case with other applications, like flying robots. Insects seem
to handle this situation by aligning their heads to counteract the off-plane rotation
(Ardin et al., 2015; Raderschall et al., 2016).

6.2 Complete Knowledge Transfer

For example, using gradient-descent-based optimization seems reasonable given
that their effect size correlates with the magnitude of the viewpoint differences.

6.3 Global Localization and Failure Detection

The VCA performed better at global localization than it was originally expected
given the results of Smith et al. (2008), especially on simulation, and despite off-
route error of larger magnitude than what could be attributed to motor noise.
Performance on real world data was also encouraging because, in most cases,
the algorithm found either the correct best match or the second-best match (one
snapshot apart). Thus, in most cases, the global localization error remains less
than 0.5 m. Experiments on the SunnyGarden and OvercastGarden were the
exception. Global localization performed poorly on them, but that was expectable
because the environment is highly symmetric. However, even in that case, the
panorama of textons yield a stronger signal, as seen in Figure. Therefore, for that
type of environment, the robot would require a localization prior to navigate, i.e.,
know its initial position. In practical applications, this could be done with a low-
cost GPS. However, the analysis presented in this dissertation is limited to global
localization.

Unfortunately, Smith et al. (2008) did not provide important details, e.g.,
distance between snapshots, that allow a more detailed interpretation of their
results. Nevertheless, the results of this dissertation suggest that the VCA can be
used for global localization and failure detection as long as places have a distinctive
appearance.

6.4 Knowledge Transfer is Possible

This dissertation provided a proof of concept of the feasibility of knowledge trans-
fer. It used a simplified scenario in which source and target omnidirectional cam-
eras had the exact same extrinsic parameters but different intrinsic parameters.
Knowledge transfer consisted simply of a rough equalization of the VFOV.
The unwrapping procedure used does not take into account important aspects of
omnidirectional sensors, like nonlinearities in image acquisition. Because of this,
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it was obvious from the beginning that accurate pixel correspondences would not
be available even if the extrinsics of two images were exactly the same.

Nevertheless, the author of this dissertation decided to test the feasibility of
knowledge transfer under these conditions for two reasons. The first one is that
holistic methods are often considered and claimed to perform without the necessity
of an accurate calibration model. Therefore, the evaluation could find evidence
either in favor or against that claim. The second reason is that this is a quite
difficult scenario, and moving towards easier scenarios by means of a model like
that of Scaramuzza et al. (2006a) would result relatively easy.

This dissertation just scratched the surface of knowledge transfer. A complete
transfer procedure should also consider differences in camera extrinsic parameters,
nonlinearities of the image acquisition, differences induced by the sensors used.
However, with the results provided, the author of this dissertation hopes to open
the discussion for this neglected aspect of the VCA and related methods that is
important for their applicability on large-scale real world navigation.

6.5 VCA Configurations Can Be Combined

Previous research on the VCA considered configuration in a mutually exclusive
way. Either one or the other is used, and perhaps compared against each other.
The experiments presented in this dissertation suggest that multiple representa-
tions can be used to improve performance, because one representation perform
well in different ocassions. This dissertation proposed the TVCC to that end.

One option could be to use labeled datasets of localization failure and success
cases under different conditions. However, this is a complex learning problem
because of the asymmetry in the class distributions. The cascade classifier is
particularly well-known known to require very large amounts of training data so
that reliable false-positive rates can be estimated and each stage and because each
stage requires a new set of negative examples. That situation would also arise in
the TVCC. It would be more convenient if the model parameters could be inferred
directly from the limited examples contained in the visual memory used to follow
a route.

6.6 Implications for Smart-Wheelchairs and Robots

Several of the aspects addressed in this dissertation are very relevant for the real
world applicability of the VCA, and related algorithms. I do not consider that the
algorithms are yet mature enough for application on security critical applications,
like wheelchair navigation. However, the results suggest that progress in those
directions can be achieved by relatively simple means.

The author of this dissertation considers that further progress in holistic meth-
ods could result an attractive venue for applications like smart-wheelchair navi-
gation for several reasons.
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The first one is that having a camera as the main sensor is very convenient
because they are relatively low-cost sensors. The second is that algorithms like
the VCA can perform even in modest hardware. Furthermore, their algorith-
mic simplicity makes the VCA very well suited for implemetation on low power-
consumptions hardware, like FPGAs.

6.7 Continued Necessity to Experiment on Com-
plex Scenarios

There were some unexpected results in some of the experiments. For example,
based on the results of Wystrach et al. (2016), it was not expected that lower
resolution performs worse than higher resolution. That was true for synthetic data,
but not for real world data. Initially, the author of this dissertation attributed
the performance difference to two reasons. The first one was the difference in
VFOV: real world data had a smaller VFOV, mostly limited at low elevations.
Because of this, it was possible that nearby objects were present to a lesser extent.
The second reason was the off-route error induced by the human driver. Further
experimentation suggested that that was not the cause.

From that, the author of this dissertation suggests that the appearance changes
due to the sky and moving objects were the main reason and that the higher res-
olution helped to reflect those changes in the IDF values. Having a larger VFOV
coverage had probably mitigated the effects of the sky, but had increased the
likelihood that other objects, like pedestrians, affected the IDF values. Another
possible reason for the discrepancy with Wystrach et al. (2016), could be due to
image configuration. The authors used binary images that differentiated between
sky and foreground. Although this is straightforward to test in simulation, it is
more complex when working in complex real world scenery. Although it is known
that some insects can easily segment the sky and the foreground (Basten and Mal-
lot, 2010; Méller, 2002; Stone et al., 2018; Freas et al., 2017), such segmentation
is not straightforward for a robot. Especially, one that does not have specialized
sensors for the purpose, like UV cameras.

A similar discrepancy between expectation and outcome occurred regarding
global localization performance of the VCA, as explained before. From this, the
author of this dissertation concludes that more research of the VCA and related
methods under challenging outdoor conditions is required.

One of the main lessons obtained in this investigation is that the performance of
the VCA can be very different in simulation, i.e., controlled conditions, compared
to real world data. The author of this dissertation concludes that even more
exhaustive evaluations on real world data are necessary. This necessity has been
pointed out by (Zeil et al., 2003), and also by researchers on insect navigation.
Some of the results presented in this dissertation can be seen as supporting that
necessity.
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6.8 Possible Implications in Biology

It is difficult to extrapolate the results of a computer vision experiment to biology.
However, experiments like the ones presented in this dissertation are a common
venue to, at least, offer possible explanations to the mechanisms behind insect nav-
igation. The results exposed in this dissertation may provide some hints to visual
processing in insects. The first one is that global localization can be performed
reliably, and it is highly robust to parameterization. The second is that failure
detection is a much more difficult problem, at least with the classifiers used in
this dissertation. The results show that simple illumination invariance is astonish-
ingly effective in some cases. Moreover, the results show that different resolutions
may be necessary for different conditions. Or perhaps some other mechanism
like spatiotemporal fusion may be at play, instead of using more discriminative
representations as hereby proposed.

6.9 Future Work

6.9.1 Learning Trees of VCA Configurations

This dissertation provided evidence that supports the possibility of combining
multiple VCA configurations. However, a method for learning a tree of VCA
configurations was not proposed. The model used for experimentation was con-
structed using the same thresholds used to calculate p@r = 1. Therefore, the
generalization power of this approach is debatable. Thus, it would be interesting
to devise a learning algorithm and test its generalization capabilities.

6.9.2 Integrating the VCA with High-Resolution 3D Metric
Maps

One of the benefits of using a route-following system, as described in this disser-
tation, is that it is easy to acquire a representation of the environment. A human
only has to drive along a route while the robot captures snapshots. However, the
advent of autonomous cars has increased the interest in high-definition (HD) 3D
maps. Although HD maps may seem irreconcilable with route-based approaches
as the one presented in this dissertation, it would be interesting to study how to
combine them. For example, HD maps could be used to generate synthetic views
that the route-based approach could use to navigate. The route-based approach
could be used to provide coverage to areas without a metric map with the help
of a demonstrator. Similar efforts have been performed, in related problems so
that an expensive mapping setup can be coupled with an inexpensive autonomous
navigation one (Benosman et al., 1996; Gluckman, 1998).
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6.9.3 Other Types of Pixel Representations

One of the main findings of this dissertation is that the use of discriminant pixel
values can improve the performance of the VCA in some situations. The results
presented rely on LBP, a classic technique, in texture analysis. After the introduc-
tion of LBP, there have been many developments in the area, either in the form
of new LBP variants or in the form of alternative texture primitives. Therefore,
it would be very interesting to see how other types of pixel labels perform.

104



Bibliography

A., F. C. and Ken, C. (2017). Learning and time-dependent cue choice in the
desert ant, melophorus bagoti. Ethology, 123(8):503-515.

Ahonen, T., Hadid, A., and Pietikdinen, M. (2004). Face Recognition with Local
Binary Patterns, pages 469-481. Springer Berlin Heidelberg, Berlin, Heidelberg.

Ardin, P., Mangan, M., Wystrach, A., and Webb, B. (2015). How variation in
head pitch could affect image matching algorithms for ant navigation. Journal
of Comparative Physiology A, 201(6):585-597.

Argyros, A. A., Bekris, K. E.,; Orphanoudakis, S. C., and Kavraki, L. E. (2005).
Robot homing by exploiting panoramic vision. Autonomous Robots, 19(1):7-25.

Baddeley, B., Graham, P., Husbands, P., and Philippides, A. (2012). A model of
ant route navigation driven by scene familiarity. PLoS computational biology,
8(1):1002336.

Baddeley, B., Graham, P., Philippides, A., and Husbands, P. (2011). Holistic
visual encoding of ant-like routes: Navigation without waypoints. Adaptive
Behavior, 19(1):3-15.

Basten, K. and Mallot, H. A. (2010). Simulated visual homing in desert ant natural
environments: efficiency of skyline cues. Biological Cybernetics, 102(5):413-425.

Bellotto, N., Burn, K., Fletcher, E., and Wermter, S. (2008). Appearance-based
localization for mobile robots using digital zoom and visual compass. Robotics
and Autonomous Systems, 56(2):143 — 156.

Bennett, A. T. (1996). Do animals have cognitive maps? Journal of Experimental
Biology, 199(1):219-224.

Benosman, R., Maniere, T., and Devars, J. (1996). Multidirectional stereovision
sensor, calibration and scenes reconstruction. In Proceedings of 15th Interna-
tional Conference on Pattern Recognition, volume 1, pages 161-165 vol.1.

Binding, D. and Labrosse, F. (2006). Visual local navigation using warped
panoramic images. In Proceedings of Towards Autonomous Robotic Systems.
University of Surrey, Guildford, UK, pages 19-26.

Bock, O. Xeno - Instructions for use.

105



Bibliography

Buschbeck, E. K. and Friedrich, M. (2008). Evolution of insect eyes: Tales of an-
cient heritage, deconstruction, reconstruction, remodeling, and recycling. Fvo-
lution: Education and Outreach, 1(4):448-462.

Carlevaris-Bianco, N. and Eustice, R. M. (2014). Learning visual feature de-
scriptors for dynamic lighting conditions. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2769-2776.

Cartwright, B. A. and Collett, T. S. (1983). Landmark learning in bees. Journal
of comparative physiology, 151(4):521-543.

Cartwright, B. A. and Collett, T. S. (1987). Landmark maps for honeybees.
Biological Cybernetics, 57(1):85-93.

Caselitz, T., Steder, B., Ruhnke, M., and Burgard, W. (2016). Monocular camera
localization in 3d lidar maps. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1926-1931.

Chatila, R. and Laumond, J.-P. (1985). Position referencing and consistent world
modeling for mobile robots. In Proceedings. 1985 IEEE International Confer-
ence on Robotics and Automation, volume 2, pages 138-145. IEEE.

Cheng, K., Collett, T. S., Pickhard, A., and Wehner, R. (1987). The use of visual
landmarks by honeybees: Bees weight landmarks according to their distance
from the goal. Journal of Comparative Physiology A, 161(3):469-475.

Cheng, K., Collett, T. S., and Wehner, R. (1986). Honeybees learn the colours of
landmarks. Journal of Comparative Physiology A, 159(1):69-73.

Cheung, A., Collett, M., Collett, T. S., Dewar, A., Dyer, F., Graham, P., Mangan,
M., Narendra, A., Philippides, A., Stiirzl, W., Webb, B., Wystrach, A., and Zeil,
J. (2014). Still no convincing evidence for cognitive map use by honeybees.
Proceedings of the National Academy of Sciences, 111(42):E4396-E4397.

Chittka, L. (2004). Color vision in bees : mechanisms, ecology and evolution.
How simple nervous systems create complex perceptual worlds.

Churchill, D. and Vardy, A. (2008). Homing in scale space. In 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1307-1312.

Coggins, J. M. and Jain, A. K. (1985). A spatial filtering approach to texture
analysis. Pattern recognition letters, 3(3):195-203.

Collett, M. and Collett, T. S. (2006). Insect navigation: No map at the end of
the trail? Current Biology, 16(2):R48 — R51.

Collett, T. S. and Land, M. F. (1975a). Visual control of flight behaviour in the
hoverfly syritta pipiens 1. Journal of comparative physiology, 99(1):1-66.

106



Bibliography

Collett, T. S. and Land, M. F. (1975b). Visual spatial memory in a hoverfly.
Journal of comparative physiology, 100(1):59-84.

Differt, D. (2017). Real-time rotational image registration. In 2017 18th Interna-
tional Conference on Advanced Robotics (ICAR), pages 1-6.

Dittmar, L., Egelhaaf, M., Stiirzl, W., and Boeddeker, N. (2011). The behavioral
relevance of landmark texture for honeybee homing. Frontiers in Behavioral
Neuroscience, 5:20.

Dittmar, L., Stiirzl, W., Baird, E., Boeddeker, N., and Egelhaaf, M. (2010). Goal
seeking in honeybees: matching of optic flow snapshots? Journal of FExperi-
mental Biology, 213(17):2913-2923.

Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1978). Robotic exploration as
graph construction. J. Comput., vol, 7(3).

Esch, H. E. and Burns, J. E. (1995). Honeybees use optic flow to measure the
distance of a food source. Naturwissenschaften, 82(1):38-40.

Fearn, T., Labrosse, F., and Shaw, P. (2019). Wheelchair navigation: Automat-
ically adapting to evolving environments. In Althoefer, K., Konstantinova, J.,
and Zhang, K., editors, Towards Autonomous Robotic Systems, pages 496-500,
Cham. Springer International Publishing.

Fleer, D. (2017). Visual tilt estimation for planar-motion methods in indoor mobile
robots. Robotics, 6(4):32.

Fleer, D. and Méller, R. (2017). Comparing holistic and feature-based visual meth-
ods for estimating the relative pose of mobile robots. Robotics and Autonomous
Systems, 89:51 — 74.

Franz, M. O., Scholkopf, B., Mallot, H. A., and Biilthoff, H. H. (1998a). Learning
view graphs for robot navigation. Autonomous Robots, 5(1):111-125.

Franz, M. O., Schélkopf, B., Mallot, H. A., and Biilthoff, H. H. (1998b). Where
did i take that snapshot? scene-based homing by image matching. Biological
Cybernetics, 79(3):191-202.

Franz, M. O., Stiirzl, W., Hitbner, W., and Mallot, H. A. (2007). A robot sys-
tem for biomimetic navigation—from snapshots to metric embeddings of view
graphs. In Robotics and cognitive approaches to spatial mapping, pages 297—
314. Springer.

Franz, M. O., Stiirzl, W., Hiibner, W., and Mallot, H. A. (2008). A Robot System
for Biomimetic Navigation — From Snapshots to Metric Embeddings of View
Graphs, pages 297-314. Springer Berlin Heidelberg, Berlin, Heidelberg.

107



Bibliography

Freas, C. A., Whyte, C., and Cheng, K. (2017). Skyline retention and retroactive
interference in the navigating australian desert ant, melophorus bagoti. Journal
of Comparative Physiology A, 203(5):353-367.

Freas, C. A., Wystrach, A., Narendra, A., and Cheng, K. (2018). The view from
the trees: Nocturnal bull ants, myrmecia midas, use the surrounding panorama
while descending from trees. Frontiers in Psychology, 9:16.

Friedrich, H., Dederscheck, D., Mutz, M., and Mester, R. (2008). View-based
robot localization using illumination-invarant spherical harmonics descriptors.

In Proceedings of the International Joint Conference on Computer Vision and
Computer Graphics Theory and Applications (VISAP). INSTICC. Citeseer.

Frigge, M., Hoaglin, D. C., and Iglewicz, B. (1989). Some implementations of the
boxplot. The American Statistician, 43(1):50-54.

Gaussier, P., Joulain, C., Banquet, J., Leprétre, S., and Revel, A. (2000). The
visual homing problem: An example of robotics/biology cross fertilization.
Robotics and Autonomous Systems, 30(1):155 — 180.

Gaussier, P.; Joulain, C., Zrehen, S., Banquet, J. P., and Revel, A. (1997). Visual
navigation in an open environment without map. In Proceedings of the 1997
IEEE/RSJ International Conference on Intelligent Robot and Systems. Innova-
tive Robotics for Real-World Applications. IROS 97, volume 2, pages 545-550
vol.2.

Gibson, J. J. (1950). The perception of the visual world.

Gluckman, J. (1998). Real-time omnidirectional and panoramic stereo. Proc.
Image Understanding Workshop, 1998.

Gluckman, J. and Nayar, S. K. (1998). Ego-motion and omnidirectional cam-
eras. In Sixth International Conference on Computer Vision (IEEE Cat.
No.98CH36271), pages 999-1005.

Goedemé, T., Tuytelaars, T., and Van Gool, L. (2005). Omnidirectional sparse
visual path following with occlusion-robust feature tracking. dans in: 6th work-

shop on omnidirectional vision, camera networks and non-classical cameras,
omnivis05. Conjunction with ICCV, 2005.

Graham, P. and Cheng, K. (2009). Which portion of the natural panorama is used
for view-based navigation in the australian desert ant? Journal of Comparative

Physiology A, 195(7):681.

Graham, P. and Philippides, A. (2014). Insect-Inspired Visual Systems and Visu-
ally Guided Behavior, pages 1-9. Springer Netherlands, Dordrecht.

Graham, P. and Philippides, A. (2017). Vision for navigation: What can we learn
from ants? Arthropod Structure & Development, 46(5):718 — 722. From Insects
to Robots.

108



Bibliography

Grewal, H., Matthews, A., Tea, R., and George, K. (2017). Lidar-based au-
tonomous wheelchair. In 2017 IEEE Sensors Applications Symposium (SAS),
pages 1-6. IEEE.

Hafner, V. V. and Moéller, R. (2001). Learning of visual navigation strategies. In
Proc. European Workshop of Learning Robots (EWLR-9), Prague.

Hélldobler, B. (1980). Canopy orientation: A new kind of orientation in ants.
Science, 210(4465):86-88.

Horridge, A. (2009). What does an insect see? Journal of Experimental Biology,
212(17):2721-2729.

Jeong, K.-H., Kim, J., and Lee, L. P. (2006). Biologically inspired artificial com-
pound eyes. Science, 312(5773):557-561.

Judd, S. and Collett, T. (1998). Multiple stored views and landmark guidance in
ants. Nature, 392(6677):710.

Julesz, B. (1981). Textons: The elements of texture perception and their interac-
tions. Nature, 290(5802):91-97.

Juusola, M., Dau, A., Song, Z., Solanki, N., Rien, D., Jaciuch, D., Dongre, S. A.,
Blanchard, F., de Polavieja, G. G., Hardie, R. C., et al. (2017). Microsaccadic

sampling of moving image information provides drosophila hyperacute vision.
FElife, 6:€26117.

Jahne, B. (2010). Emva 1288 standard for machine vision. Optik & Photonik,
5(1):53-54.

Kohler, M. and Wehner, R. (2005). Idiosyncratic route-based memories in desert
ants, melophorus bagoti: how do they interact with path-integration vectors?
Neurobiology of learning and memory, 83(1):1-12.

Kolter, J. Z., Plagemann, C., Jackson, D. T., Ng, A. Y., and Thrun, S. (2010). A
probabilistic approach to mixed open-loop and closed-loop control, with appli-
cation to extreme autonomous driving. In 2010 IEEE International Conference
on Robotics and Automation, pages 839-845.

Kuipers, B. and Byun, Y.-T. (1991). A robot exploration and mapping strat-
egy based on a semantic hierarchy of spatial representations. Robotics and
autonomous systems, 8(1-2):47-63.

Labrosse, F. (2006). The visual compass: Performance and limitations of an
appearance-based method. Journal of Field Robotics, 23(10):913-941.

Labrosse, F. (2007). Short and long-range visual navigation using warped
panoramic images. Robotics and Autonomous Systems, 55(9):675 — 684. To-
wards Autonomous Robotic Systems 2007: Mobile Robotics in the UK.

109



Bibliography

Lambrinos, D., Mdller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A mo-
bile robot employing insect strategies for navigation. Robotics and Autonomous
Systems, 30(1-2):39 — 64.

Land, M. F. (1997a). The resolution of insect compound eyes. Israel Journal of
Plant Sciences, 45(2-3):79-91.

Land, M. F. (1997b). Visual acuity in insects. Annual review of entomology,
42(1):147-177.

Lang, L. and Mohnen, A. (2019). An organizational view on transport transitions
involving new mobility concepts and changing customer behavior. Environmen-
tal Innovation and Societal Transitions, 31:54 — 63.

Leaman, J. and La, H. M. (2017). A comprehensive review of smart wheelchairs:
Past, present, and future. IFEFE Transactions on Human-Machine Systems,
47(4):486-499.

Li, R., Oskoei, M. A., and Hu, H. (2013). Towards ros based multi-robot archi-
tecture for ambient assisted living. In 2018 IEEFE International Conference on
Systems, Man, and Cybernetics, pages 3458-3463.

Liu, M., Pradalier, C., Pomerleau, F., and Siegwart, R. (2012). The role of homing
in visual topological navigation. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 567-572.

Llarena, A. and Rojas, R. (2016). I am alleine, the autonomous wheelchair at
your service. In Menegatti, E., Michael, N., Berns, K., and Yamaguchi, H.,
editors, Intelligent Autonomous Systems 13, pages 1613-1626, Cham. Springer
International Publishing.

Lourenco, M., Barreto, J. P., and Vasconcelos, F. (2012). srd-sift: Keypoint
detection and matching in images with radial distortion. IEEE Transactions
on Robotics, 28(3):752-760.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91-110.

Makadia, A. and Daniilidis, K. (2003). Direct 3d-rotation estimation from spher-
ical images via a generalized shift theorem. In 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2003. Proceedings.,
volume 2, pages 11-217.

Makadia, A. and Daniilidis, K. (2006). Rotation recovery from spherical images
without correspondences. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 28(7):1170-1175.

Mallock, A. (1894). I. insect sight and the defining power of composite eyes.
Proceedings of the Royal Society of London, 55(331-335):85-90.

110



Bibliography

Mangan, M. and Webb, B. (2012). Spontaneous formation of multiple routes in
individual desert ants (cataglyphis velox). Behavioral Ecology, 23(5):944-954.

Masci, J., Migliore, D., Bronstein, M. M., and Schmidhuber, J. (2014). Descriptor
Learning for Omnidirectional Image Matching, pages 49-62. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Mataric, M. J. (1990). A distributed model for mobile robot environment-learning
and navigation. Technical report, MASSACHUSETTS INST OF TECH CAM-
BRIDGE ARTIFICIAL INTELLIGENCE LAB.

Menzel, R., Geiger, K., Joerges, J., Miiller, U., and Chittka, L. (1998). Bees travel
novel homeward routes by integrating separately acquired vector memories.
Animal Behaviour, 55(1):139 — 152.

Meyer, B. D. and Mok, W. K. (2019). Disability, earnings, income and con-
sumption. Journal of Public Economics, 171:51 — 69. Trans-Atlantic Public
Economics Seminar 2016.

Milford, M., Scheirer, W., Vig, E.; Glover, A., Baumann, O., Mattingley, J.,
and Cox, D. (2014). Condition-invariant, top-down visual place recognition.
In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 5571-5577.

Méller, R., Krzykawski, M., and Gerstmayr, L. (2010). Three 2d-warping schemes
for visual robot navigation. Autonomous Robots, 29(3):253-291.

Moéller, R. and Vardy, A. (2006a). Local visual homing by matched-filter descent
in image distances. Biological cybernetics, 95(5):413-430.

Méller, R. and Vardy, A. (2006b). Local visual homing by matched-filter descent
in image distances. Biological Cybernetics, 95(5):413-430.

Moravec, H. and Elfes, A. (1985). High resolution maps from wide angle sonar. In
Proceedings. 1985 IEEE International Conference on Robotics and Automation,
volume 2, pages 116-121.

Morbidi, F. and Caron, G. (2017). Phase correlation for dense visual compass from
omnidirectional camera-robot images. IEEE Robotics and Automation Letters,
2(2):688-695.

Miiller, M. and Wehner, R. (1988). Path integration in desert ants, cataglyphis
fortis. Proceedings of the National Academy of Sciences, 85(14):5287-5290.

Méller, R. (2002). Insects could exploit uv-green contrast for landmark navigation.
Journal of Theoretical Biology, 214(4):619 — 631.

Méller, R. (2009). Local visual homing by warping of two-dimensional images.
Robotics and Autonomous Systems, 57(1):87 — 101.

111



Bibliography

Moller, R., Horst, M., and Fleer, D. (2014). Illumination tolerance for visual
navigation with the holistic min-warping method. Robotics, 3(1):22-67.

Narendra, A. (2007a). Homing strategies of the australian desert ant melophorus
bagoti i. proportional path-integration takes the ant half-way home. Journal of
Experimental Biology, 210(10):1798-1803.

Narendra, A. (2007b). Homing strategies of the australian desert ant melophorus
bagoti ii. interaction of the path integrator with visual cue information. Journal
of Experimental Biology, 210(10):1804-1812.

Narendra, A. and Ramirez-Esquivel, F. (2017). Subtle changes in the landmark
panorama disrupt visual navigation in a nocturnal bull ant. Philosophical Trans-
actions of the Royal Society of London B: Biological Sciences, 372(1717).

Narin, B., Brian, M., and Smart, W. D. (2018). A critical look at smart
wheelchairs. arXiv preprint arXiv:1809.00291.

Nasri, Y., Vauchey, V., Khemmar, R., Ragot, N., Sirlantzis, K., and Ertaud, J.-
Y. (2016). Ros-based autonomous navigation wheelchair using omnidirectional
sensor. International Journal of Computer Applications, 133(6):12-17.

Nauth, P. (2014). Akzeptanzverbesserung autonomer assistenzroboter durch ver-
haltensadaptivitat. Technische Unterstitzungssysteme, die die Menschen wirk-
lich wollen, page 381.

Nelson, R. C. (1991). Visual homing using an associative memory. Biological
Cybernetics, 65(4):281-291.

Ojala, T., Pietikdinen, M., and Harwood, D. (1996). A comparative study of
texture measures with classification based on featured distributions. Pattern
recognition, 29(1):51-59.

Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(7):971-987.

Papi, F. (2012). Animal homing. Springer Science & Business Media.

Paya, L., Gil, A., and Reinoso, O. (2017). A state-of-the-art review on mapping
and localization of mobile robots using omnidirectional vision sensors. Journal
of Sensors, 2017.

Philippides, A., Graham, P., Baddeley, B., and Husbands, P. (2015). Using Neural
Networks to Understand the Information That Guides Behavior: A Case Study
in Visual Navigation, pages 227-244. Springer New York, New York, NY.

Pollack, M. E. (2005). Intelligent technology for an aging population: The use of
ai to assist elders with cognitive impairment. Al magazine, 26(2):9.

112



Bibliography

Raderschall, C. A., Narendra, A., and Zeil, J. (2016). Head roll stabilisation in
the nocturnal bull ant myrmecia pyriformis: implications for visual navigation.
Journal of Experimental Biology, 219(10):1449-1457.

Remazeilles, A., Chaumette, F., and Gros, P. (2006). 3d navigation based on a
visual memory. In Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006., pages 2719-2725.

Rofer, T. and Ofer, T. R. (1997). Controlling a wheelchair with image-based
homing. In Manchester University, pages 66-75.

Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006a). A flexible tech-
nique for accurate omnidirectional camera calibration and structure from mo-
tion. In Fourth IEEE International Conference on Computer Vision Systems

(ICVS’06), pages 45-45.

Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006b). A toolbox for easily cal-
ibrating omnidirectional cameras. In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5695-5701.

Scaramuzza, D. and Siegwart, R. (2008). Appearance-guided monocular omnidi-

rectional visual odometry for outdoor ground vehicles. IEEE Transactions on
Robotics, 24(5):1015-1026.

Scaramuzza, D., Siegwart, R., and Martinelli, A. (2009). A robust descriptor for
tracking vertical lines in omnidirectional images and its use in mobile robotics.
The International Journal of Robotics Research, 28(2):149-171.

Schneider, J., Murali, N., Taylor, G. W., and Levine, J. D. (2018). Can drosophila
melanogaster tell who’s who? PloS one, 13(10).

Scudellari, M. (2017). Lidar-equipped autonomous wheelchairs roll out in singa-
pore and japan. IEEE Spectrum, Oct. 2017.

Shih-Schon Lin and Bajesy, R. (2003). High resolution catadioptric omni-
directional stereo sensor for robot vision. In 2003 IEEE International Con-
ference on Robotics and Automation (Cat. No.03CH37422), volume 2, pages
1694-1699 vol.2.

Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D. (2004). Autonomous mobile
robots. Massachusetts Institute of Technology.

Simpson, R. C., LoPresti, E. F., and Cooper, R. A. (2008). How many people
would benefit from a smart wheelchair? Journal of Rehabilitation Research €
Development, 45(1).

Smith, L., Philippides, A., Graham, P., Baddeley, B., and Husbands, P. (2007).
Linked local navigation for visual route guidance. Adaptive Behavior, 15(3):257—
271.

113



Bibliography

Smith, L., Philippides, A., Graham, P., and Husbands, P. (2008). Linked Local
Visual Navigation and Robustness to Motor Noise and Route Displacement,
pages 179-188. Springer Berlin Heidelberg, Berlin, Heidelberg.

Sobel, E. C. (1990). The locust’s use of motion parallax to measure distance.
Journal of Comparative Physiology A, 167(5):579-588.

Song, Y. M., Xie, Y., Malyarchuk, V., Xiao, J., Jung, I., Choi, K.-J., Liu, Z., Park,
H., Lu, C., Kim, R.-H., et al. (2013). Digital cameras with designs inspired by
the arthropod eye. Nature, 497(7447):95.

Srinivasan, M., Chahl, J., Weber, K., Venkatesh, S., Nagle, M., and Zhang, S.
(1999). Robot navigation inspired by principles of insect vision. Robotics and
Autonomous Systems, 26(2):203 — 216. Field and Service Robotics.

Stone, T., Mangan, M., Wystrach, A., and Webb, B. (2018). Rotation invariant
visual processing for spatial memory in insects. Interface Focus, 8(4):20180010.

Stiirzl, W. and Mallot, H. A. (2002). Vision-based homing with a panoramic
stereo sensor. In Biilthoff, H. H., Wallraven, C., Lee, S.-W., and Poggio, T. A.,
editors, Biologically Motivated Computer Vision, pages 620—-628, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Stiirzl, W. and Moller, R. (2007). An insect-inspired active vision approach for
orientation estimation with panoramic images. In Mira, J. and Alvarez, J. R.,
editors, Bio-inspired Modeling of Cognitive Tasks, pages 61-70, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Stiirzl, W. and Zeil, J. (2007). Depth, contrast and view-based homing in outdoor
scenes. Biological Cybernetics, 96(5):519-531.

Surden, H. and Williams, M.-A. (2016). Technological opacity, predictability, and
self-driving cars. Cardozo L. Rev., 38:121.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. MIT press.

Thrun, S., Gutmann, J.-S., Fox, D., Burgard, W., Kuipers, B., et al. (1998). Inte-
grating topological and metric maps for mobile robot navigation: A statistical
approach. In AAAI/IAAI pages 989-995.

Valgren, C. and Lilienthal, A. J. (2010). Sift, surf & seasons: Appearance-based
long-term localization in outdoor environments. Robot. Auton. Syst., 58(2):149—
156.

Van Den Berg, J., Ferguson, D., and Kuffner, J. (2006). Anytime path planning
and replanning in dynamic environments. In Proceedings 2006 IEEE Inter-
national Conference on Robotics and Automation, 2006. ICRA 2006., pages
2366-2371. IEEE.

114



Bibliography

Vardy, A. and Moller, R. (2005). Biologically plausible visual homing methods
based on optical flow techniques. Connection Science, 17(1-2):47-89.

Von Frisch, K. (1967). The dance language and orientation of bees.

Wang, Y., Gong, X., Lin, Y., and Liu, J. (2012). Stereo calibration and rec-
tification for omnidirectional multi-camera systems. International Journal of
Advanced Robotic Systems, 9(4):143.

Warrant, E. and Nilsson, D.-E. (2006). Invertebrate vision. Cambridge University
Press.

Weber, K., Venkatesh, S., and Srinivasan, M. (1999). Insect-inspired robotic
homing. Adaptive Behavior, 7(1):65-97.

Wehner, R. (1972). Dorsoventral asymmetry in the visual field of the bee,apis
mellifica. Journal of comparative physiology, 77(3):256-277.

Wehner, R. (2003). Desert ant navigation: how miniature brains solve complex
tasks. Journal of Comparative Physiology A, 189(8):579-588.

Wehner, R. and Flatt, I. (1977). Visual fixation in freely flying bees. Zeitschrift
fiir Naturforschung C, 32(5-6):469-472.

Wehner, R., Michel, B., and Antonsen, P. (1996). Visual navigation in insects:
coupling of egocentric and geocentric information. Journal of Fxperimental
Biology, 199(1):129-140.

Wolcott, R. W. and Eustice, R. M. (2014). Visual localization within lidar maps
for automated urban driving. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 176-183.

World Health Organization and others (2011). World report on disability 2011.
World Health Organization.

Wystrach, A., Beugnon, G., and Cheng, K. (2012). Ants might use different view-
matching strategies on and off the route. Journal of Experimental Biology,
215(1):44-55.

Wystrach, A., Dewar, A., Philippides, A., and Graham, P. (2016). How do field of
view and resolution affect the information content of panoramic scenes for visual
navigation? a computational investigation. Journal of Comparative Physiology

A, 202(2):87-95.

Wystrach, A., Schwarz, S., Baniel, A., and Cheng, K. (2013). Backtracking be-
haviour in lost ants: an additional strategy in their navigational toolkit. Pro-
ceedings of the Royal Society B: Biological Sciences, 280(1769):20131677.

Xu, Y., John, V., Mita, S., Tehrani, H., Ishimaru, K., and Nishino, S. (2017). 3d
point cloud map based vehicle localization using stereo camera. In 2017 IEEFE
Intelligent Vehicles Symposium (1V), pages 487-492.

115



Bibliography

Yagi, Y. and Kawato, S. (1990). Panorama scene analysis with conic projection.
In EEE International Workshop on Intelligent Robots and Systems, Towards a
New Frontier of Applications, pages 181187 vol.1.

Yang, B. and Chen, S. (2013). A comparative study on local binary pattern
(Ibp) based face recognition: Lbp histogram versus lbp image. Neurocomputing,
120:365 — 379. Image Feature Detection and Description.

Yu, S.-E. and Kim, D. (2011). Landmark vectors with quantized distance infor-
mation for homing navigation. Adaptive Behavior, 19(2):121-141.

Zeil, J., Hofmann, M. 1., and Chahl, J. S. (2003). Catchment areas of panoramic
snapshots in outdoor scenes. J. Opt. Soc. Am. A, 20(3):450-469.

Zhang, A. M. and Kleeman, L. (2009). Robust appearance based visual route
following for navigation in large-scale outdoor environments. The International
Journal of Robotics Research, 28(3):331-356.

Zichao Zhang, Rebecq, H., Forster, C., and Scaramuzza, D. (2016). Benefit of
large field-of-view cameras for visual odometry. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 801-808.

Zivkovic, Z. and Booij, O. (2005). How did we built our hyperbolic mirror omnidi-
rectional camera-practical issues and basic geometry. University of Amsterdam,
Tech. Rep. IAS-UVA-05-04.

Zollikofer, C., Wehner, R., and Fukushi, T. (1995). Optical scaling in conspecific
cataglyphis ants. Journal of Experimental Biology, 198(8):1637-1646.

116



	Introduction
	The Need for Smart-Wheelchairs
	Smart-Wheelchair in the Age of Autonomous Cars
	Problem Statement
	Aim and Scope
	Thesis Contributions

	Background and Related Work
	Autonomous Navigation
	Visual Route-Following
	Omnidirectional Cameras for Visual Navigation
	Optical Flow in Omnidirectional Images

	The Visual Compass Algorithm (VCA)
	Insect Navigation
	Properties of Insect Eyes
	Environmental Representation and Image Matching
	The Ongoing Debate on Insect Navigation 

	Visual Navigation and Holistic Methods
	Holistic and Correspondence Methods


	The Smart-Wheelchair ROSStuhl
	Hardware and Base System
	The xeno Power-Wheelchair by otto
	Interaction with the Power-Wheelchair
	Omnidirectional Cameras and Calibration Message

	Route-Following System
	Visual Memory Storage and Indexer
	Route-Following Server, Planner, and Remotes
	Image Aligner, Localization System, and Route-Following Controller
	Image Representation Pipeline


	Aspects of the VCA for Real-World Applications
	Global Localization and Failure Detection
	Global Localization and Failure Detection Using a Tree of VCA Configurations
	Reducing Aliasing using Panoramic Images of Labels
	Panoramas of Textons using the LBP operator
	Panorama of Column Histograms of Labels

	Estimation of Off-Route Translation Direction
	Knowledge Transfer
	Intrinsic Rectification for the VCA
	Complete Pipeline


	Experimental Evaluation
	Global Localization Evaluation
	Global Localization and Failure Detection Evaluation
	Assessment of the Feasibility of the TVCC
	Whisker Plots

	VCA Offline Analysis Toolbox
	Image Preprocessing Pipeline and Representation Elements

	Visual Memories used for Evaluation
	Synthetic Visual Memory Generation
	The Urban Canyon Visual Memories
	Real-Wold Visual Memories Captured with the ROSStuhl
	The Steglitz1 and Steglitz2 Visual Memories
	GardenOvercast and GardenSunny Visual Memories

	VCA Configurations Evaluated
	Experimental Results
	Panorama of Textons compared to Intensity Representations
	Robustness to Off-route Translation using Synthetic Data and Reduced VFOV
	Performance of the PCHL
	Performance of the TVCC
	Evaluating the Need for a Precise Intrinsic Model


	Conclusions
	Texture-based Representations for Holistic Methods
	Complete Knowledge Transfer
	Global Localization and Failure Detection
	Knowledge Transfer is Possible
	VCA Configurations Can Be Combined
	Implications for Smart-Wheelchairs and Robots
	Continued Necessity to Experiment on Complex Scenarios
	Possible Implications in Biology
	Future Work
	Learning Trees of VCA Configurations
	Integrating the VCA with High-Resolution 3D Metric Maps
	Other Types of Pixel Representations



