cancers

Article

Automatized Hepatic Tumor Volume Analysis of
Neuroendocrine Liver Metastases by Gd-EOB MRI—A
Deep-Learning Model to Support Multidisciplinary Cancer
Conference Decision-Making

Uli Fehrenbach *(, Siyi Xin 2, Alexander Hartenstein 13, Timo Alexander Auer 14, Franziska Driger !,

Konrad Frobose 1, Henning Jann 2, Martina Mogl 5, Holger Amthauer

60, Dominik Geisel !, Timm Denecke 7,

Bertram Wiedenmann 2 and Tobias Penzkofer 14

check for

updates
Citation: Fehrenbach, U.; Xin, S.;
Hartenstein, A.; Auer, TA.; Drager, E;
Frobose, K.; Jann, H.; Mogl, M.;
Amthauer, H.; Geisel, D.; et al.
Automatized Hepatic Tumor Volume
Analysis of Neuroendocrine Liver
Metastases by Gd-EOB MRI—A
Deep-Learning Model to Support
Multidisciplinary Cancer Conference
Decision-Making. Cancers 2021, 13,
2726. https://doi.org/10.3390/
cancers13112726

Academic Editor:

Christine Decaestecker

Received: 6 May 2021
Accepted: 25 May 2021
Published: 31 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Radiology, Charité-Universitdtsmedizin Berlin, 13353 Berlin, Germany;
alexander.hartenstein@charite.de (A.H.); timo-alexander.auer@charite.de (T.A.A.);
franziska.draeger@charite.de (F.D.); konrad.froboese@charite.de (K.F.); dominik.geisel@charite.de (D.G.);
tobias.penzkofer@charite.de (T.P.)

Division of Gastroenterology, Medical Department, Charité-Universitdtsmedizin Berlin,

10117 Berlin, Germany; siyi.xin@charite.de (S.X.); henning jann@charite.de (H.J.);
bertram.wiedenmann@charite.de (B.W.)

3 Bayer AG, 13353 Berlin, Germany

4 Berlin Institute of Health, 10178 Berlin, Germany

Department of Surgery Campus Charité Mitte/Campus Virchow-Klinikum, Charité-Universititsmedizin
Berlin, 10117 Berlin, Germany; martina.mogl@charite.de

Department of Nuclear Medicine, Charité-Universititsmedizin Berlin, 13353 Berlin, Germany;
holger.amthauer@charite.de

Department of Diagnostic and Interventional Radiology, University Hospital Leipzig,

04103 Leipzig, Germany; Timm.Denecke@medizin.uni-leipzig.de

*  Correspondence: uli.fehrenbach@charite.de; Tel.: +49-(0)30-450-557001

Simple Summary: Quantification of liver metastases on imaging is of utmost importance in therapy
response assessment, wherein gadoxetic acid (Gd-EOB)-enhanced magnetic resonance imaging (MRI)
shows the highest accuracy. Common criteria for assessing therapy response simplify measuring
liver metastasis, as full 3D quantification is very time-consuming. Therefore, we trained a deep-
learning model using manual 3D segmentation of liver metastases and hepatic parenchyma in
278 Gd-EOB MRI scans of 149 patients with neuroendocrine neoplasms (NEN). The clinical relevance
of the model was evaluated in 33 additional consecutive patients with NEN and liver metastases,
comparing the model’s segmentation of baseline and follow-up examinations with the therapy
response evaluation of an expert multidisciplinary cancer conference (MCC). The model showed
high accuracy in quantifying liver metastases and hepatic tumor load, and its measurements matched
the response evaluation of an MCC so that its use to support treatment decision-making would
be possible.

Abstract: Background: Rapid quantification of liver metastasis for diagnosis and follow-up is an
unmet medical need in patients with secondary liver malignancies. We present a 3D-quantification
model of neuroendocrine liver metastases (NELM) using gadoxetic-acid (Gd-EOB)-enhanced MRI as
a useful tool for multidisciplinary cancer conferences (MCC). Methods: Manual 3D-segmentations
of NELM and livers (149 patients in 278 Gd-EOB MRI scans) were used to train a neural network
(U-Net architecture). Clinical usefulness was evaluated in another 33 patients who were discussed
in our MCC and received a Gd-EOB MRI both at baseline and follow-up examination (1 = 66) over
12 months. Model measurements (NELM volume; hepatic tumor load (HTL)) with corresponding
absolute (A, NELM; A, sHTL) and relative changes (A;oJNELM; A, JHTL) between baseline and
follow-up were compared to MCC decisions (therapy success/failure). Results: Internal validation of
the model’s accuracy showed a high overlap for NELM and livers (Matthew’s correlation coefficient
(9): 0.76/0.95, respectively) with higher ¢ in larger NELM volume (¢ = 0.80 vs. 0.71; p = 0.003).
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External validation confirmed the high accuracy for NELM (¢ = 0.86) and livers (¢ = 0.96). MCC
decisions were significantly differentiated by all response variables (A,psNELM; A, HTL; A iNELM;
AHTL) (p < 0.001). ANELM and A, HTL showed optimal discrimination between therapy
success or failure (AUC: 1.000; p < 0.001). Conclusion: The model shows high accuracy in 3D-
quantification of NELM and HTL in Gd-EOB-MRI. The model’s measurements correlated well with
MCC’s evaluation of therapeutic response.

Keywords: neuroendocrine neoplasms; liver metastases; MRI; automatized quantification; deep
learning; multidisciplinary cancer conference

1. Introduction

The incidence of neuroendocrine neoplasms (NEN) has increased in the past 30 years
considerably, while at the same time, multiple treatment options are available for this
disease [1]. The radiological workload for follow-up of patients with NENSs has, therefore,
increased accordingly. However, not only because of the increasing incidence but also
because of the lower aggressiveness of NENs compared to liver metastases of other entities
(e.g., colorectal carcinoma), the number of follow-up examinations is increasing [2-9].
Based on the indolent clinical course of NENSs, patients often present at an advanced stage
for first diagnosis [4,6,9,10]. The liver represents the predominant site for metastases, and
accurate calculation of the hepatic metastatic tumor burden is mandatory for therapeutic
follow-up [11]. The measurement of diffuse liver lesions, which occur in 60-70% of pa-
tients, can be challenging and is—at present-time-consuming. A further challenge is that
common therapeutic response criteria intended to characterize how metastases develop
over time are not always suitable for each patient [9]. Response criteria in solid tumors
(RECIST, Version 1.1) are based on changes in diameters of a few lesions, which are consid-
ered representative [12]. However, hepatic tumor load (HTL), which is neglected if only
measuring the diameter of metastases, is an important prognostic marker in hepatically
metastasized NEN [4,13-16]. The quantitative evaluation of the metastatic volume can
potentially provide a practical method for assessing the disease’s course and may show
improved prognostic value.

Magnetic resonance imaging (MRI) is the most sensitive technique to detect and
quantify neuroendocrine liver metastases (NELMs) compared to conventional computed
tomography (CT), ultrasound (US), and somatostatin receptor imaging [16-18]. Gadox-
etic acid-enhanced (Gd-EOB) MRI is even more sensitive than conventional extracellular
gadolinium chelate-enhanced MRI [17,19,20]. In addition to the use of contrast-enhanced
MR, the use of diffusion-weighted imaging (DWI) sequences increases the sensitivity in
the detection of NELM [21-23]. Thus, the combination of DWI and hepatobiliary phase
(HBP) sequences with Gd-EOB is now the imaging modality with the highest sensitivity
for NELM [24]. Hepatic metastases of NELM typically demonstrate a hypervasculariza-
tion pattern in dynamic contrast phases (arterial, portal-venous and transitional phase),
which aids in the differentiation of NELM from other liver lesions [19,25,26]. Despite
the value of dynamic contrast phases in differential diagnoses, lesion measurement, and
thus response evaluation, is preferably performed in the hepatobiliary phase (HBP) when
hepatocyte-specific contrast agents are used [27].

Advances in artificial intelligence (Al) technology have led to generating image recog-
nition algorithms poised to aid and improve medical imaging procedures. Al has already
demonstrated strong performance in various medical applications, especially in image-
based diagnoses [28]. Although several studies suggest that the performance of Al in
imaging diagnosis is superior to human experts, the consensus is that Al should play a sup-
porting role to radiologists and that Al tools could especially be used to save time in clinical
routine [28-33]. The various fields of Al support in liver imaging include segmentation,
lesion detection and classification of diffuse or focal liver diseases [34,35].
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Here we provide the first data using a high-precision Al algorithm for the 3D quan-
tification of the hepatic tumor burden of NELM and provide a useful tool for clinical
decision-making, for example, in multidisciplinary cancer conferences (MCC).

2. Material and Methods
2.1. Patient Cohorts
2.1.1. Al Development (AI dev) Cohort

398 MRI scans in 149 patients with NEN, who underwent Gd-EOB enhanced MRI
(MAGNETOM Aera (1.5T), Siemens Healthcare, Erlangen, Germany) between January
2015 and August 2018 at our institution were retrospectively identified from our radiology
database. 120 of these scans were not suitable for the model’s training because of missing
evidence of NELM (n = 112) or due to non-standard scan protocols (1 = 8), resulting in
a total inclusion of 278 Gd-EOB MRI datasets. Pretreatments (e.g., partial liver resection,
transarterial or local ablative therapies), which may influence the morphology of the liver,
were not an exclusion criterion.

2.1.2. MCC Cohort

In a second institutional database search, we consecutively identified 33 patients
discussed in our MCC between January 2019 and January 2020 and received a Gd-EOB
MRI both as a baseline and as a follow-up examination (1 = 66). All 33 patients had
liver metastases and were selected independently of the hepatic tumor volume or their
disease history. In these patients, all MCC decisions were based on the course of the
metastatic liver disease. Patients in whom the MCC decision was based on extrahepatic
tumor manifestations were excluded.

2.2. Magnetic Resonance Imaging

Al dev cohort: MRI was obtained with 1.5 T using phased-array body coils in all
patients (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany) at the same institu-
tion. All patients received Gd-EOB (Primovist, Bayer, Berlin, Germany) as an intravenous
contrast agent (0.025 mmol/kg body weight; automatic injection at 2 mL/s flow rate, 40 mL
saline flush). All MRI examination protocols comprised a 3D T1-weighted (T1w) gradient
echo (GRE) sequence with fat saturation (FS) during hepatobiliary contrast phase (HBP)
(VIBE: “volumetric interpolated breath-hold examination”; repetition time (TR): 4.58 ms;
echo time (TE): 2.21 ms; slice thickness 3 mm, flip angle (FA): 25°; acquisition matrix:
320\0\0\165). The HBP sequence was acquired 20 mins after contrast administration.

MCC cohort: Gd-EOB MRI scans were performed on five different institutional MRI
scanners and included both 1.5 T and 3 T examinations. All examinations contained a 3D
T1lw GRE FS sequence during HBP. Due to the different scanners, the scan parameters (TR,
TE, FA and matrix) varied between the examinations. The HBP sequence was acquired
between 10 and 20 mins after contrast administration. Among others, diffusion-weighted
imaging (DWI) sequences were acquired in the time between Gd-EOB injection and the
HBP sequence. All DWI sequences contained at least two b values (b = 0 and b = 800) [36].

All examination protocols corresponded to the ENETS consensus guidelines for the
standard of care in neuroendocrine tumors [15].

2.3. Manual Segmentation

All HBP sequences of the MRI scans (Al dev and MCC cohort) were anonymized
and segmented using the Medical Imaging Interaction Toolkit (MITK) [37]. Volumetry (3D
segmentation) of the liver and all liver metastases was performed in the HBP 3D T1w-GRE
FS sequence. There was no limit on the number of metastases segmented per patient.
Segmentation was performed manually using the polygonal region of interest (ROI) tool
and is based on the planimetry method. Margins of the liver metastases were defined by
the signal difference between hypointense liver metastases and the contrast-enhanced liver
parenchyma. Adjacent vessels and biliary ducts were excluded if reasonably possible. All



Cancers 2021, 13, 2726

40f17

segmentations were refined by a radiologist with >5 years of experience in abdominal MRIL
Distribution patterns of NELM were scored according to the number: singular, multiple
(<10 metastases) and diffuse (>10 metastases) and distribution: unilobar (left or right)
and bilobar.

For subanalysis, all NELM and livers were manually segmented in DWI sequences in
the MCC cohort. The segmentation process was equivalent to that previously described in
the HBP sequences.

2.4. Model Training and Validation

The model was trained using the MIC-DKFZ nnU-Net (Division of Medical Image
Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany) deep-learning
framework. nnU-Net is an open-source tool. The source code and comprehensive documen-
tation are publicly available on GitHub [38]. nnU-Net enables 3D semantic segmentation in
many biomedical imaging applications without requiring designing respective specialized
solutions [39]. Out of the 278 MRI scans, 222 (80%) HBP sequences were randomly chosen
for the model training.

The HBP sequences of the remaining 56 scans (20%) were used to test the model’s
accuracy (internal validation). External validation of the model’s accuracy was performed
in the MCC cohort (different scanners (1.5 T and 3 T) and sequence parameters were used
compared to the model’s training).

2.5. Clinical Correlation

Our model analyzed the NELM volume and liver volume of the 33 patients with MCC
decisions in the baseline (BL) scan and the follow-up (FU) scan on which the MCC decisions
were based. The MCC is part of our European Neuroendocrine Tumor Society (ENETS)
center of excellence and consists of specialized gastroenterologists, endocrine surgeons,
pathologists, nuclear medicine specialists, radiotherapists and radiologists. Absolute and
relative changes in NELM volume and HTL calculated by the model were analyzed and
compared to the MCC decisions. MCC decisions were classified as therapy success (stable
disease (SD) or partial regression (PR)) or therapy failure (progressive disease (PD)) based
on the presented images. The evaluation within the board was guided by the response
criteria in solid tumors (RECIST, Version 1.1).

2.6. Statistics

Statistical analysis was performed using SPSS Statistics (IBM, Version 25, Armonk,
NY, USA). The Kolmogorov—-Smirnov test showed a non-normal distribution of the data.
Therefore, nonparametric testing was performed.

Descriptive data were accordingly presented as the median and interquartile range
(IQR). Relative size differences in segmentations were calculated by the following for-
mula: (model’s volume-radiologists” volume)/radiologists’ volume. Matthew’s correla-
tion coefficients (@) were calculated to measure the model’s segmentation accuracy as
previously published [40]. MCC decisions were compared to the automatized volume
evaluation of the model. HTL was calculated by the formula: (NELM volume/(liver
volume-NELM volume)) x 100. Absolute volume changes were calculated by the differ-
ence: Volumeg,jow-up—Volumepyseline- Relative volume changes were calculated by the
formula: ((Volumeggiow-up—Volumep,seline)/ Volumepaseline) X 100. Mann-Whitney U test
was used as a dominance test comparing two independent groups of quantitative data.
A sign test was used to compare two related samples. Spearman’s rank test was used for
correlation analysis in continuous variables, and the corresponding correlation coefficients
(rs) were calculated. ROC analysis was performed, and Youden indexes were calculated to
determine optimal cutoff values.
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3. Results
3.1. Patient Cohorts
3.1.1. Al dev Cohort

Characteristics of the 149 patients with NEN are summarized in Table 1. The most
common primary tumor sites were the ileum (51.0%) and the pancreas (43.0%). Confirmed
(histologically or with the aid of SR imaging) liver metastases were present in 118 patients
(79.2%), which were used for the model training. Out of these 118 patients, 4 patients (3.4%)
had singular liver metastasis, 59 patients (50%) had multiple metastases (<10 metastases),
and 55 patients (46.6%) had a diffuse metastatic pattern (>10 metastases). Both liver lobes
were involved in 91 patients (77.1%). Unilobar disease limited to a single liver lobe was
found in 27 patients (22.9%) (right liver: 24 patients, left liver: 3 patients).

Table 1. Patient and disease characteristics of the Al dev cohort and MCC cohort.

Feature Subgroups Al dev Cohort MCC Cohort p-Value
Number of patients - 149 33 -
Number of scans - 278 (of 398) 66 -

Gender (M: F) - 66:83 18:15 0.285
Age (median) - 58.92 (48.86—66.38) 56.45 (48.62-67.40) 0.631
Ki67 (%, median) - 5.0 (2.0-10.0) 7.0 (2.5-13.0) 0.139
Primary site 0.001

Pancreas 64 (43.0%) 12 (36.4%)

Tleum 76 (51.0%) 12 (36.4%)

Other 9 (6.0%) 9 (27.2%)
. 0.406

Grading 1 52 (34.9%) 8 (24.2%)

2 85 (57.0%) 23 (69.7%)

3 12 (8.1%) 2 (6.1%)

NET: NEC - 144:5 31:2 0.612

. . es 42 (28.2%) 12 (36.4%)
Functionality o 107 (71.8%) 21 (63.6%) 0.401
Extrahepatic ; 92 (61.7%) 27 (81.8%) 0.042

metastases

Somatostatin receptor 0.004

(SR) pos 110 (73.8%) * 32 (97.0%)

neg 37 (24.9%) * 1 (3.0%)

*no SR imaging available in 2 patients (1.3%), Data were presented as 1 (%) or median (IQR). p-values are based on x> test, Fisher’s exact
test or Mann—-Whitney U-test. Al: artificial intelligence; MCC: multidisciplinary cancer conference; NET: neuroendocrine tumor; NEC:

neuroendocrine carcinoma.

3.1.2. MCC Cohort

Characteristics of the 33 patients with MCC decisions are summarized in Table 1. Com-
parably to the training cohort, the most common primary tumor sites were the pancreas and
ileum (36.4% each). Therapeutic response was classified by the MCC as therapeutic success
in 16 (48%) patients (SD: n = 14; PR: n = 2) and therapeutic failure in 17 (PD, 52%) patients.

3.2. Validation of the Model

The median NELM volume in the 56 patients (internal validation) of the Al dev group
was 17.25 cm® (IQR: 4.48-60.93 cm®) as determined by the nnU-Net model and 16.17 cm3
(IQR: 4.87-58.16 cm?) in the radiologists’ manual segmentation. The median relative
volume difference between the model’s and the radiologist’s segmentation of NELM was
—3.7% (IQR: —24.54—+11.83%). The model showed a median ¢ of 0.76 (IQR: 0.68-0.83)
for the segmentation of metastases (Figure 1, left side). Analysis of the data in a case-wise
fashion identified three out of 56 patients (5.4%), whereby the model’s segmentation only
achieved a weak overlap (¢ < 0.2). Two out of these patients had very low NELM volume
(0.1 and 0.2 cm?). The third patient showed atypical, hyperintense signal intensities of the
metastases in HBP; NELM were subsequently missed by the model. Dividing the cohort
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Metastases: Distribution of Matthew's correlation coefficients

by the median NELM volume (16.17 cm?) into high and low NELM volume, the model
showed significant higher @in patients with higher NELM volume (median ¢: 0.80; IQR:
0.73-0.84) compared to low NELM volume (median ¢: 0.71; IQR: 0.64-0.78; p = 0.003). For
liver segmentation, the median volume was 1639.9 cm? (IQR: 1366.1-1960.7 cm?) in the
manual segmentation and 1659.0 cm?® (IQR: 1404.2-1966.9 cm?) in the model’s segmentation.
The median relative volume difference between the model’s and the manual segmentations
of livers was +0.9% (IQR: —0.7—+4.2%). The model showed a median ¢ of 0.95 (IQR:
0.95-0.96) in liver segmentation (Figure 1, right side). The external validation (MCC cohort)
confirmed the high accuracy of the model. The model achieved a median @of 0.86 (IQR:
0.81-0.91) in the segmentation of NELM and of 0.96 (IQR: 0.95-0.96) in liver segmentation.

Liver: Distribution of Matthew's correlation coefficients
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Figure 1. Internal validation—distribution of ¢ in NELM and liver segmentations (upper row) and its distribution in

correlation to the target volume in cm?® (lower row).

3.3. Automatized NELM Volume Analysis and Clinical Correlation (MCC Cohort)

The model’s measurements of the MCC cohort are summarized in Table 2 and exem-
plarily visualized in Figure 2.

The comparison between patients with therapy success (n = 16) and therapy fail-
ure (n = 17) showed significant differences for all absolute and relative volume changes
(p < 0.001). Patients classified as therapy success by the MCC showed significant lower
values in median absolute NELM volume change (A,;,sNELM), median absolute HTL
change (A,,sHTL), median relative NELM volume change (A, NELM) and median relative
HTL change (A.;HTL) than patients with therapy failure (p < 0.001) (Figure 3).
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Table 2. Summary of the model’s segmentation results for the MCC cohort and their absolute and relative changes between
baseline and follow-up MRI examinations.

Variable Overall Significance
BL FU
n 33 33 -
NELM (cm?) 23.48 (10.45-113.17) 86.93 (12.08-204.50) -
Liver (cm?) 1582.23 (1336.25-2030.03) 1716.75 (1477.12-2092.94) -
HTL (vol.-%) 1.57 (0.55-7.05) 5.93 (0.99-11.74) -
AapsNELM (%) 14.70 (0.76-96.35) -
A;bsHTL (%) 0.98 (—0.03-5.41) -
A NELM (%) 58.51 (3.93-245.64) -
A HTL (%) 64.97 (—3.44-223.31) -
Therapy Success Therapy Failure
BL FU BL FU
n 16 16 17 17 -
75.45 66.78 86.93
NELM (em’) (12.35-141.65) (11.64-167.82) 11047844 ) 40 o5330)
Liver (cm®) 1692.26 1725.30 1580.35 1716.75 )
(1475.09-2061.63) (1471.78-2130.28) (1290.13-1902.53) (1451.10-2106.81)
HTL (vol.-%) 4.41 (0.87-7.83) 3.75 (0.75-8.88) 1.46 (0.34-5.97) 5.93 (1.47-16.78) -
AapsNELM (%) 0.76 (—18.07-39.32) 59.70 (16.49-156.59) p <0.001
ApsHTL (%) —0.03 (—1.28-0.23) 4.94 (1.07-9.78) p <0.001
A]NELM (%) 3.93 (—15.75-10.36) 242.68 (124.56-463.87) p <0.001
A HTL (%) —3.45 (—18.11-11.15) 204.49 (109.39-490.19) p <0.001

Values are displayed as median and interquartile range. p-values are based on Mann-Whitney U-test. BL: baseline; FU: follow-up; NELM:
neuroendocrine liver metastasis; HTL: hepatic tumor load; A,,sNELM: absolute NELM volume change; A,,sHTL: absolute HTL change;
A ]NELM: relative NELM volume change; A HTL: relative HTL change.

Figure 2. nnU-Net 3D segmentation of NELM and livers in the MCC cohort. Upper row: example
images of therapy success (patient ID: 11) with stable disease between baseline (A) and follow-up (B);
Ae]NELM: —16.14% and A HTL: —21.23%. Lower row: example images of therapy failure (patient
ID: 08) with progressive disease between baseline (C) and follow-up (D); A, NELM: +117.58% and
AetHTL: +89.32%. BL: baseline; FU: follow-up; SD: stable disease; PD: progressive disease; NELM:
neuroendocrine liver metastasis; HTL: hepatic tumor load.
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Figure 3. Boxplots of the change variables in correlation to the MCC decisions. (A) A,,sNELM; (B) Ao, HTL; (C) Ao]NELM;
(D) A HTL. PR: partial response; A,,sNELM: absolute NELM volume change; A,,;HTL: absolute HTL change; A NELM:
relative NELM volume change; A JHTL: relative HTL change.

The case-wise analysis of the 33 MCC patients is summarized in Table 3. The case-
wise analysis showed that the model correctly detected increased NELM volume in all of
the 17 patients with therapeutic failure (100%). The A,,sNELM increase in these 17 pa-
tients ranged from +3.02 cm3 to +864.45 cm® and A, HTL ranging from +0.18 vol.-% to
+36.41 vol.-%. The relative increase of A, NELM ranged from +58.52% to +4513.64% and
in A HTL from +64.97% to +2497.20%. In patients with therapeutic success (1 = 16), the
AbsNELM ranged from —394.57 cm? to —34.75 cm? (in PR) and —35.70 cm3 to +61.56 cm?
(in SD) and the A,,sHTL from —16.96 vol.-% to —1.73 vol.-% (in PR) and —1.64 vol.-% to
+3.48 vol.-% (in SD). The relative change variables of A, NELM ranged from —74.68% to
—63.68% in PR and from —20.19% to 55.25% in SD, and the A, HTL ranged from —71.13%
to —65.03% in PR and from —21.23% to +50.51% in SD (Figure 4).
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Table 3. Case-wise summary of the model’s measurements and response variables in the MCC cohort.

Case # Baseline Follow-up Response Variables
Liver NELM Liver NELM
ID Volume Volume ( HIT_ I;/) Volume Volume ( HIT_ I;/) MCC A“?SEE)L M ?absll-_[; } Arelg}iLM Are(lt;—I)TL
(cm3) (cm3) VOl.-70 (Cm3) (cm3) VOl.-70 C VOl.-70 (J J

0001 1649.3 100.5 6.5 1796.0 232.7 14.9 PD 132.2 8.4 131.6 129.5
0002 1582.2 69.5 4.6 1783.7 242.4 15.7 PD 172.9 11.1 248.6 2421
0003 1516.3 23.5 1.6 1766.8 160.7 10.0 PD 137.2 8.4 584.3 536.1
0004 1476.7 2.5 0.2 1487.8 2.0 0.1 SD —0.5 —0.0 —20.2 —20.8
0005 1304.2 9.5 0.7 1350.2 10.5 0.8 SD 0.9 0.1 9.8 6.1
0006 1247.6 87.3 7.5 1656.0 308.8 229 PD 2215 154 253.5 204.5
0007 1092.4 0.6 0.1 1111.6 7.0 0.6 PD 6.4 0.6 1080.0 1066.3
0008 1597.5 137.5 9.4 1977.1 299.1 17.8 PD 161.7 8.4 117.6 89.3
0009 1474.5 21.2 15 1567.0 221 14 SD 0.9 —0.0 42 —-2.0
0010 1579.1 33 0.2 1610.6 6.3 0.4 PD 3.0 0.2 91.9 88.5
0011 2067.7 148.0 7.7 2167.6 1241 6.1 SD —23.9 -1.6 —16.1 —21.2
0012 1959.7 46.5 24 1689.6 11.8 0.7 PR —34.8 -1.7 —74.7 —71.1
0013 1695.2 1114 7.0 1817.3 173.0 10.5 SD 61.6 35 55.3 49.5
0014 1332.6 19.2 15 3216.9 883.6 379 PD 864.5 36.4 4513.6 2497.2
0015 2209.1 9.4 0.4 2236.5 47.0 22 PD 37.6 1.7 398.2 400.5
0016 2326.4 13.0 0.6 2421.6 124 0.5 SD —0.6 —0.1 —45 —-83
0017 969.3 12.1 1.3 9724 11.6 1.2 SD —0.6 —0.1 —45 —49
0018 2523.2 17.7 0.7 2364.0 43.3 1.9 PD 25.5 1.2 144.2 163.6
0019 1580.4 54.8 3.6 1552.8 86.9 5.9 PD 32.1 2.3 58.5 65.0
0020 1703.4 2449 16.8 1572.5 209.2 15.3 SD —35.7 -1.5 —14.9 —8.6
0021 1575.0 114.9 7.9 1801.2 119.2 7.1 SD 42 -0.8 3.7 —10.0
0022 1082.3 14.0 1.3 1071.6 14.6 14 SD 0.6 0.1 45 5.7
0023 2016.6 133.1 7.1 2303.4 264.3 13.0 PD 131.1 5.9 98.5 83.4
0024 1788.5 47 0.3 1639.5 229 14 PD 18.3 1.2 393.3 4443
0025 2043.5 122.5 6.4 2018.2 152.3 8.2 SD 29.8 1.8 24.3 28.0
0026 2416.2 180.8 8.1 2389.9 199.9 9.1 SD 19.1 1.0 10.5 12.8
0027 1339.9 11.3 0.9 1297.2 71.0 5.8 PD 59.7 4.9 529.6 582.1
0028 2653.8 549.0 26.1 2386.0 199.4 9.1 PR —349.6 -17.0 —63.7 —65.0
0029 1477.6 7.2 0.5 1466.5 10.8 0.7 SD 3.5 0.3 49.0 50.5
0030 2054.2 11.2 0.6 1716.8 25.9 15 PD 14.7 1.0 1315 179.8
0031 1689.3 104.4 6.6 1761.0 111.5 6.8 SD 7.1 0.2 6.8 2.6
0032 1207.2 62.4 5.5 1322.4 214.0 19.3 PD 151.5 139 242.7 253.9
0033 1146.0 2.1 0.2 1349.4 6.7 0.5 PD 4.6 0.3 2223 174.6

In the total cohort, ROC analysis of MCC decision and the relative changes (A NELM
and A, HTL) showed an area under the curve (AUC) of 1.000 (p < 0.001) for both variables.
The absolute changes showed an AUC of 0.908 for A,,sNELM and of 0.926 for A, HTL
(p < 0.001). To determine the best cutoff values for progressive disease, a Youden index
was calculated. For A,gINELM, the highest Youden index (1.000; 100% sensitivity and
100% specificity) was found at the cutoff value +56.88%. For A, HTL, the highest Youden
index (1.000; 100% sensitivity and 100% specificity) was found at a cutoff value of +57.73%
(Figure 5).
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Figure 4. Case-wise illustration of the relative volume changes (A NELM and A,HTL) between baseline and follow-up
examination in the MCC cohort. The box within the figure shows an optimized scaling of cases with less change to illustrate

the significance thresholds for partial response (PR) and progressive disease (PD).
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Figure 5. ROC analysis of the absolute and relative change variables in relation to the MCC decisions.
AUC A,,sNELM: 0.908; AUC A,,sHTL: 0.926; AUC A, NELM: 1.000; AUC A HTL: 1.000; p < 0.001.
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3.4. Comparison of 3D Quantification between HBP and DWI Sequences

In the MCC cohort, manual segmentations of NELM (rs: 0.981; p < 0.001), livers (rs:
0.966; p < 0.001) and HTL (rs: 0.956, p < 0.001) showed a high correlation between HBP and
DWI sequences. However, direct comparison of the measured values for NELM and livers
showed significant differences between HBP and DWI (p < 0.001; Table 4). When looking
at the changes between BL and FU, a high correlation between DWI and HBP sequences
was also shown for A, NELM (rs: 0.919; p < 0.001), A, NELM (r5: 0.960; p < 0.001),
AapsHTL (75: 0.883, p < 0.001) and A HTL (r5: 0.952; p < 0.001). There were no significant
difference of A,,sNELM, A NELM, A, HTL and A..;HTL between DWI and HBP-based
measurements (p = 0.072 to 0.719; Table 4).

Table 4. Comparison of 3D quantification between HBP and DWI sequences.

Variable HBP DWI Significance
NELM volume (cm?3) 63.24 (12.12-174.23) 76.28 (12.61-182.48) p =0.002
Liver volume (cm®)  1659.28 (1387.73-2052.00)  1595.00 (1324.17-1977.54) p <0.001
HTL (vol %) 4.05 (0.76-9.23) 5.45 (0.88-11.49) p <0.001
AzpsNELM (cm?) 19.57 (17.27-132.52) 30.06 (18.91-142.13) p=0.072
A ]NELM (%) 107.76 (5.28-245.04) 78.35 (11.22-221.21) p=0.719
ApsHTL (vol %) 1.20 (—0.01-8.87) 1.25 (0.10-10.47) p=0.151
A HTL (%) 111.36 (—0.36-254.49) 67.76 (4.20-198.88) p=0.151

Values are displayed as median and interquartile range. p-values are based on the sign test. HBP: hepatobiliary
phase; DWI: diffusion weighted imaging; NELM: neuroendocrine liver metastasis; HTL: hepatic tumor load;
AbsNELM: absolute NELM volume change; A,ps HTL: absolute HTL change; A;NELM: relative NELM volume
change; A;HTL: relative HTL change.

4. Discussion

This is the most extensive study presenting Al data quantifying the total volume
of hepatic tumor burden in NEN using a deep-learning model combined with Gd-EOB
MRI. The model achieved high accuracy, especially in patients with higher NELM volume
and delivered results corresponding to the MCC consensus decision-making regarding
therapeutic success or failure.

The presented deep-learning model differs from previous studies in several aspects.
First, the training data set of 278 Gd-EOB MRI examinations is the largest published to date
in the automated assessment of focal liver lesions [41]. The high proportion of patients
with more than ten metastases resulted in more than 2000 segmented metastases. Second,
various hepatic conditions were included in the model’s training. Previous liver resec-
tion, excessive pretreatment, ablation therapies or preceding intraarterial treatments (e.g.,
transarterial chemoembolization (TACE) or selective internal radiation therapy (SIRT))
were no exclusion criteria for training. The combination of high case numbers and various
pretreatments should improve the robustness of the model in preparation for everyday
clinical usage [42,43]. Due to the broad training, it is possible to quantify patients un-
der different therapies with the model. However, individual pitfalls must be considered.
Therapy-induced hemorrhage of NELM affects the visualization of lesions in HBP se-
quences. Our study identified one case in which the model had achieved low accuracy
for this reason. In addition, in two cases with very low tumor burden, our model showed
only unsatisfactory accuracy. Though, these cases are also of less interest for an automated
volume analysis since a conventional, manual evaluation could easily be performed. The
aim of our study was not to replace manual evaluation but to complement and improve it.

Our results demonstrate that accurate, automated 3D segmentation of NELM is fea-
sible in HBP from Gd-EOB MRI examinations. Due to the comparatively lower growth
dynamics of NELM compared to metastases from other primary tumors, we believe auto-
mated quantification is particularly valuable based on the numerous follow-up studies in
patients with NEN. Even if NELM is characterized by marked arterial hypervasculariza-
tion or cystic components on imaging, these features do not affect the HBP sequence [25].
Liver metastases from a wide variety of primary tumors show the same typical imaging
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characteristics in the HBP sequences with marked hypointensity of the lesion compared
to the surrounding liver parenchyma [44]. Therefore, by using HBP in Gd-EOB MRI, our
model is not limited to the segmentation of NELM, and its use should also be investigated
for liver metastases of other primary tumors.

The high value of Gd-EOB HBP sequences in the determination of NELM size has
already been shown and corroborates our approach to using this sequence for 3D seg-
mentation [45]. The high lesion to liver contrast also provides optimum conditions for
automated segmentation [46,47]. However, besides its excellent imaging characteristics,
Gd-EOB MRI has some disadvantages. These include the comparatively high costs due to
the contrast agent itself and the resulting examination time, the general side effects and
possible deposition of gadolinium [48]. As a non-contrast alternative with high sensitivity,
DWI sequences can also be effectively used to measure NELM without the disadvantages
of Gd-EOB MRI [49,50]. Currently, however, DWI sequences are used for detection rather
than measurements of liver lesions. In particular, a 3D measurement may be limited by the
lower axial resolution of commonly used DWI sequences. In our subanalysis, we could
show that DWI-based measurements correlate strongly with those in HBP. However, the
absolute measurements of NELM and livers showed significant differences between the
two sequences, so that an exact 3D quantification using DWI was not possible. Neverthe-
less, this inaccuracy was relativized when the measurements were compared in evaluating
treatment response. The relative and absolute changes of NELM volume and HTL between
baseline and follow-up examination showed no significant difference between HBP and
DWI so that evaluation of treatment response using 3D measurements in DWI seems
feasible. Therefore, the results of our study encourage developing similar automation for
non-contrast DWI MRI as well.

The limitation to lesion diameters versus volume in clinical routine can be best ex-
plained by the time required for full 3D volumetry. Up to now, 3D volumetry of liver
lesions has only been carried out within the framework of studies [51,52]. Besides the
volumetric assessment of tumor burden, the 3D segmentations generated by the model
presented in this study could be used for further lesion analysis, such as texture analysis,
radiomics or contrast-uptake used in Choi criteria [53,54]. To date, most studies concerning
artificial intelligence and liver imaging focus on diffuse liver disease or the classification
of liver tumors [55-57]. With the help of the presented model and the associated time
saving by the automatized segmentation, not only 3D quantification of HTL but also more
sophisticated tumor analyses could find their way into clinical routine.

Assessment of therapeutic response in liver metastases, independently from primary
tumor origin, is most commonly based on the Response Evaluation Criteria in Solid Tu-
mors (RECIST, Version 1.1). RECIST1.1 is suitable for study cohorts and facilitates response
evaluation by defining a limited number (maximum two per organ) of target lesions [58].
From a practical point, response criteria vary regarding increasing versus decreasing tu-
mors. Partial response (PR) is defined as a decrease of at least 30% in the sum of the
largest diameter of target lesions. By contrast, progressive disease is defined as increas-
ing at least 20% of target lesions or the appearance of one or more new lesions in a 2D
measurement [59]. Considering this somehow simplified approach, the pure volumetric
determination of growth behavior should allow a more precise measuring method for
therapeutic decision-making in the individual patient. The simplification of RECIST1.1
can lead to patients being interpreted incorrectly or inconsistently during their illness.
The limitations of RECIST1.1 become even more evident when evaluating the effects of
targeted molecular agents, especially in slow-growing tumors, such as NENs [60,61]. RE-
CIST1.1 treatment response strongly depends on which target lesions were chosen at the
baseline scan. Heterogeneous treatment response, which can be seen in different types
of primary cancers and systemic treatments, is not represented by RECIST1.1 [62]. Addi-
tionally, volumetric measurement methods show a higher intra-observer reproducibility
compared to RECIST1.1 [63]. Quantification of total HTL in clinical routine is not routinely
performed, and in most cases, tumor load is visually estimated by the radiologist. How-
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ever, several studies have shown that hepatic tumor burden is an important prognostic
imaging marker [13,64,65]. Volumetric evaluation of the HTL, as performed by our model,
provides useful information on lesion distribution and allows a more realistic quantifica-
tion of hepatic tumor extent than the (2D) diameter measurements, which are commonly
used [66]. In addition, the model considers all lesions, which would also allow capturing
of heterogeneous treatment responses.

The new challenge in volumetric tumor mass determination will be developing new
cutoff values. If metastasis is seen as a sphere mathematically, an increase of the diameter
of the lesion of 20%, which defines a lesion to be classified as a progressive disease in
RECIST1.1, would result in a volume increase of approximately 73%. In our cohort, the
MCC stated progressive disease and therapy failure when the tumor volume, as determined
by the model, increased by 57%. Furthermore, a NELM volume decrease of —57% correctly
identified the two patients with partial response. Our results show that 3D assessment of
NELM could be useful, but further studies are needed to evaluate its superiority over 2D
methods regarding clinical endpoints [67].

MCCs are designed to optimize patient outcomes by elaborating the best treatment
plans or changes in cases of therapy failure in a multidisciplinary approach [68,69]. The
number of cases discussed in each MCC is steadily rising. This can be explained by the
increasing acceptance of the multidisciplinary approach and the rising incidence of cancers
due to improved diagnostics [70]. Our study shows that deep-learning models can assist
the MCC’s decisions by automatized the quantification of HTL. Besides the time-saving
aspect, the model could also provide decision support to physicians who have no access to
a regularly held MCC.

Our study has some limitations. As mentioned above, the 3D assessment approach
needs to be further evaluated on larger clinical collectives with direct comparison to 2D
measurements and the impact on clinical endpoints. Another limitation of the study is that
the ground truth of accuracy is based on manual segmentation of liver metastasis. Due to
the sometimes pronounced, even small foci of liver metastases, manual segmentation is
not perfect. To minimize this limitation, all segmentations were checked multiple times
to capture all metastases (no limit on the number of lesions per patient) and to train the
model as realistically as possible.

5. Conclusions

In conclusion, the deep-learning model presented shows high accuracy in 3D vol-
umetry of NELM and determination of HTL in Gd-EOB MRI and paves the way for fully
automated 3D assessment of hepatic disease. The model also provides useful (potentially
prognostic) information about HTL and NELM volume and can be used to assist physi-
cians in response evaluation and the decision-making about therapeutic success or failure
comparable to the decisions of an expert multidisciplinary cancer conference.
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