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Abstract: The prevalence of infections with the zoonotic enteritis pathogen Campylobacter coli is
increasing. Probiotic formulations constitute promising antibiotic-independent approaches to reduce
intestinal pathogen loads and modulate pathogen-induced immune responses in the infected human
host, resulting in acute campylobacteriosis and post-infectious sequelae. Here, we address potential
antipathogenic and immuno-modulatory effects of the commercial product Aviguard® during exper-
imental campylobacteriosis. Secondary abiotic IL-10−/− mice were infected with a C. coli patient
isolate on days 0 and 1, followed by oral Aviguard® treatment on days 2, 3 and 4. Until day 6 post-
infection, Aviguard® treatment could lower the pathogen burdens within the proximal but not the
distal intestinal tract. In contrast, the probiotic bacteria had sufficiently established in the intestines
with lower fecal loads of obligate anaerobic species in C. coli-infected as compared to uninfected mice
following Aviguard® treatment. Aviguard® application did not result in alleviated clinical signs,
histopathological or apoptotic changes in the colon of infected IL-10−/− mice, whereas, however,
Aviguard® treatment could dampen pathogen-induced innate and adaptive immune responses in
the colon, accompanied by less distinct intestinal proinflammatory cytokine secretion. In conclu-
sion, Aviguard® constitutes a promising probiotic compound to alleviate enteropathogen-induced
proinflammatory immune responses during human campylobacteriosis.

Keywords: competitive exclusion product; Aviguard®; enteropathogenic infection; Campylobacter
coli; immune-modulatory effects; secondary abiotic IL-10−/− mice; campylobacteriosis model; host–
pathogen-interaction; probiotic formulations

1. Introduction

Campylobacter infections are the leading causes of bacterial gastroenteritis in humans,
with worldwide rising prevalences [1]. In the European Union, for instance, campylobacte-
riosis was the most frequent zoonotic disease in 2018, responsible for more than 240,000
reported cases. Campylobacter jejuni and Campylobacter coli constituted the most prevalent
causative agents with relative abundances of 83.9% and 10.3%, respectively [2]. The curved
or rod-shaped and highly motile Gram-negative bacteria are part of the commensal gut
microbiota of many avian species, including chicken and turkey and of mammals, such as
pigs, cattle and sheep and exhibit a growth optimum at 37–42 ◦C [3,4]. In addition, Campy-
lobacter species might be isolated from natural environments, including surface waters and
can survive extended periods outside a warm-blooded host [4,5]. The bacteria are mainly
transmitted to humans via the food chain. Ingestion of undercooked or raw meat products
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from livestock, contaminated water, eggs or unpasteurized milk is a potential infection
source. However, most Campylobacter outbreaks result from ingestion of poultry products
and/or inappropriate handling and kitchen hygiene measures [6,7]. Of note, a European
survey from 2018 revealed a Campylobacter prevalence of 26% in broiler chicken and of
72% in turkeys [8]. In slaughterhouses, Campylobacter has been shown to spread from the
ceca of infected animals, subsequently contaminating the entire carcass [9,10]. Importantly,
Campylobacter was not only isolated from the meat of Campylobacter colonized chicken
but also from secondarily cross-contaminated chickens whose feces had initially been
Campylobacter-negative [11]. Physical, chemical and radiation-based methods are generally
applied to eliminate Campylobacter species from livestock carcasses and slaughterhouse
equipment. However, those procedures may significantly reduce the Campylobacter loads
but not eliminate the contaminating agents [11–13]. Notably, Campylobacter species can
be highly infectious, given that relatively low doses of 500 bacteria may already lead to
campylobacteriosis in infected humans depending on both the arsenal of virulence factors
expressed by the pathogen and on the host immune status [5,14]. After an incubation
period of up to five days, Campylobacter infected patients may present with symptoms of
varying severities ranging from mild malaise to acute campylobacteriosis characterized
by fever, chills, abdominal cramps, headache, and watery or even bloody diarrhea with
mucous discharge and inflammatory cells due to underlying enterocolitis [15,16]. Notably,
from the severity of the induced campylobacteriosis syndrome, one cannot predict the
respective causative Campylobacter species [6]. The disease usually only requires symp-
tomatic treatment, such as the substitution of fluids and minerals and resolves within
two weeks post-infection (p.i.) without residues [14–16]. Post-infectious autoimmune
morbidities affecting the nervous system (e.g., Guillain–Barré or Miller–Fisher syndrome),
the joints (i.e., reactive arthritis) and the gastrointestinal tract (i.e., inflammatory bowel
disease and irritable bowel syndrome), however, may develop in rare occasions weeks to
months p.i. [16–18]. Particularly sialylated lipooligosaccharide (LOS) derived from the cell
wall of Gram-negative bacterial species, including Campylobacter, is associated with severe
forms of campylobacteriosis and increased risk of post-infectious manifestations [19].

Almost 40 years ago, distinct probiotic formulations were hypothesized as promising
tools to exclude potentially pathogenic bacteria from their ecological niches within the
vertebrate gastrointestinal tract [20,21]. Commercial competitive exclusion products have
gained access to the agricultural industry in the meantime and have been successfully
applied as antibiotic-independent animal feed additives to reduce the prevalence of en-
teropathogens, such as Salmonella and Clostridium perfringens in livestock and subsequently,
to decrease the prevalence of foodborne infections in humans [22–25]. Among these com-
mercial exclusion products, Aviguard® constitutes a mixture of viable probiotic bacteria
representative for the main commensal species within the cecum of adult chicken [24].
This freeze-dried fermentation product exhibits a longer shelf life when compared to other
compounds. It is applied as a drinking water additive or spray treatment to poultry [24].

To date, however, studies elucidating the triangle interplay between Campylobacter,
probiotic bacteria derived from a commercial exclusion product including Aviguard®

and the mammalian host are scarce. This prompted us in our present study for the
first time to investigate the potential pathogen-lowering effects and immune-modulatory
properties of peroral Aviguard® treatment during experimental campylobacteriosis. We,
therefore, applied a murine Campylobacter-induced infection and inflammation model
that had initially been generated to dissect C. jejuni-host interactions. Following peroral
infection of secondary abiotic interleukin 10 gene-deficient (IL-10−/−) mice that had been
generated following broad-spectrum antibiotic treatment, C. jejuni could not only stably
infect the murine gastrointestinal tract but also induced non-self-limiting acute enterocolitis
within a week p.i. [26]. The underlying mechanisms for this inflammatory scenario are
pronounced Toll-like receptor-4 (TLR-4)-dependent, LOS host immune responses affecting
not only the intestinal tract but also extra-intestinal, including systemic body parts [26,27].
Very recently, the secondary abiotic IL-10−/− mouse infection and inflammation model has
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been proven suitable also to unravel C. coli-host interactions [28,29]. In our actual study,
we infected secondary abiotic IL-10−/− mice with a C. coli isolate derived from a diseased
human patient by gavage, followed by oral Aviguard® treatment on three consecutive days,
and surveyed (i.) the intestinal pathogen loads over time, (ii.) the clinical and microscopic
inflammatory changes, and (iii.) the proinflammatory immune responses in intestinal and
systemic compartments upon sacrifice at day 6 p.i.

2. Materials and Methods
2.1. Ethical Statement

All murine experiments had initially been approved by the commission for animal
experiments headed by the “Landesamt für Gesundheit und Soziales” (LaGeSo, Berlin;
registration number G0172/16) and were performed according to the European Guidelines
for animal welfare (2010/63/EU) and the ARRIVE guidelines. Clinical conditions of mice
were monitored daily.

2.2. Secondary Abiotic IL-10−/− Mice

IL-10−/− mice (C57BL/6j background) were bred in the Forschungsinstitute für Exper-
imentelle Medizin, Charité—University Medicine Berlin (Berlin, Germany) and maintained
in sterile cages covered by filter tops within an experimental semi-barrier facility. By the
age of 3 weeks, mice were subjected to an 8-week-course of broad-spectrum antibiotic treat-
ment for commensal gut microbiota depletion as described in detail elsewhere [30,31]. The
secondary abiotic status of mice was confirmed by both culture and culture-independent
(i.e., molecular, 16S rRNA-based) methods, as reported earlier [30,32]. Microbiota-depleted
mice received autoclaved drinking water and chow and were handled under aseptic condi-
tions to avoid contaminations. For antibiotic washout, the antibiotic cocktail was replaced
by autoclaved tap water as early as three days before infection.

2.3. Campylobacter Coli Infection

The C. coli isolates (from the stool of a diseased patient with bloody diarrhea) were
kindly provided by Dr. Torsten Semmler (Robert-Koch-Institute Berlin, Germany). Two
days before infection, the C. coli isolate was thawed from stock and cultivated on Columbia
agar (supplemented with 5% sheep blood) and Karmali agar plates (both from Oxoid,
Wesel, Germany) that were incubated in a jar containing CampyGen gas packs (Oxoid,
Wesel, Germany) under microaerophilic conditions (37 ◦C, 48 h). On days 0 and 1, sex- and
age-matched secondary abiotic IL-10−/− mice (11 week-old litter mates, balanced gender
ratio) were challenged with 109 colony-forming units (CFU) C. coli by gavage.

2.4. Treatment of Mice With the Commercial Exclusion Product Aviguard®

For probiotic treatment, 1 g Aviguard® (Lallemand Animal Nutrition, Worcestershire,
UK) was dissolved in 10 mL phosphate-buffered saline (PBS; Thermo Fisher Scientific,
Waltham, MA, USA) and perorally applied to mice on days 2, 3 and 4 p.i. (0.3 mL by
gavage). The competitive exclusion product consists of the following bacterial species
(approximately 109 CFU per mL): Escherichia coli, Citrobacter species, Enterococcus genus (E.
faecalis, E. faecium), Lactobacillus species (L. casei, L. plantarum), Bacteroides species, Clostridium
species (C. sporogenes), Eubacterium species, Propionibacterium species, Fusobacterium species,
Ruminococcus species [33]. Placebo-treated C. coli-infected mice received vehicle only
(0.3 mL by gavage). Naive control animals were neither infected with C. coli nor challenged
with Aviguard® nor placebo.

2.5. Gastrointestinal C. coli Loads

For quantification of the gastrointestinal C. coli burdens, fecal and luminal stomach,
duodenum, ileum, and colon samples were homogenized and serial dilutions streaked
onto Columbia agar plates supplemented with 5% sheep blood and onto selective Karmali
plates (both from Oxoid, Wesel, Germany). The inoculated plates were incubated in a
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jar containing CampyGen gas packs (Oxoid, Wesel, Germany) under microaerophilic
conditions (37 ◦C, 48 h). C. coli were identified by the distinct macroscopic morphotypes,
microscopic appearance following Gram-staining, and oxidase-positive reaction.

2.6. Cultural Intestinal Microbiota Analysis

To provide a comprehensive quantitative cultural survey of the bacterial compositions
in both the Aviguard® suspensions and murine feces, respective samples were homoge-
nized in sterile phosphate-buffered saline (PBS; Gibco, Life Technologies, Loughborough,
UK) and cultivable bacterial species quantitated by plating serial dilutions on solid media
and incubated under aerobic, microaerobic and anaerobic conditions (37 ◦C, 48 h) as stated
elsewhere [30]. The numbers of respective bacteria were determined by enumeration of
distinct colony morphotypes, followed by subcultivation, Gram-staining and biochemical
analyses [30].

2.7. Culture-Independent Intestinal Microbiota Analysis

For quantitative assessment of fastidious and even uncultivable bacteria within bac-
terial suspensions and fecal samples, we applied culture-independent, 16S rRNA-based
methods. The total genomic DNA was extracted from respective samples and adjusted
to 1 ng per µL (Quant-iT PicoGreen reagent, Invitrogen, Carlsbad, CA, USA) as reported
earlier [30]. The total eubacterial loads and the main bacterial groups abundant in the
murine intestinal microbiota, including gamma-Proteobacteria/Enterobacteriaceae, Enterococ-
cus genus, Lactobacillus group, Bifidobacterium genus, Bacteroides group, including Prevotella
and Porphyromonas, Clostridium coccoides group, and Clostridium leptum group, were then
assessed by quantitative RT–PCR (qRT–PCR) with species-, genera- or group-specific 16S
rRNA gene primers (Tib MolBiol, Berlin, Germany), as shown in Table 1 and expressed as
16S rRNA gene copies per ng DNA [34].

2.8. Clinical Conditions

Before and once a day after the C. coli challenges, we quantitatively determined the
clinical conditions of mice as stated previously [35]. In brief, the following parameters
were assessed: the clinical aspect/wasting (0: normal; 1: ruffled fur; 2: less locomotion;
3: isolation; 4: severely compromised locomotion, pre-final aspect), the abundance of
blood in feces (0: no blood; 2: microscopic detection of blood by the Guajac method using
Hemoccult, Beckman Coulter/PCD, Krefeld, Germany; 4: macroscopic blood visible), and
stool consistency (0: formed feces; 2: pasty feces; 4: liquid feces). The overall clinical
score (maximum of 12) was calculated as the sum of the three scores assessing respective
individual parameters [35].

2.9. Sampling Procedures

Mice were sacrificed by CO2 asphyxiation on day 6 p.i. Under sterile conditions,
cardiac blood, large intestinal tissue samples (collected from each mouse in parallel for
microbiological and immunohistopathological analyses) and luminal stomach, duodenum,
ileum and colon samples were taken.

2.10. Histopathology

Histopathological changes were quantitated in 5 µm thin sections of colonic explants
that had been immediately fixed in 5% formalin, embedded in paraffin and stained with
hematoxylin and eosin using standardized histopathological (100× magnification, light
microscopy, blinded investigator) as described earlier [36]. In brief, score 1: minimal in-
flammatory cell infiltrates in the mucosa with intact epithelium; score 2: mild inflammatory
cell infiltrates in the mucosa and submucosa with mild hyperplasia and mild goblet cell
loss; score 3: moderate inflammatory cell infiltrates in the mucosa with moderate goblet
cell loss; score 4: marked inflammatory cell infiltration into in the mucosa and submucosa
with marked goblet cell loss, multiple crypt abscesses and crypt loss.
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2.11. In Situ Immunohistochemistry

In situ immunohistochemical analyses were performed in 5 µm thin large intestinal
paraffin sections for quantification of apoptotic epithelial cells, macrophages and mono-
cytes, T lymphocytes, regulatory T cells and B lymphocytes by using primary antibodies
directed against cleaved caspase-3 (Asp175, Cell Signaling, Beverly, MA, USA, 1:200), F4/80
(no. 14-4801, clone BM8, eBioscience, San Diego, CA, USA, 1:50), CD3 (no. N1580, Dako,
Glostrup, Denmark; 1:10), FOXP3 (clone FJK-165, no. 14-5773, eBioscience, 1:100) and B220
(no. 14-0452-81, eBioscience; 1:200), respectively [37]. The average number of positively
stained cells in each section was determined within at least six high-power fields (HPF,
0.287 mm2, 400×magnification, blinded investigator).

Table 1. 16S rRNA primer used for quantitative real-time-PCR a.

Target Reference Strain Primer Sequence (5′ to 3′) and
Orientation b Reference

Domain Bacteria (targets 16S V3 region) Escherichia coli ATCC 25922 F:CGGYCCAGACTCCTACGGG,
R:TTACCGCGGCTGCTGGCAC [38]

γ-Proteobacteria/Enterobacteriaceae Escherichia coli ATCC 25922 F: AAACTCAAATGAATTGACGG,
R: CTTTTGCAACCCACTCC [39]

Enterococcus genus Enterococcus faecalis DSM 20478 F: CCTTATTGTTAGTTGCCATCATT,
R: ACTCGTTGTACTTCCCATTGT [40]

Lactobacillus group f Lactobacillus acidophilus DSM
20079

F: CACCGCTACACATGGAG,
R: AGCAGTAGGGAATCTTCCA [41,42]

Bifidobacterium genus Bifidobacterium sp. (murine origin) F: CTCCTGGAAACGGGTGG,
R: GGTGTTCTTCCCGATATCTACA [41–43]

Bacteroides group e Bacteroides ovatus DSMZ 1896 F: GAAGGTCCCCCACATTG,
R: CAATCGGAGTTCTTCGTG [44]

Clostridium coccoides–Eubacterium rectale
subgroup d Clostridium coccoides DSMZ 935 F: AAATGACGGTACCTGACTAA,

R: CTTTGAGTTTCATTCTTGCGAA [43]

Clostridium leptum subgroup c Clostridium leptum DSMZ 753 F: TTACTGGGTGTAAAGGG,
R: TAGAGTGCTCTTGCGTA [45]

a. according to reference [46] with minor modifications; b. F, forward; R, reverse; c., including Faecalibacterium (Fusobacterium) prausnitzii and
Clostridium 16S rRNA cluster IV; d. Clostridium 16S rRNA cluster XIVa/b; e., including Prevotella and Porphyromonas; f., including Leuconostoc,
Pediococcus, Aerococcus and Weissella, but not Enterococcus or Streptococcus; sp., species.

2.12. Proinflammatory Cytokines

Ex vivo biopsies obtained from the colon and ileum (longitudinally cut strips of
approximately 1 cm2) as well as from mesenteric lymph nodes (MLN; 3 lymph nodes) were
washed in PBS (Gibco, Life Technologies, Loughborough, UK) and placed in 24-flat-bottom
well culture plates (Nunc, Darmstadt, Germany) containing 500 µL serum-free RPMI 1640
medium (Gibco, Life Technologies, Loughborough, UK) supplemented with penicillin
(100 µg/mL) and streptomycin (100 µg/mL; Biochrom, Berlin, Germany). Respective
culture supernatants and serum samples were tested for interferon-γ (IFN-γ) and tumor
necrosis factor-α (TNF-α) by the mouse inflammation cytometric bead assay (CBA; BD
Biosciences, Heidelberg, Germany) in a BD FACSCanto II flow cytometer (BD Biosciences)
after incubation at 37 ◦C for 18 h.

2.13. Statistical Analyses

Medians and significance levels were calculated by using GraphPad Prism (ver-
sion 8, San Diego, CA, USA). The Mann–Whitney test was applied for pairwise com-
parisons of not normally distributed data. For multiple comparisons, the one-sided
ANOVA with Tukey’s post-correction was used for normally distributed data and the
Kruskal–Wallis test with Dunn’s post-correction for not normally distributed data. Two-
sided probability (p) values ≤ 0.05 were considered significant. Definite outliers were
removed after being identified by the Grubb’s test (α = 0.001). Data were pooled from three
independent experiments.
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3. Results

3.1. Gastrointestinal Pathogen Loads Following Oral Aviguard® Treatment of C. coli Infected
Secondary Abiotic IL-10−/− Mice

Secondary abiotic IL-10−/− mice were infected with 109 viable C. coli cells on days 0
and 1 by gavage and perorally treated with the commercial competitive exclusion product
Aviguard® on days 2, 3 and 4 p.i. Our cultural analyses of the bacterial suspensions revealed
total numbers of 109 viable bacteria per mL, including 106 CFU Enterobacteriaceae per
mL and between 108 and 5 ×108 CFU Lactobacillus, Enterococcus, Bacteroides/Prevotella and
Clostridium/Eubacterium species per mL (Figure S1A). We additionally performed culture-
independent, 16S rRNA-based analyses for quantifying fastidious and non-cultivable
bacteria. In support of the cultural data, our molecular analyses revealed consistently high
gene numbers of Enterobacteriaceae, Enterococcus genus, Lactobacillus group, Bifidobacterium
genus, Clostridium coccoides and Clostridium leptum groups among individual gavages
(Figure S1B). Hence, the vast majority of cultivable, fastidious and uncultivable probiotic
bacterial species abundant in the commercial competitive exclusion product Aviguard®

(except for Fusobacterium and Propionibacterium species) could be assessed by cultural and
molecular approaches.

Our cultural analyses revealed that C. coli could stably establish within the intestinal
tract of both Aviguard® and placebo-treated mice with comparably high median loads of
109 CFU per g feces as early as day 2 p.i. (Figure 1, Figure S2). Upon necropsy on day 6 p.i.,
the pathogen numbers were slightly lower than day 2 p.i. in Aviguard® treated mice (less
than 0.5 logs; p < 0.05; Figure S2B), which also held for the placebo control mice, however
(p < 0.01; Figure S2A). Hence, Aviguard® could not sufficiently reduce fecal pathogen loads
in C. coli-infected mice.

Microorganisms 2021, 9, x FOR PEER REVIEW 
 

 

 
Figure 1. Comparative analyses of fecal pathogen loads following peroral application of placebo versus the probiotic for-
mulation Aviguard® to C. coli-infected secondary abiotic IL-10-/- mice. Secondary abiotic IL-10-/- mice were infected with a 
C. coli patient isolate on day (d) 0 and d1 by gavage. On d2, d3 and d4, post-infection mice were perorally challenged the 
commercial competitive exclusion product Aviguard® (white boxes) or received placebo (gray boxes). The fecal C. coli 
loads were quantitatively assessed by culture (in colony-forming units per g, CFU/g). The box plots indicate the 25th and 
75th percentiles of the medians (bar within boxes). The total range and the numbers of analyzed animals (in parentheses) 
are given. Pooled data were derived from three independent experiments. +, with; −, without. 

We further assessed the pathogen burdens in defined luminal parts of the gastroin-
testinal tract. On day 6 p.i., approximately two log orders of magnitude lower C. coli num-
bers could be determined in the duodenum and the ileum of Aviguard® as compared to 
placebo-treated mice (p < 0.001 and p < 0.01, respectively; Figure 2), which was, however, 
not the case in the large intestines (Figure 2). Notably, 47.1% of mice from the Aviguard® 
cohort, but only 7.1% of the placebo controls had expelled the pathogen from their stom-
ach lumen. Furthermore, the former exhibited a trend towards approximately 2.5 log or-
ders of magnitude lower median gastric C. coli numbers than the latter (not significant 
(n.s.) given high standard deviations; Figure 2). Hence, Aviguard® treatment lowered the 
pathogen burdens within the proximal but not the distal intestinal tract of C. coli-infected 
IL-10-/- mice. 
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formulation Aviguard® to C. coli-infected secondary abiotic IL-10−/− mice. Secondary abiotic IL-10−/− mice were infected
with a C. coli patient isolate on day (d) 0 and d1 by gavage. On d2, d3 and d4, post-infection mice were perorally challenged
the commercial competitive exclusion product Aviguard® (white boxes) or received placebo (gray boxes). The fecal C. coli
loads were quantitatively assessed by culture (in colony-forming units per g, CFU/g). The box plots indicate the 25th and
75th percentiles of the medians (bar within boxes). The total range and the numbers of analyzed animals (in parentheses)
are given. Pooled data were derived from three independent experiments. +, with; −, without.
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We further assessed the pathogen burdens in defined luminal parts of the gastroin-
testinal tract. On day 6 p.i., approximately two log orders of magnitude lower C. coli
numbers could be determined in the duodenum and the ileum of Aviguard® as compared
to placebo-treated mice (p < 0.001 and p < 0.01, respectively; Figure 2), which was, however,
not the case in the large intestines (Figure 2). Notably, 47.1% of mice from the Aviguard®

cohort, but only 7.1% of the placebo controls had expelled the pathogen from their stom-
ach lumen. Furthermore, the former exhibited a trend towards approximately 2.5 log
orders of magnitude lower median gastric C. coli numbers than the latter (not significant
(n.s.) given high standard deviations; Figure 2). Hence, Aviguard® treatment lowered the
pathogen burdens within the proximal but not the distal intestinal tract of C. coli-infected
IL-10−/− mice.
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On d2, d3 and d4 post-infection (p.i.), mice were perorally challenged with the commercial competitive exclusion product
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distinct compartments of the gastrointestinal tract (indicated) by culture (in colony-forming units per g, CFU / g). The box
plots indicate the 25th and 75th percentiles of the medians (bar within boxes). The total range, the significance levels (p
values) calculated by the Mann–Whitney U test and the numbers of culture-positive mice out of the total number of analyzed
animals (in parentheses) are given. Pooled data were derived from three independent experiments. +, with; −, without.

3.2. Fecal Microbiota Composition Following Oral Aviguard® Treatment of C. coli-Infected
Secondary Abiotic IL-10−/− Mice

We then addressed whether the applied Aviguard® bacteria could stably establish
within the intestinal tract of C. coli-infected and uninfected secondary abiotic IL-10−/−

mice and whether C. coli infection resulted in shifts within the gut microbiota composition.
Our cultural analyses revealed that respective aerobic and anaerobic bacterial groups,
genera and species could be detected in fecal samples obtained on day 6 p.i. with median
loads ranging from approximately 106 up to 1011 CFU per g. Interestingly, C. coli-infected
mice harbored lower obligate anaerobic bacterial species, such as Bacteroides/Prevotella
and Clostridium/Eubacterium species in their feces (p < 0.01, Figure 3A). In support, when
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applying culture-independent, 16S rRNA-based approaches, lower fecal gene numbers
for Bacteroides/Prevotella group/genera (p < 0.001), for Clostridium coccoides (p < 0.05) and
for Clostridium leptum groups (p < 0.05) as well as for Bifidobacterium genus (p < 0.01)
were detected in C. coli-infected than uninfected mice following Aviguard® challenge
(Figure 3B). Hence, the probiotic bacteria could sufficiently establish in the intestinal tract
of mice until day 6 p.i. Thus, 48 h after the latest of three consecutive peroral Aviguard®

applications with lower fecal loads of obligate anaerobic species in the C. coli cohort than
the uninfected counterparts.

3.3. Clinical and Histopathological Sequelae Upon Oral Aviguard® Treatment of C. coli-Infected
Secondary Abiotic IL-10−/− Mice

We further assessed the clinical outcomes of C. coli-infected IL-10−/− mice following
Aviguard® treatment. Therefore, we quantified the key clinical signs of campylobacteriosis,
such as wasting, the abundance of fecal blood and diarrhea in mice before and after
C. coli infection by using standardized clinical scores [35]. Overall, mice from either
cohort displayed rather mild clinical signs of C. coli infection as indicated by median
scores not exceeding 2. Immediately before the first (i.e., day 2 p.i.) until the last (i.e.,
day 4 p.i.) of three consecutive Aviguard® versus placebo applications, mice from the
treatment cohort displayed slightly lower clinical scores than the placebo control group
(p < 0.05–0.001; Figure S3), whereas at the end of the observation period (i.e., day 6 p.i.),
the clinical conditions of C. coli-infected mice from either group were comparable (n.s.;
Figure S3; Figure 4A).
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Figure 3. Comprehensive analysis of the gut microbiota composition following peroral Aviguard®

treatment of C. coli-infected secondary abiotic IL-10−/− mice. Mice were infected with a C. coli patient
isolate on the day (d) 0 and d1 by gavage and perorally challenged with the probiotic formulation
Aviguard® (n = 17) on d2, d3 and d4 post-infection (p.i.). On d6 p.i., the fecal microbiota composition
was quantitatively surveyed by (A) culture (expressed as colony-forming units per g, CFU/g) and by
(B) molecular (i.e., 16S rRNA based) methods (expressed as copies / ng DNA). Aviguard® treated
non-infected mice served as controls (n = 10). The box plots indicate the 25th and 75th percentiles
of the medians (bar within boxes). Total range and significance levels (p values) calculated by the
Mann–Whitney U test are given. Shown data were derived from three independent experiments.
TL, total bacterial load; EB, Enterobacteriaceae; EC, Enterococcus genus; LB, Lactobacillus species;
BP, Bacteroides/Prevotella genus; CE, Clostridium/Eubacterium species; BB, Bifidobacterium genus; CC,
Clostridium coccoides group; CL, Clostridium leptum group.* p < 0.05; ** p < 0.01; *** p < 0.001. +, with;
−, without.
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Figure 4. Clinical conditions, histopathological and apoptotic epithelial cell responses in the colon following peroral
Aviguard® treatment of C. coli-infected secondary abiotic IL-10−/− mice. Mice were infected with a C. coli patient isolate
on day (d) 0 and d1 by gavage. On d2, d3 and d4 post-infection (p.i.), mice were perorally challenged with the probiotic
formulation Aviguard® (white boxes) or received placebo (gray boxes). On d6 p.i., (A) the clinical condition of mice were
quantified applying a clinical scoring system (see methods), and (B) histopathological changes in the colonic mucosa
and lamina propria were assessed with standardized histopathological scores. Furthermore, the average numbers of
colonic epithelial (C) apoptotic (Casp3 + ) cells were determined microscopically from six high-power fields (HPF, 400 ×
magnification) per mouse in immunohistochemically stained colonic paraffin sections. The box plots indicate the 25th and
75th percentiles of the medians (bar within boxes). Total range, significance levels (p values) calculated by the Kruskal–Wallis
test and Dunn’s post-correction and numbers of analyzed mice (in parentheses) are given. Pooled data were derived from
three independent experiments. +, with; −, without.

We further quantitatively determined the large intestinal histopathological changes
upon Aviguard® treatment of C. coli-infected mice in colonic paraffin sections applying
standardized histopathological scores [36]. On day 6 p.i., mild to moderate histopatho-
logical changes within the colonic mucosa could be observed (p < 0.01–0.001 versus
uninfected controls), but with no differences between the Aviguard® and the placebo
cohorts (n.s.; Figure 4B).

Since apoptosis is well-known as a reliable parameter for the grading of intestinal
inflammatory responses [31], we further enumerated colonic epithelial cells positive for
cleaved caspase-3 following immunohistochemical staining of large intestinal paraffin
ex vivo biopsies. In line with the obtained histopathological results, C. coli infection
mounted in increased numbers of apoptotic colonic epithelial cells (p < 0.01–0.001), whereas
comparable counts could be assessed in the Aviguard® and placebo groups at day 6 p.i.
(n.s.; Figure 4C). Hence, Aviguard® did neither affect clinical signs of C. coli infection nor
histopathological nor apoptotic changes in the large intestines of infected IL-10−/− mice.

3.4. Intestinal and Systemic Proinflammatory Immune Responses Following Oral Aviguard®

Treatment of C. coli-Infected Secondary Abiotic IL-10−/− Mice

We further addressed whether peroral Aviguard® application to C. coli-infected sec-
ondary abiotic IL-10−/− mice modulated pathogen-induced immune responses in the
intestinal tract. Therefore, we quantified distinct innate and adaptive immune cell popula-
tions in colonic paraffin sections that had been subjected to defined immunohistochemical
stainings. On day 6 p.i., increased numbers of innate immune cells, such as macrophages
and monocytes as well as of adaptive immune cell subsets, including T lymphocytes,
regulatory T cells and B lymphocytes, could be determined in the colonic mucosa and
lamina propria of mice from either cohort (p < 0.01–0.001; Figure 5). The C. coli induced
increases in macrophages and monocytes as well as in T lymphocytes were, however, less
pronounced following Aviguard® than placebo treatment (p < 0.05 and p < 0.01 versus
placebo, respectively; Figure 5A,B), whereas colonic numbers of regulatory T cells and B
lymphocytes were comparable in both cohorts on day 6 p.i. (n.s.; Figure 5C,D).
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We further assessed proinflammatory cytokine secretion in distinct intestinal com-
partments. Elevated IFN-γ concentrations were measured in ex vivo biopsies taken from 
the colon of C. coli-infected mice (p < 0.05–0.001), but with lower levels in Aviguard® than 
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Figure 5. Colonic immune cell responses following peroral Aviguard® treatment of C. coli-infected secondary abiotic IL-
10−/− mice. Mice were infected with a C. coli patient isolate on day (d) 0 and d1 by gavage. On d2, d3 and d4 post-infection
(p.i.), mice were perorally challenged with the probiotic formulation Aviguard® (white boxes) or received placebo (gray
boxes). On d6 p.i., the average numbers of (A) macrophages and monocytes (F4/80 + ), (B) T lymphocytes (CD3 + ), (C)
regulatory T cells (FOXP3 + ) and (D) B lymphocytes (B220 + ) were determined microscopically from six high-power fields
(HPF, 400 ×magnification) per animal in immunohistochemically stained colonic paraffin sections. The box plots indicate
the 25th and 75th percentiles of the medians (bar within boxes). Total range, significance levels (p values) calculated by the
ANOVA test with Tukey’s post-correction or the Kruskal–Wallis test and Dunn’s post-correction and numbers of analyzed
mice (in parentheses) are given. Pooled data were derived from three independent experiments. +, with; −, without.

We further assessed proinflammatory cytokine secretion in distinct intestinal com-
partments. Elevated IFN-γ concentrations were measured in ex vivo biopsies taken from
the colon of C. coli-infected mice (p < 0.05–0.001), but with lower levels in Aviguard® than
placebo-treated counterparts (p < 0.05; Figure 6A), whereas ileal IFN-γ secretion was less
pronounced in the former versus the latter on day 6 p.i. (p < 0.05; Figure 6B). In MLN,
increases in IFN-γ concentrations were comparable in both treatment groups on day 6 p.i.
(p < 0.05–0.001; Figure 6C), while C. coli-induced TNF-α secretion was enhanced in placebo
control mice only (p < 0.01; Figure 6D).
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We finally addressed whether the immuno-modulatory effects of Aviguard® were 
restricted to the intestinal tract or could also be observed systemically. Therefore, we 
measured proinflammatory cytokines in serum samples taken in C. coli-infected and cor-
responding uninfected control groups. Upon C. coli infection, increased IFN-γ and TNF-
α serum concentrations could be measured (p < 0.01–0.001) but did not differ between 
Aviguard® or placebo-treated mice on day 6 p.i. (n.s.; Figure 7). Hence, Aviguard® treat-
ment of C. coli-infected IL-10-/- mice dampened pathogen-induced proinflammatory im-
mune responses in different compartments of the intestinal tract. 

Figure 6. Intestinal secretion of proinflammatory cytokines following peroral Aviguard® treatment of C. coli-infected
secondary abiotic IL-10−/− mice. Mice were infected with a C. coli patient isolate on day (d) 0 and d1 by gavage. On d2,
d3 and d4 post-infection (p.i.), mice were perorally challenged with the probiotic formulation Aviguard® (white boxes) or
received placebo (gray boxes). On d6 p.i., intestinal IFN-γ concentrations were measured in ex vivo biopsies derived from
the (A) colon, (B) ileum and (C) mesenteric lymph nodes (MLN). Furthermore, (D) TNF-α concentrations were determined
in MLN. The box plots indicate the 25th and 75th percentiles of the medians (bar within boxes). Total range, significance
levels (p values) calculated by the Kruskal–Wallis test and Dunn’s post-correction and numbers of analyzed mice (in
parentheses) are indicated. Outliers were excluded after identification by the Grubb’s test (α = 0.001). Pooled data were
derived from four independent experiments. +, with; −, without.

We finally addressed whether the immuno-modulatory effects of Aviguard® were
restricted to the intestinal tract or could also be observed systemically. Therefore, we
measured proinflammatory cytokines in serum samples taken in C. coli-infected and corre-
sponding uninfected control groups. Upon C. coli infection, increased IFN-γ and TNF-α
serum concentrations could be measured (p < 0.01–0.001) but did not differ between
Aviguard® or placebo-treated mice on day 6 p.i. (n.s.; Figure 7). Hence, Aviguard® treat-
ment of C. coli-infected IL-10−/− mice dampened pathogen-induced proinflammatory
immune responses in different compartments of the intestinal tract.
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Figure 7. Systemic proinflammatory cytokine secretion following peroral Aviguard® treatment of C. coli-infected secondary
abiotic IL-10−/− mice. Mice were infected with a C. coli patient isolate on day (d) 0 and d1 by gavage. On d2, d3 and d4
post-infection (p.i.), mice were perorally challenged with the probiotic formulation Aviguard® (white boxes) or received
placebo (gray boxes). On day 6 p.i., (A) IFN-γ and (B) TNF-α concentrations were measured in serum samples. The box
plots indicate the 25th and 75th percentiles of the medians (bar within boxes). Total range, significance levels (p values)
calculated by the Kruskal–Wallis test and Dunn’s post-correction and numbers of analyzed mice (in parentheses) are
indicated. Outliers were excluded after identification by the Grubb’s test (α = 0.001). Pooled data were derived from four
independent experiments. +, with; −, without.

4. Discussion

In our actual study, we addressed to the best of our knowledge for the first time the
impact of the oral treatment with the competitive exclusion product Aviguard® in C. coli-
induced murine campylobacteriosis. Following a 3-day oral treatment period starting two
days after C. coli infection, Aviguard® when compared to placebo challenged secondary
abiotic IL-10−/− mice i.) exhibited lower pathogen burdens within the proximal (i.e.,
duodenum, ileum), but not the distal intestinal tract (i.e., colon), ii.) presented with
comparable pathogen-induced clinical signs, histopathological and apoptotic epithelial cell
changes in the colon, whereas iii.) intestinal, but not systemic proinflammatory immune
responses were dampened on day 6 p.i.

The decrease in pathogen loads by two log orders of magnitude within the small
intestinal tract needs to be regarded as modest. One needs to take into consideration that
the ecological niches taken by Campylobacter are predominantly the crypts within the large
intestines [47,48]. In the colon, however, Aviguard® could not exhibit pathogen-lowering
effects until day 6 p.i. One may argue that (i) the oral infection dose of 108 C. coli cells
resulting in fecal and colonic pathogen loads of more than 108 CFU per gram was too high
(and beyond usual infection doses); and/or, (ii) the Aviguard® treatment period was too
short to achieve a biologically relevant pathogen-lowering effect and might hence have been
more pronounced following longer application to mice or upon a prophylactic treatment
starting prior C. coli infection, which we currently address in independent studies; (iii)
furthermore, distinct bacterial components within the Aviguard® formulation may either
not have fully established within the gastrointestinal tract of the infected secondary abiotic
murine host following peroral application. In earlier studies, applying a defined mucosal
competitive exclusion flora before infection resulted in approximately two log orders of
magnitude lower C. jejuni loads in the ceca of chickens following challenge with 105 viable
C. jejuni cells [49]. In line with a preceding trial by the same group applying standard
competitive exclusion products [50], the authors questioned the relevant effectiveness of
competitive exclusion products in reducing C. jejuni burdens in the avian host, which may
result in the sustainable reduction of food safety risks as opposed to other enteropathogens,
such as Salmonella, for instance [49,51].
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Except for Fusobacterium and Propionibacterium genera that had not been included in
our analytical panel, all other cultivable, fastidious and uncultivable probiotic bacterial
species could be quantitatively assessed in the applied Aviguard® suspension as well as in
the intestinal luminal samples upon sacrifice by our comprehensive cultural and molecular
analyses. Interestingly, colonic loads of obligate anaerobic bacterial taxa, including Bac-
teroides/Prevotella, Clostridium and Bifidobacterium species, were lower following Aviguard®

treatment of C. coli-infected than uninfected counterparts. In support, intestinal inflamma-
tory conditions in mice and men are accompanied by pronounced shifts in the commensal
gut microbiota composition as indicated by decreased diversity and particularly lower
numbers of potentially probiotic species, such as Bifidobacterium species [52–54]. This
further supports the pivotal triangle interactions between (entero)pathogens, commensal
probiotic bacteria and host immunity during health and disease.

Apart from minor pathogen-lowering properties in the small intestines, oral Aviguard®

application exhibited potent immuno-modulatory, such as inflammation-dampening effects
during acute murine campylobacteriosis. C. coli-infected mice that had been treated with
the probiotic formulation displayed lower numbers of innate as well as adaptive immune
cell subsets, such as macrophages, monocytes and T lymphocytes, respectively, infiltrating
the infected large intestines which resulted in dampened secretion of proinflammatory
cytokines in distinct parts of the intestinal tract, including the colon, ileum and MLN.
However, the inflammation-alleviating effects were restricted to the intestines and could
not be detected systemically given comparable proinflammatory cytokine concentrations
in serum samples obtained from the Aviguard® and placebo cohorts. Interestingly, lowered
colonic T cell counts could be detected even in uninfected secondary abiotic wild-type mice
until four weeks following three oral Aviguard® applications [55].

In our previous C. jejuni infection studies, we showed that oral application of a
single Lactobacillus johnsonii strain that had been isolated from the gut of a naive wild-type
mouse [56] or the probiotic compound VSL#3 consisting of eight bacterial strains, including
three Bifidobacterium species, four Lactobacillus species and Streptococcus thermophilus [57]
could not effectively exclude C. jejuni from the already taken ecological niches within
the large intestines of infected secondary abiotic wild-type mice. Instead, it effectively
dampened the recruitment of macrophages, monocytes and T cells to the colonic mucosa
and lamina propria [56,57], thus, further supporting the here obtained results following
Aviguard® treatment of C. coli-infected mice.

5. Conclusions

In summary, application of the probiotic formulation Aviguard® to C. coli-infected mice
does not result in a biologically relevant decrease in intestinal pathogen loads. However,
it does modulate the host immune responses upon the infecting C. coli strain resulting
in less distinct proinflammatory sequelae in the intestinal tract. Our study provides
evidence that oral application of probiotic formulations, including Aviguard®, may be
promising antibiotic-independent approaches to dampen C. coli-induced immune responses
during human campylobacteriosis. Since the competitive exclusion products are usually
applied in a prophylactic manner and not as treatment measures for already established
enteropathogenic infection like in our survey, we currently evaluate the effects of Aviguard®

before Campylobacter infection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9061127/s1, Figure S1: Microbiota composition of the perorally applied
solutions containing the probiotic formulation Aviguard®, Figure S2: Fecal pathogen loads over time
following peroral treatment of C. coli-infected secondary abiotic IL-10−/− mice with the probiotic
formulation Aviguard®, Figure S3: Clinical conditions over time following peroral treatment of C.
coli-infected secondary abiotic IL-10−/− mice with the probiotic formulation Aviguard®.
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