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Abstract

The human visual cortex enables visual perception through a cascade of hierarchical com-

putations in cortical regions with distinct functionalities. Here, we introduce an AI-driven

approach to discover the functional mapping of the visual cortex. We related human brain

responses to scene images measured with functional MRI (fMRI) systematically to a diverse

set of deep neural networks (DNNs) optimized to perform different scene perception tasks.

We found a structured mapping between DNN tasks and brain regions along the ventral and

dorsal visual streams. Low-level visual tasks mapped onto early brain regions, 3-dimen-

sional scene perception tasks mapped onto the dorsal stream, and semantic tasks mapped

onto the ventral stream. This mapping was of high fidelity, with more than 60% of the

explainable variance in nine key regions being explained. Together, our results provide a

novel functional mapping of the human visual cortex and demonstrate the power of the

computational approach.

Author summary

Human visual perception is a complex cognitive feat known to be mediated by distinct

cortical regions of the brain. However, the exact function of these regions remains

unknown, and thus it remains unclear how those regions together orchestrate visual per-

ception. Here, we apply an AI-driven brain mapping approach to reveal visual brain func-

tion. This approach integrates multiple artificial deep neural networks trained on a

diverse set of functions with functional recordings of the whole human brain. Our results

reveal a systematic tiling of visual cortex by mapping regions to particular functions of the

deep networks. Together this constitutes a comprehensive account of the functions of the

distinct cortical regions of the brain that mediate human visual perception.

1. Introduction

The human visual system transforms incoming light into meaningful representations that

underlie perception and guide behavior. This transformation is believed to take place through
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a cascade of hierarchical processes implemented in a set of brain regions along the so-called

ventral and dorsal visual streams [1]. Each of these regions has been stipulated to fulfill a dis-

tinct sub-function in enabling perception [2]. However, discovering the exact nature of these

functions and providing computational models that implement them has proven challenging.

Recently, computational modeling using deep neural networks (DNNs) has emerged as a

promising approach to model, and predict neural responses in visual regions [3–7]. These

studies have provided a first functional mapping of the visual brain. However, the resulting

account of visual cortex functions has remained incomplete. This is so because previous stud-

ies either explain the function of a single or few candidate regions by investigating many

DNNs or explain many brain regions comparing it to a single DNN trained on one task only

(usually object categorization). In contrast, for a systematic and comprehensive picture of

human brain function that does justice to the richness of the functions that each of its subcom-

ponents implements, DNNs trained on multiple tasks, i.e., functions, must be related and com-

pared in their predictive power across the whole cortex.

Aiming for this systematic and comprehensive picture for the visual cortex we here relate

brain responses across the whole visual brain to a wide set of DNNs, in which each DNN is

optimized for a different visual task, and hence, performs a different function.

To reliably reveal the functions of brain regions using DNNs performing different func-

tions, we need to ensure that only function and no other crucial factor differs between the

DNNs. The parameters learned by a DNN depend on a few fundamental factors, namely, its

architecture, training dataset, learning mechanism, and the function the DNN was optimized

for. Therefore, in this study, we select a set of DNNs [8] that have an identical encoder archi-

tecture and are trained using the same learning mechanism and the same set of training

images. Thus, the parameters learned by the encoder of the selected DNNs differ only due to

their different functions.

We generate a functional map of the visual cortex by comparing the fMRI responses to

scene images [9] with the activations of multiple DNNs optimized on different tasks [8] related

to scene perception, e.g., scene classification, depth estimation, and edge detection. Our key

result is that different regions in the brain are better explained by DNNs performing different

tasks, suggesting different computational roles in these regions. In particular, we find that

early regions of the visual cortex are better explained by DNNs performing low-level vision

tasks, such as edge detection. Regions in the dorsal stream are better explained by DNNs per-

forming tasks related to 3-dimensional (3D) scene perception, such as occlusion detection and

surface normal prediction. Regions in the ventral stream are best explained by DNNs perform-

ing tasks related to semantics, such as scene classification. Importantly, the top-3 best predict-

ing DNNs explain more than 60% of the explainable variance in nine ventral-temporal and

dorsal-lateral visual regions, demonstrating the quantitative power and potential of our AI-

driven approach for discovering fine-grained functional maps of the human brain.

2. Results

2.1 Functional map of visual cortex using multiple DNNs

Our primary goal is to generate a functional map of the visual brain in terms of the functions

each of the regions implements. Our approach is to relate brain responses to activations of

DNNs performing different functions. For this, we used an fMRI dataset recorded while

human subjects (N = 16) viewed indoor scenes [9] and performed a categorization task; and a

set of 18 DNNs [8] optimized to perform 18 different functions related to visual perception

(some of the tasks can be visualized here: https://sites.google.com/view/dnn2brainfunction/

home#h.u0nqne179ys2) plus an additional DNN with random weights as a baseline. The
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different DNNs’ functions were associated with indoor scene perception, covering a broad

range of tasks from low-level visual tasks, (e.g., edge detection) to 3-dimensional visual percep-

tion tasks (e.g., surface normals prediction) to categorical tasks (e.g., scene classification). Each

DNN consisted of an encoder-decoder architecture, where the encoder had an identical archi-

tecture across tasks, and the decoder varied depending on the task. To ensure that the differ-

ences in variance of fMRI responses explained by different DNNs from our set were not due to

differences in architecture, we selected the activations from the last two layers of the identical

encoder architecture for all DNNs.

The layer selection was based on an analysis finding the most task-specific layers of the

encoder (see S1 Text and S2 Fig). Furthermore, all DNNs were optimized using the same set of

training images, and the same backpropagation algorithm for learning. Hence, any differences

in our findings across DNNs cannot be attributed to the training data statistics, architecture,

or learning algorithm, but to the task for which each DNN was optimized.

To compare fMRI responses with DNNs, we first extracted fMRI responses in a spatially

delimited portion of the brain for all images in the stimulus set (Fig 1A). This could be either a

group of spatially contiguous voxels for searchlight analysis [10–12] or voxels confined to a

particular brain region as defined by a brain atlas for a region-of-interest (ROI) analysis. Equiv-

alently, we extracted activations from the encoders of each DNN for the same stimulus set.

We then used Representational Similarity Analysis (RSA) [13] to compare brain activations

with DNN activations. RSA defines a similarity space as an abstraction of the incommensura-

ble multivariate spaces of the brain and DNN activation patterns. This similarity space is

defined by pairwise distances between the activation patterns of the same source space, either

fMRI responses from a brain region or DNN activations, where responses can be directly

related. For this, we compared all combinations of stimulus-specific activation patterns in each

source space (i.e., DNN activations, fMRI activations). Then, the results for each source space

were noted in a two-dimensional matrix, called representational dissimilarity matrices

(RDMs). The rows and columns of RDMs represent the conditions compared. To relate fMRI

and DNNs in this RDM-based similarity space we performed multiple linear regression pre-

dicting fMRI RDM from DNN RDMs of the last two encoder layers. We obtained the adjusted

coefficient of determination R2 (referred to as R2 in the subsequent text) from the regression

to quantify the similarity between the fMRI responses and the DNN (Fig 1B). We performed

this analysis for each of the 18 DNNs investigated, which we group into 2D, 3D, or semantic

DNNs when those are optimized for 2D, 3D, or semantic tasks, respectively, and an additional

DNN with random weights as a baseline. The tasks were categorized into three groups (2D,

3D, and semantic) based on different levels of indoor scene perception and were verified in

previous works using transfer performance using one DNN as the initialization to other target

tasks [8] and representational similarity between DNNs [14]. We finally used the obtained

DNN rankings based on R2 to identify the DNNs with the highest R2 for fMRI responses in

that brain region (Fig 1C top). To visualize the results, we color-coded the brain region by

color indexing the DNN showing the highest R2 in that brain region (Fig 1C bottom).

To generate a functional map across the whole visual cortex we performed a searchlight

analysis [11,12]. In detail, we obtain the R2-based DNN rankings on the local activation pat-

terns around a given voxel, as described above. We conducted the above analysis for each

voxel, resulting in a spatially unbiased functional map.

We observed that different regions of the visual cortex showed the highest similarity with

different DNNs. Importantly, the pattern with which different DNNs predicted brain activity

best was not random but spatially organized: 2D DNNs (in shades of blue in Fig 1D; interactive

map visualization available here: https://sites.google.com/view/dnn2brainfunction/home#h.

ub1chq1k42n6) show a higher similarity with early visual regions, 3D DNNs (in shades of

PLOS COMPUTATIONAL BIOLOGY Unveiling functions of the visual cortex using task-specific deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009267 August 13, 2021 3 / 22

https://sites.google.com/view/dnn2brainfunction/home#h.ub1chq1k42n6
https://sites.google.com/view/dnn2brainfunction/home#h.ub1chq1k42n6
https://doi.org/10.1371/journal.pcbi.1009267


green) show a higher similarity with dorsal regions, while semantic DNNs (in shades of

magenta) show a higher similarity with ventral regions and some dorsal regions.

Together, the results of our AI-driven mapping procedure suggest that early visual regions

perform functions related to low-level vision, dorsal regions perform functions related to both

3D and semantic perception, and ventral regions perform functions related to semantic

perception.

Fig 1. Methods and results of functional mapping of the visual cortex by task-specific DNNs. A) Schema of DNN-fMRI

comparison. As a first step, we extracted DNN activations from the last two layers (block 4 and output) of the encoders, denoted as

b41(xi), o1(xi) for DNN1 and b4n(xi), on(xi) for DNNn in the figure, from n DNNs and the fMRI response of a region f(xi) for the ith

image xi in the stimulus set. We repeated the above procedure for all the images in the stimulus set. B) We used the extracted

activations to compute the RDMs, two for the two DNN layers and one for the brain region. Each RDM contains the pairwise

dissimilarities of the DNN activations or brain region activations, respectively. We then used multiple linear regression to obtain an

R1
2 score to quantify the similarity between DNN1 and the brain region. We repeated the same procedure using other DNNs to

obtain corresponding R2 C) We obtained a ranking based on R2 to identify the DNNs with the highest R2 for fMRI responses in that

brain region. To visualize the results, we color-coded the brain region by the color indexing the DNN showing the highest R2 in that

brain region. D) Functional map of the visual brain generated through a spatially unbiased searchlight procedure, comparing 18

DNNs optimized for different tasks and a randomly initialized DNN as a baseline. We show the results for the voxels with significant

noise ceiling and R2 with DNN (p<0.05, permutation test with 10,000 iterations, FDR-corrected). An interactive visualization of the

functional brain map is available in this weblink (https://sites.google.com/view/dnn2brainfunction/home#h.ub1chq1k42n6).

https://doi.org/10.1371/journal.pcbi.1009267.g001
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2.2 Nature and predictive power of the functional map

Using the searchlight results from Fig 1D, we identified the DNN that showed the highest R2

for each searchlight. This poses two crucial questions that require further investigation for an

in-depth understanding of the functions of brain regions. Firstly, does a single DNN promi-

nently predict a region’s response (one DNN-to-one region) or a group of DNNs together pre-

dict its response (many DNNs-to-one region)? A one-to-one mapping between DNN and a

region would suggest a single functional role while a many-to-one mapping would suggest

multiple functional roles of the brain region under investigation. Secondly, given that the

DNNs considered in this study predict fMRI responses, how well do they predict on a quanti-

tative scale? A high prediction accuracy would suggest that the functional mapping obtained

using our analysis is accurate, while a low prediction accuracy would suggest that DNNs con-

sidered in this study are not suitable to find the function of that brain region. Although it is

possible to answer the above questions for each voxel, for conciseness we consider 25 regions

of interest (ROIs) tiling the visual cortex from a brain atlas [15].

To determine how accurately DNNs predict fMRI responses, we calculated the lower and

upper bound of the noise ceiling for each ROI. We included ROIs (15 out of 25) with a lower

noise ceiling above 0.1 and discarded other ROIs due to low signal-to-noise ratio. We show

the locations of the investigated ROIs in the visual cortex in Fig 2A.

For each ROI we used RSA to compare fMRI responses (transformed into fMRI RDMs)

with activations of all 18 DNNs plus a randomly initialized DNN as a baseline (transformed

into DNN RDMs). This yielded one R2 value for each DNN per region (see S3 Fig). We then

selected the top-3 DNNs showing the highest R2 and performed a variance partitioning analy-

sis [16]. We used the top-3 DNN RDMs as the independent variable and the ROI RDM as the

dependent variable to find out how much variance of ROI responses is explained uniquely by

each of these DNNs while considered together with the other two DNNs. Using the variance

partitioning analysis (method illustrated in S1 Fig) we were able to infer the amount of unique

and shared variance between different predictors (DNN RDMs) by comparing the explained

variance (R2) of a DNN used alone with the explained variance when it was used with other

DNNs. Variance partitioning analysis (Fig 2B) using the top-3 DNNs revealed the individual

DNNs that explained the most variance uniquely for a given ROI along with the unique and

shared variance explained by other DNNs. The DNN that detects edges explained significantly

higher variance (p<0.05, permutation test, FDR corrected across DNNs) in ROIs in early and

mid-level visual regions (V1v, V1d, V2v, V2d, V3v, and hV4) uniquely than the other two

DNNs, suggesting a function related to edge detection. Semantic segmentation DNN explained

significantly higher unique variance in ventral ROIs VO1 and VO2, suggesting a function

related to the perceptual grouping of objects. 3D DNNs (3D Keypoints, 2.5D Segmentation,

3D edges, curvature) were best predicting DNNs for dorsal ROIs V3d and V3b suggesting

their role in 3D scene understanding. A combination of 3D and semantic DNNs were best pre-

dicting DNNs for other ROIs (PHC1, PHC2, LO1, LO2, and V3a). It is crucial to note that if

two DNNs from the same task group are in the top-3 best predicting DNNs for an ROI, the

unique variance of ROI RDM explained by DNNs in the same group will generally be lower

than by DNN not in the group. We have observed that DNNs in the same task group show a

higher correlation with each other as compared to DNNs in other task groups [14]. A higher

correlation between the DNNs of the same task group leads to an increase in shared variance

and reduces the unique variance of the ROI RDM explained by within task group DNNs. For

instance, we can observe this in PHC2 (also in PHC1, V3a), where two semantic DNNs explain

less unique variance than a 3D DNN. Therefore, in such cases, we restrain from interpreting

that one type of DNN is significantly better than others.
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Fig 2. Nature and predictive power of the functional map. A) Cortical overlay showing locations of selected cortical regions from the

probabilistic atlas used. B) Absolute total variance (R2) explained in 15 ROIs by using the top-3 DNNs together. The Venn diagram for

each ROI illustrates the unique and shared variance of the ROI responses explained by the combination of the top-3 DNNs. The bar plot

shows the unique variance of each ROI explained by each of the top-3 DNNs individually. The asterisk denotes the significance of unique

variance and the difference in unique variance (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs). The error

bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations). C) Variance of each ROI

explained by top-3 best predicting DNNs (cross validated across subjects and conditions) indicated in blue bars compared with lower

and upper bound of noise ceiling indicated by shaded gray region. The error bars show the 95% confidence interval calculated across

N = 16 subjects. All the R2 values are statistically significant (p<0.05, two-sided t-test, FDR-corrected across ROIs).

https://doi.org/10.1371/journal.pcbi.1009267.g002
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Overall, we observed a many-to-one relationship between function and region for multiple

regions, i.e., multiple DNNs explained jointly a particular brain region. In early and mid-level

regions (V1v, V1d, V2v, V3v) the most predictive functions were related to low-level vision

(2D edges, denoising, and 2D segmentation). In dorsal regions V3d and V3b, the most predic-

tive functions were related to 3D scene understanding. In later ventral and dorsal regions

(V2d, hV4, VO1, VO2, PHC1, PHC2, LO1, LO2, and V3a) we observed a mixed mapping of

2D, 3D, and semantic functions suggesting multiple functional roles of these ROIs. The

predictability of a region’s responses by multiple DNNs demonstrates that a visual region in

the brain has representations well suited for distinct functions. A plausible conjecture of the

above findings is that these regions might be performing a function related to the best predict-

ing DNNs but is not present in the set of DNNs investigated in this study.

To determine the accuracy of the functional mapping of the above ROIs, we calculated the

percentage of the explainable variance explained by the top-3 best predicting DNNs. We calcu-

lated the explained variance by best predicting DNNs using cross-validation across subjects

(N-fold) and conditions (two-fold). As we use multiple models together for multiple linear

regression, we need to cross-validate using different sets of RDMs for fitting and evaluating

the fit of the regression. Here, we perform cross-validation across subjects by fitting the regres-

sion on one-subject-left-out subject-averaged RDMs on half of the images in the stimulus set

and evaluating on the left-out single subject RDM on the other half of the images. The above

method is a stricter evaluation criterion as compared to the commonly used one without

cross-validation (See S5 Fig). We compared the variance explained by the top-3 DNNs with

the lower estimate of the noise ceiling which is an estimate of the explainable variance. We

found that variance explained in nine ROIs (V1v, V1d, V2v, V3v, VO1, PHC1, LO2, LO1,

V3a) is higher than 60% of the lower bound of noise ceiling (Fig 2C, absolute R2 =

0.085 ± 0.046). In absolute terms, the minimum, median, and maximum cross-validated R2

values across the 15 ROIs were 0.014 (PHC2), 0.044 (VO1), and 0.27 (V1v) which are compa-

rable to related studies [17] performing evaluation in a similar manner. This shows that the

DNNs selected in this study predict fMRI responses well and therefore are suitable for map-

ping the functions of the investigated ROIs.

In sum, we demonstrated that in many regions of the visual cortex, DNNs trained on differ-

ent functions predicted activity. This suggests that these ROIs have multiple functional roles.

We further showed quantitatively that more than 60% of the explainable variance in nine

visual ROIs is explained by the set of DNNs we used, demonstrating that the selected DNNs

are well suited to investigate the functional roles of these ROIs.

2.3 Functional map of visual cortex through 2D, 3D, and semantic tasks

In the previous section, we observed a pattern qualitatively suggesting different functional

roles of early (2D), dorsal (3D and semantic), and ventral (semantic) regions in the visual cor-

tex. To quantitatively assess this, we investigated the relation of brain responses and DNNs not

at the level of single tasks, but task groups (2D, 3D, and semantic), where DNNs belonging to a

task group showed a higher correlation with other DNNs in the group than with DNNs in

other task groups (see S1 Text).

We averaged the RDMs of DNNs in each task group to obtain aggregate 2D, 3D, and

semantic RDMs. Averaging the RDMs based on task groups reduced the number of DNN

comparisons from 18 to 3. This allowed us to perform variance partitioning analysis to com-

pare fMRI and DNN RDMs, which would be impractical with 18 single DNNs due to a large

number of comparisons and computational complexity. When used in this way, variance
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partitioning analysis reveals whether and where in the brain one task group explained brain

responses significantly better than other task groups.

We first performed a searchlight analysis to identify where in the cortex one task group

explains significantly higher variance uniquely than the other task groups. We selected the

grouped DNN RDM that explains the highest variance in a given region uniquely to create a

functional map of the task groups in the visual cortex (Fig 3A). Here, due to the reduced num-

ber of comparisons, we can clearly observe distinctions where one grouped DNN explains

fMRI responses better than the other grouped DNNs (p<0.05, permutation test with 10,000

Fig 3. Functional mapping of the visual cortex with respect to 2D, 3D, and semantic tasks. A) Functional map of the

visual cortex showing the regions where unique variance explained by one DNN group (2D, 3D, or semantic) is significantly

higher than the variance explained by the other two DNN groups (p<0.05, permutation test with 10,000 iterations, FDR-

corrected). We show the results for the voxels with a significant noise ceiling that show significantly higher unique variance

for one DNN group than other two DNN groups (p<0.05, permutation test with 10,000 iterations, FDR-corrected across

DNNs and searchlights). The functional brain map can be visualized in this weblink (https://sites.google.com/view/

dnn2brainfunction/home#h.xi402x2hr0p3). B) Absolute variance (R2) explained in 15 ROIs by using 3 DNN RDMs

averaged across task groups (2D, 3D, or semantic). The Venn diagram for each ROI illustrates the unique and shared

variance of the ROI responses explained by the combination of 3 task groups. The bar plot shows the unique variance of

each ROI explained by each task group individually. The asterisk denotes whether the unique variance or the difference in

unique variance was significant (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs). The error

bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations).

https://doi.org/10.1371/journal.pcbi.1009267.g003
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iterations, FDR corrected across DNNs and searchlights). The resulting functional map

(Fig 3A; interactive visualization available in this link: https://sites.google.com/view/

dnn2brainfunction/home#h.xi402x2hr0p3) is different from the functional map in Fig 1D in

two ways. First, in the functional map here we highlight the searchlight where one DNN group

explained significantly higher variance uniquely than the other 2 DNN groups. In the func-

tional map of Fig 1D, we highlighted the DNN that explained the highest variance of a search-

light without performing any statistical analysis whether the selected DNN was significantly

better than the second best DNN or not due to the higher number of comparisons. Second,

here we compared functions using groups of DNNs (3 functions: 2D, 3D and semantic),

whereas in the previous analysis we compared functions using single DNNs (18 functions).

The comparison using groups of DNNs allows us to put our findings in context with previous

neuroimaging findings that are typically reported at this level.

We observed that the 2D DNN RDM explained responses in the early visual cortex, seman-

tic DNN RDM explained responses in the ventral visual stream, and some parts in the right

hemisphere of the dorsal visual stream, and 3D DNN RDM explained responses in the left

hemisphere of the dorsal visual stream. The above findings quantitatively reinforce our quali-

tative findings from the previous section that early visual regions perform functions related to

low-level vision, dorsal regions perform functions related to both 3D and semantic perception,

and ventral regions perform functions related to semantic perception.

While the map of the brain reveals the most likely function of a given region, to find out

whether a region can have multiple functional roles we need to visualize the variance explained

by other grouped DNN RDMs along with the best predicting DNN RDM. To achieve that, we

performed a variance partitioning analysis using 3 grouped DNN RDMs as the independent

variable and 15 ROIs in the ventral-temporal and the dorsal-ventral stream as the dependent

variable. The results in Fig 3B show the unique and shared variance explained by group-level

DNN RDMs (2D, 3D, and semantic) for all the 15 ROIs.

From Fig 3B we observed that the responses in early ROIs (V1v, V1d, V2v, V3v, hV4) are

explained significantly higher (p<0.05, permutation test with 10,000 iterations, FDR corrected

across DNNs) by 2D DNN RDM uniquely, while responses in later ventral-temporal ROIs

(VO1, VO2, PHC1, and PHC2) are explained by semantic DNN RDM uniquely. In dorsal-lat-

eral ROIs (V3a, V3d) responses are explained by 3D RDM uniquely. In LO1, LO2, and V3b

3D and semantic DNN RDMs explained significant variance uniquely while in V2d all 2D, 3D,

and semantic DNN RDMs explained significant unique variance. It is crucial to note that for

the ROI analysis here we use grouped DNN RDMs as compared to Fig 2B where we selected

top-3 single DNNs that showed the highest R2 with a given ROI. The comparison with

grouped DNN RDMs provides a holistic view of the functional role of ROIs which might be

missed if one of the DNNs that is related to the functional role of a ROI is not in the top-3

DNNs (as analyzed in Fig 2B). For instance, in Fig 3B the results suggest both 3D and semantic

functional roles of V3b which is not evident from Fig 2B where the top 3-DNNs were all opti-

mized on 3D tasks.

Together, we found that the functional role of the early visual cortex is related to low-level

visual tasks (2D), the dorsal stream is related to tasks involved in 3-dimensional perception

and categorical understanding of the scene (3D and semantic), and in the ventral stream is

related to the categorical understanding of the scene (semantic).

2.4 Functional roles of scene-selective regions

In the previous sections, we focused on discovering functions of regions anatomically defined

by an atlas. Since the stimulus set used to record fMRI responses consisted of indoor scenes, in
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this section we investigate functional differences in functionally localized scene-selective

regions. We here focus on two major scene-selective ROIs: occipital place area (OPA) and

parahippocampal place area (PPA), putting results into context with the early visual cortex

(EVC) as an informative contrast region involved in basic visual processing. The analysis fol-

lowed the general rationale as used before.

We first investigated the functional differences in these regions by performing variance par-

titioning analysis using top-3 DNNs (see R2 based ranking of all DNNs in S4 Fig) that best

explained a given ROIs’ responses (Fig 4A). We found that the DNN that detects edges

explained significantly higher variance (p<0.05, permutation test, FDR-corrected) in EVC

uniquely than the other two DNNs, suggesting a function related to edge detection. 3D DNNs

(3D Keypoints, 2.5D Segmentation, 3D edges) were best predicting DNNs for OPA suggesting

its role in 3D scene understanding. A combination of semantic (semantic segmentation, scene

classification) and 3D (3D keypoints) DNNs were best predicting DNNs for PPA suggesting

its role in both semantic and 3D scene understanding.

We then investigated the functional differences by performing variance partitioning analy-

sis using aggregated 2D, 3D, and semantic DNN RDMs obtained by averaging the individual

DNN RDMs in each task group (Fig 4B). We found that for EVC and OPA results are highly

consistent with top-3 DNN analysis showing a prominent unique variance explained by the

Fig 4. Functional roles of localized ROIs. A) Absolute total variance (R2) explained in functionally localized ROIs by using the top-3 DNNs

together. The Venn diagram for each ROI illustrates the unique and shared variance of the ROI responses explained by the combination of the

top-3 DNNs. The bar plot shows the unique variance of each ROI explained by each of the top-3 DNNs individually. The asterisk denotes the

significance of unique variance and the difference in unique variance (p<0.05, permutation test with 10,000 iterations, FDR-corrected across

DNNs). The error bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations). B) Absolute total

variance (R2) explained in functionally localized ROIs by using 3 DNN RDMs averaged across task groups (2D, 3D, or semantic). The Venn

diagram for each ROI illustrates the unique and shared variance of the ROI responses explained by the combination of 3 DNN task groups.

The bar plot shows the unique variance of each ROI explained by each task group individually. The asterisk denotes whether the unique

variance or the difference in unique variance was significant (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs).

The error bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations).

https://doi.org/10.1371/journal.pcbi.1009267.g004
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2D DNN RDM in EVC and the 3D DNN RDM in OPA. Interestingly, in PPA we find that the

semantic DNN RDM shows the highest unique variance with no significant unique variance

explained by the 3D DNN RDM. The insignificant unique variance explained by the 3D DNN

RDM is potentially due to averaging the DNN RDMs of all 3D DNNs (high ranked as well as

low ranked) which may lead to diminishing the contribution of an individual high ranked 3D

DNN RDM (e.g. 3D keypoints that was in top-3 DNNs for PPA). Overall, we find converging

evidence that OPA is mainly related to tasks involved in 3-dimensional perception (3D), and

PPA is mainly related to semantic (categorical) understanding of the scene.

3. Discussion

In this study, we harvested the potential of discovering functions of the brain from comparison

to DNNs by investigating a large set of DNNs optimized to perform a set of diverse visual

tasks. We found a systematic mapping between cortical regions and function: different cortical

regions were explained by DNNs performing different functions. Importantly, the selected

DNNs explained 60% of the explainable variance in nine out of 15 visual ROIs investigated,

demonstrating the accuracy of the AI-driven functional mapping obtained using our analysis.

Our study provides a systematic and comprehensive picture of human brain functions

using DNNs trained on different tasks. Previous studies [3–7,17–24] have compared model

performance in explaining brain activity, but were limited to a few preselected regions and

models, or had a different goal (comparing task structure) [25]. Using the same fMRI dataset

as used in this study, a previous study [18] showed that representation in scene-selective ROIs

consists of both location and category information using scene-parsing DNNs. We go beyond

these efforts by comparing fMRI responses across the whole visual brain using a larger set of

DNNs, providing a comprehensive account of the function of human visual brain regions.

We obtained the functional mapping of different regions in the visual cortex on both indi-

vidual (e.g., 2D edges, scene classification, surface normals, etc.) and group (2D, 3D, semantic)

levels of visual functions. We discuss the novel insights gained at the level of individual func-

tions that inform about the fine-grained functional role of cortical regions.

First, we consider 2D DNNs, where the denoising DNN explained significant unique vari-

ance in V1v, V1d, V2v, V2d, V3v, and hV4. The denoising task requires the DNN to recon-

struct an unperturbed input image from slightly perturbed (e.g., adding Gaussian noise in the

current case) input image that encourages learning representations robust to slight perturba-

tions and limited invariance. This suggests that these ROIs might be generating a scene repre-

sentation robust to high frequency noise.

When considering 3D DNNs, the 3D Keypoint and the 2.5d segment were among the top-3

best predicting DNNs in multiple ROIs. The 3D Keypoints DNN explained significant unique

variance in V3d, PHC1, PHC2, LO2, LO1, V3a, V3b, OPA, and PPA. The 3D Keypoints task

requires the DNN to identify locally important regions of the input image based on object

boundary information and surface stability. This suggests that the ROIs in which 3D Keypoints

DNN explained significant variance may be identifying locally important regions in a scene.

The identification of locally important regions might be relevant to selectively attend to these

key regions to achieve a behavioral goal e.g., searching for an object. The 2.5d segment DNN

explained significant unique variance in V3d, LO2, LO1, V3b, V3a, and OPA. The 2.5d seg-

ment task requires the DNN to segment images into perceptually similar groups based on

color and scene geometry (depth and surface normals). This suggests that the ROIs in which

2.5d segment DNN explained significant variance may be grouping regions in the images

based on color and geometry cues even without any knowledge of the categorical information.
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Grouping regions based on geometry could be relevant to behavioral goals such as reaching

for objects or identifying obstacles.

Among semantic DNNs, the semantic segmentation DNN explained significant unique var-

iance in VO1, VO2, PHC1, PHC2, V3a, and PPA. The semantic segmentation task requires

the DNN to segment objects present in the image based on categories. This suggests that the

ROIs in which semantic segmentation DNN explained significant variance may be grouping

regions in the image based on categorical information.

Other DNNs (2D edges, scene classification, and object classification) that showed signifi-

cant unique variance in ROIs provided functional insights mostly consistent with the previous

studies [26–30]. Overall, the key DNNs (denoising, 3D keypoints, 2.5D segment, and semantic

segmentation) that explained significant variance in multiple ROI responses uniquely promote

further investigation by generating novel hypotheses about the functions of these ROIs. Future

experiments can test these hypotheses in detail in dedicated experiments.

The functional mapping obtained using grouped DNNs is complementary to that at the

individual level and helps us put functional mapping obtained here in context with previous

literature. We found that early visual regions (V1v, V1d, V2v) have a functional role related to

low-level 2D visual tasks which is consistent with previous literature investigating these regions

[26–28]. In dorsal-ventral ROIs (V3a, V3d, LO1, and LO2) we found functional roles related

to 3D and semantic tasks converging with evidence from previous studies [31–35]. Similarly,

the prominent semantic functional role of later ventral-temporal ROIs (VO1, VO2, PHC1,

and PHC2) found in this study converges with findings in previous literature [29–30]. In

scene-selective ROIs, we found a semantic functional role for PPA and 3D functional role for

OPA respectively. Our study extends the findings of a previous study [23] relating OPA and

PPA to 3D models by differentiating between OPA and PPA functions through a much

broader set of models. To summarize, the functional mapping using individual DNNs opti-

mized to perform different functions revealed new functional insights for higher ROIs in the

visual cortex while at the same time functional mapping using grouped DNNs showed highly

converging evidence with previous independent studies investigating these ROIs.

Beyond clarifying the functional roles of multiple ROIs, our approach also identifies quanti-

tatively highly accurate prediction models of these ROIs. We found that the DNNs explained

60% of the explainable variance in nine out of 15 ROIs. Our findings, thus, make advances

towards finding models that generate new hypotheses about potential functions of brain

regions as well as predicting brain responses well [21,36–38].

A major challenge in meaningfully comparing two or more DNNs is to vary only a single

factor of interest while controlling the factors that may lead to updates of DNN parameters. In

this study, we address this challenge by selecting a set of DNNs trained on the same set of train-

ing images using the same learning algorithm, with the same encoder architecture, while being

optimized for different tasks. Our results, thus, complement previous studies that focused on

other factors influencing the learning of DNN parameters such as architecture [20,39,40], and

the learning mechanism [41–43]. Our approach accelerates the divide-and-conquer strategy of

investigating human brain function by systematically and carefully manipulating the DNNs

used to map the brain in their fundamental parameters one by one [21,44–46]. Our high-

throughput exploration of potential computational functions was initially inspired by Marr’s

computational level of analysis [47] which aims at finding out what the goal of the computa-

tion carried out by a brain region is. While Marr’s approach invites the expectation of a one-

to-one mapping between regions and goals, we found evidence for multiple functional roles

(3D + semantic) using DNNs in some ROIs (e.g. LO1, LO2, PHC1, PHC2). This indicates a

many-to-one mapping [48] between functions and brain regions. We believe such a systematic
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approach that finds the functional roles of multiple brain regions provides a starting point for

a further in-depth empirical inquiry into functions of the investigated brain regions.

Our study is related to a group of studies [49–52] applying DNNs in different ways to

achieve a similar goal of mapping functions of brain regions using DNNs. Some studies [49–

51] applied optimization algorithms (genetic algorithm or activation maximization) to find

images that maximally activate a given neuron’s or group of neurons’ response. Another

related study [52] proposes Neural Information Flow (NIF) to investigate functions of brain

regions where they train a DNN with the objective function to predict brain activity while pre-

serving a one-to-one correspondence between DNN layers and biological neural populations.

While sharing the overall goal to discover functions of brain regions, investigating DNN func-

tions allows investigation in terms of which computational goal a given brain region is best

aligned with. With new computer vision datasets [53] investigating a diverse set of tasks rele-

vant to human behavioral goals [54,55] our approach opens new avenues to investigate brain

functions.

A limitation of our study is that our findings are restricted to functions related to scene per-

ception. Thus, the functions we discovered for non-scene regions correspond to their func-

tions when humans are perceiving scenes. In contrast, our study does not characterize the

functions of these regions when humans perceive non-scene categories such as objects, faces,

or bodies. We limited our study to scene perception because there are only a few image data-

sets [8,56] that have annotations corresponding to a diverse set of tasks, thus, allowing DNNs

to be optimized independently on these tasks. The Taskonomy dataset [8] with annotations of

over 20 diverse scene perception tasks and pretrained DNNs available on these tasks along

with the availability of an fMRI dataset related to scene perception [9], therefore, provided a

unique opportunity. However, the approach we presented in this study is not limited to scene

perception. It can in principle be extended to more complex settings such as video understand-

ing, active visual perception, and even outside the vision modality, given an adequate set of

DNNs and brain data. While in this study we considered DNNs that were trained indepen-

dently, future studies might consider investigating multitask models [57,58] which are trained

to perform a wide range of functions using a single DNN. Multitask modeling has the potential

to model the entire visual cortex using a single model as compared to several independent

models used in this study. Another potential limitation is that our findings are based on a sin-

gle fMRI and image dataset, so it is not clear how well they would generalize to a broader sam-

ple of images. Given the explosive growth of the deep learning field [59] and the ever

increasing availability of open brain imaging data sets [60,61] we see a furtive ground for the

application of our approach in the future.

Beyond providing theoretical insight with high predictive power, our approach can also

guide future research. In particular, the observed mapping between cortical region and func-

tion can serve as a quantitative baseline and starting point for an in-depth investigation

focused on single cortical regions. Finally, the functional hierarchy of the visual cortex from

our results can inspire the design of efficient multi-task artificial visual systems that perform

multiple functions similar to the human visual cortex.

4. Materials and methods

4.1 fMRI data

We used fMRI data from a previously published study [9]. The fMRI data were collected from

16 healthy subjects (8 females, mean age 29.4 years, SD = 4.8). The subjects were scanned on a

Siemens 3.0T Prisma scanner using a 64-channel head coil. Structural T1-weighted images

were acquired using an MPRAGE protocol (TR = 2,200 ms, TE = 4.67 ms, flip angle = 8˚,

PLOS COMPUTATIONAL BIOLOGY Unveiling functions of the visual cortex using task-specific deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009267 August 13, 2021 13 / 22

https://doi.org/10.1371/journal.pcbi.1009267


matrix size = 192 × 256 × 160, voxel size = 0.9 × 0.9 × 1 mm). Functional T2�-weighted images

were acquired using a multi-band acquisition sequence (TR = 2,000 ms for main experimental

scans and 3,000 ms for localizer scans, TE = 25 ms, flip angle = 70˚, multiband factor = 3,

matrix size = 96 × 96 × 81, voxel size = 2 × 2 × 2 mm).

During the fMRI scan, subjects performed a category detection task while viewing images

of indoor scenes. On each trial, an image was presented on the screen at a visual angle of

~17.1˚ x 12.9˚ for 1.5 s followed by a 2.5s interstimulus interval. Subjects had to respond by

pressing a button indicating whether the presented image was a bathroom or not while main-

taining fixation on a cross. The stimulus set consisted of 50 images of indoor scenes (no bath-

rooms), and 12 control images (five bathroom images, and seven non-bathroom images).

fMRI data were preprocessed using SPM12. For each participant, the functional images were

realigned to the first image followed by co-registration to the structural image. Voxelwise

responses to 50 experimental conditions (50 indoor images excluding control images) were

estimated using a general linear model.

4.2 Deep neural networks

For this study, we selected 18 DNNs trained on the Taskonomy [8] dataset optimized on 18

different tasks covering different aspects of indoor scene understanding. The Taskonomy data-

set is a large-scale indoor image dataset consisting of annotations for 18 single image tasks,

thus, allowing optimization of DNNs on 18 different tasks using the same set of training

images. We briefly describe the objective functions and DNN architectures below. For a

detailed description, we refer the reader to Zamir et al. [8].

4.2.1 Tasks and objective functions of the DNNs. The Taskonomy dataset consists of

annotations for tasks that require pixel-level information such as edge detection, surface nor-

mal estimation, semantic segmentation, etc. as well as high-level semantic information such as

object/scene classification probabilities. The tasks can be broadly categorized into 4 groups:

relating to low-level visual information (2D), the three-dimensional layout of the scene (3D),

high-level object and scene categorical information (semantic), and low-dimensional geometry

information(geometrical). The above task categorization was obtained by analyzing the rela-

tionship between the transfer learning performance on a given task using the models pre-

trained on other tasks as the source tasks. The 2D tasks were edge detection, keypoint

detection, 2D segmentation, inpainting, denoising, and colorization; 3D tasks were surface

normals, 2.5D segmentation, occlusion edges, depth estimation, curvature estimation, and

reshading; semantic tasks were object/scene classification and semantic segmentation, and

low-dimensional geometric tasks were room layout estimation and vanishing point. A detailed

description of all the tasks and annotations is provided in http://taskonomy.stanford.edu/

taskonomy_supp_CVPR2018.pdf. In this study, we did not consider low dimensional geomet-

ric tasks as they did not fall into converging clusters according to RSA and transfer learning as

in the case of 2D, 3D, and semantics tasks. To perform a given task, DNN’s parameters were

optimized using an objective function that minimizes the loss between the DNN prediction

and corresponding ground truth annotations for that task. All the DNNs’ parameters were

optimized using the corresponding objective function, on the same set of training images. Due

to the use of the same set of training images the learned DNN parameters vary only due to the

objective function and not the difference in training dataset statistics. A complete list of objec-

tive functions used to optimize for each task is provided in this link (https://github.com/

StanfordVL/taskonomy/tree/master/taskbank). We downloaded the pretrained models using

this link (https://github.com/StanfordVL/taskonomy/tree/master/taskbank), where further

details can be found.
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4.2.2 Network architectures. The DNN architecture for each task consists of an encoder

and a decoder. The encoder architecture is consistent across all the tasks. The encoder archi-

tecture is a modified ResNet-50 [62] without average pooling and convolutions with stride 2

replaced by convolutions with stride 1. ResNet-50 is a 50-layer DNN with shortcut connections

between layers at different depths. Consistency of encoder architecture allows us to use the

outputs of the ResNet-50 encoder as the task-specific representation for a particular objective

function. For all the analysis in this study, we selected the last two layers of the encoder as the

task-specific representation of the DNN. Our selection criteria was based on an analysis (see

S1 Text and S2 Fig) that shows task-specific representation is present in those layers as com-

pared to earlier layers. In this way, we ensure that the difference in representations is due to

the functions these DNNs were optimized for and not due to the difference in architecture or

training dataset. The decoder architecture is task-dependent. For tasks that require pixel-level

prediction, the decoder is a 15-layer fully convolutional model consisting of 5 convolutional

layers followed by alternating convolution and transposed convolutional layers. For tasks,

which require low dimensional output, the decoder consists of 2–3 fully connected layers.

4.3 Representational Similarity Analysis (RSA)

To compare the fMRI responses with DNN activations we first need to map both the modali-

ties in a common representational space and then by comparing the resulting mappings we

can quantify the similarity between fMRI and DNNs. We mapped the fMRI responses and

DNN activations to corresponding representational dissimilarity matrices (RDMs) by comput-

ing pairwise distances between each pair of conditions. We used the variance of upper triangu-

lar fMRI RDM (R2) explained by DNN RDMs as the measure to quantify the similarity

between fMRI responses and DNN activations. To calculate R2, we assigned DNN RDMs

(RDMs of the last two layers of the encoder) as the independent variables and assigned fMRI

RDM as the dependent variable. Then a multiple linear regression was fitted to predict fMRI

RDM from the weighted linear combination of DNN RDMs. We evaluated the fit by estimat-

ing the variance explained (R2). We describe how we mapped from fMRI responses and DNN

activations to corresponding RDMs in detail below.

Taskonomy DNN RDMs. We selected the last two layers of the Resnet-50 encoder as the

task-specific representation of DNNs optimized on each task. For a given DNN layer, we com-

puted the Pearson’s distance between the activations for each pair of conditions resulting in a

condition x condition RDM for each layer. This resulted in a single RDM corresponding to

each DNN layer. We followed the same procedure to create RDMs corresponding to other lay-

ers of the network. We averaged the DNN RDMs across task clusters (2D, 3D, and semantic)

to create 2D, 3D, and semantic RDMs.

Probabilistic ROI RDMs. We downloaded probabilistic ROIs [15] from the link (http://

scholar.princeton.edu/sites/default/files/napl/files/probatlas_v4.zip). We extracted activations

of the probabilistic ROIs by applying the ROI masks on the whole brain response pattern for

each condition, resulting in ROI-specific responses for each condition for each subject. Then

for each ROI, we computed the Pearson’s distance between the voxel response patterns for

each pair of conditions resulting in a RDM (with rows and columns equal to the number of

conditions) independently for each subject. To compare the variance of ROI RDM explained

by DNN RDMs with the explainable variance we used independent subject RDMs. For all the

other analyses, we averaged the RDMs across the subjects resulting in a single RDM for each

ROI due to a higher signal to noise ratio in subject averaged RDMs.

Searchlight RDMs. We used Brainiak toolbox code [63] to extract the searchlight blocks for

each condition in each subject. The searchlight block was a cube with radius = 1 and edge
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size = 2. For each searchlight block, we computed the Pearson’s distance between the voxel

response patterns for each pair of conditions resulting in a RDM of size condition times condi-

tion independently for each subject. We then averaged the RDMs across the subjects resulting

in a single RDM for each searchlight block.

4.4 Variance partitioning

Using RSA to compare multiple DNNs we do not obtain a complete picture of how each

model is contributing to explaining the fMRI responses when considered in conjunction with

other DNNs. Therefore, we determined the unique and shared contribution of individual

DNN RDMs in explaining the fMRI ROI RDMs when considered with the other DNN RDMs

using variance partitioning.

We performed two variance partitioning analyses on probabilistic ROIs: first using the top-

3 DNNs that best explained a given ROI’s responses and second using RDMs averaged accord-

ing to task type (2D, 3D, and semantic). For the first analysis, we assigned a fMRI ROI RDM as

the dependent variable (referred to as predictand) and assigned RDMs corresponding to the

top-3 DNNs as the independent variables (referred to as predictors). For the second analysis,

we assigned an fMRI ROI (searchlight) RDM as the dependent variable (referred to as predic-

tand). We then assigned three DNN RDMs (2D, 3D, and semantic) as the independent vari-

ables (referred to as predictors).

For both variance partitioning analyses, we performed seven multiple regression analyses:

one with all three independent variables as predictors, three with different pairs of two inde-

pendent variables as the predictors, and three with individual independent variables as the pre-

dictors. Then, by comparing the explained variance (R2) of a model used alone with the

explained variance when it was used with other models, we can infer the amount of unique

and shared variance between different predictors (see S1 Fig).

4.5 Searchlight analysis

We perform two different searchlight analyses in this study: first to find out if different regions

in the brain are better explained by DNNs optimized for different tasks and second to find the

pattern by taking the averaged representation DNNs from three task types (2D, 3D, and

semantic). In the first searchlight analysis, we applied RSA to compute the variance of each

searchlight block RDM explained by 19 DNN RDMs (18 Taskonomy DNNs and one randomly

initialized as a baseline) independently. We then selected the DNN that explained the highest

variance as the preference for the given searchlight block. In the second searchlight analysis,

we applied variance partitioning with 2D, 3D, and semantic DNN RDMs as the independent

variables, and each searchlight block RDM as the dependent variable. For each searchlight

block, we selected the task type whose RDMs explained the highest variance uniquely as the

function for that block. We used the nilearn (https://nilearn.github.io/index.html) library to

plot and visualize the searchlight results.

4.6 Comparison of explained with explainable variance

To relate the variance of fMRI responses explained by a DNN to the total variance to be

explained given the noisy nature of the fMRI data, we first calculated the lower and upper

bounds of the noise ceiling as a measure of explainable variance and then compared cross-vali-

dated explained variance of each ROI by top-3 best predicting DNNs. In detail, the lower noise

ceiling was estimated by fitting each individual subject RDMs as predictand with mean subject

RDM of other subjects (N-1) as the predictor and calculating the R2. The resulting subject-spe-

cific R2 values were averaged across the N subjects. The upper noise ceiling was estimated in a
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similar fashion while using mean subject RDMs of all the subjects (N) as the predictor. To cal-

culate variance explained by the best predicting DNNs we fit the regression using cross valida-

tion in 2N folds (2 folds across conditions, N folds across subjects) where the regression was fit

using the subject averaged RDMs of N-1 subjects and the fit was evaluated using R2 on the left

out subject and left out conditions. Finally, we then calculated the mean R2 across 2N folds

and divided it by the lower bound of the noise ceiling to obtain the ratio of the explainable var-

iance explained by the DNNs.

4.7 Statistical testing

We applied nonparametric statistical tests to assess the statistical significance in a similar man-

ner to a previous related study [64]. We assessed the significance of the R2 through a permuta-

tion test by permuting the conditions randomly 10,000 times in either the neural ROI/

searchlight RDM or the DNN RDM. From the distribution obtained using these permutations,

we calculated p-values as one-sided percentiles. We calculated the standard errors of these cor-

relations by randomly resampling the conditions in the RDMs for 10,000 iterations. We used

re-sampling without replacement by subsampling 90% (45 out of 50 conditions) of the condi-

tions in the RDMs. We used an equivalent procedure for testing the statistical significance of

the correlation difference and unique variance difference between different models.

For ROI analysis, we corrected the p-values for multiple comparisons by applying FDR cor-

rection with a threshold equal to 0.05. For searchlight analyses, we applied FDR correction to

correct for the number of DNNs compared as well as to correct for the number of searchlights

that had a significant noise ceiling.

We applied a two-sided t-test to assess the statistical significance of the cross-validated

explained variance across N subjects. We corrected the p-values for multiple comparisons by

applying FDR correction.

Supporting information

S1 Fig. Variance partitioning overview. Given a set of multiple independent variables and

dependent variables, multiple linear regression results in R-squared (R2) that represents the

proportion of the variance for a dependent variable that’s explained by independent variables

in a regression model. To find how 3 DNN RDMs together explain the variance of a given

fMRI RDM we perform 7 multiple regression and illustrate unique and shared variance

explained by models through a Venn diagram.

(TIFF)

S2 Fig. Selecting task-specific DNN representation to compare with fMRI data. A) Spear-

man’s correlation of all DNN RDMs at a given layer of the encoder with other DNN RDMs

computed at the same layer. We report the mean pairwise correlation of all 18 DNNs at differ-

ent layers of the encoder. B) Spearman’s correlation of all DNN RDMs at a given layer of the

encoder with a randomly initialized model with the same architecture computed at the same

layer. We report the mean correlation of all 18 DNNs with the randomly initialized DNN at

different layers of the encoder. C) Spearman’s correlation of all DNN RDMs at a given layer of

the encoder with deeper layers (block4 and encoder output) of 2D DNNs. We report the mean

correlation of the key layers of all 18 DNNs with deeper layers (block4 and encoder output) of

2D DNNs. D) Spearman’s correlation between layers at different depths for DNNs corre-

sponding to different task types. We report the mean correlation between different layers aver-

aged across different DNNs of the same task type. E) Effect of adding all the key layers on

unique and shared variance of fMRI RDMs from different ROIs as compared to selecting only

PLOS COMPUTATIONAL BIOLOGY Unveiling functions of the visual cortex using task-specific deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009267 August 13, 2021 17 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009267.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009267.s002
https://doi.org/10.1371/journal.pcbi.1009267


task-specific layers for variance partitioning analysis. We report the change in variance

explained (variance change) for 7 variance partitions when all key layers were used for analysis

as compared to selecting task-specific layers.

(TIFF)

S3 Fig. R2 ranking for 18 Taskonomy DNNs and random baseline in anatomical ROIs. The

bar plot shows the absolute total variance of each ROI RDM explained by task-specific layer

RDMs of a given DNN. The asterisk denotes the significance of total variance (p<0.05, permu-

tation test with 10,000 iterations, FDR-corrected across DNNs). The error bars show the stan-

dard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations).

(TIFF)

S4 Fig. R2 ranking for 18 Taskonomy DNNs and random baseline in functionally localized

ROIs. The bar plot shows the absolute total variance of each ROI RDM explained by task-spe-

cific layer RDMs of a given DNN. The asterisk denotes the significance of total variance

(p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs). The error bars

show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 itera-

tions).

(TIFF)

S5 Fig. Effect of cross validation on variance explained (R2). A) Variance of each ROI

explained by top-3 best predicting DNNs compared for different cross-validation settings

(blue bars: no cross validation; orange bars: cross validation across subjects; green bars: cross

validation across subjects and stimuli). The error bars show the 95% confidence interval calcu-

lated across N = 16 subjects. All the R2 values are statistically significant (p<0.05, two-sided t-

test, FDR-corrected across ROIs) B) Variance of each ROI explained by 1000 randomly gener-

ated RDMs compared for different cross-validation settings (blue bars: no cross validation;

orange bars: cross validation across subjects; green bars: cross validation across subjects and

stimuli). The error bars show the 95% confidence interval calculated across N = 16 subjects.
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S1 Text. Selecting task-specific DNN representations.
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