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ABSTRACT

English

Infrastructure providers rely on the execution of third-party applications to offer their
platforms to customers and researchers. The execution of each application without a pre-
ceded security review poses a risk for the system and the overall IT infrastructure. How-
ever, if the unreviewed application is available for execution, it is also available for an
analysis to generate appropriate countermeasures to prevent unwanted behaviour. This
work investigates the capabilities of an automated secure environment. This environment
is generated based on the analysis of applications that are only available in their ma-
chine code format. The analysis focuses on the interaction of the application with the
operating system through the system call interface. Therefore this work describes required
technologies and mechanisms to collect data, process it and generate rules for a secure
environment to protect assets from attacks. This process and the result environment is
tested with real-world applications and attacks to determine its effectiveness and overall
costs. It is shown that the described solution is able to decrease the rate of successful
attacks against the system from 83% to 9% in selected use-cases. This is achieved with an
execution overhead of 823 ms average. These results demonstrate that it is possible to util-
ise automatic software analysis pipelines to build restricted execution environments for
pre-compiled applications. It also highlight the advantages and limitations of the selected
approach to focus the analysis on the system call interface.

Deutsch

BetreiberInnen von Rechenzentren und IaaS-Systemen fiihren eine Vielzahl von Anwendun-
gen unterschiedlichen Ursprungs von KundInnen und ForscherInnen aus. Die Ausfiihrung
dieser Anwendungen ist erforderlich, um die angebotene Dienstleistung zu erfiillen, kann
jedoch erhebliche Schiaden im System oder der gesamten Infrastruktur verursachen, wenn
sie ohne vorherige Sicherheitsiiberpriifung erfolgt. Da die Applikation jedoch zur Aus-
fihrung auf dem System vorliegen muss, kann sie auch analysiert werden, um geeignete
Gegenmafinahmen zu ergreifen und Schdden zu verhindern. Diese Arbeit untersucht die
Moglichkeiten zur automatisierten Erstellung einer sicheren Ausfiihrungsumgebung fiir
Anwendungen aus nicht vertrauenswiirdigen Quellen, welche nur als Bindrcode vorlie-
gen. Dabei fokussiert sich die Analyse der Anwendung auf dessen Interaktion mit dem
Betriebssystem tiber das System Call-Interface. Hierfiir werden die notwendigen Techno-
logien zur Datenerfassung, -verarbeitung und -auswertung vorgestellt, sowie deren Ver-
wendung zur Konfiguration einer gesicherten Ausfithrungsumgebung beschrieben. Die



entwickelte Losung wird anschlieffend mit realen Testanwendungen und Angriffen aus-
gewertet. Es wird gezeigt werden, dass die generierte gesicherte Ausfithrungsumgebung
die Quote erfolgreicher Angriffe auf das Testsystem von 83% auf bis zu 9% senken kann.
Dabei wird die Gesamtlaufzeit der Anwendung im Durchschnitt um 823 ms erhoht. Diese
Ergebnisse zeigen, dass es moglich sein kann, mit automatisierter Softwareanalyse eine
effektive Pipeline zur Ausfithrung nicht vertrauenswiirdiger Software zu erstellen. Es
werden ebenfalls die Vorteile und Einschrankungen der System Call-basierten Analyse

diskutiert.
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INTRODUCTION

Infrastructure provider sell their computational capacities to customers to enable them
to run custom applications within a fault tolerant and accessible environment. Scientific
infrastructures offer computational resources to associated researchers which allow them
to execute long running applications or data intensive calculation. Both use-cases depend
on the execution of software, provided by the client (customer or researcher).

The execution of arbitrary software inside the infrastructure is potentially dangerous
because of unwanted behaviour. Erroneous functionality like bugs or incorrectly imple-
mented algorithms as well as malicious applications are threats to the providers assets.
The compromisation of a computing system through the disguise of a benign application
is one major path of infection for threats like viruses, trojan horses, spyware or ransom-
ware [4].

Different approaches have been developed over time to protect computing systems from
threats such as data loss, data leakage, hardware failures or malware infection. Multi-User
systems, virtual memory management, separation of process spaces as well as different
levels of virtualisation are components available for modern operating systems. However,
their setup and configuration are tedious tasks that require profound knowledge of the
target computing system, software executed and threats faced. Additionally, maintaining
the security of the infrastructure is an ongoing process. Applications from new clients that
access the computing systems need to be secured and newly discovered vulnerabilities
must be mitigated.

1.1 PROBLEM STATEMENT

The execution of applications provided by a client or another untrusted source inside
a computational powerful shared infrastructure is a substantial risk for their providers.
Nonetheless, this risk cannot be avoided since the provision of computing resources is
the business model of commercial IaaS/PaaS provider. Clients require them to run their
applications and providers need to execute the clients software as part of their service
offered.

The same problems from commercial providers apply for research institutions that of-
fer their computing resources to associated partners. Authorised researchers transfer their
algorithms bundled together with required dependencies as executable applications into
the infrastructure. In big data, the transfer of the algorithms into the infrastructure that
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Figure 1: Examples for technical assets according to the ontology of Herzog et al. [6]

hosts the data is part of the paradigm [5] which makes the execution of the client applic-
ation compulsory.

For both commercial and scientific infrastructure providers (service provider), a malicious
or even an erroneous application poses a threat to one or more of their assets (see fig. 1).
Thus, the implementation of appropriate security measures is mandatory. Virtualisation
technologies like virtual machines or operating system based virtualisation help to isolate
software from the computing system. Other mechanisms like access control lists, memory
isolation or firewalls also provide mechanisms to protect the system against threats.

The implementation of effective and efficient security measures on the other hand is
difficult. The foreign applications are complex and consist of multiple components that
might interact with each other in different ways. A program itself (as well as its compon-
ents) might also interact with the operating system. To guarantee that the execution poses
no threat to the computing system is hard or even impossible [7]. Because the service
provider controls the operating system and installed software that makes up the infra-
structure, these components can be considered trustful and working correctly. For this
reason this work focusses on securing of the untrusted application which is executed in a
trusted environment.

The investigation of an application for threats is feasible if its source code is available.
Such a source code analysis can be conducted to identify potential risks. It can also detect
prerequisites that have to apply for a threat to become harmful. Because applications
can incorporate additional third-party components (libraries, frameworks, toolboxes, etc.);
these subsidiary code parts need to be investigated too. However, different issues can
make a source code analysis of the application an its components impossible or produce
incomplete results:

¢ The source code analysis fails to detect parts or interactions that pose a threat to the
infrastructure.



1.1 PROBLEM STATEMENT

¢ Closed-source software components prevent a thorough source code analysis at all.

¢ The user might by unable to investigate the application due to e.g. lack of time or
insufficient expertise.

* Legal issues disallow a source code analysis.

So the guarantee of benign execution is impossible and if one or more of the issues
above apply, the questionable application can not be verified to be harmless to the system
either. Therefore it must be considered untrusted. It does not matter if an issue relates to
the software as a whole or to only a selected part. As soon as there is uncertainty about
the behaviour to anticipate throughout execution, it is advised to consider the application
untrusted. Figure 2 illustrates the problem of untrusted parts inside the application where
a user (e.g. a developer) might have high confidence in the trustworthiness of his/her
algorithm, but can make no such assumptions for the other components.

Algorithm Virtual Machines
Toolboxes/Libraries Frameworks meeract System Libraries
External
Fesastionts Other Code Operating System
Application Environment
trusted untrusted

Figure 2: Visualisation of a complex application consisting of an analysis algorithm accompanied
by third-party libraries and other components that is executed in an environment with
operating system, library dependencies and virtualisation.

As described above, the service provider lacks domain knowledge of the untrusted
application and for this reason has to consider the application altogether as untrusted.
The service provider is required to offer an application agnostic infrastructure to the clients.
Thus a manipulation of the client application itself through e.g. recompililation is not
feasible. As a result, the infrastructure itself must be protected from threats that may result
from the untrusted application. Appropriate countermeasures must be taken to mitigate
threats that target the assets of the service provider.

These countermeasures need to be sophisticated enough to prevent all threats but at the
same time still allow the computing system to execute benign applications in an expected
fashion. Also, if it is considered that many untrusted applications with different purposes



1.2 RESEARCH QUESTIONS

security config 1 security config 2 security config n

generic system security config

. threat |:| security configuration - untrusted application

Figure 3: Design of a computer system with dedicated security settings for each executed applica-
tion and overall system-wide security setup.

are executed on a system, there should be dedicated security mechanisms in place that
are tailored for each application.

Figure 3 visualises a system with multiple executed application. Each of them is ex-
ecuted with a dedicated security configuration. These configurations allow only actions
necessary for anticipated client application execution but deny other actions. Especially
those actions that result in threats for the computing system have to be stopped. Addi-
tionally, due to threats from external sources, the computing system itself requires general
security mechanisms for their mitigation.

Application agnostic execution of untrusted applications from different sources while
simultaneously providing dedicated security configurations to protect assets is a difficult
task. Application specific security configurations require information about the program
that is run. These information might not be available due to the reasons described above.
Furthermore, thorough knowledge about security mechanisms that can be employed for
threat mitigation is required. As a result of the lack of information and configuration
complexity, service provider usually do not employ security models as shown in figure 3.
Instead, the general system security configuration is extended to protect the system from
external threats and unwanted application actions.

In order to maximise the overall service infrastructure security, this work introduces
methods based on the analysis of machine code of untrusted applications. These will be
used to anticipate their behaviour during execution and extract the information required
for dedicated security configurations as shown earlier.

1.2 RESEARCH QUESTIONS

As described above, the execution of arbitrary untrusted software by service providers
is mandatory but dangerous. Different threats target assets of the infrastructure and can
e.g. impair proper functionality of the computing systems. To establish dedicated per-
application security configurations information about the client programs are required.
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With the availability of static and dynamic code analysis as well as application emulation,
powerful tools are available to collect the required information.

The untrusted application needs to be investigated for critical actions that might harm
the computer system. However this requires a mechanism or interface to base the categor-
isation of actions as threatening or safe. Since most threats result from an unwanted or
uncontrolled access to system-managed resources, a categorisation based on this resource
access is feasible. The system call interface must be used to access resources that are man-
aged by the operating system. Since it is mandatory for resource access, it is a promising
interface to focus on during software analysis to identify threats. Using the system call
interface to control or supervise an application is also feasible as shown first by Goldberg
et al. in [8].

With the focus on the usage of the system call interface software analysis methods like
static and dynamic code analysis can be used. This includes partial or full emulation as
part of the dynamic analysis. To collect required information if the source code of the
client application is unavailable, the analysis must be able to process machine code. With
the collected data during analysis an automatic process should be able to extract the
knowledge required to configure a dedicated application security system similar to figure
3. To achieve this, the following two main research questions will be discussed in this
work.

Can a combination of static and dynamic machine code analysis techniques be used to
extract exhaustive information about the behaviour of arbitrary untrusted applications?
Furthermore, how can these information be used to generate an application security con-
figuration that allows the execution of the untrusted program while protecting the assets
of the service provider?

These two questions themselves lead to several other problems related to software ana-
lysis and the configuration of isolated execution environments. The following paragraphs
will further introduce these questions and outline how the research presented in this
thesis addresses them. The solutions for the related problems are an integral part of the
solution of the main problem described above.

1.2.1  Machine Code Analysis

This thesis will focus on untrusted applications that are available only in their compiled
form. This form is called machine code, compiled application or binary and consists of a
series of instructions that can be run by any processor of the programs target architecture.
Additional application components as shown in figure 2 that are required to execute the
application have to be considered too.

Code analysis itself (not limited to machine code analysis) can be done either statically
or dynamically. Static machine code analysis investigates the application through the ana-
lysis of the given machine code instructions. The application itself is neither executed nor
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emulated. Because of the limitation of static analysis (which will be described in detail in
chapter 4), dynamic code analysis methods can be used. They are used in unit tests to test
software modules, in integration tests to verify correct software component interaction
and are the basis of memory leak detection. Dynamic program analysis is based on the
observation and investigation of the application during its runtime. It is therefore either
executed directly or emulated with different degrees of abstraction.

To extract the desired information about interaction with the operating system through
the system call interface, two tasks need to be completed. First is the reconstruction of
the execution path which led to the resource access that involves the system call interface.
An execution path is the sequence of machine code instructions that led from a dedicated
start instruction to another one in an arbitrary amount of instructions passed on the way.
As a result of this principle, each time an instruction evaluates a conditional that affects
the program flow (e.g. an if-clause), the execution path must be divided and all pos-
sible ongoing paths need to be investigated further. To evaluate conditionals the second
task of constructing application execution state need to be considered. The execution state
comprises the values of all inputs that are available during the application execution (pro-
cessor registers, heap and stack memory). A condition in the execution path therefore
refers to an execution state that evaluates it as true.

Static code analysis is able to reconstruct possible execution paths, but suffers from the
fast growing complexity when investigating potential paths of execution. This is required
because there is not sufficient information about the execution state. If the execution path
is divided and the limited information about execution state does not allow to identify
a subpath as unreachable, the analysis must follow the subpath for a complete analysis.
Since dynamic program analysis actually executes (or at least emulates the execution of)
the application it has a more complete execution state to work with. As a result it can rule
out unreachable execution paths.

The execution state of the application is also important when a system call interface
interaction is detected. The data provided to the interface about which resource to access
is also part of the execution state.

In consequence, this work needs to investigate how methods from static and dynamic
code analysis can be used to investigate applications in their compiled form. It is required
to collect usage information of the system call interface as well as the execution state of
the application at the time of the interface invocation.

1.2.2  Security Configuration Generation

The results of the machine code analysis should be used to generate the desired applica-
tion specific security configuration. This configuration must be usable to set up a secure
execution environment for the untrusted application. This environment must restrict the
access to resources that are not authorised for access by the application. This restricted
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environment is called a sandbox in this work. The sandbox is active during application
execution and should not consume any more resources once the application finishes. This
is important for multi-user systems like those offered by the service providers because
stale resources are unavailable for current and new clients.

produces builds
application application

machine code analysis security sandbox
configuration

Figure 4: Generation of an execution sandbox based on the configuration generated from the data
collected by machine code analysis.

This process is shown in figure 4. The result sandbox realises the computer system
design with dedicated security configurations for each executed application as described
in the problem statement. A benign application can function within the limits of the sand-
box, whereas malicious or erroneous behaviour will try to access prohibited resources
that will trigger the sandbox. A result of the latter behaviour is either the termination of
the application or the denial of resource access. Either way the action is prevented and
therefore the potential threat mitigated.

This procedure can be generalised for computing systems inside an infrastructure. Such
a system can be described by a state S, which encompasses all its assets and their status.
The generation of the security configuration for an application and subsequent execution
in the derived sandbox will transfer the system into the new state S’. The process is
working properly if all assets in state S” are in a status that is either equal of better than
the one in state S.

1.2.3 Threat, Asset and Result Evaluation

The above description of system state S and the status of system assets leads to the next
topic that are addressed in this work.

To compare two different states of the computing system a metric to actually measure
the security of a system state is required. Since security is an intangible term according to
[9], it is required to define a scheme to measure desired aspects of the system state and
generate the metric with these measurements. As described above, this work focusses
on the assets of a service provider, which are reflected as assets of computing systems.
Therefore they are part of the system state and must be used in the evaluation metric.

Because the system state is made up of the status of the system assets, the metric
to describe the system state needs to consider and evaluate these. However, this is not
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enough as a system faces threats while it is in a certain state. Therefore the system state
metric must consider and rate threats too.

Finally, only a metric that is able to rate the system state according to the principles
described is usable to evaluate the effectiveness of the installed sandbox. For this reason
a metric to achieve this security evaluation must be conceived alongside the process of
application analysis and sandbox generation.

1.3 OBJECTIVES AND CONTRIBUTIONS

This work is focused on applied security research and will introduce and evaluate a frame-
work that is capable of achieving the tasks outlined above. Since information security is an
extensive field of research and overall computing system diversity is large, this work will
focus on selected technologies and software components. Nonetheless it will employ gen-
eralisable approaches that can be transferred to similar use-cases like different operating
systems, processor architectures or security frameworks.

To design a comprehensive solution for the secure execution of untrusted applications,
this work focuses on applications in their compiled form as machine code files. Even if the
source code of the applications or their parts are available, their analysis is not considered.
There is already extensive research about static and dynamic source code-based applic-
ation verification, testing and threat detection. Furthermore, the developed techniques
focus on Linux-based operating systems and x86 64-Bit architecture processors. Nonethe-
less, since the mechanisms of interaction for applications with the operating systems are
generalisable, the presented solution can be adapted for other operating systems. The
system call interface is also slightly different for other processor architectures. Anyhow,
similar to the adoption of other operating systems, the support for other processor archi-
tectures can be realised through adjustments in the machine code analysis framework.

The contribution of this work to the field of applied informatics research can be found
in the developed algorithm to extract resource access information from an application
without actual execution. Based on this information, a security configuration is generated
that protects infrastructure assets from threats that originate from untrusted applications.
Finally a metric to rate the security of a system state as well as threats and assets is a
contribution to informatics research that can be used beyond the scope of this work.

1.4 STRUCTURE OF THE THESIS

The first chapter of the thesis will focus on the definition of assets present on computing
systems and valuable to the service provider. Based on these assets, an overview of threats
and threat classes is conducted to identify those relevant for this work. With the know-
ledge about assets and threats related to the infrastructure, different metrics are presented
that can be used to measure the security of a system state.
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The next chapter introduces the system call interface and the conceptional structure
of application interaction with the operating system to access resources. Based on this
introduction the association of assets and threats to system call interface utilisation is
discussed. Such an abstraction between operating system-depended low-level interface
invocations and abstract system assets is used to associate system calls to possible threats.

Chapter 4 focusses on the analysis of the untrusted application. The presented methods
will be used to extract the required information of the system call interface utilisation from
the program that is investigated. The structure of executable applications and dynamic
libraries on Linux-systems is described and different methods for static and dynamic
analysis are presented. The eligibility of these methods to work on applications only
available in their machine code is also considered and discussed in this chapter.

Finally technologies and frameworks that are capable to generate sandboxes that allow
the protection of the defined assets are presented in chapter 5. The presented technolo-
gies are also discussed based on their eligibility to be configured with the information
extracted with the methods from the preceding chapter.

The final chapters of the thesis introduce the methods to analyse the untrusted applic-
ation, generate the security configuration and set up the application sandbox. Based on
the identified metrics for system state security evaluation, experiments are described to
validate the effectiveness of the approach as a whole and the resulting sandbox. Finally a
discussion of the achieved results and an outlook conclude the thesis.
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INFRASTRUCTURE AND TECHNOLOGIES



SECURITY EVALUATION

As described in the introduction, a service provider has an interest to provide a secure
infrastructure to the clients. This chapter investigates the abstract term of security and de-
duces concepts and technologies that helps to realise this secure infrastructure. This defin-
ition of security is required in later chapters to identify threats based on this definition
in machine code analysis and to configure a sandbox that protects the computing system
assets.

After the security definition is done, an analysis is conducted about threats that the
infrastructures faces. This section includes related work about the categorisation and uni-
fication of the diverse classes of threats. After this categorisation is done, metrics to meas-
ure the severity of threats are introduced.

Finally, since this work requires an overall measurement of system security, methods
and approaches for this task are presented in the last section.

2.1 SECURITY CONCEPTS

The definition of security is difficult as it is an intangible state that describes different
things when assessed from different perspectives. However, there has been work to cat-
egorise security and to name secure features as well as system state that can be considered
secure. Once these things are defined it becomes feasible to describe threats that attack
the security of the system. This section provides an overview of established definitions of
security and threats.

A disambiguation of the different core concepts related to system security is given by
Herzog, Shahmehri and Duma in [6]. A figure with important concepts for this work is
shown in figure 5.

The infrastructure of the service provider consists of multiple assets as shown in figure
1 that must be protected. These are threatened by threats and attacked by attacks. There
is a minor difference between attack and threat regarding the state of realisation. A threat
is an abstract concept of something that might somehow impact the infrastructure. An
attack realises one or more threats and targets the assets of the infrastructure. Since the
difference between these concepts lies solely in the state of realisation, they are often used
synonymously in the literature [6, 10, 11]. Finally, in this work, an adversary or attacker is
a person or entity, that uses attacks to target assets of the service provider. If the adversary
is successful with the attack, the asset gets compromised.

12
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has vulnerability attacks realises
Attack
Asset Threat
threatens
. Coal enabled
1 t
protects ecurity GGoa by
Counter- Defence
Vulnerability
measure Strategy

Figure 5: Overview of the core concepts and relations for an security ontology according to [6]
extended with the Attack concept.

2.1.1 Assets

An asset is a useful or valuable thing for the service provider. Herzog, Shahmehri and
Duma provide a complex ontology for the asset concept in [6]. The visualisation of this
ontology is shown in appendix B. Their work divides assets into human, technological
and credential-based assets. The protection of human assets is beyond the scope of this
work. Table 1 shows the classes for credential-based assets and table 2 displays the classes
of technology-based assets.

This asset definition is comprehensive and describes the different classes of valuable
things for a service provider. Other approaches to the definition of system security like
the one from Bates et al. focus on system provenance [10]. Based on this approach for
system security, they identify Scientific Computing, Access Control and Networks as assets of
the computing system. Their "network" assets can be matched to the network asset class
shown in table 2. "Scientific computing" relates to the data asset class. This is shown by
the description of the threat to this asset as an (...) adversary may wish to manipulate

provenance in order to commit fraud, or to inject uncertainty into records (...) [10, p.

322]". Finally "access control" relates to the protection of assets of the credential class and
describes a countermeasure for unauthorised access as well.

Other literature focuses on the description of threats and attacks that realise these
threats. Therefore this work uses the ontology of Herzog et al. to reference different types
of assets and to investigate attack target classes.

13
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Class Sub-Class Asset-Classes

Encryption Key (Symmetric, Private, Public Key)

i Password
Electronic -
Token Login Name
Cookie
Credential Message Digest (Authentication Code Data, Digital Signa-
ture Data, Certificate Data, Checksum Data)
Biometric Physical Biometric Credential (Facial pattern, Fingerprint,
Token Retina, Iris, Hand Measurement)

Behavioural Biometric Credential (Voice, Gait)

Physical Dongle
Token Smart Card

Table 1: Classes and sub-classes of the credential asset concept [6]

2.1.2 Threats and Attacks

The ontology of Herzog et al. also contains classes of threats and summarizes them in
the Threat concept of the ontology. A full concept definition of this part of the ontology
can be found in appendix A. Bates et al. focus on the definition of system goals for their
provenance-based system security approach [10]. Their work does not specify concrete
threats that they try to mitigate. Instead they name the "system-goals" Tamperproofness,
Verifiability, Authenticated Communication and Attested Disclosure. These relate to the Secur-
ity Goals class rather than the threat class according to [6] and can therefore not be used
for threat specification.

Sabahi names Data leakage and Cloud security issues like DDoS-attacks against or from
the infrastructure as security threats [12]. A more broad description of threats against
arbitrary computer systems was given by Myagmar, Lee and Yurcik in [11]. They name
spoofing, tampering, repudiation, information disclosure, denial of service and elevation of priv-
ilege as threat classes based on the work introduced by Swiderski and Snyder [13]. Papp
et al. focus their investigation on embedded systems and show different attack paths [14]
(see figure 6).

The "attack method" that Papp et al. describe in their work relate to actual attacks that
were investigated on embedded systems. Similar to the ontology presented in figure 5,
attacks realise a threat that is enabled by different vulnerabilities as shown in figure 6.
The attack is aimed at a certain target which can by related to the above described asset
term. Therefore the attack method description of Papp et al. is also suited as a base to
define threat classes.

14
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Class

Sub-Class

Asset-Classes

Technology

Network

Untrusted Network

Trusted Network

Wireless Network

Wired Network

AdHoc Network

Intranet

Data

Symmetric Key

Private Key

Public Key

Password

Login Name

Stationary Data (Stack, Heap, File Source Code File,
Backup File, Database Data File, Configuration File, Pro-
gram File)

Data in Transit (IP Packet, TCP Packet, UDP Packet, HTTP
Data, E-Mail)

Hardware

Security Hardware (Dongle, Smart Card, Degausser, En-
cryption Hardware)

Harddisk

CPU

Host

Unconnected Host

Networked Host (Host on Intranet, Host on Wired Net-
work, Bastion Host, Host on Internet, Client Host, Host
on Wireless Network, Router, Wireless Access Point, Server
Host)

Process

Table 2: Classes and sub-classes of the technology asset concept [6]
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Figure 6: Common attack scenarios according to [14]. The thickness of lines in the diagram indicate
the commonness of occurrences of attack paths.

Despite the focus on large computer networks and multi-stage attacks against them,
Sheyner and Wing propose a general approach to model attack scenarios with graphs in
[15]. The graph reflects the attack of an adversary against the computer system through a
finite automaton. This is especially useful to model the chaining of several vulnerabilities
that cause an asset to get compromised by an attacker. Besides the definition of the auto-
maton, they also present a system for attack graph generation and subsequent mitigation
through so-called security properties. The generation of the graph based on detected vul-
nerabilities is done with closed source and discontinued software products from MITRE’s
Outpost [16] or Lockheed Martin’s Advanced Technology Laboratory’s Next Generation Infra-
structure [17].

The different work described above can be used to identify threat classes and associate
them with assets that are threatened by them. The table 3 gives such an association of
threats to assets of a single computing system or even an infrastructure.
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Threat ‘ Asset(s) ‘ Description

Malformed | all Malformed input-based attacks like buffer overflows, code in-

Input [6] jections and format string attacks can be used to interrupt or-
dinary program flow and to force the algorithm to behave
maliciously. In a worst case scenario, the attacker gains con-
trol over a privileged application and can target any asset
based on this administrative system access.

Malicious all Identified as one kind of masquerading attacks by Herzog

Code [6, 14] et al., malicious code like viruses, trojan horses, backdoors,
spyware etc. target vulnerabilities to gain access to arbitrary
assets.

System all Persistent configuration changes of the computing system

Modifica- that results in permanent asset compromisation beyond the

tion [6] actual runtime of attack.

Control Hi- | Stationary | Taking control over an otherwise benign application

jacking [14] | Data through manipulated data or targeted behaviour. Once

Process a process has been taken over, further attacks can be

launched.

Negative Stationary | Negative acknowledgement attacks aim to attack a process

Acknow- Data asset when it is in a vulnerable state caused by an interrupt

ledgement | Process of an invalid action.

[6]

Passive Stationary | Attacks that are based on the continuous observation of the

Attacks Data target system to gather data about the system itself, pro-

[6], Eaves-| Process cessed data etc. Examples for such threats are side channel

dropping attacks, scavenging, statistical attacks on e.g. cryptographic

[14] algorithms or eavesdropping.

Disruption, | Process, Attacks that employ physical threats like heat, theft or

Usurpation | Network, | system overclocking as well as host compromisation at-

[6], Repudi- | Host tacks like DNS server compromisation can result in system

ation[11] takeover or service disruption due to failed server processes

or network outage.

continued on next page
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Threat ‘ Asset(s) ‘ Description
Internet In- | Network, | Attacks like routing table or cache poisoning, spoofing or
frastructure | Host, packet mistreatment aim to interrupt network and host as-
Attack [6], | Data  in | sets or to perform unauthorized reads on transferred data.
Spoofing Transit
[11]
Other Mas- | Network, | Other attacks that perform some kind of masquerade like
querading | Electronic | man-in-the-middle attacks, spoofing, session hijacking etc.
Attacks [6] | Token target a process or network assets.

Process
Denial  of | Network | The interruption of a service due to an exceeding amount
Service [6, | Process of invalid requests.
11], Distrib-
uted  DoS
[12]
Brute Force | Electronic | The guessing of authentication credentials to gain access or
Attacks [6] Token to elevate current permissions.
Elevation of | Stationary | General approaches to use vulnerabilities in permission
Privileges Data evaluation and enforcement routines to elevate user priv-
[13] ileges to acquire administrative permissions.
Tampering | Data Manipulation of system files, directories or other data to
[11] either gain further access to the system or destroy/ manip-

ulate data records.

Data Leak- | Data Unauthorized extraction of data.
age [12]

Table 3: Association of selected threats to targeted resource types

Some of the presented threats in table 3 are related to external attacks against the
computing system. Nonetheless should these threats be considered because they may
also be launched from inside the infrastructure against the same system or other member
computing systems.

Outside of the focus of this work are threats against hardware assets like e.g. sabotage.
Similarly, threats like men-in-the-middle-based attacks or algorithms that try to break
secrecy through weaknesses of the cryptographic algorithm are also beyond the scope of
this work. Since the presented framework focuses on the protection of the local computing
system against unwanted behaviour, threats like network data traffic recording from an
external adversary and subsequent information disclosure are also not considered here.
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2.1.3 Resources

As described in the introduction, this work focuses on the supervision of access to re-
sources managed by the operating system. Similar to the relation of threats and attacks,
where an attack is the realisation of an abstract threat, is the correlation between asset
and resource. An operating system managed resource (like a file, network connection or
process) is a tangible realisation of an abstract asset.

An association of assets to resources is performed in chapter 3 after the different types
of resources and their management by the operating is introduced.

2.2 THREAT RATING

The above section defined the essential terms that are required to describe the security of
infrastructure, its assets and threats that target them. This section introduces mechanisms
to assign a numerical factor to these threats. This is required to perform ratings of threats
and generate a metric for the overall infrastructure security in the next section. It should
be emphasized that this is difficult because of the intangible nature of a threat which
targets one or more abstract vulnerabilities.

One approach to assign a numerical value to application behaviour is described in the
patent US 7,530,106B1 by Zaitsev et al [1]. Assigned values range from 0% (no risk of
an attack at all) to 100% (application is malicious and threatens the system). This risk-
score of an application is calculated in the beginning but can be updated over time if it
behaves suspiciously. If the risk-score exceeds certain boundary values (50% and 75%) the
application is stopped. The user is then asked for approval to continue the execution or,
in the case of a very high risk, the application is immediately terminated. A flow graph
for this process is shown in figure 7.

This process is understandable and allows to identify an application as malicious be-
fore it is executed. It also performs an ongoing investigation of actions that might result
in a revision of the security decision from the beginning. As a result, this requires the
system to define attributes to check at the beginning and define behaviour to rate during
runtime. Zaitsev et al. specify an example for such a behaviour supervision rule in their
work that illustrates this. Listing 1 shows a rule that describes how the security rating
is changed if the supervised application checks for an installed anti-virus software on
the operating system. The first check will increase the rating by 10%, a second and third
probe causes the rating to increase by 30% and every other check causes an addition of
60% to the calculated score. This rules reflects the hypothesis, that a malicious application
will continuously check if there are countermeasures present in the operating system that
might prevent certain attacks. However this might also be valid behaviour for other types
of software. Therefore a definite ruling for malicious intent based on this behaviour is
problematic.

19



=

N3 O Ul A~ W N

2.2 THREAT RATING

Application
Execution Invoked

Initial Risk
Analysis + Rating

Monitor
Activities
Continue no Suspicious yes Update
Operation Operation? Security Rating

no Rating
> 50%

yes

Notify User

no Rating
> 75%

yes
Terminate
Process

Figure 7: Simplified flow diagram of the continuous application rating and supervision process as
patented by [1].

Rule ’Checking status of antivirus service’
Rule identifier: 8
API function: Checking the status of antivirus services
(QueryServiceStatus)
Rating: single operation - 10%
2-3 operations - 30%
>3 operations - 60%

Listing 1: Security rating modification rule based on application behaviour [1]

The system from Zaitsev et al. is a closed source system and designed to operate on Mi-
crosoft Windows systems. It suggests an easy-to-understand scale with associated actions.
A more complex and generic system is proposed by the Common vulnerability scoring sys-
tem (CVSS) [18]. This industry standard enables the calculation of scores for vulnerabilities
based on Base, Temporal and Environmental metrics [19]. A score determined with the CVSS
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Metric ‘ Scored Properties

Base Attack Vector (AV), Attack Complexity (AC), Privileges Required
(PR), User Interaction (UI), Scope (S), Confidentiality (C), Integrity
(I), Availability (A)

Temporal Exploit Code Maturity (E), Remediation Level (RL), Report Confid-
ence (RC)

Environmental | Confidentiality Requirement (CR), Integrity Requirement (IR),
Availability Requirement (AR), Modified Attack Vector (MAV),
Modified Attack Complexity (MAC), Modified Privileges Required
(MPR), Modified User Interaction (MUI), Modified Scope (MS),
Modified Confidentiality (MC), Modified Integrity (MI), Modified
Availability (MA)

Table 4: CVSS scoring categories [19]

is a standalone value in the range from 0.0 (low) to 10.0 (high) that describes the severity
of a single investigated vulnerability.

The rating is done manually for each vulnerability and should be executed by a IT
security professional based on the CVSS scoring categories. The professional assigns or-
dinal values to each of these categories (e.g. high, medium, low or exploitable via network,
local access or physical access). Please refer to table 4 for a brief description of the scoring
parameters according to CVSS version 3.0 [19]. The CVSS defines numerical values to as-
sign to the selected categories and how to build a final score out of them. Additionally, a
unique string is generated that can be assigned to public vulnerabilities to describe their
properties based on the CVSS.

A textual rating is assigned to the vulnerability based on the calculated score. The
defined labels are None (score = 0.0), Low (0.1 < score < 3.9), Medium (4.0 < score <
6.9), High (7.0 < score < 8.9) and Critical (score > 9.0). This score is regularly used
to indicate the severity of a newly discovered vulnerability and is commonly provided
alongside a CVE Common Vulnerabilities and Exposures) number. The U.S. NIST provides a
publicly available list of all CVE vulnerabilities in the national vulnerability database [20].
Alongside the CVE identifier is the associated CVSS score and a reference to the affected
software.

Other threat assessment techniques are STRIDE from Microsoft [21] or DREAD used by
OpenStack [22]. Both systems describe categories that are reflected in their names: STRIDE
addresses threats like Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Ser-
vice and Escalation whereas DREAD generates a score out of values indicating the impact
on Damage, Reproducibility, Exploitability, Affected Users and Discoverability. For each cat-
egory in the DREAD system a rating guideline is specified to assign a category score.
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Potential for: Tampering, Escalation
Category ‘ Score ‘ Rationale
Damage 6 Significant Disruption
Reproducability | 8 Code path is easily understood, condition exists as stand-
ard
Exploitability 2 Very hard to exploit without specific conditions
Affected Users 8 All cloud compute users
Discoverability 10 Discoverability always assumed to be 10
DREAD SCORE: 31/5 = 6.2 - Important, fix as a priority

Table 5: Example DREAD score calculation [22]

The final score is determined by the mean value of the five categories. Table 5 shows this
calculation for a tampering or escalation threat. Based on this score a priority for mitiga-
tion is assigned to the vulnerability that enables the threat. The STRIDE system does not
provide a numerical evaluation of threats at all.

Another approach to threat rating is described in the HMG Information Assurance Stand-
ard No.1 (IS1) [23]. This rating method uses the concept of assets as well as the Risk Assess-
ment Scope, Business Impact Level, Threat Source and Threat Actor, Threat Level, Compromise
Method, Risk and Risk Level. This system enables an organisation to build and maintain
a working security asset management by providing example forms and guidelines. Com-
parable to the CVSS, IS1 bases the rating on an expert review of the aforementioned
categories. The major difference to CVSS is the focus on assets rather than vulnerabilit-
ies/threats. IS1 assigns an ordinal rating to an asset which determines actions to secure it.
Related systems like the international ISO 27001 guideline [24] or the German BSI Grunds-
chutz [25] also aim to implement security management systems based on asset analysis.

This work requires the rating of severity of threats rather than the importance of assets.
Therefore the CVSS is suited best for the investigated use-case. It is able to assign numer-
ical values to arbitrary vulnerabilities based on an expert rating and calculated with an
open well-known formula ([19], [26]). Because of the relationship between threats and vul-
nerabilities (threats are enabled by vulnerabilities, see figure 5), the score for a vulnerability
will also be used to rate enabled threats and their realised attacks.

2.3 SYSTEM SECURITY RATING

The above section described metrics to measure the severity of a single threat. Although
this is a vital components for the analysis conducted in this work, it is not sufficient for the
evaluation of the overall system security. As described in 1.2.3, a metric for a system state

22



2.3 SYSTEM SECURITY RATING

S is required. Only such a quantifiable measure of S allows the comparison of system
states at different times. This makes it feasible to evaluate whether the overall system
security has become better, worse or is at least equal. Finally this evaluation enables the
proof of effectiveness of the application security configuration and generated sandbox.
This section will introduce related work in the field of system security evaluation as well
as metrics that can be used in this thesis. Methods from the previous section reappear in
this section and are investigated again. Anyhow, this investigation now focuses on their
capabilities for overall system security rating rather than single threat assessment.

System Security Metrics

Khudhair and Ahmed describe metrics related to information security as something that
involves the application of measurement to multiple entities of a system and generate
further knowledge through the combination of these data-points [27]. They also name four
examples for metrics available for organisations that are required to perform a security
assessment. These examples are shown in table 6 together with a brief description.

Metric Standard Definition

ISO 27002 This standard is meant to be used together with the ISO
27001 document. It describes information security controls
and their objectives. Advices are given based on best practice
examples [28].

ISO 27004 Finished in 2016, this standard describes guidelines to assist
with the evaluation of security risks based on the require-
ments defined in ISO 27001 [29].

IS1 As described in section 2.2 this UK government standard
provides ordinal measures for risk assessments. It also sug-
gests forms and processes to employ these risk assessment
tools in a continuous organisational workflow [23].

USA NIST The Security Metrics Guide for Information Technology Systems
is similar to the IS1 guidelines and is used for US federal
government entities to implement a security and risk assess-
ment [30].

Table 6: Security metrics standard according to [27]

The aim of the described metrics is to implement, verify and continuously evolve a se-
curity management within organisations. They describe the comprehensive tasks involved
in the operation of service infrastructures. The assessment of the overall system security
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is a vital part of these tasks. After all, due to the advisory and process oriented character,
these systems do not provide a method to determine the desired measurement for the
security of a computing system. A more concrete and tangible metric is required for this.
Houngbo and Hounsou found the same problem in their work presented in [9]. They
describe, that ‘(...) one can say that there is no scarcity in security metrics. The challenge
is to find one’s way, to select those of the measurements that impact the business’ ([9, p.
116]). They elaborate two main issues one encounters when a security metric should be
described: Selecting the measures and Ensuring accuracy of measures.

The selection of an appropriate measure for security threats has been addressed in
section 2.2. Assuring accuracy is a different problem that closely relates to the threat
rating problem, but is not the same. Accuracy addresses the confidence that can be put
on a measurement. To achieve a high confidence the NIST published a guideline with
factors that should be therefore considered in [31]:

* Measures must yield quantifiable information (percentages, averages, and num-
bers);

¢ Data that supports the measures needs to be readily obtainable;

* Only repeatable information security processes should be considered for measure-
ment; and

* Measures must be useful for tracking performance and directing resources.

Besides the listing of this considerations, the NIST specification does not name any
concrete security metrics to apply in a generic or even in a specific case. Houngbo and
Hounsou also do not provide a method to define a metric based on single threat measures
in [9]. Shaikh and Haider compiled a comparison of eleven different security evaluation
systems in [32]. Yet, none of the introduced systems provides a mechanism to calculate
the desired overall system security rating.

Formal Security Metrics

After the review of the presented security metrics it becomes clear that a more formal
approach is required to find a suitable metric for system security evaluation. Such an
approach is presented by Krautsevich, Martinelli and Yautsiukhin in [33] as well as by
Wang in [34]. Both methods are described and evaluated here.

Krautsevich et al. define an abstract security system that can be used for the presented
use-case. A system state S describes the state of the assets of the computing system. Let
Q be a set of all possible system states with r and q denoting arbitrary exemplary system
states (1, q) € Q. A measurement function is required to assign a real value (the overall
system security rating) to a system state in Q: M : Q — RR.
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With this definition Krautsevich et al. define the relation r ~5 q as r is equally secure
q and r =5 q as r is more secure as q. With this definition it is possible to state the
representativeness of M if the following relation holds:

vr,q € Q (r~s q) & (M(r) =M(q)) and
((r>=s q) < (M(r) > M(q)) xor (1)
(r>=s q) & (M(r) < M(q)))

Equation 1 shows that M must be monotonic to suffice the condition. With this it is
possible to define the security rating metric R as a function that describes the distance
between two members of Q (R: Q x Q — R) and satisfies the following properties.

1. R(r,q) >0 Vr,q € Q (positivity)
The distance between two states of the system can never be negative. It should be
emphasized, that R does not measure the change in overall system security.

2. R(r,q) =0 <= r=q,Vr, q € Q (identity).
3. R(r,q) =R(r,q) Vr,q e Q (symmetry).
4. R(r,p) <R(r,q)+R(p,q) Vr,q,p € Q (triangle inequality).

To finally define the metrics based on the established system a function C is defined
that decides if a system state contains compromised assets (QQ : Q — True|False). For a
system S let I' be a set of all possible actions on the computing system. An adversary will
try to perform a chain of actions y € I" that will compromise one or more assets of the
system. Therefore Krautsevich et al. define that a system is perfectly secure if new system
states S’ that are reached by arbitrary actions vy are all considered not compromised [33]:

Vyerl sS4 s’ — Q(S’) = False (2)
The following metrics are a selection of the ones presented in [33].

NUMBER OF ATTACKS (Ng¢t) simply counts the number attacks that compromised the
system (€)(S) = True). A result from this definition is the criterion, that a system is
considered more secure if there are less successful attacks on it
T =5 q iff Naw(r) < Na(q)

MINIMAL COST OF ATTACK (CIHM) describes the minimum effort an attacker has to
take to exploit a system. If an action y can be used to take over the system its
costs are defined as C,. The minimal cost of attack is then defined as action with
minimal costs that results in the compromisation of the system:
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min(S) = min{Cax(v)IS = S' = Q(S’) = True}
Based on this, a system is considered more secure if the minimal costs of an attack
are higher than for another system.
T -5 q iff Cop" (r) > CR"(q)

MINIMAL COST FOR REDUCTION OF ATTACK (C,eq) are the minimal costs that are re-
quired to transform the system S into a state S that does no longer allow exploita-
tion through any attack. Under this metric a system is more secure than another if
these costs are lower.

T-s( iff Cred(r) < Cred(q)

SHORTEST LENGTH OF ATTACK (L™") characterises the length of the shortest action
that leads to a compromisation of the systems assets. The length of an action is
defined as the number of steps that it takes to execute this action. Systems that re-

quire longer attack paths are considered more secure than other ones.
T =g q iff L™ (y) > [™in(q)

MAXIMAL PROBABILITY OF ATTACK (P™?X) and

OVERALL PROBABILITY OF ATTACK (P®Y¢) are probability based characterisations of a
system. The probability of an attack is defined as the product of the probabilities
of the steps that make up the attack. P™** denotes the maximum of all probability
values for successful attacks. Because this metric is not affected if any other security
issue is mitigated besides the most probable one, the overall probability of attack
(PSU€) is more commonly used. It is defined as the product of all probabilities of
successful attacks against the system. In both metrics a lesser probability indicates a
more secure system: A > B iff PM™(A) < P™®(B) and A > B iff PS"“(A) < P"¢(B)

Besides the described metrics above, an Attack surface metric and a Percentage of compli-
ance metric is introduced in [33]. However these two does not comply to the equations 1 -
2 and therefore do not allow to evaluate the change in security of two systems states.

From the other metrices only N and P*'¢ allow distinct checks of two system states
if one is "as secure as" or "more secure than" the other. The remaining metrices can only
answer checks for "equally secure or if one is more secure". This is because these metrices
do not allow distinguishing between higher or equal security based on the number of
successful compromising actions. The mathematical reasoning behind this criterion is
found in [33, p. 163]. Because of the requirement to perform a rating of costs introduced
by the employment of selected security technologies the C,q metric is of interest for this
work.

Another different metric is proposed by Wang in [34] that tries to consider the change
in security of an asset over time. Given a security feature f(t) at a given time t, the security
metric S for a time interval [t1, t,] is a real number in [0, 1] determined with the following
formula:
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1
p(t) p(®) |
0 0 >
0 t 1 0 t 1
(a) Security feature function f(t) =1—0,5t (b) Security feature function f(t) = 0,5+ 0,5t

Figure 8: Example security feature functions that model the decrease and increase of a security
feature over time resulting in the same S¢ value of 0.75

t
tf f(t)dt

Sg=—7—"—
f 1t (3)

However this metric has the major disadvantage that it does not reflect an increase
or decrease of security of the investigated feature over time, which is essential for the
use-case investigated here. An untrusted application is executed and the system/or the
application should be monitored; constantly evaluated and decreases or increases in se-
curity should be detected. If the formula in 3 is used, a decline and incline might result
in the same value like shown in figure 8.

SUMMARY

This chapter provided definitions for system security, assets, threats, attacks and resources
that will be used throughout this thesis. It was shown that the definition of security is
difficult because of its intangible nature. Anyhow this becomes possible if system security
is defined by the assets of the system. With the help of the ontology of Herzog et al.
the asset concepts and dependent classes like threats and attacks could be defined [6].
Additionally threats of interest for this theses were selected based on related literature.

To proof the effectiveness of security measurements, the definition of threats is not
enough. To evaluate abstract threat classes and their realised attacks numerical ratings
are required. Therefore different methods were investigated that enable the assignment of
real values to arbitrary threats based on a deterministic function and/ or objective criteria.
In this work the CVSS is used to assign numerical values to the defined threads [18].

Finally the formal metrics for Number of attacks and Minimal cost for reduction of attack
were selected to provide a system security rating of computer systems states at distinct
times. They also produce comparable ratings that actually allow to perform a mathemat-
ically founded statement about the security of the system.
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SYSTEM CALL INTERFACE

The previous chapter provided a definition of the essential security terms: assets, threat
and attack. It also selected metrices to rate threats and the overall system security. This
chapter introduces the system call interface of Linux-based operating systems. This inter-
face is mandatory for applications to access resources that are managed by the operating
system.

The chosen approach to investigate untrusted applications for the utilisation of this sys-
tem call interface requires a definition of the relationship between assets and resources. The
tirst section of this chapter groups the different resources into categories and establishes
this relationship to the asset classes described in 2.1.1.

The next section introduces the system call interface of Linux-based operating systems
for the x86-64 reference architecture. This gives an overview about the design and overall
functionality of this interface.

The last section presents the challenges when it comes to the supervision or investiga-
tion of actions that are executed via this interface. It also investigates reference systems
that utilise the system call interface for suitable approaches as well as their limitations.

3.1 RESOURCES AND ASSETS

A resource in this work describes an object that is managed by the operating system. The
operating system mediates access to resources through the system call interface described
in 3.2.

Resources can be grouped into different categories based on the description of operat-
ing system concepts, computer hardware history and operating system tasks described
by Tanenbaum [35].

The following classes are used throughout this work to categorise resources:

FILESYSTEM RESOURCES (FS1) Resources that are located in filesystems like files, dir-
ectories, links etc.

FILESYSTEMS (FS) A filesystem is the higher organisation structure that holds inform-
ation about resources described for class FS;. Filesystems reflect different storage
technologies (hard disk, solid state, in-memory, etc.) as well as organisation strategies
(journaling and indexing, physical and logical layout, filesystem resource meta-data
etc.).
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MEMORY (MEM) Modern operating system abstract physical memory into virtual memory
resources to protect, separate and possibly relocate applications.

PROCESS/ CPU MANAGEMENT/ 1rC (CPU) With the availability of multi-processor and
multi-process operating systems, the computing time resource has to be managed
by the operating system too. Additionally, due to the possibility of multiple active
applications at the (apparently) same time, the communication between them and
the management of these shared communication is a managed resource too.

NETWORK (NET) The network resource group summarise all resources that relate to the
communication of two parties over a (potentially package switched) network. This
includes the establishment and control of connections as well as the management
of client and server-sockets that reflect communication endpoints handled by the
operating system.

DEVICE MANAGEMENT (DEV) Whereas resources like files, directories and memory are
presented to applications independently of the hardware used for their provision,
these hardware components are also resources managed by the operating system.
The access, management and data exchange with hardware resources must for this
reason also be mediated by the operating system.

TIME Similar to the management of processing time in resource class CPU is the manage-
ment of actual time. Although date, time and timezone are simple resources, their
importance for the system is high. Mishandling those can inflict time-critical opera-
tions like the validation of temporary access token or the validity of certificates.

PERMISSION MANAGEMENT (ACCESS) Multi-user operating systems require the en-
forcement of an access and permission model. This model is realised via the user-
and group-based permission model in POSIX-compliant operating systems. Besides
the enforcement of access rules, the operating system provides mechanisms to query
and manipulate permissions on items it manages. As a result, the possession of a
permission can be considered a resource too.

KERNEL MANAGEMENT (KERN) Finally the operating system itself and its kernel are
resources present in the system. An application can interact with them e.g. to con-
figure runtime behaviour or load extension features.

With the more comprehensive resource classes it is possible to associate assets to them.
Although a one-to-one association is desired, some assets belong to more than one re-
source class. The association of assets to resource classes is done based on the character
of the asset and the resources reflected by the class. An excerpt of this association can be
seen in table 7. The full table is found in appendix C.

Through the association of assets to their corresponding resource classes, the link to
technologies that support resource based supervision is established. Hence the usage of
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Resource Class Assets

FS1 Stationary Data, Data on Non-Volatile Media, File, Program
Source Code File, Backup File, Database Data File, Configura-
tion File, Program File

Table 7: Excerpt of the association of resource classes with asset concepts from [6]

low level resource access analysis to associate it with assets through the usage of resource
classes is feasible and used in this work.

Although this approach is able to detect many different attacks, it is not suited for
threats that target assets that do not involve the system call interface. The following at-
tacks are examples for such threats which are beyond the scope of this work.

MEMORY CORRUPTION ATTACKS Manipulation of memory owned by the application
which does not involve access permission changes do not result in system calls.
An attacker might override readable, writeable or executable parts in memory with
malicious instructions and force the application to execute these parts. However the
configuration of such vulnerable memory areas is rare and subsequent malicious
actions can be detected.

HARDWARE MEMORY ATTACKS Attacks against hardware related issues like the presen-
ted Rowhammer attack by Kim et. al [36] are beyond the scope of system call super-
vision. The presented approach assumes that there are no hardware related side-
effects that leads to information disclosure or manipulation.

HARDWARE PROCESSOR SIDE-CHANNEL ATTACKS The exploitation of processor features
like predictive branch execution as shown by Kocher et al. in [37] also bypasses the
system call API because such hardware memory attacks cache reads do not issues
any system calls.

APPLICATION BEHAVIOUR MANIPULATION Attacks against the execution paths of the
application are hard to detect during code analysis and impossible to prevent through
the envisioned sandbox system. An attacker might manipulate calculation results,
weaken secure communication protocols or cause an application to never terminate
to consume resources for an infinite amount of time.

3.2 LINUX SYSTEM CALL INTERFACE

Conceptually, access to resources requires administrative privileges since it involves e.g.
access to hardware components like hard drives or network adapters. As a result, these
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‘ syscall number ‘ arg 1 ‘ arg 2 ‘ arg 3 ‘ arg 4 ‘ arg 5 ‘ arg 6 ‘

’ RAX ‘RDI ‘ RSI ‘ RDX ‘ RlO‘ R8 ‘ R9 ‘

Table 8: x86-64 syscall invocation interface [39, p. 147]

resources are only accessible through the operating system which possesses these priv-
ileges. However modern operating systems run applications in an unprivileged user-mode,
whereas the operating system components run in kernel-mode[35]. Therefore, to enable
user-mode applications to access resources, a well-defined procedure to transfer control
to the operating system, perform the desired action, and return the result is required.

The system-call interface specifies this procedure and is described by Tanenbaum in [35,
p- 50] and shown in figure 9. An application in user-mode pushes all required parameters
for the operation onto the stack (step 1. to 3.) and performs the system call usually via
a system library function (step 4.). The library prepares the processor registers with the
stack-passed data and places the integer identifier of the desired system call to execute
into the identifying register (step 5.). To transfer control to the operating system, a so-
called trap is invoked (step 6.). Modern 64-Bit x86 architectures use SYSENTER/SYSEXIT
(Intel) or SYSCALL/SYSRET (AMD) machine code instructions for this [38]. A privilege
context switch occurs and the application now operates in kernel-mode. A lookup is
performed to select the correct handler for the passed system call identifier (step 7.). If
such a handler is found, it is executed (step 8.). Once this process finishes, machine code
instructions SYSEXIT or SYSRET return control to the library function and the privileges are
dropped as the application flow returns back into user-mode (step 9.). Finally the library
function returns the result to the user application (step 10.) and execution continues (step
11.). Analogous to the distinction between user-mode and kernel-mode for instruction
execution is the distinction of memory segments into user space and kernel space as
shown in the figure.

The invocation interface utilised in step 5. is very basic and supports the transfer of
the system call identifier together with up to six arguments. The system call identifier is
an integer number that uniquely identifies each system call. The passed arguments are
used to pass further information to the system call handler (e.g. a file descriptor number
or the address of a memory region to map). When executed on a 64-bit x86 architecture,
the system call identifier is placed in the RAX register whereas arguments are stored in
the registers shown in table 8. This standardised API allows the syscall handler to read
passed arguments as well as an analysis to investigate these parameters. This is essential
for the technologies introduced in section 3.3.

The result to indicate the success of failure of the system call handler passed in step 9.
is again an integer number passed via the RAX register. The system call issuer can evaluate
it to determine if the intended resource access was executed as desired [39, p. 148]. Due to
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Figure 9: The eleven steps in making the system call read(fd, buffer, nbytes) [35, p. 52]

the register size of 64-bit in 64-bit processors, system call arguments are limited to values
of the same size. For data structures that require more space, pointers to user-memory
are passed as arguments. For example a string that specifies the path of a file that should
be accessed with the open syscall is passed as such a pointer. This mechanism is also used
to pass more complex return values back to the system call issuer. A memory address

passed as argument can be interpreted by the kernel as the place to write result data to.

Since this address is in user memory, it can afterwards be accessed by the issuer.

3.3 SUPERVISION AND INVESTIGATION TECHNIQUES

The strict definition of the system call interface makes it possible to investigate system
calls issued at runtime. Whenever a system call occurs, its identifier can be evaluated as
described above and its type as well as arguments passed in the defined registers can be
read. This allows an investigation for resources accessed by the application.
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Technology Description ‘

ptrace() System call to register a monitoring process running in user-mode
to supervise system call issuance of a monitored process.

Kprobes [41] Mechanism that allows to break arbitrary kernel routines (e.g. the
syscall routine) and investigate state of processor, memory, etc.

Utrace Utrace was an attempt to implement a more sophisticated interface
into the Linux kernel to take over tracing tasks from ptrace. How-
ever the interface was not integrated into the mainline kernel [42].

SystemTap [43] | With an own awk-like scripting language SystemTap allows users to
define probes that are inserted at desired points into kernel routines.
If the kernel reaches such a probe the associated script is executed.

strace [44] Command line tool that utilizes ptrace to show issued syscalls dur-
ing runtime.

Table 9: Linux- and Unix-system based system call tracing technologies [45]

The Linux kernel supports several interfaces to supervise issued system calls. Table 9
displays different technologies and lists their availability [40]. The most common interface
is the ptrace interface. It allows a monitoring process to attach itself to the process or
thread that should be supervised (monitored process). From this point on, for each system
call that is issued, the operating system informs the monitoring process before it starts
the dispatching process (see step 6. in figure 9) and after it finishes the syscall handler
(see step 9. in figure 9). The monitoring process is therefore able to evaluate the system
call identifier and passed arguments at these points in time. It can furthermore perform
arbitrary actions like filtering dedicated system calls or additional activity logging. Figure
10 illustrates the attachment of the monitoring process to the monitored process and
shows the interception of an example syscall.

The monitoring process is also able to access the memory of the monitored process
through the ptrace interface. It can therefore follow memory pointer addresses specified
in system call arguments. This is required to collect e.g. information about files access
with the open system call where the path of the desired file is passed as a pointer. As
described in 3.3, the usage of pointers to user memory allows the passing of complex
data types that are otherwise to big for the processor registers. On the other hand, it
makes it impossible to built security mechanisms based on system call supervision. This
is shown by [47] and [48]. They prove that user-controlled memory can’t be used for
mutually independent security checks and resource access. If performed this way, an
attacker is able to time a manipulation of the user memory to change its contents exactly
after the security check has succeeded, yet before the actual resource access is executed by
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Figure 10: Activity diagram of a monitoring process that starts supervision and syscall intercep-
tion of a process through the ptrace interface [46].

the kernel. This process is illustrated in figure 11. The only solution to overcome this issue
is an atomic uninterruptible operation that performs security check and resource access.
However such a system call-based interface is not available through a stable kernel ABI as
of today.

Finally, besides the problems due to timed manipulation of user memory, supervising
system calls with ptrace introduces a large management overhead into the system call
execution process. As shown in [46], [47] and [49] the overhead introduced increases ex-
ecution time by up to 420%. This is due to the additional full process context switches
required by the kernel when it switches execution from the monitored process to the
monitoring process (see fig. 10). The ptrace interface requires one context switch to the
monitoring process and another one when switching back to the kernel/monitored pro-
cess. Because of the two-times invocation of the monitoring process in the system call
execution process, this results in four additional context switches per system call.

SUMMARY

This chapter established the required relationship between low-level operating system
managed resources and abstract assets according to the definition specified in 2.1.1. Re-
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Attacker
Thread
memwrite
User Memory userfile.txt /ete/passwd
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Figure 11: Example attack on non-atomic security mechanisms where a timed manipulation of
user memory circumvents checks. When the monitoring process checks the path of the
filename that should be accessed, a valid value is read (userfile.txt). Before the sys-
tem call handler is executed, the attacker changes this value to the normally inaccessible
filename (/etc/passwd).

source classes are used in follow-up chapters to investigate how application analysis
mechanisms can detect resource access and how sandbox mechanism can protect them.

The described specifics of the system call interface are important for the application
analysis mechanisms. Resource access should be detected and all relevant resources are
accessed through this interface. Consecutively the detection of system call interface util-
isation allows the application analysis to deduce a resource access.

Finally this chapter illustrated the challenges for security technologies based on sys-
tem call supervision and interception. Mechanisms based on these technologies operate
while an untrusted application is executed. Nonetheless, since there is no mechanism
that allows appropriate protection of resources while maintaining system performance,
the solely utilisation of these mechanisms is discouraged. Nonetheless, since this work
focuses on the detection of resource access before the untrusted application is executed,
these technologies can still be utilised in a comprehensive sandbox approach.

35



APPLICATION EVALUATION

The investigation of the system call interface has shown that it is possible to detect re-
source access through this interface. Based on these results, this chapter introduces the
techniques available to investigate untrusted applications for their system call interface
utilisation.

In the first section, the Executable and Linkable Format is introduced. Since this is the
standard file format for executable applications on Linux-based systems, knowledge about
the file structure and contained information is useful for the analysis. The section will also
introduce the basic mechanisms of application loading and runtime linking of dynamic
libraries.

The context of this work enables an investigation of the untrusted application only
based on its compiled form. The specifics of this machine code format are introduced in
the second section. Additionally, an overview of techniques that can be applied to transfer
the binary representation into an easier processable form is given.

With the knowledge about the file format for applications and an interpretation mech-
anism for machine code, an analysis of the program flow becomes available. Techniques
for static and dynamic code analysis are introduced in the last section to perform this
analysis.

4.1 EXECUTABLE AND LINKABLE FORMAT

Applications that are created for Linux-based operating systems must be distributed in
the Executable and Linkable Format (ELF) [45]. The ELF describes the structure for execut-
ables, dynamic libraries (or sometimes named shared objects) and relocatable binaries. If an
application is compiled from source code to machine code, the linker collects the gener-
ated machine code, validates references to dynamic libraries in the system and generates
an executable that conforms to the ELFE. The linker also adds all required information to
enable the operating system to run the executable.

An ELF compliant file consists of a main file header with basic structural information.
Important fields are displayed and described in table 10. The file is structured by two
different concepts. Segments describe memory segments that are required during runtime
execution of an application. The file header refers to the location of segments headers in
the file via the field e_phoff. The total number of segments is stored in the file header field
e_phnum. Each segment is described by its dedicated header. This segment header contains
its type, the offset of the segment content offset into the file, its size and desired location
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Field Size Content ‘
e_ident 4 Byte 4-byte magic number to identify ELF formatted file

e_type 2 Byte ELF filetype (none, executable, library, relocatable)
e_machine | 2 Byte Architecture this ELF file was created for

e_entry 8 Byte Application execution start address

e_phoff 8 Byte Offset in bytes to segment headers

e_phnum 2 Byte Number of segment headers in the file

e_shoff 8 Byte Offset in bytes to section headers

e_shnum 2 Byte Number of section headers in the file

Table 10: Relevant 64-Bit ELF file header fields [45]

in memory during runtime. It also holds information about permissions that should be
assigned to the segment in memory (readable, writeable, executable). Segments might
overlap as shown in figure 12.

Sections are used beside segments to further structure the file. Similarly, sections are also
described by their headers, which usually are placed at the end of the file. Their location
is again referenced in the file header by the e_shoff field. The number of sections is given
in e_shnum. Sections do not overlap and provide a more fine-grained structure of the file
than segments. Since they are not required to execute the application, section headers
can be absent. However, if an application is linked to dynamic libraries, the required
linking information are stored in dedicated sections. Therefore sections are mandatory
for dynamically linked executables.

Relevant sections and their purpose during application loading and execution are shown
in table 11.

4.1.1  Application Loading

If an application is about to run, the Linux loader must set up the memory layout required
for execution. This process starts with the application to execute and is visualised in figure
12. The loader inspects the application if it is a statically or dynamically linked executable.
If the application is dynamically linked, the loader has to find all libraries in the system
that are referenced in the .dynamic section of the executable. Since dynamic libraries can
reference other dynamic libraries, this library collection is a recursive process. This step is
skipped for statically linked executables, because they define no dependencies to dynamic
libraries.
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Figure 12: File and Memory layout of two ELF compliant files application and libc.so. The left side
shows the file structure and the location of the fixed sized file header, segment headers
(red) and section headers (blue), as well as their references to dynamically sized content
areas. The right side shows a schematic view of a memory layout created by the Linux
loader for the two input files. Segments from application get loaded to their desired abso-
lute address (addrapplication—segmentl, @ddTapplication—segment2)- The segments
of libc.so are relocated based on the free address relociipc.so determined by the loader.




4.1 EXECUTABLE AND LINKABLE FORMAT

Name Purpose

ctext Contains the machine code of the application.

.init and .fini | Sections with executable instructions for application initialisa-
tion and termination.

.data Initial and static variable values

.symtab A table of all functions (called symbols) defined in the local file
and referenced from dynamic libraries.

.dynsym A table of only those symbols referenced from dynamic libraries.

.dynamic Table with names of referenced libraries and their required ver-
sions

.got Global Offset Table with information of symbol locations in the
memory layout the Linux loader created.

plt Procedure Linkage Table that enables dynamic linking during
runtime.

.rel and .rela List of addresses of values that need to be updated once the

relocation process finished.

.debug Debug information

Table 11: Relevant sections specified in the ELF standard [45]

For each loadable segment in the executable, the loader places it to the desired position.

Overlapping segments are used to adjust memory permissions. This is utilised to enable
the load of large chunks of the file into memory at once and adjust memory permissions
of a part of these chunks afterwards. See application segment 2 in figure 12, where the load
of the segment and memory permission switch is visualised.

The executable specifies desired addresses for its segments in virtual memory. Dynamic
libraries on the other hand are position independent. This means that their machine code
is oblivious of its position in memory at runtime. However, this requires the loader to
determine an appropriate position in memory for each dynamic library and set it up
there. This process is called relocation. For each dynamic library the loader picks a base
address (see relociipc.so in figure 12) and places its segments based on this address. After
this process is finished the loader updates all values specified in . rel and . rela according
to the base address of the file that is now known after placing it into memory.
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read:

text libc.so
text CALL read@plt

1.
3.
application
It JMP *read@got
-b
LINK read
2.

got addrread

Figure 13: Schematic control flow of the invocation of the dynamically linked symbol read from
libc.so. The reference from the machine code section .text leads to the .plt section
(step 1.). The relocated address of read is read from the .got (step 2.) and the jump is
executed to start the symbol execution (step 3.). If the symbol is not yet linked the value
in .got contains the address of the linkage routine shown as LINK read.

4.1.2  Symbol Linkage

The linkage of symbols (basically exported functions) in the dynamic libraries to the
invocations in the executable is normally done at application runtime (but can be forced
to be done at application load time via environment variables). If the application invokes
a symbol from a dynamic library, the compiler implements this as a call to the process
linkage table (PLT, see figure 13, step 1). The machine code in the .plt tries to read
the address of the relocated symbol in the dynamic library from the global offset table
(step 2.). If the symbol was already located, its address is stored there and the jump to
the symbol is performed (step 3.). If the application is executed with dynamic linking at
runtime, it is possible that the symbol has not yet been located. In this case the address in
the .got points to the location of the linkage routine that will search for the symbol in the
dynamic libraries. Once found, the address in the .got is updated and consecutive calls
to this symbol can be executed directly as described by step 1.-3 in figure 13.
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4.2 MACHINE CODE INTERPRETATION

Besides the information required to set up the memory layout for an application, the most
important part in the ELF is the executable machine code. Machine code is the form of
executable code that is ready to be run on a certain processor. Unlike low-level languages
like assembly or high-level programming languages, machine code is highly processor
dependent’. It consists of instructions that are coded in binary form specifically tailored
for an architecture (like arm, x86, ppc, in64, etc.).

For high-level languages, a compiler translates source code into assembly code. After-
wards the assembler translates this code into machine code instructions for the desired
architecture. Processors might offer some kind of compatibility mode (e.g. to execute x86
32-Bit code on x86 64-Bit processors). Anyhow in general, processor architectures are in-
compatible to each other.

Machine code instructions can easily be converted back into assembly code, since their
relationship is bijective. A disassembler with the knowledge about the used processor
architecture can rebuild the assembly code instruction for a machine code one. An x86-
assembler can translate the code in listing 2 to the machine code in listing 3, whereas a
x86-disassembler can reverse this action.

mov %edi,%eax 1|89 8
mov $0xcccccced, %ecx 2 |b9 cd cc cc cc
imul %rax,%rcx 3 (48 Of af c8
shr $0x26,%rcx 4|48 cl €9 26
imul $0x50,%ecx,%eax 5 |6b cl 50
sub %eax,%edi 6129 c7
mov %edi,%eax 7 |89 f8
retq 8 (c3
Listing 2: Example assembly code Listing 3: x86 64-Bit machine code for listing 2

The following properties illustrate the characteristics of machine code that have to be
considered if it is used for application analysis.

TYPELESS Machine code and reconstructed assembly code holds no type information.
Registers and memory locations can be accessed and manipulated with arithmetical,
logical or bitwise operations. These operations are performed on numbers and no
type information is stored in the machine code. To reconstruct application behaviour,
all types of variables or complex structures must be inferred [50].

1 Applications written in assembly code might also be processor dependent if they use architecture specific

registers or instructions. However it is also possible to create architecture-agnostic programs.
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REDUCED INSTRUCTION SET While some assembly languages offer loops or condition-

als like if/else or switch, there are no such instructions that reflect this behaviour
on machine code level. Instead these control flow structures are translated to com-
parisons and conditional jumps [51]. While this is equally powerful in solving al-
gorithmic problems, it complicates application behaviour reconstruction.

SUBROUTINE IDENTIFICATION Machine code is not executed in a linear fashion. Jump

instructions affect the instruction pointer register (IP) that stores the address of the
upcoming instruction of a running application. A jump causes the program to con-
tinue execution at a different location in memory. Such jump instruction may be
conditional. Another method of integrating subroutines are CALL/RET constructs
that indicate standalone functions. One task for machine code interpretation is to
find such functions with their code boundaries. This can be difficult in binaries,
where symbol boundary information has been removed e.g. by the compiler [52].

If high-level language source code is compiled, unsupported features like loops, ob-

jects and classes, inheritance or structured memory are translated to multiple machine
code instructions. The original code structure and type annotations are lost during this
translation. For this reason, the reconstruction of the originating source code is difficult.

Beside the loss of information due to the described machine code characteristics, dif-

ferent compiler interpret the same source code instructions in different ways. Therefore
two different compilers generate two versions of assembly code from the same source
code. Additionally, compiler perform optimisations on the processed code to remove un-
used instructions or to optimize instructions for the designated architecture they build
the application for. This can be seen in listing 4, 5 and 6.

int f(int p) { )
o 1 [ MOV %edi,%seax
return p % 80;
} 2 | mov $0xcccccced, %edx
3 [mul sedx
Listing 4: Example C function 4 | mov %edx, %eax
5 |shr $0x6,%eax
] ] 6 | lea %rax,%rax,4),%edx
int f(int a) { ondi o
Lt B / 80: 7 | mov %edi,%eax
bt x=a i 8 |shl  $0x4,%edx
X = X x 80; o o
9 | sub %edx, %eax
return a - Xx;
} 10 | retq

Listing 5: Reconstructed  function from

Listing 6: Assembly generated by gcc for

listi
assembly code 6 1sting 4

Listing 4 shows the original C code for function f and listing 6 the result of a com-

pilation with the gcc compiler with maximum optimisation requested. Listing 5 shows
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the reinterpreted assembly code which is clearly different from listing 4, but behaves the
same. It should also be noted, that the division a/80 in listing 5 is done in machine code
as a multiplication and shift instruction (line 2-5, listing 6) which is more efficient on
64-Bit x86 architectures than the division instruction.

High-level language source code can be analysed with various techniques to detect
errors or unwanted behaviour. Nonetheless, as described above, the reconstruction of
originating source code from the machine code is hard. This problem is discussed in
the literature e.g. in [53] and [50]. It has also been shown in [54] that the source code
reconstruction is an NP-hard problem.

For basic reconstruction of assembly and machine code there are tools available like e.g.
IDA Pro [55], OllyDbg [56], gdb [57], Binary Ninja [58], radare [59] or Panopticon [60]. Some
of them also provide features like call-graph generation and limited static analysis as
described in 4.3. All of the mentioned software-products support debugging of a running
binary execution, which enables the inspection of memory and processor registers at
arbitrary points in time as well as runtime code traversal.

Because of the focus of the system call interface usage in this work, it is important to
detect this usage in the machine code. The required kernel trap, to initiate the dispatch of
the system call in kernel space (see 3.2), is done with a single machine code instruction.
As a result, filtering or search for these instructions is possible.

4.3 CODE ANALYSIS
4.3.1  Static Code Analysis

Static code analysis or static program analysis describes the investigation of source code
or assembly code without actually executing it. It is performed to find errors already
visible at this point in time (like possible divisions by zero or buffer overflows) or to do
code audits. For small programs with known restricted classes of input data, it is even
possible to formally prove that a software acts like it is described. Despite that, program-
ming language features like scoped variables or pointers can introduce undecidable or
uncomputable issues to the static source code analysis as shown by Landi in [61]. Fur-
thermore is the formal proof of an application to be free of error not possible. This is
because of the undecidable nature of the halting problem which is a generalisation of
this proof. Nonetheless techniques are available that can be applied to find approximate
solutions [62].

The goals for static code analysis when performed on machine code are the same as
for source code. However they are harder to achieve due to the characteristics of machine
code described earlier. One of the goals of static code analysis if to collect information
about application behaviour to anticipate. The application behaviour describes possible
sequences of instructions that might be executed during runtime.
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Control Flow Graphs (CFG) are an approach to anticipate application behaviour and to
reconstruct subroutines from the machine code and are described below. Another pos-
sibility besides graph-based solutions is to transfer the assembly code instructions to an
intermediate representation (IR). A single assembly code instructions does not provide
much information. The IR groups together logical sequences of instructions to make ana-
lysis easier [63—65]. Brumley et al. provide with their Binary Analysis Platform a tool that
allows CFG construction and identifies function boundaries through IR [66].

The rebuild of type information from assembly code was already addressed in 1999
by Mycroft [67]. This process also involves the reconstruction of primitive and composite
datatypes [50, 68].

Primitive types can be reconstructed as shown by Dolgova and Chernov in [69]. Their
approach works for primitive C programming language types. It infers the orginal data-
type through the investigation of assembly code instructions performed on a certain point
in memory. Each variable that is located in the machine code is recognised to be of an ar-
bitrary type at the start of the analysis. Their algorithm assigns different properties to the
variable based on its core behaviour, size and sign. Core describes if the functions applied
related to an integer, pointer or float. If e.g. the investigation of a type returned the
properties core = integer, size = 8 and sign = signed it was a long int in the originating
C application. C strings are reconstructed as pointers and single characters are equal to
integer number of one byte size.

Complex type reconstruction is more difficult and was investigated with different ap-
proaches by Troshina et al in [68], van Emmerik in [70] or Lee et al in [71]. While all these
approaches differ from each other in detail, they all utilize the fact, that complex types
store their structural data in subsequent memory locations. This is visualized in figure 14,
that shows the layout in stack memory of the C structure in listing 7.

struct s_user { -
// signed integers +0 int32
}nt u:!.d; // offset +0 _|_4 int32
int gid; // offset +4 X .
// unsigned integer +8 unsigned int32
time_t last_login; // offset +8 +12

// 16 character string char
char[16] name; // offset +12
}

Figure 14: Stack layout from complex

Listing 7: Complex datatype with four fields
datatype 7 based on [68].

Buinevich et al. describe a toolkit for the detection of vulnerabilities in [53] that is
capable of type inference and control flow reconstruction. It was tested to detect malicious
behaviour with these techniques. Although the performed test was not able to detect or
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prevent the exemplary unwanted write to a read-only section in memory, it shows that
application behaviour based on machine code investigation is feasible.

Recently, machine learning has become popular for tasks that require the analysis of
behaviour as well as pattern recognition. Due to the fact that common attacks on memory-
related assets as well as programming mistakes are well known, there is current research
that tries to detect them. Work like those of Omri et al. focus on pattern detection in source
code as described in [72] to aid software development. There the goal is to find erroneous
patterns that can lead to vulnerabilities in the result application. The work presented
by Popov in [73] also employs machine learning but for machine code analysis. As a
result, the target is no longer software quality improvement but rather malware detection.
The approach presented uses a convolutional neural network that works based on the
word2vec algorithm which is used to predict neighbouring words in natural language
processing. The assumption made is that machine code can also be used as input, where
the assembly instructions are used in place of the natural text. The presented classifier was
trained with malicious and benign Windows-based applications and showed promising
results. To produce acceptable result rates the required amount of programs to train the
classifier has to be very large.

Christoderescu and Jha used a different approach than machine learning for the de-
tection of attacks in executables with static analysis as presented in [74]. They found
that common anti-virus scanners can be spoofed when virus code is obfuscated. Their
proposed solution annotates machine code instructions to identify unused, irrelevant or
equivalent parts and harmonizes them in an annotated control flow graph. To detect a
malicious pattern a finite-state machine is employed that was built based on the vanilla
virus. The annotated control flow graph of a suspicious application is then used as input
for the finite-state machine. If the machine accepts the graph, it is concluded that the
application is malicious.

Control and Data Flow Graphs

To reconstruct application behaviour from machine code, graph-based approaches can be
used as described above. Static code analysis can build these graphs through the invest-
igation of each instruction found in the assembly code [75]. Based on found sequences,
conditions and jumps, a graph is generated where each node represents an instruction
with its location in memory. Edges are generated between consecutive instructions, for
jumps or function calls [76, p. 305]. The result graph displays the control flow (Control
Flow Graph). 1t is directed and may contain cycles. Tools like IDA Pro or work presented
in [77] and [64] can be used to generate such CFG.

Another type of graph focuses on the presentation the application state or universe [76,
p- 306] which consists of the memory and register state. The graph shows the alteration
of the application state throughout application execution. In this Data Flow Graphs (DFG)
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each node represents an application state. Executed instruction that manipulate the ap-
plication state are displayed as edges in the graph [78].

Applications for CFGs are the identification of paths with worst-case execution time
(WCET) as shown in [79]. It can also be used to optimize the compiler result if the source
code is still available like described in [80]. It is also possible to enforce integrity with a
priori determined CFGs as shown in [81]. This can secure a system against code injection
attacks.

To examine possible execution paths during static code analysis the conditionals at
edges can be concatenated. Figure 15 shows a very simple CFG graph where the condi-
tionals are show at the edges. To reach the node with the "return 100" instruction the
code path condition can be formulated as x < 0Ax = 0.

To analyse these formulas, to simplify
them and to find unsolvable conditions in
code paths satisfiability solvers (SAT solver)
or more complex solvers used in satisfiabil- < <0 x>0
ity modulo theory (SMT solver) can be em-
ployed like the ones presented in [82-85].

The Binary Analysis Platform (BAP) integ- if (x == 0) return x
rates a conditional builder for traversed
graph paths and employs SMT solver
to produce comprehensive formulas [66].
Nonetheless, due to the fact that the SAT return 100 return -x

problem is proven to be NP-complete and

the conditionals built along longer control- Figure 15: Example control-flow graph from [2].
flow graph paths get complex very fast, it

is not possible to analyse arbitrarily sized applications this way.

CFG and DFG can become very large even for small applications. As a result, different
optimisation approaches have been introduced to reduce the overall amount of nodes and
edges in the graphs. Muchnick and Jones describe an algorithm for DFG in [76, p. 306].
Each node that does not represent an exit or erroneous application state has either an
out-degree of 1 or 2. Out-degree 1 indicates that the instruction is an assignment whereas
an out-degree of 2 identifies conditional nodes. The evaluation of the condition decides
which edge is taken to reach the next application state. The condition can only evaluate to
true or false. Although unconditional jumps are not mentioned by Muchnick and Jones,
they can be interpreted as simple assignments to the instruction pointer register that is a
member of the application state and can therefore be modified through an instruction.

Mohnen introduces an optimization approach to this DFG, where he describes a simpli-
fication of the graph by combining consecutive nodes that are connected by assignments
(out-degree of 1) to basic blocks [86, p. 50]. This results in a simplified graph that con-
tains nodes representing one or more consecutive assignment instructions and nodes that

if (x > 0)

x =0 x<0Ax*0
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indicate jumps or conditions (out-degree of 2). To avoid ambiguity e.g. when a jump is
connected to an application state that is part of a building block the condition for combin-
ing nodes is extended. The ambiguity can be avoided if all nodes of the basic block (except
the first and last) have an out-degree and in-degree of 1. This results in basic blocks where
each member node must have exactly one predecessor (except for the first node) and one
successor (except for the last node).

Su et al. performed a survey focused on data flow testing in [87] and introduced dif-
ferent techniques like search-based [88], random testing-based [89], collateral coverage-
based [90] and symbolic execution-based approaches [91].

Whereas the described principles are designed for higher level programming languages
they can also be applied to machine code. Considering the principles of compilers to trans-
late high-level programming language features into multiple machine code instructions,
these chained instructions can be grouped together again as long as they follow the re-
quirements above basic blocks.

To create processor architecture independent CFG or DFG the machine code must first
be disassembled into assembly code. On Linux-based system the machine code is extrac-
ted from the dedicated segments of the ELF compliant application file. Figure 16 shows
a control flow graph for symbols in the Debian application nice. The color of the nodes
indicate the file (executable or dynamic library) the symbols are located in.

The root of the graph is the application execution start address that is specified in the
ELF header of the executable. This entry point will invoke the Linux loader to set up the
runtime environment for the application as shown in 12. This process is not relevant for
the application analysis. To overcome this issue the address of symbol main can be used
too. This symbol is the entry point after the Linux loader finished the memory setup.

Each disassembled instruction is evaluated and the graph is build according to the
principles described earlier. Memory addresses used by the assembly code instructions
can refer to absolute and relative addresses in the virtual address space of the application.
Since static analysis performs no actual execution, these memory locations need to be
translated to referred instructions and data in the used ELF files. For ELF binaries that
are marked as executables no relocation is performed before execution. Therefore, the
virtual memory addresses can be resolved with the segments headers of the executable.
Let H; be the header of segment i, then be VAddr; the address in virtual memory space
of this segment, VSize; the memory size and FAddr; the beginning of the segment data
in the ELF file. The function R, determines the absolute address for a virtual address v
in executables with the following calculation.

Raps(v) = FAddr; + (v— VAddry) (4)

where i denotes the segment where VAddr; < v < (VAddr; + VSize;). This suffices to
resolve absolute virtual addresses. Another special form are relative addresses. These ad-
dresses denote the location relative to the current value of the instruction pointer register.
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As an instruction is executed, the instruction pointer register holds the virtual address
of the next instruction to execute. The listing 8 shows a memory reference based on the
instruction pointer register (named rip on 64-bit processors) with an offset of 0x20b4b3.

0x411fb9: e8 a2 06 ff ff callg 0x402660
0x411fbe: 4c 8b 3d b3 b4 20 00 mov 0x20b4b3(%rip) ,%rl5
0x411fc5: 48 85 c0O test %Srax,%srax

Listing 8: Excerpt of the disassembly of the Debian 9 /bin/1s binary

The instruction at virtual address 0x411fb9 is a CALL instruction to an absolute ad-
dress that can be resolved with R,ps(0x411fb9). However, the MOV instruction at position
0x411fbe accesses the relative address 0x20b4b3 to copy the content to register R15. To de-
termine the absolute address for relative address r it is required to know the state of the
instruction pointer register. The definition for the instruction pointer register is to always
point to the next instruction can be used for this. During static analysis, the address of the
current instruction i is known (IAddr;) as well as the instruction size (ISize;). Hence the
instruction pointer register value for iis IAddr; + ISize;. Based on this a relative address
1 for an arbitrary instruction i can be converted to an absolute address using the following
function R

Rei(i,7) = IAddry + ISize; + 71 (5)

The result of a DFG construction using static analysis can be seen in figure 17 or in
its complete form in appendix E. Basic blocks have been built to increase readability.
Unconditional and conditional jumps are still visible in the graph.

While the graph is built according to the principles described above, jumps into the
.plt section can be observed. As described in section 4.1 this indicates the usage of dy-
namically linked symbols from other libraries. To integrate these symbols in the graph
the static analysis must be continued in the referenced file. The analysis algorithm has to
locate the dynamic library file in the filesystem and the referenced symbol based on the
information in the ELF header and section headers of the library file. If this succeeds the
graph construction can be resumed at the entry point of the symbol in the dynamic library.
This procedure has to be done for all jumps into the .plt section of an ELF executable or
dynamic library.

The introduced mechanisms enable static analysis mechanisms to build CFG and DFG
without actual execution of the application. Absolute and relative virtual addresses can
be translated to corresponding locations in ELF binaries. Dynamically linked symbols can
be detected by jumps to the .plt section and can be integrated into the graph. However,
one problem remains for jumps and calls to addresses that are stored in or referenced by
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registers. Since the content of these registers is unknown if the application is not executed,
the destination of the jump or call can not be determined. An example for an instruction
that uses an address referenced by a register is shown in listing 9. These assembly code
instructions are found e.g. for function pointers passed in the source code.

0x405cof: ff e0 jmpq  *%rax

Listing 9: Jump to an address referenced by a register RAX

This problem can not be solved with the mechanisms of plain static analysis. Further in-
terpretation of instructions, their contextual properties and possible runtime values have
to be considered. This can be done with abstract interpretation or symbolic execution methods
that are described below.

Abstract Interpretation

The principles of abstract interpretation extend the possibil-
ities of application analysis based on CFGs and DFGs. The
deduction of program flow depending on application state
can be achieved to a certain degree with this technique. As
described by Cousot and Cousot in [92], the generated graph
refers to conditionals that relate to the application state. If a
condition becomes unsatisfiable the follow-up nodes are un-
able to reach. These unsatisfiable conditions are detected via
the continuous evaluation of conditionals found during code
analysis. If the evaluation returns an empty set of values that
would satisfy a condition it can be safely ignored for the on-
going analysis.

This interpretation of conditionals is achieved with math-
ematical lattices as e.g. shown by Cousot and Cousot as well
as Nielson [92, 93]. Each variable of an application state
can be described as a lattice. Consequently, infimum and @
supremum can be determined that would satisfy a condi-
tional. However, during the execution of the analysis these
conditionals can become very complex and SAT-solver are
required to determine the conditions for which a branch is
executed. Figure 15 illustrates the combination of two condi-
tions. Mauborgne et al. introduce a more efficient approach
in [94] that allows the partitioning of so called traces. A trace is a sequence of instruc-
tions that is executed subsequently similar to the grouping of basic blocks in CFG. The

0x6d8

Figure 17: Example CFG
with grouped
blocks
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proposed technique enables dynamic partitioning which helps to reduce the number of
misinterpreted trace paths as well as the overall condition complexity.

Besides the introduced work are other publications that focus e.g. on logic program-
ming languages and the abstract interpretation of their source code to enable better com-
piler optimisation techniques as shown by Muthukumar and Hermenegildo in [95]. Any-
how since their approach is too narrow for the investigated use-case of this work it is
presented here for a more complete overview of the field of abstract interpretation.

The main problem for abstract interpretation remains the SAT-solving of conditions for
either tracing branch instructions or to identify potential misuse of memory areas etc. It
is proven that SAT is a NP-hard problem and thus not computable for arbitrary problem
sizes. Additionally, since abstract instruction works on the creation of value groups that
satisfy conditions it is by design not able to identify jumps to arbitrary code locations
based on variable content.

Symbolic Execution

Abstract interpretation uses complex semantic equations to describe application beha-
viour at a certain point in time. Given a concrete application state, the actual behaviour
can be determined through the evaluation of the built conditionals.

Symbolic execution (or symbolic evaluation) uses symbolic values for variables which
state is unknown without actual execution of the application. While source code or ma-
chine code is investigated for tests of identified symbolic values, symbolic constraints are
identified that apply. The result of this analysis is a graph (G), that contains executions
paths (p € P), for which certain symbolic constraints apply (¢p) [2]. A simple example
is given in listing 10 and figure 18. It can be seen that for p = return —x (line 7) the
constraint ¢p = x < 0/\x # 0 applies.

int abs(int x) { if (x > 0)
if (x > 0)
return x; x=20 x>0
else if (x == 0)
return 100;
else
return -x;

if (x == 0) return x

x=0 x<0Ax=+0

}

Listing 10: Exampl.e apPlication f9r return 100
symbolic execution as shown in

[2]

return -x

Figure 18: Fully discovered execution tree
based on listing 10 [2].
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The iteration of all possible p is feasible for small programs and suitable inputs and
testcases can be deduced from the calculated ¢, [96]. But, if a program grows larger, the
number of p grows exponentially. This so-called path explosion is a problem addressed by
[97] and [98] and is a general problem of static analysis techniques.

Selective symbolic execution in test generation according to [99] can help to over-
come the problem of path explosion. With this technique introduced by Chipounov et
al. applications can be tested selectively on the machine code level. Frameworks like
manticore [100] and angr [101] are able to generate CFGs and to perform symbolic execu-
tion based on them. It is possible to either perform whole application symbolic execution
or to specify a dedicated entry point in the binary where execution should start.

Where symbolic execution can find symbolic constraints for selected paths, it is also
based on CFGs. As a result, it is also difficult for this method to deduce referenced ad-
dresses in registers unknown without execution (see listing 9). The symbolic analysis can
be able to reconstruct the value that is stored in the addressed register. Nonetheless, it is
generally uncomputable to determine all possible paths that need to be traced back for
this [61].

4.3.2 Dynamic Code Analysis

In contrast to static code analysis, the task of dynamic code analysis summarises tech-
niques and investigations that involve the execution of an application on a real or virtual
processor [102, p. 14]. In the latter case one can speak of emulation instead of execution. It
is possible to either run the application as a whole or only certain parts the investigation
is interested in.

The major advantage of dynamic code analysis is that a real or emulated input is given
to the application and the control or data flow with this given input can be evaluated.
This enables the distinct modelling of register values and memory at a certain point in
time and allows the investigator to calculate or emulate application behaviour based on
them. The goal of dynamic code analysis is to collect more exhaustive information about
possible execution paths and constraints applied to them than static analysis.

The emulation of machine code instructions requires a virtual processor. This processor
must be capable to execute the instructions in the machine code. The lightweight multi-
architecture emulator unicorn is able to interpret arbitrary machine code provided in a
supported architecture [103]. The 64-Bit x86 architectures used in this work is supported
by the emulator too. The virtual processor possesses the architecture specific registers
and understands its operations. Partial and full application emulation are supported by
unicorn.
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Code Coverage and Fault Localisation

Code coverage is a metric that can be used to identify rarely used or even unused code
segments. Large unreachable code segments can indicate functionality that is not required
for the investigated input or even malicious code that is activated only under certain pre-
conditions. To analyse code coverage the application is executed with representative input
data for all use-cases that should be handled. This includes invalid input data which must
be recognized to cover error handling routines. Wong et al. introduced an effective frame-
work for fault localization based on code-coverage tests in [104]. They use the information
about covered code segments during unit tests to determine which segment is associate
to which test cases. Based on the execution success of the test case they present three
heuristics that associate e.g. ratio of appearance of a code segment in a test case to test
failure rate with the probability that an error is located in the concerned segment.

A different approach is introduced by Tikir and Hollingsworth in [105] that allows code
coverage recording in machine code. Their technology installs hooks in the dynamic link-
ing mechanism that is done by the Linux loader. This is done to collect information about
external symbols that are invoked. Additionally, each step of the application is traced
using the ptrace library. If a symbol from a dynamic library function is invoked their
injected code is executed and the bookkeeping tasks to record code coverage information
are performed (see figure 19).

Chen et al. show in their work that the analysis of source code or machine instructions
is not always required to collect information about code coverage [106]. They demonstrate
that for an application with sufficient distinct logging output and knowledge about the
code instructions which produced these messages, a thorough coverage analysis can be
done through log message analysis alone. While this is an interesting approach, it does
not fit the use-case targeted in this work, where neither sufficient log information nor
code knowledge is available.

Memory Error Detection

Hicks provides a good description about memory errors that cause problems during ap-
plication execution [107]:

ACCESS TO UNALLOCATED MEMORY describes a spatial error, where an application tries
to access memory that is located outside of the boundaries of the allocated memory.
These errors can be the result of type confusion, missing boundary checks for buffer
or array access or a general insufficient memory allocation.

VIOLATION TO THE CAPABILITY OF A POINTER instead describe a temporal error that
is caused by either an access too early in time (when a memory segment has not been
allocated yet) or too late during execution (when a memory segment has already
been freed).
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log time
3. log parameter
CALL read injected
text
CALL read@plt Lo el code
1. return result
.. 4.
application
JMP *read@got
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LINK read
2. read:
text libc.so
addrinjectedcode
.got

Figure 19: Visualisation of code injection based on the work of [105] to record data about invoked
symbols. The address of the logging code is placed in the .got instead of of the actual
symbol address. The resulting jump leads the execution to the injected code (step 3.).
The desired log information is stored and the real symbol is invoked (step 4.). After-
wards the result is saved and returned to the callee.

Several techniques exist for the detection of memory errors, such as redzone-based detec-
tion. Redzones are special areas that are placed between orderly allocated objects. If an
out-of-bounds access results in the access to a redzone, the invalid access can be traced
back to the originating instruction [108-111].

Approaches to detect pointer violations caused by use-after-free or double-free can be
found in [112-114]. There are also techniques for memory error detection with static
analysis described in [115].

Concurrency Errors

Concurrency errors can be classified into race-condition related problems and deadlock-
/infinite waiting problems. The first class of problems result from independent threads
that change the application state in an unanticipated way. These problems are very hard
to detect with dynamic code analysis tools. This is due to the interference of the analysis
tools with the execution of the application. A race-condition might not even occur when
the program is executed in emulated or supervised mode.
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Deadlock and infinite waiting problems can result from mutual exclusion problems.
These exclusions often relate to an unconsidered application state where mutexes, locks,
barriers or other operating system locking mechanisms are employed. The detection of
several problems related to these issues is possible with the valgrind toolkit introduced in
[110].

Dynamic Security Analysis of Source Code

A field for the security analysis of source code is the detection of threats in JavaScript code
that is downloaded and executed in a user browser. Tripp et al. investigated thedetection
of unwanted and insecure action redirections in [116] and presented a vulnerability de-
tection framework in [117]. One step further beyond detection is done by Magazinius et
al in [118] where insecure sections are identified and dynamically fixed.

Russo and Sabelfeld compare several frameworks for security analysis that either use
a static or dynamic code analysis approach [119]. They define four characteristics of dy-
namic code analysis frameworks:

¢ The monitor/emulator that runs the application does not look ahead when it de-
cides if the instruction that is about to get executed is save (not look ahead).

e The monitor/emulator does not consider conditional control flows that were not
executed due to the current application state of the program when it decides the
current safety (not look aside).

¢ The execution of the application is deterministic.

¢ Finally the monitor/emulator must be permissive. Therefore it does not change the
application behaviour itself if public information is only read and outputted. The
emulator is not allowed to write to the application state if the emulation is not
requesting it.

Their works also show, that all these four properties can only be achieved by a system
that incorporates static and dynamic code analysis capabilities [119, p. 10].

Partial and Full Emulation

Dynamic code analysis mechanisms are based on techniques of application emulation.
This can be done for applications provided in their machine code form. Depending on
the data that should be collected, a partial or full emulation is required. If the control
or data flow for a given input should be investigated, the emulation must start at the
application entry point. If the behaviour of single symbols inside the machine code is of
interest, the partial execution starting at the beginning of the symbol is sufficient.

The application state (registers and memory) must be emulated too. This is required for
both partial and full emulation. For full application emulation, only the initial memory
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state must be set up the same way as it would normally be by the Linux loader. For
partial emulation however, the application state must be valid for the desired part of
application that should be emulated. The construction of this state is difficult. Therefore
testing methods that perform partial execution rely on fuzzing methods [110, 119]. Fuzzing
determines the dependent variables for the desired application part and emulates its
execution with all possible variable variants. However if the application state depends on
many variables, fuzzing methods are not applicable because of exponential complexity.

SUMMARY

This chapter introduced the challenges of machine code analysis of applications executed
on Linux-based systems by a processor with the 64-bit x86 architecture. Besides the ma-
chine code itself, the used ELF as a file format provides information about the application,
linked libraries and the runtime set up. This information is usable to identify application
dependencies and to extract required information for the dynamic code analysis.

The major part of the chapter introduced the principles of static and dynamic code ana-
lysis as well as techniques based on these principles. Static code analysis is a powerful tool
to investigate the application and to generate control and data flow graphs without ac-
tual execution. However, it suffers from the complexity that is introduced due to unknown
application state during the analysis. Conditions are introduced to model dependencies
between application paths and application state. Nonetheless these conditions become
very complex with continuous analysis. As a result, application flow that is heavily de-
pended on the application state can not be investigated.

Dynamic code analysis tries to overcome this issue through the actual or emulated
execution of the application. This is feasible for machine code applications if a virtual
processor is employed and if the application state is emulated too. Using this approach
more complete/ use-case relevant CFG and DFG can be computed based on the input data
selected for emulation. Nonetheless, the selection of appropriate input data is crucial for
these techniques.
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The previous chapters provided the definition of assets and threats as well as a description
of resources which can be associated with them. Technologies were described that can be
used to investigate an application for certain resource access. The introduced technologies
allow such a resource-access analysis even for machine code application.

In this work, the result data from the application analysis is used to configure and set
up a secure execution environment. This environment must allow the resource access to
those resources that the analysis has identified and which pose no threat to any assets.
Furthermore it must deny any other resource access attempts by denying them or ter-
minating the application. The term sandbox is typically used to describe such an isolated
environment.

The first part of this chapter will introduce the requirements and different implement-
ation options for restricted execution environments with a trusted operating system. The
second part describes different technologies available for Linux-based operating systems
that are suitable to secure resources and assets from unauthorised access.

5.1 REQUIREMENTS

A threat can target the computing system in several ways. Different assets can be targeted
by an attack. Venter and Eloff give an abstract overview over security and sandbox techno-
logies and associated threats in [120]. They categorise information security technologies
into proactive and reactive classes. These classes are partitioned again where each branch
contains security measures relating to network level, host level and application level as shown
in figure 20.

The machine code analysis of an application can be placed into the application level
category of proactive technologies. Yet the result data is afterwards used to configure soft-
ware components from the reactive category that work on different levels as introduced
later. Figure 20 highlights the large overlap between technologies for the reactive category.
Technologies for access control, biometrics, logging, firewalls and passwords all aim to mitig-
ate threats that try to access protected resources. Resource-classes like memory, filesystem
resources or network are protected using these technologies. Additionally, separation of
user-specific data is a goal for technologies like passwords, access control and biometrics.

The principles of isolating different user-mode applications from each other to prevent
unwanted resource access is also described as a requirement for secure infrastructures
by Keahey et al. [121]. To create secure dynamic virtual environments they identify that
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Figure 20: Taxonomy for information security technologies based on Venter and Eloff [120].

thorough separation of resources from all resource-classes is required and can be achieved
with virtualisation technologies. Aside from this technological statement, they also point
out five criteria for any technology used for sandbox provision:

GENERALITY A solution for sandbox provisioning should work for a large amount of
applications and should not require adjustments for new payload software.

NON-INVASIVE The modification of software is discouraged. Although the results of a
machine code analysis could be used to remove unused code paths from the binary.
The non-invasive pattern prohibits such modifications to the application.

PROTECTION The solution should ‘provide suitable levels of protection between users
(not allowing users read each other’s files for example) as well as between the user
and resource (not allowing a user to gain superuser privileges on a resource)’ ([121]).
Consequently the sandbox should support a hierarchical user-management where
the application is executed with non-administrative privileges.

ENFORCEMENT This requires a solution to support limitation of resources to consume
(e.g. amount of CPU-time or disk space). It must also be capable to enforce these re-
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strictions through a denial of resource allocation which exceeds the limit or through
concealment of inaccessible resources.

APPLICATION STATE The preservation of application state when sandbox mechanisms
are executed is an important requirement in cloud environments. Especially when
it comes to capabilities like migration of sandboxes with confined applications
between compute node in the infrastructure. Anyhow state preservation techniques
do not relate to threat mitigation strategies. As a result, these technologies are not
considered in this thesis.

The restriction of applications based on their resource access through the system call
interface can be tested with the described criteria. If all of them apply a system call-based
sandbox is feasible. Generality is given by the fact that all applications must use the sys-
tem call interface to access resources. The supervision of the system call interface and
a modification of system call results if necessary does not modify the application itself.
Therefore the non-invasiveness criterion is satisfied too. Either the sandbox technology or
the kernel provide mechanisms to enforce implemented rules which satisfies the enforce-
ment criterion. A sandbox can check the utilisation of the system calls interface with a
layer between operating system and user-space application. If such a layer is employed,
its behaviour has to match the original interface. This is because of the application state
criterion that requires the same application state handling with or without sandbox mech-
anisms. Finally the protection criterion is satisfied if the sandbox enforces user separation
and supplies a hierarchical permission model.

These criteria, the argumentation for reactive security technologies based on resource
classes and the definition of resource classes for assets in 3.1, can now be combined. The
result is an association of threats with system calls which can be found through machine
code analysis. The final step to achieve this is to associate system calls with resource
classes. This can be done through an investigation of available and standardized system
calls and referring to their manual pages or implementation [122]. Table 12 shows an
excerpt of this association. The full table with the over 300 system calls on a modern
Linux system is given in appendix D.

Resource System Calls

Class

FS, read, write, open, close, stat, fstat, ...

FS, statfs, fstatfs, sysfs, syncfs, mount, umount2, ...
MEM mmap, mprotect, munmap, brk, mremap, msync, ...
CPU poll, pause, clone, fork, execve, exit, ...

Continued on next page
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Resource System Calls

Class

ACCESS getuid, getgid, setuid, setgid, geteuid, getegid, ...

NET read, write, close, accept, sendto, recvfrom, ...

DEV ioctl, iopl, ioperm, io_setup, io_destroy, getcpu, ...

KERN create_module, init_module, delete_module, ...

Time gettimeofday, settimeofday, time, clock_settime, clock_gettime, ...
ROOT dup, dup2, dup3, fcntl, syng, ...

Other uname, sysinfo, syslog, vhangup, _sysctl, reboot, ...

Table 12: Selection of 64-Bit Linux system calls and their associated resource classes

The table shows that certain system calls can relate to multiple resource classes like e.g.
read, write or close relate to FS; and NET. An investigation of the system call arguments
is required to perform a disambiguation. The passed arguments allow a distinct associ-
ation of the concrete system call to a resource class. System calls that can relate to more
than two resource classes are grouped into a new class (ROOT). The resource class other
is made up of system calls which do not fit in any of the other classes.

The more than 300 system calls are now associated with resource classes, assets and
therefore with threats that originate from them. But, as described in 3.1, there are attack
classes that can not be detected with this approach because they do not utilise the syscall
interface. These threats will be considered in the final evaluation but are excluded from
this work due to its focus on the system call interface.

5.2 PRINCIPLES FOR SANDBOXES

Different architectural possibilities exist to establish a sandbox on a computing system.
Resources outside the sandbox (or those only provided as read-only items) are protected
or unreachable for the limited application. However a sandbox might also be considered
as a secure enclave where data produced and stored inside the sandbox is inaccessible
from outside of the sandbox. Because the computing system is a complex layered archi-
tecture as shown in figure 21, there are sandbox technologies available at each of these
layers. Significant research and state-of-the-art concepts will be introduced in this section
that allow to sandbox an application [123].
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5.2.1 Hardware Sandboxes

The security and isolation starts at the hardware layer for CPU, memory and devices.
Whereas most of the technologies work in cooperation with the operating system (like
process scheduling, permission levels, memory mapping etc.), there are those which allow
the creation of secure enclaves for data or calculations. The latter ones implement the
concept of Trusted Execution Environments.

Intels Software Guard Extensions (SGX, [124]) and ARM TrustZone [125] are features avail-
able in selected processors and provide hardware sandboxes. The TrustZone architecture
enables the separation of a so-called Normal world from a Secure world. Dedicated bus
signal lines indicate to attached devices and memory if the system operates in a normal
or secure world. SGX on the other hand does not require additional hardware layout
changes but is not as strict with the separation of devices and memory. The only thing
SGX provides is the creation of secure areas where code and data in memory is protected
from unauthorised access by the processor.

These hardware sandboxes are especially useful in
cloud computing environments, where the client has

high security demands which require the effective pro- Application

tection of data and/or code from the infrastructure pro-

vider with administrative access to the system [126, 127]. User Space

5.2.2  Operating System Sandboxes Virtualisation

Modern operating systems provide several mechan- Operating System

isms for resource separation between users, processes

and kernel managed functions. These mechanisms in- Hardware

clude e.g. user- and group-based access control, virtual

memory management and process scheduling [35]. Figure 21: OS layers for sandbox
This separation is enforced by the operating system technologies

kernel. Therefore an attack aimed at the kernel is espe-

cially interesting for an attacker on monolithic kernel

operating systems. This type of kernel runs all resource

management and permission enforcement routines in the same kernel space. If an at-
tacker succeeds to exploit such a kernel, they obtain administrative privileges and security
mechanisms become useless. Only hardware sandboxes would remain effective in such a
scenario.

To overcome this issue, Dautenhahn et al. suggest a nested kernel approach in [128]
where an additional separated nested kernel is used only for security related tasks. Only
the outer kernel interacts with the applications through system calls and communicates
with the nested kernel through secure so-called entry and exit gates. With this setup, a
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tainted outer kernel does not inflict the secure resources managed by the nested kernel
component. The presented benchmarks show that this approach causes kernel-related
task to take up to 3.69 times as long as in normal operation.

Resource separation is closely related to resource scheduling. This is shown by Ra-
jkumar et al. in [129] and extended by Chang et al. in [130]. The introduced OS kernel
mechanism handles resource allocations for CPU, memory and network and assigns static
and asserted contingencies to running processes. As a result, the process is restricted to
these assignments like placed in a sandbox.

Another approach is to provide the kernel with more granular features to specify per-
missions for applications. By default each process of an executed application possesses a
real and an effective user ID. The effective user ID is checked by the kernel upon resource
access. Technologies that extend these simple access verification patterns are Linux Secur-
ity Modules, capabilities or namespaces which are introduced later in this chapter. A similar
technique for Windows-based operating systems is presented in [131].

5.2.3 Sandboxes Using Virtualisation

Virtualisation is an established method to provide thorough separation of resources between
an operating system running on the host machine and a simulated guest. The virtualisation
software is responsible for the simulation of required hardware components for the guest.
This allows the separation of real hardware resources from the untrusted guest through
the provision of only simulated hardware.

The so-called hypervisor or virtual machine monitor is the software component that is
capable to emulate the environment required for the guest and is executed on the host
machine [132]. Solutions can be divided into native and hosted hypervisors. A native hy-
pervisor runs directly on the host machine hardware, whereas a hosted hypervisor is
executed by an operating system that is installed on the host machine.

Besides the administrative and organisational advantages, security features are of high
interest for infrastructure providers. The hypervisor provides an effective security layer
that shields the hardware or the host machine operating system from attacks. However,
there are also security issues related to hypervisors. Turnbull and Shropshire present pos-
sible attacks against a native hypervisor in [133]. They considered threats like network
traffic redirection, system library call hijacking, hypervisor API rewriting and system call
hooking. All of these attacks require a full compromise of the native hypervisor. These
threats can also be used for attacks against hosted hypervisors if an attacker has gained
administrative privileges on the executing operating system. In these cases the host sys-
tem as well as all guests must be considered potentially compromised.

More common threats are attacks from a guest machine against either the hypervisor,
the host machine or other guests that are executed by the same hypervisor. Szefer et al.
investigate these threats in [134]. They found that the so-called VM exits (or hypercalls on
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paravirtualised guests) can be used to execute attacks. VM exists occur when a guest is
stopped and the hypervisor takes over control to execute an event that originated from
the guest. With each VM exit, the processor (that has to support hardware virtualisation)
evaluates a dedicated register that describes the occurred event. Intels 64-bit architecture
specifies 56 reasons for VM exits [135]. To reduce this attack surface Szefer et al. show
a system that eliminates the pre-allocation of processor cores and memory resources,
removes access to hardware I/0O devices, manipulates the system discovery process and
avoids additional memory mappings between guest and host system. Yet this requires
changes in the guest operating system and reduces flexibility.

Several other approaches exist that try to mitigate attacks against the hypervisor. Tahir
et al. introduce a detection framework based on Cuckoo filters in [136]. Cuckoo filters are
key-value data structures with especially high performance for insertion and lookup op-
erations [137]. The presented framework is integrated as an intermediate layer between a
guest machine and hypervisor to collect data about issued system calls by the guest. These
patterns are collected and used to built a cuckoo filter. This filter is then sent through an-
omaly detection to find irregular behaviour of a guest. The anomaly detection relies on a
machine-learned pattern recognition mechanism that was trained beforehand. Because of
the high-performance nature of Cuckoo filters the imposed processing overhead is small
(4%). Quality of the detection however depends on the size of the filter, the learning time
of the anomaly detector and monotonic guest behaviour. Promising results are shown for
training periods of 60 minutes and more with Cuckoo filters of 1 MB size.

The work by Xia et al. in [138] and Zhang et al. in [139] evaluate attacks that originate
from a compromised hypervisor. A mechanism is introduced that enables the guest ma-
chine to defend against rollback attacks. A rollback can occur when the hypervisor stops
the guest and restores an arbitrary disk and memory image to return the guest to a state
chosen by the attacker. While this is a feature that enables easy guest migration, backup
and restore, it also enables a compromised hypervisor to stop, rollback and restart a guest
to e.g. monitor confidential operations multiple times to collect secret data. The system
from Xia et al. employ technologies also used for hardware sandboxes to create a secure
space on the system. This is used to provide tamper-proof logging that enables a guest to
detect a maliciously intended rollback.

5.2.4 User Space Sandboxes

Another way to restrict an application in its possible actions is to enable unprivileged
users to establish rules for its execution. These rules are then enforced by an independent
trusted component that is capable to supervise those rules. Such technologies are promin-
ently featured in interpreted programming language environments or application virtual
machines (like the Java Virtual Machine). These software components are executed with
user permissions and execute the provided source code or an intermediate representation
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generated from the source code. Besides tasks like memory management and process
scheduling they can also employ sandboxing capabilities.

One example is the Native Client software (NaCl) which describes a sandbox for ex-
ecuting untrusted JavaScript and other binary modules inside a web-browser [140]. The
software validates the code flows, memory layout permissions and intercepts system calls
send to the operating system. It also defines "unsafe" operations that are disallowed alto-
gether.

Other technologies for the restriction of applications that do not require administrative
privileges can be based on system call supervision. This is a promising approach because
unprivileged users can be allowed to supervise their own processes with trusted monitor-
ing processes. Whereas [46] and [141] intercept system calls and make runtime decisions
for the monitored process based on the system call, the Apple sandbox implementation de-
scribed by [142] is a two-layered system. A user space sandbox-daemon evaluates system
calls from the monitored process, whereas operating-system kernel components enforce
actions like application termination or resource filtering.

The approach of Liang et al. in [143] proposes a one-way sandbox where sensitive re-
sources might be readable (if permitted), but writeable operations are only present in the
sandboxed environment. Once the application is finished and the sandbox is disposed all
changes are deleted. This is similar behaviour to virtual machines or lightweight contain-
ers, but happen in user space.

5.2.5 Application Sandboxes

Application sandboxes are different from the other
introduced technologies from the point of problem
assessment. Whereas the other technologies con- SGX Enclave
sider the application untrusted and as a result con-

struct a sandbox to limit damage to the system, ap- lity@ain Sandlbox:

plication sandboxes are a way for a developer of a Module
benign program to complicate attacks which might
compromise it or to protect sensitive data inside the Linux Process
application. :
The software developer is in the best position Hypervisor / 08
to know exactly what the developed application is Hardware
expected to do and what system resources are re-
quired or not for a successful execution. With this trusted untrusted
knowledge, the developer is able to describe an ap-

Figure 22: Ryoan sandbox according to
plication sandbox that only contains the required [144]

functionality and resources and might therefore mit-
igate attacks like privilege escalations and unanticipated resource accesses.
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Seccomp [145] and Capsicum [146] are two examples of such technologies. An application
that utilises these functionality is started like normal programs on the operating system.
During runtime, the application is able to enable one of the mentioned technologies to
drop selected privileges. Such privileges are e.g. the read or write to memory areas, access
to file descriptors or the interaction with processes. Once these privileges are dropped,
neither the process that activated the application sandbox nor spawned child processes
or threads can acquire them back. Seccomp supports further capability restriction dur-
ing runtime, whereas Capsicum is not able to reconfigure a once enabled sandbox. Rule
enforcement of these technologies is done by the operating system kernel, which makes
these technologies dependent on Linux distributions and kernel configuration.

To protect assets from unauthorized access the application faces the same problems as
virtual machines that might be attacked by a compromised hypervisor. The difficulty of
a compromised operating system that tries to extract secret information from the applica-
tion can only be mitigated with hardware security assurances like Intels SGX technology
or other trusted execution environments. The Ryoan system introduced by Hunt et al. in
[144] or Minibox by Li et al. [147] use such set ups as shown in figure 22.

5.3 PLATFORMS AND TECHNOLOGIES

This section will investigate the different technologies and platforms available to provide
secure runtime environments for applications [148], [149]. All candidates will be evaluated
according to the following scheme:

RESOURCES PROTECTED As described in the prior section, an attacker can target differ-
ent types of resources. This criterion lists the resources that can be protected with
the technology and how sophisticated these capabilities are.

RUNTIME CONFIGURATION ABILITY The aim of this work is the generation of a one-
time execution environment. The possibilities to execute multiple of such environ-
ments should not be ruled out. Therefore a technology must be configurable during
operation system runtime and should neither require service or even system reboots
nor any other system-wide rule reload mechanism that can impact overall availabil-
ity or other already running execution environments.

REQUIRED PERMISSION This criterion will evaluate whether the technology can be used
and configured by non-privileged users or if some kind of system administration
capabilities are required. Due to the fact that security frameworks can be affected by
security issues this is important as it determines if an attacked might gain adminis-
trative access to the overall system in case of such an issue.

CROSS-DISTRIBUTION COMPATIBILITY Different technologies pursue different approaches

when it comes to the realisation of the provided security features. This criterion
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Figure 23: Systrace architecture based on the description in [150].

evaluation whether the technology is either easily portable between different Linux
distributions or if it uses standardised or near-standardised features available on
common distributions.

PERFORMANCE It is obvious that additional checks and the implementation of extra
security mechanism negatively impact the application performance. This point in
the evaluation will try to compare the size of the impact of the different investigated
solutions.

At the end of this section a tabular comparison will be given for an overview of the
described results in the following sections.

5.3.1 System Call-based Filtering

Systrace

Systrace is a technology introduced by Niels Provos in [150] to improve system security
through the interposition of system calls. The system is designed as a hybrid architecture
that works with a component residual in kernel space for system call interception and a
so-called policy daemon. This daemon process runs in user-mode and is consulted by the
kernel component to check an occurring syscall against the policies specified. Figure 23
illustrates this architecture. The Systrace system can work fully without any user interac-
tion but is also able to leave certain decisions about an execution permission to him/her.
In this case the abstract captured syscall is translated into a human readable form and the
user is asked if he or she wants to allow the requested action (see 3 and 4 in figure 23).

Because the Systrace framework works based on system call interception it is able to
protect all the introduced resources that might be targeted using them.
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The system can be configured per application and the policy daemon is able to load and
unload new rules without being restarted. The capability of user-based decision making is
of no interest for the use-case scenario in this work, as it aims to provide a fully automatic
solution for unsupervised systems [151]. Extensions exist that would also allow monitored
applications to communicate with the Systrace policy daemon [152].

The kernel module is executed in privileged kernel mode and loaded at runtime. The
policy daemon is started for an arbitrary system user and does not require additional
administrative capabilities.

Systrace was available for NetBSD and OpenBSD (but was removed due to unfixed
software issues or was replaced with the pledge framework [153]). The Linux-port always
relied on ptrace as a backend for system call interposition rather than a dedicated kernel
module which improves portability but significantly impairs performance [154].

The performance loss of system call interposition on Linux-systems is significant as
shown by [47] and [46]. Furthermore, Watson has shown in [155] that the interposition
mechanism is not suited to provide sufficient resilience against timing attacks. Finally, the
development of Systrace appears to have ceased in 2009 with the last software release
from May 2009 [154].

Seccomp

The Seccomp technology (shorthand for Secure computing) is a technology available in the
mainline vanilla kernel since 2005 [156]. It also uses system call supervision like Systrace,
but enforces rules solely in a kernel-based automata. All major distributions have seccomp
support enabled in their kernels.

All users and application can activate seccomp enforcement for an application and
specify rules to apply. As mentioned earlier, once the seccomp sandbox is activated it can
not be disabled for the contained application. Also, once a rule-set has been activated
these rules can only be further restricted not loosened.

It was shown that sandboxes designed with this technology based on a prior syscall
tracing is feasible and does not significantly inflict performance even if a large amount of
rules are applied for each syscall [46]. Figure 24 shows these results by a comparison of
application runtimes for executions without confinement, with a blacklist and a whitelist
operational Seccomp mode. The work highlights that even for the worst-case-scenario
where more than 2400 rules had to be checked each time a system call occurred, the
runtime does not increase significantly.

However, based on the flaws described by Watson in [155], seccomp maintainers re-

frained from offering seccomp-rules that would allow evaluation of user-controlled memory.

Only the six passed arguments to a syscall are available when rules for filtering are
defined. This makes it impossible to implement more sophisticated checks like filename
comparisons or network address validation.
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Figure 24: Seccomp rule-set performance evaluation [46].

5.3.2 Linux Security Module

The Linux Security Module (LSM) extension became available in the mainline kernel in
2002 [157, 158]. LSM was moved into the kernel to provide an interface for more abstract
kernel modules to perform security checks. These checks are integrated into the system
call interface of the kernel as exemplarily shown in figure 25 for the open syscall.

To overcome the timing attack issues Systrace suffers from, or the reduced functionality
due to the lack of missing user-memory evaluation like Seccomp, LSM does not provide
syscall arguments to the modules but rather complete kernel context structures. These
structures are set up from the data provided by the syscall up until the point where
plausibility checks have been run for correct input values but right before the actual
resource access is executed. The modules registered for LSM hooks can access all fields in
these kernel structures to check if permission to the requested resource should be granted
and return the decision to the kernel.

5.3.2.1 SELinux

The SELinux security framework was introduced by Stephen Smalley in [159]. It is an
implementation to provide secure Linux application processing and is now based on the
LSM infrastructure. SELinux also employs policies to describe actions that are allowed for
specified resources and those who aren’t. The policies building blocks are types. Types
are either a domain which encapsulates a user and his or her role or an object like e.g. a
file, socket or service.
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Figure 25: Linux Security Module (LSM) Hook Architecture [157].

Every user or process is associated with a SELinux security context that contains its
user, role, domain and a Multi-Level Security identifier [160]. The latter can be used to
reflect a mandatory access model according to Bell-La Padula and has to be enabled sep-
arately [161]. Access to an object is granted if a specific rule in the policy allows access to
the requested object.

SELinux rules can be very fine-grained and be dependent on each other [162]. There is
no dedicated pattern that describes a hierarchy of rules and tracing errors can be tedious.
As a result, other systems to define policies have been suggested like behaviour-based
policies [163], model-based policy generation [164] or even learning-based approaches to
optimize the overall policy structure [165].

As mentioned above, SELinux hooks are integrated within the LSM architecture, which
itself is used to protect arbitrary syscalls. Therefore SELinux is able to be used to secure
all of the resource types identified in 5.1. Yet, some restrictions apply from the object-
focused security pattern. E.g. filter policies for network connections to or from a specific
host are not possible directly. Instead iptables rules must be used to redirect and label
traffic into a specific security chain that is filtered by the kernel and the LSM architecture.
This allows SELinux to perform policy enforcement for this use-case [166].

New policy modules can be defined by any user on a Linux system. However, compila-
tion and installation into the system requires administrative privileges. A restart of the
SELinux system daemon is also required to activate the new policy. Finally, if the new
policy module defines new types for objects in the filesystem, a relabelling needs to be
done to propagate these new information to the concerned objects.
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Descriptions of overall performance drawbacks for SELinux use-cases range from a
general 7% as reported in [167], to 75% for read-syscalls, 98.7% for write-syscalls in [162].
Comparable metrices are hard to find because there is no standard for testing SELinux
use-case scenarios. Nonetheless, there has also been steady improvement of the SELinux
performance over the last year as shown in [166].

5.3.2.2  AppArmor

Like SELinux, AppArmor uses the capabilities of LSM to implement its security features [162].

AppArmors goal is to provide an easy-to-use system that ‘(...) proactively protects the op-
erating system and applications from external or internal threats, even zero-day attacks,
by enforcing good behaviour and preventing even unknown application flaws from being
exploited” ([168]).

AppArmor enables users to specify a list of file system paths or patterns with POSIX-
like permissions for each item. It is also valid to specify rules for inter-process communic-
ation. This list of rules is associated with an application, which is identified by the path
of its executable binary [3].

Although AppArmor also uses LSM, it not as sophisticated as SELinux. Configura-
tion beyond objects located in the file-system is very limited. Also the usage of absolute
paths as shown in the example profile in listing 11 is error-prone. This may result in se-
curity issues if e.g. that restricted application is moved to a different filesystem location
without adjusting the rule. The labelling-technique of SELinux is a more persistent ap-
proach, which on the other hand requires filesystem support to store the required labels.

/usr/bin/example {
/etc/passwd r,
/home/x/*x* rwl,
/home/*/bin/ ix,
/home/likewise/*/x/**x rwl,
/{usr,}/bin/*x px,

Listing 11: Example AppArmor profile with rules for /usr/bin/example [3]

Likewise SELinux is the integration of new AppArmor rules into the runtime system.
New policy files may be created by every user known to the system. However transla-
tion into a configuration and loading it into the backing hybrid finite automata of the
AppArmor framework requires administrative permissions to the OS.

Kernel modules for AppArmor are available for all major distributions and can be
enabled in the operating system through accompanying management tools [168]. To im-
prove policy generation, tools are available to supervise applications during runtime and
generate tailored rule sets. Additionally, graphical and text-based dedicated editors can
ease policy file creation for users.
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Users described AppArmor to be more usable than SELinux. The reduced complex-
ity results in better configuration and therefore improved sandboxes as shown by [169].
Again performance evaluations are difficult because of the heterogeneous infrastructures
employed. Nonetheless, Helmy et al. did not find any significant runtime increase when
employing AppArmor in their sandbox tests [170].

5.3.2.3 Other LSM-based or similar technologies

Several other technologies are available that are based on the LSM infrastructure. [169]
compares SELinux and AppArmor with an implementation of functionality-based applica-
tion confinement (FBAC-LSM). Functionalities in this framework are high level descriptions
of applications like "Web Browser" or "Image Editor" that should be granted or denied cer-
tain access to selected resources. This makes FBAC-LSM easier to configure than low level
security context and object access policies in SELinux. But they are not that flexible and
fine-grained.

Bates et al. supposed a system that hooks into the system call processing pipeline right
after the LSM-hooks were executed (see figure 25) to run so-called Linux Provenance Mod-
ules (LPM) [10].

5.3.3 Namespaces

A different approach rather than supervision of actions and reactively denying them is
the creation of restricted environments, that contain only a subset of resources of the op-
erating system. The capabilities available in these environments might either be linked to
real resources in the actual operating system or only exists in this sandboxed environment
at all.

To create such an environment which is separated from the main operating system,
Menage proposed that namespace isolation is required [171]. He also defined and imple-
mented different subsystems to provide the required amount of resource separation. This
included an additional CPU accounting subsystem, CPU sets, resource grouping and
management frameworks. Parallel to the work of Menage, Biederman investigated the
measures necessary to integrate whole-purpose namespace separation capabilities into
the Linux kernel in [172]. He identified that about 7% to 15% of the linux kernel had to
be modified to provide namespaces for the following resources:

FILESYSTEM A sandboxed instance can configure and handle own mount points to filesys-
tems reachable in the environment.

uTs UTS-capabilities characterize and identify the system that a program is executed on
(host name, domain name). These information is retrieved through the uname system
call.
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IrC Inter-process communication involves the management of shared memory, sema-
phores and message queues on the linux system.

NETWORK A network namespace provides stand-alone routing tables, ARP resolution
tables, network adapters and address information.

PROCESS ID Processes, process hierarchy, threads as well as process and thread group
management has to separated from the rest of the system.

USER AND GROUP ID Analogous to process ID management is the provision and man-
agement of arbitrary user and group IDs in namespaces without causing collisions
within the hosting operating system.

SECURITY MODULES AND SECURITY KEYS These considerations focus on the provision

of security modules in namespaces and key exchange mechanisms between namespaces

and the difficulties that arise from these concepts.
DEVICE

TIME The OS kernel provides several clocks to the system. Namespaces simply needs a
time offset from the "real" system time to realise own time namespaces.

From this proposed specification there are namespaces for network, process ID, UTS,
tilesystem, user and groups ID as well as control groups present in the linux kernel [173].
The other namespaces mentioned above are either planned or their functionality was not
considered suited for namespaces at all by the kernel development community.

5.3.3.1 LxC

Reshetova et al. compared several namespace isolation techniques that are based on the
concepts described above in [149]. One technology introduced are Linux Containers (LxC).
LxC consists of a collection of user space tools which enable the creation of sandboxed
environments solely through the employment of namespace technology and upstream
kernel features. Hence this technology is highly portable between different Linux distri-
butions [174]. The improved toolchain to manage linux containers is named LXD [175].

Resource separation for all the above mentioned types of resources is possible with
LxC/LXD. Filessystem resources and Filesystems are protected via mount namespaces.
Process management and IPC are also constrained through their dedicated namespaces.
Network devices are also created in a separate namespace and virtual interfaces are used
in the OS to isolate sandbox application traffic from the OS until it has to enter the phys-
ical network, where the container traffic has to pass the physical OS managed interface.
Finally memory, CPU and I/O loads can’t be controlled through namespaces, but can be
restricted with control groups (cgroups, [173]) [149].
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Performance of linux containers is comparatively good in relation to other proactive IT-
security techniques which rely on resource separation and concealment (like e.g. virtual
machines). Joy [176] and Bernstein [177] show that for every tested scenario, container
outperform virtual machines. Felter et al. conducted a more thorough investigation in
[178] and tested performance loss for different resource types. They also found no sig-
nificant negative impact when an application is executed inside a container compared
to native execution except for network traffic handling. The additional steps required to
route traffic from the OS to the container and vice versa increased by 80% from 38us to
over 72us [2, p. 6].

5.3.3.2 Docker

Docker uses the same techniques as linux containers and has become increasingly pop-
ular for application sandboxing in Linux environments. One major difference between
docker and LxC/LXD is the ecosystem that comes with the Docker software. Sandboxed
applications can be bundled together with all required dependencies into Docker images
and are distributes via the Docker Hub. A locally hosted so-called registry can be used if
users want to limit access to their images [179]. Although these more comfortable ecosys-
tem ([180], [181]) led to the rise of Docker over the older LxC technology, it also caused
security issues related to the handling of foreign container images. The images are run as
an encapsulated Docker container, but might contain old and vulnerable software [182]
or the image itself might be compromised [183].

As mentioned above, Docker possesses the same properties as LxC. Yet it is able to use
additional security features on the operating system to add reactive IT security techno-
logies to the otherwise solely proactive character of container-based sandbox generation.
The Docker daemon (which is executed with administrative permissions) is able to use
Linux capabilities, LSM-based security modules (SELinux or AppArmor) as well as Sec-
comp filter rules to improve security of the system against attacks from the application
executed inside the container [179]. It was shown in [184] that the additional employment
of capability dropping and syscall filtering is feasible.

A concluding difference between Docker and LxC should be emphasized again. Docker
runs a daemon process system administration privileges. By default, each user that wants
to interact with this daemon also requires administrative privileges. It is shown by [183]
that enabling otherwise unprivileged user to interact with the Docker daemon is equal
to granting system administration capabilities to them. Even the official Docker manual
states “The docker group grants privileges equivalent to the root user)” ([185]).

5.3.3.3 Other Namespace-based Technologies

There are other technologies that rely on namespaces, control groups and the employment
of standard Linux tools. These include Rocket [186], Mesos Containerizer [187], OpenVz [188]
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or containerd [189]. Because of their similarity to Docker and LxC they won’t be explained
in further detail.

5.4 SUMMARY
Technology | Resources pro-| Runtime | Required | Compa- | Perfor- Base Tech-
tected configur- | permis- | tibility mance nology
able sions
Systrace all classes yes user compile | bad [47] | syscall mon-
required itoring
Seccomp all classes - no | yes user mainline | good [46] | syscall mon-
syscall  attrib- kernel itoring
ute checks
SELinux FSq, ES,, CPU, | no admin major good LSM & ipt-
MEM (partial), distribu- | [167], ables
ACCESS, NET tions medium
[162]
AppArmor | like SELinux, | no admin major good LSM
NET (partial) distribu- | [170]
tions
LxC/LXD FSq, FSy, | yes admin mainline | very Namespaces,
NET (partial), kernel good cgroups
CPU (partial), [178],
MEM (partial), good [2]
ACCESS
Docker all classes - no | yes admin major good Namespaces,
syscall — attrib- distribu- | [184] cgroups
ute checks tions

Table 13: Technology capability overview

After the detailed description of the different technologies available to achieve applica-
tion sandboxing, this section summarises their capabilities according to the requirements
introduced in section 5.1. The results are displayed in table 13. It is visible that all technolo-
gies have advantages in certain fields of the described requirements. The most promising
result give technologies that utilise namespaces in combination with cgroup, iptables and
other capabilities.
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EXPERIMENT SETUP

This chapter describes the utilisation of the techniques for application analysis described
in chapter 4. The collected data are used to generate a configuration for the used sandbox
technologies to protect the identified resource classes from chapter 3.

In the first part of this chapter methods and technologies to generate the sandbox are
introduced. The second part describes the datasets that are used to verify the selected
approach. The result data from this datasets is used in the upcoming chapter to measure
the improvements on the overall system security. This measurement is done with the
metrics presented in 2.3.

6.1 METHODS

The processing pipeline that is described here is designed to investigate the machine
code of applications that are built for Linux-based operating systems. Although other
distributions utilise different approaches to implement interaction between user-space ap-
plications and the operating system, these technologies are similar and this work focuses
on the system call interface to anticipate resource access of an application. The list at [122]
is used as a reference for available system calls.

Furthermore, the introduced pipeline assumes that the applications to analyse are con-
form to the ELF standard as described in 4.1. Attacks through manipulation of the inform-
ation stored in the ELF headers are beyond the scope of this work (see [190]).

6.1.1 ELF File Analysis

The basic information about the application, its size in memory, execution starting point
and linked dynamic libraries are read from the structured information of the ELF file
(see 4.1). The information is used to initially locate required libraries and ensure that the
analysis pipeline is able to execute the investigated application. The pipeline ensures that
the application target architecture (must be 64-bit x86 processors), operating system (must
be Linux) and file type (must be executable) are set to valid values.

6.1.2 Static Analysis

A static analysis is performed according to the principles described in section 4.3. The
entry point of the application serves as the root node for the constructed CFG. The entry
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point is determined from the ELF program header. It is common that the application entry
address points to a subroutine which invokes the Linux loader to set up the desired ap-
plication layout described in section 4.1. This invocation is not of interest for the analysis
and can be skipped. If it is detected, the invoking entry address symbol is disassembled
and the Linux loader invocation is searched (line 11 of listing 12). Since the actual applic-
ation entry point is always passed in register rdi to the Linux loader on 64-bit systems
[39], it can be easily extracted from the subroutine machine code (see line 10 of listing 12
that pushes the address into the register).

xor %ebp,%ebp
mov %rdx,%r9

pop %rsi

mov %rsp,%rdx

and $SOXFFFFFFfffffffffO,%rsp

push  Srax

push  %rsp

mov $0x412560,%r8

mov $0x41240,%rcx

mov $0x4028a0,%rdi

call 4024f0 <__libc_start_main@plt>
hlt

Listing 12: Disassembly of the application entry subroutine of /bin/1s with the invocation of the
Linux loader routine __libc_start_main. The address of the actual application entry
point is passed in the rdi register in line 10.

When the correct entry point is identified the CFG is constructed. The used disassem-
bler [191] rebuilds the instruction from the machine code of the application binary. Each
instruction is analysed and added to the CFG. Instructions that form a sequence are
grouped together based on the methods of [76] to reduce the complexity of the CFG. The
analysis follows JMP instructions or subroutine invocations through a CALL if the destina-
tion address can be resolved.

The address resolution problem was described in section 4.3 as a major drawback of
static analysis. Static analysis is not capable to determine memory addresses based on con-
tent stored in CPU registers with high certainty. Therefore these invocations are ignored
and the graph is not continued for these instructions.

The static analysis however is capable to resolve dynamically linked function invoca-
tions which is especially important for common applications that are linked against stand-
ard libraries of the Linux system. Dynamically linked function invocations are detected
through their specific pattern of instructions leading into the .plt section and dereferen-
cing memory from the .got (see 4.1.2). If such a pattern is detected the referenced library
is searched, opened and analysed the same way as the application binary. This enables
the static analysis to construct a CFG with instructions from the originating binary as well
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as from referenced library files. However, this requires the analysis to store the name of
the file that contains the instructions of the CFG alongside their addresses for each node
in the result data.

The result of the static analysis toolchain is a CFG with nodes representing a single
or sequence of instructions. Each node stores information about the file that contains
the instructions, the instructions itself as well as their virtual and absolute addresses.
Additionally, if function boundaries could be reconstructed, the name of the function a
graph node belongs to, is stored alongside the other information. Edges between nodes
represent sequences, jumps or subroutine calls.

Because of the focus on system calls in this work, no further efforts are taken to e.g.
rebuild complex datatypes from the analysed machine code. System call invocations are
identified by the SYSCALL instruction if they are found in the CFG. The location of a system
call in the machine code is stored alongside the instruction in CFG. Furthermore, possible
paths that lead to the invocation of the SYSCALL instruction are examined in the CFG.
Static analysis is not able to reconstruct datatype and program flow information with a
sufficient accuracy. To collect these missing information application emulation is used.

6.1.3 Emulation

The application emulation is realised with the unicorn processor emulator [103]. The soft-
ware requires the application to be loaded into memory and is able to handle all 64-Bit
processor commands of the x86_64 architecture. Since unicorn provides only capabilities
to emulate the processor, the emulation and association of other resources must be done
separately. The analyser that employs the emulator has to acquire resources that are re-
quested by the analysed binary (e.g. files to be opened or memory blocks to be allocated).
The emulator provides a thin layer to map memory from the emulating application ad-
dress space to the address space of the executed analysed binary. This process is shown
in figure 26. Memory blocks are acquired by the analyser and set up to a specific size
(sizen) and permission set (read, write, execute, permy). These blocks are assigned to
a specific address (addry) to the analysed binary executed in the emulator. This enables
the emulator to work on an independent address space during the emulation. Addition-
ally, since the memory blocks are accessible from the emulating application, residual data
from the analysed binary can be investigated easily.

To evaluate the application state (consisting of the values of all processor registers as
well as the content of assigned memory blocks) a so-called hook is used. A hook for
unicorn is a callback which is invoked before a machine code instruction is executed.

This hook checks the application state and saves important information in the CFG
that is build during the emulation. During emulation, the analysis pipeline is required to
also emulate system calls that are issued by the investigated application. The emulator
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analyser (emulating application)
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Figure 26: Transparent bi-directional mapping of memory blocks from the emulating application
into the unicorn emulator space.

can analyse and detect the SYSCALL instruction. However, it is not capable of actually
emulating system calls. Therefore this has to be done by the analysis pipeline.

For the analysis of the machine code applications the common system calls were imple-
mented and behave the same way as their operating system counterparts. An additional
logging of system call parameters is integrated to keep track about accessed resources
(similar to SysTrace introduced in 5.3.1). All this data is added to the CFG during emula-
tion. More rarely used system calls are implemented without any functionality but return
appropriate return codes to the emulated application.

The emulation starts at the specified entry point given in the ELF file header. However,
for correct emulation there is no workaround possible to skip the Linux loader. If the
Linux loader is required by the application it must be invoked in the emulated environ-
ment. Its actions are recorded as part of the CFG and occurring system calls are analysed.
The emulated Linux loader sets up a similar layout as described in 4.1.1 in the emulated
memory space.

The results of the emulation is the CFG built during execution, a list of mapped memory
blocks and their access permissions, recorded system calls with passed parameters and
result codes, as well as a list of ELF binaries loaded and analysed during emulation.

6.2 CONFIGURATION GENERATION

The data collected with the static analysis and emulation are processed to generate con-
tigurations for the selected sandbox technologies in section 6.3. This data processing step
is the crucial action that converts the abstract behaviour data from a CFG with additional
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information about utilised resources and memory images into actual technology depend-
ent configuration options. This process and its adaptability to arbitrary technology stacks
is described in this section.

6.2.1  Data Processing

The collected data contain information about analysed application paths, system call code
locations and execution during emulation. Additionally information about linked librar-
ies and basic memory layout are available. These information must be preprocessed to
deduce the required resources of the application and furthermore create a configuration
for the execution sandbox.

The following resource classes were identified in chapter 3 with associated syscalls:

¢ Filesystem FSq, FS;

¢ Memory MEM

¢ Process and CPU Management, IPC CPU
¢ Permission Management ACCESS

* Network NET

¢ Device Management DEV

¢ Kernel Management KERN

¢ Time

The goal of the data processing step is to build rules for the sandbox technologies that
are restrictive enough to prevent attacks but authorise anticipated behaviour. To reduce
complexity of the system, the described preprocessing steps rely on basic system security
rules. It is e.g. assumed that secret information can be stored in filesystem objects that
deny read access to unauthorised users. It is not reasonable to move these tasks of general
system security employment to the application sandbox too, as this would significantly
increase system dependent configuration workload and complexity and is not required at
all since the operating system is considered trusted (see 1.1).

Rules for Filesystem and Filesystem Objects

Interaction with filesystems is handled through the syscalls described in group FS;. The
system calls statfs, fstatfs and sysfs deliver information about a mounted filesystem
(e.g. block size or free space) and are not harmful to the system. If there are high demands
to prevent information disclosure, these syscall should be prohibited on an optional basis
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(rule Rfs1). The flush of outstanding write buffers using sync poses no threat to the sys-
tem (rule Rrsz). However, to bind or release filesystems from the computing system as
well as the manipulation of the location of the root filesystem is potentially dangerous
and should be prohibited. Therefore the syscalls mount, umount, pivot_root and chroot
are disabled (rule Rfs3). System calls related to inotify indicate, that the application
performs some kind of filesystem event monitoring [192]. It should be left to the sys-
tem administrator if these supervision should be allowed or not. Nevertheless must this
configuration be reflected in the sandbox configuration (rule Rfs4).

Access and interaction with filesystem objects like files, directories or links are handled
through a lot more syscalls than filesystems are. However, syscalls that operate on file
descriptors like read, write or close don’t pose much of a threat to the system if there
are appropriate checks in place that would perform authorisation checks on file descriptor
creation time. Therefore, all filesystem resource syscalls that result in new file descriptors
are crucial for the sandbox configuration. These syscalls include file-related ones like open,
openat, creat and open_by_handle_at as well as directory-related interactions like mkdir,
rmdir or mkdirat. The rule that should be enforced on these syscalls should allow file
creation in temporary and write-enabled directories as well as read-access to anticipated
user-readable system resources. Given that all read- or write-enabled filesystem resources
are configured in sets Res, (readable) and Res,, (writeable) and the application analysis
determined accessed filesystem objects for reading as set Emu, and writing access as
set Emu,,, the rule Rrgs5 needs to restrict read actions to resources located in Emu, and
write action to elements in Emu,,. It should also be noted that overall execution is denied
if emulated resource access contradicts the configured allowed resources. Therefore if
Emu, SZ Res, or Emu,, g Res,,, the application is not allowed to run at all on the
computing system.

The manipulation of filesystem objects by renaming or moving them in the filesystem
is also subject to rule Rfss.

Similar to the Rfsy is the read access to filesystem object information with syscalls like
access, getxattr or stat. These information should only be accessible if the administrator
allowed such access, except if these resources are members of set Emu, or Emu,, (rule
Rrss). However manipulation of such information for filesystem resources not in Emu,,
must be denied (chmod, setxattr or fchmod, rule Rgs7).

Rules for Memory

Secure memory management is a key feature for secure application execution as security
issues can result from invalid memory handling. The operating system performs several
tasks to protect the system from malfunctioning as a result of erroneous behaviour of
memory management. With the information available through the system call emulation
there are only limited options available which itself might impact overall application
execution [155].
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‘ Rule ‘ Purpose Enforcement
Res1 | Read filesystem status information optional
Rrs2 | Allow filesystem write buffer synchronisation mandatory
Res3 | Disallow filesystem mount and root manipulation mandatory
Rrss | Configure filesystem event setup and monitoring optional

Rrss | Allow read/write access to only those resources in Emu, and | mandatory
Emu,,

Rrse | Read filesystem object status information outside of Emu, and | optional
Emu,,

Rrs7 | Change filesystem object status information outside Emu,,, mandatory

Table 14: Rules related the filesystem resource class

The data collected from mmap, munmap, brk, mremap and madvise provide an overview
about memory layout during runtime and show readable, writeable and executable areas.
Additionally, an estimate about the required amount of memory can be made. However
using this estimate to establish rules that enforce the determined memory bounds might
result in unwanted application termination. Therefore rule Ry 1 restrict overall memory
consumption to a maximum of N x Emupiem where Emupiem holds the amount of re-
quired memory estimated during emulation. The factor N can be chosen freely. For this
work, N is set to the number of sub-processes and threads observed during emulation.

A restriction of memory layout is hard to impose onto the untrusted application due
to the different memory layout strategies of the operating system kernel. The emulator
used for data collection pursues different memory layout strategies than the runtime OS.
Therefore it is not possible to generate rules for this task from the collected data.

The remaining memory management system calls relate to the setup and usage of
shared memory (shmget, shmat, shmctl, shmdt) and memory pages management (shmdt,
migrate_pages, move_pages, remap_file_pages). These syscalls are rarely used, but a ma-
licious or acceptable intend is hard to derive if they are registered. Nonetheless, in order
to reduce the overall attack surface of potential threats these system calls should be dis-
abled if the application analysis did not detect any of them. Therefore an attacker can’t
utilise their functionality (rule Ram2).

Rules for Process and CPU Management, Inter-Process Communication

Process management groups together many system calls with very different purposes.
Syscalls that pose no threat to the system relate to waiting for certain events like checks
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‘ Rule‘ Purpose Enforcement

Rm1 | Restrict overall memory consumption to N x Emumem mandatory

Rmz2 | Disable shared memory and memory page management if the | mandatory
analysis didn’t find any related system calls

Table 15: Rules related to the memory resource class

for available I/O (poll, ppoll, select), for other processes (wait4, futex), for a defined
time (nanosleep, alarm) or a signal (rt_sigx, pause).

The creation of process-bound timers, messaging queues as well as I/O event notifica-
tion facilities through the epoll interface are also reasonable syscalls that might occur in
benign applications, especially if these applications spawn child processes or threads and
require communication between these instances. No specific rules can be outlined for the
presence of these features.

However the creation of child processes or threads itself might be utilised to generate
rules for the sandbox. Rule Rcpy 1 describes the availability of an application to create new
processes or threads using the fork, clone or vfork interface. If the analysis hasn’t found
any evidence for the requirement of multiprocessing inside the application, it can be safely
disabled. Furthermore, even if child instances of the original application are spawned, the
replacement of the application image inside the main process or a child item using the
execve system call might indicate malicious behaviour. Even if the analysis registered this
system call, caution is advised, as this enables arbitrary follow-up applications to be run
by the program (rule Rcpu2).

The interaction of the application with other processes (already running on the com-
puting system or spawned by the application itself) through kill, tkill, tgkill or prctl
must be limited to the originating process and child items. Interference with other process
items in the system must be averted (rule Rcpuy3).

An application may also request the operating system to change overall scheduling
parameters to increase the priority with which it is executed. To allow or deny these
syscalls is optional, as often there are already operating system mechanisms in place that
restrict these manipulation in a reasonable way (rule Rcpua).

Similar to filesystem and memory management, there are syscalls related to process
management that read process, kernel or IPC information (e.g. getpid, getppid, ksym). If
these information are considered sensitive, these syscalls should be denied (rule Rcpys).

System calls that weren’t recorded during analysis should be disabled for this resource
group too (rule Rcpue).

Finally the supervision of other processes using the ptrace interface must be prohibited
or at least be limited to child processes of the restricted application (rule Rcpy7). Gener-
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ally, the presence of ptrace syscalls is an indicator of malicious behaviour if the analysed
application does not focus on some sort of debugging or application analysis.

‘ Rule ‘ Purpose Enforcement

Rcpui | Disable the creation of child processes or threads if emulation | mandatory
indicated single-process/single-thread execution

Rcpuz | Disable process image replacement at all or limit the interface | mandatory
to required linked applications

Rcpus | Allow signalling and configuration of other process items only | mandatory
for the application itself and spawned child items.

Rcpus | Disable process priority manipulation optional

Rcpus | Read process, kernel or IPC status information optional

Rcpue | Disable process management system calls that weren’t anticip- | mandatory
ated during application analysis

Rcpuy | Disable or thoroughly restrict the ptrace interface mandatory

Table 16: Rules related to the process management resource class

Rules for Process Permission Management

Process runtime permission management allows a process to drop or elevate capabilities
during its execution. Since this work focuses on applications that should run in a restricted
environment where administrative tasks are not anticipated actions, permission elevation
must be prohibited (rule Roccessi). Additionally, the manipulation of user- or group-
ownership of the running application must be prevented (rule Ra ccess2). Furthermore, if
a process item is bound to a certain namespace to limit its resource access, it is forbidden
to undo or circumvent this security mechanism be re-associating itself with a different
namespace (rule Raccess3)-

Again, to prevent information disclose, rule Ra ccessa limits syscalls to query the cur-
rent process permission configuration.

Rules for Networking

Networking system calls behave similarly like filesystem object related ones. Once a net-
work resource (a socket) is opened, it is assigned a file descriptor and syscalls for receiv-
ing/reading or sending/writing data can be used. That is the reason why the system calls
read, write, readv, writev, pread64, pwrite64 and close are also present in this category.
However limiting these syscalls is not advised for this category either.
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Rule Purpose Enforcement

RaccEessi| Disable permission elevation mandatory

Raccess2| Disable user- or group-ownership manipulation of the run- | mandatory
ning process or its children

RaccEess3| Prevent resource namespace re-association mandatory

Raccessa| Disable user- or group-ownership information retrieval of | optional

the running process or its children

Table 17: Rules related to the runtime permission management resource class

Instead, the creation and management of client or server sockets is of interest for rule
generation. For this work it is considered that the system allows connections to remote
clients specified in the set Rescsock and the creation of server sockets declared in the
set Resssock. The rule RyeT1 should ensure that only those connections to host and port
combinations are permitted that are present in set Emucsock which was determined
during application analysis. Additionally, if Emucseck € Rescsock the application is not
allowed to be executed at all because connection attempts were found during emulation
that are not white-listed in set Rescsock.

Analogously to RneT1 rule RyeT2 should only allow the creation of server side sockets
for ports determined in Emusgseck. The condition of Emusseck € Resssock, which would
prohibit the software execution in the first place, applies here too.

Due to the fact that a large class of applications do not require network communication
at all, rule RygT3 disallows those system calls if the emulation determined that no data
transfer with external hosts is anticipated.

Finally the manipulation of the assigned host- or domain-name by the application
should be prohibited (sethostname, setdomainname, rule RneT4) -

Rules for Device Management

System calls related to device management operate on a low level interface to mostly inter-
act with hardware components. The interface can be used for arbitrary input and output
operations. For the described use-case of execution of untrusted application in shared
infrastructures the access to direct I/O channels is a high risk. Infrastructure providers
typically employ virtualisation or container technologies to separate user-space applica-
tions from the actual hardware the host operating system is executed on. Therefore the
utilisation of these system calls are restricted in Rpgv1.

The getcpu system call is an exception from the described syscall family for direct
I/0. This system call provides information about which CPU currently executes the call-
ing thread. Since this system call allows only read access to a single information about
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Rule ‘ Purpose Enforcement

RneT1 | Allow client socket creation only for host and port combina- | mandatory
tions in Emucsock

RneT2 | Allow server socket creation only for address and port com- | mandatory
binations in Emussgck

RnEeT3 | If no entries are present in Emucsock and Emusseck, disable | mandatory
network communication features altogether.

RNnET4 | Prevent the manipulation of assigned host- and domain-name. | mandatory

Table 18: Rules related to the network resource class

the executing system the risk ensuing from it is small. However rule Rpgv2 enables the
prohibition of this system call to deny access to this information.

‘ Rule ‘ Purpose ‘ Enforcement ‘
Rpev1 | Prevent low level input/output channel creation, utilisation | mandatory
and destruction
‘ Rpev2 ‘ Deny access to information returned by getcpu ‘ optional ‘

Table 19: Rules related to the device resource class

Rules for Kernel Management

Kernel management functions that are exposed to applications through the system call
interface require administrative privileges. Therefore a utilisation of theses syscalls can be
prohibited for the use-case targeted in this thesis.

‘ Rule ‘ Purpose ‘ Enforcement ‘

RKERNEL

Prevent system calls that manipulate the kernel or kernel | mandatory
extension modules

Table 20: Rules related to the kernel management resource class
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Rules for Time Management

Finally, time related system calls can be divided into read and write categories. Syscalls
like gettimeofday, time, clock_gettime and clock_getres read information about the
current system time or the resolution of system timers. Because time information is often
required for cryptographic operations or application tasks that involve random numbers
it is reasonable to allow theses system calls. However, the exposition of information about
clock resolution might enable an attacker to use high-precision timing attacks against the
system ([193], [194]). Therefore the two rules Rtime1 and Rrime2 allow administrators
to configure access to high-precision time information and more sensible clock resolution
data.

System calls with write intentions can manipulate the system time of the operating sys-
tem (settimeofday, clock_settime) or the way the system time is managed (clock_adjtime,
adjtimex). Since these syscalls pose a risk to the system they normally require time ma-
nipulation capabilities on the operating system. These are prohibited by rule Rtimes by
default.

Finally the clock_nanosleep system call causes the system to suspend the invoking
thread for the given amount of time. This system call poses no threat other than causing
an infinite or undesirable long application runtime. Since this attack should be mitigated
by other techniques no rule is defined that restricts the usage of clock_nanosleep.

‘ Rule Purpose Enforcement

Rtime1 | Allow read access to system time information optional

Rtime2 | Allow read access to information about system clock resolu- | optional
tion

Rtimes | Deny the manipulation of system time and system time ad- | mandatory
justment behaviour

Table 21: Rules related to the device resource class

6.3 SANDBOX GENERATION

The configuration generated for the defined rules in 6.2 is used for the selected sandbox
technology stack. This thesis uses the introduced Namespaces for this purpose. Addition-
ally, iptables is employed to limit network access, ulimits/prlimits to protect against
overconsumption of system resources and seccomp.

The selected technologies are combined to provide a comprehensive sandbox and to
eliminate drawbacks of each other. Their overall impact to application performance as
well as their effectiveness will be shown in chapter 7. Although this thesis relies on the
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selected technologies the overall approach allows single or multiple security components
to be exchanged. As long as the sandbox technology stack contains a virtual environment
technology, a network filter and a resource restricting security framework, the configura-
tion generation described below can be adapted to match the selected software compon-
ents.

6.3.1 Namespaces

Namespaces provide a thorough mechanisms to shield system components. As described
in section 5.3.3, they are the basis of virtualisation technologies like LxC Linux containers
or Docker and capable to protect different classes of resources.

To protect information about the filesystems of the system as well as their manipu-
lation (Rfs1, RFs3), a namespace for mounted filesystems is employed. This namespace
holds only information about the filesystem the application is running in. To shield the
tilesystem resources against attacks a filesystem namespace is created based on the chroot
technology (Rrs4, Rrss, Rrss, Rrs7). The contents of this namespace are taken from the
configuration determined by 6.2.1. An additional filtering is applied to ignore temporarily
created files detected during the analysis as they must not be copied to the sandbox (Rrss,
REs6)-

A namespace for user- and group-ids is used to separate the operating system informa-
tion from the executed application (Raccess2, Raccessa). The administrative user inside
the sandbox is mapped to an unprivileged user account to prevent access privileges escal-

ation (Raccess1, RAccess3)-

The separation of inter-process-communication and process manipulation is also achieved

via two distinct namespaces (IPC and process ids namespace). The created process sandbox
limits access to other processes (Rcpuz2, Rcpus, Repus, Repuz) and therefore potential
malicious interference. Due to the combination of limited inter-process-combination and
process visibility restriction the rules to prevent these attacks can be realised (Rcpus).

An UTS namespace is employed for the sandbox to protect the system against un-
wanted naming manipulations (RNgT4)-

Finally a separate namespace for networking is created that is described in the following
section.

A process running in the Linux system can be a member of different namespaces for the
described purposes. It is possible for each of the namespaces described in 5.3.3 to select
whether a process should share this namespace with the operating system or if it should
be placed into a separated one. This work assigns new namespaces for all described com-
ponents to the sandboxed process. This is realised with namespace entering. When the
sandbox is configured, a new process with a sleep command is requested from the op-
erating system with dedicated namespaces for the aforementioned purposes (Namespace
Provider). Afterwards, the sandbox configurator creates a child process which will serve
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Figure 27: Utilisation of a dummy process as a Namespace Provider to use operating system created
separated namespaces for the sandbox process.

as the sandbox. This child joins the set up namespace of the namespace provider and
afterwards starts the sandboxed application. This process is shown in figure 27.

6.3.2 Networking and iptables

As described above, a network namespace is used to separate networking of the sandbox
from the main operating system. Additionally, an iptables-based firewall is employed to
discard all traffic from and to the sandbox that was not configured.

The realisation of RneT3 is done by a virtual network adapter that connects the network
device inside the namespace of the sandbox with a bridge and the physical network device
in the main operating system (28). If the configuration does not require networking at all
this virtual device is not created and therefore the network namespace lacks the capability
to receive or send data via any IP-based network connection.

If networking is required the configuration is transformed into a whitelist for iptables
that allows connections from the sandbox to remote hosts according to rule Rne11 or
from remote hosts according to rule RyeT2. All other traffic not matching this resulting
whitelist is discarded. The filtering is performed inside the network namespace to prevent
interference with any firewall rules present outside the namespace.

6.3.3 Limits

The configuration to mitigate issues concerning resource overconsumption are translated
to a setup for the Linux technologies ulimits and prlimits. These limits are enforced
on kernel level upon resource acquisition and actively prevent a resource consumption
beyond the configured bounds.
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Operating System

. Sandbox Network Namespace
Level-2-Bridge

/ Virtual Ethernet Adapter
Physical Virtual Ethernet OS Side

Device

Figure 28: Setup to connect the isolated network adapter in the sandbox networking namespace
to the physical device of the operating system.

Limits are configured with soft and hard boundaries. An attempt to consume more than
the configured hard limit is denied by the operating system. The configuration specifies
the amount of memory required. Yet, the fact that the CFG was constructed with example
input data and that the application might behave different (but not maliciously) with
different input data must be taken into account. The configured factor N is used to for
this. In this work N is set to the total number of processes registered during emulation as
described above.

The determined amount of memory is set as hard limits for the application (Rap1). To
prevent attacks against the swapping mechanism of the operating system the total amount
of lockable (and therefore non-swappable) memory is also limited to the amount of locked
memory determined by the emulator (Ram2).

Configured CPU usage and priority manipulation is limited too for the selected test-
cases (Rcpua). However, it has to be considered to relieve this restriction for computa-
tional complex applications as a high CPU load alone is no indicator of malicious be-
haviour in their cases. Additionally to the CPU load the determined number of created
processes and threats is also limited to the configured amount (Rcpu1).

Finally the filesystem and process management system can be protected against at-
tacks that consume irregular amounts of resources through the limitation of open file
descriptors (Rrs4, Rrs7). The number of detected open files is taken from the emulation
results and a safety margin similar to the memory handling is added. This is required
because additional file descriptors are used by the sandbox to transfer input data to the
sandboxed application and to record its output.

6.3.4 seccomp

To protect the system against attacks seccomp is used in the generated sandbox to restrict
system calls to those recorded by the emulator. The seccomp filter works with a whitelist
of the recorded system calls. It is configured and enabled before the application is started.
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Due to the design of seccomp, once established restrictions can not be disabled. There-
fore the application is not able to circumvent these restrictions. The effectiveness of this
filtering is stated in 5.3.1.

Although it is possible to provide more sophisticated rules to the seccomp filter to
e.g. filter the amount of memory to acquire in a single syscall, these refinements are not
employed in this work. This is due to the fact that these restrictions either can not prevent
attacks mitigated by the formerly described methods or the emulation does not provide
data to set up reliable and effective rules.

Seccomp is used to implement rules that require the restriction of functionally closely
coupled to system calls like time/data management and operating system kernel interfer-
ence (RTime1, Rtime2, RTime3, Rkerner). It is also suited to prevent low-level access to
devices if the configuration requires its limitation (Rpev1, Roev2).

To protect the employed namespaces from manipulation by an attacker or a re-association
of the sandboxed application with another namespace (Raccess3) seccomp uses a ded-
icted rule to prevent this.

64 DATASETS AND SECURITY MEASUREMENT

The described techniques for the analysis of untrusted applications and the generation
of sandboxes must be tested on representative example to verify their effectiveness. Fur-
thermore, this work aims to provide insight about the efficiency of the designed solution.
Therefore appropriate metrics must be selected from the introduced mechanisms in 2.3.

6.4.1 Benign Testcases

The designed solution must be able to analyse benign applications and provide an ex-
ecution environment that allows these applications to run normally. To verify this, 100
example command line applications from the Debian distribution are used. For each ap-
plication a testcase is specified. Such a testcase consists of a setup, execution and cleanup
phase. The setup and cleanup phases are introduced to allow an automatic provisioning
and tear down of analysis environments for this work. During the execution step the ap-
plication is analysed and emulated with the techniques described above. All data that is
used to generate the execution environment is collected during this step.

The list of benign testcases is shown in appendix F. The applications are taken from the
coreutils [195] and ntpdate [196] package of the Debian distribution.

No explicit access to filesystem objects is preconfigured (Res, and Res,, are empty).
Only filesystem object access detected during emulation (Emu, and Emu,, without file
creation) result in filesystem objects present in the sandbox. The same principle applies
to preconfigured accessible network hosts or server ports (Rescsock and Resssock). Only
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detected connections and server ports registered during emulation are allowed in the
result sandbox.

6.4.2  Malicious Testcases

To verify the functionality and effectiveness of the generated sandboxes it is also required
to test their protection against attacks. The execution environment must secure the de-
scribed resource classes against different kind of attacks. To simulate such attacks 100 ex-
ample applications are used that target different kind of resource classes. The 100 samples
of malicious applications are divided into three categories:

EXPLOITS Malicious applications can target known vulnerabilities in operating system
components or software parts to attack the described resource classes. The utilisa-
tion of so-called exploits rely on certain software and operating system versions. For
this work ten exploits were chosen that use known vulnerabilities described in the
Open Vulnerability and Assessment Language [197] for Debian at [198] and published at
the Common Vulnerabilities and Exposures list available at [199]. If such a vulnerability
is reported a CVSS score is also assigned.

VIRUSSHARE APPLICATIONS VirusShare.com [200] provides a database with malicious
applications such as viruses, worms, trojan horses or rootkits. The database assigns
each sample a unique identifier and links detection results from different anti-virus
software products. Samples are sorted by operating system and type. Binary 64-Bit
ELF samples were selected that are executable on the Debian test operating system.
For the tests performed in this work 45 samples were picked from the database.

OWN TESTCASES To simulate attacks using dedicated system calls 45 own testcases are
used. Each of these testcases focuses on the utilisation of a selected system call to
attack a related resource of the operating system.

Each of the sample testcases is executed in a newly installed Debian system to rule out
interference between them.

The selected samples ensure that real-world threats as well as specifically crafted ap-
plications are tested to prove the effectiveness of the running sandbox. A complete list of
the utilised samples as well as references to their exploits or their VirusShare description
are given in appendix G. The CVSS rating for each threat was calculated or taken from the
source description and is used for the calculation in the applied metrics described below.
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6.4.3 Applied Metrics

The selected 100 benign test cases are used to investigate the applications and create a
execution sandbox. Each of these 100 result sandboxes is afterwards tested with the 100
malicious examples.

To calculate a score for the effectiveness of the sandbox approach the score is build with
the N, metric. As described in section 2.3 this metric counts the number of successful
attacks against the system or its resource classes. The score calculated from the execution
of the malicious application without any sandbox mechanism applied is used as the base
value to compare the results against. Additionally, to take the CVSS of a threat into ac-
count, another metric based on N, is used. Instead of counting the number of successful
attacks this work defines N yss as the sum of their CVSS scores and uses this metric.

The cost metric C,q from section 2.3 is also used to quantify the overall costs of the
applied metric. This work will focus on execution time to deduce the costs of the em-
ployed solution. Each additional millisecond (ms) the execution requires compared to the
unrestricted run is calculated with virtual costs of 1.0.
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This chapter presents the results of the chosen approach that was described in chapter 6.
The first part describes the data used to perform an evaluation about the effectiveness of
the designed solution. It presents the data from unmonitored and unrestricted executions
of the benign testcases as well as collected information about the malicious testcases.

The second section shows the results of the analysis of the testcases that were collected
using static analysis and emulated execution as described. It explains the data collected,
their size as well as performance key points like runtime and resource consumption.

The last two sections present the runtime data collected from the execution of the
benign and malicious testcases inside the generated sandboxed environment described
earlier. This data is afterwards used for an overall evaluation with the metrics defined in
6.4.3 to finally rate the effectiveness of the sandboxing solution.

7.1 BASELINE EXECUTION

The tested applications are executed as described by a Debian 9.0 operating system. To
differentiate phases in the execution process different timestamps were taken and will be
explained in detail in the following section. To eliminate runtime variations caused by
other factors that are not in the focus of this work each testcase was executed multiple
times. The shown runtime results represent the mean values of these executions.

7.1.1 Benign Testcases

The benign testcases serve as the exemplary set of applications that need to be sandboxed.
As described in 6, each of the 100 testcases consist of the setup, execution and cleanup
phase. Once executed, the result code of the application was stored alongside the different
execution phase timestamps. The return code of an application indicates if its execution
was successful. Therefore a matching return code of the execution with and without the
sandbox also indicates that the application performed the same way inside the sandbox
as it would have without it.

The data shows a mean execution of the testcases of 574 ms (median = 505 ms). The
setup time to prepare the execution take 13.5 ms on average (median = 4 ms) and the
average time taken to cleanup any created results is 0.1 ms. Therefore the cleanup time
can be safely ignored for further purposes. It is also visible in table 22 and H, that the
return code 0 is the most common (90%). However this is not always the case, as some of
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‘ # ‘ Command tsetup [Ms] | texec [Ms] | teteanup [Ms] | Return Code
o | /usr/bin/chcon | 2 503 0 256
1 | /bin/ls 9 508 0 0
2 | /bin/bash 5 505 0 0
3 | /usr/bin/apt 3 1050 0 0
4 | /usr/bin/hostid | 4 506 0 0

Table 22: Excerpt of the execution results of the first five benign testcases. The full table can be
found in appendix H.

the applications like timeout or false end with a non-zero return code even though they
were executed as expected. To take this fact into account, the determined return codes
presented here will be used to verify the a successful execution of the testcases inside the
sandbox in 7.3.

7.1.2  Malicious Testcases

Each of the 100 malicious testcases was also executed in the same environment as the
benign testcases. However the attack success is of interest for these testcases instead of
result codes or setup and cleanup times. Several testcases ran as a hidden service for an
infinite amount of time if not stopped manually. Therefore the execution of each mali-
cious testcase was limited to 30 seconds. If the application did not terminate itself, it was
terminated by the runtime framework and marked as forcefully ended (killed). After the
execution of a testcase the system was investigated if the attack was successful. A descrip-
tion about each malicious testcase and the conditions to evaluate a successful infection
are shown in appendix G.

# ‘ CVSS ‘ Return Code ‘ Killed ‘ Successful Attack

0] 6.6 -11 no yes
1|33 - yes yes
2|58 - yes yes
3165 0 no yes
41 3.8 - yes no

Table 23: Excerpt of the execution results of the first five malicious testcases. The full table can be
found in appendix L
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Out of the 100 testcases, 83 attacks were successful and compromised the system. This
value will serve as a baseline for the evaluation of the designed sandbox solution. The
value of N,y for the unprotected Debian system is 83 and Nyss is 448.2.

The unsuccessful attacks result from either patched software that appears to be no
longer exploitable (e.g. testcase 94 and 97) or from virus samples that fail to connect to
control servers before they attempt to compromise the system. Even thought a testcase
might fail in a newly installed Debian system it is kept in the test set. This is done to en-
sure that the software required inside the sandbox does not re-enable former unavailable
vulnerabilities. A malicious testcase that failed in the baseline execution but succeeded in-
side the sandbox can show the utilisation of new attack vectors introduced by the sandbox
itself.

7.2 ANALYSIS

After the description of the execution results of the benign testcases in an unrestricted
and unsupervised environment the results of the analysis of the given binary applications
are presented. The first part shows the execution runtimes of the static analysis and the
emulated execution in a similar manner to the unmonitored execution. The second part
investigates the collected results and built rules for the sandbox.

7.2.1 Execution Runtime

The analysis of the benign testcases has to be done only once to collect the data required
for the sandbox generation. However, runtime required for the analysis is a crucial factor
for a selected metric in the evaluation for the solution. For this reason, the runtime of the
static analysis as well as the emulation of the testcase is of interest and shown in tables
24 and 25.
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‘ # ‘ Command ‘ tsetup [ms] ‘ texec [Ms] ‘ CFG Blocks ‘ Syscalls ‘ Resolving Errors
o | /usr/bin/chcon | 3 504066 32655 123 471
1 | /bin/Is 9 205358 34049 116 504
2 | /bin/bash 6 2270471 78425 142 514
3 | /usr/bin/apt 9 841 65 0 16
4 | /usr/bin/hostid | 7 47585 28217 105 421

Table 24: Excerpt of the analysis runtime results of the first five benign testcases. The full table can
be found in appendix ]. Execution times are given in ms.
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The runtime results of the static analysis clearly show the complexity that is involved
in this process. The execution times of the static analysis are significantly higher than the
normal runtime. The mean ratio for the execution time compared to the testcase runtime
(calculated by texec Of the testcase analysis devided by texec Of the testcase runtime) is
201.52 and the median is 104.86. This is due to the fact that the static analysis has to
follow every possible execution path when the control flow graph is generated, whereas
the plain executed application runs only a single code path.

‘ # ‘ Command ‘ tsetup ‘ texec ‘ Processes ‘ Threads ‘ Syscalls ‘
o | /usr/bin/chcon | 3 4592 1 1 92
1 | /bin/ls 5 9454 1 1 212
2 | /bin/bash 2 3823 1 1 54
3 | /usr/bin/apt 3 313911 | 1 1 766
4 | /usr/bin/hostid | 4 1571 1 1 40

Table 25: Excerpt of the emulation runtime measurements of the first five benign testcases. The
full table can be found in appendix K. Execution times are given in ms.

Compared to the static analysis, the emulation of the application is much faster. How-
ever, it is also slower than the unmonitored execution of the testcase. The average exe-
cution time ratio between emulation end plain execution is 8.16 and the median equals
3.44. The increase in execution time is expected as the emulator is required to perform
additional steps to analyse the instructions and virtualise system calls. Especially the
introduced overhead through the emulation of system calls can be seen in the data in
appendix K, where a higher number of recorded system calls correlate with a higher
execution time.

The mean and median execution time ratios appear to be reasonable since emulation
does not have to follow every possible execution path as static analysis does. But if each
testcase and its execution time during unmonitored execution, static analysis and emu-
lation are investigated anomalies can be seen (see fig. 29 and 30). E.g. the static analysis
of testcase 3 takes less time than the emulation and is even lower than the unmonitored
execution. These are indicators that the static analysis failed for this testcase. A further in-
vestigation showed that the command executed did not use the anticipated way of applic-
ation entry point resolution as described for the static analysis (6.1.2). Another problem
can be seen for testcase 19 where the static analysis is again faster than the application
emulation. This was caused by a shared library, which name and path could only be de-
termined during runtime and was unreachable for the static analysis due to its inability
to anticipate runtime-memory contents as described in section 4.3.
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Figure 29: Runtime comparison of the benign testcases o to 49.

Finally the runtime of testcase 61 shows a potential problem with the emulator due to
its faster execution than the unmonitored execution itself. The command for this testcase
is the timeout command which causes the system execution to wait for a given amount of
time. The emulator receives the desired system call but has chosen to ignore the timeout
command because no other emulated processes or threads where pending execution. This
finally results in an emulation runtime lower than the execution runtime.

7.2.2  Results

This section briefly describes the result data from the static analysis and the emulator that
are used for the configuration generation process to build the sandbox. The static analysis
generated the CFG for all testcases. The size of the graph with the number of nodes is
given in appendix J. Each node represents a sequence of instructions. Instructions that are
of special interest are those, which cause system calls to occur.

The analysis of the CFG of all 100 benign testcases has shown that their investigated
machine code binaries do not directly contain any system call machine code instructions
at all. Instead, system calls are issued by linked dynamic libraries like the libc that is
provided by the operating system. This seems reasonable as a developer aims for plat-
form independence and relies on implementation specific abstractions that are provided
by such dynamic libraries. System calls, their identification numbers and parameter hand-
ling might be operating system dependent. It is therefore common practice to use the
standardised API provided by OS libraries.
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However, even though the investigated testcases do not issue system calls themself, this
can not be used as a criterion to identify benign applications. The system call interface
itself is a well documented API and might be utilised especially for low-level applications
for e.g. hardware interaction like drivers or security frameworks.

The static analysis provides a list of files that are linked with the originating application.
These list of files is used for the sandbox. This list is cross-checked and extended with the
list of binaries and libraries that were loaded by the emulator. The result set of required
binaries and libraries are used to configure the application in the filesystem namespace
of the sandbox (Emu,). Beside files required to run the application are files accessed (also
Emu,) and created by the observed testcase (Emu,,).

mmap (0x0000000, 0x002000, RW)
mmap (0x0000000, 0x229b20, RX)
mmap (0x0e27000, 0x005000, RW)
mmap (0x0000000, 0x2030f0, RX)
mmap (0x102e000, 0x002000, RW)
mmap (0x0000000, 0x39e960, RX)
mmap (0x13c5000, 0x006000, RW)
mmap (0x13cb000, 0x003960, RW)
mmap (0x0000000, 0x002000, RW)

Listing 13: Example memory mapping system calls captured by the emulator for testcase 2. The
first parameter holds the address of the memory to map or oxooooooo to acquire new
memory. The second parameter specifies the size of the memory block to map/acquire.
The third parameter shows the assigned access permissions.
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The emulator captured the related system calls and was able to read the associated
memory segments that hold the referenced filesystem object names/paths. This was not
possible for the static analysis and requires the analysis through application emulation.
The detected additional filesystem objects are added to Emu, and Emu,, to make them
available in the sandbox filesystem namespace.

Furthermore the emulator has detailed information about the number of open files,
processes, threads and acquired memory to generate the configuration for the Limits tech-
nology. The produced output could be evaluated with the methods described in section
6.2 to extract the required data for the rule generation. An example for this process can
be seen in listing 13. This listing shows the memory mapping system calls captured for
benign testcase 2. If a mmap system call is invoked with target address 0x0000000 (first
parameter) a new memory block is requested from the operating system with the given
size in the second parameter. Therefore, a simple filtering for this system call with a first
argument set to zero can be used to determine the amount of memory required to run
the application.

7.3 SANDBOXED EXECUTION

As stated before, the overall success of the sandbox solution is evaluated based on three
aspects. The benign applications must continue to run as expected, malicious attacks must
be prevented and the overall increase in runtime has to be measured. If a runtime increase
is within acceptable bounds depends on the specific security needs of a infrastructure pro-
vider. After the results of static analysis and emulation were shown, this section displays
the results from the execution of the benign and malicious testcases.

7.3.1 Benign Testcase Results

As described in the methods chapter a sandbox was created based on the data collected
from each application in the benign testcase set. The application was executed inside
the sandbox with the same input data. If the result codes from the baseline execution
matches the result code from the execution inside the sandbox the execution is considered
successful. If the return codes differ from each other the testcase was investigated further
and is described below.

Figure 31 gives an overview of the results of the 100 testcases. Since the sandbox was
built with enabled system call filtering via the seccomp technology might restrict the ap-
plication too much and cause its termination two setups were tested. The left figure 31
a) shows the results for the sandbox with namespaces, iptables and limits technology en-
abled. The right figure 31 b) displays the results with the mentioned technologies and
seccomp system call filtering enabled. The number of each testcase is shown in each
square and its color represents the match of the investigated return codes. A green square

100



7.3 SANDBOXED EXECUTION

a) Namespaces, iptables and Limits b) Namespaces, iptables, Limits and seccomp

Figure 31: Visualisation of return code matches for executions of benign testcases with the sandbox
mechanism and the baseline results from section 7.1. Subfigure a) shows the results
with namespaces, limits and iptables enabled and subfigure b) shows the results with
the additional filtering of system calls using the seccomp technology.

indicates a match, a yellow square shows a virtual match and red squares display a mis-
match. A virtual match occurs due to the different technologies that recorded the return
codes. Whereas the baseline application was executed without any framework in place
the sandboxed application is embedded inside the processes of application supervision
and sandbox creation 27. This results in different representations for the same return code
e.g. for testcase 1, 14 and 29. Their baseline execution terminated with return code 256
(complement on two of —1 for one-byte sized return codes) and the sandbox execution re-
ported an unsuccessful execution with error number 1. These return codes are considered
to effectively match since they represent the same error in different ways through the
return code.

It can be seen in figure 31 that 98% of the testcases match or virtually match the baseline
execution. This rate drops to 93% for an execution with a sandbox additionally restricted
with seccomp. Testcase 3 and 19 fail in both setups. Testcase 3 shows a problem of the
apt application to write a temporary file inside the filesystem namespace. The file is part
of Emu, because the file analysis of the emulator has determined its utilisation during
execution as read only. Since the file is present in the original filesystem it is transferred
to the filesystem namespace of the sandbox causing the application to fail when trying
a write access. The application is executed as expected if the file is excluded manually.
However, since manual white- or blacklisting of filesystem objects for single applications
is not considered in this approach this testcase is considered as failed. Testcase 19 quits
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with an error and a warning that the required command dpkg-query could not be found
in the sandbox namespace. The file is also not present in the list of required files from
the analysis ultimately causing the testcase to fail. A further investigation is required to
determine the reasons why this file was not found in the analysis process.

The testcases 27, 36, 63 and 82 end inside the seccomp enabled sandbox with return
code —31 which indicates a termination through the operating system. The reason for this
termination can be an overconsumption of limited resources or the usage of a disallowed
system call. Since a violation against the resource limits in place is ruled out due to the
successful execution in the non-seccomp sandbox a violation against the seccomp-rules is
assumed. To determine which rule was violated requires an investigation of each testcase
and is beyond this scope. For this work it is assumed that the designed sandbox with
system call filtering fails in the execution of the four mentioned testcases due to an over-
restriction.

# | Command thsetup | tnexec | tssetup | tsexec | Baseline Baseline
[ms] [ms] | [ms] [ms] | tsetup [ms] | texec [ms]

o | /usr/bin/chcon | 874 574 835 587 2 503

1| /bin/ls 839 597 876 579 9 508

2 | /bin/bash 1404 602 1458 643 5 505

3 | /usr/bin/apt 1661 583 1437 593 3 1050

4 | /usr/bin/hostid | 718 583 730 594 4 506

Table 26: Excerpt of the sandbox runtimes for the benign testcases. The full table can be found in
appendix L. Times are given in ms. Setup and execution time for the sandbox without
seccomp filtering are given in tnsetup and tnexec Whereas the time information with
the seccomp-enabled sandbox are displayed in tssetup and tsexec. Setup and execution
times from the baseline execution are given for comparison in baseline tsetup and texec-

The runtimes of the execution of the benign testcase in the sandbox are displayed par-
tially in table 26 and fully in appendix L. The table shows the time required to setup and
execute the application. Similar to figure 31 the runtimes for a sandbox without system
call filtering (tnsetup, tnexec) and with system call filtering (tssetup, tsexec) are given. It
can be seen that no significant increase or decrease in overall runtime between the two
versions is present. This is highlighted in figure 32 and 33 where the runtimes of the two
sandbox versions are plotted compared to the baseline runtime of the testcases.

Table 26 also shows, that the setup time introduced by the sandbox build process
(tssetup, tnsetup) significantly increases the overall runtime. Furthermore, to get a better
understanding of the impact of the sandbox on the application performance, the figures
in 34 show the increase of tsexec and tnexec compared to the baseline execution time.
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Figure 32: Runtime comparison between the execution of benign testcases inside the sandbox with
namespaces, iptables and limits (Namespaces), sandbox with additional system call fil-
tering (Seccomp) and baseline execution time for testcase 0-49.
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Figure 33: Continued sandbox runtime comparison for testcase 50-99.

Figure 34 indicates that the overall overhead due to the sandbox for all testcases has a
median value of 12.9% (both with and without seccomp). The mean value for the execu-
tion overhead without seccomp is 14.7% and with seccomp 13.8%. These minor variations
result from execution influences of the operating system that impact the comparatively
small execution time. It can be seen that the efficient implementation of system call filter-
ing has no impact on the execution time of the application inside the sandbox. However,
it might prevent the overall functionality of the application as described earlier.

7.3.2  Malicious Testcase Results

The prior results have shown that the sandbox generated allows 93% to 98% of the benign
test applications to run as expected with a median overhead of 12.9% on the execution
time. This part investigates the effectiveness of the sandbox against the described 100
malicious testcases. The runtime of the malicious application is no longer of interest,
since the overall prevention of the attack should be achieved. Results are shown for the
seccomp enabled sandbox.
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a) Execution time overhead in sandbox without seccomp b) Execution time overhead in seccomp enabled sandbox

71 72
34%  63%

Figure 34: Execution time overhead in percent based on the baseline execution time in 7.1. Sub-
figure a) shows the results for the namespace, limits and iptables enabled sandbox.
Subfigure b) shows the results with the additional filtering of system calls using the
seccomp technology.

A visualisation of these results are shown as an overview in figure 35. For each sandbox
that was build based on the analysis of a benign testcase (y-axis shows the number of
the testcase) all 100 malicious testcases were executed (x-axis shows the number of the
malicious testcase). The attack success against the system was plotted as a coloured square.
A green square indicates a prevented attack. It can be seen that selected attacks were
prevented by all sandboxes showing that they were effective against these attacks. A grey
square indicates an unsuccessful attack, that has also been unsuccessful when executed
without a sandbox due to the reasons described in the chapter 6.

The yellow and red squares in the figure are of special interest for the evaluation. A
red square indicated a successful attack against the system. All detectors that are in place
to detect the compromisation have been activated (see app. G for a description of these
detectors). Yellow squares indicate a partially successful attack where some detectors
evaluated the attack as successful whereas others detected no compromisation of the
sandbox or the host system.

Finally a white square is used for benign testcase 3 and 12 where the application itself
failed to execute in the sandbox.

Figure 36 a) shows the overall success rate of each attack against the system. It can be
seen that a lot of attacks are prevented by all generated sandboxes. These attacks show a
success rate of 0% in the figure. A total number 77 out of the 100 attacks were prevented
successfully for all benign testcases. 8% of the attacks were always successful, whereas
11% of the attacks were successful in at least 20% of the sandboxed testcases. Table 27
shows these success rates with the associated attacks.
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"T'estcase

40 45 50 55 60 65 70
Malicious Testcase

Figure 35: Visualisation of the protection of the sandbox build for each benign testcase against
malicious testcases. A prevented attack is shown as a green square, a yellow square
shows a partially prevented attack and a red square indicates the ineffectiveness of
the sandbox. Grey squares indicate attacks that were unsuccessful in an unrestricted
environment and are still unsuccessful inside the sandbox.
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a) Success rate of malicious testcase b) Sandbox attack prevention rate
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Figure 36: a) Attack success rate of the malicious testcases for the tested sandboxes. The percentage
indicated the number of sandboxes for which the attack could be executed (partially)
successfully. b) Attack mitigation rates of the sandboxes. The percentage indicated the
number of attacks there were successfully prevented through the sandbox

Before the successful malicious testcases are described and the reasons why the attack
was not mitigated are investigated, it is of interest to show the overall success rate of
each sandbox. Since each benign testcase was used to build an individually configured
sandbox, its individual effectiveness against the attacks can be measured as the number of
attacks that were prevented successfully and therefore failed to compromise the system
(inverse of Na). An overview for the 100 sandboxes generated is given in figure 36 b).
This attack failure rate ranges from 81% (testcase 3) to 91% (testcase 11, 27, 36, 63 and
82). The average attack failure rate is 88.7%. Compared to the baseline execution of the
malicious testcases, where 83 attacks were successful, giving an attack failure rate of 17%,
the effectiveness of the sandbox is clearly shown. This effectiveness results from the fact
that a sandbox is based on the analysis of a specific application. Executing a different
application inside such a sandbox can result in application termination. However the
reuse of a sandbox for a class of applications similar to the analysed one used for the
sandbox configuration is a promising approach but beyond the scope of this work.

Finally the attacks with a high success rate are of special interest. Their analysis can help
to improve the sandbox to prevent those attacks. Malicious testcases 3,7, 8, 9, 22, 25 and 27
were considered (partially) successful, because a malicious process was started that kept
running until forcefully terminated by the runner process after a timeout. These processes
disguised itself with various fake names in the list of running processes. Mitigating such
an attack is difficult, since the execution of a process has to be enabled to run benign
applications. Process renaming does not require any interaction with the operating system
through system calls since it is execute solely in application memory. Therefore these
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Success Rate | Malicious Testcases

100% 3,5,7,8,910,22,25
99% 27

24% 45, 68

12% 24

11% 80

7% 95

3% 72

2% 60

1% 54,57, 63, 81, 90, 98, 99

Table 27: List of malicious testcases that were successful against at least one sandbox of a benign
testcase. The success rate shows the percentage of sandboxes of the benign testcases that
were compromised by the malicious testcases given in the second column.

attacks were not able to be detected beforehand by the analysis or be mitigated by any of
the taken security mechanism. However, it can be argued that the execution of a process
in a disposable sandbox that is terminated after a given timeout is not harmful to the
system even if it attempts to run forever, renames itself and plants infected files inside
the sandbox. These threats are mitigated by the removal of the sandbox namespace and
the runtime limit placed onto the application. Nevertheless, since the malicious process
could execute itself and manipulate the process tree, its malicious behaviour is considered
successful for this use case and has shown that a mitigation with the chosen approach of
system call restriction is not possible. Nonetheless, the sandbox was able to restrict further
malicious actions like connecting to command and control servers for testcases 7, 9, 22, 25
and 27.

Testcase 5 and 10 are bitcoin mining threats that occupy large amounts of computational
capacity. The execution of tasks with high processor load does not involve system calls or
other operating system resource access besides actual processing resources and memory.
As a consequence, the imposed restrictions based on system calls did not prevent the
mining application from execution. Even the restriction to the filesystem namespace with
only files necessary to execute the benign application did not prevent the execution. This
is because of the fact that the malicious testcases are statically linked binaries that carry
all required dependencies with them to run inside environments that does not provide
them. The attacks were evaluated as successful because they produced a high system load
and did not terminate by its own. A more rigorous limit on processing resources could
have prevented the attack, but this might cause benign applications to stop functioning
correctly as described in 6.3.3.
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The custom testcases 45 and 68 simulate attacks that cause a buffer overflow through
a write out of bounds (45) and a stack overflow (68). Both threats target the overall avail-
ability of an application since they either force the operating system to terminate the ap-
plication or use the normally inaccessible memory to perform further malicious actions.
Somehow similar to testcase 5 and 10 these applications attack the memory associated
with an application. These attacks do not issue system calls or try to break limits or the
namespace established by the sandbox. If the attacker targets the availability of a benign
application the attack is successful because of its termination by the operating system
as a result of the detected memory access error. However ongoing attacks, that use the
memory access problem as a starting point, are limited by sandbox and it is therefore con-
siderably harder for the attacker to permanently compromise to operating system. These
testcases emphasize the limits of system based detection as described in 5.3.1.

7.4 EVALUATION

After the presentation of the results from the sandbox execution, the overall evaluation
of effectiveness and costs of the sandbox mechanism. The selected metrics Nat, Nevss and
Creq (see section 6.4.3) are used.

For a better overview and to account for the fact that a time consuming application
analysis has to be performed only once to build a sandbox that can be used multiple
times, Ceq is given separately for application analysis and actual sandbox runtime. The
complete list of results is given in appendix M.

Without the employment of the sandbox, the N, was determined as 83 and Ncyss
as 448.2. With the used sandbox the value of N, decreases to a value in range 9 (test-
cases 11, 27, 36, 63, 82) to 15 (testcase 78). The corresponding Nyss values drops down
to 50.1. The average values for avg(N.t) = 11.3 and avg(Neyss) = 61.0 show a signi-
ficant increase in system security that was achieved with the employed sandbox. The
required analysis to build the sandboxes causes average virtual costs for the selected test-
cases of avg(C,eq,analysis) = 109201 and median costs of median(C,e4, analysis) = 55706
as defined by the metric in section 6.4.3. This highlights the computational complexity
and therefore virtually expensive costs of the approach. However, it was shown that
these costs can be reduced if the system refrains from using static analysis and instead
relies only on the application emulation. The virtual execution costs inside the sand-
box account for an average value of avg(C.q,execution) = 823 and median costs of
median(Cieq, execution) = 797. These costs are comparatively small and highlight the
efficiency of the selected technologies and therefore the sandboxes that are built upon
these technologies.
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CONCLUSION

The results presented in the previous chapter show that a significant increase in overall
system security can be achieved when the introduced sandbox mechanism is used. A
discussion of these results if given in this chapter. Furthermore, an outlook into future
work is given to further develop the introduced sandbox mechanism.

8.1 DISCUSSION

The research questions given in 1.2 can be answered with the results given in chapter
7. It is feasible to generate a secure sandbox based on the analysis of system calls of
applications. This sandbox is effective against attacks that aim for different assets of the
service provider. This effectiveness was shown in this work by the investigation of 100
benign and malicious application that showed a decrease of the Ny metric from 448.2
to an average value of avg(Ncyss) of 61.0. This is a strong indicator of an overall increase
of system security.

This work has also shown that the required data to build such a sandbox can be
gathered automatically by a pipeline of steps. These steps include ELF file analysis, static
analysis and application emulation. It was shown that the required sandbox configura-
tion can even be assembled when the desired application is only available in its machine
code form. The application of interest can be disassembled and emulated to collect the in-
formation required for employed sandbox technologies. Although a combination of ELF
file analysis, static analysis and application emulation is used in this work it was shown
that the static analysis is very time consuming and does not provide any data that is
not available through file analysis or emulation. Therefore it can be concluded that the
static analysis can either be removed from the analysis pipeline or should remain for cross
validation purposes of the results between pipeline steps.

The introduced analysis and configuration pipeline made assumptions about the target
operating system (Debian Linux) and processor architecture (64-Bit x86). However, the
pipeline presented rules for associating resource accesses with different resource classes,
assets and threats that are independent from these assumptions. The resource access su-
pervision paradigm through the system call interface can be transferred to different op-
erating systems and processor architectures. If a transformation of collected data to the
specified rule sets in 6.2 is given and an implementation of these rules with suitable tech-
nologies in the target OS is performed, the effectiveness of the sandboxed environment
presented in this work can be assumed.
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Each sandbox that is generated with the presented pipeline is unique for the application
on which analysis data it is build upon. The sandboxes used in this work differ from
each other in the configuration of the utilised namespaces, resource limits and explicit
system call filters. Therefore only those resource accesses and their associated system
calls are allowed that are explicitly configured as permissible and provided resources
are additionally separated from the operating system by the namespaces. A sandbox is
reusable for consecutive executions of the same application but might not be used for
other programs that perform different tasks.

Although the presented solution did improve the overall system security, it was not able
to mitigate all threads. This highlights the problem of computing system provider to offer
their capacities for multi-purpose application. A strong restriction of applications in their
capabilities can result in benign application to seize to operate as expected, whereas less
restrictions can result in successful malicious attacks or unwanted behaviour from applic-
ations. Service availability requirements oppose system security needs. This dichotomy
can be seen in the presented results. The sandbox pipeline is too restrictive for selected
benign testcases but to permissive for some malicious applications.

It should also be noted that the designed sandbox is rather a building block for a soph-
isticated security infrastructure than a comprehensive stand-alone solution. The presented
solution suffers from the presented weaknesses that need to be compensated with other
technologies.

However, the introduced questions had been answered through thorough tests with
a large amount of benign and malicious testcases. Static analysis and application were
successfully combined to anticipate the behaviour of unknown binary application. Sys-
tem calls were successfully used as the medium to analyse application behaviour. As de-
scribed above and proved with the discussed results, the generation of a secure execution
environment to protect service provider assets was also successful.

8.2 FUTURE WORK

The testcases used for the benign application consisted of basic Linux application. These
command line tools serve dedicated purposes. Further research should be conducted to
prove the effectiveness of the approach for high complex applications. Their analysis and
runtime supervision is supposed to be more difficult. Nonetheless, this should be possible
as long as the mechanism to collect the data for the sandbox configuration are suited to
analyse the application.

Another approach to further improve this work lies in the reusability of sandboxes.
The application analysis can required to configure a sandbox can take a considerable
amount of time. A reuse of sandboxes for a class of applications that are similar to a
sample program used for the analysis is a promising approach and can reduce the overall

110



8.2 FUTURE WORK

analysis time overhead. But such an approach must still ensure that the sandbox protects
the system against the different kinds of threats.

Finally a port of the described pipeline to other processor architectures and sandbox
technologies like e.g. Docker could further improve the acceptance and overall effective-
ness of the solution.
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ONTOLOGY OF THE THREAT CONCEPT
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Figure 37: Threat ontology with sub-concepts according to [6] and published at https://www.ida.
liu.se/divisions/adit/security/projects/secont/Threat. jpg.
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Figure 38: Asset ontology according to [6] and published at https://www.ida.liu.se/divisions/
adit/security/projects/secont/Asset. jpg.
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RESOURCE CLASS AND ASSET ASSOCIATION

Resource Assets

Class

FS;q Stationary Data, Data on Non-Volatile Media, File, Program Source
Code File, Backup File, Database Data File, Configuration File, Pro-
gram File

FS> Stationary Data, Data on Non-Volatile Media

MEM Data on Volatile Media, Stack, Heap, Data in Transit, Application Layer
Packet, HTTP Data, E-Mail

CPU Hardware, Host, CPU, Process

NET Network, Untrusted Network, Trusted Network, Wireless Network,
Wired Network, Intranet, AdHoc Network, Host, Host on Intranet,
Host on Wired Network, Bastion Host, Host on Internet, Client Host,
Host on Wireless Network, Router, Wireless Access Point, Server Host,
Data in Transit, Network Layer Packet, IP Packet, Transport Layer
Packet, TCP Packet, UDP Packet

DEV Hardware, Harddisk, Security Hardware, Encryption Hardware

TIME Host, One-Time Password, Certificate Data

ACCESS Credential

KERN Host

Table 28: Association of resource classes with asset concepts described by Herzog et al. [6]

115




SYSTEM CALL ASSOCIATION TO RESOURCE CLASSES

Resource
Class

System Calls

F$q

read, write, open, close, stat, fstat, lstat, lseek, pread64,
pwrite64, readv, writev, preadv, pwritev, access, msync, flock,
fsync, fdatasync, fallocate, truncate, ftruncate, getdents,
getdents64, getcwd, chdir, fchdir,rename, mkdir, rmdir, creat, link,
unlink, symlink, readlink, chmod, fchmod, chown, fchown, lchown,
utimes, fchmodat, faccessat, openat, mkdirat, mknodat, fchownat,
futimesat, newfstatat,unlinkat, renameat, Tlinkat, symlinkat,
readlinkat, utimensat, umask, utime, mknod, uselib, ustat, readahead,
fadvise64, setxattr, lsetxattr, fsetxattr, getxattr, lgetxattr,
fgetxattr, listxattr, 1listxattr, flistxattr, removexattr,
lremovexattr, fremovexattr, Tlookup_dcookie, sync_file_range,
name_to_handle_at, open_by_handle_at

FS>

statfs, fstatfs, sysfs, syncfs, mount, umount2, pivot_root, chroot,
quotactl, inotify_init, inotify_add_watch, inotify_rm_watch

MEM

mmap, mprotect, munmap, brk, mremap, msync, mincore, madvise,
shmget, shmat, shmctl, shmdt, mlock, munlock, mlockall, munlockall,
swapon, swapoff, remap_file_pages, set_mempolicy, get_mempolicy,
mbind, migrate_pages, vmsplice, move_pages, process_vm_ready,
process_vm_writev

continued on next page
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Resource
Class

System Calls

CPUu

poll, ppoll, rt_sigaction, rt_sigprocmask, rt_sigreturn,
rt_sigpending, rt_sigtimedwait, rt_sigqueueinfo, rt_sigsuspend,
rt_tgsigqueueinfo, pipe, pipe2, select, pselect6, sched_yield,
pause, nanosleep, alarm, clone, fork, vfork, execve, exit,
wait4, waitid, kill, semget, semtimedop, semop, semctl,msgget,
msgsnd, msgrcv, msgctl, times, ptrace, sigaltstack,
sched_setparam, sched_getparam, sched_setscheduler, sched
_getscheduler, sched_get_priority_max, sched_get_priority_min,
sched_rr_get_interval, getpriority, setpriority, personality,
modify_1ldt, prctl, arch_prctl, setrlimit, prlimit64, acct,
getitimer, setitimer, getpid, setpgid, getppid, gettid,
kemp, tkill, +tgkill, exit_group, futex, sched_setaffinity,
sched_getaffinity, set_thread_area, get_thread_area,
timer_create, timer_settime, timer_gettime, timer_getoverrun,
timer_delete, timerfd_create, timerfd_settime, timerfd_gettime,
epoll_create, epoll_createl, epoll_ctl_old, epoll_wait_old,
epoll_wait, epoll_ctl, epoll_pwait, set_tid_address,
mg_open, mg_unlink, mqg_timedsend, mqg_timedreceive, mg_notify,
mg_getsetattr, unshare, set_robust_list, get_robust_1list, splice

NET

read, write, close, pread64, pwrite64, readv, writev, sendfile,
socket, connect, accept, accept4, sendto, recvfrom, sendmsg,
sendmmsg, recvmsg, recvmmsg, shutdown, bind, listen, getsockname,
getpeername, getsockopt, setsockopt, socketpair, sethostname,
setdomainname

DEV

ioctl, iopl, ioperm, io_setup, io_destroy, io_getevents, io_submit,
io_cancel, ioprio_set, ioprio_get, getcpu

TIME

gettimeofday, adjtimex, settimeofday, time, clock settime,
clock_gettime, clock_getres, clock_nanosleep, clock_adjtime

ACCESS

getuid, getgid, setuid, setgid, geteuid, getegid, getpgrp, setsid,
setreuid, setregid, getgroups, setgroups, setresuid, getresuid,
setresgid, getresgid, getpgid, setfsuid, setfsgid, getsid, capget,
capset, setns

continued on next page
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Resource System Calls

Class

KERN create_module, init_module, delete_module, get_kernel_syms,
query_module, finit_module, nfsservctl, restart_syscall,
kexec_load, add_key, request_key, keyctl

Multiple dup, dup2, dup3, fcntl, getrlimit, getrusage, signalfd, signalfd4,

Resources eventfd, eventfd2, tee, sync

(ROOT)

Other uname, sysinfo, syslog, vhangup, _sysctl, reboot, inotify_initl,

fanotify_init, fanotify_mark, perf_event_open

Table 29: 64-Bit Linux system calls and their corresponding resource classes
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Figure 39: Example control-flow graph where each machine code instruction is represented as a
node.
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BENIGN APPLICATION TESTCASES

To collect representative information about benign applications and to assemble an over-
view of actions taken, 100 examples of common system tools from the Debian operating
system were selected and analysed. The selected testcases were executed within the envir-
onment described in 6.1. The used programs and a short description for each application
is given in the following table.

‘ ‘ Command Description

0 /usr/bin/chcon change file SELinux security context

1 /bin/ls list contents of a directory

2 /bin/bash start a new command line shell

3 /usr/bin/apt search, install or remove software packages

4 /usr/bin/hostid get the host identification number for the system

5 /usr/bin/link call the link function to create a link to a file

6 /usr/bin/printf format and print data to the command line

7 | /usr/bin/truncate shrink or extend the size of a file to the specified size

8 /usr/bin/pr convert text files for printing

9 | /usr/bin/shaisum calculate checksums using the SHA1 algorithm

10 | /usr/bin/nice set the scheduling priority of a process

11 | /usr/bin/tee redirect data to both the command line and other file
related resources

12 | /usr/bin/realpath determine the absolute real path of an argument

13 | /usr/bin/tac output the specified file or stream line by line in reverse
order

14 | /usr/bin/printenv output the current execution environment variables

15 | /usr/bin/arch print machine hardware name

16 | /usr/bin/logname print user’s login name

17 | /usr/bin/fold wrap each input line to fit in specified width

Continued on next page
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‘ Command Description

18 | /usr/bin/users print the user names of users currently logged in to the
current host

19 | /usr/bin/dpkg manage installed software packages

20 | /usr/bin/paste merge lines of files

21 | /usr/bin/factor prime factor numbers

22 | /usr/bin/pathchk check whether file names are valid or portable

23 | /usr/bin/basename return the last path component of a path

24 | /usr/bin/dircolors set colors for directory listings

25 | /usr/bin/du show statistics about the disk usage on the system

26 | /usr/bin/shuf generate random permutations

27 | /usr/bin/sha224sum | calculate checksums using the SHA224 algorithm

28 | /usr/bin/head output the first lines of a stream or file

29 | /usr/bin/tty print the file name of the terminal connected to stand-
ard input

30 | /usr/bin/join join lines of two files on a common field

31 | /usr/bin/test check file types and compare values

32 | /usr/bin/runcon run command with specified security context

33 | /usr/bin/base64 base64 encode/decode data and print to standard out-
put

34 | /usr/bin/shasi2sum calculate checksums using the SHA512 algorithm

35 | /usr/bin/id print real and effective user and group IDs

36 | /usr/bin/dirname return the directory components of a path

37 | /usr/bin/numfmt convert numbers from or to human-readable strings

38 | /usr/bin/nl number lines of files

39 | /usr/bin/install copy files and set attributes

40 | /usr/bin/split split a file into pieces

41 | /usr/bin/od dump files in octal and other formats

42 | /usr/bin/groups print the groups a user is in

43 | /usr/bin/env run a program in a modified environment

44 | /usr/bin/tr translate or delete characters

Continued on next page
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‘ Command Description

45 | /usr/bin/comm compare two sorted files line by line

46 | /usr/bin/mdssum calculate checksums using the MDs5 algorithm

47 | /usr/bin/nproc print the number of processing units available

48 | /usr/bin/pinky find information about computer users

49 | /usr/bin/uniq remove duplicates in a given stream

50 | /usr/bin/ptx produce a permuted index of file contents

51 | /usr/bin/sha256sum calculate checksums using the SHA256 algorithm

52 | /usr/bin/cksum checksum and count the bytes in a file

53 | /usr/bin/who show who is logged on

54 | /usr/bin/cut remove sections from each line of files

55 | /usr/bin/csplit split a file into sections determined by context lines

56 | /usr/bin/expand convert tabs to spaces

57 | /usr/bin/unexpand convert spaces to tabs

58 | /usr/bin/seq print a sequence of numbers

59 | /usr/bin/stdbuf run a command with modified buffering operations for
its standard streams

60 | /usr/bin/unlink remove an item from the filesystem

61 | /usr/bin/timeout run a command with a time limit

62 | /usr/bin/tsort perform topological sort

63 | /usr/bin/expr evaluate expressions

64 | /usr/bin/stat get filesystem information for a specified item

65 | /usr/bin/tail print the last lines of an input stream

66 | /usr/bin/mkfifo create a named pipe in the system

67 | /usr/bin/sort sort the given input

68 | /usr/bin/nohup run a command immune to hangups, with output to a
non-tty

69 | /usr/bin/fmt simple optimal text formatter

70 | /usr/bin/whoami print effective userid

71 | /usr/bin/sum checksum and count the blocks in a file

72 | /usr/bin/wc count words, characters and lines in input

Continued on next page




BENIGN APPLICATION TESTCASES

‘ Command Description
73 | /usr/bin/shred save delete files
74 | /bin/cp copy filesystem items
75 | /bin/dd dump content to the disk
76 | /bin/false return logical false values
77 | /bin/readlink return information about a link in the filesystem
78 | /bin/vdir list directory contents
79 | /bin/rm remove filesystem items
8o | /bin/df report file system disk space usage
81 | /bin/rmdir remove an empty directory from the disk
82 | /bin/sleep wait for the specified amount of seconds
83 | /bin/true return logical true values
84 | /bin/date print or set the system date and time
85 | /bin/stty change and print terminal line settings
86 | /bin/In create soft- or hardlinks in the filesystem
87 | /bin/mktemp create a temporary file or directory
88 | /bin/cat concatenate files and print on the standard output
89 | /bin/uname print system information
90 | /bin/chmod change permissions of filesystem items
91 | /bin/touch change file timestamps
92 | /bin/mv move filesystem items to another place
93 | /bin/sync empty pending buffers in the system (filesystem, net-
work, etc.)
94 | /bin/mkdir create a new directory
95 | /bin/dir list directory contents
96 | /bin/chgrp change the group ownership of a filesystem item
97 | /bin/chown change the ownership of a filesystem item
98 | /usr/sbin/ntpdate sync time via NTP with a remote server
99 | /bin/mknod make block or character special files

Table 30: Benign Application Testcases
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MALICIOUS APPLICATION TESTCASES

For this work 100 testcases with real world and exemplary computer system threats were
selected to verify the functionality of the developed solution. The table below lists a de-
scription of all 100 testcases, their source as well as a explanation how a compromisation
of the system is detected. This work uses samples from VirusShare.com [200], known
Debian exploits and own testcases to verify the effectiveness of the sandbox.

‘ ‘ Type ‘ Source ‘ CVSSs

0 Virus ‘ VirusShare [201] ‘ 6.6

Backdoor that downloads and executes additional malicious files from internet
resources. Files are written to the /tmp directory and executed. It is detected if
the source downloader is present in the /tmp directory with the name *.pl

1 Virus VirusShare [202] 3.3

A small torrent-based client and server that is used for file sharing. Infection
is detected if the local server port 5001 is opened.

2 Virus VirusShare [203] 5.8

Trojan horse which establishes a minimal python environment in the /tmp dir-
ectory. It afterwards scans the network for control servers and other systems
to further spread through the network. It is found via the detection of the
suspicious python installation.

3 Virus VirusShare [204] 6.5

DDoS client that listens on the local machine for instructions from command-
and-control servers to attack desired targets. The process creates a disguised
executable dbuspm-session to appear as a legitimate process. The detection of
an executable with this name is used to detect a system compromisation.

4 Virus VirusShare [205] 3.8

DNS denial of service virus. The application scans and connects to discover
local and public network DNS servers and spams them with non-valid requests.
An infection of the system is detected through monitoring of UDP traffic for
unusual DNS-related ports 5353 and 5354.

Continued on next page
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| Type | Source | cvss

Virus ‘ VirusShare [206] ‘ 3.2

A mining virus that infects the system to harvest its calculation capacities. The
miner connects to a specified mining pool and sends results to the connected
server. The virus is detected through high system load and network connection
through the configured mining port 5555.

Virus VirusShare [207] 6.6

A linux based trojan horse that creates a payload binary subfolders inside the
/tmp directory. The detection of a successful infection scans for files with the
.elf ending that are created by the trojan horse.

Virus VirusShare [208] 58

Trojan horse virus that connects to control server 89.34.97.210 to get addi-
tional malicious payload. The connection attempt is done in a forked subpro-
cess that disguises itself as a nameless process in the system. An infection
detection utilises this fact and scans for unnamed processes and connections
to the specified address.

Virus VirusShare [209] 6.5

Another DDoS client that listens on the local machine for instructions to attack
targets. Process creates a disguised executable dbuspm-session to appear as a
legitimate process. The detection of an executable with this name is used to
detect a system compromisation.

Virus VirusShare [210] 54

Malware that connects to control server 206.81.11.231 to receive malicious
payload. The virus works similarly to threat 7. An infection detection can again
scan for unnamed processes and connections to the specified address.

10

Virus VirusShare [211] 3.2

BitCoin mining variant virus that uses the target computational resources
for mining purposes. The miner can connect to different mining pools and
is detected through high processing load and utilization of the OpenCL
computational library.

Continued on next page
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| Type | Source | cvss

11

Virus ‘ VirusShare [212] ‘ 4.3

NTP server attacking virus. The application connects to NTP servers on the
local network and tries to compromise them. The attack is detected on the
system by looking for processes running in the /tmp directory that connect to
other hosts via the NTP port.

12

Virus VirusShare [213] 6.6

A Python-based trojan horse. Installs a minimal python execution environment
and connects to command and control servers via HTTPS to receive further
instructions and malware for the target system. The trojan horse is detected by
searching the python environment.

13

Virus VirusShare [214] 6.6

Simple backdoor that opens local port 6661 or 6662 on the target machine to
enable other malicious applications to connect and cause further damage. An
infection is detected by scanning for the given port.

14

Virus VirusShare [215] 6.6

Simlar to threat 12 a minimal python implementation that starts a bash-like
command line and allows command and control servers to execute arbitrary
commands on the target system. A detection of the suspicious python environ-
ment is used to proof an infection with this virus.

15

Virus VirusShare [216] 6.6

Variant of threat 14 with different attack vector used. A detection of the suspi-
cious python environment is used to proof an infection with this virus.

16

Virus VirusShare [217] 8.3

Backdoor that opens a private SSH server and connection to a TOR server to
register the compromised system with generated random credentials. A suc-
cessful compromisation of the system can be found by detecting connections
to the TOR server wdgfzjunvynjhpj6.onion.guide.

17

Virus VirusShare [218] 3.2

Mining virus that consumes resources of the target system for mining. Results
are send to pool.supportxmr.com which is used to detect an infection of the
system.

Continued on next page
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| Type | Source | cvss

18

Virus ‘ VirusShare [219] ‘ 8.3

Linux system backdoor that connects to a command and control server
at luoxkexp.com. Created subprocesses sleep until commands are received
though the encrypted connection. An infection is detected by scanning the
network traffic for connections to the mentioned control server address.

19

Virus VirusShare [220] 6.6

Python-based backdoor that disguises itself as an SSH daemon process. The
spawned and disguised process connects to the command and control server
89.248.172.165 for additional instructions and malware. Connections to this
address are used to detect an infection with this virus.

20

Virus VirusShare [221] 7.3

ELF trojan horse that creates several ELF binaries in the /tmp directory. These
applications are executed and connect to address 185.81.158.47. To detect an
infection the system is searched for the described binaries.

21

Virus VirusShare [222] 7.3

Similar to treat 20 this trojan horse installs an application in the /tmp directory.
The control server is located at 5.189.153.241 and commands are exchanged
using HTTPS. The system is searched for the described binaries in /tmp to
detect an infection.

22

Virus VirusShare [223] 54

Trojan horse virus that connects to control server 185.165.29.25 to download
payload. The connection attempt is done in a forked subprocess that disguises
itself again as a nameless process in the system similar to threat 7. An infection
detection utilises this fact and scans for unnamed processes and connections
to the specified address.

23

Virus VirusShare [224] 7.3

Another variant of threat 20 with control server 208.67.1.57 that is also used
to detect an infection.

24

Virus VirusShare [225] 7.3

Another variant of threat 20 with control server 173.199.71.172 that is also
used to detect an infection.

Continued on next page
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| Type | Source | cvss

25

Virus ‘ VirusShare [226] ‘ 5.8

Another variant of threat 7 with an unnamed child process that connects to
the command and control server at 217.61.16.74. The infection detection can
again scan for unnamed processes and connections to the specified address

26

Virus VirusShare [227] 3.9

Ambiguous malware that connects to several different servers through port
37215. Because the list of servers seems to change upon each execution, a con-
nection attempt to a remote host with port 37215 is used to detect an infection.

27

Virus VirusShare [228] 8.8

Backdoor implementation that relies on the busybox minimal execution envir-
onment system. The application establishes a connection to the control server
at 45.32.1.44. Due to the fact that the busybox application might not be
present on the system or is used for a valid application the connection attempt
to the control server is used to detect an infection with the virus.

28

Virus VirusShare [229] 9.0

Complex virus and rootkit that installs several exploits into the system. It can
be detected through searching for the hidden ELF files in the /tmp directory
and the file /etc/.z1.

29

Virus VirusShare [230] 5.8

Another variant of threat 7 but this one does not use an unnamed child pro-
cess that connects to the command and control server. However a connection
attempt to 167.99.107.136 can be used to detect the infection.

30

Virus VirusShare [231] 6.6

Similar threat as the one described for threat 19. This DDoS virus also disguises
itself as an SSH daemon process. The command and control server connected
is located at 197.164.232.57. Connections to this address are used to detect an
infection with this virus.

31

Virus VirusShare [232] 2.0

Hacking toolkit with interactive shell to launch several attacks. For the purpose
of this test the installation and start of a SSH backdoor service is tested. The
system is considered infected if the SSH service can be downloaded from the
remote source and can be started on port 22223.

Continued on next page
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| Type | Source | cvss

32

Virus ‘ VirusShare [233] ‘ 7.3

Another variant of threat 20 with control server 185.29.9.180 that is also used
to detect an infection.

33

Virus VirusShare [234] 7.3

Another variant of threat 20 with control server 62.4.24.136 that is also used
to detect an infection. The virus prints a TELNET header to disguise itself as a
valid application.

34

Virus VirusShare [235] 3.9

Variant of threat 26 that operates with connections to control servers at port
52869. A successful execution of the virus causes the system to seize accept-
ing SSH connections which makes it unresponsible for management access. A
successful attack is detected though outgoing connections to server with port
52869.

35

Virus VirusShare [236] 8.3

Worm variant of threat 16. Connections are made to TOR service
w4gfzjunvynjhpj6.onion.cab. These connection attempts are used to detect
infections.

36

Virus VirusShare [237] 6.6

Variant of threat 19. However the process disguises itself as a cron daemon
process. The spawned and disguised process connects to the command and
control server 179.43.141.235. Connections to this address are used to detect
an infection with this virus.

37

Virus VirusShare [238] 7.7

A stand alone backdoor virus. Upon execution the virus forks a child process
and connects to the command server at 80.211.40.234. Infections are detected
through a detection of these connections.

38

Virus VirusShare [239] 7.3

Another variant of threat 20 with control server 206.189.167.201 that is also
used to detect an infection. The virus prints a BUILD RAZER output line.

39

Virus VirusShare [240] 3.2

Mining virus variant of threat 17. Results are send to pool.minexmr.cn which
is used to detect an infection of the system.

Continued on next page
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| Type | Source | cvss

40

Virus ‘ VirusShare [241] ‘ 6.5

Simple backdoor virus that connects to 62.4.24.135 on port 6667 to fetch ad-
ditional payload and instructions. The backdoor is considered active if such
connections are found on the system.

41

Virus VirusShare [242] 9.0

Backdoor that installs itself into the system into the /bin directory and sets
up cron jobs using the cron daemon and the new systemd infrastructure. This
is done to ensure persistent restarts of the virus in the case of a termination
through the user or any other security mechanisms. After ensuring repetitive
restarts, the virus connects to 121.42.144.22 to read further commands. This
connection is used to detect the virus, because of the fact that the names and
entries made to cron vary between runs.

42

Virus VirusShare [243] 3.2

Mining virus variant of threat 177. Results are send to pool.minexmr.com which
is used to detect an infection of the system.

43

Virus VirusShare [244] 7.3

Another variant of threat 20 with control server 120.52.120.11 that is also
used to detect an infection. The host mac address is shown on the command
line upon execution of the virus.

44

Virus VirusShare [245] 6.4

Backdoor variant that is loosely based on threat 20 with control server
222.186.56.25. Connections to this address are used to detect an infection.

45

Buffer overflow Own testcase 5.0

A buffer overflow due to an out of bounds memory buffer write by a string
copy operation. This attack is detected by a segmentation fault by the system.

46

UDP package spam Own testcase 3.5

The threat creates UDP packages to random targets (IP address and destin-
ation ports are chosen at random) of random size. A successful attack is
detected, if UDP packages are send by the host system that do not belong to
the benign application.

Continued on next page
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| Type | Source | cvss

47 | Custom made rootkit ‘ Own testcase ‘ 8.7
Infect the cron table of the system with a binary and send usage data to a
remote server. The application re-schedules itself using the cron service of the
system and installs itself in several locations of the system. A successful infec-
tion is detected if one of the malicious files is detected.

48 | Rootkit Own testcase 8.7
Variant of threat 47 that infects the 1s command of the system.

49 | Unauthorized file read Own testcase 55
The attack opens all files in the system in read only mode. The attack is con-
sidered successful, if a system file can be read that does not belong to the
application that is intended to run.

50 | Unauthorized file deletion Own testcase 55
When the attack is executed, it removes all files in the system. The attack is
considered successful, if a file can be deleted that does not belong to the ap-
plication that is intended to run.

51 | Rename and truncate system log | Own testcase 3.3
file
The application tries to empty /var/log/auth.log and to rename
/var/log/kern.log. This can be used to disguise possible system infiltrations.
The attack is evaluated as successful if one of the mentioned files is changed.

52 | Permission manipulation Own testcase 4.4
If the application is executed, all files in the /home directory will be assigned
read, write and execute permissions for all users. This will emulate an attack
against private files that are not accessible by default. If the access permission
are changed by the application the attack is considered successful.

53 | Filesystem hardlink creation Own testcase 33

The attack creates filesystem hardlinks for all files found in the system. This
can result in an filesystem inode consumption or may circumvent sandbox
restriction imposed on absolute file paths. The attack is successful if at least
one hardlink can be created.

Continued on next page
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| Type | Source | cvss

54

File encryption attack ‘ Own testcase ‘ 7.1

During execution, the application opens all files on the system and encrypts
them with a random key. The attack succeeds if a file that is not allowed to
change is manipulated.

55

Read extended file attributes Own testcase 3.3

The application reads all extended file attributes of all files in the filesystem.
The unauthorized access to extended file attributes can leak information to an
attacker. The threat is successful if attributes of files can be read.

56

Process termination Own testcase 55

The attack emulates an attack against all running processes on the system. It
tries to forcefully end any existing process. If this succeeds for any process
present on the system, the threat is considered successful.

57

System scheduler attack Own testcase 3.3

The application creates multiple new processes and threads until the system
scheduler becomes overloaded and the system is no longer able to run. The
attack is evaluated as successful if more than two additional processes are
created.

58

System limit removal Own testcase 1.3

The threat targets the prlimit security mechanism and tries to cancel any im-
posed restriction onto any running process. The attack is successful if limita-
tions can be lifted by the attack.

59

Process memory corruption Own testcase 3.3

For all running processes, the attack executes a write operation to the pro-
cess memory. The attack is successful if the operating system reference to the
memory of a process can be opened and the write operation can be executed.

60

System resource consumption Own testcase 5.5

The attack forks several child processes and targets the system-wide entropy
pool to consume available random data. The attack is successful if the un-
needed processes can be created and the random data is consumed.

61

Application deadlock Own testcase 3.3

The application creates several threads and forcefully creates a thread deadlock
that causes the application to lock and never terminate. The attack is successful
if it never terminates.

Continued on next page

132



MALICIOUS APPLICATION TESTCASES

| Type Source CVSS

62

Unauthorized application supervi- | Own testcase 6.1
sion

The attack tries to start a ptrace-based process supervision. If the application
can attach to an arbitrary process with the ptrace interface the attack is suc-
cessful.

63

Memory consumption attack Own testcase 3.3

The attack tries to acquire all available system memory. If more system memory
than 2 GB is consumed by the attack it is evaluated as successful.

64

Shared memory consumption at-| Own testcase 3.3
tack

The attack tries to acquire shared system memory until no more free memory is
available. If more memory than 2 GB is consumed by the attack it is evaluated
as successful.

Instantiate unwanted swap parti- | Own testcase 3.3
tion

The attack tries to generate a new swap partition to force the operating system
to swap out over-provisioned memory to an attacker-controlled data structure.
The attack is successful if the new swap space is installed into the system.

66

Read installed memory mapping Own testcase 3.3

The attack tries to read system wide present memory mappings. These map-
pings might leak sensitive information from running processes. If the applica-
tion can access these information the attack is successful.

67

Memory protection circumvention | Own testcase 6.1

The attack tries to rewrite memory permissions. This enables an attacker
to load malicious executable data into normally non-executable parts of the
memory and run it. The attack is successful if memory permissions can be
rewritten by the application.

68

Stack overflow Own testcase 3.3

The attack causes a stack overflow. It is successful if the application consumes
all available memory and is not terminated by the operating system.
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| Type | Source | cvss

69 | Heap overflow ‘ Own testcase ‘ 3.3
The attack causes a heap memory overconsumption. It is successful if the ap-
plication consumes all available memory and is not terminated by the operat-
ing system.

70 | INode resouce consumption Own testcase 3.3
The attack acquires all available inodes of the root filesystem and causes the
operating system to become unable to create any new filesystem objects. The
attack is successful if inodes are created that does not belong to the desired
application.

71 | CHROOT escape Own testcase based on | 5.5

[246]

A chroot environment can be used to lock malicious applications into a separ-
ated space of the operating system. The attack tries to circumvent the imposed
restrictions.

72 | Filesystem information disclosure | Own testcase 3.3
The attack tries to read possibly sensitive filesystem information. The malicious
application is successful if the information of any of the filesystems can be read.

73 | inotify filesystem watchdog attack | Own testcase 3.3
This attack tries to install a filesystem supervision hook that utilises the
inotify kernel interface. If the attacker is successful, the application is in-
formed by the operating system whenever filesystem related operations are
executed and may therefore access sensitive information. The attack is con-
sidered successful if the hook can be installed.

74 | Process information disclosure Own testcase 3.3
The attack tries to read information about itself. This information may con-
tain information about user- and group-ids and therefore disclose system-
dependent information to an attacker. The attack is successful if real informa-
tion are read by the application.

75 | Effective user and group ID manip- | Own testcase 4.4
ulation

The application tries to elevate its own privileges be setting its effective user
and group IDs that is used by the operating system to perform access checks.
The attack is successful if permissions can be elevated by the application.
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76 | Application capability assignment ‘ Own testcase ‘ 3.3
The attacker tries to elevate its permissions by manipulating its assigned capab-
ilities. Using this technique, the attacker can circumvent restrictions imposed
by the operating system. If the capabilities can be extended, the attack is suc-
cessful.

77 | Increase process scheduling im-| Own testcase 3.3
portance
This attack tries to elevate its system nice level and therefore heighten its
affinity by the operating system scheduler, resulting in more computational
time. If the nice level can be increased, the attack is considered successful.

78 | User and group ID manipulation | Own testcase 4.4
for filesystem access
This is a variant of threat 75 where the attack tries to manipulate user and
group IDs that are used for filesystem write operations. If the attacker is able
to create filesystem objects for a different user or group the attack is successful.

79 | System shutdown Own testcase 5.5
The attack tries to shut down the operating system. If the system reboots, the
attack is successful.

8o | Malicious file download Own testcase 6.1
The attack tries to download a malicious file from 198.11.181.184. If a connec-
tion to the desired address can be made the attack is successful.

81 | System socket information disclos- | Own testcase 3.3
ure
During its execution the application tries to execute the 1sof command to read
information about sockets (network and UNIX) present in the system. The
attack is successful if these information can be accessed.

82 | Network information disclosure Own testcase 4.4

The application tries to send a file via UDP to a random destination. If the
application succeeds to establish a connection to a remote resource via the
desired port, it is evaluated as successful.
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83 | Server port creation ‘ Own testcase ‘ 5.8
The test tries to open a server socket on port 80 to emulate the creation of
a backdoor. The attack succeeds if the server socket can be created and the
application can bind to it.

84 | Socket pair creation Own testcase 3.3
If the attack is successful, it is able to create a pair of sockets that are used to
communicate between two processes.

85 | Manipulate system hostname Own testcase 4.4
The application utilises the kernel interface to reset the system host name. If
the host name of the system can be changed the attack is successful. These
changes can lead to man-in-the-middle attacks by subsequent manipulations.

86 | UNIX socket corruption Own testcase 5.8
This attack simulates an attack against all active applications on the host that
use UNIX sockets to listen for input data. During runtime the application con-
nects to all available sockets and sends random data to corrupt the connected
application. The attack is considered successful if data is send through a socket
that does not belong to the application.

87 | System time manipulation Own testcase 3.3
A successful attack uses the kernel interface to manipulate the operating sys-
tem time.

88 | System timetzone manipulation Own testcase 3.3
Similar to threat 87, this attack tries to manipulate the operating system
timezone.

89 | DDoS attack Own testcase 2.0
The attacker establishes a multitude of connections to a specified target. The
attack is successful if more than 50 connection can be established per second.

90 | Multiplication Overflow Exploit [247] 5.5

CVE-2000-1219; Force a multiplication overflow to terminate the gcc. Sub-
sequent attacks may use the read after bounds to execute malicious code. The
attack is successful, if the gcc is terminated by the operating system.
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91

Out of bounds write ‘ Exploit [248] ‘ 5.5

CVE-2018-20376 - illegal 8 byte out of bounds write when using Tiny C Com-
piler. Subsequent attacks may use the read after bounds to execute malicious
code. The attack is successful, if the application is terminated by the operating
system.

92

Git branch naming attack Exploit [249] 8.8

CVE-2014-9938 - contrib/completion/git-prompt.sh in Git before 1.9.3 does
not sanitize branch names in the PS1 variable, allowing a malicious reposit-
ory to cause code execution. If the code stored in the crafted PS1 variable is
executed the attacker gain control over the executing shell and might initiate
further attacks.

93

KVM use-after-free Exploit [250] 8.1

CVE-2019-6974 - In the Linux kernel before 4.20.8, kvm_ioctl_create_device in
virt/kvm/kvm_main.c mishandles reference counting because of a race condi-
tion, leading to a use-after-free. The attack is successful, if the application is
terminated by the operating system.

94

heap memory buffer overflow Exploit [251] 9.8

CVE-2018-0500 - curl might overflow a heap based memory buffer when send-
ing data over SMTP and using a reduced read buffer. The attack is successful,
if the application is terminated by the operating system.

95

LD_LIBRARY_PATH injection Exploit [252] 7.8

CVE-2017-1000366 - glibc contains a vulnerability that allows specially craf-
ted LD_LIBRARY_PATH values to manipulate the heap/stack, causing them
to alias, potentially resulting in arbitrary code execution. If the crafted
LD_LIBRARY_PATH variable is executed this attack is considered successful.

96

Dirty COW Exploit [253] 7.8

CVE-2016-5195 - Race condition in mm/gup.c in the Linux kernel 2.x through
4.x before 4.8.3 allows local users to gain privileges by leveraging incorrect
handling of a copy-on-write (COW) feature to write to a read-only memory
mapping. If the exploit is executed successfully the attack is counted as
successful too.
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97

NULL-address mapping ‘ Exploit [254] ‘ 9.0

By following a certain codepath it is possible for userspace on a normal distro
to map virtual address o, which on an X86 system without SMAP enables the
exploitation of kernel NULL pointer dereferences.

98

Heap-based over-read Exploit [255] 55

CVE-2019-7665 - In elfutils 0.175, a heap-based buffer over-read was discovered
in the function elf32_xlatetom in elf32_xlatetom.c in libelf. A crafted ELF input
can cause a segmentation fault leading to denial of service (program crash)
because ebl_core_note does not reject malformed core file notes.

99

Invalid Address dereference Exploit [256] 6.5

CVE-2019-7663 - An Invalid Address dereference was discovered in TIFFWrite-
DirectoryTagTransferfunction in libtiff/tif_dirwrite.c in LibTIFF 4.0.10, affect-
ing the cpSeparateBufToContigBuf function in tiffcp.c. Remote attackers could
leverage this vulnerability to cause a denial-of-service via a crafted tiff file.

Table 31: Selected System Threat Testcases
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BENIGN TESTCASES BASELINE EXECUTION

‘ # ‘ Command ‘ tsetup ‘ texec | teteanup | Return Code
o | /usr/bin/chcon 2 503 0 256
1 | /bin/ls 9 508 0 0
2 | /bin/bash 5 505 0 0
3 | /usr/bin/apt 3 1050 | O 0
4 | /usr/bin/hostid 4 506 0 0
5 | /usr/bin/link 5 507 0 0
6 | /usr/bin/printf 3 506 0 0
7 | /usr/bin/truncate 336 508 0 0
8 | /usr/bin/pr 8 505 0 0
9 | /usr/bin/shaisum 3 505 0 0
10 | /usr/bin/nice 2 506 0 0
11 | /usr/bin/tee 3 505 0 0
12 | /usr/bin/realpath 3 505 0 0
13 | /usr/bin/tac 5 504 0 0
14 | /usr/bin/printenv 3 505 0 256
15 | /usr/bin/arch 5 505 0 0
16 | /usr/bin/logname 4 504 0 0
17 | /usr/bin/fold 4 509 0 0
18 | /usr/bin/users 2 504 0 0
19 | /usr/bin/dpkg 3 527 0 0
20 | /usr/bin/paste 6 507 0 0
21 | /usr/bin/factor 3 505 0 0
22 | /usr/bin/pathchk 3 506 0 0
23 | /usr/bin/basename | 5 503 0 0
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‘ # ‘ Command ‘ tsetup ‘ texec | teteanup | Return Code
24 | /usr/bin/dircolors 2 503 0 0
25 | /usr/bin/du 191 507 0 0
26 | /usr/bin/shuf 5 506 0 0
27 | /usr/bin/sha224sum | 4 505 0 0
28 | /usr/bin/head 6 506 0 0
29 | /usr/bin/tty 3 504 0 256
30 | /usr/bin/join 8 506 0 0
31 | /usr/bin/test 3 505 0 256
32 | /usr/bin/runcon 6 506 0 256
33 | /usr/bin/baseb4 6 505 0 0
34 | /usr/bin/shagi2sum | 4 508 0 0
35 | /usr/bin/id 3 503 0 0
36 | /usr/bin/dirname 2 503 0 0
37 | /usr/bin/numfmt 4 506 0 0
38 | /usr/bin/nl 4 505 0 0
39 | /usr/bin/install 7 505 0 256
40 | /usr/bin/split 424 576 0 0
41 | /usr/bin/od 3 507 0 0
42 | /usr/bin/groups 3 506 0 0
43 | /usr/bin/env 4 504 0 32512
44 | /usr/bin/tr 4 504 0 0
45 | /usr/bin/comm 8 506 0 0
46 | /usr/bin/mdssum 5 507 0 0
47 | /usr/bin/nproc 3 503 0 0
48 | /usr/bin/pinky 4 504 | O 0
49 | /usr/bin/uniq 6 505 0 0
50 | /usr/bin/ptx 4 506 0 0
51 | /usr/bin/sha256sum | 5 506 0 0
52 | /usr/bin/cksum 4 507 0 0
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‘ # ‘ Command ‘ tsetup ‘ texec | teteanup | Return Code
53 | /usr/bin/who 3 504 0 0
54 | /usr/bin/cut 5 507 0 0
55 | /usr/bin/csplit 8 508 0 0
56 | /usr/bin/expand 5 506 0 0
57 | /usr/bin/unexpand | 6 505 0 0
58 | /usr/bin/seq 3 505 0 0
59 | /usr/bin/stdbuf 4 507 0 0
60 | /usr/bin/unlink 5 505 0 0
61 | /usr/bin/timeout 4 5506 | O 31744
62 | /usr/bin/tsort 6 506 0 0
63 | /usr/bin/expr 2 504 0 0
64 | /usr/bin/stat 5 507 0 0
65 | /usr/bin/tail 4 506 0 0
66 | /usr/bin/mkfifo 3 506 0 0
67 | /usr/bin/sort 4 507 0 0
68 | /usr/bin/nohup 3 505 0 0
69 | /usr/bin/fmt 4 507 0 0
70 | /usr/bin/whoami 3 506 0 0
71 | /usr/bin/sum 6 506 0 0
72 | /usr/bin/wc 4 505 0 0
73 | /usr/bin/shred 5 506 0 0
74 | /bin/cp 5 508 0 0
75 | /bin/dd 3 816 0 0
76 | /bin/false 2 506 0 256
77 | /bin/readlink 4 503 0 0
78 | /bin/vdir 6 509 0 0
79 | /bin/rm 4 505 0 0
8o | /bin/df 3 506 0 0
81 | /bin/rmdir 4 506 0 0
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‘ # ‘ Command ‘ tsetup ‘ texec | teteanup | Return Code
82 | /bin/sleep 4 1504 | O 0
83 | /bin/true 3 505 0 0
84 | /bin/date 3 503 0 0
85 | /bin/stty 3 505 0 256
86 | /bin/In 6 504 0 0
87 | /bin/mktemp 3 505 0 0
88 | /bin/cat 4 505 0 0
89 | /bin/uname 2 504 0 0
90 | /bin/chmod 5 505 0 0
91 | /bin/touch 3 505 0 0
92 | /bin/mv 7 505 0 0
93 | /bin/sync 4 507 0 0
94 | /bin/mkdir 4 504 0 0
95 | /bin/dir 8 507 0 0
96 | /bin/chgrp 4 506 0 0
97 | /bin/chown 4 504 0 0
98 | /usr/sbin/ntpdate 3 7230 | 1 0
99 | /bin/mknod 3 505 0 0

Table 32: Execution results of the benign testcases in an unrestricted environment. Execution times

are given in ms.
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‘ # ‘ CVSS ‘ Return Code | Killed ‘ Successful Attack

o |66 -11 no yes
1 |33 - yes yes
2 |58 - yes yes
3 | 6.5 0 no yes
4 | 3.8 - yes no

5 |32 - yes yes
6 | 6.6 0 no no

7 |58 0 no yes
8 |65 0 no yes
9 |54 0 no yes
10 | 3.2 1 no yes
11 | 4.3 0 no no

12 | 6.6 - yes yes
13 | 6.6 - yes yes
14 | 6.6 - yes yes
15 | 6.6 0 no yes
16 | 8.3 - yes no

17 | 3.2 0 no yes
18 | 8.3 0 no yes
19 | 6.6 0 no yes
20 | 7.3 0 no yes
21 | 7.3 0 no yes
22 | 5.4 0 no yes
23 |73 0 no yes
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‘ # ‘ CVSS ‘ Return Code ‘ Killed ‘ Successful Attack
24|73 - yes yes
25 | 5.8 0 no yes
26 | 3.9 0 no yes
27 | 8.8 0 no yes
28 | 9.0 0 no yes
29 | 5.8 0 no yes
30 | 6.6 0 no no
31 | 9.0 - yes no
32 | 7.3 0 no yes
33 | 7.3 0 no yes
34 | 3.9 0 no yes
35 | 8.3 - yes yes
36 | 6.6 0 no yes
37 | 7.7 0 no yes
38|73 0 no yes
39 | 3.2 0 no yes
40 | 6.5 0 no yes
41 | 9.0 - yes yes
42 | 3.2 0 no no
43 | 7.3 0 no yes
44 | 6.4 0 no no
45 | 5.0 -11 no yes
46 | 3.5 0 no yes
47 | 8.7 - yes yes
48 | 8.7 0 no yes
49 | 55 - yes yes
50 | 5.5 0 no yes
51 | 3.3 0 no yes
52 | 4.4 0 no yes
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‘ # ‘ CVSS ‘ Return Code ‘ Killed ‘ Successful Attack
53133 - yes yes
54 | 7.1 0 no yes
55 | 3.3 0 no yes
56 | 5.5 0 no yes
57 133 - yes yes
58 | 1.3 0 no yes
59 | 3.3 0 no yes
60 | 5.5 - yes yes
61 | 3.3 - yes yes
62 | 6.1 - yes no
63 | 3.3 - yes yes
64 | 3.3 - yes yes
65 | 3.3 0 no no
66 | 3.3 0 no no
67 | 6.1 -11 no no
68 | 3.3 -11 no yes
69 | 3.3 - yes yes
70 | 3.3 - yes yes
71 | 5.5 - yes yes
72 | 3.3 0 no yes
73133 - yes yes
74 | 3.3 0 no yes
75 | 4.4 0 no yes
76 | 3.3 1 no yes
77 | 3.3 0 no yes
78 | 4.4 0 no yes
79 | 5.5 0 no yes
80 | 6.1 0 no yes
81 | 3.3 0 no yes
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‘ # ‘ CVSS ‘ Return Code ‘ Killed ‘ Successful Attack
82 | 4.4 0 no yes
83 | 5.8 - yes yes
84 | 33 - yes yes
85 | 4.4 0 no yes
86 | 5.8 0 no yes
87 | 3.3 0 no yes
88 | 3.3 0 no yes
89 | 9.0 - yes yes
90 | 5.5 0 no no
91 | 5.5 -11 no yes
92 | 8.8 0 no no
93 | 8.1 1 no no
94 | 9.8 - yes no
95 | 7.8 - yes yes
96 | 7.8 - yes yes
97 | 9.0 - yes no
98 | 5.5 1 no yes
99 | 6.5 1 no yes

Table 33: Execution results of the malicious testcases in an unrestricted environment.
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BENIGN TESTCASES STATIC ANALYSIS RESULTS

Table 34 shows the results of the static analysis of all benign testcases. The number of
blocks in the generated optimised CFG are shown in the table as well as the number of
system call invocations registered. Finally the number of graph generation failures during
the analysis are also displayed. Such failures occur if a JMP or CALL instruction can’t be
resolved due to the problems described in chapter 4.

‘ # ‘ Command ‘ tsetup ‘ texec ‘ CFG Blocks ‘ Syscalls ‘ Resolving Errors
o | /usr/bin/chcon 3 504066 | 32655 123 471
1 | /bin/Is 9 205358 | 34049 116 504
2 | /bin/bash 6 2270471 | 78425 142 514
3 | /usr/bin/apt 9 841 65 0 16
4 | /usr/bin/hostid 7 47585 28217 105 421
5 | /usr/bin/link 10 24823 24793 86 373
6 | /usr/bin/printf 9 57654 25878 86 379
7 | /usr/bin/truncate 70 35163 25271 87 373
8 | /usr/bin/pr 9 106614 | 29526 91 406
9 | /usr/bin/shaisum 10 45589 26936 86 377
10 | /usr/bin/nice 10 32254 25103 88 373
11 | /usr/bin/tee 9 39049 25450 87 382
12 | /usr/bin/realpath 9 46165 26503 93 389
13 | /usr/bin/tac 10 198080 | 34285 91 537
14 | /usr/bin/printenv 9 13242 17407 79 250
15 | /usr/bin/arch 9 26902 24905 87 378
16 | /usr/bin/logname 9 31829 26112 103 395
17 | /usr/bin/fold 10 32308 25279 87 380
18 | /usr/bin/users 9 33119 25545 86 396
19 | /usr/bin/dpkg 9 6241 5098 1 356
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‘ # ‘ Command

‘ tsetup ‘ texec

CFG Blocks ‘ Syscalls

Resolving Errors

20 | /usr/bin/paste 9 26388 24809 85 373
21 | /usr/bin/factor 10 108576 | 29033 86 386
22 | /usr/bin/pathchk 11 48874 25649 91 383
23 | /usr/bin/basename | 11 20427 24941 86 378
24 | /usr/bin/dircolors 11 44803 25923 88 408
25 | /usr/bin/du 44 141668 | 38253 99 565
26 | /usr/bin/shuf 11 82134 27600 95 411
27 | /usr/bin/sha224sum | 11 49069 28223 86 377
28 | /usr/bin/head 12 54376 26146 85 375
29 | /usr/bin/tty 13 26216 24948 85 376
30 | /usr/bin/join 11 60597 26989 87 380
31 | /usr/bin/test 11 53782 24879 82 365
32 | /usr/bin/runcon 12 79891 29097 111 416
33 | /usr/bin/base64 12 50840 25555 86 376
34 | /usr/bin/shasi2sum | 11 51825 29013 86 377
35 | /usr/bin/id 12 86728 30661 113 461
36 | /usr/bin/dirname 11 17895 24004 85 369
37 | /usr/bin/numfmt 11 89044 28122 86 407
38 | /usr/bin/nl 12 45879 33165 87 536
39 | /usr/bin/install 14 384832 | 47471 167 740
40 | /usr/bin/split 89 94725 | 27536 94 387
41 | /usr/bin/od 12 80703 27736 86 398
42 | /usr/bin/groups 12 36240 28177 102 444
43 | /usr/bin/env 13 30339 25194 86 376
44 | /usr/bin/tr 14 67376 26230 87 386
45 | /usr/bin/comm 14 52686 26110 86 373
46 | /usr/bin/mdssum 14 53174 26408 86 377
47 | /usr/bin/nproc 14 35915 24951 86 373
48 | /usr/bin/pinky 15 126074 | 34999 115 534
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‘ # ‘ Command ‘ tsetup ‘ texec ‘ CFG Blocks ‘ Syscalls ‘ Resolving Errors
49 | /usr/bin/uniq 14 50288 26601 88 378
50 | /usr/bin/ptx 14 150063 | 37657 87 559
51 | /usr/bin/sha256sum | 15 53907 28270 86 377
52 | /usr/bin/cksum 14 31986 25156 87 383
53 | /usr/bin/who 14 102193 | 34262 105 494
54 | /usr/bin/cut 13 57149 26469 86 392
55 | /usr/bin/csplit 15 77682 34338 88 537
56 | /usr/bin/expand 14 36337 25234 87 378
57 | /usr/bin/unexpand | 15 38281 25330 87 379
58 | /usr/bin/seq 15 129124 | 29773 85 385
59 | /usr/bin/stdbuf 15 64771 26686 89 386
60 | /usr/bin/unlink 17 28777 24898 87 379
61 | /usr/bin/timeout 15 89387 29066 101 396
62 | /usr/bin/tsort 15 42525 25629 89 385
63 | /usr/bin/expr 16 36675 27861 86 453
64 | /usr/bin/stat 15 79782 30476 101 404
65 | /usr/bin/tail 16 123128 | 28794 97 388
66 | /usr/bin/mkfifo 16 103229 | 30940 114 483
67 | /usr/bin/sort 17 348875 | 42780 159 487
68 | /usr/bin/nohup 17 40060 25369 88 373
69 | /usr/bin/fmt 15 48138 25780 86 374
70 | /usr/bin/whoami 17 27895 25611 95 392
71 | /usr/bin/sum 15 30302 24935 85 377
72 | /usr/bin/wc 15 55140 26175 88 395
73 | /usr/bin/shred 17 88565 27814 103 386
74 | /bin/cp 17 263247 | 39392 141 594
75 | /bin/dd 18 105307 | 29223 95 385
76 | /bin/false 17 14233 16444 80 239
77 | /bin/readlink 19 46910 26125 92 383
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‘ # ‘ Command tsetup ‘ texec ‘ CFG Blocks ‘ Syscalls ‘ Resolving Errors
78 | /bin/vdir 20 145584 | 33914 110 502
79 | /bin/rm 17 99021 28885 103 445
8o | /bin/df 18 133611 | 30655 99 394
81 | /bin/rmdir 20 53059 26257 91 380
82 | /bin/sleep 17 31637 24984 88 380
83 | /bin/true 17 14358 16441 80 239
84 | /bin/date 17 138253 | 32472 91 417
85 | /bin/stty 19 138688 | 27788 90 379
86 | /bin/In 35 94667 28359 103 402
87 | /bin/mktemp 23 49424 26078 94 385
88 | /bin/cat 25 44234 25417 88 378
89 | /bin/uname 24 34238 24903 87 378
90 | /bin/chmod 26 90772 28406 98 441
91 | /bin/touch 30 107154 | 29776 92 393
92 | /bin/mv 26 281757 | 39865 144 598
93 | /bin/sync 25 34276 | 25035 92 378
94 | /bin/mkdir 27 66425 28044 102 443
95 | /bin/dir 33 148890 | 33894 110 502
96 | /bin/chgrp 26 100810 | 30837 107 489
97 | /bin/chown 30 132745 | 32270 111 505
98 | /usr/sbin/ntpdate 1 831738 | 17386 81 632
99 | /bin/mknod 28 115154 | 31291 115 484

Table 34: Static analysis runtime results of the benign testcases. Execution times are given in ms.
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Table 35 presents the runtime and selected data for the emulation of all benign testcases.
The number of processes and threads emulated are shown as well as the total number
of system calls. A system call was detected if the emulator issued the x86_64 instruction
SYSCALL.

‘ # ‘ Command ‘ tsetup ‘ texec ‘ Processes ‘ Threads ‘ Syscalls ‘
o | /usr/bin/chcon 3 4592 1 0 92
1 | /bin/ls 5 9454 1 0 212
2 | /bin/bash 2 3823 1 0 54
3 | /usr/bin/apt 3 313911 | 1 0 766
4 | /usr/bin/hostid 4 1571 1 0 40
5 | /usr/bin/link 3 1564 1 0 36
6 /usr/bin/printf 3 1614 1 0 38
7 | /usr/bin/truncate 53 1612 1 0 38
8 | /usr/bin/pr 4 1990 1 0 53
9 | /usr/bin/shaisum 3 1822 1 0 46
10 | /usr/bin/nice 3 1661 1 0 40
11 | /usr/bin/tee 3 1749 1 0 50
12 | /usr/bin/realpath 3 1667 1 0 41
13 | /usr/bin/tac 3 1612 1 0 44
14 | /usr/bin/printenv 3 1561 1 0 35
15 | /usr/bin/arch 3 1556 1 0 40
16 | /usr/bin/logname 2 4030 1 0 94
17 | /usr/bin/fold 3 1663 1 0 45
18 | /usr/bin/users 2 1657 1 0 46
19 | /usr/bin/dpkg 3 10439 | 1 0 102
20 | /usr/bin/paste 3 1708 1 0 55
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‘ # ‘ Command ‘ tsetup ‘ texec ‘ Processes ‘ Threads ‘ Syscalls ‘
21 | /usr/bin/factor 2 1703 1 0 37
22 | /usr/bin/pathchk 2 1558 1 0 36
23 | /usr/bin/basename | 3 1587 1 0 38
24 | /usr/bin/dircolors 2 1962 1 0 39
25 | /usr/bin/du 29 2053 1 0 42
26 | /usr/bin/shuf 4 1780 1 0 47
27 | /usr/bin/sha224sum | 2 1849 1 0 46
28 | /usr/bin/head 3 1691 1 0 42
29 | /usr/bin/tty 3 1557 1 0 40
30 | /usr/bin/join 4 1754 1 0 52
31 | /usr/bin/test 2 1807 1 0 35
32 | /usr/bin/runcon 3 4678 1 0 89
33 | /usr/bin/baseb4 3 1685 1 0 45
34 | /usr/bin/shasi2sum | 2 2066 1 0 46
35 | /usr/bin/id 2 8387 1 0 165
36 | /usr/bin/dirname 3 1594 1 0 38
37 | /usr/bin/numfmt 2 1652 1 0 38
38 | /usr/bin/nl 2 1754 1 0 45
39 | /usr/bin/install 5 7838 1 0 120
40 | /usr/bin/split 63 1786 1 0 42
41 | /usr/bin/od 2 2142 1 0 44
42 | /usr/bin/groups 2 4313 1 0 100
43 | /usr/bin/env 3 1670 1 0 41
44 | /usr/bin/tr 3 1682 1 0 41
45 | /usr/bin/comm 4 1711 1 0 51
46 | /usr/bin/mdssum 2 1765 1 0 46
47 | /usr/bin/nproc 2 1545 1 0 42
48 | /usr/bin/pinky 5 1871 1 0 49
49 | /usr/bin/uniq 3 1740 1 0 45
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‘ # ‘ Command ‘ tsetup ‘ texec ‘ Processes ‘ Threads ‘ Syscalls ‘
50 | /usr/bin/ptx 2 2241 1 0 47
51 | /usr/bin/sha256sum | 3 1885 1 0 46
52 | /usr/bin/cksum 3 1668 1 0 47
53 | /usr/bin/who 3 1808 1 0 46
54 | /usr/bin/cut 2 1720 1 0 45
55 | /usr/bin/csplit 3 1771 1 0 42
56 | /usr/bin/expand 3 1730 1 0 45
57 | /usr/bin/unexpand | 2 1651 1 0 45
58 | /usr/bin/seq 3 1647 1 0 38
59 | /usr/bin/stdbuf 2 1872 1 0 43
60 | /usr/bin/unlink 2 1598 1 0 40
61 | /usr/bin/timeout 2 3086 1 0 0
62 | /usr/bin/tsort 5 1660 1 0 49
63 | /usr/bin/expr 2 1653 1 0 38
64 | /usr/bin/stat 3 8932 1 0 163
65 | /usr/bin/tail 3 1762 1 0 44
66 | /usr/bin/mkfifo 3 5038 1 0 93
67 | /usr/bin/sort 4 3148 1 0 101
68 | /usr/bin/nohup 3 1700 1 0 41
69 | /usr/bin/fmt 4 1699 1 0 46
70 | /usr/bin/whoami 2 4115 1 0 92
71 | /usr/bin/sum 3 1650 1 0 41
72 | /usr/bin/wc 3 1716 1 0 43
73 | /usr/bin/shred 3 1871 1 0 49
74 | /bin/cp 4 7725 |1 0 117
75 | /bin/dd 3 1838 1 0 41
76 | /bin/false 3 1025 1 0 27
77 | /bin/readlink 5 1680 1 0 39
78 | /bin/vdir 5 9581 1 0 197
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‘ # ‘ Command ‘ tsetup ‘ texec ‘ Processes ‘ Threads ‘ Syscalls ‘
79 | /bin/rm 4 1848 1 0 48
8o | /bin/df 2 5473 1 0 182
81 | /bin/rmdir 3 1656 1 0 40
82 | /bin/sleep 2 2605 1 0 36
83 | /bin/true 2 1024 1 0 27
84 | /bin/date 3 1857 1 0 45
85 | /bin/stty 2 1682 1 0 40
86 | /bin/In 3 1780 1 0 46
87 | /bin/mktemp 2 1734 1 0 49
88 | /bin/cat 5 1660 1 0 44
89 | /bin/uname 3 1562 1 0 40
90 | /bin/chmod 5 1708 1 0 42
91 | /bin/touch 2 1813 1 0 43
92 | /bin/mv 3 7663 1 0 116
93 | /bin/sync 3 1581 1 0 36
94 | /bin/mkdir 2 5008 1 0 87
95 | /bin/dir 4 5191 1 0 97
96 | /bin/chgrp 5 4310 1 0 98
97 | /bin/chown 3 4214 1 0 98
98 | /usr/sbin/ntpdate 2 25247 | 1 0 192
99 | /bin/mknod 3 4977 1 0 91

Table 35: Emulation runtime results of the benign testcases. Execution times are given in ms.
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The table 36 presents the runtime results from the benign testcases in the generated sand-
boxes. The results for the execution inside the sandbox with enabled namespaces, iptables
and limits are shown as well as the results from the sandbox with additional system call
filtering using seccomp. The time required to set up the sandbox is displayed in tnsetup
(without seccomp) and tssetup (With seccomp). The execution time of the application is
shown in tnexec (Without seccomp) and tsexec (With seccomp).

# | Command thsetup | tnexec | tssetup | tsexec | Baseline Baseline
[ms] [ms] [ms] [ms] | tsetup [Ms] | texec [ms]

o | /usr/bin/chcon 874 574 835 587 2 503

1 | /bin/ls 839 597 876 579 9 508

2 | /bin/bash 1404 602 1458 643 5 505

3 | /usr/bin/apt 1661 583 1437 593 3 1050

4 | /usr/bin/hostid 718 583 730 594 4 506

5 | /usr/bin/link 703 573 711 582 5 507

6 | /usr/bin/printf 719 597 723 616 3 506

7 | /usr/bin/truncate 991 578 973 574 336 508

8 | /usr/bin/pr 776 586 792 570 8 505

9 | /usr/bin/shaisum 715 574 722 580 3 505

10 | /usr/bin/nice 702 574 709 575 2 506

11 | /usr/bin/tee 696 573 711 568 3 505

12 | /usr/bin/realpath 706 566 720 572 3 505

13 | /usr/bin/tac 785 574 805 572 5 504

14 | /usr/bin/printenv 645 564 633 565 3 505

15 | /usr/bin/arch 705 575 708 596 5 505

16 | /usr/bin/logname 732 588 730 569 4 504

17 | /usr/bin/fold 708 581 713 570 4 509
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# | Command thsetup | tnexec | tssetup | tsexec | Baseline Baseline
[ms] [ms] | [ms] [ms] | tsetup [ms] | texec [ms]
18 | /usr/bin/users 702 571 715 569 2 504
19 | /usr/bin/dpkg 625 572 598 571 3 527
20 | /usr/bin/paste 705 568 711 567 6 507
21 | /usr/bin/factor 765 571 783 584 3 505
22 | /usr/bin/pathchk 695 565 705 570 3 506
23 | /usr/bin/basename | 723 601 703 575 5 503
24 | /usr/bin/dircolors 708 587 720 580 2 503
25 | /usr/bin/du 1019 588 1051 631 191 507
26 | /usr/bin/shuf 712 584 739 589 5 506
27 | /usr/bin/sha224sum | 717 576 733 558 4 505
28 | /usr/bin/head 708 575 715 584 6 506
29 | /usr/bin/tty 708 562 715 568 3 504
30 | /usr/bin/join 723 578 724 583 8 506
31 | /usr/bin/test 707 576 715 585 3 505
32 | /usr/bin/runcon 817 581 810 625 6 506
33 | /usr/bin/base64 707 574 718 577 6 505
34 | /usr/bin/shasi2sum | 791 581 797 571 4 508
35 | /usr/bin/id 862 579 859 579 3 503
36 | /usr/bin/dirname 692 848 704 8oy 2 503
37 | /usr/bin/numfmt 716 579 727 569 4 506
38 | /usr/bin/nl 824 630 800 570 4 505
39 | /usr/bin/install 1094 575 1058 578 7 505
40 | /usr/bin/split 1006 563 1013 594 424 576
41 | /usr/bin/od 727 579 731 584 3 507
42 | /usr/bin/groups 830 577 819 585 3 506
43 | /usr/bin/env 699 580 719 572 4 504
44 | /usr/bin/tr 698 569 723 572 4 504
45 | /usr/bin/comm 705 579 712 597 8 506
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# | Command thsetup | tnexec | tssetup | tsexec | Baseline Baseline
[ms] [ms] | [ms] [ms] | tsetup [ms] | texec [ms]

46 | /usr/bin/mdssum 708 569 724 587 5 507
47 | /usr/bin/nproc 704 567 703 573 |3 503
48 | /usr/bin/pinky 796 577 809 577 | 4 504
49 | /usr/bin/uniq 707 563 723 568 6 505
50 | /usr/bin/ptx 880 579 883 576 4 506
51 | /usr/bin/sha256sum | 722 576 733 574 5 506
52 | /usr/bin/cksum 706 568 711 575 4 507
53 | /usr/bin/who 786 571 799 578 3 504
54 | /usr/bin/cut 721 584 714 572 5 507
55 | /usr/bin/csplit 789 575 816 564 8 508
56 | /usr/bin/expand 709 578 715 595 5 506
57 | /usr/bin/unexpand | 704 585 717 570 6 505
58 | /usr/bin/seq 768 584 796 576 3 505
59 | /usr/bin/stdbuf 718 578 727 578 4 507
60 | /usr/bin/unlink 701 572 716 585 5 505
61 | /usr/bin/timeout 766 5573 769 5564 | 4 5506
62 | /usr/bin/tsort 702 572 713 571 6 506
63 | /usr/bin/expr 745 588 719 577 2 504
64 | /usr/bin/stat 862 576 859 615 5 507
65 | /usr/bin/tail 759 599 786 574 4 506
66 | /usr/bin/mkfifo 804 571 821 567 3 506
67 | /usr/bin/sort 926 568 915 578 4 507
68 | /usr/bin/nohup 710 573 711 589 3 505
69 | /usr/bin/fmt 714 575 723 573 4 507
70 | /usr/bin/whoami 730 568 731 578 3 506
71 | /usr/bin/sum 699 683 710 592 6 506
72 | /usr/bin/wc 713 829 713 849 4 505
73 | /usr/bin/shred 722 571 738 572 5 506
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# | Command thsetup | tnexec | tssetup | tsexec | Baseline Baseline
[ms] [ms] | [ms] [ms] | tsetup [ms] | texec [ms]

74 | /bin/cp 971 584 950 619 5 508
75 | /bin/dd 760 581 778 577 3 816
76 | /bin/false 657 563 636 565 2 506
77 | /bin/readlink 711 573 715 779 4 503
78 | /bin/vdir 890 573 865 580 6 509
79 | /bin/rm 781 599 777 584 4 505
8o | /bin/df 834 569 821 580 3 506
81 | /bin/rmdir 729 606 732 577 4 506
82 | /bin/sleep 698 1580 711 570 4 1504
83 | /bin/true 630 571 633 562 3 505
84 | /bin/date 790 575 794 587 3 503
85 | /bin/stty 727 574 733 584 |3 505
86 | /bin/In 733 622 738 615 6 504
87 | /bin/mktemp 713 571 718 578 3 505
88 | /bin/cat 703 572 711 600 4 505
89 | /bin/uname 712 593 712 571 2 504
90 | /bin/chmod 733 586 730 567 5 505
91 | /bin/touch 779 574 795 574 3 505
92 | /bin/mv 973 578 942 579 7 505
93 | /bin/sync 707 578 710 566 4 507
94 | /bin/mkdir 811 572 817 599 4 504
95 | /bin/dir 826 587 834 572 8 507
96 | /bin/chgrp 814 916 822 975 4 506
97 | /bin/chown 805 577 834 571 4 504
98 | /usr/sbin/ntpdate 741 8330 748 8640 | 3 7230
99 | /bin/mknod 854 626 816 577 3 505
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# | Command thsetup | tnexec | tssetup | tsexec | Baseline Baseline

[ms] [ms] [ms] [ms] tsetup [ms] | texec [ms]

Table 36: Sandbox runtimes for the 100 benign testcases. The times for setup and execution are
given in ms. Timings for the sandbox without seccomp filtering are given in tnsetup and
tnexec Whereas the time information with the seccomp-enabled sandbox are displayed
in tssetup and tsexec. Setup and execution times from the baseline execution are given
for comparison in baseline tsetup and texec-




TESTCASE EVALUATION DATA

The table 37 shows the rating of the results from the benign and malicious testcase evalu-
ation using the metrics discussed in 6.4.3.

‘ # ‘ Command Natt ‘ Creq (analysis) ‘ Creq (execution) ‘

o | /usr/bin/chcon 11 508664 918
1 | /bin/ls 15 | 214826 937
2 | /bin/bash 11 2274302 1591
3 | /usr/bin/apt 19 | 314763 977
4 | /usr/bin/hostid 13 | 49167 815
5 | /usr/bin/link 11 26401 781
6 | /usr/bin/printf 11 59281 829
7 | /usr/bin/truncate 11 | 36898 702
8 | /usr/bin/pr 11 108616 849
9 | /usr/bin/shaisum 11 | 47424 794
10 | /usr/bin/nice 11 33927 776
11 | /usr/bin/tee 9 40809 771
12 | /usr/bin/realpath 11 | 47844 784
13 | /usr/bin/tac 11 199705 869
14 | /usr/bin/printenv 10 14814 689
15 | /usr/bin/arch 12 28469 794
16 | /usr/bin/logname 13 | 35870 791
17 | /usr/bin/fold 11 | 33984 769
18 | /usr/bin/users 11 34788 778
19 | /usr/bin/dpkg 11 16691 639
20 | /usr/bin/paste 11 28109 766
21 | /usr/bin/factor 11 110292 859
22 | /usr/bin/pathchk 12 | 50445 766
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‘ # ‘ Command

‘ Natt ‘ Cred (analysis) ‘ Creq (execution) ‘

23 | /usr/bin/basename | 11 | 31028 771
24 | /usr/bin/dircolors 11 46778 794
25 | /usr/bin/du 11 143793 984
26 | /usr/bin/shuf 11 83929 818
27 | /usr/bin/sha224sum | 9 50930 783
28 | /usr/bin/head 11 | 56082 787
29 | /usr/bin/tty 11 27789 776
30 | /usr/bin/join 11 62365 793
31 | /usr/bin/test 11 | 55602 792
32 | /usr/bin/runcon 11 84584 922
33 | /usr/bin/baseb4 11 | 52540 784
34 | /usr/bin/shagi2sum | 11 53905 857
35 | /usr/bin/id 13 | 95129 932
36 | /usr/bin/dirname 9 19502 1005
37 | /usr/bin/numfmt 11 90709 787
38 | /usr/bin/nl 11 47647 860
39 | /usr/bin/install 11 392688 1125
40 | /usr/bin/split 11 | 96663 608
41 | /usr/bin/od 11 82860 805
42 | /usr/bin/groups 13 40568 895
43 | /usr/bin/env 11 | 32024 784
44 | /usr/bin/tr 11 69074 787
45 | /usr/bin/comm 11 | 54415 794
46 | /usr/bin/mdssum 11 | 54955 799
47 | /usr/bin/nproc 11 37476 770
48 | /usr/bin/pinky 13 127964 878
49 | /usr/bin/uniq 11 52044 780
50 | /usr/bin/ptx 11 152320 948
51 | /usr/bin/sha256sum | 11 | 55810 796
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‘ # ‘ Command

Natt ‘ Cred (analysis) ‘ Creq (execution) ‘

52 | /usr/bin/cksum 11 | 33671 775
53 | /usr/bin/who 11 104018 870
54 | /usr/bin/cut 11 | 58884 774
55 | /usr/bin/csplit 11 79471 864
56 | /usr/bin/expand 11 | 38084 8oo
57 | /usr/bin/unexpand | 11 | 39949 776
58 | /usr/bin/seq 11 130789 864
59 | /usr/bin/stdbuf 11 66661 794
60 | /usr/bin/unlink 11 | 30393 791
61 | /usr/bin/timeout 10 | 92490 822
62 | /usr/bin/tsort 11 | 44205 772
63 | /usr/bin/expr 9 38346 790
64 | /usr/bin/stat 14 | 88731 963
65 | /usr/bin/tail 11 124909 850
66 | /usr/bin/mkfifo 11 108286 879
67 | /usr/bin/sort 11 | 352044 982
68 | /usr/bin/nohup 11 41780 791
69 | /usr/bin/fmt 11 49857 786
70 | /usr/bin/whoami 13 | 32030 801
71 | /usr/bin/sum 12 31970 790
72 | /usr/bin/wc 11 | 56874 784
73 | /usr/bin/shred 11 90456 798
74 | /bin/cp 12 270993 1056
75 | /bin/dd 11 107166 535
76 | /bin/false 11 15278 693
77 | /bin/readlink 11 | 48613 987
78 | /bin/vdir 15 155190 930
79 | /bin/rm 11 100890 852
8o | /bin/df 11 139103 893
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‘ # ‘ Command Natt ‘ Cred (analysis) ‘ Creq (execution) ‘

81 | /bin/rmdir 11 | 54738 800
82 | /bin/sleep 9 34262 -227
83 | /bin/true 11 15402 687
84 | /bin/date 11 140130 875
85 | /bin/stty 11 140390 808
86 | /bin/In 11 96485 844
87 | /bin/mktemp 11 51183 788
88 | /bin/cat 11 | 45924 802
89 | /bin/uname 11 | 35827 777
90 | /bin/chmod 11 92512 787
91 | /bin/touch 11 109000 860
92 | /bin/mv 12 289449 1009
93 | /bin/sync 11 35885 766
94 | /bin/mkdir 11 71462 908
95 | /bin/dir 11 154118 890
96 | /bin/chgrp 13 105151 887
97 | /bin/chown 13 136993 898
98 | /usr/sbin/ntpdate 12 | 52701 775
99 | /bin/mknod 11 120163 885

Table 37: Result ratings of the implemented sandboxes for all benign testcases using the Ny and
Nieq Operators.
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