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ABSTRACT
As demonstrated in our previous work [J. Chem. Phys. 149, 174109 (2018)], the kinetic energy
imparted to a quantum rotor by a non-resonant electromagnetic pulse with a Gaussian temporal
profile exhibits quasi-periodic drops as a function of the pulse duration. Herein, we show that this
behaviour can be reproduced with a simple waveform, namely a rectangular electric pulse of vari-
able duration, and examine, both numerically and analytically, its causes. Our analysis reveals that
the drops result from the oscillating populations that make up the wavepacket created by the pulse
and that they are necessarily accompanied by drops in the orientation and by a restoration of the
pre-pulse alignment of the rotor. Handy analytic formulae are derived that allow to predict the pulse
durations leading to diminished kinetic energy transfer and orientation. Experimental scenarios are
discussed where the phenomenon could be utilised or be detrimental.
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1. Introduction

The ability to manipulate the quantum states of molec-
ular rotors [1,2] has found diverse applications ranging
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from stereodynamics [3–6] to enantioselectivity [7–9] to
coherent control of rotational states [10–15] to quantum
information processing [16–20]. Moreover, quantum
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rotor dynamics induced by periodic δ-pulses has been
linked to quantum chaos, dynamical localisation, and
Bloch oscillations [21–25].

Whereas either adiabatic interactions [26–38] or
their impulsive, non-adiabatic counterparts [39–53]
have received much attention, interactions with finite-
duration pulses have been scarce [54–56]. It is the last that
are the focus of the present study.

The impulsive interaction of a rotor with a δ-pulse is
analytically solvable and represents a benchmark for the
behaviour of the expansion (or hybridisation) coefficients
of the rotational states, J, that make up the wavepacket
created by the pulse. For a purely orienting interaction
that arises for a polar rotor acted upon by an electric field,
the hybridisation coefficents were found [11,12,56] to be
proportional to the spherical Bessel functions of the first
kind,JJ(P), where P is the pulse strength, see below. The
zeroes of the hybridisation coefficients, see Figure 1(b) of
Ref. [56], determine the minima of the post-pulse pop-
ulations of the various rotational states and are key to
optimising the post-pulse value of a given observable.
The figure also illustrates that, typically, many states are
hybridised by a δ-pulse. In the same study, we showed
that Gaussian pulses of a finite, albeit narrow tempo-
ral width much shorter than the rotational period of the
rotor, simulate accurately the hybridisation effects of the
δ-pulses. However, for longer pulses of small to moder-
ate strength, we observed sudden quasi-periodic drops in
the kinetic energy imparted to the rotor by the pulse as a
function of the pulse duration, see Figure 4 of Ref. [56].

In the present work we show that the effects of such
pulses can be modelled by an even simpler waveform,
namely a rectangular electric pulse whose amplitude, ε, is
constant over the duration, s, of the pulse, see Figure 1(a).
Moreover, we show that the quasi-periodic drops in the
imparted kinetic energy are necessarily accompanied by
a vanishing orientation and by a restoration of the pre-
pulse alignment of the rotor.We identify the origin of the
effect in the oscillations in s of the rotor-state populations
(hybridisation coefficients) that make up the rotational
wavepacket (hybrid). Finally, we provide handy analytic
formulae expressed in terms of the characteristics of the
pulse and the rotor that allow to predict the pulse dura-
tions leading to diminished kinetic energy transfer and
orientation and discuss experimental scenarios where
this phenomenon could be taken advantage of or be
detrimental.

2. Amodel quantum system

We consider a polar linear rigid rotor with angular
momentum J and rotational constant B = �2/2I, with
I the moment of inertia, subject to a time-dependent

Figure 1. A schematic showing thedependence (a) of the electric
field strength ε on time t for a rectangular pulse of duration s and
(b) of the orienting parameter η ≡ με/B on the reduced time τ
for a rectangular pulse of duration σ .

potential

V(θ , t) =
{−με cos θ 0 ≤ t ≤ s
0 t > s

}
(1)

with θ the polar angle between the electric field of
strength ε and the molecular electric dipole moment of
magnitude μ. The potential is nonzero only during time
0 ≤ t ≤ s and thus corresponds to a rectangular pulse of
amplitude με cos θ and duration s, see also Figure 1(a).

The corresponding time-dependent Schrödinger
equation (TDSE)

i�
∂

∂t
|ψ(t)〉 = [

BJ2 + V(θ , t)
] |ψ(t)〉 , (2)

with i = √−1, can be recast by rescaling time in units of
the pulse duration, τ ≡ t/s, as

i
∂

∂τ
|ψ(τ)〉 = (

σ J2 − ησ cos θ
) |ψ(τ)〉 , (3)

where σ = Bs
�
is the pulse duration in units of the rota-

tional period, �/B, and η ≡ με
B is a dimensionless mea-

sure of the orienting interaction. Note that the potential
becomes zero for τ < 0 and τ > 1. Integration of the
orienting interaction over the pulse duration gives the
pulse strength (or kick strength) P = ∫ s

0
με
�
dt = μεs

�
=

ησ , see also Figure 1(b).
The matrix representation of the Hamiltonian in the

free rotor basis set is symmetric tri-diagonal, with matrix
elements

〈J′, 0| J2 |J, 0〉 = J(J + 1)δJ′,J (4)
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and

〈J′, 0| cos θ |J, 0〉 =
√

J2

(2J + 1)(2J − 1)
δJ′,J−1

+
√

(J + 1)2

(2J + 3)(2J + 1)
δJ′,J+1 (5)

We note that well-established perturbative approaches,
for example the first-order Magnus expansion, or the
time evolution operator of the time-dependent uni-
tary perturbation theory (TDUPT) as developed by
Daems et al. [57], assume small perturbations and are
thus only suitable for treating the σ -dependent effects
of our system for σ � ση. Furthermore, the potent
iterative super-convergent Kolmogorov-Arnold-Moser
(KAM) algorithm technique [58,59] is tedious to apply
beyond the two-level approximation. Therefore, herein
we resort to solving the TDSE numerically by the split-
operator method using the Gauss-Jacobi quadrature
implemented within the WavePacket software package
[60–62]. Apart from that, we set up a ten-level approx-
imation in Mathematica [63] and discuss in detail the
two-level approximation valid in the limit of small P.

3. Results and discussion

3.1. Numerical simulations

The numerical simulations presented in this Section have
been carried out as a function of the pulse duration σ
for a fixed value of the pulse strength P = ση = 1.5. The
range of σ was varied between 0.005 and 10 in steps of
0.005, i.e. from the impulsive, non-adiabatic regime (the
results for σ = 0.005 are in agreement with the theory of
δ-kicks [56]) to the adiabatic limit (the results for σ = 10
approximate well the stationary solutions of the TDSE,
Equation (3)). Owing to the rectangular pulse-shape, the
present problem may be well treated in a numerically
exact way by the diagonalisation of a time-independent
Hamiltonian in the (numerically finite) basis of J-states
(since quantum number M (= 0) is conserved). We dis-
cuss the results for other values of P thus obtained later
in Section 3.2.

The results for the initial states |J0, 0〉with J0 ∈ {0, 1, 2}
of the rotor are summarised in Figures 2 and 3. The rota-
tional kinetic energy and the orientation and alignment
cosines shown pertain to the state |ψf 〉 of the system
at the end of the interaction at τ = 1 with a pulse of
duration σ and orienting interaction parameter η = P

σ
.

Expanded in the free rotor basis |J, 0〉, the post-pulse state
is given by

|ψf 〉 =
∑
J

CJ0
J |J, 0〉 (6)

Figure 2. (a) Rotational kinetic energy imparted to a polar rigid
rotor in an initial state |J0, 0〉with J0 = 0 (blue), J0 = 1 (red), J0 =
2 (yellow) by a rectangular electric pulse as a function of the pulse
duration σ at a fixed pulse strength P = 1.5. The dashed black
curves represent the kinetic energies obtained from a ten-level
approximation presented in Section 3.2. (b) Absolute values of the
first three expansion coefficients for each of the three initial states.
Note the relationship, Cij = Cji .

where the superscript of the expansion (hybridisation)
coefficients, CJ0

J , denotes the initial rotational state of the
rotor.

Thus the rotational kinetic energy at the end of the
pulse becomes

〈ψf | J2 |ψf 〉 =
∑
J

J(J + 1)|CJ |2 (7)

where we dropped the superscript J0 on CJ for notational
simplicity. The dependence of the imparted rotational
kinetic energy on the pulse duration, Figure 2(a), exhibits
drops that are particularly pronounced for the ground
state of the rotor, with J0 = 0, but also appear for the
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Figure 3. Directional properties of the wavepackets created by a rectangular pulse of pulse strength P = 1.5 as a function of the pulse
duration σ . (a) Post-pulse orientation cosine for initial rotational states with J0 = 0 (blue), J0 = 1 (red), and J0 = 2 (yellow). The insets
showpolar plots of thewavefunctions at σ = 3.044. (b) Absolute values of the products of the coefficients of successive rotational levels.
Inset shows the matrix elements of cos θ for
J = ±1, with the first two values evaluating to 1√

3
and 2√

15
, respectively, such that the

large-J limit tends to 0.5. (c) Post-pulse alignment cosine for initial rotational states with J0 = 0 (blue), J0 = 1 (red), and J0 = 2 (yellow).
For the case of a large σ (small η), the alignment returns to its initial value. Horizontal lines show the alignment of the field-free states.
(d) Absolute values of the products of the coefficients of successive rotational levels with a difference in J of two. Inset shows the matrix
elements of cos2 θ for
J = 0,±2.

higher initial states of the rotor with J0 = 1 and J0 = 2.
Figure 2(b) shows the dependence of the correspond-
ing hybridisation coefficients on the pulse duration. A
direct consequence of the symmetry of the Hamiltonian
H and hence of the propagator exp( i

�
Ht) is the rela-

tionship Cj
i = Ci

j , which results in the overlapping of the
plot-data indicated by different shapes and colours. The
squares of these coefficients, |CJ |2, give the populations of
the free rotor basis states in a given wavepacket (hybrid).
Close to the adiabatic limit (at σ = 10), essentially only
the initial states are populated after the pulse has passed,
i.e. the state of the rotor before and after an adiabatic
interaction is the same. This is in sharp contrast with
what happens in the impulsive, non-adiabatic regime at
short pulses (small σ ): a wavepacket is created that is
comprised of a number of free-rotor states J whose rela-
tive contributions oscillate with a J-dependent frequency
as a function of σ . The collective vanishing of the pop-
ulations of the contributing J states at particular values
of σ is thus the apparent cause of the drops in the rota-
tional kinetic energy, cf. Figure 2(a,b). The numerically

determined drops occur at σ ≈ 3.044, 6.234, 9.393 for
J0 = 0, with a period of a little less than π which,
as we will see in Section 3.2, is due to our choice
of P.

We note that for the initial state J0 = 0, the kinetic
energy (≈ 2|C1|2) is minimised when the real part of
the C1 coefficient vanishes, i.e. at the three points men-
tioned above (within the two-state approximation, it does
so necessarily due to the sinc prefactor). However, a small
imaginary part remains and therefore the kinetic energy
does not completely vanish in a large-enough basis. In
the case of a weak pulse strength (P � 3), the CJ coef-
ficients with J � 3 are found to be negligible for σ � 2.
One more detail to note is that the starting value of the
kinetic energy for J0 = 0 agrees with the energy imparted
by an ultrashort pulse ( 2P

2

3 ) [56].
For higher initial states (J0 = 1 and J0 = 2), the rota-

tional kinetic energy, as a cumulative linear combina-
tion of the squares of the coefficients of all populated
rotational levels, is found to oscillate in σ with a decay-
ing amplitude from its starting value to the long-pulse
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Figure 4. Expansion coefficients for P = 10 as a function of the
pulse-durationσ as obtained from the ten-level calculation. There
is gradual transition with increasing σ to the regime where the
two-level model is approximately valid (as seen in the ‘bouncing’
of the C1 coefficient).

adiabatic limit, J0(J0 + 1), where only the initial state is
populated after the pulse has passed, cf. the upper two
curves in Figure 2(a).

The directional properties – the post-pulse orienta-
tion and alignment cosines – of the wavepacket created
by the rectangular pulse are shown in panels (a) and (c)
of Figure 3 as functions of pulse duration σ for a fixed
pulse strength P = 1.5.

The post-pulse orientation cosine of such a
wavepacket is given by

〈ψf | cos θ |ψf 〉 =
∑
J

C∗
J CJ+1 〈J, 0| cos θ |J + 1, 0〉 + c.c.

(8)

where |ψf 〉denotes the final state at the end of the interac-
tion.Owing to the selection rules, the only non-vanishing
terms in the expansion are those corresponding to
J =
±1 see also Equation (5). As seen in Figure 3(a), the ori-
entation cosine vanishes at the values of σ that lead to the
drops of the rotational kinetic energy. This behaviour is
a consequence of the vanishing of the products of pairs
of successive coefficients, see Figure 3(b), that appear in
expression (8) for the orientation cosine. The dotted ver-
tical lines affirm that the vanishing of the orientation
cosine and of the successive pairs of the hybridisation
coefficients indeed occur at the same values of σ . This
behaviour is to be expected for any initial state in regions
of the P − σ space where not-too-many free rotor states
are hybridised (see discussion pertaining to Figure 4).

The vanishing of the orientation is visualised in Figure
3(a) by three insets representing the polar plots of the
wavefunction for the three different initial states at σ =
3.044 (the electric field of the pulse is oriented vertically).
The near-symmetry of the lobes about the horizontal axis
indicates a negligible orientation cosine. However, for the
J0 = 1 and J0 = 2 states, the alignment is clearly quite
pronounced.

The post-pulse alignment is given by

〈ψf | cos2 θ |ψf 〉 =
∑
J

|CJ |2 〈J, 0| cos2 θ |J, 0〉)

+
∑
J

C∗
J CJ+2 〈J, 0| cos2 θ |J + 2, 0〉

+ c.c. (9)

with nonvanishing matrix elements arising for 
J =
0,±2. Figure 3(c) shows the alignment cosine as a func-
tion of the pulse duration σ .

The pairwise vanishing of the products of the hybridi-
sation coefficients pertaining to the free rotor states that
differ by
J = ±2 restores the alignment the rotor had in
its initial state J0 for large values of σ . Figure 3(c) demon-
strates that particular values of the pulse duration can
maximise the alignment. Its degree depends, however, on
the pulse strength.

3.2. Two-level approximation

Within the first-order perturbation theory, the probabil-
ity Pmk of a transition from state |m〉 to state |n〉 of a
two-level quantum system driven by a constant perturba-
tion V is given by Pmk = V2t2

�
sinc2(t
/2�2), where
 is

the energy difference between the two states [64,65]; the
sinc function is defined as sinc(x) ≡ sin x

x . With this in
mind, we re-cast Equation (3) explicitly for N rotational
levels,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ċ0(τ )

Ċ1(τ )

Ċ2(τ )

·
·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= iσ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
η√
3

0 0 0
η√
3

−2
2η√
15

0 0

0
2η√
15

−6 · 0

0 0 · · ·
0 0 0 · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

C0(τ )

C1(τ )

C2(τ )

·
·

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)
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Table 1. Summary of the eigenproperties of the 2 × 2 Hamilto-
nian matrices with two different initial populations.

|00〉 and |10〉 |10〉 and |20〉
J0 = 0 J0 = 1

ξ J0 ξ 0 =
√
1 + η2

3 ξ 1 = 2
√
1 + η2

15

AJ0
1,2 A0

1 = −A0
2 = − η

2
√
3ξ0

A1
1 = −A1

2 = − η√
15ξ1

Eigenvalues (λJ01,2) λ01,2 = −iσ(1 ± ξ 0) λ11,2 = −iσ(4 ± ξ 1)

Eigenvectors (ν̂J01,2) {
√
3
η
(1 ∓ ξ 0), 1} {

√
15
2η (2 ∓ ξ 1), 1}

Note: Here ξ J0 is proportional to the argument of the sinc function in
Equation (14) and (15) and AJ0

1,2 are the initial-state dependent constants
of integration.

where the left-hand side is a vector of time derivatives of
the expansion coefficients with respect to dimensionless
time τ of the N rotational levels.

We now consider the following two-level models
formed out of two successive 2 × 2 diagonal sub-blocks
of thematrix in Equation (10). Amodel constructed from
the |0, 0〉 and |1, 0〉 states,

iσ

⎛
⎜⎝ 0

η√
3

η√
3

−2

⎞
⎟⎠ for J0 = 0 (11)

and a model constructed from the |1, 0〉 and |2, 0〉 states,

iσ

⎛
⎜⎝ −2

2η√
15

2η√
15

−6

⎞
⎟⎠ for J0 = 1 (12)

The general solutions for the expansion coefficients con-
structed from the eigenvalues, λ, and eigenvectors, ν̂νν, of
the matrices are given by the following equation:

CJ0(τ ) = AJ0
1 eλ

J0
1 τ ν̂

J0
1 + AJ0

2 eλ
J0
2 τ ν̂

J0
2 (13)

where AJ0
1,2 are the constants of integration obtained

by imposing the initial conditions (J0 = 0 and J0 = 1,
respectively). Table 1 summarises the eigenvalues and
eigenvectors of the two corresponding block-diagonal
sub-matrices.

By substituting τ = 1 into Equation (13), models (11)
and (12) render, respectively, the following expressions
for the coefficients of the initially unpopulated states,

C0
1(σ ,P) = iP sinc(σξ 0)√

3
exp(iσ) (14)

C1
2(σ ,P) = 2iP sinc(σξ 1)√

15
exp(4iσ) (15)

where the argument of the sinc function, ξ J0 , is defined
in Table 1; it is proportional to the difference of the two

eigenvalues – and thus analogous to the factor t

2� appear-

ing in the perturbative treatment mentioned above. The
zeroes of the sinc function (which coincides with the
zeroth-order spherical Bessel function of the first kind,
J0) occur when the argument ξ is an integer multiple
of π . Hence for integer n and a pulse strength P, the
real-valued roots of the equations

σ 0
n =

√
3n2π2 − P2

3
≈ nπ

(
1 − P2

6n2π2

)
(16)

σ 1
n =

√
15n2π2 − 4P2

60
≈ nπ

2

(
1 − 2P2

15n2π2

)
(17)

yield, respectively, the values of the pulse durations at
which the C0

1 and C1
2 coefficients vanish. The first-order

Taylor expansions of these pulse durations, included in
Equations (16) and (17), indicate that the dependence on
P of the loci of the zeros of the C0

1 and C1
2 coefficients

is parabolic. In the weak-perturbation limit, P → 0, the
coefficients C0

1(= C1
0) and C1

2(= C2
1) have periods π and

π/2, respectively.
Furthermore, Equations (16) and (17) show that the

coefficients C0
1 and C1

2 vanish for all positive integer val-
ues ofnprovided the pulse strength satisfies the condition
P � √

3π and P �
√
15
2 π , respectively. For larger values

of P, we demand n ≥ P√
3π

in order for the solutions σ
of Equation (16) to be real-valued. Hence when increas-
ing P, the solutions for low n will disappear one after
another. For example, for P = 10, this means that n ≥ 2,
as illustrated in Figure 4. A similar argument applies for
the solutions of Equation (17).

For integer values of n = {1, 2, 3}, Equation (16) yields
the loci of vanishing C0

1 at σ
0
1 = {3.022, 6.224, 9.384} for

P = 1.5, in close agreement with the values obtained
numerically, cf. Figure 2(b). Likewise, fromEquation (17)
with integer values of n = {1, 2, 3, 4}, we obtain the
loci of the minima of the coefficient C1

2 at σ 1
2 =

{1.523, 3.113, 4.693, 6.269} for P = 1.5, likewise in good
agreement with those seen in Figure 2(b).

Figure 4 also illustrates that the behaviour of the
expansion coefficients is quite different for stronger per-
turbations (P � 3 and small enough values of σ ) than
for weaker ones. In the short-pulse limit, both the
interaction strength η = P/σ and the nonadiabaticity
increase, leading to the hybridisation of higher rota-
tional states. However, their coefficients vanish quicker
with increasing σ than those of the lower states. As a
result, in this σ regime, the two- or three-level approx-
imation is roughly valid despite a high value of the pulse
strength P.

3D views of the post-pulse rotational kinetic energy
surface spanned by the pulse parameters P and σ are
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Figure 5. 3D views of the Log10-scaled post-pulse kinetic energy surface for the rotor initially in its ground state. Panel (a) is comple-
mented by a comparison of the calculations of the kinetic energy versus pulse duration curves for fixed values of the pulse strength P as
obtained from the two-state model (black) and an accurate numerical calculation (grey). Panel (b) provides a view of the minima of the
rotational kinetic energy surface.

shown in Figure 5 for a rotor initially prepared in the
ground state |0, 0〉. Panel (a) shows parabolic furrows,
cf. Equation (16), consisting of rotationally cooled states
with discreteminima along the furrows for specific values
of P and σ , cf. Figure 5(b). These discrete minima occur
as a result of the coincidence or near-coincidence of the
zeroes ofmultiple coefficients pertaining to different free-
rotor states and correspond to maximally cooled hybrid
states arising for particular P and σ values. In the absence
of closed-form solutions for these coefficients, it is dif-
ficult to predict the positions of the minima. However,
for the parameter space considered, we find the min-
ima to lie on a family of parallel lines with a slope of
0.577 in the P-σ plane. Therefore, given the position of
a minimum, one can predict the approximate location
of the other minima from the points of intersection of
a given line with the family of parabolae described by
Equation (16). Also shown in Figure 5(a) is a compari-
son of the kinetic energy versus pulse duration curves for
fixed values of the pulse strength P as obtained from the
two-state model and from an accurate numerical calcu-
lation. One can see that for P<5, the two state-model
renders the kinetic energy drops quantitatively. The pre-
diction of the two-statemodel deteriorates at larger P and
small σ due the hybridisation of higher states. Neverthe-
less, the positions of the drops can still be predicted fairly
well for sufficiently large σ .

4. Conclusions and prospects

In this work, we have identified the reasons behind the
sudden quasi-periodic drops of the kinetic energy of a

polar rotor subject to a rectangular electric pulse that
occur at specific values of the pulse parameters – its
strength P and duration σ . As a corollary, we found that
the orientation of the rotor vanishes at the same val-
ues of the pulse parameters as the kinetic energy does,
independent of the initial state.

Our study has demonstrated that for not-too-high a
value of the pulse strength, it is indeed possible to iden-
tify a pulse duration at which the expansion (hybridis-
ation) coefficients of the free-rotor states that make up
the wavepacket created by the pulse are restricted to just
the first few rotational states. An analytic time-dependent
two-state model then allowed us to establish a causal
connection between the zeros of the hybridisation coef-
ficients, as predicted by the model, and the vanishing of
the kinetic energy and orientation.

Current technology makes switching of electrostatic
fields at the nanosecond-timescale feasible [66–68]. Thus
rectangular electric pulses of a nanosecond duration
could be generated and used to control large, slowly rotat-
ing molecules with a rotational period of a few tens
of nanoseconds. By choosing a proper combination of
the pulse strength and pulse duration, isotropic, ‘un-
oriented’ wavepackets with vanishing rotational kinetic
energy could be created wherever desirable. In this con-
text, for instance, cold chemistry experiments discount-
ing stereoselective enhancement of reaction rates come
to mind. Equally importantly, when undesirable, the
phenomenon could also be avoided by a proper tun-
ing of the pulse parameters to ensure that the rotor
is properly endowed with both kinetic energy and
orientation.
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We hope that an experiment with cold polar linear
rotorswith small rotational constants (B ∼ 0.001hc cm−1

and rotational period ∼10 ns) that are subject to rectan-
gular electric pulses will demonstrate the phenomenon
studied herein. On the other hand, since we know that
full-cycles shorter than the rotational period do indeed
result in appreciable changes in orientation (and align-
ment), smaller rotors with rotational periods in the pico-
to femto-second regime could be likewisemanipulated by
multi-cycle THz pulses [69–71]. The appropriate param-
eters for suitably shaping a THz pulse for this purpose
could be obtained from our numerical simulations.

Future studies will explore the effect for polar polaris-
able rotors (i.e. with the aligning term,∝ cos2 θ , included
in the potential) as well as for coherently superposed ini-
tial states. Moreover, it would be of interest from a math-
ematical standpoint to explore the connection between
the quasi-periodic drops in the kinetic energy and direc-
tionality, and the reduction of the error within the
second-order TDUPT framework or the iterative super-
convergent KAM approach, over the P − σ parameter
space. A suitable machine-learning algorithm could be
employed to ‘learn’ the rules governing low and accept-
able error in the TDUPT, and identify islands in the P-σ
parameter space that offer the ability to manipulate a
given rotor species. Another avenue to be pursued fol-
lows from the observation that a finite-duration pulse
is also capable of increasing the kinetic energy (beyond
that imparted by an ultrashort non-adiabatic interac-
tion). Amenable to such enhancement of kinetic energy
are initial states that are a coherent superposition of sev-
eral rotational states. This effect could be exploited to
generate super-rotors [72].
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