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Structure of the thesis  

 

This thesis consists of two main and two additional chapters, each of them presented as a stand-alone 

manuscript. The main part of the thesis focusses on the ecology of urban red foxes with both chapters 

dealing with their adjustments to urban environments. In chapter 1 we report on our investigation of 

genetic structure of foxes within Berlin and the surrounding countryside, as well as the effects of human 

land use on gene flow between urban and rural areas and through the urban matrix. Chapter 2 investigates 

habitat selection and space use patterns of red foxes radio collared within the urban area and deals with 

effects of the landscapes as well as the impact of human presence on movements and habitat selection. 

Both chapters will be discussed jointly in the general discussion of this thesis. 

Chapter 3 is a methodological examination of additional assets arising from the use of the radio collars we 

deployed. Finally, chapter 4 presents an interdisciplinary perspective on urban foxes by investigating the 

perception of foxes in the general public. It uses the red fox as a model species to understand the effects 

of socio-demographic factors on knowledge about, risk perception of and attitudes towards wildlife. The 

discussion of the additional works is part of the corresponding manuscripts.  

 

Main manuscripts 

Kimmig SE., Beninde J., Brandt M., Schleimer A., Kramer-Schadt S., Hofer H., Börner K., Schulze C., Wittstatt 

U., Heddergott M., Halczok T., Staubach C., Frantz AC. (2019). Beyond the landscape: resistance modelling 

infers physical and behavioural gene flow barriers to a mobile carnivore across a metropolitan area.  

Published, Molecular Ecology, 29(3), 466-484 

Kimmig SE., Planillo A Wenzler-Meya M., Börner K., Brandt M., Hofer H., Kramer-Schadt S. The limits of 

serenity - avoidance behaviour towards humans in an opportunistic predator   

Additional works 

Kimmig SE/Rast W, Giese L, Berger A (2020). Machine learning goes wild: Using data from captive 

individuals to infer wildlife behaviours.   

Published, PloS one, 15(5), e0227317 

Kimmig SE, Flemming D, Kimmerle J, Cress U, Brandt M (2020): Sociodemographic aspects of wildlife-

tolerance: Knowledge, risk perception and attitude towards red foxes (Vulpes vulpes) in Germany.   

Published, Conservation Science and Practice, 2(7), e212 



 

v 

 

 

Content 

Acknowledgements ................................................................................................................................. iii 

Structure of the thesis ............................................................................................................................. iv 

Zusammenfassung ................................................................................................................................... vi 

Summary ................................................................................................................................................. ix 

General introduction ............................................................................................................................... 1 

The human footprint and its implications for wildlife ............................................................................... 1 

Red fox plasticity ....................................................................................................................................... 4 

Objectives & purpose of this study ........................................................................................................... 6 

MAIN CHAPTERS ...................................................................................................................................... 9 

Chapter 1: Population and landscape genetics along an urbanisation gradient ...................................... 9 

Chapter 2: Spatial ecology of urban red foxes ........................................................................................ 57 

ADDITIONAL WORKS ............................................................................................................................. 80 

Chapter 3: Inference of animal behaviour from acceleration data......................................................... 80 

Chapter 4: The perception of foxes in the general public ..................................................................... 126 

General discussion ............................................................................................................................... 140 

Navigating the urban landscape ............................................................................................................ 140 

Behavioural adjustments…    ................................................................................................................. 142 

… and their limitations .......................................................................................................................... 143 

Conclusion ............................................................................................................................................. 145 

References of general introduction and discussion ............................................................................ 146 

 



 

vi 

 

 

Zusammenfassung 

Die globalen Landveränderungen durch den Menschen stellt eine immense Bedrohung für natürliche 

Ökosysteme dar, mit vielfältigen Folgen für Wildtier-Populationen. Landveränderungen dienen unter 

anderem der landwirtschaftlichen Versorgung der menschlichen Bevölkerung, dem Ressourcengewinn 

und der industriellen Produktion, sowie der Schaffung von Wohnraum. Die weltweite Ausbreitung 

städtischer Räume schafft veränderte, menschlich überformte und somit neuartige Ökosysteme für 

Wildtierarten. Letztere überlebten entweder in von der Urbanisierung eingeschlossenen Resten 

ursprünglicher Habitate oder besiedelten Stadtgebiete aktiv. Diese neuartigen Lebensräume bieten hohe 

Nahrungsdichten und vielfältige Brutmöglichkeiten, sind jedoch durch ein hohes Maß an menschlicher 

Störung, Lärm- und Lichtverschmutzung sowie Habitat-Fragmentierung gekennzeichnet. Die Fähigkeit, mit 

diesen Umgebungsbedingungen zurechtzukommen, hängt von der phänotypischen Plastizität oder 

ökologischen Flexibilität von Arten (und Individuen) innerhalb der bestehenden Merkmalsausstattung ab, 

oder alternativ von einer sehr schnellen Evolution, die neue genetische Grundlagen für neue Merkmale als 

evolutionäre Anpassungen an das Stadtleben liefert. Dem Rotfuchs (Vulpes vulpes) als Allesfresser 

mittlerer Größe mit einer breiten geografischen Verteilung ist es gelungen, Städte auf der ganzen Welt 

erfolgreich zu besiedeln. Aufgrund ihrer allgegenwärtigen Präsenz in vom Menschen dominierten 

Landschaften, von landwirtschaftlichen Flächen bis zu dicht bebautem Gebiet, wird gemeinhin davon 

ausgegangen, dass Rotfüchse gut mit menschlicher Präsenz zurechtkommen. Obwohl es die Flexibilität der 

Art offensichtlich ermöglichte, diese Lebensräume zu besiedeln, geht das Leben in der Nähe des Menschen 

auch mit Herausforderungen für den Fuchs einher. Hohe Sterblichkeitsraten, niedrige durchschnittliche 

Lebensdauern und heimliche Verhaltensweisen deuten auf Einschränkungen für diesen ursprünglich 

scheuen Generalisten hin, die unzureichend untersucht sind. Treffen wir also anhand oberflächlicher 

Feststellungen falsche Aussagen über das wahre Ausmaß der phänotypischen Plastizität der Füchse?  

Um diese Frage zu beleuchten, analysierten wir (i) mittels genetischer Proben entlang eines rural-urbanen 

Gradienten die genetische Struktur der Füchse auf Populationsebene. Wir untersuchten, inwiefern das 

urbane Umfeld den Genfluss innerhalb und zwischen den Fuchspopulationen in Stadt und Land 

beeinflusste und wie die städtische Umgebung diesen jenseits von einzelnen Landschaftselementen 

möglicherweise beeinträchtigt hat. (ii) Des Weiteren erforschten wir die individuelle Lebensraumnutzung 

von Füchsen mit Hilfe der Besenderung von Tieren im Berliner Stadtgebiet. Wir untersuchten 

insbesondere, wie Füchse auf verschiedene Landschaftstypen - einschließlich menschlicher Strukturen wie 
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bebauter Flächen und Verkehrsadern - reagierten und mit unterschiedlichen Ausmaßen an menschlicher 

Präsenz und Aktivität umgingen.  

Die Ergebnisse des ersten Kapitels zeigen, dass der Genfluss der Füchse zwischen Berlin und Brandenburg 

begrenzt war und zwei Populationen bestanden, die genetische differenzierbar waren. Obwohl 

Landschaftselemente dabei einen gewissen Einfluss auf den Genfluss ausübten, schienen sie für die 

Abwanderungsrouten der Füchse eine eher untergeordnete Rolle zu spielen. So hatten dicht bebaute 

Gebiete nur schwache negative Auswirkungen auf den Genfluss und auch Grünflächen wie Stadtparks und 

Wälder trugen nur wenig zum Genfluss bei. Füchse vermieden es, die Stadtgrenze zu überqueren und 

migrierten trotz des inhärenten Mortalitätsrisikos überwiegend entlang von Transportinfrastruktur wie 

Autobahnen und Eisenbahnlinien. Dies weist darauf hin, dass Vermeidungsverhalten gegenüber dem 

Menschen das Migrationsverhalten der Füchse mitbestimmt.   

Im zweiten Kapitel berichten wir über die Raumnutzung der Füchse und verglichen dafür den aktiv 

genutzten mit dem insgesamt verfügbaren Lebensraum. Die Ergebnisse zeigten, dass Füchse dicht bebaute 

Gebiete oder Gebiete mit einem hohen Versiegelungsgrad nicht mieden, obgleich hohe menschliche 

Bevölkerungsdichten durchaus vermieden wurden. Die Füchse nutzten ferner nicht vermehrt Grünflächen 

wie öffentliche Parks oder städtische Wälder. Bevorzugt genutzt wurden Brachflächen - inklusive der 

Flächen entlang von Bahntrassen - und Gärten von Einfamilienhäusern und Wohnhäusern, die für die 

Öffentlichkeit entweder unzugänglich oder mit geringer menschlicher Präsenz assoziiert sind. Schließlich 

war die Meidung hoher menschlicher Bevölkerungsdichten innerhalb typischer menschlicher 

Aktivitätszeiten ausgeprägter. Die Ergebnisse legen nahe, dass die Raumnutzung der Füchse durch 

Vermeidungsverhalten gegenüber dem Menschen (mit)bestimmt wurde.   

Obwohl Füchse in städtischen Lebensräumen anscheinend gut zurechtkommen, konnten wir zeigen, dass 

menschliche Präsenz Konsequenzen für die Tiere auf individueller und auf Populationsebene hat. Lokale 

und zeitliche Aktivitäten der Menschen drängen Füchse zur Anpassung ihrer Bewegungsmuster bei der 

Nutzung des städtischen Lebensraums. Die Ergebnisse zeigen somit die Grenzen der phänotypischen 

Plastizität dieser Art auf.  Wir hoffen, dass unsere Erkenntnisse dazu führen werden, diverse Faktoren 

jenseits von Landschaftstypen in Studien zur Ökologie der Wildtiere besser zu berücksichtigen.  
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Weitere Arbeiten  

Für die Untersuchung des Raumnutzungsverhaltens verwendeten wir VHF-Sender, die einen tri-axialen 

Beschleunigungssensor enthalten, der Bewegungen der Messeinheit im dreidimensionalen Raum misst. 

Da diese das theoretische Potenzial zur Fern-Detektion von Verhaltensweisen liefern, führten wir dazu 

eine methodische Studie durch (drittes Kapitel). Wir besenderten Füchse in Gefangenschaft und 

dokumentierten ihr Verhalten während der Messungen, um damit anschließend verschiedene Maschine 

Learning Programme darin zu trainieren, Verhaltensweisen aus den Beschleunigungsdaten abzuleiten. 

Dabei konnten wir zeigen, dass neuronale Netzwerke, besser als herkömmliche Ansätze, das Potential 

besitzen mithilfe von Beschleunigungsdaten Verhaltensweisen der Tiere zu klassifizieren.    

Die Anwesenheit von Füchsen in städtischen Gebieten ist auch für die Bevölkerung von Interesse. Neben 

der möglichen Übertragung von Krankheiten verursachen Füchse Sachschäden an privatem und 

öffentlichem Eigentum und verursachen Störungen (z. B. durch Gerüche oder  Geräusche). Kurze Flucht-

distanzen und ungewohnte Annäherung der Tiere an Menschen (oft in Gärten und manchmal gar in 

Häusern) schüren zudem Ängste in der Bevölkerung, führen zu Ärger und können in der Forderung nach 

einer Populationskontrolle städtischer Fuchspopulationen gipfeln. Um besser zu verstehen, welche 

Faktoren die Wahrnehmung von Wildtieren beeinflussen, führten wir eine repräsentative Umfrage durch 

(viertes Kapitel). Wir fanden heraus, dass Einstellung und Risikowahrnehmung gegenüber Füchsen 

maßgeblich die Haltung der Teilnehmenden beeinflusste, ob und welcher Form populations-

beeinflussenden Maßnahmen durchgeführt werden sollten, während Fachwissen dies nicht tat. 

Einstellung und Risikowahrnehmung hingen dabei hauptsächlich vom Bildungsgrad, Alter, Geschlecht und 

der Wohnumgebung der Teilnehmenden ab.   
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Summary 

Global human land alteration poses an immense threat to natural ecosystems with consequences to 

wildlife populations on numerous scales. Land is altered for agricultural supply of the human population, 

the gain of resources, and industrial production as well as for providing living space. The sprawl of urban 

agglomerations around the world creates novel ecosystems for wildlife species that remained in natural 

remnants enclosed by urbanization processes or actively colonized urban areas. These novel habitats 

provide high food abundances and diverse breeding opportunities but are also characterized by a high 

degree of human-induced disturbance, land- and light pollution and habitat fragmentation. The capacity 

to adjust to these novel environmental conditions depends on the behavioural plasticity or ecological 

flexibility of species (and individuals), or on rapid evolutionary processes that provide the genetic base for 

adaptive trait changes. The red fox (Vulpes vulpes) as a generalist predator of medium size and a broad 

geographic distribution, managed to successfully inhabit cities around the globe. Due to their ubiquitous 

presence in human dominated landscapes, ranging from agricultural land to densely built-up areas, it is 

commonly assumed that red foxes cope well with human presence. Although the fox’s inherent 

behavioural plasticity obviously enables the species to populate those areas, living in close proximity to 

humans may come with some downsides too. High mortality rates, low average life spans and elusive 

behaviours indicate a trade-off for this naturally shy generalist that is poorly addressed. Do we thus draw 

wrong conclusions about the actual boundaries of the behavioural plasticity of red foxes, based on shallow 

observations?  

To address this issue we (i) looked at genetic patterns on the population level by analysing red fox samples 

across a rural to urban continuum. We investigated how the urban matrix affected gene flow in foxes and 

how the urban environment potentially shaped the red fox population genetics beyond the effects of 

single landscape elements. We then (ii) researched space use of foxes on an individual level by radio-

collaring individuals across the Berlin area. We examined how foxes adjust their habitat use within the city 

depending on landscape - including manmade structures such as built-up areas and traffic infrastructure - 

as well as on human presence and activity.  

The results of the first chapter revealed that gene flow between urban and rural fox population of Berlin 

and Brandenburg was limited, resulting in two genetically separable populations. Landscape did effect 

gene flow through the urban matrix to a certain extent but seemed to play a minor role for fox dispersal. 
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For instance, while built-up areas had only weak impeding effects on gene flow despite their high degree 

of urbanization, urban green spaces like city parks and forests did not serve as gene flow enhancement 

either. Foxes avoided crossing the city border and predominantly dispersed along urban transport 

infrastructure such as larger streets and railways, despite the inherent mortality risk. This indicates that 

also human-induced fear drives dispersal behaviour in the studied red fox population.  

The second chapter reports on movement and space use of the foxes based on the comparison of used to 

available habitat. The results show that foxes did not avoid built-up areas or high degrees of 

imperviousness (ground sealing), while high human population densities were avoided. The foxes further 

did not preferentially select green spaces like public parks or urban forests. Wasteland areas - including 

verges along railways - and gardens of residential houses were predominantly used by the studied 

individuals, providing sites inaccessible to humans or with low human presence. Finally avoidance of 

humans was more distinct during times of human activity. The results pinpoint that the foxes’ space use 

was partly driven by avoidance behaviour towards humans.   

Our study showed that although foxes cope well with the urban landscape as a species, human presence 

has consequences on a population level and on an individual scale. Human local and temporal activities 

pushed the foxes into an adjustment of movement patters and their use of the urban habitat. The results 

also revealed the limits of this adjustment even in a flexible species like the red fox. We hope that our 

findings enhance the consideration of multiple factors beyond landscape for future studies on the ecology 

of wildlife. 

Additional works 

For studying space use behaviour, we used radio collars that include a tri-axial accelerometer that 

measures deflections of the unit within the three-dimensional space. As recorded acceleration data hold 

an understudied potential to analyse animal behaviour using remote tracking, we also included a 

methodological work into our project (third chapter). We radio collared captive foxes and documented 

the behaviours they displayed during measurement, to train different machine learning programs in the 

inference of behaviours from the acceleration data. We showed that neural networks may provide an 

improved ability for the classification of animal behaviours from acceleration data using machine learning 

compared to established approaches.   
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The presence of foxes in urban areas also concerns people. In addition to the possible transmission of 

diseases, foxes cause damage on private property and in public spaces and induce disturbances (e.g.  due 

to odours or noises). Short fleeing distances and unfamiliar approaches of the animals (in gardens and 

sometimes even houses) stir up fears in the population, but can also create annoyance and calls for control 

of the urban fox population. We therefore conducted a representative survey to look more closely into 

the factors affecting wildlife perception (fourth chapter). We found that attitude towards and risk 

perception of foxes mainly influenced the participants’ preferences on whether and how to deal with the 

fox population, while factual knowledge did not influence their positions. Risk perception and attitude 

mainly depended on education, age, gender and living environment of the participants. 
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General introduction 

The human footprint and its implications for wildlife 

The human footprint on earth is large and ubiquitous. The entire global ecosystem is in a critical 

environmental transition on a planetary scale that is threatening the sustainability of life on earth, 

including humans (Barnosky et al., 2012; Vitousek et al. 1997). The latter concerns, amongst others, the 

scarcity of critical resources, the degradation of ecosystem services, and the erosion of the planet’s 

capability to cope with human waste (Steffen et al., 2011). Worldwide changes to former natural forests, 

green spaces and waterways undermine the capacity of ecosystems to sustain food production, maintain 

healthy freshwater bodies and forests, regulate climate and air quality, and ameliorate infectious diseases 

(Foley et al., 2005). Humans have largely altered the face of the earth (Fig. 1) and global land use - including 

croplands, pastures, plantations, and urban areas, accompanied by large increases in energy, water and 

fertilizer use - results in a critical loss of biodiversity (e.g. Brook et al., 2003). Up to half of the planet’s 

species are predicted to be lost within in the next 50 years (Thomas et al., 2004). For example, 

approximately one quarter of all living (marine and terrestrial) mammals worldwide is at risk of extinction 

to date (Schipper et al., 2008) and more than 75% of insect biomass has been lost within less than 30 years 

in protected areas in Germany (Hallmann et al., 2017).    

 

Figure 1: Spatial distribution of thirteen overlapping human induced stressors per 1‐km² area, and the percentage of 

terrestrial lands affected globally (in parentheses). Modified from Kennedy et al. 2019. 

The global human Impact 
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One crucial aspect of human land alteration is urbanisation: During the past 100 years, a rapid transition 

of natural land into urban agglomerations as well as the expansion of existing urban areas has led to the 

majority of the world’s population living in cities (Heisler & Brazel, 2010) and the urbanisation process is 

predicted to increase further (Ritchie & Roser, 2018), with global consequences for wildlife. The 

encroachment of cities into natural habitats around the world represents a permanent loss of natural 

habitat needed for wildlife species (Miller & Hobbs, 2002) but it also leads to an “urbanisation” of various 

wild animal species. Compared to sprawling agricultural monocultures, urban areas provide 

heterogeneous structures and harbour a variety of ecological niches for animals. Therefore it is often 

argued that urban areas may be essential to actually conserve biodiversity, given the inadequacy of natural 

protected area systems (Lundholm & Richardson, 2010). However, living in urban areas effectively means 

that animals mostly dwell in ‘novel habitats’ - habitats characterized by ecological conditions that may 

substantially differ from conditions in natural habitats (Lundholm & Richardson, 2010; Pickett et al., 2001). 

Urban related ecological conditions that may affect life history traits of animals, for example, concern 

increased temperatures within the cityscape (Heisler & Brazel, 2010), intense habitat fragmentation 

(Fahrig, 2003; Gibb & Hochuli, 2002), noise pollution, light pollution by artificial night lighting (Katz & Levin, 

2016; La Sorte et al., 2017) and also the influence of human activities (Rabele, 1994; Shochat et al., 2006a) 

as well as the density and activities of their companion animals (Lenth et al., 2008; Plaza et al., 2019). 

Consequently, the urban habitat represents a major challenge for the adaptive capacities of a wild animal 

species (Ditchkoff et al., 2006). As habitat changes due to human land alteration and urbanization occurred 

on a short ecological rather than a longer-term evolutionary time scale, it is likely that urbanisation  tests 

the limits of the tolerance (phenotypic plasticity) or adaptability of species to cope with such conditions 

(Smith et al., 2018). This makes urban areas an ideal setting to study phenotypic plasticity and resilience 

in the behaviour of wildlife. 

The presence of wild animals in urban areas also gives rise to potential conflicts with their human 

inhabitants (Distefano, 2005). Amongst others, the implications of the presence of urban wildlife for 

people include the transmission of zoonoses (Ahmed et al., 2019; Morse et al., 2012), perceived risks, 

including fear regarding direct encounters (Carter et al., 2020; Hanisch-Kirkbride, at al., 2013), loss of 

livestock, companion animals and damages to property (Bagchi & Mishra, 2006; Czech et al., 2000) but 

also “recreational" aspects, e.g. positive aspects for people through the delights of encountering wild 

species (Cordingley et al., 2016; Rockel & Kealy, 1991). It would therefore be of great interest to establish 
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a framework to predict the potential effects of urbanisation measures on wildlife populations, not only 

with regard to conservation of biodiversity but also for the purpose of resolving human-wildlife conflicts 

(Baker & Harris, 2007; McKinney, 2006). The ecological discipline of urban ecology which started as 

recently as the 1970s (McDonnell, 2011) has become an established discipline in ecological research 

accordingly, with a steadily increasing number of scientific publications (McDonnell, 2015; Weiland and 

Richter, 2009). It pursues a practical impact by making cities more attractive, more enjoyable, and better 

for the health of people and that of the planet (Goode et al., 2020) but also pursues understanding the 

fundamental principles of adjustment and adaptation of species to changing ecosystem conditions. 

Despite the growth of this discipline and although an increasing number of species is found in urban 

habitats, for many species the level of knowledge is still poor about the degree of tolerance to urban 

conditions (known as phenotypic plasticity) and the adjustment mechanisms of wild animals (Magle et al., 

2012). Species substantially vary regarding their behavioural response to human proximity, many species 

cannot persist in human dominated areas, whereas others cope well and even flourish in the novel 

ecosystems (Møller, 2009; Shochat et al., 2006b). The extent to which urban dwelling animals apparently 

adjust their ecology and behaviour to urban areas is often used to categorise such wildlife (Fischer et al., 

2015), e.g., in “urban avoiders”, “urban utilisers” and “urban dwellers”. Urban avoiders like the mountain 

lion (Puma concolor, Gehrt et al., 2010) are species that reach their highest densities in the most natural 

sites (Blair 1996) such as remnants of natural habitats (Markovchick-Nicholls et al., 2008) and that rarely 

occur in developed areas (Fischer et al. 2015). Fischer et al. (2015) based their definition of urban dwellers 

and urban utilisers on the relative importance of natural and developed areas to their population 

dynamics. Following their classification system, urban dwellers are species whose persistence in an 

urbanised landscape is independent of natural areas, e.g., the orb-weaving spider (Nephila plumipes, Lowe 

et al. 2014). Urban utilisers only occur in urban environments as non-breeders or as breeders that are 

present only because of dispersal from adjacent natural areas as in the case of the northern brown 

bandicoot (Isoodon macrourus, FitzGibbon et al., 2007). The exact definition of such classifications as well 

as its terminology varies between authors and the use of “urban adapters” or “urban exploiters” as 

categories is also common (see Blair, 1996; McKinney, 2002). The boundaries of these classifications are 

often fluid and some species might be difficult to assign to one specific category. What these attempts at 

such classifications certainly demonstrate is that wildlife clearly shows different capacities to adjust to the 

urban habitat.  
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Red fox plasticity 

Mammalian urban dwelling species in Europe include bats, hedgehogs, mice, voles, the racoon (Procyon 

lotor), the Eurasian badger (Meles meles), the European otter (Lutra lutra) and others (Baker & Harris, 

2007; Bateman & Fleming, 2012). One species that successfully inhabits cities and urbanised areas is the 

red fox (Vulpes vulpes). The phenomenon of the city fox was first observed in Great Britain in the 1970s 

(Harris & Rayner, 1987; Soulsbury et al., 2011; White et al., 1996) and it was scientifically documented for 

various British cities such as London, Bristol or Oxford (e.g., Baker et al., 2000; Harris, 1979, 1981; Iossa et 

al., 2008; Trewhella et al., 1988). As red foxes inhabit urban areas in numerous countries, urban fox 

populations have been studied in many other places around the world, for example in Belarus (Sidorovich 

et al., 2006), in Sapporo, Japan (Uraguchi et al., 2009), or in Zurich and Geneva in Switzerland (Contesse et 

al., 2003; Gloor, 2002; Fischer et al., 2005). For several decades, the red fox is also established in major 

German cities. 

For mesocarnivores like the red fox, urban areas provide a variety of potential spatial niches, including 

streets, parks and other public green spaces, squares and built-up areas, all with a different degree of 

artificiality and human disturbance (Bateman & Fleming, 2012). These areas may be used by the animals 

for different purposes, for instance green areas may provide shelter and suitable den sites (Adkins & Stott, 

1998; Baker et al., 2000; Baker & Harris, 2007), railways, streets and other linear features may serve as 

corridors for movements (Lewis et al., 1993). In addition to urban areas, red foxes also inhabit a large 

variety of different natural habitat types. Their natural range covers the hot deserts of North Africa, the 

Middle East and the Mediterranean as well as the temperate climate zone and the snowy landscapes in 

the global north, including Siberia, Scandinavia and North America. The species’ geographical distribution 

makes the red fox the most wide-spread terrestrial wild carnivore on the planet (Schipper et al., 2008). It 

therefore displays an impressive level of apparent adaptability and flexibility with regard to its habitat 

requirements such as choice of sleeping or breeding space, diet and even social structure (Baker et al., 

2004; Bateman & Fleming; 2012, Iossa et al., 2009).  

The special ability of the red fox to populate diverse environments is therefore a key element in research 

into how wild animals adjust to new habitats, including novel urban habitats. Furthermore, because it is 

abundant in many places, the red fox may serves as a model species to provide insights into the adjustment 

strategies of animals that may benefit the protection of rare and threatened wild animal species, for which 
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small population sizes and their threat status may limit research opportunities. The abundance of red foxes 

also harbours a certain potential for conflict. For example, regarding its role as a potential carrier of 

zoonoses such as rabies and as host of the small fox tapeworm (Echinococcus multilocularis) as well as 

other infectious diseases of relevance to companion or domestic animals such as canine distemper virus 

(CDV) or sarcoptic mange. While rabies is officially extinct in Germany and most parts of central Europe, 

infections with alveolar echinococcosis caused by the fox tapeworm are dangerous to humans although 

rare (Combes et al., 2012). This parasite was for example detected in Geneva and Zurich, Switzerland with 

varying levels of prevalence in city foxes (Fischer et al., 2005; Hofer et al., 1999). Finally, the potential to 

study evolutionary processes in a species with high phenotypic plasticity may be of interest to scientists 

asking questions about fundamental evolutionary process, with urbanisation being considered a quasi-

experimental setup of an extreme environment. Consequently the species has been in the focus of early 

urban ecological research, with Stephen Harris and his colleagues in Bristol and David Macdonald and his 

colleagues in Oxford studying the ecology and behavior of red foxes in settlement areas in the 1970s.   

The results of these and subsequent studies show that red foxes reach high densities in urban areas with 

tenfold to fifteenfold higher population densities than in rural areas (e.g. Chautan et al., 2000; Harris, 1981; 

Trewhella et al., 1988). The urban environment appears to have certain advantages for an opportunistic 

omnivore. For instance, red foxes and other mesocarnivores may benefit from human activities by the 

ability to exploit anthropogenic resources (Newsome, 2015) due to a certain inherent tolerance of these 

species towards human presence (McKinney, 2006). Besides high food availability and density (Contesse 

et al., 2003), the absence of natural apex predators could play a role here (Baker & Harris, 2007; Bateman 

& Fleming, 2012; Crooks & Soulé, 1999). On the down side, living in the city may also involve fitness costs. 

For example, fox mortality within cities is particularly high from road traffic (Baker et al., 2007) and in case 

of disease outbreaks, high urban fox population densities accelerate rates of intraspecific transmission 

(Baker et al., 2000). Especially sarcoptic mange and canine distemper virus (CDV) outbreaks can kill large 

proportions of a red fox population within a short time. For instance, Soulsbury at al. (2007) reported a 

short-term, mange-induced decline in fox density in Sweden of up to 95%. Human presence may also 

negatively influence red fox behaviour - mesocarnivores were observed to display a diverse range of 

behavioural responses to human presence and human activity (Barrueto et al., 2014; Sévêque et al., 2020; 

Wang et al., 2015; Wilmers et al., 2013).  
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Objectives & purpose of this study 

This study focused on human-induced limitations to the ability of red foxes to operate within an urban 

setting, by considering two key aspects of life history traits: (1) their population structure in terms of 

genetic exchange and dispersal opportunities, (2) their use of and movement through space.   

(1) Urban areas are known to restrict animal movements and thus limit the functional connectivity - the 

connectivity of the landscape from the species perspective (Tischendorf & Fahrig, 2000) - of the urban 

environment. The urban matrix is thus likely to have an impact on a species’ ability to disperse (Bohonak, 

1999). It has been shown for numerous species that urban populations are affected by geographical 

barriers and may become reproductively isolated (e.g. Gortat et al., 2017; Lourenço et al., 2017). Physical 

barriers often predominantly concern small and moderately mobile species (Beninde et al., 2018; Combs 

et al., 2018; Munshi-South, 2012). Apart from physical barriers, however, human presence and activities 

may also restrict animals in urban areas if the species avoids humans which may often be perceived as a 

threat (Samia et al., 2015). If sufficiently common, such behaviour-related restrictions in movement 

capacity should impede genetic exchange amongst individuals (possibly resulting in distinct genetic 

subpopulations), even in a mobile species such as the red fox which is physically capable of crossing 

manmade barriers such as streets, railway lines or  freshwater bodies such as rivers (Adkins & Stott, 1998).  

To address the effect of the urban matrix on red fox populations we studied the population genetic 

structure as well as gene flow patterns across a rural to urban gradient. We asked whether urban and rural 

populations are genetically distinct, and how different landscape elements may affect red fox dispersal 

patterns, testing three different hypotheses:  

(1.1) Due to their inherent plasticity and mobility, red foxes disperse unhampered throughout the city. 

This predicts that urban and adjoining rural populations are panmictic, the urban fabric has no influence 

on gene flow and there should be no population or landscape genetic structure.   

(1.2) Red fox dispersal is solely affected by physical barriers such as rivers, built-up areas and highways. 

This predicts that multiple physical barriers limit gene flow, resulting in several scattered genetic 

populations with a distribution concomitant to major physical barriers, as revealed by a landscape genetic 

analysis. 
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(1.3) Red fox dispersal is primarily affected by behavioural barriers. This predicts that there is population 

structure and that dispersal is limited by the city border where the rural landscape transits to the urban 

environment. Accordingly, two major genetic subpopulations are predicted and landscape related factors 

beyond physical barrier effects (such as disturbance levels) are expected to affect gene flow within city 

boundaries. 

(2) An animal’s use of space and habitat selection emerges from its movement patterns, which are, in turn, 

determined by their behavioural or physiological states and by extrinsic factors (Karelus et al., 2019). 

Human presence may be such an extrinsic factor, affecting urban wildlife movement. In their review of 

movement studies worldwide, Tucker et al. (2018) concluded that movements of mammals in areas with 

a comparatively high human footprint were on average one-half to one-third the extent of their 

movements in areas with a low human footprint. Such decreasing animal movements may arise from 

habitat fragmentation, barrier effects, or an increase in resource availability (Prange et al., 2004; Said et 

al., 2005; Sawyer et al., 2013). Whereas movement distances may become shorter in environments with 

higher resources, some studies also report longer movements as a result of habitat loss, habitat 

fragmentation or altered movement routes (Lenz et al., 2011; Tigas et al., 2002). Either way, human activity 

may limit animal movements (and space use accordingly), and therefore influence the behaviour and 

ecology of urban red foxes, for example by restricting their foraging opportunities or increasing their 

mortality. 

We therefore studied space use patterns in response to different landscape features as well as to human 

population density (including human activity times) within the urban matrix. We asked which of these 

factors influence red fox habitat selection, testing the three following hypotheses:   

(2.1) Red fox behavioural plasticity and adjustment to urban environments enables it to fully exploit the 

urban area. This predicts that foxes should use the urban landscape evenly, with little evidence for 

avoidance or preference for specific landscape elements, and human population density should not affect 

red fox movement.  

(2.2) Red foxes rely on green vegetation areas i.e., natural-like habitats. This predicts that they avoid built-

up areas and grey spaces (like streets and places) and specifically select green spaces, including public 

green spaces and forested areas. Again, human population density should have no effect.  
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(2.3) Red foxes adjust their use of space to human presence and activity times. This predicts that foxes 

show preference or avoidance behaviour to covariates associated with human presence such as an 

avoidance of densely populated areas, a preference for sites that are inaccessible to humans (such as 

wasteland), and a preference for undisturbed habitat at times of overall increased human activity.   

Our results may enhance the understanding of the opportunities as well as the limits of adjustment to 

urban environments in a human commensal species and elucidate the underlying mechanisms of emerging 

patterns in red fox behaviour.  
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Abstract
Urbanization affects key aspects of wildlife ecology. Dispersal in urban wildlife species 
may be impacted by geographical barriers but also by a species’ inherent behavioural 
variability. There are no functional connectivity analyses using continuous individual-
based sampling across an urban-rural continuum that would allow a thorough assess-
ment of the relative importance of physical and behavioural dispersal barriers. We 
used 16 microsatellite loci to genotype 374 red foxes (Vulpes vulpes) from the city of 
Berlin and surrounding rural regions in Brandenburg in order to study genetic structure 
and dispersal behaviour of a mobile carnivore across the urban-rural landscape. We 
assessed functional connectivity by applying an individual-based landscape genetic 
optimization procedure. Three commonly used genetic distance measures yielded dif-
ferent model selection results, with only the results of an eigenvector-based multivari-
ate analysis reasonably explaining genetic differentiation patterns. Genetic clustering 
methods and landscape resistance modelling supported the presence of an urban pop-
ulation with reduced dispersal across the city border. Artificial structures (railways, 
motorways) served as main dispersal corridors within the cityscape, yet urban foxes 
avoided densely built-up areas. We show that despite their ubiquitous presence in 
urban areas, their mobility and behavioural plasticity, foxes were affected in their dis-
persal by anthropogenic presence. Distinguishing between man-made structures and 
sites of human activity, rather than between natural and artificial structures, is thus 
essential for better understanding urban fox dispersal. This differentiation may also 
help to understand dispersal of other urban wildlife and to predict how behaviour can 
shape population genetic structure beyond physical barriers.
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dispersal, functional connectivity, landscape of fear, landscape resistance modelling, 
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1  | INTRODUC TION

Urbanization results in dramatic environmental change (Johnson & 
Munshi-South, 2017) and some species flourish in these semi-artifi-
cial ecosystems (Møller, 2009; Shochat, Warren, Faeth, McIntyre, & 
Hope, 2006). Yet, urbanization affects key aspects of wildlife ecol-
ogy such as survival, foraging and reproductive success (Wilson et 
al., 2016). Moreover, it has a substantial impact on the movement 
ecology and dispersal ability of populations (Johnson & Munshi-
South, 2017; Tucker et al., 2018). Urban species may for example be 
restricted by geographical barriers and become reproductively iso-
lated (Gortat, Rutkowski, Gryczynska, Kozakiewicz, & Kozakiewicz, 
2017; Lourenço, Álvarez, Wang, & Velo-Antón, 2017). The physical 
structure of the urban environment is thus likely to have an impact 
on dispersal capacity (Bohonak, 1999).

However, the urban environment imposes much more on wildlife 
than the need to navigate a highly altered landscape. Animals often 
perceive humans as predators and avoid areas of human activity 
(Samia, Nakagawa, Nomura, Rangel, & Blumstein, 2015). Individuals 
from the rural surroundings of an urban area might thus face a be-
havioural barrier to enter urbanized areas. Within the city, species 
with the physical capability of crossing the urban matrix may face 
behavioural barriers if they avoid man-made objects (with their ar-
tificial structures or scents) or human presence per se. Different 
scenarios are thus conceivable for population structure and drivers 
of gene flow across the urban-rural continuum and the perception 
of human-induced risks may differentiate urban and rural popula-
tions beyond physical barriers. The role of behavioural limitations 
to movement has been frequently overlooked. Examining the func-
tional connectivity—the connectivity of the landscape from the 
species’ perspective (Tischendorf & Fahrig, 2000)—of the urban 
landscape would thus help to assess the relative importance of 
physical and behavioural dispersal barriers and thereby make an im-
portant contribution to understanding the ecology and evolution of 
wildlife in novel environments.

Molecular genetic methods permit inferences about wildlife 
dispersal without the need to collect extensive field data on in-
dividual movements (Frantz, Do Linh San, Pope, & Burke, 2010; 
Guillot, Leblois, Coulon, & Frantz, 2009). Recently, numerous stud-
ies of gene flow in urban areas have been published, but many of 
those focus on smaller and less mobile species that are thought 
to face major barriers in urban areas (Beninde, Feldmeier, Veith, & 
Hochkirch, 2018; Combs, Puckett, Richardson, Mims, & Munshi-
South, 2018; Munshi-South, 2012). Studies on larger and more vag-
ile species, in contrast, analysed the population genetic structure 
of animals from peripheral suburban populations or from isolated 
sampling sites within urban and rural areas (Blanchong, Sorin, & 
Scribner, 2013; Santonastaso, Dubach, Hauver, Graser, & Gehrt, 
2012; Stillfried, Fickel, et al., 2017; Wandeler, Funk, Largiadèr, 
Gloor, & Breitenmoser, 2003). There is currently no thorough anal-
ysis of the population and landscape genetic structure of a vagile 
species in an urban-rural continuum available, using continuous in-
dividual-based sampling. This would permit to identify drivers of 

urban gene flow, including those unrelated to the physical proper-
ties of the landscape.

Landscape genetic methods are particularly suited to assess 
functional connectivity. Specifically, hypotheses on how the en-
vironment influences gene flow in a target species can be evalu-
ated by statistically relating the distribution of genetic similarities 
among individuals to landscape characteristics (Cushman, McKelvey, 
Hayden, & Schwartz, 2006; Schwartz et al., 2009). Several statisti-
cal problems have been recently solved, such as the nonindepen-
dence among ecological distances and the subjective assignment 
of resistance values to environmental features (Peterman, 2018; 
Prunier, Colyn, Legendre, Nimon, & Flamand, 2015; Sawyer, Epps, 
& Brashares, 2011). Landscape genetic approaches are still evolv-
ing (Balkenhol, Waits, & Dezzani, 2009; Manel & Holderegger, 2013; 
Richardson, Brady, Wang, & Spear, 2016) and some methodological 
aspects remain relatively underexplored. For example, while a simu-
lation study by Shirk, Landguth, and Cushman (2017) has suggested 
that not all genetic distance measures perform equally well in model 
selection, different genetic distance measures have not been tested 
with the same empirical data set. 

Aiming to gain a more fundamental understanding of the impact 
of urbanization on wildlife populations at a large spatial scale, we 
here focus on a mobile mesopredator, the red fox (Vulpes vulpes). Red 
foxes are ecologically flexible (Voigt & Macdonald, 1984) and occur 
in various habitat types. Their populations prosper even in highly 
urbanized habitats. In Berlin, our focal city, the first reports of foxes 
date from the 1950s (Saar, 1957) and by the 1990s the entire city 
was populated (Börner, Wittstatt, Schneider, 2009). Their ubiquitous 
distribution in highly artificial and fragmented areas as well as their 
movement ecology make foxes an ideal model for this study. On the 
one hand, foxes are very mobile. Urban animals have been reported 
to routinely cross streets and even rivers (Adkins & Stott, 1998) and 
gene flow may be unhampered by the urban landscape. On the other 
hand, anthropogenic infrastructure could represent significant gene 
flow barriers for mobile carnivores (Riley et al., 2006) and both te-
lemetry and genetic studies point towards the existence of distinct 
urban and rural fox populations (Janko et al., 2011; Wandeler et al., 
2003).

Here, we used continuous sampling of individuals both within 
Berlin as well as the adjoining rural countryside to evaluate three hy-
potheses. (a) The null hypothesis was that, due to their niche breadth 
and mobility, foxes disperse unhampered throughout the city and 
urban and adjoining rural populations are panmictic. This predicts 
that the urban fabric has no influence on gene flow, resulting in the 
absence of population and landscape genetic structure. (b) The frag-
mentation hypothesis posits that fox dispersal was (solely) affected 
by physical barriers such as rivers, built-up areas and highways. Under 
this hypothesis, multiple physical barriers limit gene flow, resulting in 
several scattered genetic populations. (c) The urban island hypothe-
sis (Gloor, Bontadina, Hegglin, Deplazes & Breitenmoser, 2001) ex-
pects that dispersal may (also) be affected by behavioural barriers, 
which are most likely to occur at the border of the city where the 
rural landscape changes into the urban environment. Accordingly, 
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individuals within the city are habituated to manmade structures and 
human presence, while individuals from the rural surroundings are 
not and thus face a behavioural barrier to enter the urban area. This 
predicts two genetic populations resulting from limited gene flow 
across the city border. We further expect that urban foxes disperse 
along artificial structures and through built-up areas when crossing 
the urban matrix.

In order to examine these predictions, we used assignment-based 
population genetic approaches to identify the location of abrupt 
genetic discontinuities and resistance-modelling-based landscape 
genetic approaches to assess the functional connectivity of the land-
scape. We tested three genetic distance measures to address the 
performance of different genetic distance measures in model selec-
tion and to generate robust results.

2  | MATERIAL S AND METHODS

2.1 | Study area, sampling and laboratory 
procedures

The Berlin metropolitan area (Figure 1a) has 3.5 million inhabitants 
and covers ~900 km2. It has been steadily changing during the last 
century and independent villages and satellite agglomerations were 
incorporated into the city. Thus, the urban landscape structure is 
quite heterogeneous, ranging from extremely urbanized areas of 
dense housing and high proportions of impervious surfaces to dis-
tricts where forests and lakes represent up to 75% of land cover. The 
city area includes around 2,500 city parks, some areas of agricultural 
cultivation, 160  km2 of forest and several lakes. The countryside 
around Berlin is characterised by sparse urban agglomerations, ag-
riculture and forest. The landscape transition from the countryside 
to (sub-)urban areas does not fully correspond to the administrative 
boundaries between Berlin and Brandenburg as there are several 
forests, lakes and green areas that reach into the city (Figure 1b). 
These green spaces and lakes are commonly used as recreational 
areas.

Between 2010 and 2015, tissue samples from 374 foxes 
were collected (Figure 1a): Within Berlin, 188 fox carcasses 
were collected for a municipal disease monitoring program. For 
each individual, location (street, house number/km, postal code), 
sex and age category were known. The 186 samples from rural 
Brandenburg were collected by hunters and made available to the 
veterinary authorities or the authors of this study. No animal was 
killed with the aim of providing samples for this study. For 116 
Brandenburg samples, the location or the cadastral unit of origin 
was known, for the remaining 70 individuals, only the nearest vil-
lage to the harvest site was recorded. In these cases, we chose 
a random forest location within 2  km of the village recorded as 
sampling site. No information on sex and age was available for the 
samples from Brandenburg.

Tissue samples were stored at −20°C or in absolute ethanol. We 
genotyped the samples using 16 microsatellite loci: DGN3, DGN14, 

FH2541, REN161A12, REN162B09, REN69B24, V374, V402, V502, 
Vv-C01.424, Vv-C08.618, Vv-CPH11, Vv-CPH2, Vv-INU055, 
VVM124, VVM189 (Breen et al., 2001; Mariat, Amigues, & Boscher, 
1998; Moore, Brown, & Sacks, 2010; Wandeler & Funk, 2006; Yan 
et al., 2015). The data are publicly available (see Data Accessibility). 
Detailed information on laboratory procedures is given in Appendix 
S1.

2.2 | Population genetic analysis

To assess the suitability of the microsatellites for population genetic 
analyses, we tested each locus for deviations from Hardy-Weinberg 
and linkage equilibrium using genepop v.4.7.0 (Rousset, 2008). We 
also used genepop to calculate FIS values (Weir & Cockerham, 1984). 
To avoid deviations resulting from Wahlund effects and isolation-
by-distance (Frantz, Cellina, Krier, Schley, & Burke, 2009), when 
analysing the full data set, we subsampled the complete data set to 
generate 10 data sets consisting of 24 spatially clustered individu-
als (details in Appendix S2). We tested each set for significant de-
ficiency or excess of heterozygotes and linkage disequilibrium (LD) 
among loci using the Markov chain method in genepop with 10,000 
dememorization steps, 20 batches and 5,000 subsequent iterations. 
We used the false discovery rate (FDR) to account for multiple tests 
(Verhoeven, Simonsen, & McIntyre, 2005).

We used two Bayesian-based clustering methods to es-
timate the number of genetic subpopulations (K), structure  
v. 2.3.4 (Pritchard, Stephens, & Donnelly, 2000) and geneland  
v. 3.3.2 (Guillot, Estoup, Mortier, & Cosson, 2005). Running con-
ditions and specifications are described in Appendix S3. We used 
Microsatellite analyser MSA 4.05 (Dieringer & Schlötterer, 2003) 
to calculate observed and expected heterozygosities and the num-
ber of alleles across all loci. The level of genetic differentiation 
between genetic clusters inferred by structure and geneland was 
assessed using FST (Weir & Cockerham, 1984) in spagedi 1.4 (Hardy 
& Vekemans, 2002); significance was tested with 10,000 permuta-
tions of individual genotypes between populations. We analysed 
the complete data set using the Estimated Effective Migration 
Surfaces (EEMS) method (Petkova, Novembre, & Stephens, 2016). 
It uses georeferenced genetic data and can identify locations of 
abrupt genetic discontinuities (i.e., gene flow barriers) in data 
sets characterised by isolation-by-distance patterns (details in 
Appendix S4). We plotted the results for the run with the high-
est log-likelihood, using the reemsplots package in r (Petkova et 
al., 2016).

2.3 | Landscape resistance modelling

Functional connectivity was assessed using resistancega 3.1-3 
(Peterman, 2018). It calculates pairwise resistance distances be-
tween individuals and uses a linear mixed effects model based on 
genetic algorithms to maximize the fit of resistance surfaces to the 
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data. The process is based on stochastic search algorithms that solve 
optimisation problems by mimicking processes of natural selection 
(Scrucca, 2013). The optimisation process uses log-likelihood as 
the objective function. Mixed models were fitted using the maxi-
mum likelihood population effects (MPLE) parameterization (Clarke, 
Rothery, & Raybould, 2002) implemented in the R package lme4 
(Bates, Mächler, Bolker, & Walker, 2014). A simulation study by Shirk, 
Landguth, and Cushman, (2018) has shown that this linear-mixed-ef-
fects-model-based method had a high accuracy in model selection.

resistancega can optimise categorical and continuous resistance 
surfaces, as well as multiple resistance surfaces simultaneously 
(Peterman, 2018). All analyses in this work were based on categori-
cal resistance surfaces and the commute-time geographic resistance 
distance (Kivimäki, Shimbo, & Saerens, 2014), equivalent to cir-
cuit-theory-based resistance distances (McRae, Shah, & Mohapatra, 

2013). Model fit was assessed with the corrected Akaike informa-
tion criterion (AICc): A specific model was considered a better fit if 
the difference in AICc (ΔAICc) to the next model was >2 AICc units. 
To check for convergence, each optimisation run in the study was 
performed twice for each landscape feature or combination of land-
scape features. Using the ga.prep() function, we set the maximum 
value to be assessed during optimization of categorical resistance 
surfaces to 500 and retained all other default parameters of the  
ga.prep() function.

We performed separate analyses for foxes sampled within Berlin 
and the full data set including the surrounding countryside. We split 
the analysis because subtle behavioural patterns within the urban 
area may be missed in a joint analysis of the complete data set. Also, 
the greater precision of sampling locations within Berlin allowed a 
fine-scale analysis of the permeability of the urban environment (see 

F I G U R E  1   Sample distribution and land cover maps of the study area. (a) The location of the study area within Germany and the 
geographic origin of samples, with size of the circles indicative of the number of samples collected from a locality. The dotted- and thin-
lined polygons show the boundaries of the study area used in landscape resistance modelling for the complete data set and the Berlin-only 
data set, respectively. (b) Land cover map of the landscape genetics study area. (c) Habitat categories considered in the genetic landscape 
resistance modelling of the city of Berlin, with the black dots showing the location of the 184 samples that were included in the analysis. 
(d) Habitat categories considered in the genetic landscape resistance modelling of Berlin and the surrounding countryside, with the black 
dots showing the location of the 286 samples that were included in the analysis. Habitat data were taken from the German authoritative 
topographic cartographic information system (ATKIS) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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below). Except when mentioned, arcmap v.10.3 (ESRI Inc) was used to 
prepare resistance surfaces. Potential movements of individuals at 
the edge of the study area can be artificially constrained by the prox-
imity to the boundary (Koen, Garroway, Wilson, & Bowman, 2010). 
The extent of the study areas was therefore obtained by plotting 
a minimum convex polygon around the sampling locations. Then, 
based on dispersal distances obtained by capture-mark-recapture 
methods (Harris & Trewhella, 1988; Trewhella & Harris, 1990) we 
added a 5 km buffer around this feature.

Landscape classification was based on the German topographic 
cartographic information system ATKIS (Figure 1b, Gruenreich, 
1992). Seven landscape categories, hereafter called environmen-
tal predictors, were considered to potentially influence gene flow 
(Figure 1c–d, Figure S1). (a) arable/green: all types of arable land and 
grassland, fallow land, allotments, airports, public parks, cemeter-
ies and bare soils; (b) built-up areas: residential, industrial and com-
mercial areas; (c) the city border of Berlin (or variations thereof; see 
below); (d) forests: irrespective of their composition; (e) motorways: 
with tunnelled sections within the city not considered; (f) railways: 
including major stations but excluding tramways and (g) larger water 
bodies: including lakes and major rivers (which do not overlap with 
other shapes), excluding small streams, creeks and underground ca-
nals (line elements that overlap other shapes). For the initial analyses 
within the city area only, we pooled all arable land, green and forests 
into a single (h) all vegetation layer (Figure 1c; Figure S2). To distin-
guish the actual landscape from environmental predictors used for 
functional connectivity analysis, environmental predictors appear in 
italics throughout the text. 

In addition to ATKIS, we used data from the 2012 Copernicus 
Urban Atlas (https​://land.coper​nicus.eu/) that uses high-resolution 
remote sensing data to provide detailed land cover information of 
larger European urban areas and their hinterland. It comprised 27 
different land cover types (Table S1), of which six, classified under 
urban fabric, give an indication of the degree of imperviousness of 
land cover (Montero, Van Wolvelaer, & Garzón, 2014). We used 
the following (nonoverlapping) categories of the Urban Atlas to 
subdivide the built-up area layer within the city (see Figure S3): (a) 
Continuous urban fabric (sealing level (S.L.) >80%), (b) discontinuous 
dense urban fabric (S.L. 50%–80%), (c) discontinuous medium dense 
urban fabric (S.L. 30%–50%), (d) industrial, commercial, public, military 
and private units and (e) a pooled layer consisting of discontinuous 
low density urban fabric (S.L. 10%–30%), discontinuous very low den-
sity urban fabric (S.L. <10%) and all the remaining built-up areas not 
covered by the previous categories.

We converted all layers into grids. Not considering cells without 
data, each cell in the initial grid had a value of zero or one, depending 
on whether it contained a feature under consideration. For linear 
predictors and water bodies we used a priority rule, meaning that 
every grid cell containing a linear predictor was coded as belong-
ing to that predictor, independently of the proportion of the cell it 
covered. For shape predictors, we used a majority rule, with the cell 
being attributed to the single predictor with the largest area within 
the cell. Grid cell size was set to 250 × 250 m, giving rise to 233,798 

grid cells without ‘no data’ cells, when ignoring three geographic out-
liers (Figure 1a). Since we only considered one animal per grid cell, 
this resulted in 286 individuals being included in the analysis. Given 
the ecology of the species and the occasional lack of precision of 
the location information, we considered this to be an adequate com-
promise between computation time and spatial resolution. When 
focusing on the individuals in Berlin only, grid cell size was set to 
100 × 100 m, given the higher accuracy of the sampling location and 
the smaller size of the study area. This resulted in 125,728 grid cells 
without “no data” cells, and 184 individuals being analysed.

2.4 | Genetic distance measures

Interindividual genetic distance measures are not equally accurate in 
model selection, especially when faced with weaker genetic struc-
ture (see Shirk et al., 2017). We therefore compared the perfor-
mance of three measures: (a) genetic distances based on Factorial 
Correspondence Analysis (FCA), an eigenvector-based multivariate 
analysis closely related to principal component analysis (PCA); (b) Nei's 
genetic distance applied to individuals (DNei, Nei & Takezaki, 1983), as 
used by Beninde et al. (2016) and (c) the proportion of shared alleles 
between two individuals averaged over loci (DPS, Bowcock et al., 1994), 
that is frequently used in landscape resistance modelling (Landguth et 
al., 2010; Trumbo, Spear, Baumsteiger, & Storfer, 2013). FCA clusters 
variance between loci into composite gradients. It accentuates differ-
ences between individuals better than measures that weight all loci 
equally. The latter includes DPS, which uses the number of direct dif-
ferences between genotypes. DNei considers allele frequencies when 
calculating genetic distances and ranges from 0 for identical genotypes 
to 1 when genotypes are completely dissimilar.

We used genetix v. 4.05.2 (Belkhir, 2004) to perform an FCA on 
a multiple contingency table of the genetic data and used the first 
10 FCA axes as a compromise between model accuracy and noise 
generation (Shirk et al., 2017). We calculated an Euclidean distance 
matrix for all individuals from their values on each FCA axis using the 
r package Ecodist (Goslee & Urban, 2007) and refer to this distance 
measure as “FCA”. We used the r packages Alleles in Space (Miller, 
2005) to calculate DNei and Adegenet (Jombart, 2008) to calculate 
DPS.

2.5 | Optimisation of resistance surfaces: Single 
categorical environmental predictors

We first used the ss _ optim() command in resistancega to optimise the 
resistance of single categorical environmental predictors and test 
model selection performance of the genetic distance measures. In 
order to complete these analyses within a reasonable time, we lim-
ited initial tests to the seven ATKIS predictors (five for Berlin only). 
We performed a (pseudo-)bootstrap procedure using the resist.boot() 
command, which subsamples individuals and resistance matrices with-
out replacement at each iteration, refits the MLPE model to different 

https://land.copernicus.eu/
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resistance distance matrices and recalculates AICc scores. We sampled 
75% of the observations at each iteration. This was done in order to 
assess the relative support of each optimised resistance surface and 
the robustness of the model selection results given different sample 
combinations. For each genetic distance measure, we assessed model 
fit based on the differences between corrected Akaike information cri-
terion (ΔAICc) values. When comparing genetic distance measures, the 
measure that gave rise to the highest marginal R2 values (while generat-
ing biologically meaningful results) was considered the most adequate.

2.6 | Multiple resistance surfaces

After optimising individual categorical resistance surfaces, the rel-
evant variables must be combined into a composite resistance sur-
face. This is necessary to test whether models with several landscape 
features are better supported than models with single landscape 
features and, ultimately, to gain an understanding of the functional 
connectivity of the entire landscape (Khimoun et al., 2017; Ruiz-
Lopez et al., 2016).

2.7 | Multiple resistance surfaces: Automatically 
combining categorical predictors

We used the samples from Berlin, the best genetic distance meas-
ure and the five ATKIS categories to compare two approaches that 
combine categorical predictors into a single surface. Firstly, we used 
resistancega’s all _ comb() wrapper function which automatically com-
bines and optimises all possible combinations of the five categorical 
predictors and runs the resist.boot() command to conduct a bootstrap 
analysis. However, the ms _optim() command gives different resist-
ance values to a linear feature depending on which other feature it 
overlaps with, which may lead to erroneous conclusions (Section 3).

2.8 | Multiple resistance surfaces: Single-surface 
optimisation for combining categorical predictors

We therefore also tested a second approach for combining categori-
cal predictors into a single surface: Rather than letting resistancega 
automatically combine different surfaces, we applied the single-
surface optimisation (ss _optim()) procedure to resistance grids con-
taining multiple environmental predictors, i.e. each grid contained N 
categorical predictors and each cell in the grid had a value ranging 
from zero to N, depending on whether it was classified as one of the 
N predictors or whether it was classified as matrix, i.e., the remaining 
uniform study area not containing the features under investigation. 
We will refer to these grids as “multicategorical” surfaces (to differ-
entiate them from composite surfaces obtained using all _ comb()). 
The principle underlying the multicategorical models is to add indi-
vidual predictors based on model support (AICc values) but to only 
retain a new predictor if its addition improved support (ΔAICc > 2 

after a resist.boot() bootstrap analysis). Individual predictors whose 
model support was ΔAICc  <  2 with distance were not considered. 
The optimisation for each feature or combination of features was 
performed twice and only included the distance matrix from the op-
timisation run with the lowest AICc value in bootstrap analysis. We 
will refer to this as the “stepwise optimisation” procedure.

2.9 | Multiple resistance surfaces: Dealing with 
overlapping linear features

In order to assess the effect of the overlap of linear predictors, 
we considered all possible priority combinations of predictors. We 
tested, for example, individual surfaces where linear predictor 1 
took precedence over linear predictor 2 at points of overlap and vice 
versa. We also tested the support of a surface where all points of 
overlap between linear features were classified as a distinct feature. 
In each case, the combination with the highest model support after 
bootstrapping was retained for further analysis.

2.10 | Multiple resistance surfaces: Effect of initial 
cell values of multicategorical surfaces

Preliminary exploratory analyses suggested that in the stepwise opti-
misation, the initial cell values of a predictor influenced the optimised 
resistance value for the predictors (and hence model support). We 
therefore coded individual predictors relative to their resistance/
permeability inferred in the initial individual analysis. For example, in 
order to obtain the highest model support when manually combining 
two different categorical predictors in a single grid, a predictor in-
ferred to be permeable had to be given a grid value of zero, a predic-
tor resisting gene flow a grid value of two and all other cells a value of 
one. In order to test more formally whether the optimised resistance 
values were sensitive to the starting values of the input surface, we 
took multicategorical surfaces with different combinations of predic-
tors that were retained in the stepwise optimisation procedure and 
inverted the values of the input surface. We performed a total of four 
independent optimisation runs for each initial and inverted surface.

2.11 | Multiple resistance surfaces: Optimising 
multicategorical surfaces of Berlin

After these initial tests based on ATKIS categories all vegetation, 
built-up areas, water bodies, motorways, railways, we refined the 
composite Berlin model further. We performed single-surface op-
timisation for both the forest and arable/green layers (which had 
been previously pooled in all vegetation) as well as the five Urban 
Atlas categories of built-up areas to test model support of each 
individual layer. We then followed a stepwise optimisation pro-
cedure to generate a multicategorical surface. If the difference in 
model support between individual predictors was ΔAICc < 2, we 
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added both predictors individually and jointly to the previous mul-
ticategorical model and only retained the model with the highest 
support.

2.12 | Multiple resistance surfaces: Optimising 
multicategorical surfaces of the whole study area

We also used a stepwise procedure to generate a multicategori-
cal surface for the whole Berlin/Brandenburg study area. To gain 
a more detailed assessment of the interface between the city and 
the surrounding countryside as a possible gene flow barrier, we 
created a concave hull of the administrative city border using the 
ConcaveHull plug-in for QGIS (QGIS Development Team, 2018). 
We then drew 1, 2, 3, 4 and 5 km buffers around the concave hull 
and used the ss _ optim() command in resistancega to separately op-
timise the resistance of all five inner and outer borders (Figure S4). 
We then used the boundary model with the highest support to-
gether with the six remaining ATKIS predictors to identify the best-
supported multicategorical surface. Again, we performed the resist.
boot() bootstrap analysis for each optimisation run, to circumvent 

potential problems with imprecise locations of individuals sampled 
in Brandenburg.

The best-supported multicategorical resistance surfaces for the 
Berlin and Berlin/Brandenburg data sets were used to predict move-
ment/gene flow patterns across both study areas using circuitscape 
v.4.0.5 (McRae, 2006). Animal movement paths were inferred be-
tween all pairs of sample location as well as between 200 random lo-
cations generated for both data sets using arcmap v.10.3 and located 
along the border of the study areas.

3  | RESULTS

After correction for multiple tests, locus V502 deviated from Hardy-
Weinberg equilibrium (HWE) in five out of 10 subsampled data sets 
(Table S2), its FIS values ranging between 0.40–0.53 in these five 
data sets. The locus was thus excluded from further analyses. No 
other locus showed systematic deviation from HWE. Some loci were 
in linkage disequilibrium in some subsampled data sets, but no pair 
deviated more than once (Table S3). We therefore performed further 
population genetic analyses with all loci except V502.

F I G U R E  2   Geographic distribution of the population genetic clusters. (a) structure results: plot of the number of clusters against their 
estimated log-likelihood (bottom) and geographic representation of the K = 2 assignment analysis (top). The pattern of the pie chart indicates 
the assignment probabilities averaged across all individuals sampled in the same location, with the two different colours representing 
membership of different clusters and the size indicating the number of collected samples from one locality. (b) geneland results: plot of the 
number of clusters inferred by the ten initial geneland runs (bottom) and geographic representation of the modal assignment to one of the 
two clusters, i.e., the pattern of the pie chart indicates the proportion of individuals from a locality assigned to one of the two clusters (top). 
Bottom right insert shows the location of the study area within Germany [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.1 | Population structure

The log-likelihood values inferred by structure provided clear 
support for the presence of two genetic clusters (Figure 2a). The 
corresponding clusters approximately consisted of (a) samples 
collected in the centre, west and south of Berlin and (b) samples 
from all rural localities and north-eastern Berlin, yet their precise 
geographic distribution was not clear-cut (Figure 2a; Figure S5). 
The location of the genetic discontinuity identified by structure 
approximately corresponds to the course of the rivers Spree and 
Havel (Figure S5). geneland also inferred K = 2 as the most likely 
number of clusters in each of the 10 initial runs (Figure 2b). The 
samples assigned to one cluster almost all originated from within 
the Berlin city border, whereas the second cluster contained sam-
ples almost exclusively collected in the countryside (Figure 2b), 
i.e., geneland identified an urban and a rural cluster, with the 
boundary quite accurately corresponding to the administrative 
city border. The EEMS contour plot of effective migration rates 
identified a band of (slightly) reduced long-distance migration 
rates that covered most of the city, but also extended to the south 
of the study area (Figure 3a). In the east of Berlin, migration rates 
were significantly lower than the overall average rate (Figure 3b).

Independently of the clustering method, the more urban cluster 
had reduced genetic diversity compared to the rural cluster (Table 

S4) and the clusters were significantly differentiated from each 
other. Differentiation between both structure clusters (FST = 0.026; 
p  <  .0001) was higher than between the two geneland clusters 
(FST  =  0.011; p  <  .0001). The EEMS contour plot of effective di-
versity illustrated that in southwest Berlin effective diversity rates 
were significantly lower than the overall average rate (Figure 3c, d).

3.2 | Optimisation of resistance surfaces: Single 
categorical environmental predictors

When considering the five ATKIS environmental predictors, the re-
sults obtained after bootstrapping (Table 1) were qualitatively similar 
to initial model results (Table S5). The three genetic distance measures 
did not converge on the same results in the model selection process 
(Table 1). In the analyses using DNei and DPS, motorways was always 
identified as the most significant factor facilitating gene flow, with rail-
ways ranked as second best model (also facilitating gene flow) and all 
other models (except one: water bodies in one run using the DPS genetic 
measure) having a difference in ΔAICc < 2 with the distance model. In 
the FCA, the difference between the distance model and all five pre-
dictors was large (ΔAICc > 6.2), with the ranking of the five models 
remaining identical between the two independent optimisation runs 
(Table 1). The water bodies model that best explained gene flow with 

F I G U R E  3   EEMS-estimated effective 
migration and diversity rates. (a) 
Interpolated surface of the posterior 
mean migration rates m (on a log10 scale) 
depicting deviations from continuous 
gene flow. Negative values in red indicate 
areas of reduced migration rates, whereas 
positive values in blue indicate higher-
than-expected migration rates. (b) Plot 
highlighting regions where the effective 
migration rates are significantly higher 
(highlighted in blue) or lower (highlighted 
in orange) than the overall average rate. 
(c) Interpolated surface of the posterior 
mean diversity rates q (on a log10 scale) 
depicting effective diversity across the 
study area. Diversity rates q describe the 
genetic dissimilarity between distinct 
individuals from the same deme. Negative 
values in red indicate areas of diversity, 
whereas positive values in blue indicate 
higher-than-expected diversity. (d) Plot 
highlighting regions where the effective 
diversity rates are significantly higher 
(highlighted in blue) or lower (highlighted 
in orange) than the overall average rate. 
A total of 1,000 demes were used in the 
analyses [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the FCA measure (water bodies being a strong gene flow barrier) had an 
average marginal R2 of 0.289, a substantially higher model fit than the 
best model's average marginal R2 of 0.057 and 0.054 for DNei and DPS, 
respectively. We therefore used FCA for further analyses.

3.3 | Multiple resistance surfaces: Automatically 
combining categorical predictors

When considering the prebootstrapping results of the optimisa-
tion of all possible combinations of the five single ATKIS envi-
ronmental predictors (all _ comb() function, Table S6), only three 
combinations had a ΔAICc  >  2 below the best single-feature 
model (water bodies). After bootstrapping, 11 combinations had a 
ΔAICc > 2 below the water bodies-only model, with the best model 
containing railways and water bodies (resistance values: railways: 1, 
matrix: 185, overlap water bodies/railways: 250, water bodies: 434; 
Table S7; Figure S6). When simultaneously optimising and overlay-
ing different categorical resistance surfaces that included linear 
features, resistancega gave different resistance values to a linear 
feature depending on which feature it overlapped with. For ex-
ample, in the model that included all five environmental predic-
tors, resistancega optimised the resistance value of 24 different 
categorical features (Figure S7).

3.4 | Multiple resistance surfaces: Single-surface 
optimisation for combining categorical predictors & 
dealing with overlapping linear features

The two best-supported models in the FCA-based analysis of in-
dividual features were water bodies and railways. When combining 
these two predictors in a single-surface optimisation, the high-
est model support was obtained (after bootstrapping) when giv-
ing water bodies precedence over railways in the resistance grid 
(when water bodies overlap with railways, the cell is classified as 
water body; Table S8). When adding the next best-supported mo-
torways model to the single-surface analysis, the highest model 
support was obtained when water bodies took precedence over 
motorways and motorways took precedence over railways (water 
bodies > motorways > railways; Table S9). After bootstrapping, the 
three best “overlap” models had almost identical model support 
(ΔAICc < 2; Table S9). Water bodies always strongly impeded gene 
flow, while railways and motorways conducted gene flow. When 
adding all vegetation (and hence built-up areas) to each of these 
three overlap models in a single-surface analysis, the model with 
water bodies > motorways > railways was again the best-supported 
model after bootstrapping (Table S10). In summary, when only 
considering the ATKIS data, the best permeability model for Berlin 
included all five tested features (Table 2; Figure S8). Water bod-
ies strongly resisted gene flow (resistance: 1574), railways (resist-
ance: 1) and motorways (resistance: 4) enhanced gene flow. Built-up 
areas (resistance: 291) were more permeable than all vegetation 

(resistance: 494). The following analyses were based on the water 
bodies > motorways > railways overlap model.

3.5 | Multiple resistance surfaces: Effect of initial 
cell values of multicategorical surfaces

Multicategorical models whose starting cell values had been in-
verted gave rise to different optimised resistance values for the pre-
dictors and had a lower model support than the noninverted original 
multicategorical surfaces (Table S11).

3.6 | Multiple resistance surfaces: Optimising 
multicategorical surfaces of Berlin

When repeating single-feature optimisations but splitting the all 
vegetation predictor into the two predictors forest and arable/
green and the built-up areas into the five Urban Atlas categories, 
water bodies, railways and motorways were still the individual fea-
tures with the highest model support (Table 2), with arable/green 
generating a better model support than the all vegetation model 
(Table 2). Similarly, two Urban Atlas land cover categories (seal-
ing levels [S.L.] of 30%–50% and >80%) had higher model sup-
port than the predictor including all built-up areas (Table 2). The 
fourth-best (arable/green) and the fifth-best (S.L. 50%–80%) indi-
vidual models had similar model support (ΔAICc  =  0.5; Table 2). 
The resistance value inferred for each single predictor is given in  
Table S12. A better-supported model was obtained when adding 
S.L. 30%–50% to the water bodies, railways, motorways (“mrw”) 
model than when adding the arable/green predictor or both 
arable/green and S.L. 30%–50% to the mrw model (Table 2). Adding 
further single-feature predictors to the single-feature optimisation 
procedure in order of decreasing support (and testing all possible 
combinations when ΔAICc  <  2 between two individual predic-
tors) resulted in three multicategorical models having comparable 
support (Table 2). The overall best model (Figure 4) included rail-
ways (inferred resistance value: 1), motorways (resistance: 2), S.L. 
30%–50% (resistance 8), S.L. 50%–80% (resistance: 103), S.L.>80% 
(resistance: 469), water bodies (resistance: 784) as well as the re-
maining matrix (resistance: 282). Despite differences in the resist-
ance surface values between the models, the circuitscape current 
maps for the best supported model and the model with the fewest 
predictors were very similar, both suggesting that gene flow within 
the city of Berlin mostly occurred along linear landscape elements 
(railways and motorways, Figure 4).

3.7 | Multiple resistance surfaces: Optimising 
multicategorical surfaces of the whole study area

All city border models and obtained better support than the distance 
only model and inferred the city border to resist gene flow (Table 
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S13). The best-supported model (the city border converted into a 
concave hull) had a marginal R2 of 0.42. The city border concave was 
also the most significant single predictor influencing gene flow when 
considering all other predictors (Table 3; Figure S9). Considering the 
bootstrapping results of the FCA-based genetic distance only, five 
of the six remaining single-feature models better explained gene 
flow than the distance only model (the exception being motorways; 
Table 3). Forest and arable/green were the only environmental fea-
tures inferred to facilitate gene flow (Table S14). Again, the three 
genetic distance measures did not converge on the same results in 
the model selection process (Table 3), with the support of the city 
border model in particular changing with the genetic distance meas-
ure considered. Also, the marginal R2 values obtained with DNei and 
and DPS were considerably lower than those obtained with the FCA-
based measure (Table 3).

When performing a stepwise procedure to create a multicate-
gorical surface, two multicategorical models had almost identical 
support. The overall best-supported model (after bootstrapping) 
contained city border concave, built-up areas, railways and water 
bodies (Table 4), where water bodies took precedence over railways 

(Table S15). While railways (resistance: 1) and the remaining hab-
itat matrix (resistance: 2) enhanced gene flow, city border con-
cave (resistance: 498) and water bodies (resistance: 70) provided 
a greater resistance than built-up areas (resistance: 6). The sec-
ond-best model (with almost identical support) had the same pre-
dictors (with similar resistance values) but did not include railways. 
Considering both models, the circuitscape maps did not show a 
clearly-defined corridor network in the Brandenburg countryside 
(Figure S9).

4  | DISCUSSION

In the present work, we aimed to assess the importance of physi-
cal and behavioural dispersal barriers to drive population and 
landscape genetic structure of the red fox across the Berlin met-
ropolitan area. We found support for the fragmentation hypoth-
esis with major water bodies and densely built-up areas resisting 
gene flow. Contrary to our prediction, however, these barriers did 
not create several scattered populations across the city, possibly 

TA B L E  1   Boostrap results of the single-predictor resistancega analysis for the city of Berlin

Predictor

Run 1 Run 2

avg. AICc k ΔAICc avg.weight avg.mR2 avg. AICc k ΔAICc avg.weight avg.mR2

(a) Nei's genetic distance (DNei)

Motorways –21,765.0 3 0 0.977 0.035 –21,770.8 3 0 0.977 0.036

Railways –21,750.0 3 15.0 0.016 0.057 –21,755.5 3 15.3 0.016 0.057

Built-up areas –21,747.9 3 17.1 0.002 0.017 –21,753.4 3 17.4 0.002 0.017

Water bodies –21,747.9 3 17.1 0.002 0.022 –21,753.3 2 17.5 0.002 0.018

Distance –21,747.8 2 17.2 0.002 0.018 –21,753.3 3 17.5 0.002 0.022

All vegetation –21,747.7 3 17.3 0.001 0.018 –21,753.2 3 17.6 0.001 0.018

(b) Proportion of shared alleles (DPS)

Motorways –21,744.2 3 0 0.418 0.025 –21,761.1 3 0 0.946 0.034

Railways –21,741.1 3 3.1 0.228 0.054 –21,748.9 3 12.2 0.038 0.054

Water bodies –21,740.6 3 3.6 0.258 0.051 –21,746.5 3 14.6 0.004 0.017

Built-up areas –21,738.7 3 5.5 0.036 0.017 –21,746.3 2 14.8 0.004 0.018

Distance –21,738.5 2 5.7 0.031 0.018 –21,746.2 3 14.9 0.004 0.017

All vegetation –21,738.4 3 5.8 0.029 0.017 –21,746.1 3 15.0 0.004 0.020

(c) Ten-axes-based factorial correspondence analysis (FCA)

Water bodies 130,757.2 3 0 0.701 0.289 130,743.3 3 0 0.707 0.289

Railways 130,771.3 3 14.1 0.222 0.057 130,759.2 3 15.9 0.206 0.057

Motorways 130,779.9 3 22.7 0.076 0.014 130,766.9 3 23.6 0.087 0.014

All vegetation 130,800.7 3 43.5 0.001 0.030 130,787.4 3 44.1 <0.001 0.027

Built-up areas 130,803.4 3 46.5 <0.001 0.029 130,790.3 3 47.0 <0.001 0.029

Distance 130,810.0 2 52.8 <0.001 0.007 130,796.9 2 53.6 <0.001 0.007

Notes: Three different genetic distance measures (a–c) and five environmental predictors from the German authoritative topographic cartographic 
information system (ATKIS) were compared (Section 2). The initial model results are presented in Table S5. To check for convergence, each 
optimisation was performed twice for each landscape feature (Run 1 & Run 2). Avg. AICc, average of the AICc values obtained for each model in 
1,000 bootstrap iterations; k, number of parameters; ΔAICc, difference in the avg. AICc values between the best supported model (lowest avg.
AICc) and each subsequent model; Avg.weight, average of the AICc weights obtained for each model in 1,000 bootstrap iterations; Avg.mR2, average 
marginal R2 of 1,000 bootstrap iterations. Predictors are sorted according to increasing avg.AICc values
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because motorways and railways served as movement corridors. 
We also found support for the urban island hypothesis and in-
ferred limited gene flow across the city border, indicating an effect 
of behavioural barriers. Urban foxes further made use of artificial 
structures when dispersing through the urban matrix. Our results 
may thus suggest a hierarchy of drivers of genetic structure with a 
general behavioural effect and impediment through physical barri-
ers underneath. However, the specifics of our results also suggest 
that genetic structure was relatively weak and, therefore, disper-
sal rates still high.

4.1 | Population genetic structure and gene flow

The genetic clustering algorithms both inferred K = 2 as the mostly 
likely number of subpopulations, yet they differed in the spatial 
distribution of the clusters. For geneland, the cluster boundary 
closely coincided with the administrative city border, whereas for 
structure the urban cluster mostly excluded the north and north-
east of the city. The location of the structure-inferred genetic 
discontinuity approximately corresponded to the course of the 
rivers Spree and Havel (Figure S5). EEMS also identified reduced 

TA B L E  2   Results of the multicategorical functional connectivity analysis for the city of Berlin

Predictors avg.AICc k ΔAICc avg.weight avg.mR2

Water*Railways*Motorways*S.L.30%–50%*S.L.50%–
80%*S.L. > 80%

130,726.1 8 0 0.194 0.169

Water*Railways*Motorways*S.L.30%–50%*S.L.50%–
80%*S.L. > 80%*Industry

130,726.7 9 0.6 0.244 0.199

Water bodies*Railways*Motorways*
S.L.30%–50%*S.L. > 80%

130,727.4 7 1.3 0.153 0.188

Water bodies*Railways*Motorways*S.L.30%–50% 130,730.2 6 4.1 0.044 0.168

Water*Railways*Motorways*S.L.30%–50%*S.L. > 80% 
*Industry

130,730.6 8 4.5 0.115 0.184

Water*Railways*Motorways*S.L.30%–50%*S.L.50%–
80%*S.L. > 80% *Remaining built-up

130,731.8 9 5.7 0.072 0.152

Water*Railways*Motorways*S.L.30%–50%*S.L. > 80% 
*Remaining built-up

130,731.9 8 5.8 0.030 0.150

Water*Railways*Motorways*All vegetation*Built-up 
areas

130,736.5 6 10.4 0.031 0.157

Water bodies*Railways *Motorways*Arable/green 130,738.2 6 12.1 0.039 0.113

Water bodies*Railways*Motorways*Arable/
green*S.L.30%–50%

130,738.3 7 12.2 0.058 0.220

Water bodies*Railways *Motorways 130,741.7 5 15.6 0.011 0.195

Water bodies*Railways 130,749.5 4 23.3 0.005 0.087

Water bodies 130,769.1 3 43.0 0 0.293

Railways 130,784.0 3 57.9 0 0.057

Motorways 130,792.9 3 66.8 0.003 0.014

Arable/Green 130,800.5 3 74.3 0.001 0.049

S.L.30%–50% 130,801.6 3 75.4 0 0.017

S.L. > 80% 130,809.1 3 83.0 0 0.051

All vegetation 130,813.7 3 87.6 0 0.030

S.L.50%–80% 130,815.5 3 89.4 0 0.038

Built up areas 130,816.5 3 90.4 0 0.029

Industry 130,817.4 3 91.3 0 0.030

Remaining built-up 130,820.8 3 94.7 0 0.023

Forest 130,822.9 3 96.8 0 0.009

Distance 130,823.1 2 97.0 0 0.007

Notes: The best-supported multicategorical surfaces combining different environmental predictors were obtained using a stepwise procedure: 
Individual predictors were added based on model support (corrected Akaike information criterion values, AICc), but only retained if their addition 
improved support of the multicategorical model (ΔAICc > 2). Presented here are the bootstrapping results based on two optimisation runs (Table 
S12) that were performed for each (combination of) landscape features. avg. AICc, average of the AICc values obtained for each model in 1,000 
bootstrap iterations; k, number of parameters; ΔAICc, difference in the avg; AICc, values between the best supported model (lowest avg.AICc) and 
each subsequent model; avg.weight, average of the AICc weights obtained for each model in 1,000 bootstrap iterations; avg.mR2, average marginal R2 
of 1,000 bootstrap iterations. Predictors are sorted according to increasing avg.AICc values. S.L., sealing level
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migration (broadly) around the city of Berlin, but especially in East 
Berlin. Despite discrepancies, all three population genetic methods 
inferred the presence of a cluster located within the confines of the 
city. Furthermore, the landscape resistance modelling identified (a 
concave hull of) the administrative city border as the main barrier 
to fox dispersal in the study area (Figure S9). Finally, the FST-based 
approach and the EEMS method confirmed reduced genetic diver-
sity within (parts of) the city compared to the surrounding country-
side. Our results therefore provided general support for a genetic 
differentiation between urban and rural areas, i.e., the urban island 
hypothesis.

While the three population genetic methods inferred the pres-
ence of an urban island, they differed in its proposed location and 
composition. Different solutions for the partitioning of a data set 
may result from differences in the assumptions and algorithms un-
derlying the statistical methods (Guillot et al., 2009) and the way 
they deal with weak or hierarchical genetic structure (Frantz et al., 
2006; Puechmaille, 2016; Rowe & Beebee, 2007) as well as with 
deviations from random mating that are not due to physical barriers 
(e.g., isolation-by-distance, presence of relatives, Rodríguez-Ramilo 
& Wang, 2012). As all three methods inferred a ‘circular’ cluster in 
the centre of the sampling distribution and the diversity within the 
city was reduced, it appears unlikely that the partitioning was an 
artefact of an isolation-by-distance pattern (Frantz et al. 2009). 

Perhaps the most likely explanation for the observed outcome is 
that population genetic structure is weak because of high disper-
sal rates in our vagile study species. A simulation study suggested 
that structure was efficient at inferring the correct number of ge-
netic clusters even at lower levels of genetic differentiation (i.e., 
FST = 0.02–0.03), but this was not necessarily the case for its accu-
racy in assigning individuals to these clusters (Latch, Dharmarajan, 
Glaubitz, & Rhodes, 2006). While, by definition, geneland infers 
abrupt genetic discontinuities, the deviation from IBD inferred by 
EEMS also appeared to be relatively slight (Figure 3). We therefore 
conclude that our results provided evidence for genetic differen-
tiation between urban and rural foxes, but that dispersal between 
urban and rural areas was ongoing.

4.2 | Performance of genetic distance measures

While resistancega offers high potential to gain a species-specific 
understanding of the functional connectivity of the landscape, 
careful consideration of some technical aspects seems necessary. 
In the present study, the fit of a model testing single categorical 
environmental predictors and its rank relative to other predictors 
clearly differed between genetic distance measures. In the simula-
tion study by Shirk et al. (2017) most metrics performed equally 

F I G U R E  4   Cartographic representation of results from genetics-based resistance modelling for foxes in the city of Berlin. (a) Optimised 
resistance surface of the overall best multicategorical model and the corresponding Circuitscape connectivity map showing conductance 
to gene flow based on (b) the sample locations and (c) sampling locations simulated at the edge of the study area. (d) Optimised resistance 
surface of the best-supported multicategorical model with fewest predictors and the corresponding Circuitscape connectivity map showing 
conductance to gene flow based on (e) the sample locations and (f) sampling locations simulated at the edge of the study area [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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well in model selection accuracy, except in situations of low ge-
netic structure and small sample size. The discrepancies between 
genetic distance measures reported here are therefore consistent 
with high dispersal rates.

Shirk et al. (2017) performed Principal Components Analyses 
(PCA) on multiple contingency tables and found that genetic dis-
tances based on multiple-axes PCA maximise model selection ac-
curacy, with other measures performing almost as well in cases of 
high levels of genetic structure. PCA assumes continuous, normally 
distributed data (Dytham, 2011), whereas Factorial Correspondence 
Analysis (FCA) was designed for multistate categorical variables 

(She, Autemm, Kotulas, Pasteur, & Bonhomme, 1987) and is thus 
more suitable for the analysis of allele states. Analogous to Shirk et 
al. (2017), our 10-axes FCA metric led to a better model fit (in terms 
of marginal R2) than the other two measures and generated biologi-
cally meaningful results. Future research will show whether this is a 
general feature of FCA and how much this depends on the number 
of axes included. With a modest strength of the genetic signal, a few 
large eigenvectors may have insufficient diagnostic power to infer 
more subtle processes. The geographical distribution of the target 
species may also matter (Shirk et al., 2017). We considered 10 axes 
to be a good compromise between accuracy and noise and (almost) 

TA B L E  3   Boostrap results of the single-predictor resistancega analysis for the complete data set

Predictor

Run 1 Run 2

avg. AICc k ΔAICc avg.weight avg.mR2 avg. AICc k ΔAICc avg.weight avg.mR2

(a) Nei's genetic distance (DNei)

Built-up areas 310,883.2 3 0 0.838 0.008 310,901.4 3 0 0.824 0.008

Forests 310,890.0 3 6.8 0.156 0.014 310,907.9 3 6.5 0.171 0.014

Arable/green 310,904.2 3 21.0 0.003 0.009 310,922.6 3 21.2 0.004 0.009

City border 
concave

310,929.6 3 46.4 0.003 0.016 310,947.6 3 46.2 0.002 0.017

Water bodies 310,938.6 3 55.4 <0.001 0.014 310,957.3 3 55.9 <0.001 0.014

Railways 310,942.3 3 59.1 <0.001 0.010 310,960.7 3 59.3 <0.001 0.010

Motorways 310,955.9 3 72.7 <0.001 0.028 310,974.2 3 72.8 <0.001 0.028

Distance 310,956.8 2 73.6 <0.001 0.012 310,975.3 2 73.9 <0.001 0.011

(b) Proportion of shared alleles (DPS)

Built-up areas 310,892.3 3 0 0.956 0.007 310,921.3 3 0 0.951 0.007

Forests 310,902.5 3 10.2 0.039 0.011 310,931.4 3 10.1 0.044 0.011

Arable/green 310,909.8 3 17.5 0.004 0.008 310,939.1 3 17.8 0.004 0.008

City border 
concave

310,937.3 3 45.0 0.001 0.014 310,967.0 3 45.7 <0.001 0.014

Railways 310,943.9 3 51.6 <0.001 0.010 310,973.3 3 52.0 <0.001 0.010

Water bodies 310,944.2 3 51.9 <0.001 0.013 310,973.7 3 52.4 <0.001 0.013

Distance 310,956.4 2 64.1 <0.001 0.012 310,985.5 3 64.2 <0.001 0.026

Motorways 310,956.7 3 64.4 <0.001 0.026 310,985.9 2 64.6 <0.001 0.012

(c) Ten-axes-based factorial correspondence analysis (FCA)

City border 
concave

310,842.9   0 0.663 0.389 310,860.3 3 0 0.721 0.386

Built-up areas 310,878.6   35.7 0.211 0.058 310,899.7 3 39.4 0.170 0.057

Forests 310,889.3   46.4 0.095 0.054 310,910.6 3 50.3 0.089 0.052

Arable/green 310,910.9   68.0 <0.001 0.038 310,931.4 3 71.1 0.001 0.037

Water bodies 310,921.5   78.6 0.031 0.172 310,941.0 3 80.7 0.020 0.170

Railways 310,954.5   111.6 <0.001 0.065 310,973.9 3 113.6 <0.001 0.064

Motorways 310,990.1   147.2 <0.001 0.027 311,010.0 3 149.7 <0.001 0.011

Distance 310,991.0   148.1 <0.001 0.012 311,010.1 2 149.8 <0.001 0.011

Notes: Three different genetic distance measures and seven environmental predictors from the German authoritative topographic cartographic 
information system (ATKIS) were compared (Section 2). The initial model results are presented in Table S14. To check for convergence, each analysis 
was performed twice for each landscape feature (Run 1 & Run 2). avg. AICc, average of the AICc values obtained for each model in 1,000 bootstrap 
iterations; k, number of parameters; ΔAICc, difference in the avg; AICc values between the best supported model (lowest AICc) and each subsequent 
model; avg.weight, average of the AICc weights from 1,000 bootstrap iterations; avg.mR2, average marginal R2 of 1,000 bootstrap iterations. 
Predictors are sorted according to increasing avg.AICc values
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all single ATKIS predictors had better model support than the dis-
tance model alone.

4.3 | Pitfalls in landscape resistance modelling

Our results show that a subtle understanding of gene flow requires 
the simultaneous consideration of multiple landscape features. 
However, an issue that emerged as nontrivial was the generation 
of composite resistance surfaces that include linear features. When 
considering multiple linear features, model support may depend on 
the rule for classifying a grid cell where linear features overlap. The 
comparison of all combinations of environmental predictors using 
the all _ comb() command was hampered by the way the input grids 
were created. As we applied a priority rule to linear and a majority 
rule for shape predictors, they frequently overlapped when generat-
ing composite surfaces. This led to the creation of separate catego-
ries for each type of overlap and decreased model support. Without 
a priority rule the linear features would have been interrupted in the 
input grid. A different option could be to create single-feature input 
grids by reclassifying a grid containing all features. This poses the 
problem of how to deal with overlapping linear features and linear 
features that run in parallel.

As a solution to these dilemmas, we adopted the multicate-
gorical approach where we applied the single-surface optimisa-
tion procedure to grid surfaces containing multiple environmental 
predictors. This allowed us to explicitly test different overlap sce-
narios. In combination with the stepwise approach of creating mul-
ticategorical surfaces, this required fewer optimisation runs than 
the comparison of all possible combinations using all _ comb(). This 
might be an important consideration when having a large(r) num-
ber of predictors. A drawback of the multicategorical approach was 
that model support and optimised resistance values were sensitive 
to starting values of the input surface. The method(s) for simul-
taneously considering multiple landscapes therefore need(s) to be 
chosen carefully.

Finally, the layers in this study were very general. For example, 
we assumed that every stretch of motorway as well as every Urban 
Atlas category had a consistent effect on gene flow over space and 
time. We are well aware that this approach reflects the actual struc-
ture of the habitat only to some extent, especially in the urban area: 
The already highly heterogeneous structure of a rapid growing me-
tropolis like Berlin is subject to permanent fluctuation. These pro-
cesses cannot be reflected in the spatial data set and sometimes the 
same environmental predictors may even have opposite effects on 
gene flow. A highway in Berlin, for example, may be a strong barrier 

Predictors avg.AICc k ΔAICc avg.weight avg.mR2

City border concave*Built-up 
areas*Water bodies*Railways

310,624.2 6 0 0.475 0.373

City border concave*Built-up 
areas*Water bodies

310,624.4 5 0.2 0.371 0.384

City border concave*Built-up areas 310,665.4 4 41.2 0.008 0.397

City border concave*Built-up 
areas*Arable/Green

310,668.6. 5 44.3 0.138 0.481

City border concave*Built-up 
areas*Forest

310,675.7 5 51.5 0.008 0.340

City border concave 310,810.5 3 186.3 <0.001 0.384

Built-up areas 310,851.2 3 226.9 <0.001 0.057

Forest 310,862.3 3 238.0 <0.001 0.053

Arable/Green 310,883.1 3 258.9 <0.001 0.037

Water bodies 310,893.7 3 269.5 <0.001 0.170

Railways 310,925.5 3 301.3 <0.001 0.065

Motorways 310,961.1 3 336.9 <0.001 0.027

Distance 310,961.7 2 337.5 <0.001 0.012

Notes: The best-supported multicategorical surfaces combining different environmental predictors 
were obtained using a stepwise procedure: Individual predictors were added based on model 
support (corrected Akaike information criterion, AICc, values), but only retained if their addition 
improved support of the multicategorical model (ΔAICc > 2). Presented here are the bootstrapping 
results based on two optimisation runs (summarised in Table S15) that were performed for each 
(combination of) landscape features. avg. AICc, average of the AICc values obtained for each model 
in 1,000 bootstrap iterations; k, number of parameters; ΔAICc, difference in the avg; AICc, values 
between the best supported model (lowest avg.AICc) and each subsequent model; avg.weight, 
average of the AICc weights obtained for each model in 1,000 bootstrap iterations; avg.mR2, 
average marginal R2 of 1,000 bootstrap iterations. Predictors are sorted according to inceasing 
avg.AICc values

TA B L E  4   Results of the 
multicategorical functional connectivity 
analysis for the complete data set
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if it is fenced-in and rarely interrupted by bridges or underpasses. 
In contrast, the same motorway may serve as a corridor on other 
stretches, if it is combined with long, continuous green strips con-
necting highly fragmented built-up areas. Consequently, those layers 
can only serve as an approximation of the functional connectivity of 
the real landscape. Nevertheless, this may still yield valuable insights 
into dispersal processes.

4.4 | The urban island

Our results provided general support for a genetic differentiation 
between urban and rural areas, i.e. the urban island hypothesis. 
The observed genetic structure was relatively weak, indicating 
that some individuals from the surrounding areas do disperse into 
Berlin. With abundant high-quality food and a lack of hunting pres-
sure, the city is possibly a better-quality habitat for foxes, despite 
an increased mortality. Urban foxes could therefore be expected 
to stay within the city and individuals from the surrounding areas 
to disperse into the urban area. However, there was no support for 
a constant influx of foxes from the countryside and the (genetic) 
exchange between the urban agglomeration and the rural coun-
tryside was sufficiently reduced to maintain genetic structure. 
In line with this, a radio-tracking study of foxes in Zurich showed 
limited movement across an the urban-rural boundary (Gloor, 
2002). Colonising urban areas may thus require behavioural shifts 
such as an improved tolerance of the presence of humans (Gloor 
et al., 2001). Such behavioural changes have often been inter-
preted as resulting from phenotypic plasticity, allowing habitu-
ation to humans (Bateman & Fleming, 2012; Kauhala, Talvitie, & 
Vuorisalo, 2016; Vuorisalo, Talvitie, Kauhala, Bläuer, & Lahtinen, 
2014). However, work on urban birds suggested that avoidance 
of humans may have a genetic basis and urban colonisation may 
result from selection for fearless individuals (Carrete et al., 2016; 
Carrete & Tella, 2009; Møller et al., 2015). The presence of a ge-
netically distinct urban population may thus result from a founder 
effect followed by limited urban-rural exchange due to differences 
in avoidance behaviour (see also below).

Given the political history of Berlin, there remains another 
explanation for the presence of an urban cluster: Between 1961 
and 1989 the “Berlin Wall” (partially following the river Spree) 
separated West Berlin from eastern Berlin and the surrounding 
federal state of Brandenburg. While a founder effect may have 
created an initial reduction in genetic diversity among urban foxes, 
impermeable border fortifications could have limited gene flow 
and thus artificially maintained genetic differentiation between 
urban and rural foxes. However, genetic exchange between urban 
and rural foxes must also have remained sufficiently low in the 
ensuing 30  years to maintain genetic structure (with generation 
time being 2–3 years, DeCandia et al., 2019). Based on FST values 
(FST ≥ 0.027), Wandeler et al. (2003) detected genetic differentia-
tion between urban and rural foxes for the then recently (15 years) 
established fox population within Zurich. However, assignment 

tests provided evidence for ongoing urban-rural gene flow. A re-
cent re-analysis of the same data set identified only one evolu-
tionary cluster (DeCandia et al., 2019). Further research in other 
metropolitan areas might help to clarify whether the urban island 
is a general phenomenon or a specificity of Berlin.

4.5 | Gene flow within the cityscape

Gene flow in Berlin foxes was hampered by physical barriers. The 
landscape resistance models identified major water bodies as the 
most significant predictor resisting gene flow in the urban area. 
Contrary to our predictions, foxes did not freely move through the 
urban landscape. The best-supported multicategorical model(s) in-
ferred highly urbanised areas (sealing levels >80%) to represent an 
important impediment to gene flow. On the other hand, urban fox 
dispersal did not depend on corridors of natural vegetation as it was 
described for other species (Goldingay et al., 2013; Munshi-South, 
2012) either. While suburban areas with low degrees of impervi-
ousness were inferred to be more permeable for dispersers than 
densely built-up areas, our results suggest that railways and motor-
ways served as the main dispersal corridors. This last result is in line 
with results from radio-tracking studies in Edinburgh where railway 
lines were the main conduit for long-distance dispersal of male foxes 
(Kolb 1984).

Railway lines and motorways are highly artificial structures. 
On the circular railway around the city centre, trains pass continu-
ously day and night. Similarly, the multilane motorways connecting 
the districts of Berlin are extremely busy with high-speed traffic. 
While railway-tracks are usually embedded within vegetated verges, 
motorways are not, and generally, dispersal along such transport 
infrastructure carries a high mortality risk (200–250 road-killed 
foxes are found in Berlin each year: Börner, 2014). Yet, what both 
landscape elements have in common (besides their linearity), is the 
absence of human activity, in terms of pedestrians and cyclists. The 
green spaces of Berlin, in contrast, are usually crowded. Although 
the actual mortality risk in green spaces and sparse built-up areas 
is low, they show less conductance to gene flow than motorways 
and railways (Figure 3), despite the latter's inherent mortality risk. 
Consequently, foxes may use artificial structures as corridors but 
avoid areas of human activity (see also Table 5). Adkins and Stott 
(1998) reported that city foxes stayed shy and preferably used sites 
when human activity was low. The authors concluded that foxes do 
not avoid human constructions—but humans themselves. Beyond 
physical barriers, human activity may thus represent a significant 
impediment to dispersal in urban foxes.

4.6 | The landscape of fear

Over centuries, foxes have been intensively hunted by humans 
- and still are. Although no hunting is conducted within the city, 
foxes should thus maintain a certain level of “background fear” (see 
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Laundré, Hernández, & Ripple, 2010). The concept of a “landscape of 
fear” (Laundré, Hernández, & Altendorf, 2001; Laundré et al., 2010) 
is frequently applied to foraging behaviour and predator-prey rela-
tionships, but the authors promote its consideration for various life 
history traits. It describes how fear (or predator-induced stress) af-
fects how animals use landscapes. It is not the actual predation risk 
but the anticipation of risks that limits movement in a landscape of 
fear (Laundré et al., 2010; Lima, 1998). In the context of our study, 
this could indicate that human activity drives urban foxes into costly 
trade-offs as they primarily disperse along structures with little 
human activity (hence low perceived risk) but high inherent mor-
tality risks. This result conflicts with a model of fearless individuals 
entering and roaming through the city. Rather, behavioural plasticity 
may have allowed some foxes to enter the city and facilitate habitua-
tion to human presence to some extent, modifying but not obliterat-
ing their landscape of fear.

Movement constraints imposed by human activity could be even 
more relevant for rural foxes that are less accustomed to human 
presence (see also Stillfried, Gras, et al., 2017). Our results show that 
rural foxes, unlike their city relatives, do not use artificial structures 
as dispersal corridors and that dispersal was limited by the city bor-
der (Figure 3). It may thus not be the rural foxes’ physical capacity to 
move but the fear to do so that hinders rural foxes from entering the 
urban island and prevents admixture.

No matter how the genetic differentiation arose, the urban 
island could persist due to additional behavioural movement lim-
itations. Human presence may thus be the key driver of red fox 
dispersal behaviour and impact both the separation into rural and 
urban clusters as well as the dispersal processes within the urban 
area.

ACKNOWLEDG EMENTS
We are indebted to the Stiftung Naturschutz Berlin as well as the 
National Natural History Museum of Luxembourg for providing 
funding. We would like to thank Bill Peterman for his help with the 
resistancega analysis and Gerald Kerth for his support. We further 
acknowledge the technical staff of LLBB for sampling and four anon-
ymous referees for helping to improve this manuscript.

AUTHOR CONTRIBUTIONS
A.C.F., K.B., and S.E.K. contributed to the design of this research. 
C.S., K.B., M.H., and U.W. collected the samples. AS and TH per-
formed the laboratory work. C.St., and J.B. contributed to the 

generation of the resistance surfaces. A.C.F., and S.E.K. conducted 
data analysis. S.E.K. wrote the manuscript. A.C.F., J.B., M.B., H.H., 
S.K.S. contributed with substantial revisions to the manuscript.

DATA AVAIL ABILIT Y S TATEMENT
Microsatellite genotypes, Geographic coordinates, all ascii grid files, 
and R code for the running of resistancega are available on Dryad 
(https​://doi.org/10.5061/dryad.dv41n​s1ts).

ORCID
Joscha Beninde   https://orcid.org/0000-0002-1677-1809 
Anna Schleimer   https://orcid.org/0000-0002-9798-5074 
Stephanie Kramer-Schadt   https://orcid.
org/0000-0002-9269-4446 
Heribert Hofer   https://orcid.org/0000-0002-2813-7442 
Christoph Schulze   https://orcid.org/0000-0003-1035-3849 
Mike Heddergott   https://orcid.org/0000-0003-4536-5508 
Tanja Halczok   https://orcid.org/0000-0002-4471-9290 
Alain C. Frantz   https://orcid.org/0000-0002-5481-7142 

R E FE R E N C E S
Adkins, C. A., & Stott, P. (1998). Home ranges, movements and hab-

itat associations of red foxes Vulpes vulpes in suburban Toronto, 
Ontario, Canada. Journal of Zoology, 244(3), 335–346. https​://doi.
org/10.1111/j.1469-7998.1998.tb000​38.x

Balkenhol, N., Waits, L. P., & Dezzani, R. J. (2009). Statistical approaches 
in landscape genetics: An evaluation of methods for linking land-
scape and genetic data. Ecography, 32(5), 818–830. https​://doi.
org/10.1111/j.1600-0587.2009.05807.x

Bateman, P. W., & Fleming, P. A. (2012). Big city life: Carnivores in 
urban environments. Journal of Zoology, 287, 1–23. https​://doi.
org/10.1111/j.1469-7998.2011.00887.x

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear 
mixed-effects models using lme4. ArXiv Preprint ArXiv:1406.5823.

Belkhir, K. (2004). 1996–2004 genetix 4.05, logiciel sous Windows TM 
pour la genetique des populations. http://www.genet​ix.univ-montp2.
fr/genet​ix/intro.htm

Beninde, J., Feldmeier, S., Veith, M., & Hochkirch, A. (2018). Admixture of 
hybrid swarms of native and introduced lizards in cities is determined 
by the cityscape structure and invasion history. Proceedings of the 
Royal Society B: Biological Sciences, 285(1883), 20180143. https​://doi.
org/10.1098/rspb.2018.0143

Beninde, J., Feldmeier, S., Werner, M., Peroverde, D., Schulte, U., 
Hochkirch, A., & Veith, M. (2016). Cityscape genetics: Structural 
vs. functional connectivity of an urban lizard population. Molecular 
Ecology, 25(20), 4984–5000.

Blanchong, J. A., Sorin, A. B., & Scribner, K. T. (2013). Genetic diversity 
and population structure in urban white-tailed deer. The Journal of 

TA B L E  5   Detected landscape resistance versus expected resistance effect of environmental predictors under the assumption of 
disturbance due to artificiality of the predictor or disturbance due to associated human activity and detected resistance pattern

Predictor

Expected effect of the environmental predictor

Disturbance due to manmade structures (signs of 
human neighbourhood)

Disturbance due to human 
presence (human activity)

Detected resistance/
conductance

Motorways High resistance High conductance High conductance

Railways Medium resistance High conductance High conductance

Green spaces High conductance Medium resistance Low conductance

https://doi.org/10.5061/dryad.dv41ns1ts
https://orcid.org/0000-0002-1677-1809
https://orcid.org/0000-0002-1677-1809
https://orcid.org/0000-0002-9798-5074
https://orcid.org/0000-0002-9798-5074
https://orcid.org/0000-0002-9269-4446
https://orcid.org/0000-0002-9269-4446
https://orcid.org/0000-0002-9269-4446
https://orcid.org/0000-0002-2813-7442
https://orcid.org/0000-0002-2813-7442
https://orcid.org/0000-0003-1035-3849
https://orcid.org/0000-0003-1035-3849
https://orcid.org/0000-0003-4536-5508
https://orcid.org/0000-0003-4536-5508
https://orcid.org/0000-0002-4471-9290
https://orcid.org/0000-0002-4471-9290
https://orcid.org/0000-0002-5481-7142
https://orcid.org/0000-0002-5481-7142
https://doi.org/10.1111/j.1469-7998.1998.tb00038.x
https://doi.org/10.1111/j.1469-7998.1998.tb00038.x
https://doi.org/10.1111/j.1600-0587.2009.05807.x
https://doi.org/10.1111/j.1600-0587.2009.05807.x
https://doi.org/10.1111/j.1469-7998.2011.00887.x
https://doi.org/10.1111/j.1469-7998.2011.00887.x
http://www.genetix.univ-montp2.fr/genetix/intro.htm
http://www.genetix.univ-montp2.fr/genetix/intro.htm
https://doi.org/10.1098/rspb.2018.0143
https://doi.org/10.1098/rspb.2018.0143


482  |     KIMMIG et al.

Wildlife Management, 77(4), 855–862. https​://doi.org/10.1002/
jwmg.521

Bohonak, A. J. (1999). Dispersal, gene flow, and population struc-
ture. The Quarterly Review of Biology, 74(1), 21–45. https​://doi.
org/10.1086/392950

Börner, K. (2014). Untersuchungen zur Raumnutzung des Rotfuchses, 
Vulpes vulpes (L., 1758), in verschieden anthropogen beeinflussten 
Lebensräumen Berlins und Brandenburgs, Doctoral Dissertation. 
https​://doi.org/10.13140/​RG.2.1.4336.9200

Börner, K., Wittstatt, U., & Schneider, R. (2009). Untersuchungen zur 
Populationsökologie des Rotfuchses (Vules vulpes L.) in Berlin. 
Beitrg. Jagd- und Wildforsch., 34, 307–313.

Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R., & 
Cavalli-Sforza, L. L. (1994). High resolution of human evolutionary 
trees with polymorphic microsatellites. Nature, 368, 455. https​://doi.
org/10.1038/368455a0

Breen, M., Jouquand, S., Renier, C., Mellersh, C. S., Hitte, C., Holmes, N. 
G., … Bristow, A. E. (2001). Chromosome-specific single-locus FISH 
probes allow anchorage of an 1800-marker integrated radiation-hy-
brid/linkage map of the domestic dog genome to all chromosomes. 
Genome Research, 11(10), 1784–1795. https​://doi.org/10.1101/
gr.189401

Carrete, M., Martínez-Padilla, J., Rodríguez-Martínez, S., Rebolo-Ifrán, 
N., Palma, A., & Tella, J. L. (2016). Heritability of fear of humans in 
urban and rural populations of a bird species. Scientific Reports, 6, 
31060. https​://doi.org/10.1038/srep3​1060

Carrete, M., & Tella, J. L. (2009). Individual consistency in flight initiation 
distances in burrowing owls: A new hypothesis on disturbance-in-
duced habitat selection. Biology Letters, 6(2), 167–170. https​://doi.
org/10.1098/rsbl.2009.0739

Clarke, R. T., Rothery, P., & Raybould, A. F. (2002). Confidence limits 
for regression relationships between distance matrices: Estimating 
gene flow with distance. Journal of Agricultural, Biological, and 
Environmental Statistics, 7(3), 361. https​://doi.org/10.1198/10857​
1102320

Combs, M., Puckett, E. E., Richardson, J., Mims, D., & Munshi-South, J. 
(2018). Spatial population genomics of the brown rat (Rattus norvegi-
cus) in New York City. Molecular Ecology, 27(1), 83–98.

Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). 
Gene flow in complex landscapes: Testing multiple hypotheses with 
causal modeling. The American Naturalist, 168(4), 486–499. https​://
doi.org/10.1086/506976

DeCandia, A. L., Brzeski, K. E., Heppenheimer, E., Caro, C. V., Camenisch, 
G., Wandeler, P., … vonHoldt, B. M. (2019). Urban colonization 
through multiple genetic lenses: The city-fox phenomenon revisited. 
Ecology and Evolution, 9(4), 2046–2060. https​://doi.org/10.1002/
ece3.4898

Dieringer, D., & Schlötterer, C. (2003). Microsatellite analyser (MSA): a 
platform independent analysis tool for large microsatellite data sets. 
Molecular ecology notes, 3(1), 167–169.

Dytham, C. (2011). Choosing and using statistics: A Biologist’s guide, 3rd ed. 
Hoboken, NJ: Wiley Publishing.

Frantz, A. C., Do Linh San, E., Pope, L. C., & Burke, T. (2010). Using ge-
netic methods to investigate dispersal in two badger (Meles meles) 
populations with different ecological characteristics. Heredity, 
104(5), 493–501. https​://doi.org/10.1038/hdy.2009.136

Frantz, A. C., Cellina, S., Krier, A., Schley, L., & Burke, T. (2009). Using spa-
tial Bayesian methods to determine the genetic structure of a con-
tinuously distributed population: clusters or isolation by distance? 
Journal of Applied Ecology, 46(2), 493–505.

Frantz, A. C., Pourtois, J. T., Heuertz, M., Schley, L., Flamand, M. C., 
Krier, A., … Burke, T. (2006). Genetic structure and assignment 
tests demonstrate illegal translocation of red deer (Cervus elaphus) 
into a continuous population. Molecular Ecology, 15(11), 3191–3203.  
https​://doi.org/10.1111/j.1365-294X.2006.03022.x

Gloor, S. (2002). The rise of urban foxes (Vulpes vulpes) in Switzerland and 
ecological and parasitological aspects of a fox population in the recently 
colonised city of Zurich. Doctoral Dissertation. Zurich, Switzerland: 
Universitaet Zurich.

Gloor, S., Bontadina, F., Hegglin, D., Deplazes, P., & Breitenmoser, U. 
(2001). The rise of urban fox populations in Switzerland. Mamm. biol., 
66, 155–164.

Goldingay, R. L., Harrisson, K. A., Taylor, A. C., Ball, T. M., Sharpe, D. 
J., & Taylor, B. D. (2013). Fine-scale genetic response to landscape 
change in a gliding mammal. PLoS ONE, 8(12), e80383. https​://doi.
org/10.1371/journ​al.pone.0080383

Gortat, T., Rutkowski, R., Gryczynska, A., Kozakiewicz, A., & Kozakiewicz, 
M. (2017). The spatial genetic structure of the yellow-necked mouse 
in an urban environment – a recent invader vs. a closely related per-
manent inhabitant. Urban Ecosystems, 20(3), 581–594. https​://doi.
org/10.1007/s11252-016-0620-7

Goslee, S. C., & Urban, D. L. (2007). The ecodist package for dissimilar-
ity-based analysis of ecological data. Journal of Statistical Software, 
22(7). 1-19, https​://doi.org/10.18637/​jss.v022.i07

Gruenreich, D. (1992). ATKIS-a topographic information system as a 
basis for GIS and digital cartography in Germany. From Digital Map 
Series to Geo-Information Systems, Geologisches Jarhrbuch Series 
A. Hannover, Germany: Federal Institute of Geosciences and 
Resources.

Guillot, G., Estoup, A., Mortier, F., & Cosson, J.-F. (2005). A spatial sta-
tistical model for landscape genetics. Genetics, 170(3), 1261–1280. 
https​://doi.org/10.1534/genet​ics.104.033803

Guillot, G., Leblois, R., Coulon, A., & Frantz, A. C. (2009). Statistical 
methods in spatial genetics. Molecular Ecology, 18(23), 4734–4756.  
https​://doi.org/10.1111/j.1365-294X.2009.04410.x

Hardy, O. J., & Vekemans, X. (2002). SPAGeDi: a versatile computer pro-
gram to analyse spatial genetic structure at the individual or popula-
tion levels. Molecular ecology notes, 2(4), 618–620.

Harris, S., & Trewhella, W. J. (1988). An Analysis of Some of the 
Factors Affecting Dispersal in an Urban Fox (Vulpes vulpes) 
Population. Journal of Applied Ecology, 25(25), 409–422. https​://doi.
org/10.2307/2403833

Janko, C., Linke, S., Romig, T., Thoma, D., Schröder, W., & König, A. 
(2011). Infection pressure of human alveolar echinococcosis due to 
village and small town foxes (Vuples vulpes) living in close proximity 
to residents. European Journal of Wildlife Research, 57(5), 1033–1042. 
https​://doi.org/10.1007/s10344-011-0515-0

Johnson, M. T. J., & Munshi-South, J. (2017). Evolution of life in urban 
environments. Science, 358(6363). https​://doi.org/10.1126/scien​
ce.aam8327

Jombart, T. (2008). Adegenet: A R package for the multivariate analysis 
of genetic markers. Bioinformatics (Oxford, England), 24(11), 1403–
1405. https​://doi.org/10.1093/bioin​forma​tics/btn129

Kauhala, K., Talvitie, K., & Vuorisalo, T. (2016). Encounters between me-
dium-sized carnivores and humans in the city of Turku, SW Finland, 
with special reference to the red fox. Mammal Research, 61(1), 25–33. 
https​://doi.org/10.1007/s13364-015-0250-0

Khimoun, A., Peterman, W., Eraud, C., Faivre, B., Navarro, N., & Garnier, 
S. (2017). Landscape genetic analyses reveal fine-scale effects of 
forest fragmentation in an insular tropical bird. Molecular Ecology, 
26(19), 4906–4919. https​://doi.org/10.1111/mec.14233​

Kivimäki, I., Shimbo, M., & Saerens, M. (2014). Developments in the the-
ory of randomized shortest paths with a comparison of graph node 
distances. Physica A: Statistical Mechanics and Its Applications, 393, 
600–616. https​://doi.org/10.1016/j.physa.2013.09.016

Koen, E. L., Garroway, C. J., Wilson, P. J., & Bowman, J. (2010). The ef-
fect of map boundary on estimates of landscape resistance to animal 
movement. PLoS ONE, 5(7), e11785. https​://doi.org/10.1371/journ​
al.pone.0011785

https://doi.org/10.1002/jwmg.521
https://doi.org/10.1002/jwmg.521
https://doi.org/10.1086/392950
https://doi.org/10.1086/392950
https://doi.org/10.13140/RG.2.1.4336.9200
https://doi.org/10.1038/368455a0
https://doi.org/10.1038/368455a0
https://doi.org/10.1101/gr.189401
https://doi.org/10.1101/gr.189401
https://doi.org/10.1038/srep31060
https://doi.org/10.1098/rsbl.2009.0739
https://doi.org/10.1098/rsbl.2009.0739
https://doi.org/10.1198/108571102320
https://doi.org/10.1198/108571102320
https://doi.org/10.1086/506976
https://doi.org/10.1086/506976
https://doi.org/10.1002/ece3.4898
https://doi.org/10.1002/ece3.4898
https://doi.org/10.1038/hdy.2009.136
https://doi.org/10.1111/j.1365-294X.2006.03022.x
https://doi.org/10.1371/journal.pone.0080383
https://doi.org/10.1371/journal.pone.0080383
https://doi.org/10.1007/s11252-016-0620-7
https://doi.org/10.1007/s11252-016-0620-7
https://doi.org/10.18637/jss.v022.i07
https://doi.org/10.1534/genetics.104.033803
https://doi.org/10.1111/j.1365-294X.2009.04410.x
https://doi.org/10.2307/2403833
https://doi.org/10.2307/2403833
https://doi.org/10.1007/s10344-011-0515-0
https://doi.org/10.1126/science.aam8327
https://doi.org/10.1126/science.aam8327
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1007/s13364-015-0250-0
https://doi.org/10.1111/mec.14233
https://doi.org/10.1016/j.physa.2013.09.016
https://doi.org/10.1371/journal.pone.0011785
https://doi.org/10.1371/journal.pone.0011785


     |  483KIMMIG et al.

Kolb, H. (1984). Factors Affecting the Movements of Dog Foxes in 
Edinburgh. Journal of Applied Ecology, 21(1), 161–173. https​://doi.
org/10.2307/2403044

Landguth, E. L., Cushman, S. A., Schwartz, M. K., McKelvey, K. S., Murphy, 
M., & Luikart, G. (2010). Quantifying the lag time to detect barriers 
in landscape genetics. Molecular Ecology, 19(19), 4179–4191. https​://
doi.org/10.1111/j.1365-294X.2010.04808.x

Latch, E. K., Dharmarajan, G., Glaubitz, J. C., & Rhodes, O. E. (2006). 
Relative performance of Bayesian clustering software for inferring 
population substructure and individual assignment at low levels of 
population differentiation. Conservation Genetics, 7(2), 295–302. 
https​://doi.org/10.1007/s10592-005-9098-1

Laundré, J. W., Hernández, L., & Altendorf, K. B. (2001). Wolves, elk, and 
bison: Reestablishing the" landscape of fear" in Yellowstone National 
Park, USA. Canadian Journal of Zoology, 79(8), 1401–1409. https​://
doi.org/10.1139/z01-094

Laundré, J. W., Hernández, L., & Ripple, W. J. (2010). The Landscape 
of Fear: Ecological Implications of Being Afraid. The Open Ecology 
Journal, 2, 1–7.

Lima, S. L. (1998). Stress and decision making under the risk of pre-
dation: Recent developments from behavioral, reproductive, and 
ecological perspectives. Advances in the Study of Behavior, 27, 
215–290.

Lourenço, A., Álvarez, D., Wang, I. J., & Velo-Antón, G. (2017). Trapped 
within the city: Integrating demography, time since isolation and 
population-specific traits to assess the genetic effects of urbaniza-
tion. Molecular Ecology, 26(6), 1498–1514. https​://doi.org/10.1111/
mec.14019​

Manel, S., & Holderegger, R. (2013). Ten years of landscape genet-
ics. Trends in Ecology & Evolution, 28(10), 614–621. https​://doi.
org/10.1016/j.tree.2013.05.012

Mariat, D., Amigues, Y., & Boscher, M. Y. (1998). Eight canine tetranucle-
otide repeats. Animal Genetics, 29(2), 156–157.

McRae, B. H. (2006). Isolation by resistance. Evolution, 60(8), 1551–1561. 
https​://doi.org/10.1111/j.0014-3820.2006.tb005​00.x

McRae, B., Shah, V., & Mohapatra, T. (2013). circuitscape User Guide 4. 
How Circuitscape Works. Seattle WA: The Nature Conservancy.

Miller, M. P. (2005). Alleles In Space (AIS): Computer software for the 
joint analysis of interindividual spatial and genetic information. 
Journal of Heredity, 96(6), 722–724. https​://doi.org/10.1093/jhere​d/
esi119

Møller, A. P. (2009). Successful city dwellers: A comparative study 
of the ecological characteristics of urban birds in the Western 
Palearctic. Oecologia, 159(4), 849–858. https​://doi.org/10.1007/
s00442-008-1259-8

Møller, A. P., Tryjanowski, P., Díaz, M., Kwieciński, Z., Indykiewicz, P., 
Mitrus, C., … Polakowski, M. (2015). Urban habitats and feeders both 
contribute to flight initiation distance reduction in birds. Behavioral 
Ecology, 26(3), 861–865. https​://doi.org/10.1093/behec​o/arv024

Montero, E., Van Wolvelaer, J., & Garzón, A. (2014). The European urban 
atlas. In: I. Manakos & M. Braun (Eds.). Land use and land cover map-
ping in Europe (pp. 115–124). Dordrecht, The Netherlands: Springer.

Moore, M., Brown, S. K., & Sacks, B. N. (2010). Thirty-one short red fox 
(Vulpes vulpes) microsatellite markers. Molecular Ecology Resources, 
10, 404–408.

Munshi-South, J. (2012). Urban landscape genetics: Canopy cover pre-
dicts gene flow between white-footed mouse (Peromyscus leucopus) 
populations in New York City. Molecular Ecology, 21(6), 1360–1378.

Nei, M., & Takezaki, N. (1983). Estimation of genetic distances and phy-
logenetic trees from DNA analysis. In C. Smith (Ed.), Proceedings of 
the 5th World Cong Genet Appl Livestock Production, Vol. 21 (pp. 405–
412). Guelph, ON: University of Guelph, Canada.

Peterman, W. E. (2018). resistancega: An R package for the optimization 
of resistance surfaces using genetic algorithms. Methods in Ecology 
and Evolution, 9(6), 1638–1647.

Petkova, D., Novembre, J., & Stephens, M. (2016). Visualizing spatial pop-
ulation structure with estimated effective migration surfaces. Nature 
Genetics, 48(1), 94. https​://doi.org/10.1038/ng.3464

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of pop-
ulation structure using multilocus genotype data. Genetics, 155(2), 
945–959. https​://doi.org/10.1111/j.1471-8286.2007.01758.x

Prunier, J. G., Colyn, M., Legendre, X., Nimon, K. F., & Flamand, M. C. 
(2015). Multicollinearity in spatial genetics: Separating the wheat 
from the chaff using commonality analyses. Molecular Ecology, 24(2), 
263–283. https​://doi.org/10.1111/mec.13029​

Puechmaille, S. J. (2016). The program structure does not reliably re-
cover the correct population structure when sampling is uneven: 
Subsampling and new estimators alleviate the problem. Molecular 
Ecology Resources, 16(3), 608–627.

Richardson, J. L., Brady, S. P., Wang, I. J., & Spear, S. F. (2016). Navigating 
the pitfalls and promise of landscape genetics. Molecular Ecology, 
25(4), 849–863. https​://doi.org/10.1111/mec.13527​

Riley, S. P. D., Pollinger, J. P., Sauvajot, R. M., York, E. C., Bromley, C., Fuller, 
T. K., & Wayne, R. K. (2006). A southern California freeway is a physical 
and social barrier to gene flow in carnivores. Molecular Ecology, 15(7), 
1733–1741. https​://doi.org/10.1111/j.1365-294X.2006.02907.x

Rodríguez-Ramilo, S. T., & Wang, J. (2012). The effect of close relatives 
on unsupervised Bayesian clustering algorithms in population ge-
netic structure analysis. Molecular Ecology Resources, 12(5), 873–884. 
https​://doi.org/10.1111/j.1755-0998.2012.03156.x

Rousset, F. (2008). GENEPOP’007: A complete re-implementation of the 
genepop software for Windows and Linux. Molecular Ecology Resources, 
8(1), 103–106. https​://doi.org/10.1111/j.1471-8286.2007.01931.x

Rowe, G., & Beebee, T. J. C. (2007). Defining population boundaries: Use 
of three Bayesian approaches with microsatellite data from British 
natterjack toads (Bufo calamita). Molecular Ecology, 16(4), 785–796. 
https​://doi.org/10.1111/j.1365-294X.2006.03188.x

Ruiz-Lopez, M. J., Barelli, C., Rovero, F., Hodges, K., Roos, C., Peterman, 
W. E., & Ting, N. (2016). A novel landscape genetic approach demon-
strates the effects of human disturbance on the Udzungwa red col-
obus monkey (Procolobus gordonorum). Heredity, 116(2), 167–176.  
https​://doi.org/10.1038/hdy.2015.82

Saar, C. (1957). Parasitologische Untersuchungen beim Rotfuchs (Vulpes vul-
pes) im Raum von West-Berlin. Berlin, Germany: Institut Parasitologie, 
Freie Universitaet Berlin.

Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F., & Blumstein, D. 
T. (2015). Increased tolerance to humans among disturbed wildlife. 
Nature Communications, 6, 8877. https​://doi.org/10.1038/ncomm​
s9877​

Santonastaso, T. T., Dubach, J., Hauver, S. A., Graser, W. H. III, & Gehrt, 
S. D. (2012). Microsatellite analysis of raccoon (Procyon lotor) popula-
tion structure across an extensive metropolitan landscape. Journal of 
Mammalogy, 93(2), 447–455.

Sawyer, S. C., Epps, C. W., & Brashares, J. S. (2011). Placing linkages 
among fragmented habitats: Do least cost models reflect how an-
imals use landscapes? Journal of Applied Ecology, 48(3), 668–678. 
https​://doi.org/10.1111/j.1365-2664.2011.01970.x

Schwartz, M. K., Copeland, J. P., Anderson, N. J., Squires, J. R., Inman, R. 
M., McKelvey, K. S., … Cushman, S. A. (2009). Wolverine gene flow 
across a narrow climatic niche. Ecology, 90(11), 3222–3232. https​://
doi.org/10.1890/08-1287.1

Scrucca, L. (2013). GA: a package for genetic algorithms in R. Journal of 
Statistical Software, 53(4), 1–37.

She, J. X., Autemm, M., Kotulas, G., Pasteur, N., & Bonhomme, F. (1987). 
Multivariate analysis of genetic exchanges between Solea segalensis 
(Teleosts, Soleidae). Biological Journal of the Linnean Society, 32, 357–371.

Shirk, A. J., Landguth, E. L., & Cushman, S. A. (2017). A comparison of 
individual-based genetic distance metrics for landscape genet-
ics. Molecular Ecology Resources, 17(6), 1308–1317. https​://doi.
org/10.1111/1755-0998.12684​

https://doi.org/10.2307/2403044
https://doi.org/10.2307/2403044
https://doi.org/10.1111/j.1365-294X.2010.04808.x
https://doi.org/10.1111/j.1365-294X.2010.04808.x
https://doi.org/10.1007/s10592-005-9098-1
https://doi.org/10.1139/z01-094
https://doi.org/10.1139/z01-094
https://doi.org/10.1111/mec.14019
https://doi.org/10.1111/mec.14019
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1111/j.0014-3820.2006.tb00500.x
https://doi.org/10.1093/jhered/esi119
https://doi.org/10.1093/jhered/esi119
https://doi.org/10.1007/s00442-008-1259-8
https://doi.org/10.1007/s00442-008-1259-8
https://doi.org/10.1093/beheco/arv024
https://doi.org/10.1038/ng.3464
https://doi.org/10.1111/j.1471-8286.2007.01758.x
https://doi.org/10.1111/mec.13029
https://doi.org/10.1111/mec.13527
https://doi.org/10.1111/j.1365-294X.2006.02907.x
https://doi.org/10.1111/j.1755-0998.2012.03156.x
https://doi.org/10.1111/j.1471-8286.2007.01931.x
https://doi.org/10.1111/j.1365-294X.2006.03188.x
https://doi.org/10.1038/hdy.2015.82
https://doi.org/10.1038/ncomms9877
https://doi.org/10.1038/ncomms9877
https://doi.org/10.1111/j.1365-2664.2011.01970.x
https://doi.org/10.1890/08-1287.1
https://doi.org/10.1890/08-1287.1
https://doi.org/10.1111/1755-0998.12684
https://doi.org/10.1111/1755-0998.12684


484  |     KIMMIG et al.

Shirk, A. J., Landguth, E. L., & Cushman, S. A. (2018). A comparison of re-
gression methods for model selection in individual-based landscape 
genetic analysis. Molecular ecology resources, 18(1), 55–67.

Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E., & Hope, D. 
(2006). From patterns to emerging processes in mechanistic urban 
ecology. Trends in Ecology & Evolution, 21(4), 186–191. https​://doi.
org/10.1016/j.tree.2005.11.019

Stillfried, M., Fickel, J., Börner, K., Wittstatt, U., Heddergott, M., Ortmann, 
S., … Frantz, A. C. (2017). Do cities represent sources, sinks or isolated 
islands for urban wild boar population structure? Journal of Applied 
Ecology, 54(1), 272–281. https​://doi.org/10.1111/1365-2664.12756​

Stillfried, M., Gras, P., Börner, K., Göritz, F., Painer, J., Röllig, K., … 
Kramer-Schadt, S. (2017). Secrets of success in a landscape of fear: 
Urban wild boar adjust risk perception and tolerate disturbance. 
Frontiers in Ecology and Evolution, 5, 15. https​://doi.org/10.3389/
fevo.2017.00157​

Tischendorf, L., & Fahrig, L. (2000). On the usage and measure-
ment of landscape connectivity. Oikos, 90(1), 7–19. https​://doi.
org/10.1034/j.1600-0706.2000.900102.x

Trewhella, W. J., & Harris, S. (1990). The effect of railway lines on urban 
fox (Vulpes vulpes) numbers and dispersal movements. Journal of 
Zoology, 221(2), 321–326. https​://doi.org/10.1111/j.1469-7998.1990.
tb040​04.x

Trumbo, D. R., Spear, S. F., Baumsteiger, J., & Storfer, A. (2013). Rangewide 
landscape genetics of an endemic Pacific northwestern salaman-
der. Molecular Ecology, 22(5), 1250–1266. https​://doi.org/10.1111/
mec.12168​

Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, 
B., Alberts, S. C., … Avgar, T. (2018). Moving in the Anthropocene: 
Global reductions in terrestrial mammalian movements. Science, 
359(6374), 466–469.

Verhoeven, K. J. F., Simonsen, K. L., & McIntyre, L. M. (2005). Implementing 
false discovery rate control: Increasing your power. Oikos, 108(3), 
643–647. https​://doi.org/10.1111/j.0030-1299.2005.13727.x

Voigt, D. R., & Macdonald, D. W. (1984). Variation in the spatial and social 
behaviour of the red fox, Vulpus vulpes. Acta Zoologica Fennica, 171, 
261–265.

Vuorisalo, T., Talvitie, K., Kauhala, K., Bläuer, A., & Lahtinen, R. 
(2014). Urban red foxes (Vulpes vulpes L.) in Finland: A historical 

perspective. Landscape and Urban Planning, 124, 109–117. https​://
doi.org/10.1016/j.landu​rbplan.2013.12.002

Wandeler, P., & Funk, S. M. (2006). Short microsatellite DNA markers 
for the red fox (Vulpes vulpes). Molecular Ecology Notes, 6(1), 98–100. 
https​://doi.org/10.1111/j.1471-8286.2005.01152.x

Wandeler, P., Funk, S. M., Largiadèr, C. R., Gloor, S., & Breitenmoser, U. 
(2003). The city-fox phenomenon: Genetic consequences of a re-
cent colonization of urban habitat. Molecular Ecology, 12, 647–656.  
https​://doi.org/10.1046/j.1365-294X.2003.01768.x

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the 
analysis of population structure. Evolution, 38, 1358–1370.

Wilson, A., Fenton, B., Malloch, G., Boag, B., Hubbard, S., & Begg, G. 
(2016). Urbanisation versus agriculture: A comparison of local ge-
netic diversity and gene flow between wood mouse Apodemus syl-
vaticus populations in human-modified landscapes. Ecography, 39(1), 
87–97.

Yan, S. Q., Bai, C. Y., Qi, S. M., Li, Y. M., Li, W. J., & Sun, J. H. (2015). 
Development of novel polymorphic microsatellite markers for the sil-
ver fox (Vulpes vulpes). Genetics and Molecular Research, 14(2), 5890–
5895. https​://doi.org/10.4238/2015.June.1.6

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section. 

How to cite this article: Kimmig SE, Beninde J, Brandt M, 
et al. Beyond the landscape: Resistance modelling infers 
physical and behavioural gene flow barriers to a mobile 
carnivore across a metropolitan area. Mol Ecol. 2020;29:466–
484. https​://doi.org/10.1111/mec.15345​

https://doi.org/10.1016/j.tree.2005.11.019
https://doi.org/10.1016/j.tree.2005.11.019
https://doi.org/10.1111/1365-2664.12756
https://doi.org/10.3389/fevo.2017.00157
https://doi.org/10.3389/fevo.2017.00157
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1111/j.1469-7998.1990.tb04004.x
https://doi.org/10.1111/j.1469-7998.1990.tb04004.x
https://doi.org/10.1111/mec.12168
https://doi.org/10.1111/mec.12168
https://doi.org/10.1111/j.0030-1299.2005.13727.x
https://doi.org/10.1016/j.landurbplan.2013.12.002
https://doi.org/10.1016/j.landurbplan.2013.12.002
https://doi.org/10.1111/j.1471-8286.2005.01152.x
https://doi.org/10.1046/j.1365-294X.2003.01768.x
https://doi.org/10.4238/2015.June.1.6
https://doi.org/10.1111/mec.15345


 
 

1 
 

Supplemental Information for: 

 
Beyond the landscape: resistance modelling infers physical and behavioural 
gene flow barriers to a mobile carnivore across a metropolitan area. 
 
Kimmig S. E.1,2, Beninde J. 3,4, Brandt M.1, Schleimer A.5, Kramer-Schadt S.1,6, Hofer H.1,2, Börner 
K.1, Schulze C.7, Wittstatt U.8, Heddergott M. 5, Halczok T.9, Staubach C.10, Frantz A. C. 5  

 
1 Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315 Berlin, Germany 
2 Freie Universität Berlin (FU), Kaiserswerther Str. 16 - 18, 14195 Berlin, Germany 
3 Department of Biogeography, Trier University, 54286 Trier, Germany 
4 LA Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, 619 Charles 
E. Young Dr. South, University of California, Los Angeles, CA 90095, USA 
5 Musée National d'Histoire Naturelle, 25 Rue Muenster, L-2160 Luxembourg, Luxembourg 
6 Department of Ecology, Technische Universität Berlin, 12165 Berlin, Germany  
7 Landeslabor Berlin-Brandenburg (LLBB), Gerhard-Neumann-Straße 2/3, 15236 Frankfurt (Oder), Germany  
8 Landeslabor Berlin-Brandenburg (LLBB), Invalidenstr. 60, 10557 Berlin, Germany 
9 Universität Greifswald, Zoologisches Institut und Museum Loitzer Str. 26, 17489 Greifswald, Germany 
10 Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany 
 

 
Table of Contents: 
 
Appendix S1: Methods used for genotyping 16 microsatellite loci Page 2 

Appendix S2: Generation of ten subsampled data sets consisting of 24 spatially clustered individuals Page 3 

Appendix S3: Running modalities of the Bayesian clustering analyses Page 4 

Appendix S4: Running modalities of the Estimated Effective Migration Surfaces (EEMS) method Page 4 

Table S1: Land use categories employed in the 2012 Urban Atlas Page 5 

Table S2: Significance values of the GENEPOP exact test for Hardy-Weinberg deviations Page 6 

Table S3: Results of the GENEPOP exact test for Linkage Disequilibrium (LD) Page 6 

Table S4 Summary statistics for clustering results Page 6 

Table S5: Initial pre-bootstrapping results of the single-predictor ResistanceGA analysis for the city of Berlin. Page 7 

Table S6: Initial pre-bootstrapping results from the optimisation of all possible combination of the five single ATKIS  
environmental predictors (ALL_COMB() function) 

Page 8 

Table S7: Boostrap results from the optimisation of all possible combination of the five single ATKIS environmental  
predictors (ALL_COMB() function).  

Page 9 

Table S8: Results of single-surface optimisation (SS_OPTIM()) procedures with two linear environmental predictors  Page 10 

Table S9: Results of single-surface optimisation (SS_OPTIM()) procedures with three linear environmental predictors  Page 11 

Table S10: Results of single-surface optimisation (SS_OPTIM()) procedures testing the model support when adding  
all vegetation and built-up areas to the three best-supported overlap models in a single-surface analysis  

Page 12 

Table S11:  Results of single-surface optimisation (SS_OPTIM()) procedure testing whether model support of  
multi-categorical surfaces is sensitive to the starting values of the input surface.  

Page 13 

Table S12: Initial results of the multi-categorical functional connectivity analysis for the city of Berlin. Individual  Page 14 

Table S13: Results of single-surface optimisation (SS_OPTIM()) procedures testing the effect the Berlin city border  
on gene flow in Berlin/Brandenburg. 

Page 16 

Table S14: Initial pre-bootstrapping results of the single-feature ResistanceGA analysis for the complete dataset.  Page 17 

Table S15: Initial results of the multi-categorical functional connectivity analysis for the complete dataset  Page 18 

Fig. S1: Single-predictor input rasters for the whole study area based on the ATKIS data.  Page 19 



 
 

2 
 

Fig. S2: Single-predictor input rasters for the city of Berlin based on the ATKIS data Page 20 

Fig. S3: Geographic distribution of the Copernicus Urban Atlas imperviousness land cover types that were located  
in the Berlin built-up areas 

Page 21 

Fig. S4: Different line shapes used to test for the effect of the city border on gene flow. The Page 22 

Fig. S5: Clustering results of STRUCTURE for the city of Berlin, including water bodies and city border. Page 23 

Fig. S6: Best-supported resistance model resulting from the optimisation of all possible combination of the five 
single ATKIS environmental predictors (ALL_COMB() function). 

Page 24 

Fig. S7: Resistance values generated for the model containing all five ATKIS environmental predictors during the 
analysis where possible combination of the five single ATKIS environmental predictors were optimised using the 
ALL_COMB() function 

Page 25 

Fig. S8: Best-supported multi-categorical resistance surface for Berlin based on ATKIS data, resulting from single-
surface optimisation (SS_OPTIM()) procedure, 

Page 26 

Fig. S9:  Cartographic representation of results from genetics-based resistance modelling for foxes  
across the whole study area 

Page 27 

 

 

Appendix S1: Methods used for genotyping 16 microsatellite loci 

 

DNA was extracted using an ammonium acetate-based salting-out procedure (S. A. Miller, Dykes, & Polesky, 1988). 

DNA extracts were quantified using a Drop-Sense 16 spectrophotometer (Trinean, Gentbrugge, Belgium). We used 

16 microsatellite loci that were amplified in three Polymerase Chain Reactions (PCR). Multiplex 1 contained loci 

DGN14, REN69B24, V374*, V402, Vv-C01.424 and VVM189. Multiplex 2 contained loci FH2541*, Vv-CPH11, Vv-

INU055 and VVM124. Multiplex 3 contained loci DGN3*, REN161A12*, REN162B09, V502*, Vv-C08.618 and Vv-

CPH2. The 5’-ends of the reverse primers of the loci marked with an asterisk were labelled with the ‘pigtail’ 

sequence GTTTCTT to limit noise from variable adenylation during PCR (Brownstein, Carpten, & Smith, 1996). Each 

PCR contained 1 x QIAGEN Multiplex Master Mix and 0.2 μM of each primer (except VVM189 at 0.4 μM). PCRs 

started with 5 min denaturation at 95 °C, followed by cycles of denaturation at 95 °C for 30 s, annealing for 90 s 

and extension at 72 °C for 90 s. For all three multiplexes, the initial annealing temperature of 64 °C was reduced by 

one degree every cycle for six cycles. This was followed by 29 cycles of annealing at 58 °C. The final incubation was 

at 68 °C for 10 min. The PCRs were performed in a Mastercycler nexus (Eppendorf, Hamburg, Germany). PCR 

products were genotyped using a capillary sequencer (ABI 3730XL, Applied Biosystems). Allele sizes were 

determined using GENEMAPPER version 4.0 (Applied Biosystems). The genetic profiles of all samples consisted of 

at least 11 loci. 

 

References: 

Miller, S. A., Dykes, D. D., & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human 
nucleated cells. Nucleic Acids Research, 16(3), 1215. 

Brownstein, M. J., Carpten, J. D., & Smith, J. R. (1996). Modulation of non-templated nucleotide addition by Taq 
DNA polymerase: primer modifications that facilitate genotyping. Biotechniques, 20(6), 1004–1006. 
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Appendix S2: Generation of ten subsampled data sets consisting of 24 spatially clustered individuals. 

 

To avoid deviations from Hardy-Weinberg equilibrium (HWE) resulting from Wahlund effects and isolation-by-

distance, we tested the 16 microsatellite loci in ten subsampled data sets each consisting of 24 spatially clustered 

individuals. A data set was obtained by randomly selecting an individual from the complete dataset of 387 

individuals and including its 23 nearest geographic neighbours. We aimed to avoid that any two of the ten 

subsamples shared more than two individuals between them, and we therefore repeatedly generated 15 datasets 

until ten of these 15 datasets fulfilled this criterion. We used the INTERSECT() function in program R V3.5.2 (Ihaka & 

Gentleman 1996) to estimate the number of individuals shared between each combination of datasets. In the final 

selection, only one pair of datasets shared (two) individuals (Fig. A).  

 

 

Fig. A: Location of the ten subsamples of 24 individuals (data set 1 to 10) used to test the 16 microsatellite loci for deviations 

from Hardy-Weinberg and linkage equilibria. One point can represent more than one individual. Two geographic outlier 

individuals are omitted from the plot. 

 

Reference: 

Ihaka, R., & Gentleman, R. (1996). A language for data analysis and graphics. Journal of Computational and 

Graphical Statistics, 5, 299-314. 
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Appendix S3: Running modalities of the Bayesian clustering analyses. 

 

In order to estimate the number of genetic subpopulations (K) using STRUCTURE, ten independent runs of K=1-10 

were conducted with 10
6
 Markov chain Monte Carlo (MCMC) iterations after a 10

5
-iteration burn-in length, using 

the admixture and correlated-allele-frequency models. ALPHA, the Dirichlet parameter for the degree of 

admixture, was allowed to vary between subpopulations and set be non-uniform (priors: α=0.05, β=0.001). The 

most probable number of subpopulations was chosen based on the ten log-likelihood values inferred for each K 

and their convergence. The assignment of individuals to the detected clusters was calculated by averaging each 

individual’s proportion of membership over the ten runs. To determine the number of genetic clusters, the 

GENELAND algorithm was run 10 times, with K=1-10 and 10
6
 MCMC iterations with a thinning of 1000, maximum 

rate of the Poisson process equal to sample size, maximum number of nuclei in the Poisson-Voronoi tessellation 

equal to three times the sample size and uncertainty attached to the spatial coordinates fixed at 250m. The 

Dirichlet model served as a prior for all allele frequencies. Next, the algorithm was run an additional 100 times with 

a fixed value for K, according to the inferred number of clusters, conducting 10
6
 MCMC iterations with thinning of 

1000 and all further parameters as described above.  

 

Appendix S4: Running modalities of the Estimated Effective Migration Surfaces (EEMS) method  

 

The Estimated Effective Migration Surfaces method uses a stepping stone model to evaluate whether migration 

rates between neighbouring demes are higher than expected and interpolates a surface illustrating effective 

migration between and effective diversity within each deme. We ran the method simulating 1000 demes, after 

first adjusting the parameters until reaching a recommended proportion of acceptance of 20-30%: 

mEffctProposalS2 = 5, mSeedsProposalS2 = 0.18, mrateMuProposalS2 = 0.20, qEffctProposalS2 = 0.032, 

qSeedsProposalS2 = 0.14. We performed ten independent runs with 107 iterations, sampling every 9999th 

iteration after a burn-in of 2x106 iterations. 

 
 
 
 
 
 
 
 



 
 

5 
 

Table S1: Land use categories employed in the 2012 Copernicus Urban Atlas. In the Urban atlas, cities are mapped at a scale of 
1:10.000, with the smallest identifiable surface being 0.25 ha in urbanised areas and 1 ha in non-urbanised areas. The minimum 
accuracy of the data is 85 % for artificial surfaces and 80 % for the other classes. 
 
1. Artificial surfaces 

11 Urban Fabric 
 11100 Continuous urban fabric (S.L.: >80%) 
 11210 Discontinuous dense urban fabric (S.L. 50%-80%) 
 11220 Discontinuous medium density urban fabric (S.L. 30%-50%) 
 11230 Discontinuous low density urban fabric (S.L. 10%-30%) 
 11240 Discontinuous very low density urban Fabric (S.L. <10%) 
 11300 Isolated structures 
12 Industrial, commercial, public, military and private units 
 12100 Industrial, commercial, public, military and private units 
 12210 Fast transit roads and associated lands 
 12220 Other roads and associated lands 
 12230 Railways and associated lands 
 12300 Port areas 
 12400 Airports 
 Mine, dump and construction sites 
 13100 Mineral extraction and dump sites 
 13300 Construction sites 
 13400 Land without current use 
 Artificial non-agricultural vegetated areas  
 14100 Green urban areas 
 14200 Sports and Leisure facilities 

2. Agricultural and Semi-natural 

 21000 Arable land (annual crops) 
 22000 Permanent crops 
 23000 Pastures 
 24000 Complex and mixed cultivation patterns 
 25000 Orchards 

3. Forest (natural and plantation) 

 31000 Forests 
 32000 Herbaceous vegetation associations 
 33000 Open spaces with little or no vegetation 

4. Wetlands 40000 Wetlands 

5 Water 50000 Water  
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Table S2: Significance values of the GENEPOP exact test for Hardy-Weinberg deviations in 10 datasets of 24 spatially clustered 
individuals. The data sets were obtained by randomly selecting an individual from the complete dataset of 387 individuals and 
including its 23 nearest geographic neighbours (see also Appendix 2). Values that are underlined were significant before the 
multiple-test correction, while values in bold were still significant after this correction. DSet 1 to DSet 10: Subsampled data sets 
1 to 10 (corresponding to dataset 1 to 10 shown in Fig. A of Appendix 2). 
 

microsatellite Subsampled data sets 

locus 
DSet 1 DSet 2 DSet 3 DSet 4 DSet 5 DSet 6 DSet 7 DSet 8 DSet 9 DSet 10 

DGN14 <0.001 0.400 0.005 0.039 0.802 0.252 0.707 0.089 0.863 0.670 
DGN3 0.234 0.015 0.015 0.008 0.132 0.057 0.049 0.049 <0.001 0.134 
FH2541 0.041 0.865 0.523 0.666 0.452 0.321 0.407 0.267 0.999 0.769 
REN161A12 0.162 0.807 0.949 0.190 0.234 0.471 0.930 0.231 0.835 0.642 
REN162B09 0.291 0.572 0.695 0.765 0.177 1.000 0.033 0.228 1.000 0.110 
REN69B24 0.653 0.575 0.005 0.928 0.176 0.184 0.085 0.913 0.053 0.083 
V374 0.232 0.856 0.279 0.523 0.135 0.164 0.167 0.768 0.434 0.265 
V402 0.243 0.822 0.544 0.303 0.010 0.456 0.896 0.470 0.152 0.519 
V502 0.052 0.049 0.001 0.011 <0.001 <0.001 0.001 0.002 0.010 1.000 
VV-C01.424 0.247 0.628 0.665 0.812 0.107 0.356 0.697 0.042 0.742 0.650 
VV-C08.618 0.471 0.504 0.237 0.639 0.121 0.158 0.895 0.033 0.490 0.189 
VV-CPH11 0.118 1.000 0.453 0.663 0.583 0.536 0.399 0.315 0.053 1.000 
VV-CPH2 0.400 0.659 0.377 0.264 0.881 1.000 0.701 0.689 0.222 0.424 
VVINU055 0.349 0.455 0.112 0.448 0.830 0.860 0.108 0.023 0.786 0.612 
VVM124 0.918 0.417 0.415 0.548 0.028 0.797 0.041 0.742 0.772 0.053 
VVM189 0.021 0.007 0.775 0.044 0.601 0.596 0.009 0.009 0.001 0.003 

 
 
 
Table S3: Results of the GENEPOP exact test for Linkage Disequilibrium (LD). Significant pairs and corrected p-values among the 
120 primer pairs, in 10 subsampled data sets each consisting of 24 spatially clustered individuals (see Appendix 2).  
 

Simulated population locus 1 locus 2 p-value 

run III out of X DGN14 REN161A1 <0.001 

run IX out of X V402 VVM189 <0.001 

run IX out of X DGN* REN162B09 <0.001 

run X out of X FH2541 REN161A12 <0.001 

 
 
 
Table S4: Summary statistics for clustering results. Estimates of genetic diversity in the two inferred genetic clusters from 
GENELAND and STRUCTURE (see also Figs. 1c & 1d). N: number of individuals, He: expected heterozygosity, Ho: observed 
heterozygosity, A: average number of alleles across loci. The colour information in column one is indicative of the identity of the 
cluster in Figs. 1c & 1d. 
 

  
 
 
 
 
 

Software Cluster  N He Ho A 

GENELAND  Berlin  (orange) 203 0.78 0.74 10.7 
 Brandenburg (blue) 171 0.77 0.71 11.7 
      
STRUCTURE Central Berlin (orange) 118 0.73 0.70 9.3 
 Other (blue) 256 0.78 0.73 11.9 
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Table S5: Initial pre-bootstrapping results of the single-predictor ResistanceGA analysis for the city of Berlin. Three different genetic distance measures and five environmental 
predictors from the German authoritative topographic cartographic information system (ATKIS) were compared (see Material and Methods). To check for convergence, each 
opimisation was performed twice for each landscape feature (Run 1 & Run 2). Predictors are sorted according to increasing corrected Akaike information criterion (AICc) values. 
k = number of parameters, ΔAICc = difference in the AICc values between the best supported model (lowest AICc) and each subsequent model. mR

2 
= marginal R

2
, Resistance = 

resistance value inferred for each parameter (matrix= the remaining uniform study area not containing the features under investigation). 
 
Predictor AICc k ΔAICc mR2 Resistance Predictor AICc k ΔAICc mR2 Resistance 

     Matrix Predictor      Matrix Predictor 

Run 1 Run 2 
a) Nei’s genetic distance (Nei) 
Motorways -38935.2 3 0 0.036 500 1 Motorways -38935.8 3 0 0.036 589 1 
Railways -38911.2 3 24.0 0.058 33 1 Railways -38911.2 3 24.6 0.058 33 1 
Distance -38906.1 2 29.1 0.018   Distance -38906.1 2 29.7 0.018   
Water bodies -38905.7 3 29.5 0.022 1 2 Water bodies -38905.7 3 30.1 0.022 1 2 
Built-up areas -38904.5 3 30.7 0.017 1 1 Built-up areas -38904.5 3 31.3 0.017 1 1 
All vegetation -38904.0 3 31.2 0.017 1 1 All vegetation -38904.1 3 31.7 0.017 1 1 
Null -38647.3 1 287.9 0   Null -38647.3 1 288.5 0   
b) Proportion of shared alleles (DPS) 
Motorways -38897.9 3 0 0.024 31 1 Motorways -38914.7 3 0 0.033 323 1 
Railways -38895.6 3 2.3 0.055 31 1 Railways -38895.6 3 19.1 0.055 31 1 
Water bodies -38891.5 3 6.4 0.052 82 1 Distance -38889.8 2 24.9 0.017   
Distance -38889.8 2 8.1 0.017   Water bodies -38888.9 3 25.8 0.020 1 2 
Built-up areas -38888.4 3 9.5 0.017 1 1 Built-up areas -38888.4 3 26.3 0.017 1 1 
All vegetation -38887.9 3 10.0 0.017 1 1 All vegetation -38887.9 3 26.8 0.017 1 1 
Null -38642.6 1 255.3 0   Null -38642.6 1 272.1 0   
c) 10-axes based Factorial Correspondence Analysis (FCA) 
Water bodies 232528.8 3 0 0.303 1 44 Water bodies 232528.8 3 0 0.303 1 44 
Railways 232577.5 3 48.7 0.055 99 1 Railways 232577.5 3 48.7 0.055 99 1 
Motorways 232593.0 3 64.2 0.014 500 1 Motorways 232592.9 3 64.1 0.014 500 1 
All vegetation 232625.9 3 97.1 0.029 9 1 All vegetation 232626.0 3 97.2 0.026 8 1 
Built-up areas 232632.2 3 103.4 0.028 1 6 Built-up areas 232632.2 3 103.4 0.028 1 7 
Distance 232643.5 2 114.7 0.006   Distance 232643.5 2 114.7 0.006   
Null 233094.8 1 566.0 0   Null 233094.8 1 566.0 0   



 
 

8 
 

 
Table S6: Initial pre-bootstrapping results from the optimisation of all possible combination of the five single ATKIS environmental predictors (ALL_COMB() function). To check for 
convergence, each optimisation was performed twice for each (ccombination of) landscape feature (Run 1 & Run 2). AICc = corrected Akaike information criterion, k = number of 
parameters, ΔAICc = difference in the AICc values between the best supported model (lowest AICc) and each subsequent model. mR

2 
= marginal R

2
. 

 
Predictor  AICc k ΔAICc mR2 Predictor  AICc k ΔAICc mR2 

a) Run 1     b) Run 2     
Built-up areas*Water bodies 232522.3 5 0 0.296 Built-up areas*Water bodies 232522.5 5 0 0.296 
Vegetation*Water bodies 232524.3 5 2.0 0.301 Vegetation*Water bodies 232524.2 5 1.7 0.289 
Railways*Water bodies 232526.3 5 4.0 0.262 Railways*Water bodies 232526.4 5 3.9 0.073 
Built-up areas*Railways*Water bodies 232528.4 7 6.1 0.306 Built-up areas*Motorways*Water bodies 232527.9 7 5.4 0.275 
Built-up areas*Motorways*Water bodies 232528.7 7 6.4 0.289 Built-up areas*Railways*Water bodies 232527.9 7 5.4 0.282 
Water bodies 232528.8 3 6.5 0.303 Water bodies 232528.8 3 6.3 0.303 
Built-up areas*Vegetation*Water bodies 232529.4 7 7.1 0.280 Railways*Vegetation*Water bodies 232529.3 7 6.8 0.293 
Motorways*Vegetation*Water bodies 232529.5 7 7.2 0.293 Built-up areas*Vegetation*Water bodies 232529.4 7 6.9 0.288 
Motorways*Water bodies 232529.5 5 7.2 0.295 Motorways*Water bodies 232529.5 5 7.0 0.294 
Railways*Vegetation*Water bodies 232529.7 7 7.4 0.298 Motorways*Vegetation*Water bodies 232529.8 7 7.3 0.280 
Motorways*Railways*Water bodies 232534.0 7 11.7 0.291 Motorways*Railways*Water bodies 232534.2 7 11.7 0.290 
Built-up areas*Motorways*Vegetation*Water bodies 232534.5 9 12.2 0.285 Built-up areas*Motorways*Railways*Water bodies 232535.3 9 12.8 0.280 
Built-up areas*Motorways*Railways*Water bodies 232535.4 9 13.1 0.302 Built-up areas*Railways*Vegetation*Water bodies 232535.7 9 13.2 0.298 
Motorways*Railways*Vegetation*Water bodies 232535.5 9 13.2 0.295 Built-up areas*Motorways*Vegetation*Water bodies 232536.1 9 13.6 0.276 
Built-up areas*Railways*Vegetation*Water bodies 232536.7 9 14.4 0.300 Motorways*Railways*Vegetation*Water bodies 232536.5 9 14.0 0.291 
Built-up areas*Motorways*Railways*Vegetation* 
Water bodies 

232541.3 11 19.0 0.282 
Built-up areas*Motorways*Railways*Vegetation* 
Water bodies 

232541.8 11 19.3 0.284 

Railways*Vegetation 232574.3 5 52.0 0.052 Railways*Vegetation 232574.3 5 51.8 0.052 
Railways 232577.5 3 55.2 0.055 Railways 232577.5 3 55.0 0.055 
Built-up areas*Railways 232579.1 5 56.8 0.051 Built-up areas*Railways 232577.8 5 55.3 0.056 
Motorways*Railways 232579.4 5 57.1 0.057 Motorways*Railways 232579.5 5 57.0 0.058 
Motorways*Railways*Vegetation 232581.1 7 58.8 0.053 Motorways*Railways*Vegetation 232580.8 7 58.3 0.051 
Built-up areas*Motorways*Railways 232581.9 7 59.6 0.055 Built-up areas*Railways*Vegetation 232581.8 7 59.3 0.050 
Built-up areas*Railways*Vegetation 232582.6 7 60.3 0.049 Built-up areas*Motorways*Railways 232581.9 7 59.4 0.053 
Built-up areas*Motorways*Railways*Vegetation 232588.6 9 66.3 0.054 Built-up areas*Motorways*Railways*Vegetation 232587.5 9 65.0 0.051 
Motorways 232593.0 3 70.7 0.014 Motorways* 232593.0 3 70.5 0.014 
Built-up areas*Motorways 232603.3 5 81.0 0.013 Motorways*Vegetation 232603.3 5 80.8 0.013 
Motorways*Vegetation 232603.3 5 81.0 0.013 Built-up areas*Motorways 232603.3 5 80.8 0.013 
Built-up areas*Motorways*Vegetation 232612.4 7 90.1 0.012 Built-up areas*Motorways*Vegetation 232612.4 7 89.9 0.012 
Vegetation 232626.0 3 103.7 0.026 Vegetation 232625.9 3 103.4 0.029 
Built-up areas*Vegetation 232629.3 5 107.0 0.029 Built-up areas*Vegetation 232629.8 5 107.3 0.026 
Built-up areas 232632.2 3 109.9 0.028 Built-up areas 232632.2 3 109.7 0.028 
Distance 232643.5 2 121.2 0.006 Distance 232643.5 2 121.0 0.006 
Null 233094.8 1 572.5 0.000 Null 233094.8 1 572.3 0.000 
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Table S7: Boostrap results from the optimisation of all possible combination of the five single ATKIS environmental 
predictors (ALL_COMB() function). In the initial analysis (summarised in Table S6), the optimisation procedure was repeated 
twice for each landscape feature. For each combination of landscape feature, we only included the distance matrix from the 
run with the lowest corrected Akaike information criterion (AICc) in the bootstrap analysis. avg. AICc = average of the AICc 
values obtained for each model in 1000 bootstrap iterations. k = number of parameters, ΔAICc = difference in the avg. AICc 
values between the best supported model (lowest AICc) and each subsequent model. avg.weight = average of the AICc 
weights obtained for each model in 1000 bootstrap iterations. avg.mR

2
 = average marginal R

2 
of 1000 bootstrap iterations. 

Predictors are sorted according to increasing averaged AICc values. 
 

 
Predictor  avg. AICc k ΔAICc avg.weight mR2 

Railways*Water bodies 130723.9 5 0.0 0.585 0.074 
Built-up areas*Water bodies 130732.8 5 8.9 0.116 0.283 
Built-up areas*Vegetation*Water bodies 130733.9 7 9.9 0.026 0.268 
Built-up areas*Motorways*Water bodies 130733.9 7 10.0 0.028 0.277 
Motorways*Vegetation*Water bodies 130734.4 7 10.5 0.024 0.268 
Vegetation*Water bodies 130734.4 5 10.5 0.053 0.288 
Built-up areas*Railways*Water bodies 130734.6 7 10.7 0.033 0.293 
Railways*Vegetation*Water bodies 130735.2 7 11.3 0.021 0.285 
Built-up areas*Motorways*Vegetation*Water bodies 130735.5 9 11.6 0.011 0.265 
Motorways*Water bodies 130736.4 5 12.4 0.024 0.282 
Built-up areas*Motorways*Railways*Water bodies 130736.5 9 12.6 0.011 0.289 
Motorways*Railways*Vegetation*Water bodies 130736.6 9 12.7 0.009 0.279 
Motorways*Railways*Water bodies 130736.6 7 12.7 0.017 0.278 
Built-up areas*Railways*Vegetation*Water bodies 130737.1 9 13.2 0.008 0.286 
Built-up areas*Motorways*Railways*Vegetation*Water bodies 130737.3 11 13.4 0.006 0.272 
Water bodies 130738.7 3 14.7 0.009 0.290 
Railways*Vegetation 130750.2 5 26.3 0.001 0.053 
Motorways*Railways*Vegetation 130752.1 7 28.1 0.001 0.054 
Built-up areas*Motorways*Railways 130752.5 7 28.6 0.001 0.055 
Built-up areas*Railways 130752.8 5 28.9 0.001 0.053 
Built-up areas*Railways*Vegetation 130752.8 7 28.9 0.000 0.050 
Motorways*Railways 130753.2 5 29.3 0.001 0.059 
Railways 130754.0 3 30.1 <0.001 0.057 
Built-up areas*Motorways*Railways*Vegetation 130754.2 9 30.3 <0.001 0.055 
Motorways 130763.0 3 39.1 0.010 0.014 
Motorways*Vegetation 130766.7 5 42.8 0.002 0.013 
Built-up areas*Motorways 130766.7 5 42.8 0.002 0.013 
Built-up areas*Motorways*Vegetation 130769.9 7 45.9 <0.001 0.012 
Vegetation 130783.2 3 59.3 <0.001 0.027 
Built-up areas*Vegetation 130783.3 5 59.4 <0.001 0.027 
Built-up areas 130786.0 3 62.1 <0.001 0.029 
Distance 130792.8 2 68.9 <0.001 0.007 
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Table S8: Results of single-surface optimisation (SS_OPTIM()) procedures with two linear environmental predictors (see 
Materials and Methods), modelling different overlap scenarios. Results are for the Berlin-only dataset, using the FCA-based 
genetic distance measure. (i), (ii): Initial pre-bootstrapping results. Optimisation was performed twice for each combination of 
landscape features; (iii) Bootstrapping results. For each combination of landscape feature, we only included the distance matrix 
from the run (marked with ‘ˣ’) with the lowest corrected Akaike information criterion (AICc) in the bootstrap analysis.  
“>” indicates which predictor took priority, meaning that every grid cell containing a point of overlap with other linear 
predictors, the cell was codified as belonging to the predictor with priority. ‘Bridges’ predictor: A cell with two overlapping 
linear predictors was classified as a distinct predictor. Predictors are sorted according to increasing AICc values. avg. AICc = 
average of the AICc values obtained for each model in 1000 bootstrap iterations. ΔAICc = difference in the (avg.) AICc values 
between the best supported model and each subsequent model.  k = number of parameters, mR

2
 = marginal R

2
,
 
avg.mR

2
 = 

average marginal R
2
 of 1000 bootstrap iterations. avg.weight = average of the AICc weights obtained for each model in 1000 

bootstrap iterations. Resistance = resistance value inferred for each parameter (matrix= the remaining uniform study area not 
containing the features under investigation). 
 
Predictor  AICc k ΔAICc mR2 Resistance 

(i) first analysis 
Water bodies>Railways 232514.9 4 0 0.085 Rail: 1, Matrix: 111, Water: 500 
Bridges 232516.5 5 1.6 0.211 Rail: 1, Matrix: 28, Overlap: 405, Water: 494  
Water bodies 232528.8 3 13.9 0.303 Matrix: 1, Water: 44 

ˣRailways>Water bodies 232561.8 4 46.9 0.121 Rail: 1, Matrix: 63, Water: 416 
Distance 232643.5 2 128.6 0.006  
Null 233094.8 1 579.9 0  
(ii) repeat analysis 

ˣWater bodies> Railways 232514.9 4 0 0.088 Rail: 1, Matrix: 105, Water: 500 

ˣBridges 232516.1 5 1.2 0.226 Rail: 1, Matrix: 25, Overlap: 249, Water: 499 

ˣWater bodies 232528.8 3 13.9 0.303 Matrix: 1, Water: 44 
Railways>Water bodies 232561.8 4 46.9 0.120 Rail: 1, Matrix: 105, Water: 416 
Distance 232643.5 2 128.6 0.006  
Null 233094.8 1 579.9 0  

Predictor avg. AICc k ΔAICc avg.weight avg.mR2 

(iii) bootstrapping 
Water bodies>Railways 130723.1 4 0 0.705 0.089 
Bridges 130728.6 5 5.5 0.268 0.219 
Water bodies 130742.4 3 19.3 0.025 0.290 
Railways>Water bodies 130750.0 4 26.9 0.002 0.121 
Distance 130795.6 2 72.5 <0.001 0.007 
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Table S9: Results of single-surface optimisation (SS_OPTIM()) procedures with three linear environmental predictors (see 
Materials and Methods), modelling different overlap scenarios. Results are for the Berlin-only dataset, using the FCA-based 
genetic distance measure. (i), (ii): Initial pre-bootstrapping results. Each optimisation was performed twice for each 
combination of landscape features; (iii) Bootstrapping results. For each combination of landscape features, we only included 
the distance matrix from the run (marked with an ‘ˣ’) with the lowest corrected Akaike information criterion (AICc) in the 
bootstrap analysis. “>” indicates which predictor took priority, meaning that every grid cell containing a point of overlap with 
other linear predictors, the cell was codified as belonging to the predictor with priority. ‘Bridges’ predictor: A cell with two 
overlapping linear predictors was classified as a distinct predictor. avg. AICc = average of the AICc values obtained for each 
model in 1000 bootstrap iterations. ΔAICc = difference in the (avg.) AICc values between the best supported model and each 
subsequent model.  k = number of parameters, mR

2
 = marginal R

2
,
 
avg.mR

2
 = average marginal R

2
 of 1000 bootstrap iterations. 

avg.weight = average of the AICc weights obtained for each model in 1000 bootstrap iterations. Resistance = resistance value 
inferred for each parameter (matrix= the remaining uniform study area not containing the features under investigation). 
Predictors are sorted according to increasing AICc values. 
 
 
Predictor  AICc k ΔAICc mR2 Resistance 

(i) first analysis 
Water bodies>Motorways>Railways 232498.4 5 0 0.139 Motorways: 1, Rail: 23, Matrix: 1278, Water: 9376 

ˣMotorways>Water bodies>Railways 232500.7 5 2.3 0.135 Motorways: 1, Rail: 2, Matrix: 192, Water: 1077 

ˣWater bodies>Railways>Motorways 232501.5 5 3.1 0.111 Motorways: 1, Rail: 4, Matrix: 376, Water: 2011 
Bridges 232514.6 6 16.2 0.100 Motorways: 1, Rail: 1, Matrix: 96, Bridges: 453, Water: 526 
Water bodies>Railways 232514.9 4 16.5 0.085 Rail: 1, Matrix: 111, Water: 500 

ˣRailways>Water bodies>Motorways 232541.9 5 43.5 0.158 Motorways: 1, Rail: 6, Matrix: 430, Water: 2737 

ˣMotorways>Railways >Water bodies 232544.9 5 46.5 0.133 Motorways: 1, Rail: 13, Matrix: 298, Water: 2349 
Railways>Motorways >Water bodies 232559.1 5 60.7 0.090 Rail: 1, Motorways: 2, Matrix: 54, Water: 271 
Distance 232643.5 2 145.1 0.006  
Null 233094.8 1 596.4 0.000  
(ii) repeat analysis 

ˣWater bodies>Motorways>Railways 232495.7 5 0 0.197 Motorways: 1, Rail: 101, Matrix: 4000, Water: 46145 
Motorways>Water bodies>Railways 232500.9 5 5.2 0.150 Motorways: 1, Rail: 3, Matrix: 250, Water: 1605 
Water bodies>Railways>Motorways 232504.3 5 8.6 0.093 Motorways: 1, Rail: 8, Matrix: 941, Water: 3398 

ˣBridges 232512.8 6 17.1 0.102 Motorways: 1, Rail: 2, Matrix: 155, Bridges: 665, Water: 848 

ˣWater bodies>Railways 232514.9 4 19.2 0.088 Rail: 1, Matrix: 105, Water: 500 
Motorways>Railways >Water bodies 232547.1 5 51.4 0.127 Motorways: 1, Rail: 5, Matrix: 322, Water: 1491 

ˣRailways>Motorways >Water bodies 232547.3 5 51.6 0.156 Motorways: 1, Rail: 3, Matrix: 171, Water: 1176 
Railways>Water bodies>Motorways 232548.6 5 52.9 0.093 Motorways: 1, Rail: 2, Matrix: 141, Water: 554 
Distance 232643.5 2 147.8 0.006  
Null 233094.8 1 599.1 0.000  

Predictor avg. AICc k ΔAICc avg.weight avg.mR2 

(iii) bootstrapping 
Water bodies>Railways>Motorways 130741.4 5 0 0.205 0.112 
Motorways>Water bodies>Railways 130741.5 5 0.1 0.366 0.136 
Water bodies>Motorways>Railways 130741.7 5 0.3 0.365 0.195 
Bridges 130746.8 6 5.4 0.032 0.104 
Water bodies>Railways 130749.6 4 8.2 0.025 0.090 
Railways>Water bodies>Motorways 130765.1 5 23.7 0.002 0.159 
Motorways>Railways >Water bodies 130766.6 5 25.2 0.005 0.134 
Railways>Motorways >Water bodies 130768.4 5 27.0 <0.001 0.156 
Distance 130823.1 2 81.7 <0.001 0.007 
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Table S10: Results of single-surface optimisation (SS_OPTIM()) procedures testing the model support when adding all vegetation and built-up areas to the three best-supported 
overlap models in a single-surface analysis (see Table S9). Results are for the Berlin-only dataset, using the FCA-based genetic distance measure. (i), (ii): Initial pre-bootstrapping 
results. Each optimisation was performed twice for each combination of landscape features; (iii) Bootstrapping results. For each combination of landscape feature, we only 
included the distance matrix from the run (marked with ‘ˣ’) with the lowest corrected Akaike information criterion (AICc) in the bootstrap analysis. “>” indicates which predictor 
took priority, meaning that every grid cell containing a point of overlap with other linear predictors, the cell was codified as belonging to the predictor with priority. avg. AICc = 
average of the AICc values obtained for each model in 1000 bootstrap iterations. ΔAICc = difference in the (avg.) AICc values between the best supported model and each 
subsequent model.  k = number of parameters, mR

2
 = marginal R

2
,
 
avg.mR

2
 = average marginal R

2
 of 1000 bootstrap iterations. avg.weight = average of the AICc weights 

obtained for each model in 1000 bootstrap iterations. Resistance = resistance value inferred for each parameter (matrix= the remaining uniform study area not containing the 
features under investigation). Predictors are sorted according to increasing AICc values. 
 
Predictor  AICc k ΔAICc mR2 Resistance 

(i) first analysis 
Water bodies>Motorways>Railways 232498.4 5 0 0.139 Motorways: 1, Rail: 23, Matrix: 1278, Water: 9376 

ˣMotorways>Water bodies>Railways 232500.7 5 2.3 0.135 Motorways: 1, Rail: 2, Matrix: 192, Water: 1077 

ˣWater bodies>Railways>Motorways 232501.5 5 3.1 0.111 Motorways: 1, Rail: 4, Matrix: 376, Water: 2011 

ˣMotorways>Water bodies>Railways*Vegetation*Built-up areas 232505.6 6 7.2 0.105 Rail: 1, Motorways: 1, Built-up: 121, Vegetation: 146, Water: 498 

ˣWater bodies>Railways>Motorways*Vegetation*Built-up areas 232509.9 6 11.5 0.091 Rail: 1, Motorways: 1, Built-up: 175, Vegetation: 216, Water: 615 
Water bodies>Motorways>Railways*Vegetation*Built-up areas 232510.7 6 12.3 0.213 Rail: 1, Motorways: 1, Vegetation: 8, Built-up: 80, Water: 554 
Distance 232643.5 2 145.1 0.006  
Null 233094.8 1 596.4 0.000  
(ii) repeat analysis 

ˣWater bodies>Motorways>Railways*Vegetation*Built-up areas 232493.8 6 0 0.156 Rail: 1, Motorways: 4, Built-up: 291, Vegetation: 494, Water: 1574 

ˣWater bodies>Motorways>Railways 232495.7 5 1.9 0.197 Motorways: 1, Rail: 101, Matrix: 4000, Water: 46145 
Motorways>Water bodies>Railways 232500.9 5 7.1 0.150 Motorways: 1, Rail: 3, Matrix: 250, Water: 1605 
Water bodies>Railways>Motorways 232504.3 5 10.5 0.093 Motorways: 1, Rail: 8, Matrix: 941, Water: 3398 
Motorways>Water bodies>Railways*Vegetation*Built-up areas 232506.9 6 13.1 0.102 Rail: 1, Motorways: 1, Built-up: 156, Vegetation: 199, Water: 500 
Water bodies>Railways>Motorways*Vegetation*Built-up areas 232510.9 6 17.1 0.096 Rail: 1, Motorways: 1, Built-up: 234, Vegetation: 328, Water: 678 
Distance 232643.5 2 149.7 0.006  
Null 233094.8 1 601 0.000  

Predictor avg. AICc k ΔAICc avg.weight avg.mR2 

(iii) bootstrapping 
Water bodies>Motorways>Railways*Vegetation*Built-up areas 130695.6 6 0 0.463 0.158 
Water bodies>Railways>Motorways 130700.2 5 4.5 0.063 0.113 
Motorways>Water bodies>Railways 130700.6 5 5.0 0.171 0.136 
Motorways>Water bodies>Railways*Vegetation*Built-up areas 130700.9 6 5.3 0.107 0.107 
Water bodies>Motorways>Railways 130700.6 5 5.0 0.160 0.197 
Water bodies>Railways>Motorways*Vegetation*Built-up areas 130702.6 6 7.0 0.035 0.094 
Distance 130781.0 2 85.4 <0.001 0.007 
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Table S11:  Results of single-surface optimisation (SS_OPTIM()) procedure testing whether model support of multi-categorical surfaces is sensitive to the starting values of the 
input surface. We took multi-categorical surfaces with different combinations of predictors that were retained in the step-wise optimisation procedure (see Tables S8, S9 & S10) 
and inverted the values of the input surface. We performed a total of four independent optimisation runs for each initial and inverted surface. “>” indicates which predictor took 
priority, meaning that every grid cell containing a point of overlap with other linear predictors, the cell was codified as belonging to the predictor with priority. Predictors were 
sorted according to increasing corrected Akaike information criterion (AICc) values. k = number of parameters, ΔAICc = difference in the AICc values between the best-supported 
model and each subsequent model.  mR

2
 = marginal R

2
. Resistance = resistance value inferred for each parameter (matrix= the remaining study). 

 
Predictor  AICc k ΔAICc mR2 Starting values Resistance 

(a)       
Water bodies>Railways 232514.7 4  0.195 Railways: 0, Matrix: 1, Water: 2 Railways: 1, Matrix: 33, Water: 499 
Water bodies>Railways 232514.7 4 0 0.193 Railways: 0, Matrix: 1, Water: 2 Railways: 1, Matrix: 33, Water: 499 
Water bodies>Railways 232514.9 4 0.2 0.085 Railways: 0, Matrix: 1, Water: 2 Railways: 1, Matrix: 111, Water: 500 
Water bodies>Railways 232514.9 4 0.2 0.088 Railways: 0, Matrix: 1, Water: 2 Railways: 1, Matrix: 105, Water: 500 
Water bodies>Railways 232635.7 4 121.0 0.029 Water: 0, Matrix: 1, Railways: 2 Water: 1, Matrix: 109, Railways: 215 
Water bodies>Railways 232635.7 4 121.0 0.029 Water: 0, Matrix: 1, Railways: 2 Water: 1, Matrix: 109, Railways: 214 
Water bodies>Railways 232635.7 4 121.0 0.029 Water: 0, Matrix: 1, Railways: 2 Water: 1, Matrix: 109, Railways: 215 
Water bodies>Railways 232635.7 4 121.0 0.029 Water: 0, Matrix: 1, Railways: 2 Water: 1, Matrix: 110, Railways: 215 
Distance 232643.5 2 128.8 0.006   
Null 233094.8 1 451.3 0   
(b)       
Water bodies>Motorways>Railways 232495.7 5 0 0.197 Railways: 0, Motorways: 1, Matrix: 2, Water: 3 Motorways: 1, Railways: 101, Matrix: 4000, Water: 46145 
Water bodies>Motorways>Railways 232495.7 5 0 0.149 Railways: 0, Motorways: 1, Matrix: 2, Water: 3 Motorways: 1, Railways: 35, Matrix: 2199, Water: 16430 
Water bodies>Motorways>Railways 232498.4 5 2.7 0.139 Railways: 0, Motorways: 1, Matrix: 2, Water: 3 Motorways: 1, Railways: 23, Matrix: 1278, Water: 9376 
Water bodies>Motorways>Railways 232499.3 5 3.6 0.113 Railways: 0, Motorways: 1, Matrix: 2, Water: 3 Motorways: 1, Railways: 12, Matrix: 1204, Water: 5759 
Water bodies>Motorways>Railways 232599.2 5 103.5 0.053 Water: 0, Matrix: 1, Motorways: 2, Railways: 3 Motorways: 1, Water: 87, Matrix: 4022, Railways: 13346 
Water bodies>Motorways>Railways 232601.0 5 105.3 0.063 Water: 0, Matrix: 1, Motorways: 2, Railways: 3 Motorways: 1, Water: 63, Matrix: 4143, Railways: 14586 
Water bodies>Motorways>Railways 232601.0 5 105.3 0.041 Water: 0, Matrix: 1, Motorways: 2, Railways: 3 Motorways: 1, Water: 40, Matrix: 2406, Railways: 4582  
Water bodies>Motorways>Railways 232608.0 5 112.3 0.089 Water: 0, Matrix: 1, Motorways: 2, Railways: 3 Motorways: 1, Water: 11, Matrix: 1038, Railways: 4906 
Distance 232643.5 2 147.8 0.006   
Null 233094.8 1 599.1 0   
(c)       
Water>Motorw.>Rail*All vege.*Built-up areas 232490.9 6 0 0.215 Rail.: 0, Motor.: 1, Vege.: 2, Built-up: 3, Water: 4 Rail.: 1, Motorw.: 7, All vege.: 294,  Built-up: 251, Water: 2349 
Water>Motorw.>Rail*All vege.*Built-up areas 232493.8 6 2.9 0.156 Rail.: 0, Motor.: 1, Vege.: 2, Built-up: 3, Water: 4 Rail.: 1, Motorw.: 4, Built-up: 291, All vege.: 494, Water: 1574 
Water>Motorw.>Rail*All vege.*Built-up areas 232505.7 6 14.8 0.109 Rail.: 0, Motor.: 1, Vege.: 2, Built-up: 3, Water: 4 Rail.: 1, Motorw.: 2, Built-up: 307, All vege.: 357, Water: 829 
Water>Motorw.>Rail*All vege.*Built-up areas 232510.7 6 19.8 0.213 Rail.: 0, Motor.: 1, Vege.: 2, Built-up: 3, Water: 4 Rail.: 1, Motorw.: 1, All vege.: 8, Built-up: 80, Water: 554 
Water>Motorw.>Rail*All vege.*Built-up areas 232600.6 6 109.7 0.057 Water: 0, Built-up: 1, Vege.: 2, Motor.: 3, Rail.: 4 Motorw.: 1, Water: 129, All vege.: 5011,  Built-up: 6201, Rail.: 20351 
Water>Motorw.>Rail*All vege.*Built-up areas 232601.5 6 110.6 0.049 Water: 0, Built-up: 1, Vege.: 2, Motor.: 3, Rail.: 4 Motorw.: 1, Water: 109, All vege.: 5791,  Built-up: 6661, Rail.: 16167 
Water>Motorw.>Rail*All vege.*Built-up areas 232606.1 6 115.2 0.054 Water: 0, Built-up: 1, Vege.: 2, Motor.: 3, Rail.: 4 Motorw.: 1, Water: 27, All vege.: 2039,  Built-up: 2688, Rail.: 5587 
Water>Motorw.>Rail*All vege.*Built-up areas 232606.4 6 115.5 0.080 Water: 0, Built-up: 1, Vege.: 2, Motor.: 3, Rail.: 4 Motorw.: 1, Water: 29, Built-up: 2118, All vege.: 2494,  Rail.: 9811 
Distance 232643.5 2 152.6 0.006   
Null 233094.8 1 603.9 0   
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Table S12: Initial results of the multi-categorical functional connectivity analysis for the city of Berlin. Individual predictors were added based on corrected Akaike information 
criterion (AICc) model support, but only retaining if their addition improved support of the multi-categorical model (ΔAICc>2; see Materials and Methods). Presented here are 
the results from the two initial (first & repeat analysis) optimisation runs that were performed for each (combination of) landscape features. Given previous results (Table S10), 
water bodies took precedence over motorways at points of overlap, while both took precedence of railways. Predictors were sorted according to increasing AICc values. k = 
number of parameters, ΔAICc = difference in the AICc values between the best-supported model and each subsequent model.  mR

2
 = marginal R

2
. Resistance = resistance value 

inferred for each parameter (matrix= the remaining uniform study area not containing the features under investigation). 
 

Predictor  AICc k ΔAICc mR2 Resistance 

(i) first analysis 
xWater bodies*Railways*Motorways*S.L.30-50%*S.L.>80% 232473.8 7 0 0.189 Rail: 1, S.L.30-50%: 1, Motorways: 3, Matrix: 254, S.L.>80%: 555, Water: 1185 
xWater*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80% 
*Remaining built-up  

232475.9 9 2.1 0.151 
Rail: 1, Motorways: 1, S.L.30-50%: 35,  S.L.50-80%: 58, Remaining built-up: 259, Matrix: 284,  

S.L.>80%: 394, Water: 527 
Water bodies*Railways*Motorways*S.L.30-50% 232479.3 6 5.5 0.168 Rail: 1, Motorways: 3, S.L.30-50%: 19, Matrix: 234, Water: 1214 
Water*Railways*Motorways*S.L.30-50%*S.L.>80% *Industry 232481.7 8 7.9 0.166 Motorways: 1, Rail: 2, S.L.30-50%: 9, Matrix: 290, S.L.>80%: 807, Industry: 849, Water: 947 
Water*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80% 232484.2 8 10.4 0.139 Rail: 1, Motorways: 2, S.L.50-80%: 84, Matrix: 271, S.L.30-50%: 304, S.L.>80%: 685, Water: 727 
xWater bodies*Railways*Motorways*Arable/green*S.L.30-50% 232489.7 7 15.9 0.223 Rail: 1, Motorways: 1, S.L.30-50%: 3, Arable/green: 12, Matrix: 166, Water: 650 

Water*Railways*Motorways*S.L.30-50%*S.L.>80% *Remaining built-up 232497.5 8 23.7 0.217 
Rail: 1, Motorways: 2, Matrix: 113, S.L.30-50%: 125, Remaining built-up: 427, Water: 833, 

S.L.>80%: 986 
Water bodies*Railways *Motorways 232498.4 5 24.6 0.139 Motorways: 1, Rail: 23, Matrix: 1278, Water: 9376 
Water bodies*Railways *Motorways*Arable/green 232499.8 6 26.0 0.153 Rail: 1, Motorways: 3, Matrix: 258, Arable/green: 649, Water: 1049 

Water*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80%*Industry  232500.2 9 26.4 0.106 
Rail: 1, Motorways: 1, S.L.50-80%: 91, S.L.30-50%: 230, Matrix: 237, S.L.>80%: 323, Industry: 

398, Water: 419   
Water*Railways*Motorways*All vegetation*Built-up areas 232510.7 6 36.9 0.213 Rail: 1, Motorways: 1, All vegetation : 8, Built-up areas: 80, Water: 554 
Water bodies*Railways 232514.9 4 41.1 0.085 Rail: 1, Matrix: 111, Water: 500 
xWater bodies 232528.8 3 55.0 0.303 Matrix: 1, Water: 44 
xRailways 232577.5 3 103.7 0.055 Rail: 1, Matrix: 99 
Motorways 232593.0 3 119.2 0.014 Motorways: 1, Matrix: 500 
xArable/Green 232601.4 3 127.6 0.048 Arable/Green: 1, Matrix: 67 
xS.L.30-50% 232606.3 3 132.5 0.016 S.L.30%-50%: 1, Matrix: 647 
xS.L.>80% 232617.4 3 143.6 0.050 Matrix: 1, S.L.>80%: 8 
xAll vegetation 232625.9 3 152.1 0.029 Vegetation: 1, Matrix: 9 
S.L.50-80% 232629.1 3 155.3 0.035 S.L.50%-80: 1, Matrix: 140 
xBuilt up areas 232632.2 3 158.4 0.028 Matrix: 1, Built-up: 6 
xIndustry 232632.9 3 159.1 0.029 Matrix: 1, Industry: 6 
xRemaining built-up 232640.5 3 166.7 0.022 Matrix: 1, Remaining built-up: 7 
Distance 232643.5 2 169.7 0.006  
xForest 232644.9 3 171.1 0.009 Matrix: 1, Forest: 2 
Null 233094.8 1 621.0 0.000  

 
 



 
 

15 
 

Predictor  AICc k ΔAICc mR2 Resistance 

(ii) repeat analysis 

xWater*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80%*Industry 232473.4 9 0 0.201 
Rail: 1, Motorways: 3, S.L.30-50%: 43, S.L.50-80%: 142, Matrix: 292, Industry: 452, 

S.L.>80%: 633, Water: 1756 
xWater*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80% 232473.7 8 0.3 0.169 Rail: 1, Motorways: 2, S.L.30-50%: 8, S.L.50-80%: 103, Matrix: 282, S.L.>80%: 469, Water: 784 
xWater bodies*Railways*Motorways*S.L.30-50% 232474.9 6 1.5 0.179 Rail: 1, Motorways: 3, S.L.30-50%: 3, Matrix: 278, Water: 1196 

xWater*Railways*Motorways*S.L.30-50%*S.L.>80% *Industry 232478.6 8 5.2 0.185 
Motorways: 1, Rail: 51, S.L.30-50%: 1033, Matrix: 3848, Industry: 12803, 

S.L.>80%: 21019, Water: 24576 
Water*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80% 
*Remaining built-up 

232484.3 9 10.9 0.114 
Rail: 1, Motorways: 1, S.L.30-50%: 111, Matrix: 143, S.L.50-80%: 147, Remaining built-up: 319, 

Water: 456, S.L.>80%: 459 

xWater*Railways*Motorways*S.L.30-50%*S.L.>80% *Remaining built-up 232485.5 8 12.1 0.149 
Rail: 1, Motorways: 2, S.L.30-50%: 59, Matrix: 165, Remaining built-up: 166, S.L.>80%: 545, 

Water: 795 
xWater*Railways*Motorways*All vegetation*Built-up areas 232493.8 6 20.4 0.156 Rail: 1, Motorways: 4, Built-up areas: 291, All vegetation : 494, Water: 1574 
xWater bodies*Railways*Motorways 232495.7 5 22.3 0.197 Motorways: 1, Rail: 101, Matrix: 4000, Water: 46145 
xWater bodies*Railways *Motorways*Arable/green 232498.7 6 25.3 0.111 Rail: 1, Motorways: 2, Matrix: 193, Arable/green: 237, Water: 790 
Water bodies*Railways*Motorways*Arable/green*S.L.30-50% 232511.2 7 37.8 0.123 Motorways: 1, Rail: 2, S.L.30-50%: 5, Arable/green: 102, Matrix: 313, Water: 385 
xWater bodies*Railways 232514.9 4 41.5 0.088 Rail: 1, Matrix: 105, Water: 500 
Water bodies*Railways*Motorways*S.L.30-50%*S.L.>80% 232527.8 7 54.4 0.298 Motorways: 1, Rail: 1, Matrix: 305, S.L.30-50%: 400, Water: 416, S.L.>80%: 451 
Water bodies 232528.8 3 55.4 0.303 Matrix: 1, Water: 44 
Railways 232577.5 3 104.1 0.055 Rail: 1, Matrix: 99 
xMotorways 232592.9 3 119.5 0.014 Motorways: 1, Matrix: 500 
Arable/Green 232601.4 3 128.0 0.048 Arable/Green: 1, Matrix: 69 
S.L.30%-50% 232613.7 3 140.3 0.013 S.L.30%-50%: 1, Matrix: 29 
S.L.>80% 232617.4 3 144.0 0.050 Matrix: 1, S.L.>80%: 8 
All vegetation 232626.0 3 152.6 0.026 Vegetation: 1, Matrix: 8 
xS.L.50%-80% 232629.1 3 155.7 0.037 S.L.50%-80: 1, Matrix: 217 
Built-up areas 232632.2 3 158.8 0.028 Matrix: 1, Built-up: 7 
Industry 232632.9 3 159.5 0.029 Matrix: 1, Industry: 6 
Remaining built-up 232640.5 3 167.1 0.022 Matrix: 1, Remaining built-up: 7 
Distance 232643.5 2 170.1 0.006  
Forest 232644.9 3 171.5 0.009 Matrix: 1, Forest: 2 
Null 233094.8 1 621.4 0.000  
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Table S13: Results of single-surface optimisation (SS_OPTIM()) procedures testing the effect the Berlin city border on gene flow 
in Berlin/Brandenburg (the complete data set). The single-feature analysis tested for the effect of the administrative city 
border, the administrative city border converted into a concave hull, as well as the outer and inner borders of 1-, 2-, 3, 4- and 5-
km buffer around the concave hull. (i), (ii): Results from two initial optimisation runs performed for each landscape feature; (iii) 
Bootstrapping results. Since corrected Akaike information criterion (AICc) values were equal between the two optimisation 
runs, we used the results from the first run in the bootstrap analysis. Predictors are sorted according to increasing AICc values. 
ΔAICc = difference in the (avg.) AICc values between the best supported model and each subsequent model.  k = number of 
parameters, mR

2
 = marginal R

2
,
 
avg.mR

2
 = average marginal R

2
 of 1000 bootstrap iterations. avg.weight = average of the AICc 

weights obtained for each model in 1000 bootstrap iterations. Resistance = resistance value inferred for each parameter 
(matrix= the remaining uniform study area not containing the features under investigation). 
 
Predictor  AICc k ΔAICc mR2 Resistance 

(i) first analysis 
City border concave 555283.5 3 0 0.416 Matrix: 1, Border: 154 
City border concave + 1 km 555346.7 3 63.2 0.337 Matrix: 1, Border: 160 
City border concave + 2 km 555349.2 3 65.8 0.279 Matrix: 1, Border: 183 
City border concave + 3 km 555414.2 3 130.7 0.229 Matrix: 1, Border: 147 
City border  555435.9 3 152.5 0.268 Matrix: 1, Border: 92 
City border concave + 5 km 555461.1 3 177.7 0.194 Matrix: 1, Border: 124 
City border concave + 4 km 555473.3 3 189.9 0.146 Matrix: 1, Border: 119 
City border concave - 1 km 555477.1 3 193.6 0.211 Matrix: 1, Border: 63 
City border concave - 5 km 555488.5 3 205.0 0.086 Matrix: 1, Border: 43 
City border concave - 4 km 555499.7 3 216.2 0.076 Matrix: 1, Border: 40 
City border concave - 3 km 555507.7 3 224.3 0.112 Matrix: 1, Border: 33 
City border concave - 2 km 555509.7 3 226.2 0.128 Matrix: 1, Border: 42 
Distance 555549.5 2 266.0 0.011  
Null 556351.0 1 1067.6 0  
(ii) repeat analysis 
City border concave 555283.5 3 0 0.416 Matrix: 1, Border: 154 
City border concave + 1 km 555346.7 3 63.2 0.337 Matrix: 1, Border: 160 
City border concave + 2 km 555349.2 3 65.8 0.279 Matrix: 1, Border: 183 
City border concave + 3 km 555414.2 3 130.7 0.229 Matrix: 1, Border: 147 
City border  555435.9 3 152.5 0.268 Matrix: 1, Border: 92 
City border concave + 5 km 555461.1 3 177.7 0.194 Matrix: 1, Border: 124 
City border concave + 4 km 555473.3 3 189.9 0.146 Matrix: 1, Border: 120 
City border concave - 1 km 555477.1 3 193.6 0.211 Matrix: 1, Border:  
City border concave - 5 km 555488.5 3 205.0 0.086 Matrix: 1, Border: 43 
City border concave - 4 km 555499.7 3 216.2 0.076 Matrix: 1, Border: 40 
City border concave - 3 km 555507.7 3 224.3 0.112 Matrix: 1, Border: 33 
City border concave - 2 km 555509.7 3 226.2 0.128 Matrix: 1, Border: 42 
Distance 555549.6 2 266.1 0.011  
Null 556351.0 1 1067.6 0  

Predictor avg. AICc k ΔAICc avg.weight avg.mR2 

(iii) bootstrapping 
City border concave 310808.4 3 0 0.699 0.400 
City border concave + 1 km 310858.9 3 50.5 0.107 0.315 
City border concave + 2 km 310859.8 3 51.4 0.156 0.237 
City border concave + 3 km 310895.0 3 86.6 0.021 0.200 
City border  310909.7 3 101.3 <0.001 0.255 
City border concave + 5 km  310926.1 3 113.6 0.005 0.182 
City border concave - 1 km  310925.5 3 117.7 0.003 0.209 
City border concave + 4 km  310932.3 3 117.1 0.004 0.138 
City border concave - 5 km 310936.7 3 123.9 0.005 0.087 
City border concave - 4 km 310943.0 3 128.3 0.001 0.077 
City border concave - 3 km 310945.4 3 134.6 <0.001 0.113 
City border concave - 2 km 310961.5 3 137.0 <0.001 0.129 
Distance 310926.1 2 153.1 <0.001 0.012 
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Table S14: Initial pre-bootstrapping results of the single-feature ResistanceGA analysis for the complete dataset. Three different genetic distance measures and seven 
environmental predictors from the German authoritative topographic cartographic information system (ATKIS) were compared (see Material and Methods). To check for 
convergence, optimisation was performed twice for each landscape feature (Run 1 & Run 2). Predictors are sorted according to increasing average corrected Akaike information 
criterion (AICc) values. k = number of parameters, ΔAICc = difference in the AICc values between the best supported model (lowest AICc) and each subsequent model. mR

2 
= 

marginal R
2
. Resistance resistance/conductance value inferred for each parameter (matrix= the remaining uniform study area not containing the features under investigation). 

 
Predictor AICc k ΔAICc mR2 Resistance AICc k ΔAICc mR2 Resistance 

     Matrix Predictor     Matrix Predictor 

a) Nei’s genetic distance (Nei), run 1 run 2      
Built-up areas -98031.1 3 0 0.024 1 2 -98031.1 3  0.024  2 
Forests -98024.0 3 7.1 0.037 6 1 -98024.0 3  0.037 6 1 
Arable/green -98014.5 3 9.5 0.026 3 1 -98014.5 3  0.026 3 1 
Motorways -98000.6 3 13.9 0.075 452 1 -98000.6 3  0.075 452 1 
City border concave -97993.9 3 6.7 0.045 1 10 -97993.9 3  0.045 1 10 
Water bodies -97988.5 3 5.4 0.040 1 3 -97988.5 3  0.040 1 3 
Railways -97988.3 3 0.2 0.029 1 2 -97988.3 3  0.029 1 2 
Distance  -97982.8 2 5.5 0.034   -97982.8 2  0.034   
Null -97496.7 1 486.1 0.000   -97496.7 1  0.000   
b) Proportion of shared alleles (DPS) , run 1 run 2      
Built-up areas -97533.6 3 0 0.020 1 2 -97533.6 3  0.020  2 
Forests -97523.2 3 10.4 0.029 4 1 -97523.2 3  0.029 4 1 
Arable/green -97522.1 3 1.1 0.023 3 1 -97522.1 3  0.023 3 1 
Motorways -97510.3 3 11.8 0.069 354 1 -97510.3 3  0.069 354 1 
City border concave -97502.1 3 8.2 0.037 1 7 -97502.1 3  0.037  7 
Railways -97500.2 3 1.9 0.029 1 2 -97500.2 3  0.029  2 
Water bodies -97498.4 3 1.8 0.035 1 2 -97498.4 3  0.035  2 
Distance  -97496.8 2 1.6 0.033   -97496.8 2  0.033   
Null -97033.3 1 463.5 0.000   -97033.3 1  0.000   
c) 10-axes based Factorial Correspondence Analysis (FCA) , run 1 run 2      
City border concave 555283.5 3 0 0.416 1 154 555283.5 3  0.416 1 154 
Built-up areas 555345.4 3 61.9 0.056 1 7 555345.4 3  0.056 1 7 
Forests 555368.1 3 22.7 0.051 500 1 555368.1 3  0.051 500 1 
Arable/green 555404.3 3 36.2 0.036 16 1 555404.3 3  0.036 16 1 
Water bodies 555412.1 3 7.8 0.171 1 31 555412.1 3  0.171 1 31 
Railways 555478.8 3 66.7 0.063 1 14 555478.8 3  0.063 1 14 
Distance  555549.5 2 70.7 0.011   555549.5 2  0.011   
Motorways 555552.0 3 2.5 0.025 388 1 555551.4 3  0.011 1 1 
Null 556351.0 1 799.0 0.000   556351.0 1  0.000   
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Table S15: Initial results of the multi-categorical functional connectivity analysis for the complete dataset (Berlin & Brandenburg). Individual predictors were added based on 
corrected Akaike information criterion (AICc) model support, but only retaining if their addition improved support of the multi-categorical model (ΔAICc>2; see Materials and 
Methods). Presented here are the results from the two initial (first & repeat analysis) optimisation runs that were performed for each (combination of) landscape features. We 
also tested two overlap scenarios, once where water bodies took precedence over railways at points of overlap (Water bodies>Railways), and another where the opposite was 
the case (Railways >Water bodies). Predictors were sorted according to increasing AICc values. k = number of parameters, ΔAICc = difference in the AICc values between the 
best-supported model and each subsequent model.  mR

2
 = marginal R

2
. Resistance = resistance value inferred for each parameter (matrix= the remaining uniform study area not 

containing the features under investigation). 
 

Predictor  AICc k ΔAICc mR2 Resistance 

(ii) first analysis 
City border concave* Built-up areas*Water bodies 554938.3 5 0 0.400 Matrix: 1, Built-up areas: 6, Water bodies: 70, City border: 498 
City border concave *Built-up areas *Water bodies>Railways 554939.3 6 1.0 0.390 Railways: 1, Matrix: 2, Built-up areas: 19, Water bodies: 109, City border: 760 
City border concave *Built-up areas * Railways >Water bodies 554964.1 6 25.8 0.451 Matrix: 1, Railways: 4, Built-up areas: 48, Water bodies: 186, City border: 1615 
xCity border concave* Built-up areas 555017.3 4 79.0 0.425 Matrix: 1, Built-up areas: 11, City border: 499 
xCity border concave* Built-up areas * Arable/green 555018.1 5 79.8 0.520 Arable/green: 1, Matrix: 6, Built-up areas: 34, City border: 2358 
xCity border concave* Built-up areas *Forests 555038.2 5 99.9 0.359 Matrix: 1, Forest: 1, Built-up areas: 16, City border: 486 
xCity border concave 555283.5  345.2  Matrix: 1, City border: 154 
xBuilt-up areas 555345.4 3 407.1 0.056 Matrix: 1, Built-up areas: 7 
xForests 555368.1 3 429.8 0.051 Forests: 1, Matrix: 500 
xArable/green 555404.3 3 466.0 0.036 Arable/Green: 1, Matrix: 16 
xWater bodies 555412.1 3 473.8 0.171 Matrix: 1, Water bodies: 31 
xRailways 555478.8 3 540.5 0.063 Matrix: 1, Rail: 14 
Distance 555549.5 2 611.2 0.011  
xMotorways  555552.0 3 613.7 0.025 Motorways: 1, Matrix: 388 
Null 556351.0 1 1412.7 0  
(ii) repeat analysis 
City border concave* Built-up areas*Water bodies 554938.0 5 0 0.402 Matrix: 1, Built-up areas: 6, Water bodies: 72, City border: 500 
City border concave *Built-up areas *Water bodies>Rail 554940.3 6 2.3 0.417 Railways: 1, Matrix: 2, Built-up areas: 13, Water bodies: 108, City border: 736 
City border concave *Built-up areas *Rail>Water bodies 554965.7 6 27.7 0.475 Matrix: 1, Railways: 3, Built-up areas: 26, Water bodies: 155, City border: 1274 
City border concave* Built-up areas 555017.3 4 79.3 0.425 Matrix : 1, Built-up areas :11, City border : 500 
City border concave* Built-up areas *Forests 555080.9 5 142.9 0.324 Matrix: 1, Forest: 2, Built-up areas: 47, City border: 984 
City border concave* Built-up areas * Arable/green 555135.1 5 197.1 0.194 Matrix: 1, Arable/green: 6, Built-up areas: 21, City border: 434 
City border concave 555283.5 3 345.5  Matrix: 1, City border: 154 
Built-up areas 555345.4 3 407.4 0.056 Matrix : 1, Built-up areas : 7 
Forests 555368.1 3 430.1 0.051 Forests: 1, Matrix: 500 
Arable/green 555404.3 3 466.3 0.036 Arable/Green: 1, Matrix: 16 
Water bodies 555412.1 3 474.1 0.171 Matrix: 1, Water bodies: 31 
Railways 555478.8 3 540.8 0.063 Matrix: 1, Rail: 14 
Distance 555549.5 2 611.5 0.011  
Motorways  555554.1 3 616.1 0.011 Motorways: 1, Matrix: 1 
Null 556351.0 1 1413.0 0  
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Fig. S1: Single-predictor input rasters for the whole study area (Berlin & Brandenburg) based on the ATKIS data. (A) 
arable/green, (B) built-up areas, (C) concave city border, (D) forests, (E) major water bodies, (F) motorways and (G) 
railways. The green surface represents the predictor under investigation. The grid cell size was 250 x 250 m.  
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Fig. S2: Single-predictor input rasters for the city of Berlin based on the ATKIS data. (A) all vegetation, (B) built-up 
areas, (C) major water bodies, (D) motorways and (E) railways. The green surface represents the predictor under 
investigation. The grid cell size was 100 x 100 m.  
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Fig. S3: Geographic distribution of the Copernicus Urban Atlas imperviousness land cover types that were located 
in the built-up areas and used in the present analysis. Due to the rare occurrence of discontinuous very low density 
urban fabric and remaining built-up areas, the corresponding categories were merged with discontinuous low 
density urban fabric (the created the remaining built-up areas predictor). The data are represented in the form of 
the 100 x 100 m grid used for analysis. 
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Fig. S4: Different line shapes used to test for the effect of the city border on gene flow. The red line represents the 
administrative border of the city; the blue line the administrative city border converted into a concave hull and the 
remaining lines the inner and outer border of a 1-, 2-, 3-, 4- and 5-km buffer around the concave hull.  
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Fig. S5: Clustering results of STRUCTURE for the city of Berlin, including water bodies and city border. The size of 
the pie charts represents the number of samples per spot; the colours represent the percentage assignment to the 
detected clusters.  
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Fig. S6: Best-supported resistance model (water bodies & railways) resulting from the optimisation of all possible 
combination of the five single ATKIS environmental predictors (ALL_COMB() function). The surface has a distinct 
resistance value for areas where water bodies and railways overlap. 
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Fig. S7: Resistance values generated for the model containing all five ATKIS environmental predictors during the 
analysis where possible combination of the five single ATKIS environmental predictors were optimised using the 
ALL_COMB() function. ResistanceGA gave different resistance values to the linear features depending on with which 
other feature they overlapped with. For geographic scale, please refer to Fig. S5. 
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Fig. S8: Best-supported multi-categorical resistance surface for Berlin based on ATKIS data, resulting from single-
surface optimisation (SS_OPTIM()) procedure, where the individual environmental features were added and 
optimised step-by-step based on the model support of the individual features. At points of overlap, water bodies 
took precedence over motorways and railways in the resistance grid, while motorways took precedence over 
railways. 
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Fig. S9:  Cartographic representation of results from genetics-based resistance modelling for foxes across the whole study area. (a) Optimised resistance 
surface of the overall best multi-categorical model and the corresponding CIRCUITSCAPE connectivity map showing conductance to gene flow based on (b) the 
sample locations and (c) sampling locations simulated at the edge of the study area. (d) Optimised resistance surface of the second-best-supported multi-
categorical model (ΔAICc<2) and the corresponding CIRCUITSCAPE connectivity map showing conductance to gene flow based on (e) the sample locations and 
(f) sampling locations simulated at the edge of the study area. 
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2.1 Abstract   

Urban areas test the boundaries of the capacities of wildlife species to adjust to novel environments. The 

red fox (Vulpes vulpes) is one of several carnivores considered to be an opportunistic generalists which 

successfully inhabits urban areas worldwide. This success predicts that red foxes are expected to adjust to 

the urban environment as well as to actual human presence and activity. Yet, today’s carnivores in urban 

landscapes descended from usually shy and elusive rural ancestors subjected to intense hunting pressure 

by humans for centuries. This suggests that the behavioural adjustment of the urban dwelling animals to 

human activities has its limits and that human presence per se should in general be avoided. The 

classification of red foxes and other carnivores as “urban dwellers” or “urban adapters” does not separate 

adjustment to anthropogenic structures and environments from adjustments to human activities. To 

address this issue we analysed high resolution movements of red foxes in the conurbation of Berlin, 

Germany, across a variety of urban habitats which differed in the density of the built-up area and the 

degree to which human activity was present. We generated available habitat selection points based on 

movement patterns and characterised locations available to and used by foxes by assessing covariates 

associated with landscape classes, degree of urbanisation and human presence. These were analysed with 

a step selection function and a generalised linear mixed model framework. The results indicated that foxes 

preferred locations with low human presence such as abandoned areas and railways and avoided public 

green spaces and city forests exposed to intensive human use. Areas of high human population density 

were avoided by foxes, irrespective of the ubiquitous presence of foxes throughout the city area, whereas 

artificial environments such as built-up areas were not. We conclude that actual human presence and 

activities set stronger limits to the animals’ life history than anthropogenic structures, even in established 

urban commensals such as the red fox.   

Keywords: habitat selection, landscape of fear, spatial ecology, urban ecology 

mailto:Sophia.Kimmig@gmail.com


2 
 

2.2 Introduction  

Understanding how animals use space and chose habitats is a fundamental issue in ecology (Gaillard et al. 

2010). An animal’s use of space and choice of habitats emerge from its movement patterns (Karelus et al. 

2019). The underlying behavioural strategies may depend on intrinsic as well as extrinsic conditions such 

as climate, predation risks (Raynor et al. 2017, Heithaus 2001), resource dispersion or resource 

competition (Carr & Macdonald 1986, Rosenzweig 1991). Thus habitat selection and movement patterns 

may document micro evolutionary strategies in behaviour on an individual scale and reflect macro 

evolutionary patterns of adaptation (Morris 2003). 

The behavioural strategies of animals largely depend on the availability of habitat types (Mysterud & Ims 

1998). Urban areas provide a variety of different habitat types, ranging from highly built-up areas and 

areas of high percentages of sealed ground to green, vegetated patches in parks, cemeteries or remnants 

of natural areas. Depending on their degree of synanthropy (Fischer et al. 2015) urban wildlife species may 

prefer or avoid different urban sites. As naturally shy and elusive species (Macdonald 1978, Mahon et al. 

1989) red foxes (Vulpes vulpes) might prefer patches within urban environments that are similar to natural-

like habitats present in the rural environment of their ancestors. However, as established human 

commensal species, their inherent plasticity (Macdonald 1978) may enable behavioural adjustments by 

red foxes to urban living, resulting in an even use of both natural and built-up habitats without specific 

preferences. Consistent with this idea, one study on habitat selection by red foxes found that they did not 

consistently select a particular habitat (Cavallini & Lovari 1994). Urban landscapes are not only 

characterised by artificial structures, sealed surfaces or man-made barriers but also by human presence 

and activities. The presence of people in different city areas and, more indirectly, the local density of the 

human population may modify fox habitat use patterns. Consistent with this idea, a recent camera trap 

study showed that red fox activity patterns were determined by several interacting drivers (Diaz-Ruiz et 

al. 2015). Diaz-Ruiz et al. (2015) suggested to investigate the importance of human presence in greater 

detail as fox activity rhythms seemed to be determined by human presence in sites where human 

disturbance was high. More recently, a study on landscape resistance to gene flow across the urban-rural 

gradient demonstrated that human presence may be a key driver of fox dispersal patterns (Kimmig et al. 

2020). 

In other words, foxes might or might not respond to anthropogenic influences on the landscape, in terms 

of the degree of built-up area and anthropogenic structures, and/or they might respond to human 

presence and activity as such. These ideas and results suggest three hypotheses on which specific element 

of potential anthropogenic disturbance red foxes might respond most strongly to. Hypothesis (i) suggests 
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that the foxes’ behavioural plasticity and adjustment to urban environments enables them to fully exploit 

the urban area. This predicts that foxes should evenly use the urban landscape, no specific landscape 

elements are especially avoided, and human population density should not have an impact on red fox 

movements. Hypothesis (ii) suggests that even in urban environments red foxes rely on green, vegetated 

areas. This predicts that they avoid built-up areas and grey spaces, specifically select green spaces, 

including public green spaces and forested areas, whilst human population density is of no relevance. 

Hypothesis (iii) suggests that red foxes adjust their space use to human presence, i.e. foxes should avoid 

habitats associated with human presence. This predicts that foxes should avoid densely populated areas 

and prefer sites inaccessible to humans. If foxes avoid human presence and activities, their preference of 

undisturbed habitat (such as wasteland) should be more distinct at times of overall increased human 

activity. 

In this study we used GPS movement data to assess which source of anthropogenic disturbance affects 

red fox movement and space use behaviour in urban environments. This included a comparison of 

(movement) habitat selection during key human activity times with habitat selection at times of reduced 

or no human activity.  

 

2.3 Materials & Methods  

Study area and trapping   

The Berlin metropolitan area in the Northeast of Germany (52.5200° N, 13.4050° E, Fig. 1a) is characterised 

by a high level of heterogeneity. The city, populated by 3.5 million inhabitants, includes highly 

industrialised and densely built-up parts with fully sealed surfaces as well as spacious forested areas. 

Around 40% of the 900km² city area are covered by forest (~18%) and other green spaces (~12%), 

agriculture (~4%) and water (~7%). The built-up areas are interspersed by around 2,500 public green 

spaces, 75,000 allotment gardens, 220 cemeteries and numerous waste land sites with a total of around 

11,000ha (GRIS 2021). 

We used animal-borne global positioning system (GPS) data of sixteen wild red foxes that were captured 

within the Berlin city area between 2015 and 2018 (Fig. 1b, Fig. S1). Foxes were trapped at multiple 

locations, using wooden live traps of two meter length (Weisser, trap number 0580) with wire trigger. At 

capturing sites, traps were set, regularly baited with dog food and left open for several months. Camera 

traps were used to verify fox visits at the traps to decide when traps should be armed. During armed 
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periods, traps were monitored through electronic trap supervision which sent an alert once the trapdoors 

were closed (Trapmaster, EPV Electronics GmbH) and traps were also checked on a regular basis.  

 

Figure 1: a: Location of the study area within Germany. b: The city area of Berlin (map: OSM) with the human 

population density raster and GPS localizations of the radio collared foxes. c: legend referring to panel b. 

 

The ensuing handling of trapped foxes was conducted at the trapping location. Animal handling permits 

were approved by the respective animal welfare licensing committee of Berlin (“Landesamt für Gesundheit 

und Soziales”, permit number: G 0211/15). Foxes were first transferred to a crush cage where they were 

weighed and their general physical condition was checked to define the appropriate dosage of analgesics. 

Only foxes of a good weight (>4.5kg) and good health were included in the study. They were anaesthetised 

using a combination of medetomedine (0.07mg/kg) and midazolam (0.8mg/kg). Drugs were administered 

by intramuscular injection in the quadriceps or gluteal muscles. During anaesthesia, the face of the foxes 

was covered with a towel and the eyes treated with a gel to prevent the cornea from drying out. During 

the entire a procedures a veterinarian regularly checked vital signs, pulse and oxygen saturation were 

monitored with a non-invasive pulse oximetry device, with the sensor attached to the tongue of the fox. 

All foxes were deployed with VHF-ACC-GPS collars (e-obs®, Grünwald, models 1C-heavy (~180g) or 1C-light 

(~110g)). At the end of the procedure foxes were placed in the trap on a bedding of hay where they woke 

        5     10    15     20 kilometres 

Human population density 

min max 

(b) (a) 
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up and from where they could leave the trap on their own and at a time of their own choosing. The raw 

data taken by the radio collars were stored on-board. During a daily one hour time frame a VHF signal was 

emitted that could be detected by a handheld receiver to locate the fox and the data downloaded in the 

field, using the handheld e-obs base station.     

Data and analysis  

GPS locations (fixes) were sampled every four or every twenty minutes, with some foxes starting at a four 

minute sampling interval which was later reduced to twenty minutes. Additionally, acceleration data (ACC) 

were sampled every two minutes. In order to extend battery lifetime, GPS sampling intervals were reduced 

to four hours during times of inactivity as defined by a programmed ACC threshold (ACC informed GPS-

downregulation) and reactivated and set back to the original interval as soon as the foxes moved again. In 

order to accommodate ACC-informed GPS downregulation during inactivity of the foxes, we filled the 

resulting gaps in the data stream with the fox’s last fix. Fixes with odd time stamps, locations outside the 

study area and locations resulting in highly irregular speeds between points were considered technical 

outliers and excluded from the curated dataset. Gaps originating from such tag errors or tag malfunction 

remained in the data set. In order to make the data comparable between all individuals, we resampled the 

fixes to twenty minutes intervals. Raw GPS fixes and individual information are stored at movebank.org 

and can be shared upon request. 

Environmental data were extracted at each fix using package amt (Signer et al. 2019) in R. All 

environmental data originated from the cartographic information service “Geoportal Berlin (FIS broker)” 

and are available for download. The human population density values were extracted from the polygon 

“Einwohnerdichte 2019”, the percentage degree of sealed surface (imperviousness) from the dataset 

“Flächennutzung, Stadtstruktur 2015 und Versiegelung 2016”. The landscape classification was based on 

the land use categories of the “Reale Nutzung 2015 (Umweltatlas)”. All layers were converted into raster 

with 10 x 10m resolution. We used the following seven landscape categories reclassified from the original 

land use data set: (i) Public green spaces – city parks and publicly accessible green areas, (ii) City forest – 

forested areas within Berlin irrespective of their composition, (iii) Wasteland – abandoned areas and 

fenced areas such as building land, industrial building remains and construction sites, including fenced 

verges of railway lines, (iv) Built-up areas – residential, industrial and commercial areas of medium dense 

or dense housing, (v) Housing with gardens – residential houses with gardens and sparse housing 

surrounded by green areas, (vi) Allotment gardens – small rental gardens, usually a mixture of small 

buildings and green spaces and arranged in colonies, and (vii) Grey spaces – streets, places and squares. 
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We used the step selection function (SSF) in the amt package to generate ten alternative locations for 

each fix in each step, to assess ‘available’ habitat. SSF are suitable to identify fine-scale behavioural 

responses of animals to their environment as they provide an objective method for defining habitat 

availability in terms of movement constraints (Fieberg et al. 2021, Fortin et al., 2005) and were developed 

to deal with serial dependence (Thurfjell et al., 2014). So, rather than treating fixes as independent events, 

step-selection functions model animal tracks, under consideration of serial appearance (the sequence of 

fixes), step length and turning angles. The amt package provides spatial modelling functions too but is 

designed to assess habitat selection by each individual. As behaviour may vary between animals depending 

on sex, age, body condition, life history stage or personality (Lesmerises & St‐Laurent 2017, Leclerc et al. 

2016, Stamps 2007), we built a generalised linear mixed model using the glmmTMB package (Magnusson 

et al. 2017) to assess general habitat selection patterns across individuals and account for inter-individual 

differences (see also Muff et al. 2019). 

In order to test for differences between diurnal and nocturnal behaviour of the foxes in relation to human 

activity patterns, we run three different land use models: one for data recorded during daytime (from 

sunrise to dusk), one for nocturnal data (from dusk to sunrise) and a global one with data for all 24 hours. 

In order to resemble human activity times and patterns more closely, “daytime” includes also fixes 

measured during dusk whereas “night-time” also included fixes during morning twilight. We also run single 

models for imperviousness and human population density and compared the latter for diurnal and 

nocturnal fixes. Finally we ran a full model, including all land use categories as well as human population 

density and imperviousness using both the full data set and a movement data set which only included fixes 

when foxes were active (with a minimum step length of 20m between points) and therefore excluded 

longer resting events. Environmental continuous variables were scaled and centred to aid model 

convergence. The used (1) versus available (0) fixes were used as response variable. Fox identity and step 

identity were included as random intercepts in the models. Following Muff et al. (2019), random slopes 

per individual for the explanatory variables were also included in the model, using a Poisson error 

distribution.   

 

2.4 Results  

All sixteen radio collared foxes were adult with most individuals being in their second year of life and few 

older individuals. Seven male and nine female foxes were tracked for up to 403 days (Fig. S1). The most 

common cause for the end of the deployment was mortality from road traffic. Home range sizes 

substantially varied between individuals (from 14 ha to 200 ha, 95% kernel), as did diurnal space use 



7 
 

patterns (see Table S1 and Fig. S2). The mean distance between two consecutive GPS points was 56m in 

the full dataset and 137m when only fixes of active movement were included. During times of activity (with 

19% of movement fixes recorded between sunrise and sunset) foxes moved similar mean distances during 

day (152m), night (133m) and twilight (154m). The mean distance moved during dawn (112m) was smaller 

than during dusk (166m).    

 

Habitat selection   

The degree of imperviousness of areas played no role in habitat selection (generalised linear mixed model 

[glmm], parameter estimate β = 0.04 ± 0.04, p = 0.374, Fig. 2a). The glmm for human population density 

(β = -0.19 ± 0.06, p = 0.002) showed significant avoidance of high human population densities, so foxes 

preferably used areas with low human population densities (Fig. 2b).  

The glmm for the selection probability of land use classes showed positive selection values for wasteland, 

residential houses with gardens and built-up areas and negative selection for allotment gardens, public 

green spaces and city forests in relation to grey spaces as reference class (Fig. 3), with significant positive 

selection for wasteland (βwasteland = 0.54 ± 0.27, p = 0.045) and significant negative selection for forest (βforest 

= -0.88 ± 0.45, p = 0.049). The complete model output is reported in Table S2. 

     

 

       

Figure 2: a: The percentage degree of imperviousness of the study area had no significant effect on the selection 

probability by the study animals. b: Increasing human population density decreased selection probability.   

  

 

(b) (a) 
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Figure 3: (a) Selection of different land scape types. Positive values indicate preference, negative values avoidance 

of land scape types in relation to the reference category grey spaces (indicated by the dashed line). (b) Order of 

selection of land use types from most (top) to least selected (bottom). 

 

Diurnal effects  

Modelling habitat selection separately for the daytime and the night-time dataset showed that wasteland, 

residential houses with gardens and built-up areas show positive, public green spaces, allotment gardens 

and forests negative selection values in relation to grey spaces as a reference value (Fig. 4). Wasteland was 

preferentially selected during daytime (1.17 ± 0.42, p < 0.005) in relation to grey spaces as a references 

value. The complete model output is in the supplementary material table S3 (daytime) and table S4 (night-

time). High human population density values were significantly avoided during both periods, daytime (β = 

-0.36 ± 0.15, p = 0.018) and night-time (β = -0.19 ± 0.06, p = 0.007). 

grey spaces 

housing  
with gardens 

wasteland,  
rails 

built-up areas 

public green  
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city forest 

allotments 

(a)                                                                      (b) 



9 
 

      

                                

Figure 4: Selection of different landscape types during night-time (a) and daytime (b). Positive values indicate 

preference, negative values avoidance of landscape types in relation to the reference category grey spaces (indicated 

by the dashed line). Selection probability in relation to human population density during night-time (c) and during 

daytime (d). Higher human population densities are significantly less selected.  

 

Space use and movement habitat selection – full model 

According to the full model, including all land use covariates, population density and imperviousness (Fig. 

5a), high human population densities (βpopulation density  =-0.12 ± 0.05, p = 0.011) and imperviousness 

(βimperviousness = -0.15 ± 0.05, p = 0.004) were significantly avoided. Forests were significantly avoided (βforest 

= -0.90 ± 0.46, p < 0.05), residential houses with gardens (βhousing with gardens = 0.56 ± 0.19, p = 0.03), built-up 

areas (βbuilt-up areas = 0.51 ± 0.18, p = 0.006) and wasteland (βwasteland = 0.77 ± 0.25, p = 0.002) were 

significantly preferred (see Table S5 for all values). The order of selection probability regarding land use 

types is equivalent to the pure land use model (see Fig. 3b). It is important to note that all covariates may 

be relevant to the biological interpretation as significance values depend on the selected reference value 

(e.g. if wasteland is set as a reference value, all other covariates are significantly avoided [Fig. S3, Table 

S6]).  

(b) (a) 

(d) 
(c) 
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Fig. 5b shows the model predictions, using only points of active movement only, to analyse movement 

habitat use excluding resting behaviour. According to the model output city forests (βforest = -0.77 ± 0.33, 

p = 0.020) as well as allotment gardens (βallotment gardens = -0.61 ± 0.24, p = 0.013) are significantly avoided 

(complete output in table S7).  

 

Figure 5: Selection probability of different covariates using all GPS data (a) and movement data only (b). Positive 

values indicate preference, negative values avoidance of landscape types in relation to the reference category grey 

spaces (indicated by the dashed line). 

 

2. 5 Discussion  

Our study shows that habitat selection in urban red foxes is influenced by several factors, including habitat 

type, the level of human presence and activity time. Foxes changed land use as a function of human activity 

patterns, preferring habitat types difficult to access for people during the day and being less selective 

during the night when human activity decreased. 

Inter-individual variability and model selection 

It has been described many times that home range sizes of red foxes (and other carnivores) can vary by 

one or more orders of magnitude, with larger home range size in areas of low resource availability and 

smaller territories in high-resource areas such as cities and suburbs (e.g., Morellet et al. 2013). In Berlin, 

home range sizes also varied by more than one order of magnitude, from very small to larger home range 

sizes (Table S1). These varying home range sizes as well as the variance detected in the model predictions 

(b) (a) 
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on (movement) habitat selection revealed large scale inter-individual differences that were also apparent 

with a classic electivity index analysis by Fiderer et al. (2019) in a rural fox population. Larger than expected 

variation in life-history traits among individuals within a population apart from well-described trait-related 

differences such as sex (Fredga et al. 1994) or age (Charlesworth 1994) as well as contrasting life histories 

have been described for wildlife populations before (e.g. Van Noordwijk & De Jong 1986, Gaillard et al 

2010). However, this insight is often not considered in ecological data analysis. We therefore selected a 

model that not only corrected for individual spatial and temporal dependence but also for inter-individual 

variability to generate robust models, even though classic resource selection functions and other 

comparable approaches produced more significant results. The inter-individual variability also highlights 

that sample sizes are crucial to investigate habitat use in a flexible predator. 

Urban space use  

The hypothesis that foxes do not select specific habitat types can clearly be rejected by this study. Overall, 

foxes preferred wasteland, residential houses with gardens and built-up areas and avoided city forests, 

public green spaces and allotment gardens. The strong avoidance of forested areas is in contrast to 

previous findings of a general preference for woodlands by foxes in rural areas (Fiderer et al. 2019). One 

explanation which is consistent with our other results that foxes avoid high human presence and 

population densities, may be the presence and activities of people within these urban forests. For instance, 

according to the “Association of German Foresters”, one of the largest urban forests that was partly 

incorporated in the home ranges of two study foxes, is visited by an estimated double-digit million number 

of people every year. In terms of landscape, forests are probably the most natural, “greenest” areas in the 

city, whereas other green areas which included trees, grassland and shrubs were provided by the 2,500 

publicly owned and accessible city parks. These parks were also avoided by foxes, presumably for similar 

reasons, whereas wasteland (including railways) were highly preferred habitats. Also, foxes did neither 

avoid built-up areas (Fig. 3) nor did they avoid areas with a high percentage of impervious surface (Fig. 2), 

although the latter is avoided when human population density is controlled for (Fig. 5). Cavallini and Lovari 

(1994) found that within  their  home  range,  foxes  strongly  and  consistently  selected  the  habitat  with  

the  densest  cover  for  resting and their requirement of dense cover has been repeatedly demonstrated 

(e.g. Robertson et al. 2000, White et al. 2006). Such cover is available on wasteland areas, in public parks, 

in residential housing gardens and also in allotment gardens. Nevertheless, allotment gardens were also 

avoided compared to built-up areas and wasteland. Consequently, the hypothesis that foxes primarily 

prefer green and avoid grey areas can be rejected too. Not all wasteland areas are actually green spaces, 

they also include brown areas, building remains and abandoned industrials areas, and the covariate used 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894964/#RSTB20100085C92
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894964/#RSTB20100085C19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894964/#RSTB20100085C103
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here further included the city’s railway lines. The selection probabilities for the mentioned landscape types 

as well as the avoidance of high human population density therefore indicates an avoidance behaviour 

towards human presence and activity. Studies in London (Harris 1977), Toronto (Adkins and Stott 1998) 

and Switzerland (Weber & Meia 1996) showed that a lack of regular disturbance by humans is important 

for foxes when they select den sites. In Melbourne, avoidance of humans was a major precondition for 

selecting natal den sites (Marks et al. 2006). The avoidance of areas dominated by human activity in Berlin 

was not limited to den or resting sites but also applied to general habitat use and movement behaviour 

(see also below).  

Diurnal patterns 

The fox is usually described as a predominantly nocturnal or crepuscular animal (e.g. Maurel 1980, Cavallini 

& Lovari 1994, Díaz‐Ruiz et al. 2016). According to Maurel (1980), the diurnal activity of foxes is limited to 

the period of returning to the main burrow area. In contrast, we found that around one fifth of active 

movement fixes occurred between sunrise and sunset and foxes with access to rather undisturbed areas 

used large areas within their home ranges during the day (Table S1, Fig. S2). A camera trap study on activity 

patterns also reported variation among individuals regarding the extent of diurnal activities (Díaz‐Ruiz et 

al. 2016). Monterroso et al. (2014) described the red fox as «facultative nocturnal species” and stated that 

such species may exhibit substantial flexibility to locally adjust their foraging strategies. Díaz‐Ruiz et al. 

(2016) found that red fox activity rhythms were determined by human presence where human disturbance 

was high and that diurnal activity decreased in areas with higher levels of human disturbance whereas the 

temporal overlap with prey activity was on average low. Our results suggest that the selection of 

undisturbed habitat such as wasteland or of space with low human activities such as residential houses 

with gardens was more pronounced during times of human activity. Built-up areas were also preferred at 

all times, but this is difficult to interpret with respect to their level of human-related disturbance as they 

include a variety of different structures including more and less disturbed spaces. Their positive selection 

nevertheless indicates that foxes did not avoid houses or artificial structures per se. Allotments appeared 

to be more strongly avoided during human activity times, which seems logical as people do not reside in 

those gardens so they are mainly used during daytime. Finally, the avoidance of increasing human 

population density seems more distinct at times of human activity (Fig. 3 c-d).  

Vigilance behaviour 

As stated above, Cavallini and Lovari (1994) found that foxes preferred habitats with dense cover for 

resting. They also described this finding as unexpected, as in their study area foxes were not hunted for 

about ten years. They assumed that either more favourable thermic conditions or  “the  permanence  of  
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a  previously  adaptive  behaviour  (with  either  a genetic  or  a cultural  basis)  may  explain  this  tendency” 

(p 245). Our study is consistent with the latter explanation and suggests that foxes may have maintained 

a certain level of shyness or vigilance towards humans as a measure of predator avoidance behaviour even 

after dozens of “hunt-free” urban fox generations. This is in line with previous findings regarding human-

driven dispersal patterns (Kimmig et al. 2019) based on a transfer of the “landscape of fear” concept from 

feeding ecology (Laundré et al., 2010). Railway lines were included in the wasteland category as both 

elements share their inaccessibility to people and were present in all fox home ranges. When available, 

foxes selected these areas with one fox almost entirely living (and dying) on a railway segment. Considering 

the mortality risks associated with this urban infrastructure, the pressure to find spaces free of people 

might be high.  

Movement 

The overall pattern of habitat use was similar for the full dataset and the movement only dataset, but 

selection preferences were less distinct for movement data (except for forest and allotment gardens). This 

is in line with our finding that selective patterns are less distinct at night-time (when human activity is 

reduced), when most fox movements occur. The habitat use during active movement nevertheless showed 

the described preference patterns.   

Mammalian carnivores mainly move to find and capture food, avoid competitors, avoid predators, find 

mates, and scent-mark and otherwise communicate with conspecifics (Powell 2012) but their movement 

is restricted by humans (Tucker et al. 2018). Although food availability was not included in our study, the 

avoidance of feeding competitors as a driving factor for habitat selection seems less important in urban 

areas where food resources are ubiquitously available and abundant (Macdonald 1983, Macdonald & 

Johnson 2015). Accordingly, previous studies showed group-living and less territorial behaviour in urban 

red foxes and a territoriality which is generally not too strict (Baker et al. 1998, Baker et al. 2004, Cavallini 

1996). Our results suggest that the avoidance of predators in terms of humans, drives fox habitat use 

during movement. Interestingly, our results also showed that the avoidance of allotment gardens is more 

pronounced when focusing on fixes during active movements, although these areas probably provide the 

largest amount of food besides built-up areas. Because of their mixed plant composition, allotment 

gardens provide insects, earthworms, rodents, bird nests and voles as well as crops, fruits and leftovers 

from humans. Built-up areas were also less selected during fox activity. This could indicate that they are 

also important for resting behaviour, which seems likely in cases when wasteland is not always available 

to an individual fox and large city areas consist of apartment blocks without residential houses, making 

backyards and verges along apartment blocks the only protected patches with cover. 
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More fine scale analysis of movement data in combination with high resolution geographic data which 

reveal information on local food availability may help to further clarify the role of resource distribution on 

space use and movement patters. We conclude that human presence is a main driver of space use and 

activity patterns in urban areas in a commensal species. 
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Figure S1: Deployment times of the 16 radio-collared study foxes. 
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Table S1: Summary on age, sex, weight, deployment and home range sizes of the 16 study animals. Due to short 
deployment times and high fluctuations, no proper home range estimation was possible for individuals marked with 
* symbol. HR = home range. 

Animal ID sex age 
[years] 

weight 
[kg] 

duration 
[days] 

HR 95% 
kernel [ha] 

HR [ha] 
day  

HR [ha] 
night  

HR [ha] 
dawn 

HR [ha] 
dusk 

Rudi m 1 6,1 13 *     
Gerlinde f 1,5 5,3 403 100 67 107 78 84 
Kalle m 1,5 6,05 21 220 32 248 41 47 
Frida f 1,5 4,8 84 176 50 242 182 88 
Felicitas f 1,5 4,86 59 122 41 156 125 60 
Gisel f 1,5 4,9 159 151 117 151 112 114 
Hazel f 4,5 5,8 145 44 43 44 51 38 
Ida f 1,5 4,8 160 151 61 154 75 89 
Jack f 3 7,1 344 80 48 89 94 47 
Kyna m 1,5 5,6 263 72 34 75 37 45 
Presidente f 7 6 23 95 11 95 61 20 
Manu m 2 7 17 *     
Nikita m 1,5 6,8 102 31 5 32 10 2 
Oregano f 6 5,7 71 14 2 15 6 5 
Porthos m 1,5 6,1 240 143 57 160 89 69 
Qu m 1,5 5,9 389 43 7 48 25 21 

 

 

  
 

Figure S2: Example of diurnal home range visualizations for two different study foxes. On the left, fox “Kalle”, living 
mainly in built-up, crowded areas, on the right, fox “Gerlinde”, living mainly on undisturbed wasteland. Blue colour 
indicates the kernel density estimate based on nocturnal points, yellow the estimate for points measured during 
daytime, pink during morning twilight and grey during evening twilight.  
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Table S2: GlmmTMB output for the land use raster (signifiance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1). 

Covariate Estimate Std. Error z value Pr(>|z|) significance 

Public green spaces - 0.4216 0.3113 -1.354 0.1757  
City forest -0.879 0.4464 -1.970 0.0488 * 
Wasteland 0.5427 0.2711 2.002 0.0453 * 
Built-up areas 0.1899 0.1530 1.241 0.2146  
Housing with gardens 0.2506 0.1602 1.564 0.1177  
Allotment gardens -0.3077 0.2571 -1.197 0.2313  

 

 

Table S3: GlmmTMB output for the land use raster based on GPS data taken during daytime (signifiance codes:  0 
‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1). 

Covariate Estimate Std. Error z value Pr(>|z|) significance 

Public green spaces -0.2680 0.4032 -0.665 0.50632  
City forest -0.9735 0.6004 -1.621 0.10494  
Wasteland 1.1711 0.4154 2.819 0.00481 ** 
Built-up areas 0.4520 0.2793 1.618 0.10562  
Housing with gardens 0.4783 0.4146 1.154 0.24865  
Allotment gardens -1.8226 1.0267 -1.775 0.07588 . 

 

 

Table S4: GlmmTMB output for the land use raster based on GPS data taken during night-time (signifiance codes:  0 
‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1).  

Covariate Estimate Std. Error z value Pr(>|z|) significance 

Public green spaces -0.42352 0.28749 -1.473 0.1407  
City forest -0.76015 0.40554 -1.874 0.0609 . 
Wasteland 0.31959 0.22207 1.439 0.1501  
Built-up areas 0.05272 0.13024 0.405 0.6856  
Housing with gardens 0.08445 0.08799 0.960 0.3372  
Allotment gardens -0.31752 0.22788 -1.393 0.1635  

 

 

Table S5: GlmmTMB output for the full model based on the complete data set (signifiance codes:  0 ‘***’ 0.001 ‘**’ 
0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1). 

Covariate Estimate Std. Error z value Pr(>|z|) significance 

Population density -0.12056 0.04735 -2.546 0.01090 * 
Imperviousness -0.15277 0.05365 -2.847 0.00441 ** 
Public green spaces -0.36298 0.32320 -1.123 0.26139  
City forest -0.89933 0.45618 -1.971 0.04868 * 
Wasteland 0.76608 0.24993 3.065 0.00218 ** 
Built-up areas 0.50749 0.18358 2.764 0.00570 ** 
Housing with gardens 0.55870 0.18585 3.006 0.00265 ** 
Allotment gardens -0.21658 0.27880 -0.777 0.43727  
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Figure S3: Full model for the complete dataset with wasteland as a reference value.  

 

 

Table S6: GlmmTMB output for the full model with wasteland as the reference covariate (significance codes:  0 ‘***’ 
0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1).  

Covariate Estimate Std. Error z value Pr(>|z|) significance 

Population density -0.10897 0.04691 -2.323 0.020174 * 
Imperviousness -0.19668 0.05476 -3.591 0.000329 *** 
Public green spaces -1.60300 0.31042 -5.164 2.42e-07 *** 
City forest -2.00287 0.47437 -4.222 2.42e-05 *** 
Grey spaces -1.27250 0.16766 -7.590 3.21e-14 *** 
Built-up areas -0.62368 0.18501 -3.371 0.000749 *** 
Housing with gardens -0.58407 0.22563 -2.589 0.009636 ** 
Allotment gardens -1.26848   0.27915 -4.544 5.52e-06 *** 

 

 

Table S7: GlmmTMB output for the full model based on the movement data subset (significance codes:  0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1).  

Covariate Estimate Std. Error z value Pr(>|z|) significance 

Population density -0.09118 0.04857   -1.877 0.0605 . 
Imperviousness -0.09190 0.05949   -1.545 0.1224  
Public green spaces -0.55293 0.32763 -1.688 0.0915 . 
City forest -0.76810 0.32929 -2.333 0.0197 * 
Wasteland 0.19722 0.18435 1.070 0.2847  
Built-up areas 0.05835 0.15989 0.365 0.7152  
Housing with gardens 0.16670 0.14014 1.190 0.2342  
Allotment gardens -0.60597 0.24358 -2.488 0.0129 * 
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Abstract

1. Remotely tracking distinct behaviours of animals using acceleration data and machine

learning has been carried out successfully in several species in captive settings. In order

to study the ecology of animals in natural habitats, such behaviour classification models

need to be transferred to wild individuals. However, at present, the development of those

models usually requires direct observation of the target animals. 2. The goal of this study

was to infer the behaviour of wild, free-roaming animals from acceleration data by training

behaviour classification models on captive individuals, without the necessity to observe

their wild conspecifics. We further sought to develop methods to validate the credibility of

the resulting behaviour extrapolations. 3. We trained two machine learning algorithms pro-

posed by the literature, Random Forest (RF) and Support Vector Machine (SVM), on data

from captive red foxes (Vulpes vulpes) and later applied them to data from wild foxes. We

also tested a new advance for behaviour classification, by applying a moving window to

an Artificial Neural Network (ANN). Finally, we investigated four strategies to validate our

classification output. 4. While all three machine learning algorithms performed well under

training conditions (Kappa values: RF (0.82), SVM (0.78), ANN (0.85)), the established

methods, RF and SVM, failed in classifying distinct behaviours when transferred from cap-

tive to wild foxes. Behaviour classification with the ANN and a moving window, in contrast,

inferred distinct behaviours and showed consistent results for most individuals. 5. Our

approach is a substantial improvement over the methods previously proposed in the litera-

ture as it generated plausible results for wild fox behaviour. We were able to infer the

behaviour of wild animals that have never been observed in the wild and to further illus-

trate the credibility of the output. This framework is not restricted to foxes but can be

applied to infer the behaviour of many other species and thus empowers new advances

in behavioural ecology.

Introduction

Animal-borne sensors such as temperature loggers, salinity loggers or microphones are used

to study a wide variety of parameters in wild animals without disturbance by human
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observers [1]. In the study of movement ecology of species [2], animal-borne sensors make it

possible to track the locations of wild animals. The first attempts to remotely track animal

locations were made in the 1960s through VHF telemetry [3]. In more recent years it has

become common practice to track animal locations with satellite systems [4], enabling

researchers to study where individuals dwell. However, the spectrum of ecological questions

that can be addressed by using location data alone is limited. By combining such data with

behavioural data, more in-depth studies of species will become possible [5]. Yet, in contrast

to recording locations, remotely tracking the behaviour of free-ranging animals is not well

established at this point.

The principal underlying remote-tracking of behaviour is to attach accelerometers to ani-

mals to record their body movement. The first major study utilizing acceleration data to study

the behaviour of animals was conducted in 1996 [6]. Since then, many studies have shown that

acceleration data can be used to infer the behaviour of animals by employing various machine

learning algorithms [5, 7]. To train these algorithms for pattern recognition and data classifica-

tion, the acquisition of acceleration data was coupled with direct observation of the behaviours

of the tagged animals. Using one portion of this ground-truthed data set to train the algorithm

and another portion to infer behaviour from it allows validation of the inferred behaviour.

Extrapolating behaviours from acceleration data of wild individuals is a challenge since it is

often impossible to test whether the extrapolated behaviours are correct or not. Some models

were trained and validated on the same wild individuals [8–10], which requires direct observation

of the studied individuals at least for a certain period of time. However, the promising advance of

behaviour classification through machine learning is the ability to study the behaviour of wild

animals without observing (and possibly disturbing) them. Furthermore, direct observation may

often not be a feasible option, especially when target species are elusive or cryptic.

For other models, additional sensors such as GPS [11] or depth and speed sensors for

aquatic species [9, 10, 12] were employed to identify the behaviours executed. In these cases,

the information from the additional sensors was used to investigate the behavioural context

the animal was in at the time of data recording, in order to delimit likely behaviours. For stud-

ies in which no validation was possible, various behaviours were grouped into broad, easily

distinguishable categories to reduce confusion of similar behaviours [13, 14]. Thus, accurately

inferring distinct behaviours of wild individuals still poses a problem.

The Random Forest (RF) and the Support Vector Machine (SVM) are popular approaches

to infer animal behaviour from acceleration data and have yielded good results under training

conditions [5, 15]. Yet, to our knowledge, there are no studies successfully transferring a

behaviour classification model trained on captive individuals to wild individuals.

To study the complex behaviour- or movement ecology of wild animals, however, a

valid data set of linked GPS locations and behavioural data is needed. In this study, we,

therefore, aim to test the capacity of different machine learning algorithms in inferring the

behaviour of wild foxes (Vulpes vulpes) from acceleration data. We provide a framework to

infer the behaviour of wild red foxes based on an Artificial Neural Network (ANN) trained

on captive red foxes.

Our framework further addresses the issues of working with small training data sets (a com-

mon obstacle in wildlife- and conservation research) by using a new approach to efficiently

exploit the given data set. Finally, we suggest how to validate the inferred behaviours when

observation of free-ranging individuals is not a feasible option. We propose four strategies to

assess the credibility of the output by combining the classified behaviour with GPS and tempo-

ral information. The study set-up, together with our novel approach, enables us to test the use

of machine learning for behaviour classification and to empower behaviour classification of

wildlife through acceleration data in the future.
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Material and methods

Data collection and acceleration logger setup

Animal catching and handling have been approved from the State Office for Health and Social

Affairs, department of veterinary affairs (permit number: IC113-G0211/15) and the ethics

committee of the Leibniz Institute for Zoo and Wildlife Research in Berlin (permit number:

2015-03-04) and have been conducted according to applicable national and international

guidelines. Approvals have been received prior to beginning research. To reduce stress during

handling, all foxes got anesthetized before the deployment of radio collars. For anaesthesia we

first used a long established mixture of Xylazin (10-16mg/kg) and Ketamin (12-20mg/kg) and

later switched to an improved mixture of Ketamin (4mg/kg), Medetomidin (70μg/kg) and

Midazolam (0,6mg/kg) that is better tolerated.

For gathering the acceleration and GPS data sets, used in this study, we deployed

UHF-GPS collars (“1C-light” and “1C-heavy”, E-obs GmbH, Munich, Germany; Fig 1) on

adult red foxes, both, in captivity and in the wild. Both captive and wild individuals were

tagged with the same type of sensors and acceleration data logger settings. Captive individ-

uals were observed to train and test the models and wild individuals were used to apply

them. For the training data set, two individuals (female, approx. 8 years old) were collared

in a game park enclosure in the north-west of Berlin between November 2015 and June

2016. Their enclosure mainly consisted of a sandy and stony substrate and was partially

covered with concrete, grass and weeds. Several trees, tree roots, piles of stones and

cement tubes provided a heterogeneous environment with both opportunities to hide

and climb. One of the cement tubes led to an artificial, observable den. The two foxes

were chosen to be collared, because of their lacking fear towards visitors and noises and

the resulting possibility to be observed outside their den for several hours per day. For the

field dataset, data from wild foxes were used that were radio-collared by Kimmig et al. in

the city of Berlin, Germany, between 2015 and 2018. In total 17 wild individuals (10

female, 7 male) were caught. Out of those, for 9 individuals (7 females, 2 males), three

consecutive months of data were available and they were therefore included in the analy-

sis. All individuals were adults (with ages ranging from 1.5 to 7 years) and their urban and

suburban habitats were characterized by a heterogeneous structure, including green spaces

as well as concrete.

The acceleration loggers that were embedded in the UHF-GPS collars were set up to mea-

sure acceleration in short intervals at a frequency of two minutes. Data was recorded for three

axes perpendicular to each other at a sampling rate of 33.33Hz per axis. There were 110 accel-

eration measurements taken for each axis in each measurement interval. Resulting from the

sampling rate and the number of measurements for each axis the duration of each recording

interval was 3.3 seconds. We refer to a single recording interval as a burst.

To train the algorithms we used the raw ground-truthed data of the captive foxes that were

observed during the recording of acceleration data. A specific UHF-pinger signal indicated

the start of each burst for the observer who then noted the displayed behaviour. All measured

behaviours had been previously classified in an ethogram that was established through obser-

vations before and after collaring the individuals (with all steps conducted by the same

observer). It contained the following behaviours: feeding, grooming, resting, caching, trotting

and walking (for a detailed description of the behaviours see S1 Table). The pinger signal

could be detected acoustically with a UHF Wide Range Receiver that was set to the unique

frequency of the collars (see [16]) and was not audible to the foxes.

During a burst, the animal in focus was observed closely and the behaviour was noted. Each

observation was linked to the corresponding acceleration burst via the unique timestamp.
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Due to slight shifts in the collars’ timestamps, the raw acceleration data of a number of con-

secutive bursts—ideally encompassing a distinctive change in behaviour (e.g. resting followed

by trotting)—was visually inspected and compared to the noted behaviours. The timestamps

of observations were corrected accordingly.

After excluding all bursts containing more than one behaviour, 4159 bursts of six different

behaviour classes were used as the input for the model training (feeding: 367, grooming: 1140,

resting: 2114, caching (bury food to consume it later): 197, trotting: 179, walking: 162).

Data preparation

We calculated summary statistics from the raw acceleration data, separately for each burst, to

serve as predictors for the machine learning algorithms. The following predictors were calcu-

lated per axis: mean, standard deviation, inverse coefficient of variation, variance, skewness

and kurtosis. Additional predictors represent combinations of all three axes and were calcu-

lated according to the corresponding literature: q [5], pitch and roll [17] and overall dynamic

body acceleration (ODBA) [18]. In addition to the summary statistics, we added the whole

spectrum of a Fast Fourier Transformation of each axis to the set of predictors. As most of the

Fig 1. Camera trap picture of a wild red fox (“Gerlinde”), collared in Berlin in 2016. The arrows symbolize the X-, Y- and Z-axis (corresponding to

sway-, surge- and heave-motion).

https://doi.org/10.1371/journal.pone.0227317.g001
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time-related information in the raw acceleration data is lost when calculating the summary sta-

tistics we decided to use the full spectrum to utilize this information. For a complete list of pre-

dictors see S2 Table. We performed all data transformations and the construction of the ANN

in R [19] and Rstudio [20]. The sum_data function in the accelerateR package (W. Rast,

unpublished data.) was used for summary statistics and Fast Fourier Transformation

calculation.

Data classification

Established methods: Support vector machines (SVM) and random forest (RF). Sup-

port Vector Machines separate data of different classes from each other by constructing a

hyperplane between them. Classification of new data is subsequently based on their relative

position to the hyperplane. By default, the classification is binary. For applications with multi-

ple classes, more hyper-planes between classes will be constructed [21]. We used the imple-

mentation of an SVM in the R package “e1071” [22] with the kernel type “radial”.

Random Forests are an improvement of the classical Classification and Regression Trees

(CART) [23]. While in CART all predictors are used, the RF picks a random subset of predic-

tors to fit a tree. This is repeated several times, and the final prediction is the result of all trees

combined by a majority rule [24]. We used the implementation of an RF in the R package

“randomForest” [25] with the standard settings using 500 trees.

Artificial neural network (ANN). ANNs are similar to biological neural networks and

consist of multiple nodes that are distributed over several layers and interconnected [26].

Nodes are activated based on the input variables (predictors) and an activation function. In the

simplest cases, this function is a summation of all input variables that are passed to a specific

node. These functions also include weights that change the influence of every input variable

and are set during the training phase. For training, a ground-truthed data set is needed on

which the ANN establishes the node connections and the weights so that the output of the

ANN corresponds to the target classes of the model data. The activation or non-activation of

nodes serve as input for the next layer of nodes. The last layer usually consists of nodes repre-

senting the target classes. Their activation leads to the assignment of data to a class.

For our study, we chose a three-layer network with the output of the last layer being a spe-

cific behaviour class. We used a feed-forward type architecture for the ANN and used the

Keras package [27] to implement it.

Moving window

One strategy that has been tested with continuously recorded data is to apply a moving win-

dow to partition the acceleration data and to compute summary statistics for each of the result-

ing segments. In different studies, these windows could partially overlap or not overlap at all

[28–30]. An application example very similar to our approach is the assessment of car driver

aggressiveness using continuous data by Ferreira et al. [31]. However, to our knowledge, this

approach has never been used on burst data in wildlife ecology.

We applied a moving window to every recorded burst to increase the sample size of our

data set since it was found that ANNs show better performance with increasing sample size

[32, 33] and require large training data sets [34]. In the first set, this window reduced the

amount of data within the burst from the original 110 measurements down to a subset of the

window length. We then computed the summary statistics and Fast Fourier Transformation

(S2 Table) for this subset. In a second step, the window was moved by one position so that the

first measurement of every axis was removed and one new measurement for every axis was

added to the end of the window (see Fig 2). We then computed all variables for the second
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window and so forth. The window was moved until it included the last measurement of the

original burst, resulting in a number of predictor sets representing the same burst. In contrast

to extracting random subsets, this approach preserves the order of the data for a specific behav-

iour, and we were able to calculate the Fourier spectrum which is dependent on the correct

order of measurements.

Model evaluation

To evaluate the model performance of all three machine learning algorithms, we trained them

on 70% of the data (training data). We then inferred the behaviour for the remaining 30% (test

data) by classifying them with the trained model and assigning a specific behaviour to each

burst accordingly (or assigning “other”, respectively as described below). Since the number of

observations per behaviour class differed, we split the data of each behaviour class separately

in a random fashion so that the original proportions of behaviour counts were similar in the

training and test data sets. We applied the moving window to the training and test sets after

the split. We calculated the recall (true positives / (true positives + false negatives)) and preci-

sion (true positives / (true positives + false positives)) [7] for each behaviour. For the sake of

completeness, we also calculated the accuracy ((true positives + true negatives) / total number

of samples). For comparison with other models we calculated Cohens Kappa with Kappa = (po
−pe)/(1 − pe) with po ¼

Pc
1
ðTPc=nÞ and pe ¼

Pc
1
ððTPc þ TNcÞ=n � ðTPc þ FPcÞ=nÞ. With

<n> being the total sample size and<c> the number of classes [35].

To reduce confusion of behaviours, a threshold was set for the ANN assignments. Only

behaviour assignments that exceeded a probability of 0.7 were accepted. All assignments below

that threshold were classified as “other” behaviour. This was necessary to account for the fact

that captive individuals may not execute the full range of behaviours available to the species,

which would lead to some behaviour (e.g. hunting or fighting) not being included in the

model. If wild individuals displayed any of these behaviours, they could be incorrectly classi-

fied as one of the behaviours included in the model. We expect that such classifications would

Fig 2. Schematic representation of the moving window approach: Starting at the beginning of a data set (“burst”,

here n = 10), a fixed number of consecutive data (“window”, here n = 4) is taken out and analysed. In the further

step-by-step analysis, the window is shifted by one data set until the window has reached the end of the complete data

set (7 steps in the schematic example).

https://doi.org/10.1371/journal.pone.0227317.g002
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be assigned at low probability so that we can avoid these errors by implementing the threshold.

Similarly, recordings in which the individual changed its behaviour during a burst should not

be characteristic for any specific behaviour and therefore should also fall below the threshold.

Model selection

Artificial Neural Networks are used for a variety of tasks such as image recognition, sentiment

analysis or regression. The necessary sample size and ANN architecture depend on the specific

task [36]. Finding the optimal properties for the best performing ANN is not achieved by a sci-

entific method but rather by trial and error [33]. To find the best window size we trained the

ANN on window sizes from 20 to the full 110 and finally decided on 79. We evaluated all mod-

els by calculating the recall, precision and the proportion of “other” behaviours. As recall and

precision are calculated for each behaviour, we first computed their means and then calculated

the mean of the resulting mean recall and precision as well as the proportion of “other” behav-

iours. The latter was subtracted from one to be on the same scale as recall and precision. A

General Additive Model (GAM) was applied to the calculated means for all window sizes. We

calculated the slope m of the GAM fit for each window size using the difference quotient m =

(Δyn-Δyn-1)/(Δxn-Δxn-1). Variable x corresponds to the window size and y to the calculated

model performance, n corresponds to a specific window size and n-1 to the previous window

size. A window size of 79 provided the best trade-off between small window size and high per-

formance (see “Model selection” in the Results).

Application to wild individuals

For our subsequent analysis of behaviour inference, we selected wild foxes for which at least

three consecutive months of acceleration data were available (N = 9). We considered all

months in which data was recorded for at least half of the month. In addition to the accelera-

tion data, the tags recorded GPS locations every four minutes for the first eight weeks, after

that every 20 minutes (GPS for fox “Gerlinde” was only recorded every 20 minutes). Using

acceleration informed GPS measurement, this interval was reduced to every four hours when

a fox was inactive. We trained all three classification models on the complete ground-truthed

dataset of the captive foxes and applied the trained model to classify the data of the wild foxes.

As the moving window results in multiple behaviour outputs for each burst, only one behav-

iour was assigned to each burst, following majority rule. We consider all classifications within

one burst as equal and determine the absolute majority.

Validation of behaviour assignments

We assessed the plausibility of the ANNs’ behavioural assignments by examining the following

four aspects: (i) biological credibility of the behaviour assignments (ii) consistency over indi-

viduals and time (iii) coherence with the GPS data and (iv) coherence with ODBA.

To address biological credibility (i), we calculated the time-dependent composition of

behaviours throughout the day and compared it to the literature on fox behaviour. As seasonal

shifts can influence behavioural compositions, we separated the behaviour assignments by

month. For each day within a single month, we counted the number of assignments of each

behaviour (for each minute covered by the tag schedule) in the 24 hours. We further used the

corresponding plots to (ii) visually compare the daily patterns over time and between individu-

als. (iii) We incorporated the given GPS information of the free-ranging individuals because

we expected the GPS data to correspond with specific behavioural classes. For instance, spatial

clustering of GPS data should correspond with stationary resting behaviour. We treated points

as a cluster when consecutive GPS points were within a 50m radius of the first GPS point of
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that cluster. Points recorded more than 50m away were defined as the first point of a new clus-

ter. Since it was possible that clusters consisted of only a single point, we only considered

behaviour assignments to be spatially clustered when at least 10 classified behaviour items

were assigned to the same cluster. We then calculated for each behaviour the proportion of

behaviour assignments that were within a cluster. In addition, we investigated the coherence

of GPS based speed measure and movement-related behaviour classifications (trotting and

walking). We, therefore, calculated the speed of the moving animal based on the spatial and

temporal distances between consecutive GPS points. Due to independent schedules, GPS and

acceleration data were not recorded exactly simultaneously. Hence acceleration data that was

recorded within 10 seconds of a GPS measurement were considered. Finally, we (iv) compared

the temporal distribution of ODBA values and behaviour assignments by constructing acto-

grams using accelerateR.

Results

Training conditions: Captive foxes

We could classify all six behaviours during the validation using SVM and RF. Classification

success differed between the behaviour classes for both algorithms. We achieved the best classi-

fication success for resting and the lowest for caching and walking (Table 1). The confusion

matrices (S3 and S4 Tables) showed that grooming and walking were confused more often

compared to other behaviours. Recall can be interpreted as the proportion of behaviour events

that were correctly classified. Feeding (SVM), for example, had a recall of 0.43, meaning that

43% of all feeding events were correctly classified as feeding. Precision can be interpreted as

the probability for an assignment to be correct. Feeding had a precision of 0.58, meaning that

a single assignment of feeding is correct with a chance of 58%. Both algorithms show compara-

ble results only for resting. The SVM performs worse for all other behaviours. Our initial test-

ing showed that the SVM performed better without the addition of the FFT spectrum but we

kept the model this way to ensure the comparability of all three models. We added the accu-

racy metric that is often used for model evaluation but will not endorse its use for this study:

As accuracy uses the true negatives it is influenced by the large number of resting observations

that we got. Since most of the resting data is classified correctly these data is treated as true

Table 1. Recall and precision of the classification output compared for support vector machine (SVM), random forest (RF) and artificial neural network (ANN).

All algorithms are capable of classifying and inferring fox behaviour with a high success rate (exceptions are caching and walking for SVM and RF).

Feeding Grooming Resting Caching Trotting Walking

SVM

recall 0.43 0.33 0.98 0.37 1.00 0.27

precision 0.58 0.70 0.98 0.21 0.19 0.36

accuracy 0.92 0.77 0.94 0.90 0.81 0.95

RF

recall 0.70 0.93 0.92 0.68 0.96 0.43

precision 0.71 0.80 0.99 0.59 0.91 0.84

accuracy 0.94 0.91 0.95 0.96 0.99 0.98

ANN

recall 0.83 0.88 0.96 0.67 0.96 0.74

precision 0.84 0.95 0.98 0.83 0.91 0.71

accuracy 0.93 0.92 0.95 0.95 0.96 0.95

https://doi.org/10.1371/journal.pone.0227317.t001
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negatives for all other behaviour classes and thus resulting in higher accuracy values for those

behaviour classes.

The Kappa values for the RF and SVM are 0.81 and 0.51 respectively. Our initial testing

with training both models without the Fast Fourier Spectrum resulted in Kappa values of 0.81

and 0.78 for RF and SVM respectively. The performance of the RF remains the same while the

performance of the SVM decreased due to the addition of the Fast Fourier spectrum.

Like RF and SVM, the ANN could predict all six behaviours during validation. Also, classi-

fication success differed between behaviour classes. The performance of the ANN is overall

comparable to the RF but performs better than the SVM. The confusion of walking behaviour

with grooming is reduced compared to the SVM and RF (S6 Table). The kappa value of 0.85

for the ANN was also higher than for the RF (0.81) and SVM (0.51). The proportion of assign-

ments that did not surpass the threshold was 0.04.

Model performance of the ANN appears to be dependent on the window size (Fig 3) and

decreases towards both ends of the window size spectrum. Smaller window sizes seem to have

a stronger impact on model performance than larger window sizes. The GAM fit has its maxi-

mum at window size 79, with the slope of the GAM fit close to 0. We thus considered 79 to be

the best trade-off between model performance and window size and used it for the final model

(see Discussion).

Field conditions: Application to wild foxes

We here show the results for all wild foxes and plots for those two wild foxes (“Que” and “Ger-

linde”), whose collars yielded data over a whole year. Graphic representation of all remaining

individuals is presented in the supplemental material (S1–S7 Figs).

Fig 3. ANN model performance in relation to window size. Black dots show the computed performance values. The

blue line is the result of a General Additive Model, k = 40 [37] fit. The y-axis on the left side labelled “Model

Performance” corresponds to the Model Performance line (blue) and Raw Metrics points (black). The orange line is

the calculated slope of the model performance, which corresponds to the y-axis on the right side labelled “Slope”. The

green vertical line represents the best window size of 79.

https://doi.org/10.1371/journal.pone.0227317.g003
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When the trained SVM and RF models were applied to classify the behaviour of the nine

wild foxes, all bursts were classified as grooming. No resting, caching, feeding, trotting or walk-

ing events were detected (Table 2). When applying the trained ANN to the wild fox data, all six

behaviour categories were assigned in all nine individuals (Table 3). For the field data of “Que”

and” Gerlinde”, a proportion of 1% did not exceed the 70% threshold and was therefore

labelled “other”. For both foxes feeding, caching and walking were assigned at low rates.

Validation and credibility of the behaviour assignments

Biological credibility of the behaviour assignments (i) and consistency over individuals

and time (ii). Looking at the time-dependent composition of each individual’s behaviour

(Fig 4, S1–S7 Figs), a similar pattern of behavioural composition over time is clearly noticeable

(months without full data recording ought to be excluded for feasible interpretation). Clearly,

there is a high proportion of resting behaviour during the middle of the day, while trotting is

mostly inferred during dark hours. Trotting is also inferred more often than walking. There

seems to be a seasonal change in resting behaviour, with resting events being more explicitly

limited to the daytime in summer months. Feeding events are more often inferred during dark

hours than during the daytime, when mostly resting and some grooming are classified.

In the comparison between individuals some differences emerge. Some individuals, e.g.,

show less trotting (S2 Fig), more walking (S3 Fig) or much more grooming than others (S7

Fig). Despite this variation, the general pattern of behaviour composition appears very similar

across all individuals.

(iii) Coherence with GPS. Resting behaviour appears to be highly associated with GPS

clusters (Fig 5A), while all other behaviours are inferred mostly outside of clusters. This also

Table 2. Number of occurrences of every classified behaviour for the wild foxes. Count of all behaviour assignments compared for support vector machine (SVM) and

random forest (RF). Overall, all foxes show similar proportions of behaviours throughout their measurement periods. As all individuals were tagged for different time peri-

ods, the absolute number of assignments differs between individuals.

Individual Measure feeding grooming resting caching trotting walking other

SVM

Gerlinde count 0 289248 0 0 0 0 0

Gisel count 0 102920 0 0 0 0 0

Hazel count 0 103951 0 0 0 0 0

Ida count 0 110337 0 0 0 0 0

Jack count 0 243742 0 0 0 0 0

Kyna count 0 159211 0 0 0 0 0

Nikita count 0 72653 0 0 0 0 0

Porthos count 0 149254 0 0 0 0 0

Que count 0 274792 0 0 0 0 0

RF

Gerlinde count 0 289248 0 0 0 0 0

Gisel count 0 102920 0 0 0 0 0

Hazel count 0 103951 0 0 0 0 0

Ida count 0 110337 0 0 0 0 0

Jack count 0 243742 0 0 0 0 0

Kyna count 0 159211 0 0 0 0 0

Nikita count 0 72653 0 0 0 0 0

Porthos count 0 149254 0 0 0 0 0

Que count 0 274792 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0227317.t002
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applies to all other wild foxes (S8A–S14A Figs). For the analysis of the correspondence

between behaviours and GPS based speed measurements, we used only acceleration data

recorded within 10 seconds of a GPS fix (for Que: 7%; Gerlinde: 5%). Resting events were

classified at lower GPS-based speed than trotting events (Fig 5B, S8B–S14B Figs).

(iv) Coherence with ODBA. The actograms show that trotting is predominantly classified

at times when ODBA values are high. Trotting, as well as high ODBA, occur mostly during

night-time. Resting, in turn, is most often classified at times with low ODBA values (Fig 6).

This is also valid for all remaining foxes (S15–S21 Figs).

Discussion

In the present study we sought to advance the abilities to remotely assess the behaviour of ani-

mals in the wild without directly observing (and respectively disturbing) the target animals.

We therefore, tested the capacity of three machine learning algorithms (SVM, RF and ANN)

to infer wild fox behaviour after training with a ground-truthed data set of two captive red

foxes. The performances of the RF and the ANN were on similar levels under training condi-

tions, the SVM overall performed worse than the other two. The ANN with the moving win-

dow approach, however, was able to infer caching and walking behaviour much better than

the other two. Both RF and SVM generally performed well in inferring behaviour during vali-

dation (Table 1) and showed comparable results to other studies [5, 38, 39]. When applied to

the wild foxes, however, they both failed to discriminate the different behaviours (Table 2).

The application of a model trained on one individual to a conspecific (that the model was

not trained on), is crucial to bring this method into practical use, yet this remains a major

obstacle. One rare example for a study classifying behaviours of conspecifics is the study

Table 3. Number of occurrences of every classified behaviour for the wild foxes. Count and proportion of all behaviour assignments of the artificial neural network

(ANN). Overall, all foxes show similar proportions of behaviours throughout their measurement periods. As all individuals were tagged for different time periods, the abso-

lute number of assignments differs between individuals.

Individual Measure Feeding Grooming Resting Caching Trotting Walking Other

Gerlinde count 2288 78194 171890 1016 30020 1664 4176

proportion 0.005 0.23 0.61 0.007 0.12 0.02 0.01

Gisel count 3019 16545 61405 1464 10766 7193 2528

proportion 0.03 0.16 0.60 0.01 0.10 0.07 0.02

Hazel count 2887 26014 57094 1319 8570 4874 3193

proportion 0.03 0.25 0.55 0.01 0.08 0.04 0.03

Ida count 1311 25162 65354 241 12848 1612 3789

proportion 0.01 0.23 0.59 0.002 0.12 0.01 0.03

Jack count 3420 136086 72507 523 17116 5092 8996

proportion 0.01 0.56 0.30 0.002 0.07 0.02 0.04

Kyna count 1070 45185 104491 266 6016 750 1433

proportion 0.007 0.28 0.66 0.001 0.04 0.005 0.009

Nikita count 2318 10430 47996 465 2678 7639 1127

proportion 0.03 0.14 0.66 0.006 0.04 0.11 0.02

Porthos count 1266 32624 91370 3555 16236 530 3673

proportion 0.008 0.22 0.61 0.02 0.11 0.004 0.02

Que count 1317 64092 166349 1875 32531 5749 2879

proportion 0.008 0.27 0.59 0.004 0.10 0.006 0.01

https://doi.org/10.1371/journal.pone.0227317.t003
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Fig 4. Time-dependent composition of behaviours of Que (I) and Gerlinde (II). Stacked bars represent the proportion of each behaviour at a

given time of day, in each month. The data showed here span from February 2018 to January 2019 for Que and from March 2016 to February

2017 for Gerlinde.

https://doi.org/10.1371/journal.pone.0227317.g004
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conducted by Moreau et al. [40] who used 3D-accelerometers on three goats to determine

their head position (at accuracies of 61–82%) but could only predict three different traits,

showing that inter-individual model projection leads to a reduction in the prediction’s

accuracy.

Fig 5. Behaviour assignments of Que (I) and Gerlinde (II) in relation to GPS clusters (A) and speed (B). The

numbers in the brackets indicate the sample size of each behaviour class. (I) Resting shows the highest association with

GPS clusters (71%) and trotting the lowest (9%). Resting events are associated with significantly lower speed than

trotting events (Wilcoxon rank sum test, W = 3024826, p< 0.001). (II) Resting shows the highest association with GPS

clusters (53%) and trotting the lowest (5%). Resting events are associated with significantly lower speed than trotting

events (Wilcoxon rank sum test, W = 2286090, p< 0.001).

https://doi.org/10.1371/journal.pone.0227317.g005
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Support Vector Machine (SVM) and random forest (RF)

When applied to the data from wild foxes, SVM and RF classified all behaviours as grooming.

Considering that these datasets contain measurements for at least three months and that the

GPS signal clearly showed the animals covering large distances, this classification is clearly

Fig 6. Temporal distribution of trotting (A), resting (B) and ODBA values (C) for Que (I) and Gerlinde (II). The red lines indicate sunset and

sunrise. (A) Black spaces indicate times at which trotting behaviour was classified, whereas white spaces indicate the classification of all other

behaviours. (B) Black spaces indicate times at which resting behaviour was classified, whereas white spaces indicate classifications of all other

behaviours. (C) Higher ODBA values are indicated by darker spaces.

https://doi.org/10.1371/journal.pone.0227317.g006
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unrealistic. In all cases, the models were trained and validated on measurements from the

same captive individuals. Since both models correctly inferred behaviours of those captive

individuals during validation, we suggest that SVM and RF thus failed to recognize similar

patterns between wild and zoo-kept individuals because wild foxes showed characteristics in

their behaviour that were too different from the captive foxes to be detected by those

approaches.

This could be solved by training the model on ground-truthed data obtained from observ-

ing wild individuals that are logged [13]. However, as mentioned above, this is not always fea-

sible, so it would be highly desirable to do trait classification without the necessity to directly

observe wild animals. An additional problem of SVM and RF could be the recording of mixed

behaviours. During model training, all recordings with mixed behaviours within one burst

were excluded from the data set. However, it is a fair assumption that at least some recordings

from wild individuals do contain more than one behaviour. Even though we implemented a

probability threshold to account for these mixed bursts and—in the best case—classify them as

"other" behaviour, these recordings might still pose an unclassifiable problem. Another issue

is that grooming is classified to such a high proportion by both SVM and RF. As grooming

behaviour is complex and may include different actions like licking, nibbling or scratching

(see also S1 Table), the resulting behaviour class probably includes a broad range of character-

istic summary statistics and may thus be more easily confused with other behaviour classes.

Lastly, we cannot consider natural behaviours that usually are not or very rarely observed in

zoo-kept animals such as mating or territorial behaviour. These behaviours (as well as other,

unknown behaviours) might very well have occurred in the wild where they could not have

been classified because the algorithms were not trained on them. As possible for the mixed

bursts, these untrained behaviours could be detected through the probability threshold and

classified as “other”.

Another cause of the poor performance of the SVM and RF in predicting wild fox behav-

iour could be the small sample size of the data set of the captive foxes. With more observational

data of the captive foxes, we might have been able to train a more robust model. An ideal

model would thus be trained on more data. However, many studies in the field of wildlife ecol-

ogy and conservation research face the problem of small sample sizes. Species may either be

hard to observe or assess (e.g. due to remote or impassable habitats or an elusive nature of the

species) or simply by cause of being too rarely distributed and/or barely zoo-kept. By introduc-

ing the moving window approach to wildlife behaviour recognition, we may actually have

found a promising possibility to deal with these challenging conditions.

The artificial neural network (ANN)

The ANN showed comparable results to SVM and RF in model validation and consequently to

the literature as cited above. However, when applying it to the same wild individuals the SVM

and RF failed on, it classified a very different set of behaviours (Table 3). If we had only tested

the two established approaches, we would have concluded that the transfer of a behaviour clas-

sification model trained on captive foxes to wild individuals is not possible. In contrast, the

ANN with a moving window shows promising results that hopefully prompt further investiga-

tion into its potential use for wildlife ecology. The approach brings two additional advantages,

besides the increased sample size: First, the likely better handling of recordings with mixed

behaviours: By reducing the number of measurements per burst, the proportion of a potential

second behaviour in the same burst is reduced. In some cases, this reduction may be enough

to calculate similar summary statistics to a burst with only one of the behaviours. Second, the

introduction of an ensemble learning effect: In case of a specific behaviour being performed in
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an unusual way or a burst containing more than one behaviour, it will be harder to infer the

correct behaviour. As the moving window creates 32 subsamples of the original burst, using a

majority vote for the resulting 32 assigned behaviours can reduce the uncertainty of the assign-

ments. This framework could be a useful tool for future studies in wildlife research, especially

for the study of species that are rarely kept in zoos or the study of behaviours that are hard to

observe even in captivity.

The best size for the moving window was determined based on the maximal performance

and slope of the GAM fit in the simulation plot (Fig 3). Our aim was to find a window size

with a high mean performance that is small enough for generating sufficient data. Unfortu-

nately, reducing the window size was found to negatively impact model performance [15]. Per-

formance seemed to be at its maximum at window size 79. Larger windows would result in

fewer subsets at worse performance, while performance also decreased for window sizes

smaller than 79. Considering the slope of the GAM fit, the performance changed only margin-

ally at window sizes 78 and 80 compared to 79. Therefore, we expect the model to perform

similarly well at these window sizes. We suggest considering the slope because this approach

may not always show a clear maximum like in our case. In cases of multiple maxima or plateau

formations, the slope will help to inform on the smallest window size with the best

performance.

A problem that may occur with the moving window approach is incorrect classification

through overfitting [41]. By creating several similar subsets of the same burst, the ANN could

build a model that fits the training data too well, i.e. even slight differences between training

data and new data of the same behaviour class would result in the classification of different

behaviours, with an overfitted model. Variation within the behaviour classes could also cause

incorrect classifications if a single behaviour is realised outside the normal variation. There is

no clear method to distinguish between these two causes of incorrect classifications. However,

in the following we discuss the credibility of the assigned wild fox behaviour and argue that the

moving window approach does not introduce overfitting.

Output credibility

The classification results of the classic methods appear to be obviously incorrect. At first

glance, the output of the ANN appears more plausible than the output of RF and SVM, on

account of all six behaviours getting classified. Still, the actual accuracy cannot be determined

as wild individuals could not be observed. Since this may be true for most tagged wildlife, we

provide four strategies to indirectly assess the credibility of the ANN output.

When looking at the time-dependent composition of behaviours, they appear quite

consistent over individuals and time. Generally, some variation between individuals is

apparent and some behaviour events seem to be misclassified. Individual differences in

moving behaviour, for example, may result in the assignment of either walking or trotting

when the algorithm is not accurate enough. However, an overall pattern is evident for most

of the foxes and the temporal distribution appears plausible: The ANN output suggests that

the foxes predominantly rest during the day and are active at night as well as during twilight

(Fig 4, S1–S8 Figs) which corresponds well with described nocturnal-crepuscular activity

patterns of red foxes (e.g. [42, 43]).

There also seem to be seasonal changes in these patterns, with fewer resting events during

dark hours in the summer months. Although there are only two complete year-round datasets

available, this pattern appears reasonable as the nights in summertime at this longitude are

much shorter than during winter months (in Berlin, the daily dark period ranges from 7 to 17

hours during the course of a year). Thus, foxes should use the full night-time spectrum in
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summer for their activities, while during winter the higher availability of potential activity time

allows nocturnal resting events. This behavioural plasticity in activity has also been shown by

Ricci et al. [44] who found that foxes are active in different zones and hours of the day, accord-

ing to the season.

Like trotting and walking, feeding is mostly classified at night-time. Feeding events occur in

no clustered manner. The mixture of movement and feeding events reflects the feeding ecol-

ogy of foxes which do not feed on large prey. Foxes mostly hunt for small prey like mice and

voles and often rather scavenge than hunt, especially in urbanized areas [45, 46].

While the behaviour composition is very similar across all individuals we cannot rule out

the possibility that the wild foxes performed a behaviour that is very similar to another behav-

iour class that we did not observe in the captive foxes. Consequently this behaviour class would

have been misclassified as one of the behaviour classes that we did observe in the captive foxes.

Due to the nature of our study we do not have the possibility to test whether that was the case

or not because we do not have access to the actual behaviour of the wild foxes. In any case, this

behaviour class or classes would have to be behaviour that are universal in wild foxes but are

not or very rarely performed by captive foxes. Obtaining observation and acceleration data of

such behaviour for the training of any machine learning algorithm would be quite challenging.

Generally, similar results do necessarily indicate correct predictions, but dissimilarities between

individuals could hint to poor model performance. Anyhow, the credibility of the output has to

be addressed by using different approaches. Therefore we also used GPS data to relate the

occurrence of GPS-clusters as well as GPS-based speed values to the assigned behaviour classes.

In particular, we focused on resting and movement behaviour (trotting and walking), with

an obvious connection to be expected. Resting as a stationary behaviour should get classified

predominantly at locations where GPS points are clustered (Fig 5). We found that 38% to 74%

of resting bursts were located within such a cluster. The remaining bursts may reflect cases

when the individual had just temporarily stopped moving. Standing still or sitting briefly during

an active phase would also be classified as resting but may not be associated with a GPS-cluster.

Trotting as a locomotive behaviour was expected to show low association with GPS-clusters

and was only classified at a cluster for 2% to 9% of all bursts (Fig 5, S8–S14 Figs). As foxes

move away from or to a resting site, it is reasonable for some trotting to be classified within

GPS clusters. The analysis did not target feeding, caching or grooming, as those behaviours

can be performed in a clustered or non-clustered manner. The analysis of behaviour assign-

ments in relation to speed shows a reverse picture: Behaviours that show a weak association

with GPS clusters show a higher speed and vice versa (S8–S14 Figs). However, we could use

only 5% to 15% of all data for the speed analysis (S6 Table). The method described here is

hence more applicable when the recording of location and acceleration data is better

synchronised.

Finally, we analysed the ODBA, an indicator of body movement [18] that was shown to cor-

respond well with the activity level of specific behaviours [15]. When we compared the tempo-

ral distribution of ODBA values to that of the classified trotting and resting events, we saw an

association of high ODBA values and trotting behaviour and low ODBA values and resting

behaviour, respectively. Again, the nocturnal-crepuscular activity pattern was visible (Fig 6,

S15–S21 Figs).

While the above mentioned examples appear conceivable, the interpretation of some behav-

iours may be puzzling, and their biological credibility is difficult to gauge. For instance, we

could not identify any pattern for caching behaviour, and grooming seems to be generally

over-classified. Its complexity and the resulting variability in the training data set may increase

misclassification of unknown behaviours, especially when considering that six behaviours do

not represent the full variety of behaviour that this mobile carnivore displays in the wild. The
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latter is clearly more significant for fast-moving animals like the highly agile red fox that dis-

plays a variety of complex movement patterns. Generating as precise outputs as they, for exam-

ple, have been shown for grazing animals with their limited body flexibility and behavioural

repertoire (see [28, 47]), therefore remains a challenge. In another study on captive red foxes

Painter et al. [48] could classify three exhibited behaviours with an accuracy of 95.7% when

training on one individual, and predicted the behaviour of a second individual at an accuracy

of 66.7%, suggesting that the classifier can extract behaviours across multiple foxes.

In the present study, a broader training dataset of more captive individuals could possibly

improve the output of the ANN for the wild foxes and permit more precise recognition of spe-

cific behaviours. However, our results suggest that the behaviour inferred by the ANN corre-

sponds well with the actual behaviour of the logged foxes. Despite some unsolved issues, the

ANN thus seems to be a promising approach to infer wildlife behaviour, even in cases where

methods suggested by existing literature fail.

Conclusion

We here compare the relative predictive power of different machine learning approaches in

inferring wildlife behaviour and we could show that good results for the validation of the mod-

els will not necessarily lead to good results when these models are applied in the field. We

provide a framework to use acceleration data and an Artificial Neural Network to infer the

behaviour of wild foxes, using a training data set obtained from captive individuals. We also

present four strategies to address the plausibility of such behaviour classification output when

no direct validation is possible. Although not all validation strategies may be applicable for

every species, this framework should not be restricted to the studied species. The successful

application of the ANN for behavioural classification on field data offers exciting potential to

study the behaviour of animals in the wild without direct observation.

Supporting information

S1 Fig. Time-dependent composition of behaviours of fox “Gisel”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from September 2016 until March 2017. Plots for September and March are only based

on 2 and 7 days, respectively, and cannot be interpreted. Because of a logger failure the Febru-

ary plot is only based on 12 days and should also not be considered. Gisel shows more walking

and feeding than most other individuals.

(TIF)

S2 Fig. Time-dependent composition of behaviours of fox “Hazel”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from October 2016 until February 2017. Hazel shows more feeding than most other indi-

viduals.

(TIF)

S3 Fig. Time-dependent composition of behaviours of fox “Ida”. Stacked bars represent the

proportion of each behaviour at a given time of day, in each month. The data shown here span

from November 2016 until April 2017. Ida shows almost no walking.

(TIF)

S4 Fig. Time-dependent composition of behaviours of fox “Jack”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from January 2017 until December 2017. The plot for January is only based on 7 days and

should not be interpreted. Jack shows much more grooming than all other individuals, as well
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as much less resting.

(TIF)

S5 Fig. Time-dependent composition of behaviours of fox “Kyna”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from February 2017 until November 2017. The logger failed between the 15th of June

and the 26 of July. The June plot looks jagged because of the resulting lack of data. The July

plot cannot be interpreted because it only relies on 6 days. Generally, less trotting is predicted

for Kyna compared to the other foxes.

(TIF)

S6 Fig. Time-dependent composition of behaviours of fox “Nikita”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from September 2017 until January 2018. The September and January plots cannot be

interpreted because both are based on 5 days only. For this fox much more walking than trot-

ting is predicted. In addition, much more feeding is predicted than for most other individuals.

(TIF)

S7 Fig. Time-dependent composition of behaviours of fox “Porthos”. Stacked bars represent

the proportion of each behaviour at a given time of day, in each month. The data shown here

span from October 2017 until June 2018. The logger failed for 15 days in March and for 8 days

in April. The March plot therefore shows only half as much data as the other plots and looks

more jagged. The October plot is only based on 6 days and can thus not be interpreted prop-

erly.

(TIF)

S8 Fig. Behaviour assignments of “Gisel” in relation to GPS clusters (A) and speed (B). The

numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows

the highest association with GPS clusters (57%) and trotting the lowest (2%). (B) Behaviour

prediction in relation to speed. Resting appears at significantly lower speeds than trotting

(Wilcoxon rank sum test, W = 727995, p < 0.001).

(TIF)

S9 Fig. Behaviour assignments of “Hazel” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (38%) and trotting the lowest (9%). Resting is

predicted much less in clusters than in most other study foxes. (B) Behaviour prediction in

relation to speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank

sum test, W = 489223, p< 0.001).

(TIF)

S10 Fig. Behaviour assignments of “Ida” in relation to GPS clusters (A) and speed (B). The

numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows

the highest association with GPS clusters (46%) and trotting the lowest (9%). Resting is pre-

dicted much less in clusters than in most other study foxes. (B) Behaviour prediction in rela-

tion to speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank sum

test, W = 803283, p< 0.001).

(TIF)

S11 Fig. Behaviour assignments of “Jack” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (74%) and trotting the lowest (6%). Resting is
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predicted much less in clusters than in most other study foxes. (B) Behaviour prediction in

relation to speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank

sum test, W = 295149, p< 0.001).

(TIF)

S12 Fig. Behaviour assignments of “Kyna” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (57%) and trotting the lowest (3%). (B) Behav-

iour prediction in relation to speed. Resting appears at significantly lower speeds than trotting

(Wilcoxon rank sum test, W = 428274, p < 0.001).

(TIF)

S13 Fig. Behaviour assignments of “Nikita” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (69%) and trotting the lowest (8%). (B) Behav-

iour prediction in relation to speed. Resting appears at significantly lower speeds than trotting

(Wilcoxon rank sum test, W = 327626, p < 0.001).

(TIF)

S14 Fig. Behaviour assignments of “Porthos” in relation to GPS clusters (A) and speed (B).

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting

shows the highest association with GPS clusters (68%) and trotting the lowest (8%). (B) Behav-

iour prediction in relation to speed. Resting appears at significantly lower speeds than trotting

(Wilcoxon rank sum test, W = 4454986, p< 0.001).

(TIF)

S15 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Gisel”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which

trotting behaviour was predicted whereas white spaces indicate assignments of all other behav-

iours. Trotting is predominantly predicted during the night. (B) Black spaces indicate times at

which resting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Resting is predominantly predicted during the day. The switch between trotting,

resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher ODBA

values are indicated by darker spaces. ODBA values are higher at night than during daytime.

Discontinuities in the red line are caused by missing data due to the logger not recording data

at the time.

(TIF)

S16 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Hazel”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at

which trotting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Trotting is predominantly predicted during the night. (B) Black spaces indicate

times at which resting behaviour was predicted whereas white spaces indicate assignments of

all other behaviours. Resting is predominantly predicted during the day. The switch between

trotting, resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher

ODBA values are indicated by darker spaces. ODBA values are higher at night than during

daytime.

(TIF)

S17 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Ida”.

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting

behaviour was predicted whereas white spaces indicate assignments of all other behaviours.

PLOS ONE Using data from captive individuals to infer wildlife behaviours

PLOS ONE | https://doi.org/10.1371/journal.pone.0227317 May 5, 2020 20 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227317.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227317.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227317.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227317.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227317.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227317.s017
https://doi.org/10.1371/journal.pone.0227317


Trotting is predominantly predicted during the night. (B) Black spaces indicate times at which

resting behaviour was predicted whereas white spaces indicate assignments of all other behav-

iours. Resting is predominantly predicted during the day. The switch between trotting, resting

and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher ODBA values

are indicated by darker spaces. ODBA values are higher at night than during daytime.

(TIF)

S18 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Jack”.

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting

behaviour was predicted whereas white spaces indicate assignments of all other behaviours.

Trotting is predominantly predicted during the night. (B) Black spaces indicate times at which

resting behaviour was predicted whereas white spaces indicate assignments of all other behav-

iours. Resting is predominantly predicted during the day. The switch between trotting, resting

and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher ODBA values

are indicated by darker spaces. ODBA values are higher at night than during daytime.

(TIF)

S19 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Kyna”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which

trotting behaviour was predicted whereas white spaces indicate assignments of all other behav-

iours. Trotting is predominantly predicted during the night. (B) Black spaces indicate times at

which resting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Resting is predominantly predicted during the day. The switch between trotting,

resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher ODBA

values are indicated by darker spaces. ODBA values are higher at night than during daytime.

Discontinuities in the red line are caused by missing data due to the logger not recording data

at the time.

(TIF)

S20 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Nikita”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at

which trotting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Trotting is predominantly predicted during the night. (B) Black spaces indicate

times at which resting behaviour was predicted whereas white spaces indicate assignments of

all other behaviours. Resting is predominantly predicted during the day. The switch between

trotting, resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher

ODBA values are indicated by darker spaces. ODBA values are higher at night than during

daytime.

(TIF)

S21 Fig. Temporal distribution of trotting (A), (B) resting and (C) ODBA values of

“Porthos”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at

which trotting behaviour was predicted whereas white spaces indicate assignments of all other

behaviours. Trotting is predominantly predicted during the night. (B) Black spaces indicate

times at which resting behaviour was predicted whereas white spaces indicate assignments of

all other behaviours. Resting is predominantly predicted during the day. The switch between

trotting, resting and other behaviours is mostly oriented at the sunset and sunrise. (C) Higher

ODBA values are indicated by darker spaces. ODBA values are higher at night than during

daytime. Discontinuities in the red line are caused by missing data due to the logger not

recording data at that time.

(TIF)
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S1 Table. Ethogram for the captive foxes—Modified from [16]. Behavioural observations

were restricted to the listed categories. Each burst could only have one behaviour assigned.

Observations not matching any description as well as observations of more than one behaviour

per burst were excluded from the analysis.

(DOCX)

S2 Table. List of all predictors and how they were calculated. References refer to when the

respective predictor was first introduced in the context of behaviour prediction. All predictors

except the Fast Fourier Transformation can be considered summary statistics because they

result in a single number. We add the complete Fast Fourier Spectrum as predictors. The total

amount of predictors from the Fast Fourier Spectrum is therefore dependant on burst length.

(DOCX)

S3 Table. Confusion matrix for the support vector machine (SVM) validation. Columns

show expected behaviours known from observation, rows show behaviours assigned by the

SVM. Values on the diagonal (bold) represent behaviours assigned correctly. All values off the

diagonal are incorrect assignments that show which behaviours were confused with each other

(for example 16 events of feeding were incorrectly classified as grooming).

(DOCX)

S4 Table. Confusion matrix for the random forest (RF) validation. Columns show expected

behaviours known from observation, rows show behaviours assigned by the RF. Values on the

diagonal (bold) represent behaviours assigned correctly. All values off the diagonal are incor-

rect assignments that show which behaviours were confused with each other (e.g. 17 events of

feeding were incorrectly classified as grooming).

(DOCX)

S5 Table. Confusion matrix for the artificial neural network (ANN) validation. Columns

show expected behaviours known from observation, rows show behaviours assigned by the

ANN. Values on the diagonal (bold) represent behaviours assigned correctly. All values off the

diagonal are incorrect assignments that show which behaviours were confused with each other

(for example 15 events of resting were incorrectly predicted as feeding).

(DOCX)

S6 Table. Proportion of data used for the speed analysis. Most of the times GPS and acceler-

ation data were not recorded simultaneously. For the speed analysis we considered only accel-

eration data that was recorded within 10 seconds of a GPS recording.

(DOCX)
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Tables 

 

Table S1: Ethogram for the captive foxes - modified from (Giese, 2016). Behavioural observations were 

restricted to the listed categories. Each burst could only have one behaviour assigned. Observations not 

matching any description as well as observations of more than one behaviour per burst were excluded from 

the analysis.  

 

Behaviour Description 

feeding licking food items while standing on all four legs with the head held down;  
chewing on food items while sitting on the hind legs with head held down or on level with 

shoulders; 
chewing on food items while standing on all four legs with the head held down or head on 

level with shoulders 

grooming licking the body while lying on the stomach with head held up; 
licking the body while sitting with the head held down; 
scratching body parts with one hind leg while lying on the stomach with the head held up; 
scratching body parts while sitting with the head held up or on level with shoulders; 
nibbling body parts while lying on the stomach with head held up; 
nibbling body parts while sitting on hind legs with head held up, on level with shoulders or 

held down; 
nibbling body parts while standing on all four legs with the head held up or down 

resting lying on the stomach with the head resting on the ground; 
lying on the stomach with the head held up, motionless or slightly moving from side to side; 
sitting on hind legs with the head held up motionless or slightly moving from side to side; 
standing on all four legs with the head held up motionless or slightly moving from side to 

side  

caching digging into the ground using one or both forelegs while standing on all four legs with the 

head held down 
covering food items with soil and occasionally pressing it down using the snout while standing 

on all four legs with the head held down 

 

trotting moderately fast locomotion with all four feet losing contact with the ground for short 

moments with the head held up or on level with shoulders 

walking slow locomotion with at least three feet touching the ground at any given moment with the 

head on level with shoulders or held down and moving from side to side  

 

 

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?NgRJYv
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Table S2: List of all predictors and how they were calculated. References refer to when the respective 

predictor was first introduced in the context of behaviour prediction. All predictors except the Fast Fourier 

Transformation can be considered summary statistics because they result in a single number. We add the 

complete Fast Fourier Spectrum as predictors. The total amount of predictors from the Fast Fourier 

Spectrum is therefore dependant on burst length.   

 

Predictor Calculation Reference 

Mean mean of the x axis x 

mean of the y axis y 

mean of the z axis z 

 

Standard deviation (sd) sd of the x axis 
sd of the y axis 
sd of the z axis 

 

Inverse Coefficient of 

Variation (ICV) 
xsdofthexaxis 

ysdoftheyaxis 

zsdofthezaxis 

 

Variation 1n−1sd²ofthexaxis 

1n−1sd²oftheyaxis 

1n−1sd²ofthezaxis 

 

Skewness skewness() function in R, type = 3 of the x axis 
skewness() function in R, type = 3 of the y axis 
skewness() function in R, type = 3 of the z axis 

(Meyer et al., 

2017)  

Kurtosis kurtosis() function in R, type = 3 of the x axis 
kurtosis() function in R, type = 3 of the y axis 
kurtosis() function in R, type = 3 of the z axis 

(Meyer et al., 

2017)  

q x2+y2+z2 (Nathan et al., 

2012)  

Pitch arctanyx2+z2180 (Collins et al., 

2015)  

Roll arctanxy2+z2180 (Collins et al., 

2015)  

Overall Body acceleration 

(ODBA) 
1nxn−x+1nyn−y+1nzn−z (Wilson et al., 

2006)  

Fast Fourier Transformation 

(FFT) 
fft() function in R of the x axis considering only the 

real numbers 
fft() function in R of the y axis considering only the 

real numbers 
fft() function in R of the z axis considering only the 

real numbers 

(R Core Team, 

2018)  

 

 

 

https://www.zotero.org/google-docs/?0SMNmg
https://www.zotero.org/google-docs/?0SMNmg
https://www.zotero.org/google-docs/?ZtwIie
https://www.zotero.org/google-docs/?ZtwIie
https://www.zotero.org/google-docs/?eN2hdq
https://www.zotero.org/google-docs/?eN2hdq
https://www.zotero.org/google-docs/?iNsTmj
https://www.zotero.org/google-docs/?iNsTmj
https://www.zotero.org/google-docs/?PjGFMF
https://www.zotero.org/google-docs/?PjGFMF
https://www.zotero.org/google-docs/?sgMEtM
https://www.zotero.org/google-docs/?sgMEtM
https://www.zotero.org/google-docs/?0jlCES
https://www.zotero.org/google-docs/?0jlCES
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Table S3: Confusion matrix for the support vector machine (SVM) validation. Columns show expected 

behaviours known from observation, rows show behaviours assigned by the SVM. Values on the diagonal 

(bold) represent behaviours assigned correctly. All values off the diagonal are incorrect assignments that 

show which behaviours were confused with each other (for example 16 events of feeding were incorrectly 

classified as grooming). 

 

 Expected      

Assigned feeding grooming resting caching trotting walking 

feeding 47 30 0 3 0 1 

grooming 1 114 48 0 0 0 

resting 1 7 565 1 0 1 

caching 27 41 6 22 0 10 

trotting 32 136 9 32 54 24 

walking 2 14 6 1 0 13 

 

 

 

 

Table S4: Confusion matrix for the random forest (RF) validation. Columns show expected behaviours 

known from observation, rows show behaviours assigned by the RF. Values on the diagonal (bold) 

represent behaviours assigned correctly. All values off the diagonal are incorrect assignments that show 

which behaviours were confused with each other (e.g. 17 events of feeding were incorrectly classified as 

grooming). 

 

 Expected      

Predicted feeding grooming resting caching trotting walking 

feeding 77 10 1 13 0 7 

grooming 20 319 47 2 2 9 

resting 0 5 584 1 0 1 

caching 12 6 1 40 0 9 

trotting 1 0 0 2 52 2 

walking 0 2 1 1 0 21 
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Table S5: Confusion matrix for the Artificial Neural network (ANN) validation. Columns show expected 

behaviours known from observation, rows show behaviours assigned by the ANN. Values on the diagonal 

(bold) represent behaviours assigned correctly. All values off the diagonal are incorrect assignments that 

show which behaviours were confused with each other (for example 15 events of resting were incorrectly 

predicted as feeding). 

 

 Expected 

Predicted feeding grooming resting caching trotting walking 

feeding 2934 252 19 199 0 86 

grooming 198 9643 237 78 0 34 

resting 15 282 19548 1 0 54 

caching 103 62 32 1287 47 22 

trotting 0 47 1 33 1656 88 

walking 84 228 36 123 8 1157 

 

 

 

Table S6: Proportion of data used for the speed analysis. Most of the times GPS and acceleration data were 

not recorded simultaneously. For the speed analysis we considered only acceleration data that was 

recorded within 10 seconds of a GPS recording.   

 

Individual Proportion of data used 

Porthos 0.15 

Kyna 0.08 

Nikita 0.15 

Gerlinde 0.05 

Gisel 0.11 

Hazel 0.10 

Ida 0.11 

Jack 0.09 

Que 0.07 
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Figures 

 

 
Figure S1: Time-dependent composition of behaviours of fox “Gisel”. Stacked bars represent the 

proportion of each behaviour at a given time of day, in each month. The data shown here span from 

September 2016 until March 2017. Plots for September and March are only based on 2 and 7 days, 

respectively, and cannot be interpreted. Because of a logger failure the February plot is only based on 12 

days and should also not be considered. Gisel shows more walking and feeding than most other individuals. 

 

 

 
Figure S2: Time-dependent composition of behaviours of fox “Hazel”. Stacked bars represent the 

proportion of each behaviour at a given time of day, in each month. The data shown here span from 

October 2016 until February 2017. Hazel shows more feeding than most other individuals. 
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Figure S3: Time-dependent composition of behaviours of fox “Ida”. Stacked bars represent the 

proportion of each behaviour at a given time of day, in each month. The data shown here span from 

November 2016 until April 2017. Ida shows almost no walking. 

 

 

 
Figure S4: Time-dependent composition of behaviours of fox “Jack”. Stacked bars represent the 

proportion of each behaviour at a given time of day, in each month. The data shown here span from 

January 2017 until December 2017. The plot for January is only based on 7 days and should not be 

interpreted. Jack shows much more grooming than all other individuals, as well as much less resting.  
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Figure S5: Time-dependent composition of behaviours of fox “Kyna”. Stacked bars represent the 

proportion of each behaviour at a given time of day, in each month. The data shown here span from 

February 2017 until November 2017. The logger failed between the 15th of June and the 26 of July. The 

June plot looks jagged because of the resulting lack of data. The July plot cannot be interpreted because it 

only relies on 6 days. Generally, less trotting is predicted for Kyna compared to the other foxes. 

 

 

  
Figure S6: Time-dependent composition of behaviours of fox “Nikita”. Stacked bars represent the 

proportion of each behaviour at a given time of day, in each month. The data shown here span from 

September 2017 until January 2018. The September and January plots cannot be interpreted because both 

are based on 5 days only. For this fox much more walking than trotting is predicted. In addition, much 

more feeding is predicted than for most other individuals. 
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Figure S7: Time-dependent composition of behaviours of fox “Porthos”. Stacked bars represent 

the proportion of each behaviour at a given time of day, in each month. The data shown here span from 

October 2017 until June 2018. The logger failed for 15 days in March and for 8 days in April. The March 

plot therefore shows only half as much data as the other plots and looks more jagged. The October plot is 

only based on 6 days and can thus not be interpreted properly. 
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Figure S8: Behaviour assignments of “Gisel” in relation to GPS clusters (A) and speed (B). The 

numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows the highest 

association with GPS clusters (57%) and trotting the lowest (2%). (B) Behaviour prediction in relation to 

speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank sum test, W = 727995, p 

< 0.001). 
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Figure S9: Behaviour assignments of “Hazel” in relation to GPS clusters (A) and speed (B). The 

numbers in the brackets indicate the sample size of each behaviour class. (A)  Resting shows the highest 

association with GPS clusters (38%) and trotting the lowest (9%). Resting is predicted much less in clusters 

than in most other study foxes. (B) Behaviour prediction in relation to speed. Resting appears at 

significantly lower speeds than trotting (Wilcoxon rank sum test, W = 489223, p < 0.001). 
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Figure S10: Behaviour assignments of “Ida” in relation to GPS clusters (A) and speed (B). The 

numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows the highest 

association with GPS clusters (46%) and trotting the lowest (9%). Resting is predicted much less in clusters 

than in most other study foxes. (B) Behaviour prediction in relation to speed. Resting appears at 

significantly lower speeds than trotting (Wilcoxon rank sum test, W = 803283, p < 0.001). 
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Figure S11: Behaviour assignments of “Jack” in relation to GPS clusters (A) and speed (B). The 

numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows the highest 

association with GPS clusters (74%) and trotting the lowest (6%). Resting is predicted much less in clusters 

than in most other study foxes. (B) Behaviour prediction in relation to speed. Resting appears at 

significantly lower speeds than trotting (Wilcoxon rank sum test, W = 295149, p < 0.001). 
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Figure S12: Behaviour assignments of “Kyna” in relation to GPS clusters (A) and speed (B). The 

numbers in the brackets indicate the sample size of each behaviour class. (A)  Resting shows the highest 

association with GPS clusters (57%) and trotting the lowest (3%). (B) Behaviour prediction in relation to 

speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank sum test, W = 428274, p 

< 

0.001).     
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Figure S13: Behaviour assignments of “Nikita” in relation to GPS clusters (A) and speed (B). 

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows the 

highest association with GPS clusters (69%) and trotting the lowest (8%). (B) Behaviour prediction in 

relation to speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank sum test, W = 

327626, p < 0.001). 
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Figure S14: Behaviour assignments of “Porthos” in relation to GPS clusters (A) and speed (B). 

The numbers in the brackets indicate the sample size of each behaviour class. (A) Resting shows the 

highest association with GPS clusters (68%) and trotting the lowest (8%). (B) Behaviour prediction in 

relation to speed. Resting appears at significantly lower speeds than trotting (Wilcoxon rank sum test, W = 

4454986, p < 0.001). 
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Figure S15: Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Gisel”. 

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting behaviour 

was predicted whereas white spaces indicate assignments of all other behaviours. Trotting is predominantly 

predicted during the night. (B) Black spaces indicate times at which resting behaviour was predicted 

whereas white spaces indicate assignments of all other behaviours. Resting is predominantly predicted 

during the day. The switch between trotting, resting and other behaviours is mostly oriented at the sunset 

and sunrise. (C) Higher ODBA values are indicated by darker spaces. ODBA values are higher at night than 

during daytime. Discontinuities in the red line are caused by missing data due to the logger not recording 

data at the time. 

 

Figure S16: Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Hazel”. 

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting behaviour 

was predicted whereas white spaces indicate assignments of all other behaviours. Trotting is predominantly 

predicted during the night. (B) Black spaces indicate times at which resting behaviour was predicted 

whereas white spaces indicate assignments of all other behaviours. Resting is predominantly predicted 

during the day. The switch between trotting, resting and other behaviours is mostly oriented at the sunset 

and sunrise. (C) Higher ODBA values are indicated by darker spaces. ODBA values are higher at night than 

during daytime.  
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Figure S17: Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Ida”. The 

red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting behaviour was 

predicted whereas white spaces indicate assignments of all other behaviours. Trotting is predominantly 

predicted during the night. (B) Black spaces indicate times at which resting behaviour was predicted 

whereas white spaces indicate assignments of all other behaviours. Resting is predominantly predicted 

during the day. The switch between trotting, resting and other behaviours is mostly oriented at the sunset 

and sunrise. (C) Higher ODBA values are indicated by darker spaces. ODBA values are higher at night than 

during daytime.  

 

 

Figure S18: Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Jack”. 

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting behaviour 

was predicted whereas white spaces indicate assignments of all other behaviours. Trotting is predominantly 

predicted during the night. (B) Black spaces indicate times at which resting behaviour was predicted 

whereas white spaces indicate assignments of all other behaviours. Resting is predominantly predicted 

during the day. The switch between trotting, resting and other behaviours is mostly oriented at the sunset 

and sunrise. (C) Higher ODBA values are indicated by darker spaces. ODBA values are higher at night than 

during daytime.  
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Figure S19: Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Kyna”. 

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting behaviour 

was predicted whereas white spaces indicate assignments of all other behaviours. Trotting is predominantly 

predicted during the night. (B) Black spaces indicate times at which resting behaviour was predicted 

whereas white spaces indicate assignments of all other behaviours. Resting is predominantly predicted 

during the day. The switch between trotting, resting and other behaviours is mostly oriented at the sunset 

and sunrise. (C) Higher ODBA values are indicated by darker spaces. ODBA values are higher at night than 

during daytime. Discontinuities in the red line are caused by missing data due to the logger not recording 

data at the time.  

 

Figure S20: Temporal distribution of trotting (A), (B) resting and (C) ODBA values of “Nikita”. 

The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting behaviour 

was predicted whereas white spaces indicate assignments of all other behaviours. Trotting is predominantly 

predicted during the night. (B) Black spaces indicate times at which resting behaviour was predicted 

whereas white spaces indicate assignments of all other behaviours. Resting is predominantly predicted 

during the day. The switch between trotting, resting and other behaviours is mostly oriented at the sunset 

and sunrise. (C) Higher ODBA values are indicated by darker spaces. ODBA values are higher at night than 

during daytime.  
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Figure S21: Temporal distribution of trotting (A), (B) resting and (C) ODBA values of 

“Porthos”. The red lines indicate the sunset and sunrise. (A) Black spaces indicate times at which trotting 

behaviour was predicted whereas white spaces indicate assignments of all other behaviours. Trotting is 

predominantly predicted during the night. (B) Black spaces indicate times at which resting behaviour was 

predicted whereas white spaces indicate assignments of all other behaviours. Resting is predominantly 

predicted during the day. The switch between trotting, resting and other behaviours is mostly oriented at 

the sunset and sunrise. (C) Higher ODBA values are indicated by darker spaces. ODBA values are higher at 

night than during daytime. Discontinuities in the red line are caused by missing data due to the logger not 

recording data at that time.        
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Abstract

As a consequence of increasing human-wildlife encounters, the associated

potential for human-wildlife conflict rises. The dependency of conservation man-

agement actions on the acceptance or even the participation of people requires

modern conservation strategies that take the human dimension of wildlife man-

agement into account. In the first place, conservationists therefore need to under-

stand how people perceive wildlife. In the present study, we examined how

wildlife perception varies with people's socio-demographic backgrounds in terms

of age, gender, and education as well as the settlement structure of people's living

environment and their general life satisfaction, using the red fox (Vulpes vulpes) as

a model species. We used an interview-based survey of 2,646 participants, repre-

sentative for the German population, for investigating their knowledge about, risk

perception of, and attitude toward red foxes. We found a negative correlation

between age and the risks perceived regarding foxes. Moreover, men held a more

positive attitude and perceived less risk than women. Higher education was also

associated with lower risk perception and amore positive attitude. The results fur-

ther indicated that people who live in rural areas perceived higher risks regarding

foxes and showed a less positive attitude than people in urban or suburban areas.

Finally, people who perceived higher risks and held a less positive attitude

supported lethal population management actions more often. However, we also

found that perceived risks decreased with participants' general life satisfaction.

Hence, wildlife perception is affected by various factors. Understanding the fac-

tors affecting wildlife perception is crucial for environmental communication and

for fostering acceptance of conservation measures to improve conservation

strategies.
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attitude towards wildlife, human dimension, knowledge, perception of wildlife, risk assessment,

wildlife management
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1 | INTRODUCTION

Almost all natural habitats worldwide are subject to
human encroachment, which increases the level of
shared human-wildlife living space and creates potential
for human-wildlife conflict. At the same time, human-
wildlife encounters also increase in decidedly industrial-
ized regions, where human commensal species actively
colonize urban habitats. Human-wildlife conflicts in such
industrialized regions may result from wildlife damage
and the fear of zoonotic diseases (Mackenstedt, Jenkins, &
Romig, 2015). Generally, implications of human-wildlife
coexistence may be social, economic, or health-related,
and both actual and assumed implications may have a
large impact on the acceptance of wildlife by the general
public (Decker et al., 2012; Riley et al., 2002). Therefore,
many conservationists propose that considering the
social, physical, and economic well-being of people is
central to a holistic conservation approach (Minteer &
Miller, 2011).

Implementing this human dimension in conservation
management may include approaches for loss or harm com-
pensation (Naughton-Treves, Grossberg, & Treves, 2003;
Nyhus, Osofsky, Ferraro, Madden, & Fischer, 2005), but also
requires advocacy for conservation activities and of human-
wildlife co-existence (Kansky, Kidd, & Knight, 2014). This is
particularly true when people are forced to arrange them-
selves with the co-housing situation, for example, when they
compete with threatened species and no alternative habitats
are available for potential resettlements, or in urbanized
areas, where species reach high densities (e.g., Prange,
Gehrt, &Wiggers, 2004) and population reduction via hunt-
ing is not a feasible option.

Therefore, wildlife acceptance by humans is a crucial
element of modern conservation and wildlife manage-
ment (Enck et al., 2006; Greving & Kimmerle, 2020; Mas-
cia et al., 2003). Ultimately, the preservation of nature is
a human endeavor that requires getting stakeholders to
support conservation aims (Salafsky, 2011). As a conse-
quence, researchers, conservation agents, wildlife man-
agers, and policy makers aim to raise awareness for the
inherent value of biodiversity and to increase wildlife tol-
erance (Decker et al., 2016). Saunders, Brook, and Myers,
(2006), thus, stated that we need to use psychology to
save biodiversity (and human wellbeing). So, it is crucial
to know which factors shape human perception of wild-
life, that is, the knowledge about certain wildlife species,
perception of the risks associated with these species, and
the attitudes toward them.

Even though some research has been conducted in
this field (Dickman, 2010), many studies on wildlife per-
ception face methodological issues: When they are con-
ducted as mail surveys, response rates are often low

(e.g., Bjurlin & Cypher, 2005: 28%; or Thornton &
Quinn, 2009: 29%). Surveys conducted among specific tar-
get groups, for example, members of conservation non-
profit organizations (NGOs), may achieve higher
response rates but are not representative of the general
public. Not being representative, for instance, might be a
problem that most surveys face, since people with strong
positive or negative opinions may be more likely to par-
ticipate, leading to the underestimation of moderate posi-
tions. To study people's wildlife perceptions in relation to
their socio-demographic backgrounds, we interviewed a
large sample representative for the general public of Ger-
many, with long-term data available for all participants.
Since participants were interviewed personally, the
response rate was virtually 100%. We chose the red fox
(Vulpes vulpes) as an example of human-wildlife co-
existence in Western Europe, a species abundant in
urban as well as rural regions. In addition, humans and
foxes have a long, ambiguous relationship. On the one
hand, the mid-sized carnivore is described as beautiful,
smart, and cute. Characterized as sly, yet charismatic, it
appears in many folk tales that people grew up with. In
recent years fox images have been used for decorative
purposes on many daily life products, for example, as a
print in fashion industry. On the other hand, foxes are
associated with carrying infectious diseases and parasites,
such as rabies and the fox tapeworm (Echinoccocus
multilocularis), which may harm or even kill people
(Combes et al., 2012). Although terrestrial rabies is
extinct in Germany, many people still fear this disease,
and echinococcosis is still present. Foxes are also poten-
tial predators of poultry and a threat to smaller compan-
ion animals and they cause damages in public and
private gardens. Since attitudes toward foxes therefore
vary from very negative to extremely positive, this species
is well suited for assessing how these attitudes are
influenced by people's backgrounds.

We related potentially relevant socio-demographic
factors like age, gender, education, and place of residence
to the outcome variables factual knowledge, risk percep-
tion, and attitude. Since a higher formal level of educa-
tion usually goes along with greater general knowledge
(Conway, Cohen, & Stanhope, 1991), which should lead
to a more realistic estimation of risks, we hypothesized
that a higher level of education would be associated with
(a) higher levels of knowledge about foxes, (b) lower
levels of risk perception, and (c) a more positive attitude
toward foxes (Hypotheses 1a–c). It has been argued that
due to urbanization and technification, people in cities
have become alienated from nature and tend to romanti-
cize wildlife (Heberlein & Ericsson, 2005). We therefore
hypothesized that people who live in urban areas have
(a) less knowledge, (b) lower levels of risk perception,
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and (c) a more positive attitude toward foxes than people
who live in suburban and rural areas (Hypotheses 2a–c).
People who have greater life satisfaction also have gener-
ally a more positive attitude toward other beings
(Erdogan, Bauer, Truxillo, & Mansfield, 2012). Thus, we
hypothesized that people with higher levels of general life
satisfaction have more positive attitudes toward foxes
(Hypothesis 3a) and perceive lower risks (3b). Finally, we
investigated the relationship of the three measures,
knowledge, risk perception, and attitude with people's
opinions regarding fox-management strategies.

2 | MATERIALS AND METHODS

Participants were recruited via the Socio-Economic Panel
(SOEP), located at the German Institute for Economic
Research Berlin (DIW) that holds a highly reliable socio-
demographic long-term dataset of the population in Ger-
many. It is a private household-based longitudinal study
that annually (re-) interviews up to 30,000 adult household
members on numerous topics such as biography, employ-
ment, health, or satisfaction with political or personal cir-
cumstances. We used a slot in the 2016 survey of the SOEP
Innovation Sample to conduct our study, with a represen-
tative subset of the SOEP sample (N = 2,646; age range:
18–95 years; mean age = 53.8 years; SD = 18.52; gender:
N = 1,415 [53.5%] female; N = 1,231 [46.5%] male). The
participants attended voluntarily and anonymously. Ethi-
cal approval was obtained from the Local Ethics Commit-
tee of the Leibniz-Institut fuer Wissensmedien. Due to the
large sample size, all of the analyses were conducted using
a 99% confidence level to minimize the risk of false-
positive results.

Data were available on age (date of birth), gender
(male/female), education (various classifications), settle-
ment structure (rural/suburban/urban), and personal life
satisfaction for all of the participants. According to their
obtained school degree, education levels of participants
were categorized as low (N = 894, 33.9%), medium
(N = 839, 31.7%), or high (N = 710, 26.8%). Low education
indicated that participants either had achieved no school
leaving certificate or a degree from a secondary modern
school from class level 5–9 (“Hauptschule”). A medium
level of education meant that participants held a degree
from a secondary modern school from class level 5 to
10 (“Realschule”), and high level of education meant that
they got a university-entrance diploma from a secondary
modern school from class level 5 to 12 or 13 (“Gymnasium”
with degree “Abitur” or “Fachhochschulreife”). Two-
hundred and three participants (7.7%) indicated having
achieved a different certificate or did not provide informa-
tion about their school-leaving qualifications. The

participants' settlement structure was categorized pursuant
to the criteria for spatial classification of the Federal Insti-
tute for Research on Building, Urban Affairs, and Spatial
Development (BBSR) (Table A1, Appendix S1). The life
satisfaction scale consisted of 10 items (Table A2) asking
participants to rate their satisfaction with different aspects
of their lives from 0 (not satisfied) to 10 (very satisfied).
Internal consistency (Cronbach's alpha) of this scale was
α = 0.69. All ratings were summed up and divided by the
number of items.

We designed a questionnaire that inquired into peo-
ple's knowledge about, risk perception regarding, and
attitude toward foxes. Earlier versions of the question-
naire were tested in a laboratory setting with a smaller
sample before being implemented in the survey pres-
ented here (Flemming, Cress, Kimmig, Brandt, &
Kimmerle, 2018). In order to measure people's factual
knowledge, we used 11 statements about foxes—with six
statements being correct and five statements being wrong
(Table A3). Participants were asked to classify the state-
ments as true or false, and each correct assessment was
coded with one point. All points were added, resulting in
a scale from 0 to 11 points, with higher values indicating
greater knowledge.

The risk perception questionnaire consisted of five items,
with each item representing an infectious disease. Partici-
pants had to indicate for each disease how they perceived
the risk of infection for themselves and for domestic ani-
mals on a 5-point Likert scale from 0 (no risk) to 4 (very
high risk). They could also choose the option “not able to
say” (this choice was treated as missing data in the analysis
and replaced by the mean score of all participants on that
item). The diseases listed were rabies (a viral disease that
causes inflammation of the brain in humans and other
mammals), echinococcosis (a parasitic disease caused by
the fox tape worm. In the questionnaire referenced as “fox
tape worm” because the expression echinococcosis is less
known), distemper (a viral disease that affects domestic
dogs and wild animals), mange (a skin disease caused by
parasitic mites) and foot-and-mouth disease (FMD, a viral
disease that affects cloven-hoofed animals). Of these, only
echinococcosis, can actually be transmitted from foxes to
humans inGermany (the country having been declared free
of terrestrial rabies by the World Health Organization
[WHO] in 2008) while mange and distemper can be trans-
mitted to companion animals. We also included Morbus
metum, which is a fictitious disease that was not included
in the further analyses, since less than 50% of the partici-
pants provided an answer to this item. The sum total was
divided by the number of items, resulting in a risk percep-
tion score between 0 and 4, with higher values indicating
perception of higher risks. Internal consistency (Cronbach's
alpha) of this scale was α= 0.89.
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The attitude questionnaire consisted of six items, such
as “I consider foxes in urban environments a pest,” that
participants had to rate on 7-point Likert scales from
1 (completely disagree) to 7 (fully agree). Items 2, 5, and
6 were inverted and recoded before summing up all the
items (Table A4). The score was divided by the number
of items, resulting in an attitude score between 1 and
7, with higher values indicating a more positive attitude.
Internal consistency (Cronbach's alpha) of this scale
was α = 0.70.

We also asked participants how wild fox populations
should be managed. They could opt for protecting and
supporting foxes, for area-wide hunting, or for not inter-
vening. They also had the option “no opinion on fox
management”. Answers were coded with 0 for hunting,
1 for neutrality, and 2 for a supporting position. No opin-
ion was coded as a missing value.

We present descriptive statistics to provide frequency
information on the sample's education level, settlement
structure, and fox population management preferences.
We also provide mean scores and standard deviations for
life satisfaction, knowledge about foxes, risk perception,
and attitude. Moreover, we conducted correlation ana-
lyses with the variables knowledge, risk perception, and
attitude. To examine the role of age and gender, we con-
ducted a multivariate analysis of variance with gender as
a fixed factor and age as a covariate. In order to test the
hypotheses, we conducted multivariate analyses of vari-
ance and regression analyses. All statistical analyses were
conducted using SPSS Statistics 25.

3 | RESULTS

The participants' knowledge about foxes was on average
M = 4.77 (SD = 1.54) out of 11 possible points. Their
average risk perception was M = 1.40 (SD = 0.93) on a
scale from 0 to 4 (Figure 1). Their mean attitude toward
foxes was M = 4.27 (SD = 1.47) on a scale from 1 to
7. Regarding the fox population management 30.8% of
the participants indicated a supporting position, 9.6% pre-
ferred hunting, 40.6% opted for not intervening, and
19.1% had no opinion on fox management (Figure 2a). A
total of 38.6% of the participants lived in urban, 31.6% in
suburban, and 29.9% in rural regions. Their average life
satisfaction was M = 6.70 (SD = 1.54) on a 10-point scale.

We found a positive correlation between factual
knowledge and attitude (r = .118, p < .001) and a nega-
tive correlation between factual knowledge and risk per-
ception (r = −.062, p = .01): The more participants knew
about foxes, the more positive their attitude was toward
them and the less they perceived them as a risk. There
was a negative correlation between attitude and risk

perception (r = −.185, p < .001), such that the lower the
risk people perceived, the more positive their attitude
was toward foxes.

A multivariate covariance analysis controlling for age
revealed significant differences between men and women,
F(3, 2,641) = 8.228, p < .001; Wilk's Λ = 0.991, partial
η2 = 0.009 (Table A5). Women and men did not differ in
knowledge, F(2, 2,644) = 0.186, p = .666, but differed sig-
nificantly in risk perception, F(2, 2,644) = 6.888, p = .009;
partial η2 = 0.003, and attitude, F(2, 2,644) = 21.375,
p < .001; partial η2 = 0.008): Men perceived significantly
lower risk (M = 1.35, SD = 0.91) than women (M = 1.44,
SD = 0.94). Men also held a more positive attitude toward
foxes (M = 4.41, SD = 1.42) than women (M = 4.15,
SD = 1.50). The covariate age affected neither knowledge,
F(1, 2,645) = 0.934, p = .334 nor risk perception, F
(1, 2,645) = 0.249, p = .618), but had a significant effect on
attitude, F(1, 2,645) = 41.175, p < .001; partial η2 = 0.015.
The younger the participants were, the more positive were
their attitudes toward foxes.

In order to test Hypotheses 1a–c, we conducted a multi-
variate analysis of variance that revealed an overall significant
impact of education, F(6, 4,820) = 18.829, p < .001, Wilk's
Λ = 0.955, partial η2 = 0.023. However, participants with dif-
ferent educational levels did not differ in their knowledge
about foxes, rejecting Hypothesis 1a, F(2, 2,412) = 0.051,
p = .950. Hypotheses 1b and c, in contrast, were supported:
Depending on their educational levels, participants differed
in their risk perception, F(2, 2,412) = 24.155, p < .001, partial
η2 = 0.020 as well as in their attitude toward foxes,

risk perception

0 1 2 3 4

Morbus metum (N=1280)

FMD (N=2223)

Sarcoptic Mange (N=2046)

Canine Distemper (N=2059)

Fox tape worm (N=2405)

Rabies (N=2468)

FIGURE 1 Means and SDs of the participants' risk perception

(from 0 (no risk) to 4 (very high risk)) regarding the following

diseases: rabies, echinococcosis (“fox tape worm”), canine
distemper, sarcoptic mange, foot-and-mouth disease (FMD and

morbus metum. Of the diseases listed, only the fox tapeworm is a

threat to people in Germany. Terrestrial rabies was eradicated in

Germany in 2008, so it cannot be contracted by foxes anymore.

Canine distemper and mange can be transmitted from foxes to

companion animals. Morbus metum is a fictitious disease
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F(2, 2,412)= 40.518, p < .001, partial η2 = 0.033. Post hoc tests
with Bonferroni corrections revealed that all of the groups
(low, medium, and high educational levels) differed signifi-
cantly from each other regarding both risk perception and
attitude. Higher education levels were associated with more
positive attitudes and lower risk perception, and lower educa-
tion was associated with more negative attitudes and higher
risk perception (Table 1).

For testing Hypotheses 2a–c, we conducted a multivari-
ate analysis of variance that revealed an overall significant
impact of settlement structure, F(6, 2,884) = 4.897, p < .001;
Wilk's Λ = 0.980, partial η2 = 0.010. While knowledge did
not vary with settlement structure, F(2, 1,444) = 0.915,
p = .401, the data supported our hypotheses regarding risk
perception, F(2, 1,444) = 8.553, p < .001, partial η2 = 0.012,
and attitude, F(2, 1,444) = 7.132, p < .001, partial η2 = 0.010).
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FIGURE 2 Preferred actions regarding fox management strategies in Germany (2a) with the following options: “hunt,” “do not

intervene (neutral),” “protect and support,” and “no opinion on management,” as well as means and standard errors for knowledge (2b),

risk perception (2c), and attitude (2d) depending on participants' preferred fox management strategies

TABLE 1 Knowledge, risk perception, and attitude of participants in relation to their educational level (low, medium, or high) and

settlement structure (urban, suburban, or rural)

Educational level Settlement structure

Low Medium High Urban Suburban Rural

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Knowledge 4.79 1.54 4.77 1.55 4.77 1.53 4.79 1.49 4.72 1.64 4.66 1.54

Risk perception 1.55 1.00 1.40 0.91 1.22 0.82 1.34 0.87 1.39 0.94 1.57 0.96

Attitude 3.98 1.47 4.24 1.39 4.63 1.43 4.34 1.52 4.03 1.35 4.07 1.48

Note: Knowledge: scale range from 0 to 11; risk perception: scale range from 0 to 4; attitude: scale range from 1 to 7.
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Post hoc tests with Bonferroni corrections revealed that peo-
ple who live in rural areas had a significantly higher risk per-
ception than people who live in urban (p < .001) or
suburban (p = .010) areas. People who live in urban areas
also had a more positive attitude toward foxes than people
who live in suburban (p = .002) or rural areas (p = .010)
(Table 1).

We hypothesized that life satisfaction also influences
attitude toward foxes (Hypothesis 3a) and risk perception
(Hypotheses 3b). There was indeed a slightly positive
regression coefficient for attitude, but it was not signifi-
cant on the 1% level (standardized β = 0.044; p = .024;
R2 = 0.044). We found, however, that the more satisfied
people were with their lives, the lower their risk percep-
tion was (standardized β = −0.012; p < .001; R2 = 0.12).

Finally, we compared people who held different views
on management options with regard to their knowledge,
attitude, and risk perception, and found significant differ-
ences, F(6, 2,141) = 35.342, p < .001; Wilk's Λ = 0.061,
partial η2 = 0.939. People who had different views on
management options did not differ with regard to knowl-
edge, F(2, 2,141) = 0.478, p = .620, but with regard to atti-
tude, F(2, 2,141) = 100.602, p < .001, partial η2 = 0.086,
and risk perception, F(2, 2,141) = 16.975, p < .001, partial
η2 = .016 (Table 2). Post hoc tests showed that all groups
differed significantly in their attitude: Participants who
were in favor of supporting fox populations had a more
positive attitude toward foxes than those who preferred
not to manage them at all (neutral). Supportive and neu-
tral participants both had a more positive attitude than
those who preferred hunting. Participants also signifi-
cantly differed in risk perception: People who favored
hunting perceived higher risks than those who were neu-
tral or supportive. People who were neutral did not differ
in risk perception from those who wanted to support fox
populations (Figure 2b–d).

4 | DISCUSSION

In recent years, many researchers have tried to account for
the human dimension of wildlife management and conser-
vation (Miller, Minteer, & Malan, 2011). One theory on

human responses to wildlife argues that the number of
people who value conservation may decline if costs or per-
ceived risks of coexisting with wildlife increase dispropor-
tionately to the benefits (Decker et al., 2012). The results of
our study show the importance of factoring in socio-
demographic background when trying to gauge people's
perception of wildlife.

With less than half of the possible points achieved on
average, the participants' factual knowledge about foxes
in this study was rather low. This is probably not due to
people not being familiar with foxes, as Hooykaas
et al. (2019) showed that in the Netherlands, the red fox
was correctly identified by 97.2% of primary school chil-
dren and 99.2% of participants from the general public.
Thus, omnipresence of a species apparently does not nec-
essarily lead to an increase in factual knowledge about
it. Risk perception (mean 1.4 out of 4) was lower than
randomly expected and the average attitude toward foxes
was rather positive (mean 4.27 out of 7). In line with
these results, a study on perception of foxes in Munich,
Germany found that the majority of inhabitants were
“pleased to see a fox in the community and felt the ani-
mals have a right to live” (König, 2008, p. 101).

While factual knowledge about foxes was equivalent
among gender and age groups, some differences in the
perception of risks and in attitude became apparent. In
line with other studies, women perceived more risks from
foxes and, in contrast to those studies, also held a less
positive attitude toward them (Thornton & Quinn, 2009;
Zinn & Pierce, 2002). König (2008) found that people
are more afraid of fox-borne diseases when they have
children in their households. One could thus assume that
health- and safety-related concerns are more important
to women who are still more often responsible for raising
children in our society (see also Dietz, Kalof, &
Stern, 2002). Some studies suggest that women generally
tend to report stronger environmental attitudes and con-
cerns than men (Luchs & Mooradian, 2012; Scannell &
Gifford, 2013; Tikka, Kuitunen, & Tynys, 2000). How-
ever, risk perception is complex and other findings sug-
gest that socio-political factors, such as power and status,
are also strong determinants of people's perception of
risks (e.g., Flynn, Slovic, & Mertz, 1994).

TABLE 2 Preferred management strategies in relation to knowledge, risk perception, and attitude

Hunt Neutral Support

Mean SD Mean SD Mean SD

Knowledge 4.69 1.69 4.80 1.52 4.77 1.52

Risk perception 1.69 1.00 1.34 0.89 1.34 0.88

Attitude 3.45 1.45 4.48 1.35 4.83 1.34
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In the United States, adolescent conservation behaviors
have shown a downward trend since the 1970s (Wray-Lake,
Flanagan, & Osgood, 2010, see also Thornton & Quinn,
2009). This seems to contrast with our finding that younger
people held a more positive attitude toward foxes than older
people. However, in a review on pro-environmental concerns
and behavior by Gifford and Nilsson (2014) the authors con-
clude that those two measures do not converge well: Several
studies have shown that older people report engaging inmore
pro-environmental behavior than younger people (e.g., Pinto,
Nique, Aňaňa, & Herter, 2011; Swami, Chamorro-Premuzic,
Snelgar, & Furnham, 2011). But research also shows that
younger people report being more concerned about the
general environment than older people (e.g., Arcury &
Christianson, 1993; Klineberg, McKeever, & Rothenbach,
1998). Generally, it is difficult to detect whether apparent age
effects are caused by aging itself or may be the result of a
cohort effect (e.g., due to a specific experience in a generation)
or an era effect (e.g., due to a general trend in society).

We found no effect of settlement structure on fox-
related knowledge. However, people living in urban
agglomerations showed a more positive attitude toward
foxes than people in suburban or rural areas, while people
living in rural areas perceived higher risks from foxes than
people in urban and suburban areas. This has also been
shown for other carnivores, except coyotes (Kansky
et al., 2014; Williams, Ericsson, & Heberlein, 2002).
According to Manfredo (2008), these differences could be
explained by the fact that urban residents are less impacted
in their livelihoods by wildlife: On the protection-use scale
(Fulton, Manfredo, & Lipscomb, 1996; Manfredo, Teel, &
Bright, 2003), wildlife perception is ranging from a utilitar-
ian end with the belief that wildlife should be managed and
used for human benefit to a protection end, at which people
think wildlife has an intrinsic value and should have rights
similar to those of humans. In this context, urbanization
andmodernizationmay lead urban residents to bemore tol-
erant of wildlife, because they view wildlife as beings with
rights rather than as a food source. This is consistent with
literature showing less anthropocentric tendencies in urban
residents (e.g., Huddart-Kennedy, Beckley, McFarlane, &
Nadeau, 2009) and describing an association between
urbanization and increased concern about animal welfare
(e.g., Hays, 1987;Mertig, Dunlap, &Morrison, 2002).

We found an effect of educational level on attitude and
risk perception but, not on fox-related knowledge. Higher
education levels were associated with lower levels of risk
perception and a more positive attitude. These findings cor-
respond well with prior research (e.g., Hanisch-Kirkbride,
Riley, & Gore, 2013), as well as with the observation that
utilitarian wildlife values are associated with lower levels of
education and that education shifts these values toward an
appreciation of wildlife (Inglehart & Baker, 2000; Manfredo

et al., 2003). More generally, they are also in line with find-
ings fromKaranci, Aksit, and Dirik (2005) who showed that
higher educated individuals tend to worry less about possi-
ble future risks but show a higher sense of control and
preparedness.

We found that the more satisfied people were with their
lives, the lower their risk perception was. This could per-
haps be explained by the fact that people with lower levels
of emotional stability worry about many aspects of life,
among them about environmental issues (Hirsh, 2010).
Wildlife perception seems to be multifactorial (McShane
et al., 2011) and several personality or self-construal related
factors, such as openness, agreeableness, or conscientious-
ness have been shown to be linked to environmental
engagement (Milfont & Sibley, 2012). However, life satisfac-
tion depends on a person's living circumstances and can be
influenced at least to some extent by local management
actions. Thus, wemay need to include considerations of life
satisfaction in conservation management attempts. Social
and economic interventions around protected areas in
Nepal, for example, led to more favorable attitudes toward
conservation (Baral & Heinen, 2007). For some local areas,
conflicts, or stakeholder groups, it may therefore be promis-
ing to invest in development of infrastructure or other eco-
nomically or culturally relevant areas, rather than in
information campaigning only, to improve the people's
quality of life in general.

Finally, we found that a majority of the participants
(who were representative for the German population)
preferred either not to intervene in the fox population or
did not have an opinion on fox management. Only a
small proportion was in favor of lethal population control
(less than 10%). This corresponds with König's (2008) pre-
diction who stated on the basis of his local study that “it
is to be expected that radical solutions such as killing the
foxes are unlikely to be accepted among the popula-
tion” (p. 101).

We also found that there was a relationship among
attitudes, perceived risks, and preferred management
strategies. Generally, the perception of higher risks of get-
ting infected with fox-borne diseases was correlated with
a more negative attitude. It is important to note that only
three of the diseases listed pose an actual threat to
humans or domestic animals, but that more than those
three were seen as a threat by the participants, indicating
that the true risk level may be quite irrelevant in deter-
mining perceived risks (see also Figure 1). This corre-
sponds to the findings of Decker et al. (2012) that
perceived risks of wildlife associated diseases are a grow-
ing concern. These perceived risks influenced people's
attitudes and their opinion on management options: Peo-
ple with positive attitudes and low-risk perception pre-
ferred neutral coexistence with or active support of fox
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populations, while people with higher risk perceptions
and more negative attitudes were in favor of hunting.

It seems plausible that better knowledge about foxes
would prevent an overestimation of risks that are based
on false assumptions. This would, consecutively, result in
a more positive attitude and finally in increased tolerance
for human coexistence with foxes. We thus expected
species-related knowledge to influence wildlife percep-
tion. Maybe another set of questions on factual knowl-
edge would have shown a different picture, yet we
intended to test the general effect of species-specific
knowledge and therefore not only included questions
that directly relate to possible threats.

There was an indirect effect of factual knowledge on
management preferences, that is, we could find a positive
correlation between fox-related knowledge and attitude
and a negative one between knowledge and risk perception,
which in turn show significant impact on management atti-
tude. Interestingly, however, fox-specific knowledge did not
significantly affect the participants' management prefer-
ences andwas not influenced by the socio-demographic fac-
tors tested. One possible explanation is that increased
knowledge of wildlife might simply be used to support pre-
existing opinions (Bjurlin & Cypher, 2005; Kellert, Black,
Rush, & Bath, 1996). This could indicate that more knowl-
edge about fox-related diseases, for example, just increases
already present fears, an effect that König (2008) reported
regarding the small fox tapeworm (Echinococcus
multilocularis). In a mail survey in Boulder, the United
States, Hunter and Rinner (2004) also found that people
with more eco-centric perspectives placed greater priority
on species preservation, regardless of species-related knowl-
edge. Accordingly, successful conservation management
should not only provide species-specific knowledge but also
advocate the significance of ecological integrity and biologi-
cal diversity more broadly (Hunter & Rinner, 2004).

5 | CONCLUSION

Obtaining people's support is crucial for conservation
success. However, as we have shown here, the perception
of wildlife is influenced by a complex interplay of factors
(see also McShane et al., 2011). Determining how to best
promote conservation actions is challenging when wild-
life tolerance differs among socio-demographic groups.
Since the general level of education and even life satisfac-
tion have an impact on the perception of wildlife, study-
ing the socio-demographics behind wildlife tolerance
may not be sufficient. We would need to additionally
investigate how to reach out to different target groups
and study how different communication styles and for-
mats influence wildlife perception of those groups.
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Appendix 

 

Table A1. Spatial classification of the Federal Institute for Research on Building, Urban Affairs and 

Spatial Development (BBSR) 

Type of region Classification 

Urban regions Regions in which at least 50% of the population lives in large and medium-
sized cities and in which there is a large city with 500,000 inhabitants or 
more. Additionally, regions with a population density of at least 300 
inhabitants/km² excluding large cities. 

Regions with beginning 
urbanization 

Regions in which at least 33% of the population lives in large and medium-
sized cities with a population density of 150 to 300 inhabitants/km² and 
regions in which at least one large city is located and which have a 
population density of at least 100 inhabitants/km² excluding large cities. 

Rural regions  Regions in which less than 33% of the population lives in large and 
medium-sized cities, with a population density below 150 inhabitants/km². 

 

 

 

Table A2. Satisfaction with different aspects of personal life according to SOEP core data set V33. 

SOEP Variable Aspect of life 

pzuf 01 Health 

pzuf 02 Work 

pzuf 03 Household work 

pzuf 04 Household income 

pzuf 05 Personal income 

pzuf 07 House/Flat/Housing 

pzuf 08 Leisure time 

pzuf 13 Family 

pzuf 14 Friends 

pzuf 20 Sleep 
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Table A3. Factual knowledge: 11 statements about foxes that participants were asked to classify as 

true or false. 

Statement Correct Answer 

Foxes are able to climb trees True 

There is a risk of getting infected with rabies through wild foxes in Germany False 

Foxes are socially flexible and live in couples as well as in small groups True 

Foxes in the wild have lifespans of up to 20 years False 

In Germany, infections with the fox tape worm are extremely rare True 

A fox has approximately half the body weight of a shepherd dog False 

Approximately half a million foxes are shot each year in Germany True 

Due to fear of humans, foxes in cities flee earlier when being approached  False 

In foxes, both parents participate in parental care True 

In Germany around 5 to 10 people per year get infected with the fox born disease 
Morbus metum 

False 

Amongst other things, foxes consume insects, earthworms and fruit True 

 

 

Table A4. Questionnaire for measurement of attitude toward foxes, containing six statements to be 

rated on seven-point Likert scales. 

Please state to what extent, in your opinion, the following statements are true. 
 

 1 
Completely 

disagree 

2 3 4 5 6 7  
Fully 
agree 

I would be pleased having a fox in my garden/living 
environment  

       

Foxes are dangerous for children        

I enjoy seeing foxes        

Foxes are part of nature. They belong to our 
environment and should be accepted around humans. 

       

I consider foxes in urban environments a pest.        

Foxes are potential carriers of diseases and shouldn’t 
be around people.  

       

 

 



3 

 

Table A5. Knowledge, attitude and risk perception of men and women. 

 Men Women 

 Mean SD Mean SD 

Knowledge 4.78 1.54 4.76 1.54 

Attitude 4.41 1.42 4.15 1.50 

Risk perception 1.35 0.91 1.44 0.94 
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General discussion 

Numerous studies have shown that living in urban environments affects both non-adaptive and adaptive 

evolution of wildlife (Johnson & Munshi-South, 2017). Many urban dwelling species have not specifically 

evolved new or modified traits as evolutionary adaptations to the urban environment (so far), rather their 

inherent behavioural flexibility (or phenotypic plasticity) allows for an adjustment to the urban habitat 

(Lowry et al., 2013). The red fox is described as such a flexible species (e.g. Baker et al., 2000; Lucherini & 

Lovari, 1996; Macdonald, 1983) with a high capacity to adjust to novel habitats. Our study shows that red 

foxes do dwell in metropolitan areas and move in and disperse through the urban matrix. Nevertheless 

our study also shows that foxes are constrained in their movements by human activities, with interesting 

and far-ranging consequences on both the individual and the population level. 

Navigating the urban landscape 

The urban habitat is characterised by a high degree of artificiality, from sealed surfaces to highly built-up 

areas that may hinder animal movements due to (extreme) habitat fragmentation (e.g. Grimm et al., 2008; 

Holderegger & Di Giulio, 2010; Seto et al., 2011). We therefore studied the effect of physical properties of 

the landscape on red fox dispersal and genetic structure at the population level, as well as their spatial 

behaviour on an individual scale. Our results showed that physical barriers may affect red fox movement 

abilities in a minor way. For instance, larger waterbodies, streams and channels limited gene flow through 

the urban matrix, but their “resistance” to gene flow was low, especially when compared to the sevenfold 

higher resistance values of the administrative Berlin city border. This is in line with reports that red foxes 

frequently cross rivers (Adkins & Stott, 1998). Also, densely built-up areas had just a slight negative effect 

on gene flow and were also not avoided by red foxes when considering their individual-based habitat 

selection. The population genetic results suggest that there is some genetic substructure between the 

eastern and the western part of the city fox population, although the historic division of Berlin because of 

the Berlin wall makes it difficult to disentangle the effects of current and past barriers. 

Urban landscape features often act as barriers to gene flow (Storfer et al., 2010) but a review on urban 

ecological genetic studies found no evidence of consistently increased between‐population genetic 

differentiation associated with urbanisation (Miles et al., 2019). Past research on the genetic structure of 

red fox populations between rural and urban areas only found population differentiation as a consequence 
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of a founder effect that had already dissolved (DeCandida et al., 2019; Gloor, 2002). Even a lack of 

geographical structuring has been described for the red fox (Teacher et al., 2011). We detected two distinct 

genetic fox populations, roughly corresponding to the city and the rural area outside the city boundaries 

respectively (with precise boundaries depending on the methodological approach). Although physical 

landscape elements may affect red fox movement probabilities this did not seem to be the driving factor 

for dispersal impediment and genetic differentiation (see also below). Red foxes even made use of man-

made structures by choosing motorways and railways as dispersal corridors. This is in line with former 

findings of red foxes using linear transport infrastructure as links in the urban matrix (Kolb 1984) and might 

serve increased travel speeds. High resolution step selection analysis in wolf (Canis lupus), woodland 

caribou (Rangifer tarandus caribou), moose (Alces alces) and black bear (Ursus americanus) revealed that 

all species moved faster while on anthropogenic linear features (Dickie et al., 2020). 

According to our results, neither dispersal movements nor daily space use of red foxes seemed to depend 

on natural-like patches within the city habitat such as natural habitat remnants or urban forests. In the 

urban context such natural areas are minimally modified for human use, compared to built-up, developed 

areas that have been substantially altered for residential, recreational, commercial or industrial purposes 

(Fischer et al., 2015). They therefore often serve as refuge areas in urban environments and are of key 

importance to urban biodiversity conservation (Rudd et al., 2002; Aronson et al., 2017). For red foxes, 

however, urban green spaces seemed to play a minor role at the population level and were even actively 

avoided at the individual level. The conductance of such green spaces to gene flow was low and according 

to the habitat selection models analysed at the individual level, red foxes avoided public parks. They even 

more strongly avoided urban forests which are probably the least altered patches in the Berlin city area.  

In contrast, wasteland (including industrial remains and verges along railways) was strongly preferred by 

red foxes, followed by gardens of residential houses. The latter may not only provide cover but also 

represent important food sources. Gardens offer many possible food items for red foxes, including fruits, 

food for companion animals and small rodents [Baker and Harris, 2007]) and the abundance of food is 

much higher than in forested areas (Hansen et al., 2020). However, the availability of food is also high in 

public parks, providing prey such as mice, voles and earthworms as well as human leftovers in considerable 

amounts, especially in central city areas. Nevertheless, these parks are avoided by red foxes. Food 

availability cannot adequately explain the strong preference for wasteland either. Thus, other factors such 

as human induced disturbance and human activities are essential for an understanding of dispersal as well 
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as space use patterns in urban red foxes, particularly when considering the risks involved when using 

transport infrastructure as movement corridors or verges along railways for shelter or breeding.    

Behavioural adjustments…    

Urban wildlife often displays behaviours that differ from those of their rural counterparts (Lowry et al., 

2013). This pattern is reflected by the strong limiting effect of the Berlin city border, compared to the slight 

impediments caused by physical barriers such as waterbodies, on possible immigration by rural red foxes, 

whereas urban red foxes routinely make use of man-made structures. Our landscape genetics results 

suggest that urban red foxes are accustomed to the city to a certain degree whereas their rural conspecifics 

face behavioural barriers to cross the city border and disperse to the urban habitat. According to Lowe et 

al. (2013) some individuals or species might exhibit behavioural traits (or a particular temperament) that 

are inherently well suited to occupying urban habitats, such as a high level of tolerance to disturbance 

(Lowry et al., 2013) and the foxes definitely showed a certain degree of tolerance towards human 

presence. However, our results suggest that even city foxes avoid human-dominated areas when possible. 

Other urban ecological studies concluded that food dispersion cannot sufficiently explain red fox 

distribution and space use (e.g., Cavallini and Lovari, 1994). Our results suggest that human presence and 

activity may be key drivers for the selection of dispersal routes and habitat choices. For instance, as 

mentioned above, the habitat selection analyses we conducted showed that foxes exhibited avoidance 

behaviour towards urban forests and public parks, although especially the latter provides both cover and 

food. This is also true for allotment gardens that are likewise avoided. All these areas are characterised by 

a rather natural habitat like structure (compared to built-up areas, streets or places) but also by high levels 

of human presence (and to some extent of their companion animals). In a camera trap study on habitat 

use in red foxes, landscape, food availability and human disturbance influenced red fox appearance. In 

forest-dominated areas, human activities had a negative effect whereas in proximity to urban areas the 

main driver determining fox presence was food availability (Alexandre et al., 2020). Camera trap studies 

can be of limited use for the study of habitat selection, since in a study on red fox habitat selection in a 

rural area, camera trapping supported a high level of red fox activity in open land, whereas GPS telemetry 

revealed the opposite (Fiderer et al., 2019). Our results therefore provide a thorough insight into the 

importance of human presence for red fox habitat use. Red foxes specifically selected wasteland areas 
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inaccessible to humans, irrespectively of their structural composition or degree of artificiality (regarding 

imperviousness or buildings). Human presence is also much lower (and much more predictable) in private 

residential gardens that were preferred by the foxes compared to public green spaces. To assess the 

impact of human presence beyond the issue of accessibility of urban sites to humans, we also included 

population density into our spatial analysis. When the areas used by red foxes were compared to the 

available habitat, increasing human population density clearly was avoided and only when human 

population density had been taken into account, imperviousness was avoided too. This avoidance of high 

human population densities was particularly distinct during daytime, at times of high human activity. 

The results suggest not only a spatial but also a temporal adjustment to human presence. Such temporal 

activity patterns are mechanisms used by animals to cope with the varying structure of an environment in 

time (Kronfeld-Schor & Dayan, 2003; Sönnichsen et al., 2013). Environmental factors affecting temporal 

activity may include behavioural thermoregulation, avoidance of competitors, food resource availability 

and the avoidance of predators (Lesmeister et al., 2015; Pereira, 2010; Sönnichsen et al., 2013). If foxes 

perceive humans as predators, they should adjust their space use to human activities accordingly (e.g. 

Kaufmann et al., 2007). Our results show that foxes are mainly nocturnal and crepuscular. Beyond the 

stronger avoidance of highly populated areas during daytime, the selectin of sites inaccessible to humans 

is more distinct during times of high human activity. Such avoidance of human induced disturbance has 

been reported for a number of species that have shown an activity shift towards nocturnality across 

habitats and continents (Gaynor et al., 2018). Louvrier et al. (in prep) discovered that the city foxes of 

Berlin were more nocturnal during the recent covid lockdown and state that this is consistent with the 

expectation that people tended to be more present in their private gardens, forcing wildlife to be more 

nocturnal in the gardens, during lockdown. It seems that humans worldwide drive carnivores into the night 

(Carter et al., 2015; Sévêque et al., 2020), including red foxes, although prey activity is low during night-

time (Díaz‐Ruiz et al., 2016).   

… and their limitations  

Shifting activities to times of lower prey activity is a fitness disadvantage for foxes, as it limits temporal 

overlap with their prey and thus foraging opportunities. The cityscape provides food sources, reasonably 

independent of temporal patterns, yet the adjustment of foxes to human activity and space use comes 
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with more evolutionary costs. Roughly 75% of foxes die in their first year, and thereafter mortality is 

approximately 50% in each adult year (Macdonald, 2004). Urban foxes are usually not hunted, they die 

from canine distemper virus, sarcoptic mange and other diseases, intraspecific competition as well as 

poisoning but trauma from traffic accidents is the most common cause of death.  

Red fox mortality within cities is particularly high due to road traffic (Baker et al., 2007). Even if individuals 

survive traffic collisions, they are often severely injured. As a consequence, a high percentage of individuals 

in urban red fox populations have one or more fractures. For instance, one third of two to three year old 

red fox individuals and 70% of five year old individuals showed at least one fracture (Harris, 1978). In 

contrast, examinations of museum specimens of carnivores revealed a proportion of individuals with bone 

fractures of 4.4 % (Argyros & Roth, 2016). The high incidence of fractures is not surprising as we found that 

red foxes used transport infrastructures such as motorways for dispersal at the population level and even 

preferred grey spaces (mainly consisting of roads) over public green spaces and forests for individual 

habitat use.  

The enormous risk that goes along with the use of these landscape elements indicates an erroneous risk 

estimation by the red foxes. Apparently, urban foxes show distinct predator avoidance behaviour towards 

humans, although urban wildlife species are not facing any direct mortality risk from humans, or more 

precisely from human pedestrians (Moll et al., 2018; Stillfried et al., 2017). There has been no hunting of 

red foxes in the Berlin city area for many fox generations, and poisoning of red foxes that is often caused 

by the consumption of (originally targeted) poisoned rodents is unlikely to be assigned to humans as the 

originator by the affected animals. We therefore propose an expansion of the concept of the landscape of 

fear (Laundré et al., 2010) on the ecological implications of fear induced behaviour beyond avoidance of 

natural predators to the consideration of human induced fears. The concept was originally developed for 

feeding behaviour (especially with regard to giving-up densities during foraging) and describes a landscape 

beyond physical properties, a landscape that “represents relative levels of predation risk as peaks and 

valleys that reflect the level of fear of predation a prey experiences in different parts of its area of use” 

(Laundré et al., 2010, S1). Such fears in wildlife may also arise from anticipated risks posed by humans, 

regardless of the actual assigned mortality risk. It has been shown that human induced fear or risk 

estimates by wildlife can indeed affect wildlife behaviour. For instance, top carnivores reduced fidelity to 

kill sites and overall consumption times in response to humans and compensated this by increasing 

foraging effort in terms of prey kill rates (Smith et al., 2015).   
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Our results suggest that the anticipation of risk related to direct human presence also drives red fox 

dispersal and space use behaviour, resulting in a costly misconception of risk levels in the landscape of 

fear. Laundré et al. (2010) postulate  that  animals  can  learn  and  respond  to  differing  levels  of  risk. It 

remains an open question to what extent future red fox generations may improve the adjustment of their 

behaviour in response to humans.  

Conclusion 

Our research showed that the ecology of urban wildlife needs to be studied by considering human effects 

beyond manmade structures as an ecological factor. We demonstrated that red foxes are not entirely 

adjusted to the urban environment. Red foxes did not evenly use the urban matrix (without any 

preferences) on an individual scale nor was their population panmictic across the rural to urban gradient. 

Two distinct red fox populations were identified through clear genetic signatures and separated by the city 

border. Also, red foxes showed strong space use preferences for specific urban sites associated with 

reduced or missing human access and reduced human activities. Some physical properties of the landscape 

showed small barrier effects, but were not the main driver for or hindrance of red fox dispersal, in the 

sense of gene flow conductance and impediment. Hence, the red fox population is neither panmictic nor 

is dispersal solely affected by physical barriers. In terms of individual space use landscape composition also 

played a minor role, regarding the avoidance of landscape elements such as built-up areas as well as with 

regard to habitat preferences, in particular concerning the lack of preferential treatment of green spaces. 

Hence, behavioural constraints caused by human presence and activities may drive red fox dispersal, be 

responsible for structuring the population and set some limits to the use of space at the individual level. 
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