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Abstract: We aimed to evaluate radiomic features’ stability across different region of interest (ROI)
sizes in CT and MR images. We chose a phantom with a homogenous internal structure so no
differences for a feature extracted from ROIs of different sizes would be expected. For this, we
scanned a plastic cup filled with sodium chloride solution ten times in CT and per MR sequence (T1-
weighted-gradient-echo and T2-weighted-turbo-inversion-recovery-magnitude). We placed sphere-
shaped ROIs of different diameters (4, 8, and 16 mm, and 4, 8, and 16 pixels) into the phantom’s
center. Features were extracted using PyRadiomics. We assessed feature stability across ROI sizes
with overall concordance correlation coefficients (OCCCs). Differences were tested for significance
with the Mann–Whitney U-test. Of 93 features, 87 T1w-derived, 87 TIRM-derived, and 70 CT-derived
features were significantly different between ROI sizes. Among MR-derived features, OCCCs showed
excellent (>0.90) agreement for mean, median, and root mean squared for ROI sizes between 4 and
16 mm and pixels. We further observed excellent agreement for 10th and 90th percentile in T1w and
10th percentile in T2w TIRM images. There was no excellent agreement among the OCCCs of CT-
derived features. In summary, many features indicated significant differences and only few showed
excellent agreement across varying ROI sizes, although we examined a homogenous phantom. Since
we considered a small phantom in an experimental setting, further studies to investigate this size
effect would be necessary for a generalization. Nevertheless, we believe knowledge about this effect
is crucial in interpreting radiomics studies, as features that supposedly discriminate disease entities
may only indicate a systematic difference in ROI size.

Keywords: radiomics; texture analysis; magnetic resonance imaging; computed tomography; phan-
tom; reproducibility; robustness

1. Introduction

Radiomics, i.e., the extraction of various texture features from radiologic images, is an
emerging and rapidly evolving technique. The aim is to detect subtle changes in imaging
data imperceptible to the human eye [1].

After image acquisition, preprocessing, and segmentation of a lesion or a tumor, differ-
ent subgroups of radiomic features can be extracted: shape features that describe the shape
and geometry [2,3], first-order features that provide information on global characteristics
of the gray level intensity distribution [4] without considering spatial relationships [3], as
well as second- and higher-order features, which are derived using complex functions to
describe the spatial arrangement of voxel intensity values [2,5].

Explorative analysis and modeling of these data attempt to correlate radiomic features
with prediction targets, such as clinical endpoints and genomic features [6]. Especially
for numerous malignant entities and solid tumors, e.g., brain tumors [7], head and neck
cancer [8], renal tumors [9], or prostate cancer [10], correlations between radiomic features,
histopathology, and outcome have been shown recently. Although there is a growing body
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of data on the application of radiomics as “quantitative imaging biomarkers” [11], the
reliability of the data is not yet fully assured [12]. However, reproducibility is an essential
property of a quantitative biomarker [13,14].

Radiomic feature extraction from medical images requires segmentation of the vol-
ume of interest. Variability in the segmentation process can already bias radiomic fea-
tures [14–16]. Besides the segmentation process, voxel size in computed tomography (CT)
impacts a substantial number of radiomic features [17]. Additionally, inter-scanner and
inter-vendor variability of numerous radiomic features have been reported for CT [18] and
MR imaging [19]. Overall, published data suggest that all steps prior to a radiomics analy-
sis can affect feature values, including image acquisition, preprocessing, reconstruction
algorithms, and applied software [6,12,20–23], increasing the demand for a standardization
of radiomics studies [11]. Additionally, Berenguer et al. suspected CT-based radiomics of
being fundamentally influenced by noise [24], which Lu et al. were recently able to dis-
prove for individual features [25]. As other improvements, Van Timmeren et al. suggested
test-retest strategies to select robust radiomic features [26]. Kalpathy-Cramer et al. recom-
mended training on phantoms to counteract variations due to different segmentation [16].

Additionally, it has already been addressed that the size of the segmented volume
influences radiomic features: Different first-order features (energy, total energy, root mean
squared) are confounded by volume, because—in generalized terms—the pixels’ gray
levels in a region of interest (ROI) are summed, i.e., a ROI with more pixels leads to a
higher feature value and vice versa [2]. Additionally, the first-order feature variance is
supposed to be influenced by ROI size [27]. Therefore, these features cannot reliably
distinguish between different pathologies unless they are derived from identically sized
ROIs. For example, in a study investigating radiation-induced lung disease in CT scans,
Choi et al. found that only 16 of 27 texture features were robust across different tumor
sizes [28]. Roy et al. found 16 radiomic features dependent on tumor size in breast cancer
lesions and suggested normalization for volume dependency to be used for the confounded
features [29]. Traverso et al. investigated volume-confounding in 841 radiomic features
derived from lung and head and neck tumors and found nearly 30% strongly correlated
with tumor volume [30]. Thus, the question arose of which features remain stable when
the ROI size varies.

Therefore, this study aimed to identify stable radiomic features in CT and MR images
when extracted from ROIs of variable size considering a homogenous phantom. In this
way, we intended to observe solely the effects of the different ROI sizes on the features, as
the phantom’s structure remains identical throughout.

2. Materials and Methods
2.1. Phantom and Image Acquisition

We have considered a phantom with no internal structure, so any differences in the
results of the feature extraction would be attributable to the varying ROI size. Conversely,
no differences for ROIs of varying size would be expected for a stable feature because the
texture does not change throughout the phantom. To also test if the behavior is modality-
specific, image acquisition should be performed on CT and MR scanners.

We, therefore, used a plastic cup containing 100 mL of sodium chloride solution as a
phantom with the desired homogenous inner structure to acquire images for the analysis.
All scans were performed with the same phantom on CT and MRI machines from clinical
routine and repeated ten times to address potential outliers.

MR scans were performed on a 3 Tesla MRI scanner (Magnetom Skyra, Siemens
Healthineers, Erlangen, Germany). The phantom was placed in the isocenter with a head
coil carefully positioned on top, removed after each scan, and repositioned for the next
acquisition. We selected two MRI sequences with a resolution that is considered suitable
for MRI radiomics according to Mayerhoefer et al. [31]. The T2-weighted turbo inversion
recovery magnitude (T2w TIRM) sequence was selected as it was assumed to be the most
robust MRI sequence for radiomic analysis [12]. The T1-weighted (T1w) sequence was



Tomography 2021, 7 240

acquired as a counterpart to the T2w TIRM sequence. Sequence parameters are listed in
Table 1.

Table 1. Scanning details—MRI.

Parameter T1w GRE T2w TIRM

TR/TE (ms) 250/3.43 9000/85
Flip angle (◦) 70 150
Slice thickness (mm) 5 4
Matrix 512 × 410 256 × 218
Field of view (mm) 240 × 240 230 × 230

GRE: gradient echo. TIRM: turbo inversion recovery magnitude. TR: repetition time. TE: echo time.

All CT acquisitions were performed on a 320-detector row CT scanner (Aquillion ONE,
Canon Medical Systems, Neuss, Germany) using the small field of view. The phantom was
placed in the isocenter, removed after each scan, and repositioned for the next acquisition.
Scan parameters are listed in Table 2.

Table 2. Scanning details—CT.

Parameter

Tube voltage (kVp) 120
X-ray tube current (mA) 50
Exposure time (s) 0.5
Single collimation width 0.5
Total collimation width 100
Reconstruction kernel Body
Slice thickness (mm) 0.5
Pixel spacing (mm) 0.430\0.430
Matrix 512 × 512
Field of view (mm) 220 × 220

kVp: peak kilovoltage. mA: milliampere.

2.2. Image Analysis

ROIs were drawn as spheres using 3D Slicer (3D Slicer, Version 4.10.2, http://www.
slicer.org (accessed on 8 August 2020)) into the center of the images of all ten scans. ROI
diameters were set to 4, 8, and 16 pixels (px; ROIpx) as well as to 4, 8, and 16 mm (mm,
ROImm). A millimeter-wise analysis was done because metric units are the standard of
measure used for reporting. However, the number of pixels in the same mm sized ROI
varies with the resolution of the radiologic image (lower resolution: fewer pixels, higher
resolution: more pixels). On the opposite, the number of pixels in a px sized ROI is
independent of the image resolution. We therefore also conducted a pixel-wise analysis.
Figures 1 and 2 show examples of ROIs placed in MR and CT images.

All ROIs were drawn twice by one reader and once more by another reader to deter-
mine intra- and interrater agreement.

All features except for the shape features were extracted using PyRadiomics (Ver-
sion 3.0) [32] with settings suggested by the developers: for CT: imageType: Original: {}
\featureClass: firstorder:, glcm:, glrlm:, glszm:, gldm:, ngtdm: \setting: binWidth: 25,
voxelArrayShift: 1000, correctMask: true; for MR: imageType: Original: {}\featureClass:
firstorder:, glcm:, glrlm:, glszm:, gldm:, ngtdm: \setting: binWidth: 5, voxelArrayShift: 300,
correctMask: true).

http://www.slicer.org
http://www.slicer.org
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the 16-pixel ROI in the T2w TIRM image has a greater diameter than the 16-pixel ROI in the T1w 
image. Both T1w and T2w TIRM-weighted images show typical, gradient-like inhomogeneities 
within the phantom (brighter at the bottom, darker at the top). 

 
Figure 2. Sample set of CT ROIs. (A–F) are CT images of the phantom. (A) shows a ROI with a 4 
mm diameter, (B) with 8 mm, and (C) with 16 mm. (D) illustrates one slice of the 4-pixel diameter 
ROI, (E) of the 8-pixel, and (F) of the 16-pixel diameter ROI. mm sized ROIs are generally larger 
than px sized ROIs. 

All ROIs were drawn twice by one reader and once more by another reader to de-
termine intra- and interrater agreement. 

All features except for the shape features were extracted using PyRadiomics (Ver-
sion 3.0) [32] with settings suggested by the developers: for CT: imageType: Original: {} 
\featureClass: firstorder:, glcm:, glrlm:, glszm:, gldm:, ngtdm: \setting: binWidth: 25, 
voxelArrayShift: 1000, correctMask: true; for MR: imageType: Original: {}\featureClass: 
firstorder:, glcm:, glrlm:, glszm:, gldm:, ngtdm: \setting: binWidth: 5, voxelArrayShift: 
300, correctMask: true). 

Shape features were not considered because all ROIs were spheres with a defined 
size and geometry. The first-order features included were energy, total energy, entropy, 
minimum, maximum, mean, median, interquartile range (IQR), range, mean absolute 
deviation (MAD), robust mean absolute deviation (RMAD), root mean squared (RMS), 
skewness, kurtosis, variance, uniformity, 10th percentile, and 90th percentile. In addition, 
the second- and higher-order feature classes were comprised of: 24 gray level 
co-occurrence matrix (GLCM) features, which describe combinations of gray levels of 

Figure 1. Sample set of MRI ROIs. (A–D) are examples of MR images of the phantom with differently
sized ROIs (in yellow). (A,B) are images acquired with the T1w sequence, (C,D) are images acquired
with the T2w TIRM sequence. The left column shows ROIs with a 16 mm diameter, the right column
ROIs with a 16-pixel diameter. Due to the different spatial resolutions, the 16-pixel ROI in the T2w
TIRM image has a greater diameter than the 16-pixel ROI in the T1w image. Both T1w and T2w
TIRM-weighted images show typical, gradient-like inhomogeneities within the phantom (brighter at
the bottom, darker at the top).
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Figure 2. Sample set of CT ROIs. (A–F) are CT images of the phantom. (A) shows a ROI with a 4 mm
diameter, (B) with 8 mm, and (C) with 16 mm. (D) illustrates one slice of the 4-pixel diameter ROI,
(E) of the 8-pixel, and (F) of the 16-pixel diameter ROI. mm sized ROIs are generally larger than px
sized ROIs.

Shape features were not considered because all ROIs were spheres with a defined size
and geometry. The first-order features included were energy, total energy, entropy, mini-
mum, maximum, mean, median, interquartile range (IQR), range, mean absolute deviation
(MAD), robust mean absolute deviation (RMAD), root mean squared (RMS), skewness,
kurtosis, variance, uniformity, 10th percentile, and 90th percentile. In addition, the second-
and higher-order feature classes were comprised of: 24 gray level co-occurrence matrix
(GLCM) features, which describe combinations of gray levels of neighboring pixels [33,34];
14 gray level dependence matrix (GLDM) features, which quantify gray level dependencies
in an image [2]; 16 gray level run-length matrix (GLRLM) features, which quantify gray
level runs (defined as the number of pixels that have the same gray level value) [2]; 16 gray
level size zone matrix (GLSZM) features, which quantify gray level zones in an image
(defined as the number of connected voxels that share the same gray level intensity) [2];
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as well as 5 neighboring gray tone difference matrix (NGTDM) features to quantify the
difference between a gray value and the average gray value of its neighbors within a certain
distance [2].

The classification of features into first-, second-, and higher-order features is based on
the system proposed by the developers of PyRadiomics [2].

2.3. Statistical Analysis

Statistical analysis was performed using SPSS (SPSS Statistics for Windows, version
26.0, IBM Corp. Armonk, NY, USA) and R (version 3.5.1) [35].

To check whether the variation in ROI size can lead to significant differences of the
feature value, the results were evaluated with a pairwise Mann–Whitney U (MWU)-test
with Bonferroni correction in R. The three possible pairs were tested for millimeter- and
pixel-sized ROIs (4 vs. 8 mm/px, 4 vs. 16 mm/px, and 8 vs. 16 mm/px). A p-value < 0.05
was considered statistically significant.

Overall concordance correlation coefficients (OCCCs) for agreement of continuous
measures according to Lin et al. [36] and Barnhart et al. [37] were calculated using the epiR
package for R [38]. While the OCCC is equivalent to the generalized CCC [37], it can be used
to measure agreement between more than two variables of interest. Concordance coefficient
values range from 1 to −1, with −1 indicating reverse agreement [15]. OCCCs ≥ 0.90 were
defined to indicate excellent reproducibility, consistent with reported studies [12,15].

OCCCs were calculated twice: once to assess agreement among the ROI sizes 4, 8, and
16 px/mm (OCCCs4–16) and once for the ROI sizes 8 and 16 px/mm (OCCCs8,16). This was
done to obtain results without the 4 mm and 4 px ROIs, to check if a threshold value should
be considered and to determine whether results can be degraded by a small ROI size.

We created Bland–Altman and correlation plots for the ROI sizes of 8 and 16 millime-
ters and pixels to illustrate numerical data distribution points.

For assessment of interrater agreement, intraclass correlation coefficient (ICC) esti-
mates and their 95% confidence intervals (CIs) were computed using a mean-rating (k = 2),
absolute-agreement, 2-way random-effects model. Intrarater agreement was assessed
by calculating ICC estimates and their 95% CIs using a mean-rating (k = 2), absolute-
agreement, 2-way mixed-effect model. Intra- and interrater reliability was classified as
poor to excellent (ICC: <0.5 poor, 0.5–0.75 moderate, 0.75–0.9 good, >0.9 excellent) [39].

3. Results
3.1. MWU-Test
3.1.1. T1w MR Images

Of the 18 first-order features, RMAD, entropy, range, uniformity, energy, and total
energy showed a significant difference for all pairs of ROI sizes in both ROImm and ROIpx.
On the contrary, no significant differences were observed for mean, median, RMS, 10th
percentile, and skewness. The remaining first-order features were different in at least one
compound of ROI sizes (mm or pixel).

Of the 24 GLCM features, ten features were significantly different in each possible
combination. Seven out of fourteen GLDM features were different in all possible combina-
tions; the others showed differences for at least one pair. Nine of sixteen GLRLM features
were different for all possible pairs, while all of the features showed differences for at least
one pair. Of the 16 GLSZM features, nine features were different in all combinations, with
only one feature (small area emphasis) showing no differences in any compound. Three
of five NGTDM features were different in all varieties, while all of the features showed
differences for at least one pair.

In total, in T1w images, out of 93 analyzed features, 44 were different in every pairing
and 43 in at least one pairing; only 6 features did not show differences in any combination.

For the total of 558 ROI pairs (4,8 and 4,16 and 8,16 in mm or px: six combinations for
93 features), we recognized 221 significant differences in ROImm and 185 in ROIpx.
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Results of the MWU-test for T1w images sorted by feature class are shown in Supple-
mentary Materials 1 (see Table S1).

3.1.2. T2w TIRM Images

Of the first-order features, uniformity, RMAD, MAD, IQR, variance, entropy, range,
total energy, and energy were significantly different for all pairs of ROI sizes. Mean,
median, RMS, 10th percentile, 90th percentile, and skewness showed no differences for any
combination. The remaining first-order parameters were significantly different in at least
one compound.

A total of 13 GLCM, 9 GLDM-, 11 GLRLM, 9 GLSZM, and 2 NGTDM features were
different in all combinations, while all of the features showed differences for at least
one pair.

In summary, in the T2w TIRM images, a significant difference occurred in 53 of
93 features in all combinations and 34 features in at least one pair. Only 6 of the features
(6 first-order features) showed no significant differences in all possible variations.

There were 221 significant differences in ROImm and 212 in ROIpx.
Results of the MWU-test for T2w TIRM images are shown in Supplementary Materials 2

(see Table S2).

3.1.3. CT Images

Compared to the MR images, only a few first-order features were significantly different
between ROI sizes: range, energy, and total energy showed significant differences in
all possible ROI combinations; 10th percentile, variance, MAD, and minimum showed
difference in at least one compound. The features mean, median, RMS, entropy, uniformity,
skewness, 90th percentile, RMAD, and IQR did not show differences in any pair.

Of 24 GLCM features, 13 features were different in at least one compound. The
remaining 11 GLCM features showed no differences. A total of 6 GLDM- and 5-GLSZM
features showed significant differences in all possible combinations and one feature with
significant differences for at least one pair. 10 GLRLM- and two NGTDM features were
significantly different in all compounds, while all of the features showed differences for at
least one pair.

In total, 21 of 93 CT-derived features did not show significant differences in any pair.
Twenty-six features were significantly different in all compounds, and 44 features in at
least one combination.

We found 128 significant differences for ROImm and 137 for ROIpx.
Results of the MWU-test for the CT images are shown in Supplementary Materials 3

(see Table S3).
Figure 3 shows exemplary boxplots of the features mean, median, RMS, entropy, and

uniformity for T1w, T2w TIRM, and CT images.



Tomography 2021, 7 244
Tomography 2021, 7, FOR PEER REVIEW 7 
 

 
Figure 3. Exemplary boxplots of first-order features mean, median, root mean squared, entropy, 
and uniformity across the 10 repetitive scans. For the T1w MR images (A) and the T2w TIRM MR 
images (B), mean, median, and RMS showed no significant difference in the Mann–Whitney U-test, 
whereas entropy and uniformity were significantly different. For the CT images (C), the illustrated 
features did not show significantly different results, i.e., the features do not simulate significant 
differences. 

3.2. OCCCs 
OCCCs4–16 showed excellent agreement for the features mean, median, and RMS 

extracted from T1w and T2w TIRM MR images for ROIsmm and ROIspx. 

Figure 3. Exemplary boxplots of first-order features mean, median, root mean squared, entropy, and
uniformity across the 10 repetitive scans. For the T1w MR images (A) and the T2w TIRM MR images
(B), mean, median, and RMS showed no significant difference in the Mann–Whitney U-test, whereas
entropy and uniformity were significantly different. For the CT images (C), the illustrated features
did not show significantly different results, i.e., the features do not simulate significant differences.

3.2. OCCCs

OCCCs4–16 showed excellent agreement for the features mean, median, and RMS
extracted from T1w and T2w TIRM MR images for ROIsmm and ROIspx.
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The features 90th percentile and 10th percentile showed excellent agreement for T1w
ROIspx but not for ROIsmm. In T2w TIRM MR images, the 10th percentile showed excellent
agreement also only for ROIspx.

In the OCCCs8,16 agreement was consistent for MR images, besides that the
10th percentile in T2w TIRM no longer showed excellent agreement, either in ROIsmm or in
ROIspx, despite a high agreement of 0.88 in ROIspx.

None of the first-order features derived from CT showed excellent agreement based
on OCCCs4–16 and OCCCs8,16. Median showed the best agreement with 0.8 in ROIsmm.

Considering second-order and higher-order features, none of the features, either
extracted from CT or from MR images, showed excellent agreement.

Results for the OCCCs of first-order features are compiled as bar plots in Figure 4. OC-
CCs of all included features are illustrated in the Supplementary Materials (see Figures S1–S3).
Numerical data of OCCCs of all features are also provided in the Supplementary Materials
together with results of MWU-test (see Tables S1–S3).
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Figure 4. OCCCs8,16 and OCCCs4–16 for ROIs drawn in millimeters (red) and pixels (green). Excellent agreement of 0.9 is
marked with a red line. Second- and higher-order features as well as numerical values can be found in the Supplementary
Materials (Figures S1–S3, Tables S1–S3). Mean, median, and root mean squared concordantly showed excellent agreement
across ROI sizes for MR images. None of the features showed excellent agreement for CT images; here, the best agreement
of 0.8 is shown by the feature median for the millimeter sized ROI OCCCs8,16.

Figure 5 shows correlation plots for the first-order feature mean for ROI sizes 8 and
16 pixels. 2D correlation plots of all included features for ROI sizes 8 and 16 mm and
px are provided in the Supplementary Materials (see Figure S4). Figure 6 shows Bland–
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Altman plots for the first-order feature RMS. Bland–Altman plots of all included features
are provided in the Supplementary Materials (see Figure S5).
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3.3. Intra- and Interrater Agreement

Intra- and interrater agreement was calculated for first-order features to rule out
reader dependency of results.

Except for skewness and kurtosis, both intra- and interrater agreement was excel-
lent, demonstrating that the obtained results are not attributable to the individual reader.
Skewness was the only feature for which agreement was moderate. Kurtosis was the only
feature for which agreement was poor. This may be attributable to intrinsic properties of
these parameters, which are known to be prone to outliers [12].

Results are summarized in Table 3.

Table 3. Intrarater and interrater agreement.

Intrarater

Parameter ICC 95% CI p

Energy 1.000 1.000–1.000 <0.001
Total energy 1.000 1.000–1.000 <0.001

Entropy 0.998 0.997–0.998 <0.001
Minimum 1.000 1.000–1.000 <0.001
Maximum 1.000 1.000–1.000 <0.001

Mean 1.000 1.000–1.000 <0.001
Median 1.000 1.000–1.000 <0.001

IQR 0.990 0.989–0.991 <0.001
Range 0.997 0.997–0.997 <0.001
MAD 0.996 0.995–0.996 <0.001

RMAD 0.993 0.992–0.994 <0.001
RMS 1.000 1.000–1.000 <0.001

Skewness 0.726 0.695–0.755 <0.001
Kurtosis 0.482 0.422–0.536 <0.001
Variance 0.993 0.992–0.993 <0.001

Uniformity 0.992 0.991–0.993 <0.001
10th percentile 1.000 1.000–1.000 <0.001
90th percentile 1.000 1.000–1.000 <0.001

Interrater

Parameter ICC 95% CI p

Energy 1.000 1.000–1.000 <0.001
Total energy 1.000 1.000–1.000 <0.001

Entropy 0.994 0.993–0.995 <0.001
Minimum 1.000 1.000–1.000 <0.001
Maximum 1.000 1.000–1.000 <0.001

Mean 1.000 1.000–1.000 <0.001
Median 1.000 1.000–1.000 <0.001

IQR 0.981 0.987–0.984 <0.001
Range 0.987 0.985–0.989 <0.001
MAD 0.983 0.979–0.985 <0.001

RMAD 0.982 0.979–0.985 <0.001
RMS 1.000 1.000–1.000 <0.001

Skewness 0.525 0.471–0.575 <0.001
Kurtosis 0.319 0.240–0.389 <0.001
Variance 0.962 0.956–0.966 <0.001

Uniformity 0.988 0.986–0.990 <0.001
10th percentile 1.000 1.000–1.000 <0.001

ICC: intraclass correlation coefficient. 95% CI: 95% confidence interval. p: significance level. Intra- and interrater
agreement shows excellent agreement for all first-order parameters except for skewness and kurtosis, which are
known to be prone to outliers.

3.4. Summary of the Results

Compared to the CT-derived features, more MR-derived features were significantly
different between ROI sizes in the MWU-test. Most of the few features for MR images
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without significant differences (mean, median, RMS, 10th percentile, skewness, and in T2w
TIRM images additionally 90th percentile) showed excellent OCCCs.

For CT, in total fewer features were significantly different between ROI sizes, especially
considering the first-order and the GLCM features. However, none of the CT-derived
OCCCs showed excellent agreement.

For the MR images, more features from ROIs drawn in millimeters showed significant
differences than from ROIs drawn in pixels. In CT images, slightly more features from
ROIs drawn in pixels were significantly different.

4. Discussion

Of all features extracted from our homogenous phantom, the first-order parameters
mean, median, and RMS proved robust to a ROI size variation of 4–16 mm and pixels
in MR images. Thus, a lesion could vary in size between 4 and 16 mm or pixels without
altering these three radiomic features. Agreement in absolute numbers, however, was
better when only the two largest ROIs were analyzed.

Considering the Mann–Whitney U-test results, it is interesting that differences between
the ROI sizes were significant for a substantial number of features. When transferring this
to clinical studies, a feature could be classified as helpful in differentiating a disease entity
or condition, even though it may only indicate a systematic difference in lesion size. Our
observations on the homogenous phantom showed more MR than CT-derived features
with a significant difference between ROI sizes.

We intentionally chose a phantom without an internal structure to acquire images
that remain identical for all ROI sizes. We decided to analyze three different spherical ROI
sizes in our study to mimic three lesions of the same homogenous composition, but with
different volumes. Although a 4 mm ROI is relatively small, it is not entirely unusual in
clinical routine (e.g., small pulmonary nodules). Still, it is more likely to encounter larger
lesions of clinical relevance, corresponding to ROIs with diameters of 8 to 16 pixels or mm.
Nevertheless, we can deduct from our results, that the features we consider stable provide
congruent information from 8 to 16 mm/px and 4 to 16 mm/px resp.

Our results for RMS—a measure of the magnitude of intensity values [2]—as a robust
feature are rather unexpected since the developers of PyRadiomics themselves refer to
RMS as a volume-confounded parameter [2]. Yet, the results confirm a lack of reproducibil-
ity across different ROI sizes for energy and total energy, congruent to the developers’
statement. Our stable parameters in T1w and T2w TIRM images, mean and median, were
already reported as stable in lung CTs by Choi et al. [28]; however, in our study these
parameters did not show excellent OCCCs when derived from CT images.

None of the second- or higher-order features extracted from MR images of our homoge-
nous phantom achieved excellent agreement in the OCCCs. These parameters identified
as volume confounded in our study were also reported unstable in the in vivo MRI study
by Roy et al., who investigated stability across different tumor volumes on breast cancer
patients with T1w and T2w MR sequences [29]. Therefore, these features do not seem
reliable for use in MRI-based texture analysis from differently sized ROIs, and studies
based on MR-derived second- and higher-order features should be scrutinized.

Unlike Baessler et al. [12], who reported TIRM (FLAIR) images to be most robust in
reproducing radiomic features in fruits, we observed no crucial differences between T2w TIRM
and T1w images with T1w even yielding slightly better results in our homogenous phantom.

Moreover, we found the reproducibility of MRI-derived 90th and 10th percentiles
dependent on whether we measured ROI size in pixels or millimeters, showing excellent
agreement only for ROIspx. In contrast, mean, median, and RMS were robust to ROI size
irrespective of whether we used pixels or millimeters. By comparison, there are more pixels
included in ROIsmm than in the respective ROIspx. This fact may increase the number of
outliers in the ROIsmm by which the percentiles shift slightly, which may be enough to
reduce stability. Percentiles are known to be strongly influenced by single-pixel outliers [12];
however, this also applies to mean, which proved to be less susceptible in our study.
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Our results for CT-derived features are not surprising since several studies have
approved that many CT texture features lack reproducibility, even under constant examina-
tion conditions [24,40,41]. In our homogenous phantom, none of the CT-derived features
had an excellent OCCC8,16 or OCCC4–16. In contrast, we must also highlight that fewer
CT than MR-derived features showed significant differences. Therefore, CT-derived ra-
diomics seem to be volume confounded in our setting, but not distorted enough to simulate
significant differences.

One reason for the high number of features prone to ROI size variation could be that
most of the radiomic features were initially developed for non-medical applications and
planar images, while typically three-dimensional lesions are investigated in radiological
imaging [17].

Our study has some limitations. One is that only one scanner per modality was used
to acquire the images used for the analysis. Thus, as already outlined in the introduction,
results may be different for other reconstruction algorithms, manufacturers, and settings,
especially for MRI [12]. Taking these issues into account was beyond the scope of this study.
Nevertheless, we have aimed for reproducible settings with examination parameters taken
from the clinical routine. Furthermore, the smallest ROIs in this study (especially ROIpx)
comprise a relatively low number of pixels, which may render the results prone to outliers.
We tried to compensate for that by considering multiple acquisitions (10 acquisitions per
CT/MR sequence) and comparing values under the exclusion of the smallest ROI by
applying the OCCCs8,16. In this context, the consideration of only two readers for the
estimation of the interobserver variability should also be mentioned. More readers would
lead to an even more reliable assessment.

Apart from that, the comparability of T1w and T2w TIRM MR images is limited
because the slightly different slice thicknesses lead to different voxel depths and hence
differences in spatial resolution in this direction. Additionally, we used different PyRa-
diomics settings for the extraction from CT and MR images. However, the use of identical
parameters without consideration of modality-specific characteristics would again have
been associated with limitations.

It may also be seen as a drawback that intensity inhomogeneities in the MR images
of our phantom are already visible to the naked eye and may influence radiomic features.
However, we believe that similar effects are likely to be encountered in clinical images as
well. And although they may not be obvious, there are probably minor inhomogeneities in
CT images as well due to repositioning and rotating the phantom, since the wall of the cup
is unlikely to be absolutely uniform.

Moreover, it can be considered a limitation that our phantom has no internal structure
and hence may not be applicable for texture analysis. In addition, images from a homoge-
nous phantom likely reflect mainly image noise. However, clinical images are not expected
to be entirely free of similar effects and homogenous structures are not generally excluded
from texture analysis. Nevertheless, it should be kept in mind that the results obtained
from our phantom may not be directly translatable to clinical routine.

Despite the already known myriad of factors influencing radiomic features, our results
underline that the ROI size is another factor to be considered in radiomics studies. In our
study, more MR than CT-derived features were stable across ROI sizes and less susceptible
to whether ROI size was measured in millimeters or pixels. On the contrary, less CT than
MR-derived features were significantly different between the ROI sizes.

In many studies, lesions were marked with ROIs, but the lesions and consecutively the
ROIs had different sizes. Considering our results, however, it has to be validated if the ROI
size is a pivotal influencing factor in radiomics, for example, by sorting lesions by volume
and voxel size and comparing heterogeneities of the radiomic features or by normalizing
the features by voxel count or volume [17,29,42]. Thus, before applying radiomics in clinical
routine, volume as a confounding factor needs to be investigated further.
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5. Conclusions

In conclusion, when considering a phantom with a homogenous structure, the only
features robust to a variation in ROI diameter from 4 to 16 mm and pixels were mean,
median, and RMS extracted from MR images. Moreover, many features also showed
significant differences between the ROI sizes, but this was more frequent for MR than CT
images. Since we considered a small phantom in an experimental setting, further studies
to investigate this size effect would be necessary for a generalization. Nevertheless, we
believe knowledge about this effect is crucial in interpreting radiomics studies, as features
that supposedly discriminate disease entities may only indicate a systematic difference in
ROI size.
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10.3390/tomography7020022/s1, Supplementary Table S1: MWU-test and OCCCs for T1w MR
images, Supplementary Table S2: MWU-test and OCCCs for T2w TIRM MR images, Supplementary
Table S3: MWU-test and OCCCs for CT images, Supplementary Figure S1: OCCCs for T1w MR
Images of all features, Supplementary Figure S2: OCCCs for T2w TIRM MR images of all features,
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