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1 Introduction

Infectious diseases were the major cause of death at the beginning of the 20th century. But
in 1928, an antimicrobial effect of mould derived substances was observed incidentally by Sir
Alexander Fleming. Eighteen years later, 1946, penicillin was available in the open market,
changing therapeutic options for bacterial infection (Kong et al., 2010). However, resistance
against antibiotics were quick to follow. While this problem could be reduced for the fist decades
by the constant introduction of new antibiotics these advancements decreased over time and
therewith, antibiotic resistance has increased (Martínez and Baquero, 2014). Nowadays, next
to others, extended-spectrum beta-lactamase- (ESBL) and AmpC beta-lactamase- (AmpC)
producing Enterobacteriaceae represent a problem both in human and veterinary medicine.

The occurrence of ESBL-/AmpC-producing Enterobacteriaceae is widely distributed. This
applies to farm and companion animals, wildlife, as well as to retail meat and humans (Carattoli
et al., 2005; Costa et al., 2004; Schaufler et al., 2015; Aarestrup et al., 2006; Blanc et al.,
2006; Briñas et al., 2005; Meunier et al., 2006; Ghodousi et al., 2015; Leverstein-van Hall et
al., 2011; Guenther et al., 2011; Woerther et al., 2013; Livermore, 2012). As an impact of
animal-originated resistant bacteria is assumed (Marshall and Levy, 2011; Smet et al., 2010;
Dierikx et al., 2013b) and high prevalence of ESBL-/AmpC-producing Enterobacteriaceae were
demonstrated especially for broiler chicken (Huijbers et al., 2014; Laube et al., 2013; Smet
et al., 2008; Dierikx et al., 2013b) intervention strategies facilitating a reduction of the load
of these resistant bacteria in chicken should be considered. Therefore, information on the
entry and transmission of ESBL/AmpC-producing Enterobacteriaceae into/within the broiler
fattening farms are required, but only rare.

On the one hand, previous studies assumed a vertical transfer from broiler breeding chicken to
their offspring (Dierikx et al., 2013b; Nilsson et al., 2014). On the other hand, the transmission
on farm level due to contaminated fattening houses was assumed (horizontal transmission)
(Laube et al., 2013; Hiroi et al., 2012b; Huijbers et al., 2016).

As much was known about the prevalence at fattening level but little was known about
transmission processes, the presented study was aiming at an elucidation of transmission routes
for ESBL-/AmpC-producing Enterobacteriaceae along the broiler production chain. Therefore,
whole genome sequencing (WGS) as a high-resolution molecular method was used and parent
flocks, the corresponding hatching eggs and the hatchlings in the hatchery as well as the
respective fattening flocks were investigated for seven fattening chains.
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1 Introduction – 1.1 ESBL-/AmpC-producing Enterobacteriaceae

1.1 ESBL-/AmpC-producing Enterobacteriaceae

Beta-lactam antibiotics were the first antibiotics to be described (Queener, 1986) and resistance
against them was the first to be understood (Kong et al., 2010). One principle for bacteria
to combat these antibiotics is the production of beta-lactamases, enzymes that hydrolyse the
beta-lactam ring resulting in a reduced effectiveness (Pfeifer et al., 2010).

1.1.1 Beta-lactam antibiotics

Figure 1: Structure of the beta-lactam ring.

The beta-lactam ring, shown in figure 1, is
the characteristic functional core structure in
all beta-lactam antibiotics. This beta-lactam
ring can bind to the D-alanin-transpeptidase
enzymes, which are necessary for the bacte-
rial cell wall synthesis due to cross-linking of
polysaccharides to the peptidoglycan murein.
The binding of the beta-lactam ring to the transpeptidase inhibits the cell wall synthesis and,
therefore, results in the bactericidal effects of beta-lactam antibiotics (Madigan et al., 2013).
From a structural point of view, beta-lactam antibiotics can be subdivided into six different
groups (Pfeifer et al., 2010), shown in table 1. Clinically and therapeutically a distinction is
made between oral and parenteral antibiotics and from a pharmaceutical point of view penicillin,
cephalosporins, monobactams and carbapenems are included in the group of ß-lactam antibiotics
(Frey and Löscher, 2010). In terms of the antibacterial potency they are classified into narrow,
broad, and extended-spectrum antibiotics, and in the case of cephalosporins into the 1st to 5th

generation. In addition, there are beta-lactamase inhibitors like clavulanic acid, sulbactam and
tazobactam.

Table 1: Six different structural groups of beta-lactam antibiotics according to Pfeifer et
al. (2010).

Structural group Examples
penams benzylpenicillin, ampicillin
cephems 1st generation cephalosporins (cefadroxil, cefazolin)

2nd generation cephalosporins (cefotiam, cefuroxime)
3rd generation cephalosporins (cefotaxime, ceftazidime)
4th generation cephalosporins (cefepime)
5th generation cephalosporins (ceftaroline)

cephamycins cefoxitin
monobactams aztreonam
penems faropenem
carbapenems imipenem, meropenem

8



1 Introduction – 1.1 ESBL-/AmpC-producing Enterobacteriaceae

1.1.2 Beta-lactamases

Beta-lactamases are enzymes that cleave the beta-lactam ring of beta-lactam antibiotics and,
therefore, reduce their effectiveness (Pfeifer et al., 2010).

In gram-negative bacteria, naturally occurring chromosomally located beta-lactamases are
quite common and when produced in small quantities they do not significantly contribute
to antibiotic resistance (Liakopoulos et al., 2016). But already in the early 1950s, enteric
bacteria with resistance to first penicillins attracted attention (Pfeifer et al., 2010). To combat
emerging resistances, new antibiotics were introduced constantly. Within the brief span of eight
years (1978-1986) six new classes of beta-lactam antibiotics, natural as well as semisynthetic
and synthetic ones, were introduced. During this time, resistance to the newly introduced
beta-lactam antibiotics emerged surprisingly rapid (Medeiros, 1997).

1.1.2.1 Extended-spectrum beta-lactamases

The first report of an extended-spectrum beta-lactamase (ESBL) was published in 1983 (Knothe
et al., 1983). Since then, ESBL-producing bacteria distributed worldwide and represent a
challenging public health problem.

A commonly used definition of ESBLs defines them to be beta-lactamases with resistance
against penicillins, 1st, 2nd and 3rd generation cephalosporins and aztreonam (but not against
cephamycins or carbapenems) and ESBLs are inhibitor-susceptible (Paterson and Bonomo,
2005; Bauernfeind et al., 1998; Thomson, 2010).

The most frequently occurring ESBL-genes belong to the beta-lactamase families SHV, TEM
and CTX-M and are usually multi drug resistant (Bradford, 2001; Paterson and Bonomo, 2005).

One main cause for beta-lactam resistance in enterobacterial species was the expansion of the
substrate spectrum of the broad-spectrum beta-lactamases (BSBLs) SHV and TEM (Jarlier
et al., 1988; Sirot et al., 1988). The beta-lactamase gene (bla) SHV (blaSHV) was first
described as a chromosomally encoded beta-lactamase in members of the genus Klebsiella
(Heritage et al., 1999) and already in the 1980s, blaSHV-1 (BSBL) was found in a variety
of plasmid types transferred from several bacterial species collected from a wide geographic
range (Matthew et al., 1979). The first ESBL detected in 1983 in Germany was discovered in
a Klebsiella ozeanae with extended-spectrum properties (Knothe et al., 1983). Sequencing
showed that the beta-lactamase differed from blaSHV-1 by replacement of glycin by serin
at position 238. This replacement alone accounts for extended-spectrum properties of this
beta-lactamase, designated blaSHV-2, an ESBL (Paterson and Bonomo, 2005). Since then,
SHV-type ESBLs were detected in human clinical isolates from all over the world (Paterson et
al., 2003) as well as in livestock and companion animals. To date, 132 SHV-genes are assigned
(http://www.laced.uni-stuttgart.de/).

The BSBL TEM-1 was reported first in 1965 from an Escherichia coli (E. coli) isolate from
a patient in Athen (Datta and Kontomichalou, 1965). blaTEM-1 only confers resistance to
penicillins and early cephalosporins but its descendants expanded the spectrum to 2nd, 3rd

9
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1 Introduction – 1.1 ESBL-/AmpC-producing Enterobacteriaceae

and 4th generation cephalosporins, monobactams and beta-lactamase inhibitors (Salverda et
al., 2010) and already in the 1980s, plasmid carrying genes encoding for TEM-types were
detected (Sirot et al., 1987; Brun-Buisson et al., 1987). To date, 167 TEM-genes are assigned
(http://www.laced.uni-stuttgart.de/).

Later, since the early 1990s, further beta-lactamase-related resistance mechanisms were discov-
ered. The CTX-M family arised in Enterobacteriaceae due to the mobilization of genes coding
for enzymes with ESBL-activity from the environmental bacterial genus Kluyvera and the name
CTX-M originated from the hydrolytic activity against cefotaxime (CTX-M - cefotaximase)
(Bonnet, 2004; Pfeifer et al., 2010). CTX-M enzymes can be classified by amino acid sequence
similarities into five major groups: CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 and CTX-M-25.
Each subgroup has a natural ancestor represented by the different environmental Kluyvera
species (Bonnet, 2004). The CTX-M resistance genes are genetically surrounded by specific
mobile transposase elements, leading to the worldwide dissemination of blaCTX-M in various
species of the family Enterobacteriaceae (Bonnet, 2004; Cantón et al., 2012).

1.1.2.2 AmpC beta-lactamases

Another important group of beta-lactamases are the AmpC beta-lactamases. They exhibit a
hydrolytic profile similar to the ESBLs while having an additional hydrolytic activity towards
cephamycins like cefoxitin and cefotelan (Bajaj et al., 2016). AmpC beta-lactamases are not
inhibited by the common beta-lactamase inhibitors like clavulanic acid and tazobactam but by
cloxacillin and boronic acid (Bradford, 2001; Jacoby, 2009; Thomson, 2010; Helmy and Wasfi,
2014).

The ampC gene is included in the chromosome of nearly all enterobacterial species besides
Klebsiella spp. and Proteus spp. and is regulated by complex mechanisms (Pfeifer et al., 2010).
In gram-negative organisms, overexpression of AmpC beta-lactamases occurs either by deregu-
lation of the ampC chromosomal gene (depressed mutants) or by acquisition of a transferable
ampC gene on a plasmid derived from several members of the family Enterobacteriaceae or
other transferable elements (pAmpCs - plasmid-mediated AmpC beta-lactamases) (Hanson
and Sanders, 1999; Bauernfeind et al., 1998; Bush, 2001; Thomson and Smith Moland, 2000;
Perez-Perez and Hanson, 2002).

Six families of plasmid-mediated AmpC beta-lactamases were described based on the sequence
similarities as CIT, FOX, MOX, DHA, EBC and ACC (Perez-Perez and Hanson, 2002). For
E. coli, one of the most commonly recognized plasmid-mediated AmpCs is the CMY-2 type
belonging to the CIT family and shares homology with chromosomally encoded ampC from
Citrobacter freundii (C. freundii) (Sidjabat et al., 2009; Oteo et al., 2010; Helmy and Wasfi,
2014). The majority of plasmid-mediated ampC genes are detected in nosocomial isolates of E.
coli and Klebsiella pneumoniae (K. pneumoniae).

10
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1 Introduction – 1.1 ESBL-/AmpC-producing Enterobacteriaceae

1.1.2.3 Classification of beta-lactamases

Most commonly, beta-lactamases are classified according to two general schemes. One classifi-
cation is based on the molecular structure and one on the functionality (Paterson and Bonomo,
2005).

The molecular classification scheme according to Ambler (1980) divides beta-lactamases into
four major classes (A-D) (Table 2). Classes A, C and D with serine in its active site (serine-
beta-lactamases) and class B which needs a bivalent cation (preferentially zinc) to facilitate
beta-lactam hydrolysis (metallo-beta-lactamases) (Pfeifer et al., 2010). The most frequently
occurring ESBLs belong to Ambler class A.

The functional classification scheme by Bush-Jacoby-Medeiros considers the functional similari-
ties regarding the substrate and inhibitor profiles (Bush and Jacoby, 2010) (Table 3). Therefore,
this classification scheme is of particular relevance for clinicians and laboratory microbiologists.

11



1 Introduction – 1.1 ESBL-/AmpC-producing Enterobacteriaceae

Table 2: Modified classification scheme of beta-lactamases based on the molecular structure
according to Ambler (1980) (Pfeifer et al., 2010).

ß- ß-lactamase Important Preferential Important
lactam examples occurrence phenotypical
class resistance

traits
A Broad-spectrum TEM-1, amipicillin,

ß-lactamase TEM-2, cephalotin
SHV-1,
SHV-11

ESBL TEM-type TEM-3, Enterobacteriacae penicillins, 3rd

TEM-52 and nonfermenters gen.
ESBL SHV-type SHV-5, cephalosporins

SHV-12
ESBL CTX-M-type CTX-M-1,

Serine-ß- CTX-M-15
lactamases Cabapenemases KPC, all ß-lactams

GES,
SME

C AmpC AmpC Enterobacter spp.
cephamycinases Citrobacter spp.
(chrmomosomal

encoded)
D AmpC CMY, cephamycins

cephamycinases DHA (cefoxitin), 3rd

(plasmid MOX gen.
encoded) FOX, cephalosporins

ACC Enterobacteriaceae
Broad-spectrum OXA-1,-9 Enterobacteriaceae, oxacillin,
ß-lactamases A. baumanii ampicillin,

cephalotin
ESBL OXA-type OXA-2,-10
Carbapenemases OXA-48, ampicillin,

-23,-24,-58 imipenem,
all ß-lactams

Metallo-ß- B Metallo-ß- VIM IMP Enterobacteriaceae all ß-lactams
lactamases lactamases and nonfermenters

(Carbapenemases)

12



1 Introduction – 1.1 ESBL-/AmpC-producing Enterobacteriaceae

Table 3: Classification scheme of beta-lactamases based on the functionality (Bush, 2013;
Bush and Jacoby, 2010; Bush et al., 1995).

Group Enzyme type Molecular Inhibition Substrate Examples
class by

1 Cephalosporinases C No Cephalosporins CMY-2,
FOX-1

1e Cephalosporinases C No Cephalosporins CMY-37

2a Penicillinases A CA/TZE Penicillins PC-1
2b Broad-spectrum A CA/TZE TEM-1, -2,

SHV-1
2be Extended- A CA/TZE Extended-spectrum TEM-3,

spectrum Cephalosporins SHV-2,
CTX-M-15

2br Inhibitor-resistant A No Extended-spectrum TEM-50
Cephalosporins,
Monobactams

2ber A No Extended-spectrum TEM-50
Cephalosporins,
Monobactams

2c Carbenicillinase A CA/TZE Carbenecillin PSE-1,
CARB-3

2ce Carbenicillinase A CA/TZE Carbenecillin, cefepim RTG-4
2d Cloxacillinase D variable Cloxacillin OXA-1, -10
2de Extended- D variable Extended-spectrum OXA-11, -15

spectrum cephalosporins
2df Carbapenemases D variable carbapenems OXA-23, -48
2e Cephalosporinases A CA/TZE Extended-spectrum CepA

cephalosporins
2f Carbapenemase A variable Carbapenems KPC-2 IMI-1

3a Metalloenzyme B EDTA Carbapenems IMP-1,
VIM-1

3b Metalloenzyme B EDTA Carbapenems CphA,
Sfh-1

CA, clavulanic acid; TZB, tazobactam, EDTA, ethylenediaminetetraacetic acid
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1 Introduction – 1.1 ESBL-/AmpC-producing Enterobacteriaceae

1.1.3 Enterobacteriaceae

The family Enterobacteriaceae of the order Enterobacterales belongs to the gram-negative
faculatative anaerobic rod-shaped bacteria. In 2016, the former order “Enterobacteriales” was
changed to Enterobacterales. Until 2016, Enterobacteriaceae were the only family in the order
“Enterobacteriales” and the systematic changes were connected with a distribution of the so far
known taxa to several new families (examples given for new families: Erwiniaceae, Yersiniaceae,
Morganellaceae) (Adeolu et al., 2016).

In the presented study, the focus mainly was on resistant isolates of the species Escherichia
(E.) coli, as they are detected frequently in humans and animals and are often associated with
multi-drug resistance. In addition, Klebsiella (K.) pneumoniae were of interest in the presented
study.

1.1.3.1 Escherichia coli

Table 4: Taxonomy of Escherichia coli.
Systematic
Domain Bacteria
Phylum Proteobacteria
Class Gammaproteobacteria
Order Enterobacterales
Family Enterobacteriaceae
Genus Escherichia
Species Escherichia coli

E. coli belongs to the genus Escherichia in
the family of Enterobacteriaceae (Table 4).
The gram-negative, non-sporulating faculta-
tive anaerobe bacterium has a size of 1.1-1.5
x 2.0-6.0 µm (Rolle et al., 2007).

E. coli strains can be classified into three
major groups: commensal E. coli, intestinal
pathogenic E. coli (InPEC) and extraintesti-
nal pathogenic E. coli (ExPEC) (Russo and
Johnson, 2000).

As a widespread commensal of the gastroin-
testinal tract in all vertebrates, E. coli is lo-
cated in the large intestine, especially in caecum and colon and coexists with its host in good
health only causing disease in immunocompromised hosts or when the normal gastrointestinal
barriers are damaged (Tenaillon et al., 2010; Russo and Johnson, 2000; Kaper et al., 2004).

The pathogenic strains of E. coli represent a common cause of severe infections and in humans
they are involved both in community and healthcare settings (European Centre for Disease
Prevention and Control, 2019). These strains have acquired specific virulence attributes allowing
them to adapt to new niches and cause a broad spectrum of diseases (Kaper et al., 2004).

InPEC strains cause enteric/diarrhoeal diseases and enteropathogenic E. coli (EPEC), entero-
haemorrhagic E. coli (EHEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC)
and diffusely adherend E. coli (DAEC) are known (Nataro and Kaper, 1998).

ExPEC strains mainly cause urinary tract infections (uropathogenic E. coli – UPEC), but also
diseases of the central nervous system, the circulatory system and the respiratory system (Kaper
et al., 2004; Russo and Johnson, 2003).
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In poultry, avian pathogenic E. coli (APEC) cause extraintestinal infections, primarily respiratory
infections, pericarditis and septicaemia (Kaper et al., 2004).

1.1.3.2 Klebsiella pneumoniae

Table 5: Taxonomy of Klebsiella pneumo-
niae.

Systematic
Domain Bacteria
Phylum Proteobacteria
Class Gammaproteobacteria
Order Enterobacterales
Family Enterobacteriaceae
Genus Klebsiella
Species Klebsiella pneumoniae

K. pneumoniae is a gram-negative, faculta-
tive anaerobe, non-motile, non-sporulating,
mostly encapsulated, rod-shaped bacterium
of the family Enterobacteriaceae (Table 5).

K. pneumoniae is naturally resistant to peni-
cillins and often carries acquired resistance to
multiple antimicrobials (Wyres et al., 2020).
The species typically colonizes the gut and
respiratory tract of both animals and humans,
and frequently causes human nosocomial in-
fections whereby the gastrointestinal tract and
the hands of hospital staff act as the main
pathogenic reservoirs for transmission. In par-
ticular, K. peneumoniae accounts for a significant proportion of hospital-acquired urinary tract
infections, pneumonia, septicaemia, and wound infections. Particularly at risk are vulnerable
patient groups as neonates, the elderly, and immunocompromised patients (Wyres et al., 2020;
Podschun and Ullmann, 1998).

In livestock, K. pneumoniae are detected in broiler and pig farms (Bródka et al., 2012; Hiroi et
al., 2012a) and represent an important cause of mastitis in dairy cows (Timofte et al., 2014;
Zadoks et al., 2011). In veterinary clinics, nosocomial events caused by K. pneumoniae are
indicated and the locations of isolation reflect primarily the situation in human medicine (Ewers
et al., 2014).
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1.2 ESBL-/AmpC-producing Enterobacteriaceae in public health

Beta-lactamases were first detected in the early 1980s in humans and in that habitat, ESBL-
/AmpC-producing bacteria have increasingly been detected since the 1990s. Later, since
2000, these bacteria have also increasingly been detected in animals (Smet et al., 2010). As
this also includes food-producing livestock, animals were hypothesized as infection sources
for humans (Smet et al., 2010; Carattoli, 2008). Figure 2 illustrates different habitats and
possible transmission pathways for antibiotic resistant bacteria between them, demonstrating
the relevance for public health.

Figure 2: Transmission routes of antibiotic resistant bacteria among different habitats,
according to Ewers et al. (2012).

1.2.1 ESBL-/AmpC-producing Enterobacteriaceae in humans

The first ESBL in humans was determined during a K. pneumoniae outbreak in a German
hospital in 1983 and since the late 1990s, ESBL-/AmpC-producing Enterobacteriaceae have
emerged globally and are reported both in clinical settings and in the community (Ewers et
al., 2012; Knothe et al., 1983; Pitout et al., 2005). The European Antimicrobial Resistance
Surveillance Network reported an increasing quantity of ESBL-/AmpC-producing Enterobacteri-
aceae, especially in E. coli and K. pneumoniae, since 2000. These reports also show important
geographical differences, ranging from 4.2% to 41.6% for E. coli and from 0% to 75.5% for K.
pneumoniae (Iceland resp. Bulgaria; data from 2016) (Table 6 and Table 7) (European Centre
for Disease Prevention and Control, 2017; Coque et al., 2008).

TEM and SHV enzymes were the first variants of ESBLs spreading both in E. coli and K.
pneumoniae. blaSHV-12 and blaTEM-52 represent the most prevalent genes of theses enzyme
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families. Since the 1990s, CTX-M-types have become the most common ESBLs, blaCTX-M-15

and blaCTX-M-14 being the most prevalent ones in humans, irrespective of the worldwide origin.
This is of great interest, as in contrast, the distribution of ESBL-/AmpC-types in animals
varies extensively between animal groups and geographical origin (Ewers et al., 2012). In
Europe, other CTX-M-types frequently occur locally. For example, CTX-M-9 and CTX-M-10
in Spain, CTX-M-3 in eastern countries and CTX-M-5 in Belarus and Russia (Coque et al.,
2008; Hernández et al., 2005; Romero et al., 2005; Empel et al., 2008; Edelstein et al., 2003;
European Centre for Disease Prevention and Control, 2017; Ewers et al., 2012).

CMY-2 is the most common enzyme belonging to the AmpC beta-lactamases (European Centre
for Disease Prevention and Control, 2017).

An important factor for the global dissemination of ESBLs is the worldwide distribution of
the E. coli clones of the B2-ST131-O25:H4 group (phylogroup B2, MLST-type 131, O type
O25:H4). These E. coli are associated with the global occurrence of blaCTX-M-15 and are mainly
associated with urinary tract infection and bacteraemia (Ewers et al., 2010; European Centre
for Disease Prevention and Control, 2017) .
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Table 6: Increasing rates in percent (%) of E. coli isolates resistant to third-generation
cephalosporins in Europe in the years 2001, 2008 and 2016 (https://atlas.ecdc.
europa.eu/public/index.aspx).

E. coli resistant to third-generation cephalosporins, in %
Country 2001 2008 2016
Austria 0.0 7.4 10.0
Belgium 1.8 4.2 10.5
Bulgaria 6.7 29.3 41.6
Croatia 1.6 3.8 14.7
Cypris n.d. 19.3 30.2
Czech Republic 2.3 9.9 15.1
Denmark n.d. 4.1 6.6
Estonia 5.9 4.6 9.0
Finland 0.2 2.1 6.9
France n.d. 3.8 11.2
Germany 0.7 4.8 11.1
Greece 5.4 9.9 17.6
Hungary 0.4 9.2 16.7
Iceland 0.0 0.8 4.2
Ireland n.d. 5.9 11.4
Italy n.d. 15.9 29.8
Latvia n.d. 11.1 24.1
Lithuania n.d. 5.6 14.7
Luxembourg 0.5 6.3 13.6
Malta 0.0 21.0 14.6
Netherlands 0.6 4.6 6.4
Norway 0.3 2.6 5.6
Poland 7.1 2.4 13.7
Portugal 2.9 10.1 16.1
Romania n.d. 23.6 23.4
Slovakia 6.7 n.d. 29.7
Slovenia 0.3 4.2 12.5
Spain 0.6 9.0 15.0
Sweden 0.3 2.3 8.3
United Kingdom 1.2 6.9 9.2

n.d. – not determined
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Table 7: Increasing rates in percent (%) of K. pneumoniae isolates resistant to third-
generation cephalosporins in Europe in the years 2005, 2010 and 2016 (https:
//atlas.ecdc.europa.eu/public/index.aspx).

K. pneumoniae, resistant to third-generation cephalosporins, in %
Country 2005 2010 2016
Austria 5.7 12.6 9.6
Belgium n.d. 12.6 22.9
Bulgaria 50.0 75.6 72.5
Croatia 45.5. 55.5 48.6
Cypris n.d. 34.4 30.7
Czech Republic 32.4 48.2 51.8
Denmark n.d. 10.6 7.5
Estonia 8.1 17.3 32.8
Finland 2.3 4.0 4.1
France 4.1 17.8 28.9
Germany 6.7 12.8 13.6
Greece 60.6 74.6 72.5
Hungary 27.7 45.9 37.5
Iceland 0.0 3.7 0.0
Ireland 7.1 8.5 13.5
Italy 19.5 46.5 55.8
Latvia n.d. 54.7 47.4
Lithuania n.d. 50.6 56.7
Luxembourg n.d. 5.1 35.9
Malta 5.6 12.3 21.6
Netherlands 3.5 7.2 10.3
Norway 2.1 2.1 5.8
Poland 66.0 39.7 64.4
Portugal n.d. 28.3 46.7
Romania n.d. 70.6 68.0
Slovakia n.d. n.d. 61.3
Slovenia 19.2 22.4 22.8
Spain 7.1 10.2 22.4
Sweden 1.4 2.4 4.9
United Kingdom 12.3 9.7 8.9

n.d. – not determined
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1.2.2 ESBL-/AmpC-producing Enterobacteriaceae in companion animals and
food producing animals, especially broiler chicken

One of the first detections of a clinical ESBL in animals goes back to 2000. There, a SHV-12
producing E. coli was isolated from a dog with urinary tract infection (Teshager et al., 2000).
Since then, ESBL-/AmpC-producing Enteroabacteriaceae have been detected in companion
animals, in food producing animals as well as in wildlife (Ewers et al., 2011, 2012; Carattoli
et al., 2005; Schaufler et al., 2015; Aarestrup et al., 2008; Blanc et al., 2006; Brinas et al.,
2003; Briñas et al., 2005; von Salviati et al., 2014; Meunier et al., 2006; Costa et al., 2009;
Guenther et al., 2011; Costa et al., 2006; Poeta et al., 2008).

In poultry, ESBL-/AmpC-producing Enterbacteriaceae were first detected in the years 2000
and 2001 in Spain (Brinas et al., 2003). This finding also represents the finding of the
beta-lactamase genes blaSHV-12, blaCMY-2 and blaCTX-M-14 for the first time in healthy animals.

blaCTX-M-1 is broadly disseminated among animals in Europe with prevalence of 28% both in
companion animals and poultry and 72% in cattle and pigs. blaCTX-M-14 and blaCTX-M-15, the
most common ESBL-genes in humans, are less prevalent in animals in Europe (blaCTX-M-14 with
prevalence of 4-7% in livestock; blaCTX-M-15 only incidentally in poultry, 15% in companion
animals and 8% in cattle and pigs). The AmpC beta-lactamase CMY-2 has been described
worldwide in companion animals and food producing animals. In poultry, the most common
ESBL-/AmpC-resistance genes detected in Europe are blaCMY-2 (32%), blaCTX-M-1 (28%),
blaTEM-52 (10%) and blaSHV-12 (8%) (Ewers et al., 2012).

High prevalence for ESBL-/AmpC-producing Enterobacteriaceae, up to 100%, was demonstrated
especially for broiler fattening farms (Huijbers et al., 2014; Laube et al., 2013; Smet et al.,
2008). Concerning broiler, the resistant bacteria were not only detected in broiler farms but
also in grandparent and parent breeding chicken as well as in day-old chicken (Nilsson et al.,
2014; Laube et al., 2013; Dierikx et al., 2013a,b).

Additionally, ESBL-/AmpC-producing Enterobacteriaceae in fattening chicken also were detected
in various European countries on slaughterhouse level and in retail meat (Reich et al., 2013;
Börjesson et al., 2016; Kola et al., 2012; Overdevest et al., 2011; Cohen Stuart et al., 2012;
Belmar Campos et al., 2014; Zogg et al., 2016). In Germany, for example, ESBL-/AmpC-
producers were detected in 89% resp. 53% of carcasses at slaughterhouse (Reich et al., 2013)
and in up to 50% in chicken retail meat (Kola et al., 2012).

The occurrence of ESBL-/AmpC-producing Enterobacteriaceae in food producing animals as
well as in retail meat assumed an impact of animal originated bacteria on public health. The
transmission of resistant bacteria could be plausible via direct contact or due to the consumption
of contaminated meat and findings are controversially discussed (Marshall and Levy, 2011;
Smet et al., 2010; Ewers et al., 2012; Belmar Campos et al., 2014; Börjesson et al., 2016;
Kluytmans et al., 2013; Valentin et al., 2014; Dorado-García et al., 2018).

Considering the facts, that ESBL-/AmpC-producing Enterobacteriaceae frequently occur in
broiler chicken as well as in retail meat and that a transmission to human is plausible, intervention
strategies enabling a reduction of the load of ESBL-/AmpC-producing Enterobacteriaceae
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in chicken should be considered. Therefore, information on potential transmission routes of
ESBL-/AmpC-producing Enterobacteriaceae along the broiler production chain are essential.
However, those data are only rare. Earlier studies have assumed a vertical transmission of
pathogenic E. coli from broiler breeding chicken to their offspring (Bortolaia et al., 2010;
Petersen et al., 2006; Giovanardi et al., 2005) and first indications for a vertical transfer of
ESBL-/AmpC-producing E. coli from (grand)parent flocks to the broiler fattening flocks were
described (Nilsson et al., 2014; Dierikx et al., 2013b). On the other hand, studies assume
that contaminated farm environment could represent a source for ESBL-/AmpC-producing
Enterobacteriaceae (horizontal transmission) (Laube et al., 2013; Hiroi et al., 2012b).

To elucidate possible transmission routes of ESBL-/AmpC-producing Enterobacteriaceae we
investigated seven broiler fattening flocks along the broiler production chain. Therefore, whole
genome sequencing (WGS) as a high-resolution molecular method was used and ESBL-/AmpC-
positive parent flocks, the corresponding hatching eggs and the hatchlings in the hatchery as
well as the respective fattening flocks were investigated for seven broiler fattening chains.
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2 Outline of the study

In the years 2014 to 2017, investigations on ESBL-/AmpC-producing Enterobacteriaceae along
the broiler production chain were conducted in the framework of the RESETII consortium “ESBL
and Fluorchinolon-Resistance in Enterobacteriaceae” as part of the sub-project “Transmission
of ESBL-/AmpC-producing Enterobacteriaceae in the entire production chain of broilers: points
of hazard and intervention”, funded by the Federal Ministry of Education and Research (BMBF,
grand 01KI1313C) (http://reset-verbund.de). The investigations along the production chain
included parent flocks, the hatchery and the fattening period and were conducted in collaboration
with the doctoral thesis of Michaela Projahn (Institute for Animal Hygiene and Environmental
Health, Freie Universität Berlin (FUB)). The thesis of Philine von Tippelskirch (Institute of
Food Safety and Food Hygiene, FUB) investigating ESBL-/AmpC-producing Enterobacteriaceae
at the slaughterhouse was also part of the RESETII sub-project.

2.1 Samplings

Figure 3: Illustration of the investigated
stages of the broiler production
chain.

In total, 3137 samples were collected within 53
sampling time points. Seven broiler fattening
chains were investigated for ESBL-/AmpC-
producing Enterobacteriaceae (Figure 3). De-
tailed information on the seven investigated
fattening flocks are given in table 8 and in
Publication I. ESBL-/AmpC-positive parent
flocks were selected by an initial screening and
their corresponding hatching eggs, the hatch-
lings as well as the hatchery’s environment
were investigated. Then, the respective ani-
mals were transported to the fattening farm.
The transportation vehicles both transport-
ing the hatching eggs from the parent flocks
to the hatchery as well as transporting the
hatchlings from the hatchery to the fattening
farms were sampled as well.

22

http://reset-verbund.de
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Table 8: Information on the seven investigated broiler fattening flocks (flock A-G) (Daehre
et al. 2017).

No. of Age Age Fatten- Anti-
farm Samp- Age in in ing biotic

Chain and ling No. of of days, days, dura- treat-
barn date animals parent second third tion ment

(farm - flock sampl- sampl (days) during
barn) (weeks) ing ing fattening

A 1 - 11 11.08.14- 22,500 29 19 31 32 Tylosinc

05.10.14
B 4 - 41 16.9.14- 21,800 57 11 27 32 -

06.11.14
C 4 - 43 15.12.14- 21,700 43 17 31 32 -

09.02.15
D 4 - 43 26.01.15- 22,000 50 18 30 32 -

27.04.15
E 7 - 74 17.06.15- 23,000 51 17 31 38a -

17.08.15
Fb 7 - 74 29.07.15- 22,500 50 19 32 33 -

28.09.15
G 3 - 34 15.01.16- 22,000 58 18 34 34 -

02.03.16
a – Preharvesting at day 31
b – Flock F fattened consecutively to flock E in the same barn
c – Tylosin (macrolide antibiotic, treatment on days 26-28, indication: enteritidis caused by
clostridia)

On the fattening farms, the investigations were conducted at three different time points during
the entire fattening period. The first sampling was carried out at the first day of the fattening
period. To get information on the ESBL-/AmpC-status of the barns, the housing environment
was investigated just before the arrival of the animals, except for flock C, where the samples
were taken in parallel to the chickens’ arrival. Directly after the arrival of the day-old chicken
on the farm, 40 randomly chosen individuals were sampled by taking cloacal swabs. The second
and third sampling on the farm was carried out at the middle and the end of the fattening
period whilst both individual animals as well as the housing environment was sampled. For
four flocks (D – G), an additional sampling was performed 24 hours after the arrival of the
chicken at the farm. At that time, 40 individual animals, pooled faeces and a boot swab was
investigated. Two of the investigated flocks (E and F) were fattened consecutively in the
same barn. Here, as an additional sample, pasture and soil were investigated at the end of
the fattening period from the outside of the barn where the exhaust air was emitted. Detailed
information on the investigated samples in the different stages of the broiler production chain
are shown in table 9.

23



2 Outline of the study – 2.1 Samplings

Table 9: Investigated samples at the different sampling time points in the different stages
of the broiler production chain. Data partially published by Projahn et al. (2017)
and Daehre et al. (2017).

Sampling time Individual Environmental Swab samples
point animal samples samples

Parent flock Pooled faeces
Boot swab

Hatchery
Arrival of eggs 40x outer egg surface Air samples, 2x truck, wall,

40x egg content feathers, ground, drain
40x inner egg surface flies

After disinfection 40x outer egg surface Air samples, Wall, ground,
of eggs feathers incubator

racks,
ventilator

Hatching of 40x cloacal swabs 2x crushed Chicken boxes,
chicken eggshells, discarder of

chickens’ dust eggshells,
2x band-conveyors
during chickens’

inspection,
chickens after
vaccination,

transport boxes

Fattening farm
Arrival on the 40x cloacal swabs Boot swab, feed, litter, 2x truck, 2-3x

farm drinking water, dust, chickens’ boxes,
air sample feeding trough,

water trough,
barn wall,

hangers of barn
equipment,
ventilator

24 hours after 40x cloacal swabs Pooled faeces, boot
arrival swabs
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Middle of 40x cloacal swabs Pooled faeces, boot Feeding trough,
fattening period swab, feed, litter water trough, barn

drinking water, dust, wall, hangers of bar
air sample equipment,

ventilator, chicken

End of fattening 40x cloacal swabs Pooled faeces, boot Feeding trough,
period swab, feed, litter, water trough, barn

drinking water, dust, wall, hangers of barn
air sample equipment,

ventilator, chicken
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2.2 Laboratory methods

All samples were investigated qualitatively and quantitatively for ESBL-/AmpC-producing
Enterobacteriaceae (Projahn et al., 2017; Daehre et al., 2017). The isolation of the bacteria
was performed on MacConkey agar No. 3 (Oxoid, Wesel, Germany) containing 1 mg/l
cefotaxim (AppliChem, Darmstadt, Germany). In addition, for some selected samples, the
occurrence of non-resistant Enterobacteriaceae was investigated using the MacConkey agar
without the addition of an antibiotic. Colonies with Enterobacteriaceae-like phenotypes were
suspected to be ESBL-/AmpC-producers and further investigated. Species were determined
using Matrix Assisted Laser Desorption Time of Flight Mass Spectroscopy (MALDI-TOF MS)
(MALDI Microflex® LT and Biotyper database®, Bruker Daltonics, Bremen, Germany) and
phylogroups of the E. coli isolates were defined by performing a multiplex polymerase chain
reaction (PCR) (Clermont et al., 2013) with modifications according to Projahn et al. (2017).
Phenotypic antimicrobial resistance was tested via agar disk diffusion and, in some cases, via
the Vitek®2 system (BioMérieux, Germany). The most common class A beta-lactamase-genes
blaCTX-M, blaSHV, blaTEM and CIT-type AmpCs were detected for all ESBL-/AmpC-suspicious
enterobacterial isolates and the ESBL-/AmpC-genes were verified by sequencing. As the aim of
the study was the elucidation of transmission routes along the production chain, whole genome
sequencing (WGS) analysis were performed as well. Therefore, isolates with equal characteristics
regarding species, phylogroups and resistance genes from the respective fattening chains were
selected. Detailed information on the laboratory methods are displayed in Publication I and
Publication II.

2.3 Results

2.3.1 Detection fequencies in ESBL-/AmpC-producing Enterobacteriaceae in
parent flocks, in the hatchery, and in fattening farms

In total, 66.7% (24/36) of the samples from the parent flocks, 0.8% (12/1583) of the samples
taken in the hatchery and 18.7% (249/1334) of the samples from the fattening period were
tested positive (Table 10).
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Table 10: Detection frequencies of ESBL-/AmpC-producing Enterobacteriaceae in the
seven investigated broiler chains. Data partially published by Projahn et al.
(2017) and Daehre et al. (2017).

No. of positive samples/ no. of all samples
Sampling time point Chain Chain Chain Chain Chain Chain Chain

A B C D E F G
Parent flock
Boot swab 1/1 1/1 1/1 1/1 3/3 0/3 1/4

Pooled faeces 3/3 3/3 3/3 2/3 3/3 1/3 1/4

Hatchery
Arrival of eggs
Outer egg surface 0/40 4/40 0/40 0/40 0/40 1/40 0/40

Egg content 0/40 0/40 0/40 0/40 0/40 0/40 0/40
Inner egg surface 0/40 0/40 0/40 0/40 0/40 0/40 0/40
Env. samples* 0/7 0/9 0/8 0/10 0/11 0/10 0/13

After disinfection of eggs
Outer egg surface 0/40 1/40 0/40 0/40 0/40 0/40 0/40
Env. samples* 0/8 0/6 0/6 0/6 0/6 0/7 0/10

Hatching of chicken
Cloacal swabs 0/40 0/40 0/40 0/40 0/40 0/40 0/40
Env. samples* 0/8 3/9 0/8 0/11 0/9 2/14 1/17

Fattening farm
Arrival on farm
Cloacal swabs 0/40 2/40 0/40 0/40 0/40 0/40 0/40
Env. samples* 0/14 0/16 3/15 0/15 0/17 2/20 2/28

24 hours after arrival
Cloacal swabs n.d. n.d. n.d. 0/40 1/40 2/40 2/40
Env. samples* n.d. n.d. n.d. 0/2 0/2 2/2 0/2

Middle of fattening period
Cloacal swabs 12/40 17/40 40/40 2/40 6/40 2/40 0/40
Env. samples* 4/12 10/12 9/13 3/16 3/16 3/16 2/18

End of fattening period
Cloacal swabs 35/40 12/40 33/40 1/40 10/40 0/40 0/40
Env. samples* 8/12 6/10 5/13 1/13 4/16 3/16 2/18

n.d. – not determined
* - environmental samples including air and swab samples
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2.3.1.1 Hatchery samples

In the hatchery, ESBL-/AmpC-producing Enterobacteriaceae only were detected rarely (Table
10). At the arrival of the eggs, ESBL-/AmpC-producing Enterobacteriaceae only were detected
in 1.8% (n=280) on the outer egg surfaces in two flocks (flocks B and F). After the disinfection
of the eggs, ESBL-producing Enterobacteriaceae still were detectable on one outer egg surface
in flock B (0.4%; n=280). After the hatching of the chicken, samples from the hatchery’s
environment were tested positive in flock B, F and G. There, ESBL-/AmpC-producing Enter-
obacteriaceae were detected in the hatchlings dust, in crushed eggshells and in environmental
swab samples. The cloacal swabs investigated from the recently hatched chicken in the hatchery
all were tested negative for ESBL-/AmpC-producing Enterobacteriaceae and only 1.1% of the
recently hatched chicken were tested positive for non-resistant Enterobacteriaceae.

2.3.1.2 Fattening farm

On the fattening farms, ESBL-/AmpC-producing Enterobacteriaceae were detected in the
seven investigated flocks at all three sampling time points. At the first sampling, the housing
environment was tested positive for ESBL-/AmpC-producing Enterobacteriaceae before the
arrival of the chicken in a boot swab and litter sample in one flock (flock F). After the
animal’s arrival, the antibiotic resistant bacteria were detected in 0.7% and non-resistant
Enterobacteriaceae in 25% of the individual animals (cloacal swabs; n=280). At the middle and
at the end of the fattening period, ESBL-/AmpC-producing Enterobacteriaceae were detected
in all seven investigated flocks, however, the prevalence between the seven flocks showed wide
variations from 1.9% to 92.3% regarding all samples and from 0% to 100% regarding the
cloacal swabs.

At the additional sampling of the flocks D-G, 24 hours after the chicken’s arrival at the
farm, 3.1% of the investigated cloacal swabs (n=160) were tested positive for ESBL-/AmpC-
producing Enterobacteriaceae and 93.8% were positive for non-resistant Enterobacteriaceae.
Both environmental samples (boot swab, litter) were tested positive in one flock at this time
point (flock F). The additional sample from the outside environment surrounding the exhaust
air ventilators (pasture and soil) of flock F was positive for ESBL-producing Enterobacteriaceae
at the end of the fattening period.

Detailed information can be found in Publication I and Publication II.

2.3.2 Isolate characterization

Various strains of ESBL-/AmpC-producing Enterobacteriaceae were detected in the seven
investigated broiler chains. Overall, in isolates detected in the parent flocks, the hatchery and
the fattening flocks, E. coli strains belonging to phylogroups E, E/D, A, F, B1 and B2 were
identified and the majority of the ESBL-/AmpC-producing Escherichia spp. strains (n=294)
harboured the blaCMY-2 gene (76.2%), followed by blaSHV-12 (10.2%), blaCTX-M-1 (7.8%),
blaTEM-52 (5.4%) and blaCTX-M-15 (0.3%). Referring only to the fattening farms, the majority
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of the ESBL-/AmpC-producing E. coli strains (n=251) harboured blaCMY-2 (86.1%) followed by
blaSHV-12 (11.6%) and blaCTX-M-1 (1.6%). In addition, in one flock (flock B), SHV-2 producing
K. pneumoniae were detected in the different stages of the broiler production chain and in
another flock, C. freundii strains encoding for CIT-type AmpCs were isolated. Details for each
flock are shown in table 11.
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Table 11: Detected ESBL-/AmpC-producing Enterobacteriaceae in the seven investigated
broiler chains with information concerning their species, resistance genes and
phylogroups. Data partially published by Projahn et al. (2017) and Daehre et
al. (2017).

Broiler Sampling time No. of Species bla-genes Phylogroup
Chain point samples
A Parent flock 4 E. coli TEM-52 A

Fattening period 69 E. coli CMY-2 E, E/D, B1,
F, A

B Parent flock 8 E. coli CTX-M-1 A, A/C, B1
4 E. fergusonii TEM-52 neg.

Hatchery I 4 E. coli CTX-M-1 B1
Hatchery II 1 E. fergusonii TEM-52 neg.
Hatchery III 1 E. coli CMY-2 E/D

2 K. pneumoniae SHV-2 neg.
Fattening farm 12 E. coli CMY-2 E/D, A/C

41 K. pneumoniae SHV-2 neg.

C Parent flock 2 E. spp CMY-2 neg./B1
1 E. fergusonii TEM-52 neg.

Fattening farm 117 E. coli CMY-2 F, A, B2

D Parent flock 4 E. coli CMY-2 A, F
1 E. coli CTX-M-1 F

Fattening farm 8 E. coli CMY-2 B1, B2

E Parent flock 6 E. coli CTX-M-1 F
Fattening farm 10 E. coli CMY-2 F, E/D

17 E. coli SHV-12 B1

F Parent flock 1 E. coli CTX-M-15 F
Hatchery I 1 C. freundii CMY neg.
Hatchery III 1 E. coli SHV-12 F

Fattening farm 12 E. coli SHV-12 B1, F
4 E. coli CTX-M-1 a

G Parent flock 4 E. coli TEM-52 A/C, B1
1 E. coli CMY-2 B1

Hatchery III 1 E. coli TEM-52 A
Fattening farm 7 C. freundii CMY neg.

1 E. fergusonii TEM-52 neg.
Hatchery I – arrival of eggs; Hatchery II – after disinfection of eggs; Hatchery III – hatching of
chicken
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In flock E and flock F, the two flocks fattened consecutively in the same barn, isolates with
equal characteristics concerning their species, phylogroups and resistance genes were detected.
E. coli isolates harbouring blaSHV-12 (phylogroup B1) were detected during the fattening period
of flock E. Isolates with those characteristics were also found in samples from the housing
environment (boot swab and litter) before the animals of the consecutively fattened flock
F arrived at the farm (first sampling). Following, the E. coli isolates harbouring blaSHV-12

(phylogroup B1) were detected throughout the entire fattening period of flock F, both in
individual animals and in samples from the housing environment. Furthermore, these isolates
also were detected in the sample from the outside environment surrounding the exhaust air
ventilator (soil and pasture). To verify the assumed phylogenetic relationship of the isolates
of the two consecutively fattened flocks, 13 E. coli isolates (phylogroup B1, resistance gene
blaSHV-12) of both flocks were used for WGS. Those isolates were selected both from individual
animals as well as from environmental samples/swabs from different sampling time points.
Based on the WGS-data, all 13 isolates were assigned to the multi locus sequence type (MLST)
ST2307. The analyses of the single nucleotide polymorphisms (SNPs) in the core genome
showed a close relationship between isolates of these two consecutively fattened flocks with
maximum differences of 43 SNPs. Detailed information on the SHV-12 producing E. coli from
the two flocks are shown in table 12 and in Publication I.

Table 12: Thirteen E. coli isolates from the consecutively fattened flocks E and F inves-
tigated by WGS. All isolates harbour blaSHV-12, belong to the phylogroup B1
and to MLST type ST2307.

Flock Sampling time point Samples
E End of fattening period Boot swab, pooled faces, litter, 3x CSa, env.

swabb

F Before arrival Litter, boot swab
24 h after arrival 1x CSa

Middle of fattening period Boot swab, 1x CSa

End of fattening period Outside samplec

a - cloacal swab
b - environmental swab
c - pasture and soil from the outside of the barn where the exhaust air was emitted

In flock B, K. pneumoniae isolates harbouring blaSHV-2 were detected in the hatchery, in
the transportation truck and during the fattening period. Interestingly, isolates with these
characteristics also were detected in another parent flock (parent flock Z) during the initial
screening. An essential information is the fact, that the eggs of both parent flocks (B and Z)
were bred at the same time in the hatchery and, therefore, the chicken also hatched at the
same time. To get more information on these strains and on possible transmission events, 41
isolates detected in samples from the parent flock (flock Z), the hatchery (flock Z and B), the
transportation vehicle (flock B) and the fattening flock (flock B) were further characterized by
WGS. All these K. pneumoniae isolates harbour blaSHV-2, belong to the previously unknown K.
pneumoniae MLST type ST3128, show phenotypical resistance against various antimicrobials
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including third and fourth generation cephalosporins and core genome MLST (cgMLST)
analyses revealed 100% similarity. Plasmid types IncR, IncFIB, IncFII and IncHI1B, known
for the presence of ESBL-encoding genes were detected in all strains. Additionally, the DNA
sequences of the blaSHV-2 carrying contigs of approximately 7400 base pair (bp) length were
homologous to published plasmids (AF550679, AJ245670). Detailed information is given in
Publication II.
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ESBL-producing Klebsiella pneumoniae (K. pneumoniae) represent an increasing

problem both in human and veterinary medicine. As SHV-2 - encoding K. pneumoniae

were recently detected in the broiler production we were interested in investigating a

possible transmission along the broiler production chain and furthermore, in evaluating

their possible impact on human health. Therefore, 41 ESBL-producing K. pneumoniae

originating from a parent flock, from the hatcherys’ environment during the hatching of

that parent flocks’ chickens, and from an associated fattening flock were investigated on

an IlluminaMiseq.Whole genome sequences were analyzed concerning their MLST-type,

cgMLST-type, genotypic and phenotypic resistance, plasmid profiles and virulence

genes. Irrespective of the origin of isolation all investigated isolates were multi-drug

resistant, harbored the same ESBL-gene blaSHV−2, shared the same sequence

type (ST3128) and displayed 100% similarity in core genome multilocus sequence

typing (cgMLST). In addition, in silico plasmid typing found several Inc/Rep types

associated with ESBL-plasmids. Summarizing, identical clones of SHV-2—producing

K. pneumoniae were detected in different stages of the industrial broiler production in

one out of seven investigated broiler chains. This proves the possibility of pseudo-vertical

transmission of multi-resistant human pathogens from parent flocks to hatcheries

and fattening flocks. Furthermore, the importance of cross-contamination along the

production chain was shown. Although the ESBL-producing K. pneumoniae clone

detected here in the broiler production has not been associated with clinical settings

so far, our findings present a potential public health threat.

Keywords: extended-spectrum-beta-lactamases, ESBLs, Klebsiella pneumoniae, broiler production, broiler

chicken

INTRODUCTION

The emergence of extended-spectrum beta-lactamase-producing Enterobacteriaceae has been
of particular interest for years, in both human and veterinary medicine. Especially Klebsiella
pneumoniae (K. pneumoniae), causing community and nosocomial infections of the respiratory
and urinary tract as well as bloodstream infections are of critical concern. Resistance against
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antimicrobials leads to limited therapeutic options, resulting
in increasing difficulties of treatments. In contrast to ESBL-
producing E. coli which have become very common in veterinary
medicine, especially in livestock, companion animals and
wildlife, ESBL-producing K. pneumoniae were detected rarely in
healthy broiler (Hiroi et al., 2012; Yossapol et al., 2017; Mahanti
et al., 2018), diseased horses (Vo et al., 2007) dairy cows (Locatelli
et al., 2010) and in companion animals (Ewers et al., 2014).

In general, the zoonotic impact of animal-originated
pathogens on public health via direct contact or due to the
consumption of contaminated meat is assumed (Smet et al.,
2010; Marshall and Levy, 2011). This warrants the importance
of investigations concerning multi-drug resistant bacteria
in food-producing animals at different levels of production,
to characterize the impact on humans. In previous studies,
we detected ESBL-producing K. pneumoniae in a German
hatchery (Projahn et al., 2017) as well as in a connected
broiler farm (Daehre et al., 2017) in one out of seven
investigated broiler chains. To characterize and compare
those ESBL-producing K. pneumoniae strains detected at
different levels of the broiler production we used whole
genome sequencing assuring a high resolution of the clonal
relationship. We are aiming at revealing possible transmission
routes of ESBL-producing K. pneumoniae along the production
pyramid as well as at assessing a possible impact on human
health.

MATERIALS AND METHODS

Samples/Flock
In the years 2014–2016, seven German parent flocks, their
corresponding hatchlings in the hatchery and later on at the
fattening farms as well as the environment of the hatchery and
the respective farm were investigated for the occurrence of ESBL-
/AmpC-producing Enterobacteriaceae as published by Projahn
et al. (2017) and Daehre et al. (2017). There, in one fattening
chain (chain B), SHV-2 -producing K. pneumoniae strains were
detected and those stored bacterial isolates were retrospectively
characterized in the present study. In detail, various samples
were taken after the hatching of the chicken in the hatchery
such as dust, air and swabs from the hatchery’s environment. On
the fattening farm individual animal samples as well as samples
from the housing environment were collected at three different
samplings (first day, middle and end of fattening period). In
detail, 40 individual animals (cloacal swabs), pooled feces, boot
swabs, litter, dust, and air were collected and several surfaces in
the barn were swabbed (environmental swabs).

Within this study, additional isolates of a boot swab and a
pooled feces sample from another parent flock (flock Z) were
investigated as well. This was done due to the fact that the eggs
of both parent flocks (B and Z) were bred in the hatchery at
the same time. Furthermore, we analyzed isolates originating
from environmental swabs from the truck that transported the
chicken of parent flock B from the hatchery to the farm. Figure 1
schematically illustrates the origin of the blaSHV−2 - positive
isolates. Detailed information on the investigated isolates are
shown in Table 1 and in Table S1.

FIGURE 1 | Schematic diagram of stages of the broiler production chain

tested positive for SHV-2-producing Klebsiella pneumoniae. Parent flock B

was negative. Positive samples: (a)-pooled feces; (b)-egg shells, environmental

swab; (c)-swabs; (d)-cloacal swabs, pooled feces, boot swab, litter, dust, air,

environmental swabs.

Laboratory Methods
All samples were processed as described by Projahn et al. (2017)
and Daehre et al. (2017). Finally, the samples were streaked
out on MacConkey No. 3 (Oxoid, Wesel, Germany) agar plates
with the addition of 1 mg/l cefotaxime (AppliChem, Darmstadt,
Germany). The species of all isolates with Enterobacteriaceae-
like phenotypes were determined by MALDI-TOF analyses. The
detection of the most common class A beta-lactamase-genes
including blaSHV was performed as described by Roschanski et al.
(2014) and verified by sequencing using the same primer set as
published by Projahn et al. (2017).

Forty-one K. pneumoniae isolates with blaSHV−2 - genes from
26 different samples (up to three isolates per sample) were chosen
for further characterization. These isolates originated from the
other parent flock Z, the hatchery, the truck (transport of chicken
from hatchery to farm) as well as from samples from the middle
and the end of the fattening period on the farm (cloacal swabs
and samples from the housing environment; Figure 1, Table 1,
and Table S1).

The Vitek R©2 system (BioMérieux, Germany; card GN38) was
used to determine phenotypic antimicrobial resistance to various
ß-lactam-antibiotics and other classes of antimicrobials.

To get more information concerning the phylogenetic
relationship of the different samples, whole genome sequencing
(WGS) was performed. Therefore, DNA was extracted with the
MasterPureTM DNA purification kit (Epicenter, Illumina) and
Illumina MiSeq 300-bp paired-end with a coverage between
50x and 120x was used. Following a quality control performed
with the NGS tool kit (Patel and Jain, 2012) high quality reads
were defined (minimum of 70% of bases having a phred score
higher than 20) and de novo assembled into contiguous sequences
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TABLE 1 | Information on seven K. pneumoniae isolates (ST3128) including sampling timepoint, sample type, isolate ID, plasmid type, genotypic, and phenotypic

resistance.

Sampling

timepoint

Sample

type

Isolate

ID

Plasmid type Genotypic resistance Phenotypic

resistance

I PF ITU10028 IncR, IncFIB, IncFII,

IncHI1B, Col

blaSHV−2, blaSHV−1, fosA-like, sul1,

dfrA12, tet(D), aadA1, aadA2,

aac(3)-like, oqxA-like, oqxB-like, parC

S80I mutation

II EggS ITU10022 IncR, IncFIB, IncFII,

IncHI1B, IncX1, IncX3, Col

blaSHV−2, blaSHV−1, fosA-like, sul1,

dfrA12, tet(D), aadA1, aadA2,

aac(3)-like, oqxA-like, oqxB-like, parC

S80I mutation

III EnvS ITU10024, IncR, IncFIB, IncFII,

IncHI1B, Col

blaSHV−2, blaSHV−1, fosA-like, sul1,

dfrA12, tet(D), aadA1, aadA2,

aac(3)-like, oqxA-like, oqxB-like, parC

S80I mutation

AMX, AMC,

AMP, SAM,

CFR, CFL,

CLT, CFZ,

CFM, CPZ,

CTX, CFV,

CFP, CPD,

CAZ, CEX,

CFX, DOX,

ENR, GEN,

MAR, PIP,

PUFX, TET,

TOB, SXT

IV CS ITU3949 IncR, IncFIB, IncFII, Col blaSHV−2, blaSHV−1, fosA-like, sul1,

dfrA12, tet(D), aadA1, aadA2,

aac(3)-like, oqxA-like, oqxB-like, parC

S80I mutation

Litter ITU3854 IncR, IncFIB, IncFII,

IncHI1B, Col

blaSHV−2, blaSHV−1, fosA-like, sul1,

dfrA12, tet(D), aadA1, aadA2,

aac(3)-like, oqxA-like, oqxB-like, parC

S80I mutation

V CS 18 ITU4179 IncR, IncFIB, IncFII,

IncHI1B, Col

blaSHV−2, blaSHV−1, fosA-like, sul1,

dfrA12, tet(D), aadA1, aadA2,

aac(3)-like, oqxA-like, oqxB-like,

QnrS1-like, parC S80I mutation

BS ITU4097 IncR, IncFIB, IncFII,

IncHI1B, Col

blaSHV−2, blaSHV−1, fosA-like, sul1,

dfrA12, tet(D), aadA1, aadA2,

aac(3)-like, oqxA-like, oqxB-like, parC

S80I mutation

I, parent flock Z; II, hatchery, after hatching; III, truck (from hatchery to farm); IV, fattening farm, middle of fattening period; V, fattening farm, end of fattening period; PF, pooled feces;

EggS, pooled eggshells; EnvS, environmental swab; CS, cloacal swab, BS, boot swab; ITU, Institut für Tier- und Umwelthygiene; AMX, amoxicillin; AMC, Amoxicillin/clavulanic acid;

AMP, ampicillin; SAM, ampicillin/sulbactam; CFR, cefadroxil; CFL, cefalexin; CLT, cefalotin; CFZ, cefazolin; CFM, cefixime; CPZ, cefoperazone; CTX, cefotaxime; CFV, cefovecin; CFP,

cefpirome; CPD, cefpodoxime; CAZ, ceftazidime; CEX, ceftiofur; CFX, cefuroxime; DOX, doxycyclin; ENR, enrofloxacin; GEN, gentamicin; MAR, marbofloxacin; PIP, piperacillin; PUFX,

prulifloxacin; TET, tetracyclin; TOB, tobramycin; SXT, trimethoprim/sulfamehoxazol.

(contigs) using CLC Genomics workbench 9.0 (Qiagen, Venlo,
Netherlands). These sequence data have been deposited at
DDBJ/ENA/GenBank and the accession numbers can be found
in the Table S2.

The blaSHV genes were sequenced using the same primer
set as published by Projahn et al. (2017) and evaluated with
BioNumerics 6.6.

WGS data were used for genotypic characterization utilizing
the Center for Genomic Epidemiology (Center for Genomic
Epidemiology, 2018): multi-locus sequence types [MLST;
MLSTFinder 1.8 (Larsen et al., 2012)], plasmids [PlasmidFinder
1.3 (Carattoli et al., 2014)] and resistance genes [ResFinder3.0
(Zankari et al., 2012)] were determined. Additionally, core
genome MLST (cgMLST) typing was performed using the
cgMLST.org Nomenclature Server1 and Ridom Seqsphere 4.1
(Ridom GmbH, Muenster, Germany). Within cgMLST, for K.
pneumoniae, 2358 conserved genome-wide genes are compared,
resulting in a very high discriminatory power.

1“cgMLST.org Nomenclature Server,”. Available online at: http://www.cgmlst.org/

ncs (Accessed April 05, 2018).

BLAST analyses of the assembled contigs were done and
the accordance of blaSHV-carrying contigs with SHV-encoding
plasmids described for K. pneumoniae (JX461340.1, CP025463,
CP025458, DQ449578, JN247852, and others) were checked
using the European nucleotide archive2, the European Center
for Biotechnology Information3 and features of Geneious v. 7.1.2
(Kearse et al., 2012) and DNASTAR R© Lasergene 11 SeqMan
ProTM (version 11.2.1). The genetic vicinity of the blaSHV region
as well as the occurrence of genes known for the association with
virulent K. pneumoniae (magA, rmpA, entB, iutA, YbtS, Kfu, allS,
mrkD, wzi; Compain et al., 2014) were investigated using the
same tools.

RESULTS AND DISCUSSION

SHV-2 -encoding K. pneumoniae strains were detected in all
investigated stages of the broiler production chain: 25% of the

2European Nucleotide Archive. Available online at: https://www.ebi.ac.uk/ena

(Accessed April 05, 2018).
3“National Center for Biotechnology Information,”. Available online at: https://

www.ncbi.nlm.nih.gov/ (Accessed April 05, 2018).
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samples from parent flock Z (1/4) (but not in samples from
parent flock B), 22.2% from the hatchery’s environment (2/9) and
28.8% of individual animals (23/80) resp. 68.2% of samples from
the housing environment (15/22) of flock B (middle and end
of fattening period) were tested positive. All 41 K. pneumoniae
isolates were multi-drug resistant, harbored the genes for the
ESBL beta-lactamase SHV-2 and were assigned to the newly
described MLST type ST3128. cgMLST typing revealed 100%
similarity. Therefore, a clonal relationship between the isolates
detected at the different stages of the broiler production chain
can be stated.

Antibiotic resistant K. pneumoniae isolates, especially
ESBL–and/or carbapenemase–producers with resistance toward
third/fourth generation cephalosporins and carbapenems are
of great concern in both human and veterinary medicine. To
our knowledge, this is the first finding of ESBL-producing K.
pneumoniae detected in various stages within the same broiler
production chain. To get more information on these strains, 41
isolates detected in samples from a parent flock, the hatchery, the
transportation vehicle and a fattening flock of one out of seven
investigated broiler chains were further characterized.

All K. pneumoniae isolates harbor the blaSHV−2 - gene, belong
to the previously unknown K. pneumoniae MLST type ST3128
and show phenotypical resistance against various antimicrobials
including third and fourth generation cephalosporins, but not
against carbapenems (Table 1 and Table S1). With regard to
the fluoroquinolone resistance, all 41 isolates have a mutation
(S80I) in the parC gene known for fluoroquinolone-resistant K.
pneumoniae (Correia et al., 2017) but mutations in the QRDR-
region of the gyrA gene were not detected. All investigated
K. pneumoniae isolates possess entB and mrkD, but none of
the other genes, associated with virulence of K. pneumoniae
(magA, rmpA, iutA, YbtS, Kfu, allS, wzi). Enterobactin (entB) is
a prototypical catecholate siderophore as part of iron acquisition
systems. But entB only is known for virulence when occurring in a
combination with iron acquisition systems (iutA, YbtS, Kfu). The
same applies to mrkD. mrkD is believed to function as the type
3 fimbrial adhesion and mediates binding to extracellular matrix
(Jagnow and Clegg, 2003) but in virulent K. pneumoniae strains
only occurs in combination with other virulence factors, which
were tested negative in our isolates. Therefore, the 41 ESBL-
producing K. pneumoniae strains, detected in healthy broiler
chicken, do not harbor virulence genes that were described in
any clinical association. Inc typing using plasmidFinder found
the plasmid types IncR, IncFIB, IncFII, and IncHI1B known for
the presence of ESBL-encoding genes in all strains (Table 1 and
Table S1). The DNA sequences of the blaSHV−2 carrying contigs
of ∼7,400 bp length were homologous to plasmid p1658/97
from Eschericia coli (accession number: AF550679) and plasmid
pSEM from Salmonella enterica (AJ245670), containing a recF
gene upstream and a deoR gene downstream from the blaSHV−2.
These genes are also present in a blaSHV-carrying plasmid of K.
pneumoniae published by Yu et al. (2006). The recF gene may
contribute to the mobilization of the bla gene to a plasmid via the
recF recombination pathway (Kolodner et al., 1985).

Additionally, a bla-SHV-2 carrying fragment (∼3,500 bp)
of the contigs was detected in plasmids of K. pneumoniae

(JX461340.1, CP025463, CP025458, DQ449578, JN247852)
(more than 99% identity). The adjacent DNA sequence was
identical to other plasmids (CP027613, LT985275, and others).
These findings make the location of the blaSHV−2 on a plasmid
very likely.

To elucidate the epidemiological relationship and, therefore,
the transmission dynamics along the production chain,
cgMLST was performed. cgMLST, comparing 2358 genes for K.
pneumoniae, revealed 100% similarity. This demonstrates that
identical clones of K. pneumoniae (ST3128), encoding for SHV-2
were detected in the different stages of the broiler production
chain pointing toward ongoing transmission processes.

The circulation of ESBL-/AmpC-producing
Enterobacteriaceae along the broiler production process
was described in previous studies (Dierikx et al., 2013; Nilsson
et al., 2014). Projahn et al. (2017) conducted transmission
investigations with a special focus on the hatchery and
Escherichia coli (E. coli). There, the introduction of ESBL-
producing E. coli strains directly from the parent flock into the
hatchery, despite the eggs’ disinfection, was shown. Additionally,
a pseudo-vertical transmission, in detail, the introduction of
ESBL-producing Enterobacteriaceae into the hatchery and the
chickens’ colonization by the uptake of resistant bacteria from
the environment of the hatchery was discussed.

Our results reinforce these hypotheses. Parent flock Z (the
other parent flock) was tested positive for SHV-2–producing K.
pneumoniae. In the hatchery, clones of this strain were detected
after the chickens hatching in the hatchery’s environment
(environmental swab and eggshells). We showed that the chicken
of flock B, that hatched at the same time in the hatchery were
colonized with those clones. Furthermore, the SHV-2-producing
K. pneumoniae were detected during the whole fattening period
of flock B both, in individual animals as well as in samples
from the environment. This clearly demonstrates a transmission
from parent flocks, via the hatchery, into the fattening flocks.
This is in accordance to Projahn et al. (2018). They showed
that ESBL-producing E. coli were already present in the hatchery
and colonized the recently hatched chickens. Therefore, they
also confirmed the hatchery as a contamination source for the
fattening period.

In our study, clones of the SHV-2-producing K. pneumoniae
were detected in parent flock Z, in the hatchery after the chickens
hatching and during the fattening period of flock B. As the eggs
of parent flock Z were bred at the same time as the eggs of flock
B, the chicken of flock Z and B hatched at the same time in the
same surrounding. This means the original source of the ESBL-
producing K. pneumoniae strains was not the respective parent
flock B but an unrelated parent flock. This clearly emphasizes
the importance of cross-contamination via the environment,
especially at hatchery-level.

As described by Dierikx et al. (2013) the broiler production
system seems rather simple: only a few breeding companies
produce broilers for many farms. The breeding eggs of several
parent flocks are processed in a few hatcheries and the hatched
broiler chicken are delivered to various fattening farms. Thus,
the introduction of resistant bacteria from one parent flock into
the hatchery can cause the spread of these strains in several
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fattening farms. Consequently, the absence of antibiotic resistant
bacteria in parent flocks is essential tominimize the occurrence of
these bacteria in the production pyramid and one high prevalent
parent flock has the potential to contaminate all hatchlings of one
course of hatching.

Besides, K. pneumoniae clones were also detected in the
truck, transporting the chicken from the hatchery to the
farms (environmental swabs from the truck’s ground and
walls). Projahn et al. (2018) also detected ESBL- producing
Enterobacteriaceae in a transportation truck and indicated a
transmission of resistant bacteria via the transportation process.
As the trucks transport animals for several farms, cross-
contamination even during the transport could be of importance
as well.

As described above, the K. pneumoniae isolates were
detected during the investigation on ESBL-/AmpC-producing
Enterobacteriaceae in parent flocks, the hatchery and at fattening
farms (Daehre et al., 2017; Projahn et al., 2017). Thus, next to
the K. pneumoniae, several ESBL-/AmpC- producing E. coli were
detected. These E. coli isolates encoded for SHV-12, CMY-2 or
CTX-M-1, but not for SHV-2, in contrast to the K. pneumoniae
isolates. Therefore, with our investigated isolates we cannot show
any association between ESBL- producing E. coli and ESBL-
producing K. pneumoniae in the broiler production chain.

The detected antibiotic resistant K. pneumoniae strains of
ST3128 have not been reported in clinical settings, yet, and,
therefore, did not have an impact on human health so far.
However, plasmids with resistance genes are transferable between
strains and species. Therefore, resistance-carrying plasmids
detected in food-producing animals always pose a possible risk
for human health.

In summary, our results demonstrate the presence of SHV-2–
producing K. pneumoniae clones in several stages of the broiler
production pyramid. A pseudo-vertical transmission of ESBL-
producing K. pneumoniae, resulting in a positive fattening flock
caused by the uptake of bacteria that were introduced into the
hatchery by another parent flock was shown for the first time.

This also indicates the importance of cross-contamination. As K.
pneumoniae of ST3128 have not been known previously, clones
of our strains have never been reported in clinical associations.
Therefore, to date, these strains did not have an impact on human
health. Nevertheless, a reduction of antibiotic-resistant bacteria
in food-producing animals should be achieved, in order to not
worsen the situation in human and veterinary medicine.
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4 Unpublished data

4.1 Colonisation of broiler chicken with Enterobacteriaceae in
first three days of life

4.1.1 Introduction

Previous studies reported high prevalence for ESBL-/AmpC-producing Enterobacteriaceae
especially in broiler fattening farms (Huijbers et al., 2014; Laube et al., 2013; Smet et
al., 2008). Additionally, the occurrence of the antibiotic resistant bacteria could even be
shown in day-old chicken, partially with high prevalence (Laube et al., 2013; Dierikx et al.,
2013b). Laube et al. (2013) demonstrated a prevalence of 51% for ESBL-/AmpC-producing
Enterobacteriaceae in day-old chicken. They defined the sampling time point for the day-old
chicken with a timeframe of three to 36 hours after the animal’s arrival on the farm but no
information on the period of time between their hatching and the arrival on the farm are given.
In the study presented above, the chicken from seven broiler fattening flocks were first sampled
by taking cloacal swabs directly after their hatching in the hatchery (n=280). Secondly, cloacal
swabs were taken directly after the chicken’s arrival on the farm (n=280) between their third
and 12th hour of life and for four flocks (flocks D-G), the broiler chicken also were investigated
24 hours after their arrival on the farm (n=160).

In that study, in the hatchery, ESBL-/AmpC-producing Enterobacteriaceae could not be detected
in any cloacal swab (0%). At the first sampling on the fattening farm, 0.7% and 24 hours
later 3.3% of the investigated day-old chicken were tested positive for ESBL-/AmpC-producing
Enterobacteriaceae. Interestingly, even the detection rate of non-resistant Enterobacteriaceae
was rare during the sampling in the hatchery and the first sampling at the farm (1.1% respectively
25%). Twenty-four hours after the arrival on the farm, non-resistant Enterobacteriaceae were
detected in 93.8% of the animals (Table 13).
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4 Unpublished data – 4.1 Colonisation of broiler chicken with Enterobacteriaceae in first
three days of life

Table 13: Colonization of day-old broiler chicken with ESBL-/AmpC-producing Enterobac-
teriaceae and non-resistant Enterobacteriaceae at three different time points:
directly after the hatching in the hatchery (a), directly after the arrival on the
farm (b) and 24 hours after the arrival on the farm (c). Data partially published
by Projahn et al. (2017)and Daehre et al. (2017).

Prevalence of (ESBL-/AmpC-producing) Enteorbacteriaceae in
cloacal swabs

ESBL-/AmpC-producing Non-resistant
Sampling time point Enterobacteriaceae Enterobacteriaceae

Hatcherya 0% 1.1%
Arrival on farmb 0.7% 25%

24 hoursc 3.3% 93.8%

This information has raised the question from which point in time the ESBL-/AmpC-producing
Enterobacteriaceae can be detected by using cloacal swabs. Additionally, we also wanted to
determine from which point in time non-resistant Enterobacteriaceae can be detected in recently
hatched chicken by using cloacal swabs. Therefore, in April and May 2017, we investigated
three broiler flocks intensively in the first three days of life for the occurrence of non-resistant
Enterobacteriaceae and for the occurrence of ESBL-/AmpC-producing Enterobacteriaceae.
Each 120 animals per sampling time point (40 animals per flock, each) were investigated
directly at their arrival on the farm (0 hrs) and 8, 24, 32, 48, 56 and 72 hours ( 8, 24, 48,
56, 72 hrs) after their arrival. In addition, at the end of the fattening period the barns were
investigated for the ESBL-/AmpC-status by taking boot swabs.

Laboratory methods were used as described above.

4.1.2 Results

4.1.2.1 ESBL-/AmpC-producing Enterobacteriaceae

ESBL-/AmpC-producing Enterobacteriaceae could not be detected in any of the 840 investigated
cloacal swabs in the first three days of life. The boot swabs, investigated at the end of the
fatting periods, were tested negative as well.

4.1.2.2 Non-resistant Enterobacteriaceae

At the arrival on the farm (0 hrs), non-resistant Enterobacteriaceae were detected in 5.8% of
the investigated cloacal swabs (7/120). Eight hours after the arrival on the farm (8 hrs) 23.3%
(28/120), 24 hours after the arrival (24 hrs) 95.8 % (115/120) and 32 hours after the arrival
(32 hrs) 98.3% (118/120) of the investigated animals were tested positive. From 48 hours
after the arrival on the farm (48 hrs) onwards, non-resistant Enterobacteriaceae were detected
in all investigated cloacal swabs (100%). Figure 4 illustrates the prevalence and the bacterial
count of the Enterobacteriaceae.
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Figure 4: Detection of non-resistant Enterobacteriaceae in broiler chicken detected by
cloacal swabs (CS) in the first three days of life. Prevalence of Enterobacteriaceae
in percent (%) and colony forming units per clocal swab (cfu/CS). Each 120
animals were sampled per time point (n=120 per time point; n=840 in total).

Taken together, ESBL-/AmpC-producing Enterobacteriaceae were not detected in the three
investigated flocks. Nevertheless, we could show an increase of the detection of Enterobacteri-
aceae in the first hours of live in broiler chicken using cloacal swabs. Whilst the detection rate
for the time points 0 hrs and 8 hrs was low with 5.8% and 23.3%, on the second day of life (24
hrs, 32 hrs) 95.8% resp. 98.3% were tested positive. From 48 hrs after arrival on the farm
onwards, Enterobacteriaceae were detected in 100 % of the cloacal swabs from the chicken.
An increase of the bacterial count was shown as well.
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5 Discussion

Many studies showed that ESBL-/AmpC-producing Enterobacteriaceae occur in broiler fattening
farms with high prevalence (Huijbers et al., 2014; Laube et al., 2013; Dierikx et al., 2013a)
and both vertical and horizontal transmissions were assumed (Laube et al., 2013; Huijbers
et al., 2016; Nilsson et al., 2014; Dierikx et al., 2013b). As detailed investigations on
transmission processes of ESBL-/AmpC-producing Enterobacteriaceae along the production
pyramid were only rare, the presented study was conducted to elucidate possible transmission
routes. Therefore, seven broiler fattening chains were investigated for ESBL-/AmpC-producing
Enterobacteriaceae. ESBL-/AmpC-positive parent flocks were determined, the corresponding
breeding eggs and hatchlings were investigated in the hatchery and the fattening flocks were
traced in a long-term investigation. Additionally, within the RESETII-consortium (subproject
at FUB) the same flocks were investigated in the slaughterhouse, thus, the introduction of
ESBL-/AmpC-producing Enterobacteriaceae from the fattening farms into the slaughterhouse
could be assessed as well (von Tippelskirch et al., 2018).

A detailed description on the investigations on ESBL-/AmpC-producing E. coli in parent flocks
and the hatchery within the RESETII-project was published by Projahn et al. (2018). Here,
the focus is on the processes occurring on the level of the fattening farms and, additionally,
on the pseudo-vertical transmission of resistant K. pneumoniae from a parent flock into the
fattening farm.

Within the presented study, various strains of ESBL-/AmpC-producing Enterobacteriaceae were
detected in all investigated stages of the broiler production chain (parent flocks, hatchery,
fattening period) with wide varying prevalence. Using WGS-data, both the horizontal and the
pseudo-vertical transmission route could be identified.

5.1 Prevalence of ESBL-/AmpC-producing Enterobacteriaceae
and detected resistance genes in the fattening farms

5.1.1 Prevalence of ESBL-/AmpC-producing Enterobacteriaceae

The prevalence of ESBL-/AmpC-producing Enterobacteriaceae during the fattening period
showed wide variations between the seven flocks and even a flock without any positive cloacal
swab was detected. However, in this flock the environment was contaminated, indicating that
ESBL-/AmpC-positive housing environment does not necessarily result in high-prevalent flocks.

On the fattening farms, the first cloacal swabs were taken directly after the chickens’ arrival,
between two and six hours after their hatching. At that time, 0.7% of the day-old-chicken were
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tested positive for ESBL-/AmpC-producing Enterobacteriaceae and non-resistant Enterobacte-
riaceae were detected in 25.7%. This is in contrast to Laube et al. (2013). They tested 51%
of the investigated day-old chicken positive for ESBL-/AmpC-producing Enterobacteriaceae by
cloacal swabs three to 36 hours after arrival on the farm. However, the time frame from the oral
uptake to the colonization of the chickens’ intestine and to the faecal shedding of commensal
ESBL-/AmpC-producing E. coli is not known yet. Therefore, the sampling time point in the
first hours/days of life influences the detection of ESBL-/AmpC-producing Enterobacteriaceae.
To assess the detectability for Enterobacteriaceae, both resistant and non-resistant, in day-old
chicken using cloacal swabs, we investigated three broiler flocks intensively in the first three
days of life. Therefore, the chicken were sampled directly at their arrival on the farm (0
hrs) and 8, 24, 32, 48, 56 and 72 hours (8, 24, 32, 48, 56, 72 hrs) after their arrival on
the farm. Unfortunately for that study, ESBL-/AmpC-producing Enterobacteriaceae were not
detected in the investigated animals and the negative boot swabs taken at the end of the
fattening periods proved this negative ESBL-/AmpC-status of the three investigated flocks.
Non-resistant Enterobacteriaceae in day-old chicken were detected in only 5.8% at 0 hrs and
23.3% at 8 hrs. At 24 hrs and 32 hrs after the arrival on the farm, Enterobacteriaceae were
detected with prevalence of 95.8% and 98.3% and from 48 hrs onwards, all investigated animals
were tested positive for Enterobacteriaceae using cloacal swabs. This is in accordance with
Coloe et al. (1984). They could not detect any bacteria in the chickens’ gut after hatching
even though the animals were dissected but at day three bacteria were isolated. Considering
that ESBL-/AmpC-producing Enterobacteriaceae normally account for about 1% of the total
Enterobacteriaceae, the possibility of detecting resistant Enterobacteriaceae at time points when
even the non-resistant Enterobacteriaceae cannot be reliably detected is probably rather low.
Therefore, samplings in recently restocked chicken for the detection of ESBL-/AmpC-producing
Enterobacteriaceae using cloacal swabs should not be performed within the first 24 hours of
life.

5.1.2 The use of antibiotics as cause of the occurrence of
ESBL-/AmpC-producing Enterobacteriaceae

Several studies assume the use of antibiotics to be responsible for the occurrence of antibiotic
resistant bacteria both in veterinary medicine (Dierikx et al., 2013b; Cavaco et al., 2008) as
well as in human medicine (Asensio et al., 2000; Lautenbach E. et al., 2001). For example,
Dierikx et al. (2013b) assume that the use of antibiotics can select and maintain resistant
isolates in the broiler production. In our study, only one of the seven investigated flocks
(flock A) was treated with a macrolide antibiotic at the end of the fattening period (day
26-28). But even this flock was tested positive for ESBL-/AmpC-producing Enterobacteriaceae
before the antibiotic treatment (day 19). This is in accordance to Huijbers et al. (2016), as
they detected ESBL-/AmpC-producing Enterobacteriaceae even in organic farms without any
antibiotic treatment. Furthermore, Guenther et al. (2017) detected ESBL-producing E. coli
also in wild birds that are normally not exposed to antimicrobial agents. On the other hand, the
uptake of antibiotics even without an antibiotic treatment could be causative for the occurrence
of antibiotic resistant bacteria as well. Hamscher et al. (2003) detected antibiotics in dust
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samples originating from pig fattening farms and assumed that the permanent exposure to
subtherapeutic concentrations of antibiotics represent ideal conditions for the development
or the selection of antibiotic resistance. Additionally, Schulz et al. (2016) demonstrated the
occurrence of cultivatable antimicrobial-resistant E. coli in sedimentation dust samples for
more than 20 years and indicates that dust from/in livestock farms may lead to transmission
to other flocks. Therefore, both the presence of antibiotic residues in environmental samples
and antibiotic-resistant bacteria in dust samples as risk factors for the occurrence of antibiotic
resistant bacteria in livestock farming would be interesting for future studies.

5.1.3 Detected resistance genes in fattening flocks

Overall, E. coli strains belonging to the phylogroups E, E/D, A, F, B1 and B2 were detected.
The majority of the ESBL-/AmpC-producing strains detected in the fattening flocks (86.1%)
harboured blaCMY-2, followed by blaSHV-12 (11.6%) and only 1.6% harboured the blaCTX-M-1

gene. The dominating prevalence of blaCMY-2 is in accordance to Ewers et al. (2012). In their
review they summarized published data on ESBL-/AmpC-producing Enterobacteriaceae within
the habitats “animal” and “human” and showed that the most common ESBL-/AmpC-genes
in poultry in Europe are blaCMY-2 and blaCTX-M-1 (32% resp. 28%). In contrast, in human,
blaCTX-M-14 and blaCTX-M-15 are the most common beta lactamase resistance genes (Ewers et
al., 2012). These genes are also found in chicken, but with low prevalence. Nevertheless, an
impact of animal-originated resistant bacteria on public health is assumed by several authors.
They mention a possible transmission of resistant bacteria from animals to humans via direct
contact or due to the consumption of contaminated meat (Marshall and Levy, 2011; Smet
et al., 2010; Leverstein-van Hall et al., 2011; Kluytmans et al., 2013; de Been et al., 2014).
To get more information on possible transmission routes from farm animals to human via
meat, the research within the RESETII-consortium also included the investigation of the seven
flocks at slaughterhouse level (von Tippelskirch et al., 2018). In the slaughterhouse, several
environmental samples were also investigated before the arrival of the respective flocks. On
the one hand, the results of this study show indications for the introduction of ESBL-/AmpC-
producing Enterobacteriaceae from the fattening farms into the slaughterhouse (for flock F,
isolates with identical characteristics concerning species, phylogroup and resistance genes
were detected during the fattening period as well as in samples taken in the slaughterhouse
after the slaughter of the corresponding herd). On the other hand, the results indicate cross-
contamination of ESBL-/AmpC-producing Enterobacteriaceae on slaughterhouse level (for flock
G, resistant isolates with equal characteristics as detected in the slaughterhouses’ environment
before the arrival of the animals also were detected in skin and fillet samples).

Dorado-García et al. (2018) analysed and compared data on ESBL-/AmpC-producing E. coli
obtained from 35 studies in the Netherlands. They showed that most livestock or food associated
reservoirs did not show a high level of similarity in their gene profiles in comparison with humans
both from the general and the clinical populations. Therefore, they suggest that poultry and
poultry meat are not major contributors to ESBL-/AmpC-occurrence in humans. Additionally,
they found a high similarity in gene distributions between farmers and their animals as a result
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of intensive and direct contact; supporting the hypothesis that direct contact is the most
important transmission route.

5.2 Transmission routes

In our study, for ESBL-/AmpC-producing Enterobacteriaceae both the horizontal transmission
on farm level as well as the pseudo-vertical transmission from prior stages of the production
chain into the fattening farms was proven.

5.2.1 Horizontal transmission

Previous studies assumed a horizontal transmission of ESBL-/AmpC-producing Enterobacteri-
aceae in broiler fattening farms (Huijbers et al., 2016; Laube et al., 2013). Within our study,
we reinforced this hypothesis as we demonstrated a direct influence of a previous fattened
flock on the ESBL-/AmpC-status on a following broiler flock due to contaminated housing
environment, despite the cleaning and disinfection procedure.

The housing environment itself seems to play an important role in the occurrence of resistant
bacteria in broiler flocks. Already 1986, Maris (1986) proposed that the all-in all-out method is
one of the important requirements for hygiene in broiler barns. And twenty years ago, it was
recommended to avoid the contact of new birds and day-old chicken with droppings, feathers,
dust and debris left over from the previous flocks as some disease-causing microorganisms
may survive for a long period (Jeffrey, 1997). Meroz and Samberg (1995) recommended that
dry cleaning, wet cleaning, disinfection and the monitoring of the cleaning and disinfection
procedures should be performed between the production cycles, each. Nowadays, these hygiene
measurements including the all-in all-out management and cleaning and disinfection between
the production cycles are performed as standard. Nevertheless, the occurrence of ESBL-/AmpC-
producing Enterobacteriaceae in broiler flocks due to contaminated housing environment was
assumed in different studies (Huijbers et al., 2014; Laube et al., 2013; Hiroi et al., 2012a). If
resistant bacteria occur in a broiler flock and cannot be eliminated during the cleaning and
disinfection procedure between two flocks in one barn, remaining bacteria could be causative
for the colonization of the chicken of consecutively fattened flocks. Robé et al. (2019)
demonstrated that even a very low colonization dosage of 101 colony forming units (cfu)
ESBL-/AmpC-producing E. coli lead to the colonization of broiler chicken. Therefore, even a
very low load of remaining bacteria after cleaning and disinfection could result in positive flocks
fattened consecutively in the same barn. In the presented study, we confirmed the hypothesis
of a circulation of ESBL-/AmpC-producing Enterobacteriaceae between following fattening
flocks by determining close epidemiologic relationship between isolates from two consecutively
fattened flocks (flocks E and F). The flocks E and F derived from different parent flocks and
were fattened consecutively in the same barn. In both flocks, E. coli isolates of phylogroup B
harbouring the blaSHV-12 gene were detected. In the previous fattened flock E, these isolates
were detected during the fattening period and in the barn’s environment the resistant bacteria
also were detected after cleaning and disinfection and preparation for the following flock. In
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the consecutively fattened flock F, isolates with these characteristics also were found in animal
and environmental samples. WGS has shown that all these isolates (E. coli, phylogroup B,
blaSHV-12) belong to MLST 2307 and differ in at most 43 SNPs in total. On basis of the E. coli
genome of approximately 5 mega base pair (Mbp), the 43 SNPs (8.6 SNPs per Mbp) represent
0.0012% divergence only. Some isolates from flock E and flock F differed only 1.7 or 2.0 SNPs
per Mbp. Compared to a described German outbreak of EHEC strains with 1.8 SNPs per Mbp
(de Been et al., 2014; Grad et al., 2013), a direct clonal relationship of isolates both from
flock E and flock F was proven.

Thus, we demonstrated a direct influence of a previous fattened flock on the ESBL-/AmpC-status
on a following broiler flock due to contaminated housing environment, despite the cleaning and
disinfection procedure. As this horizontal transmission was proved, our working group conducted
investigations on management measures for cleaning and disinfection (data not published yet).
In general, cleaning and disinfection should reduce and minimize the load of bacteria in the
barns and, therefore, should minimize the load of ESBL-/AmpC-producing Enterobacteriaceae.
As a colonization dose of 102 cfu ESBL-/AmpC-producing E. coli (inoculating one out of
five animals) was shown to be sufficient to colonize all broiler chicken of the group (Robé et
al., 2019), it is a major challenge to achieve such a low load of ESBL-/AmpC-producers to
eliminate or to significantly reduce the colonization of the chicken and, therefore, the spread of
these bacteria in broiler flocks.

Interestingly, in flock F, closely related E. coli strains (phylogroup B1, blaSHV-12, MLST
type 2307) as detected during the fattening period were also detected in a sample from
the outside environment (pasture and soil) surrounding the ventilators exhausting air. This
indicates a possible airborne contamination of surrounding areas with ESBL-/AmpC-producing
Enterobacteriaceae, as also shown by Laube et al. (2014). They also detected similar ESBL-
producing E. coli isolates both inside and outside of a broiler barn. Others showed that E. coli
is significantly reduced outdoors, especially when exposed to direct daylight and increasing
temperatures (Handley and Webster, 1995). This minimizes the public-health risk of ESBL-
/AmpC-producing Enterobacteriacae from an airborne contamination of surrounding areas of
barns. Nevertheless, a recurring entry of resistant bacteria from the barns immediate surrounding
is possible due to contaminated shoes or equipment, and therefore, may support a horizontal
circulation of ESBL-/AmpC-producing Enterobacteriaceae in livestock farms.
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5.2.2 Pseudo-vertical transmission

Indications for the vertical transmission of pathogenic E. coli from broiler breeding chicken to
their offspring was described (Giovanardi et al., 2005; Petersen et al., 2006) and concerning
ESBL-/AmpC-producing Enterobacteriaceae, already day-old chicken were tested positive and
vertical transmission was assumed (Laube et al., 2013; Nilsson et al., 2014; Dierikx et al.,
2013b). Within the presented study, the pseudo-vertical transmission was proven, as ESBL-
producing K. pneumoniae from a parent flock resulted in a positive fattening flock caused by
the uptake of these bacteria inside the hatchery (flock B). This was the first time that the
pseudo-vertical transmission was shown for K. pneumoniae.

In general, the emergence of ESBL-/AmpC-producing Enterobacteriaceae has been of particular
interest for years, as described above. Especially, K. pneumoniae, causing community and
nosocomial infections are of critical concern. In veterinary medicine, up to date, ESBL-producing
K. pneumoniae have rarely been detected in animals (Hiroi et al., 2012a; Yossapol et al., 2017;
Mahanti et al., 2018; Locatelli et al., 2010; Vo et al., 2007; Ewers et al., 2014). Therefore, the
finding of SHV-12 producing K. pneumoniae strains in various stages of the broiler production
chain within our study is of importance and we were aiming at revealing possible transmission
routes of ESBL-producing K. pneumoniae along the production chain as well as at assessing a
possible impact on human health.

The circulation of ESBL-/AmpC-producing Enterobacteriaceae along the broiler production
process was described in previous studies (Nilsson et al., 2014; Dierikx et al., 2013b). And
Projahn et al. (2017) showed the introduction of ESBL-producing E. coli strains directly
from the parent flock into the hatchery, despite the eggs’ disinfection and a pseudo-vertical
transmission. In detail, the introduction of ESBL-producing Enterobacteriaceae into the hatchery
and the chickens’ colonization by the uptake of resistant bacteria from the environment of the
hatchery was discussed. The presented study reinforces these hypotheses. We demonstrated
the occurrence of SHV-2 producing K. pneumoniae strains in different stages of the broiler
production chain in a timely relation to the production cycle of one herd (detected in parent
flock Z, in hatchery during hatch of flock B and Z (both bred in the hatchery at the same
time), in transportation vehicle of flock B, during fattening period of flock B). WGS revealed
that these isolates harbour the blaSHV-2 gene, belong to the previously unknown K. pneumoniae
MLST type ST3128 and show identical antimicrobial resistance pattern. Due to analyses of
the SHV-carrying contigs concerning their genetic vicinity and their comparability with other
known and published plasmids, the location of the blaSHV-2 in our isolates on a plasmid is
very likely (detailed information in Publication II). To elucidate the epidemiological relationship
and, therefore, the transmission dynamics along the production chain, cgMLST was performed.
As cgMLST analyses, comparing 2358 genes for K. pneumoniae, revealed 100% similarity,
all investigated isolates are identical clones of the ESBL-producing K. pneumoniae. This
points towards ongoing transmission processes along the broiler production pyramid from the
parent flocks via the hatchery to fattening flocks and, therefore, supports the hypothesis of a
pseudo-vertical transmission.

As the eggs of parent flock Z were bred at the same time as the eggs of flock B, the chicken of

57



5 Discussion – 5.2 Transmission routes

flock Z and B hatched at the same time in the same surrounding. This means, the original
source of the ESBL-producing K. pneumoniae strains was not the respective parent flock B
but an unrelated parent flock. This clearly emphasizes the importance of cross-contamination,
especially at hatchery level.

Dierikx et al. (2013b) described the broiler production system to be rather simple: only a
few breeding companies produce the animals for many broiler farms. In a few hatcheries, the
breeding eggs of several parent flocks are processed, and the broiler chicken are delivered to
various fattening farms. Therefore, the introduction of resistant bacteria from one parent flock
into the hatchery can cause the spread of these strains in several fattening farms. Consequently,
the absence of antibiotic resistant bacteria in grandparent and parent flocks is essential to
minimize the occurrence of these bacteria in the production pyramid and one high prevalent
(grand)parent flock has the potential to contaminate all hatchlings of one course of hatching.
In addition, we also showed that cross-contamination even during the transport could be of
importance as well, as K. pneumoniae clones also were detected in the truck, transporting the
chicken from the hatchery to the farms.
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6 Conclusion

In our study, seven broiler fattening chains were investigated for ESBL-/AmpC-producing
Enterobacteriaceae. ESBL-/AmpC-positive parent flocks were selected, the corresponding
hatchings eggs as well as the hatchlings were examined in the hatchery and the respective
broiler chicken were traced during the entire fattening period at the farm. In addition, the
subproject of the RESETII consortium also included investigations of these seven broiler flocks
at the slaughterhouse, conducted by the Institute of Food Safety and Food Hygiene, FUB.

This set-up of the investigation including the use of whole genome sequencing as a high-resolution
molecular method was intended to elucidate transmission routes of ESBL-/AmpC-producing
Enterobacteriaceae along the entire broiler production chain.

We were able to show that the transmission and entry of ESBL-/AmpC-producing Enterobacte-
riaceae occurs at different stages of the broiler production chain.

On the one hand, we demonstrated the pseudo-vertical transmission of ESBL-producing
Enterobacteriaceae. This means the introduction of the bacteria from parent flocks into the
hatchery und the subsequent colonization of fattening flocks due to the uptake of the resistant
bacteria in the hatchery (Publication II). As only a few breeding companies produce broilers for
many farms, hatcheries represent a bottleneck and can result in the spread of a single strain
from a parent flock into several fattening farms.

On the other hand, we demonstrated the horizontal transmission. This means that a contami-
nated housing environment can result in the subsequent flock being positive for the resistant
Enterobacteriaceae (Publication I). Therefore, the optimization for cleaning and disinfection
procedures on farms is essential.

Additionally, due to the investigations of the seven flocks at slaughterhouse level within the
framework of the RESETII-consortium, indications for transmission processes introducing ESBL-
/AmpC-producing Enterobacteriaceae from the fattening farms into the slaughterhouse as well
as cross-contamination at slaughterhouse level were shown.

Taken together, the occurrence of these transmission processes of ESBL-/AmpC-producing
Enterobacteriaceae revealed in the presented PhD-thesis and the subproject of the RESETII-
consortium implies the need for intervention strategies at all stages of the broiler production
chain.
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7 Summary

ESBL-/AmpC-producing Enterobacteriaceae represent a problem both in human and veterinary
medicine. High prevalence for these resistant bacteria especially were demonstrated for broiler
fattening farms and also on slaughterhouse level as well as in chicken retail meat. In chicken,
blaCTX-M1 and blaCMY-2 are the most frequent detected ESBL-/AmpC-resistance genes. In
contrast, the most determined beta-lactamase genes in humans are blaCTX-M14 and blaCTX-M15.
These genes are also found in chicken, but with low prevalence. Nevertheless, an impact of
animal-originated bacteria on public health is assumed and might occur due to direct contact
or the consumption of contaminated meat. Regarding these facts, intervention strategies
facilitating a reduction of the load of ESBL-/AmpC-producing Enterobacteriaceae in chicken
should be considered. Therefore, information on transmission pathways of these bacteria into the
broiler farms are needed, however, little was known about it. Earlier studies have assumed the
vertical transmission of pathogenic E. coli and as ESBL-/AmpC-producing Enterobacteriaceae
even were detected in day-old chicken and (grand)parent flocks, first indications for the vertical
transfer of these resistant bacteria were given. On the other hand, other studies assume
that contaminated farm environment could represent a source for ESBL-/AmpC-producing
Enterobacteriaceae. This transmission is defined as horizontal transmission.

The presented study within in RESETII-consortium intended to elucidate possible transmission
routes of ESBL-/AmpC-producing Enterobacteriaceae along the entire broiler production chain.
Therefore, seven ESBL-/AmpC-positive parent flocks, their corresponding hatching eggs and
hatchlings in the hatchery as well as the respective fattening chicken were investigated. For
detailed information on the horizontal transmission, two flocks fattened consecutively in the
same barn were included in this study. Additionally, within the RESETII-consortium, the same
flocks were also investigated at the slaughterhouse, enabling an assessment of transmission
routes including that stage of the broiler production chain (Institute of Food Safety and Food
Hygiene, FUB, thesis of Philine von Tippelskirch).

By using whole genome sequencing to determine phylogenetic relationships we showed that
the transmission and entry of ESBL-/AmpC-producing Enterbacteriaceae occurs at different
stages of the broiler production chain. On the one hand, the pseudo-vertical transmission route
was demonstrated. Thereby the introduction of resistant strains from a parent flock into the
hatchery occurs which can result in a positive fattening flock due to the uptake of the bacteria in
the hatchery (Publication II). On the other hand, we demonstrated the horizontal transmission
route. This transmission pathway occurs due to contaminated housing environment resulting in
the subsequent flock being positive for the resistant Enterobacteriaceae (Publication I). Due
to the intensive investigation of broiler chicken in their first three days of life concerning the
detectability of Enterobacteriaceae we showed that samplings in recently restocked chicken for
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the detection of ESBL-/AmpC-producing Enterobacteriaceae using cloacal swabs should not be
performed within the first 24 hours of life (Unpublished data).

Indications for the subsequent transmission of resistant bacteria from fattening farms into the
slaughterhouse as well as cross-contamination at slaughterhouse level were shown as well within
the RESETII-consortium at the Insitute of Food Safety and Food Hygiene, FUB.

In summary, transmission pathways of ESBL-/AmpC-producing Enterobacteriaceae in the broiler
production chain are immensely complex and occur in all stages of the production chain. There-
fore, intervention strategies to reduce the load of ESBL-/AmpC-producing Enterobacteriaceae
in chicken should be considered at all levels.
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8 Zusammenfassung

Übertragungswege ESBL-/AmpC-produzierender Enterobacteriaceae in der Masthähnchen-
Produktionskette

ESBL-/AmpC-produzierende Enterobacteriaceae stellen sowohl in der Human- als auch in der
Tiermedizin eine Herausforderung dar. Für diese resistenten Bakterien wurden hohe Prävalenzen
vor allem in Masthähnchenfarmen nachgewiesen, aber ebenso auf Schlachthofebene sowie
auf Hähnchenfleisch aus dem Einzelhandel. Bei Hühnern sind blaCTX-M1 und blaCMY-2 die
am häufigsten nachgewiesenen ESBL-/AmpC-Resistenzgene. Im Gegensatz dazu sind die am
häufigsten nachgewiesenen Beta-Laktamase-Gene beim Menschen blaCTX-M14 und blaCTX-M15.
Diese Gene werden auch bei Hühnern detektiert, allerdings mit geringen Prävalenzen. Es wird
dennoch ein Einfluss von Bakterien tierischen Ursprungs auf die öffentliche Gesundheit vermutet,
der durch direkten Kontakt oder den Verzehr von kontaminiertem Fleisch auftreten könnte. Für
Interventionsstrategien in der Geflügelhaltung werden Informationen zu den Übertragungswegen
antibiotikaresistenter Bakterien in der Masthähnchenhaltung benötigt. Frühere Studien ließen die
vertikale Übertragung pathogener E. coli vermuten. Andere Studien nahmen eine kontaminierte
Stallumgebung als mögliches Reservoir für ESBL-/AmpC-produzierende Enterobacteriaceae
und entsprechend eine horizontale Übertragung an.

Die hier vorgestellte Studie im Rahmen des BMBF-geförderten Konsortiums RESET II hatte die
Aufklärung möglicher Übertragungswege von ESBL-/AmpC-produzierenden Enterobacteriaceae
entlang der Masthähnchenproduktionskette zum Ziel. Dazu wurden sieben ESBL-/AmpC-
positive Elternherden, die entsprechenden Bruteier und Schlupfküken in der Brüterei sowie
die daraus aufgezogenen Masttiere untersucht. Für detaillierte Informationen zur horizontalen
Übertragung wurden zwei der untersuchten Herden direkt nacheinander im gleichen Stall
gemästet wurden. Zusätzlich wurden im Rahmen des RESETII-Konsortiums durch das Institut
für Lebensmittelqualität und -sicherheit der Freien Universität Berlin (Dissertation von Philine
von Tippelskirch, 2018) dieselben Herden auch im Schlachthof untersucht, um eine Bewertung
der Übertragungswege auch auf dieser Stufe der Masthähnchenproduktion zu ermöglichen.

Mittels Ganzgenomsequenzierung als hochauflösende molekulare Methode zur Bestimmung der
phylogenetischen Verwandtschaftsbeziehungen konnten wir zeigen, dass die Übertragung und
der Eintritt von ESBL-/AmpC-produzierenden Enterobacteriaceae auf verschiedenen Stufen der
Masthähnchenproduktionskette erfolgt.

Zum einen wurde eine pseudo-vertikale Übertragung aufgezeigt. Dabei kommt es zum Eintrag
resistenter Stämme aus einem Elterntierbestand in die Brüterei. Durch Aufnahme der Bakterien
durch die geschlüpften Küken in der Brüterei und anschließende Kolonisierung der Tiere kann
dies zu einem hochprävalent positiven Masthähchenbestand führen. Andererseits konnten wir
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8 Zusammenfassung

auch die horizontale Übertragung eindeutig aufzeigen. Bei diesem Übertragungsweg führt eine
aus dem vorherigen Mastdurchgang mit ESBL-/AmpC-produzierenden Enterobacteriaceae kon-
taminierte Stallumgebung zu einer mit diesen resistenten Bakterien kolonisierten nachfolgenen
Masthähnchenherde. Aufgrund der intensiven Untersuchungen von Masthähnchen in den ersten
drei Lebenstagen hinsichtlich der Nachweisbarkeit von Enterobacteriaceae konnten wir zudem
zeigen, dass Probenahmen zum Nachweis von ESBL-/AmpC-produzierenden Enterobacteriaceae
mittels Kloakentupfern nicht innerhalb der ersten 24 Lebensstunden durchgeführt werden sollten.

Hinweise auf die anschließende Übertragung resistenter Bakterien aus Mastbetrieben in den
Schlachthof sowie auf eine Kreuzkontamination auf Schlachthofebene wurden zusätzlich im
Rahmen der Untersuchungen des Instituts für Lebenmittelqualität und -sicherheit der Freien
Universität Berlin (Dissertation von Philine von Tippelskirch, 2018) gezeigt.

Zusammenfassend lässt sich sagen, dass die Übertragung der ESBL-/AmpC-produzierenden
Enterobacteriaceae in der Masthähnchenproduktionskette sehr komplex ist, sowohl horizon-
tale als auch pseudo-vertikale Transmissionsrouten enthält und auf allen Stufen der Mas-
thähnchenproduktion auftritt. Daher sollten Interventionsmaßnahmen zur Reduzierung von
ESBL-/AmpC-produzierenden Enterobacteriaceae beim Masthähnchen auf allen Stufen der
Produktion entwickelt und implementiert werden.
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