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Abstract

Community protective immunity can affect RNA virus evolution by selecting for new antigenic variants on the scale of
years, exemplified by the need of annual evaluation of influenza vaccines. The extent to which this process termed anti-
genic drift affects coronaviruses remains unknown. Alike the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-
2), seasonal human coronaviruses (HCoV) likely emerged from animal reservoirs as new human pathogens in the past. We
therefore analyzed the long-term evolutionary dynamics of the ubiquitous HCoV-229E and HCoV-OC43 in comparison with
human influenza A virus (IAV) subtype H3N2. We focus on viral glycoprotein genes that mediate viral entry into cells and
are major targets of host neutralizing antibody responses. Maximum likelihood and Bayesian phylogenies of publicly avail-
able gene datasets representing about three decades of HCoV and IAV evolution showed that all viruses had similar ladder-
like tree shapes compatible with antigenic drift, supported by different tree shape statistics. Evolutionary rates inferred in a
Bayesian framework were 6.5�10�4 (95% highest posterior density (HPD), 5.4–7.5�10�4) substitutions per site per year (s/s/
y) for HCoV-229E spike (S) genes and 5.7�10�4 (95% HPD, 5–6.5�10�4) s/s/y for HCoV-OC43 S genes, which were about four-
fold lower than the 2.5�10�3 (95% HPD, 2.3–2.7�10�3) s/s/y rate for IAV hemagglutinin (HA) genes. Coronavirus S genes ac-
cumulated about threefold less (P<0.001) non-synonymous mutations (dN) over time than IAV HA genes. In both IAV and
HCoV, the average rate of dN within the receptor binding domains (RBD) was about fivefold higher (P<0.0001) than in other
glycoprotein gene regions. Similarly, most sites showing evidence for positive selection occurred within the RBD (HCoV-
229E, 6/14 sites, P<0.05; HCoV-OC43, 23/38 sites, P<0.01; IAV, 13/15 sites, P¼0.08). In sum, the evolutionary dynamics of
HCoV and IAV showed several similarities, yet amino acid changes potentially representing antigenic drift occurred on a
lower scale in endemic HCoV compared to IAV. It seems likely that pandemic SARS-CoV-2 evolution will bear similarities
with IAV evolution including accumulation of adaptive changes in the RBD, requiring vaccines to be updated regularly,
whereas higher SARS-CoV-2 evolutionary stability resembling endemic HCoV can be expected in the post-pandemic stage.
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1. Introduction

Since the beginning of the coronavirus disease 2019 (COVID-19)
pandemic, millions of human cases have been reported globally

(WHO 2020). COVID-19 is caused by the newly emerged severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
(Li et al. 2020). By December 2020, >150 vaccine candidates are
under development, and several vaccines have concluded phase
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III trials and licensed in several countries (Corum et al. 2020).
Most of the COVID-19 vaccine candidates are mRNA-, subunit-,
or vector-based vaccines encoding the spike (S) protein
(Folegatti et al. 2020; Jackson et al. 2020; Mulligan et al. 2020;
Zhu et al. 2020), which is the surface protein employed by coro-
naviruses for binding to and entry into the host cell. Thus,
SARS-CoV-2 evolution engendering changes of the S protein can
have an impact on long-term usability of COVID-19 vaccines.

Within the viral family Coronaviridae, viruses infecting
humans belong to the genera Alpha- and Betacoronavirus. SARS-
CoV-2 belongs to the SARS-related coronavirus species within the
genus Betacoronavirus (Gorbalenya et al. 2020). All coronaviruses
share an unusually long single-stranded RNA genome encom-
passing 27–32 kb and a similar genomic structure (Su et al.
2016). Error-prone RNA-dependent RNA polymerases (RdRp) of
RNA viruses such as SARS-CoV-2 contribute to short generation
times and high mutation rates (Domingo 1997; Duffy et al. 2008).
However, differently from other RNA viruses, RdRp-driven mu-
tation in coronaviruses is limited by a virus-encoded proofread-
ing protein termed nsp14 (Denison et al. 2011).

Beyond the recently emerged SARS-CoV-2 and MERS-CoV,
which emerged in 2012/2013 and causes zoonotic infections pre-
dominantly on the Arabian Peninsula, there are four endemic
human coronaviruses (HCoV). HCoV-229E and HCoV-OC43 were
identified already in the mid-1960s, whereas HCoV-NL63 and
HCoV-HKU1 were identified more recently in 2004 and 2005 due
to increased screening for HCoV in the aftermath of the SARS
epidemic during 2003–2004 (Corman et al. 2018). The endemic
HCoV and SARS-CoV-2 share several epidemiological and eco-
logical traits. First, the endemic HCoV are comparable to SARS-
CoV-2 in their high transmissibility and worldwide spread
(Owusu et al. 2014; Corman et al. 2018; Goes et al. 2020). HCoV
cause about 10 per cent of all common colds globally, predomi-
nantly during fall and winter seasons, and afford seropreva-
lence rates of up to 90 per cent already in young children
(Corman et al. 2018; Edrige et al. 2020). Second, alike SARS-CoV-
2 and many other respiratory viruses, repeated upper respira-
tory tract infections with HCoV are possible despite prior expo-
sure and detectable systemic immune responses (Callow et al.
1990; Farag et al. 2015), as was exemplified by HCoV-229E re-in-
fection within one year in an experimental infection study in
humans (Callow et al. 1990). Third, alike SARS-CoV-2 that has
likely evolutionary origins in bats, the endemic HCoV originated
from an animal source, including bats, rodents and intermedi-
ate hosts (Vijgen et al. 2006; Pfefferle et al. 2009; Huynh et al.
2012; Corman et al. 2015; Jo et al., 2020).

Vaccines against COVID-19 provide a powerful mean to cre-
ate herd immunity and control the pandemic, albeit long-term
efficacy remains to be determined (Krammer 2020). No vaccine
has yet been approved against any other HCoV. On the contrary,
there are several vaccines against the major respiratory illness
influenza, which is likely comparable to COVID-19 in the poten-
tial for pandemic spread and disease severity (Petersen et al.
2020). Influenza A viruses (IAV) have high evolutionary rates
(Fitch et al. 1991) and evolve into antigenically distinct variants
escaping community protective immunity within a few years, a
process that is termed antigenic drift and requires evaluation
and sometimes exchange of vaccine strains on an annual basis
(Carrat and Flahault 2007; Rambaut et al. 2008). Among IAV, the
endemic subtype H3N2 exhibits the strongest antigenic drift
(Fitch et al. 1991; Bedford et al. 2015), largely influenced by its
higher mutation rate (Pauly et al. 2017) and large effective popu-
lation size (Rambaut et al. 2008). Once sufficient community im-
mune responses against SARS-CoV-2 have been built either by

wild-type infection or vaccination, a plausible post-pandemic
scenario would be that the future trajectory of SARS-CoV-2 will
be reminiscent of endemic HCoV and IAV (Petersen et al. 2020).
Under this premise, we investigated the genetic variation of two
prototypic endemic HCoV in comparison to IAV H3N2 by analyz-
ing tree shape statistics, evolutionary rates and selection pres-
sure using publicly available datasets encompassing more than
thirty years of coronavirus and influenza virus evolution.

2. Materials and methods
2.1 Sequence data

Complete genes encoding the S glycoproteins of HCoV-229E,
HCoV-NL63, HCoV-HKU1 and HCoV-OC43 were downloaded
from GenBank via Geneious v11.1.5 (https://www.geneious.
com). Complete hemagglutinin (HA) gene sequences of IAV sub-
type H3N2 circulating from 1991 to 2019 from the FLU project
were downloaded from the NCBI Influenza virus database
(https://www.ncbi.nlm.nih.gov/genomes/FLU). HA sequences
were chosen from northern temperate regions as most of the re-
cent HCoV sequences available in GenBank were from those

regions. Duplicated gene sequences were removed using the
function ‘find duplicates’ in Geneious. Translation alignments
of each dataset were performed using the MAFFT (Katoh and
Standley 2013) plugin with an iterative refinement algorithm G-
INS-i implemented within Geneious.

2.2 Maximum likelihood phylogenies

Maximum likelihood (ML) phylogenies of the complete S coding
sequence datasets of HCoV-229E, HCoV-NL63, HCoV-HKU1, and
HCoV-OC43, as well as the HA coding sequence dataset of IAV
H3N2 were reconstructed using IQ-TREE (Nguyen et al. 2015)
with 1,000 ultrafast bootstrap replicates (UFBoot) (Hoang et al.,
2018) and 1,000 Shimodaira–Hasegawa approximate likelihood
test (SH-aLRT) (Anisimova et al. 2011) for statistical support of
grouping. Gaps were treated as missing data and removed from
the analyses. The best-fit nucleotide substitution model was
TIMþ Fþ IþG4 (transition model with variable base frequen-
cies, variable transition rates and two transversion rates),
according to the Bayesian information criterion yielded by
ModelFinder for the HCoV-OC43 S dataset (Kalyaanamoorthy
et al. 2017), which corresponded to the largest HCoV dataset
available in GenBank and was used subsequently for all data-

sets to enhance comparability. Notably, TIMþ Fþ IþG4 was
also one of the most supported substitution models for HCoV-
229E (ranked third by ModelFinder), suggesting robustness of its
usage for HCoV datasets. All tree files were visualized with
FigTree from the BEAST package (Suchard et al. 2018).

2.3 Recombination analyses

Recombination analyses were carried out with the methods
RDP, GENECONV, Bootscan, MaxChi, Chimaera, SiScan and 3Seq
implemented in RDP4 (Martin et al. 2015). Sequences with pre-
dicted recombination events that were detected with more than
two methods and P< 0.05 were excluded. Sequences with re-
combination events supported by less than three methods were
analyzed individually and excluded from downstream analyses
only if ML phylogenies of genomic regions adjacent to predicted
breakpoints showed statistically supported different topologies.
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2.4 Temporal signal

The temporal signal (clock-likeliness) of the data was evaluated
using a linear regression of root-to-tip genetic distances against
sampling time in TempEst v1.5.3 (Rambaut et al. 2016).
Correlation coefficients and R2 were calculated using the func-
tion heuristic residual mean squared and best-fitting root op-
tion. In addition, the clock-likeliness of HCoV-229E and HCoV-
OC43 datasets were evaluated with Bayesian dating permuta-
tions. To this end, ten datasets with randomly permuted sam-
pling dates were created using the R library TipDatingBeast
(Rieux and Khatchikian 2017) and the estimated evolutionary
rates of the original dataset were compared with date-
randomized datasets. Sufficient temporal signal in a dataset
was defined following the criterion that the 95 per cent highest
posterior density (HPD) intervals of the evolutionary rate esti-
mate of the original dataset do not overlap with those generated
using date-randomized datasets (Duchene et al. 2015). Bayesian
dating permutations were done using Beast v2.6.3 (Bouckaert
et al. 2019). Analyses were run for 50 million generations, with
sampling every 5000 steps.

2.5 Clock rate

The evolutionary rates in substitutions per site per year (s/s/y)
with 95 per cent HPD intervals of the glycoprotein gene datasets
calibrated by sampling years were estimated using Beast2. The
Nested Sampling algorithm (Maturana Russel et al. 2019) was
used to compare the marginal likelihoods of three clock models:
strict-clock, exponential relaxed-clock and lognormal relaxed-
clock, as well as three coalescent tree priors: constant popula-
tion growth, exponential population growth and Bayesian sky-
line for the HCoV-OC43 S gene dataset. A model was considered
to be strongly favored if logarithmized Bayes factors (BF) were
more than two (Kass and Raftery 1995). Bayesian model averag-
ing was used to infer the most appropriate substitution model
for the HCoV-OC43 S gene dataset via the bModelTest package
(Bouckaert and Drummond 2017), implemented in Beast2. The
final analyses were run for 50 million generations with ten per
cent burn-in, sampling every 5,000 steps, applying the most ap-
propriate settings: TIMþG4þ I as substitution model, a strict
clock (uniform prior between 0 and 1, BF >350) and an exponen-
tial growth coalescent tree prior (BF >550) using default prior
distributions. The same parameters were used for all three
datasets to enhance comparability. The HCoV-OC43-best fit
substitution model was also the second-best substitution model
for HCoV-229E according to bModelTest. Additional analyses
were performed using a lognormal relaxed-clock model with
parameters as described above.

2.6 Tree shape statistics

Phylogenetic tree shapes of ML and Bayesian trees were com-
pared using different tree metrics for imbalance or asymmetry,
including the Colless index, the Sackin index, the number of
cherries, average ladder length, number of internal nodes, and
the staircase-ness. All values were calculated and normalized
using the R package phyloTop (Kendall et al. 2018).
Normalization consisted in the division of maximum possible
number of tips (Kendall et al. 2018). The Colless and Sackin indi-
ces measure overall asymmetry in a tree, number of cherries
count the number of branches with two tip descendants, aver-
age ladder length is defined by the mean size of ladders in a
tree, being ladder a series of connected internal nodes with one
leaf descendant, number of internal nodes with a single tip

(Colijn and Gardy 2014), and staircase-ness measures the pro-
portion of subtrees that are imbalanced in the proportion of
taxa descending from ancestral nodes (Norstrom et al. 2012).

2.7 Mutation detection

Non-synonymous substitutions (dN) and insertion-deletion mu-
tation (indel) rates for each codon site were calculated using the
Nei-Gojobori method in SNAP v2.1.1 (www.hiv.lanl.gov). To de-
termine the cumulative dN from 2001 to 2019, average rates of
dN in the glycoprotein genes were calculated and compared be-
tween viruses using a two-way analysis of variance with Tukey
post hoc tests using GraphPad Prism v6 (La Jolla, CA, USA, www.
graphpad.com). Unpaired t-tests with Welch correction were
used to compare average rates of dN within and outside of the
receptor binding domain (RBD) in GraphPad Prism v6.

2.8 Selection pressure analyses

Selection pressure analyses were performed using the software
packages Phylogenetic Analysis by Maximum Likelihood (PAML)
(Yang 2007) and HyPhy in Datamonkey.org (Pond et al. 2005) in
datasets encompassing HCoV S gene sequences after exclusion
of sequences with evidence for recombination. For HCoV-OC43,
S sequences considered as outliers identified by root-to-tip re-
gression analyses were excluded for pressure analyses
(Supplementary Table S1). For IAV H3N2, pressure analyses
were conducted in a subset of HA sequences from the FLU proj-
ect belonging to the years 1991–2019, available at NCBI influenza
virus database, with mutual sequence identity of <99.5 per cent
generated using CD-HIT-EST (Supplementary Table S1) (Huang
et al. 2010). In PAML, statistical tests were performed using the
CodeML program (Xu and Yang 2013). The codon-substitution
models M7 (beta) and M8 (beta and x) were used to analyze the
datasets using an F61 codon frequency model. Triplet codon
gaps and ambiguities were removed from analyses using the
cleandata option. For each dataset, evidence for positive selec-
tion was evaluated by calculating likelihood-ratio tests of the
site-specific models M7 vs. M8. Statistical significance was
assessed using a chi-square (v2) distribution with two degrees of
freedom. Sites were considered under positive selection if sig-
nificance levels were P< 0.05 and posterior probability above
>0.9 in BEB under the model M8. In HyPhy, the ML-based meth-
ods MEME, SLAC, and FUBAR were used to detect sites under
positive selection. The best substitution model was selected au-
tomatically, and sites were considered under selection if P< 0.1
for ML methods or if the posterior probability was >0.9 for
FUBAR. To compare the number of sites under positive selection
between different regions along the analyzed genes, v2 tests
were performed using GraphPad Prism v6.

3. Results
3.1 Recombinant and low-quality sequences distort the
temporal signal of HCoV

Publicly available sequence information may not contain ade-
quate information on time of isolation and recombinant
sequences can affect evolutionary reconstructions (Rasche et al.
2019). Using all publicly available sequences, temporal analyses
of HCoV phylogenies (Fig. 1A) indicated poor temporal signal
with R2 values of 0.03 for HCoV-HKU1, 0.16 for HCoV-OC43, 0.57
for HCoV-NL63 and 0.89 for HCoV-229E (Fig. 1B). Poor temporal
signal was consistent with the existence of recombinant
sequences or other sequences confounding the temporal
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analyses (Fig. 1A, Supplementary Table S1). For HCoV-OC43,
most recombination events detected were located in sequences
belonging to a clade, which has been previously reported as a
recombinant genotype tentatively termed genotype E (Zhang
et al. 2015). After excluding likely recombinant sequences and
HCoV prototype strains likely containing mutations that may
have arisen during multiple passages in different cell cul-
tures and even animals and whose sampling dates are un-
certain, the temporal signal of those datasets increased as
suggested by the change of R2 from 0.89 to 0.96 for HCoV-
229E, from 0.16 to 0.93 for HCoV-OC43, from 0.03 to 0.42 for
HCoV-HKU1, and from 0.57 to 0.69 for HCoV-NL63 (Fig. 1C).
Subsequently, we decided to exclude HCoV-HKU1 and HCoV-
NL63 from downstream evolutionary analyses. In the case of
HCoV-HKU1, the dataset had insufficient temporal signal
likely due to the limited number of sequences (Fig. 1D) and

limited genetic divergence over time. Beyond the small num-
ber of available sequences, there were differences in their
clock-like evolution between the two major clades of HCoV-
HKU1, particularly the clade encompassing genotypes B and
C (Fig. 2). The reason for the apparently different evolution-
ary structure of HCoV-HKU1 genotypes remains to be deter-
mined. HCoV-NL63 was excluded from downstream analyses
because sequence coverage over time was inadequate, lack-
ing sequences from the entire 1990s (Fig. 1D, Supplementary
Table S1). The final HCoV datasets used for downstream
analyses consisted of 62 S gene sequences of HCoV-229E and
169 S gene sequences of HCoV-OC43 (Fig. 1D). The time span
of collected sequences in final datasets ranged from 1979 to
2019 for HCoV-229E S genes, and from 1983 to 2019 for
HCoV-OC43 S genes. For comparison, we selected one se-
quence per location per year of complete HA encoding

Figure 1. Phylogeny of endemic human coronaviruses. (A) ML phylogenies of complete glycoprotein genes of HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63.

Circles at nodes indicate support of �80 SH-alrt/�95 UFBoot for major clades. Scale bars indicate number of nucleotide substitutions per site. (B) Linear regression of

root-to-tip genetic distances over time in years of whole datasets. (C) Linear regression plots of HCoV datasets excluding recombinant sequences and laboratory

strains. The date range, slope (rate), correlation coefficient, and R2 are shown in the graph. (D) Number of HCoV spike gene sequences per year after exclusion of recom-

binant and laboratory strains retrieved from NCBI (detailed in Supplementary Table S1).
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sequences of IAV H3N2 sampled from 1991 to 2019, leading
to a dataset encompassing 477 HA sequences (Supplementary
Table S1). A root-to-tip regression analysis of the IAV H3N2
HA dataset used in this study yiedled a strong temporal sig-
nal (R2 ¼ 0.99) (Supplementary Fig. S1), as previously reported
for H3N2, suggesting robustness of our data (Westgeest et al.
2012).

3.2 The phylogenies of HCoV-229E and HCoV-OC43 are
compatible with antigenic drift

The shape of a phylogenetic tree can inform on the evolutionary
forces acting on the taxa that are analyzed. The tree shape of
both HCoV-229E and HCoV-OC43 S-based reconstructions
showed a ladder-like shape with long trunks and short terminal
branches, which was compatible with antigenic drift and com-
parable to the IAV H3N2 HA-based reconstructions (Fig. 3A). The
IAV tree shape was consistent with previous analyses of H3N2
evolution (Fitch et al. 1991), suggesting robustness of our data.
Ladder-like phylogenies are characterized by the replacement
of one variant by another usually due to antigenic drift (Frost
and Volz 2013), producing an imbalanced or asymmetric tree
(Gray et al. 2011). The ladder-like shape in all three datasets was
supported by various tree shape statistics (Table 1). Similar val-
ues were obtained for cherry configuration, number of internal
nodes, ladder length and staircase-ness for both ML and
Bayesian trees. A staircase-ness of about 0.7 indicated a high
proportion of imbalanced subtrees in all three datasets. In con-
trast, the Colless and Sackin indices indicated that the HCoV-

229E tree shape was overall more imbalanced than in the case
of HCoV-OC43 and IAV H3N2, possibly due to the fewer number
of HCoV-229E sequences distributed over time (Fig. 1D). To con-
trol for potential biases from uneven numbers of sequenecs
available for different viruses over time, analyses were also
performed on a reduced dataset (Supplementary Table S1) con-
sisting of only one sequence per year per location. Both tree
shape and tree metrics (Supplementary Fig. S1, Table S2) were
compatible with antigenic drift, suggesting robustness of the
results.

3.3 HCoV have lower evolutionary rates than IAV H3N2

On a short time scale, RNA viruses typically show very high evo-
lutionary rates, but those rates can differ more than tenfold be-
tween RNA virus families (Jenkins et al. 2002). In this study, the
evolutionary rates of the HCoV S genes were estimated to be
6.5� 10�4 (95% HPD, 5.4–7.5� 10�4) s/s/y for HCoV-229E and
5.7� 10�4 (95% HPD, 5–6.5� 10�4) s/s/y for HCoV-OC43 using a
strict clock model and an exponential growth coalescent tree
prior (Fig. 3B). Evolutionary rates did not vary greatly when us-
ing a different clock model ( uncorrelated lognormal relaxed
clock; Supplementary Table S3), suggesting robustness of our
results. The evolutionary rate for HCoV-229E inferred here was
higher than previously reported for HCoV-229E at 4.3� 10�4 s/s/
y (Al-Khannaq et al. 2016), whereas the evolutionary rate esti-
mated for HCoV-OC43 was on the lower limit of the range of
previously reported values at 5.8–8.5� 10�4 s/s/y (Lau et al. 2011;
Ren et al. 2015; Oong et al. 2017). The minor differences between

Figure 2. Linear regression plots of root-to-tip divergence over time of major sub-lineages of HCoV-HKU1. Circles at nodes in the ML phylogeny relying on complete

spike genes indicate support of �80 SH-alrt/�95 UFBoot for major clades. Scale bars indicate number of nucleotide substitutions per site. Linear regression of root-to-

tip genetic distances over time in years after exclusion of recombinant sequences (detailed in Table S1). The date range, slope (rate), correlation coefficient (r), and R2

are shown in the graph.
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the rate estimates that were previously reported and the esti-
mates generated in this study are likely due to different data-
sets from different time spans and locations as well as
substitution models used in those analyses. For IAV H3N2, we
obtained an evolutionary rate of 2.5� 10�3 (95% HPD, 2.3–
2.7� 10�3) s/s/y (Fig. 3B), which was comparable to the 1.5� 10�3

s/s/y estimated previously using a HA gene dataset from the
Middle East and North Africa (Al Khatib et al. 2019), and only
slightly lower than the 4.2–5.2� 10�3 s/s/y estimated when only
analyzing the more variable HA1 gene subunit (Nyang’au et al.
2020; Westgeest et al. 2012), again suggesting robustness of our
results. In sum, IAV H3N2 had an about fourfold higher evolu-
tionary rate compared with HCoV-OC43 and HCoV-229E. The
lower HCoV evolutionary rate compared with IAV and other
RNA viruses can likely be attributed to the lower mutation rate
in coronaviruses due to nsp14-mediated proofreading activity
(Denison et al. 2011; Peck and Lauring 2018). This characteristic
proofreading activity in coronaviruses and other members of
the order Nidovirales has been hypothesized to contribute to

their larger genome sizes of more than 26 kilobases (kb) com-
pared with other RNA viruses, such as influenza viruses whose
genomes encompass only about 13.5 kb (Peck and Lauring 2018).
Genome sizes have been negatively correlated to evolutionary
rates (Sanjuan 2012), suggesting robustness of our results.
Notably, relatively lower evolutionary rates of HCoV are not
necessarily at odds with the 1� 10�3 s/s/y that are currently es-
timated for SARS-CoV-2 on the complete genome-level (Boni
et al. 2020), because the high SARS-CoV-2 rate is very likely to
decrease over time due to purifying selection (Duchene et al.
2014).

None of the 95 per cent HPD intervals of the estimated evolu-
tionary rates of date-randomized datasets for HCoV-229E
(2.6� 10�7–3.3� 10�5 s/s/y) and HCoV-OC43 (1.1� 10�6–2.5� 10�5

s/s/y) overlapped with the 95 per cent HPD interval of the esti-
mated rate of the original dataset of HCoV-229E and HCoV-OC43
reported above (Fig. 3C), confirming that the datasets had suffi-
cient temporal signal to permit adequate rate estimates and
downstream analyses (Duchene et al. 2015).

Figure 3. Evolution of HCoV-229E , HCoV-OC43 and IAV H3N2 over time. (A) Maximum likelihood phylogenies relying on complete viral glycoprotein datasets. Circles at

nodes indicate support of �80 SH-alrt/�95 UFBoot for major clades. Scale bars indicate number of nucleotide substitutions per site. Sequences used are detailed in

Supplementary Table S1. (B) Evolutionary rates in substitution per site per year (s/s/y) with 95 per cent HPD intervals inferred in a Bayesian framework relying on com-

plete viral glycoprotein datasets. (C) Comparison between the 95 per cent HPD intervals of the evolutionary rates of the HCoV-229E S (teal) final dataset with date-ran-

domized datasets (n¼10, black), and of the HCoV-OC43 S (mustard) final dataset with date-randomized datasets (n¼10, black). (D) Average rate of non-synonymous

substitutions (dN 6 SEM) for HCoV-229E S, HCoV-OC43 S, and IAV H3N2 HA from 2001 to 2019.

Table 1. Tree shape statistics.

Tree statistic Description HCoV-229E HCoV-OC43 IAV H3N2

ML B ML B ML B

Colless indexa Assess overall asymmetry 0.42 0.44 0.18 0.16 0.24 0.22
Sackin indexa Assess overall asymmetry 0.50 0.52 0.23 0.21 0.26 0.23
Cherry number Count branches with two tips 0.54 0.52 0.51 0.53 0.57 0.59
Number internal nodes Count internal nodes with a single tip child 0.49 0.50 0.47 0.47 0.43 0.42
Ladder length Measures mean size of ladders 2.44 3.11 2.5 2.53 2.5 2.38
Staircase-nessa Count proportion of imbalanced subtrees 0.72 0.72 0.72 0.69 0.69 0.67

aValue of 1 indicates perfect asymmetry, value of 0 indicates perfect symmetry (Colijn and Gardy 2014).

B, Bayesian.
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3.4 HCoV accumulate less amino acid changes over time
than IAV H3N2

Amino acid changes in viral proteins can lead to immune es-
cape due to a decrease in the ability of the adaptive immune re-
sponse raised by a primary infection or vaccination to control a
second infection with the same virus (Drexler et al. 2014;
Linderman et al. 2014; Romano et al. 2015). To quantitate the
amount of mutations generating amino acid changes, we calcu-
lated the cumulative rate of dN per genome position from 2001
to 2019 for each virus dataset (Fig. 3D). Both HCoV-229E S and

HCoV-OC43 S had a significantly overall lower rate of dN com-
pared to IAV H3N2 HA (approximately threefold less; P< 0.0001).

3.5 Non-synonymous mutations predominantly occur in
the RBD of HCoV and IAV

The coronavirus S protein contains two subunits, S1 and S2
(Fig. 4). Whereas interaction with the cellular receptor occurs
via the S1 subunit at the RBD, membrane fusion occurs via the
S2 subunit (Graham and Baric 2010). The RBD of HCoV-229E lies
within the domain B of S1 between positions 291 and 432 and

Figure 4. Mutations and sites under positive selection in endemic HCoV and IAV glycoprotein genes. (A–C) Average rate of non-synonymous mutations (dN) and indel

mutations at each position along the glycoprotein genes of HCoV-229E, HCoV-OC43, and IAV H3N2 are depicted in green (dN) and brown (indel). Sites under positive se-

lection are depicted as red bars below gene sketches. The HCoV-229E RBD position is based on GenBank accession no. MH048989 according to Li et al. (2019). The HCoV-

OC43 RBD position is based on GenBank accession no. AY903460 according to Hulswit et al. (2019). The IAV H3N2 RBD position is based on GenBank accession no.

CY173187 according to DuBois et al. (2011).
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binds to human aminopeptidase N (Li et al. 2019), whereas the
RBD of HCoV-OC43 lies within the domain A of S1 between posi-
tions 15 and 310 and binds to 9-O-acetylated sialic acid
(Hulswit et al. 2019). The influenza virus HA protein is also di-
vided into two subunits, HA1 and HA2. The HA1 subunit again
contains the RBD (Fig. 4), which binds to sialic acids, such as
a2,6-linked sialic acid in the case of endemic IAV (DuBois et al.
2011).

Non-synonymous substitutions or indel mutations occurred
in 10 per cent of codons of the HCoV-229E S gene, in 16 per cent
of codons of the HCoV-OC43 S gene, and in 29 per cent of codons
of the IAV H3N2 HA gene (Table 2). Of note, comparisons of the
number of dN between the coronaviruses under study should
be taken with caution because the HCoV-OC43 dataset was rela-
tively larger than the HCoV-229E dataset (Table 2) and non-re-
cent common ancestry may limit non-independence of datum
points. Irrespective of the different dataset sizes, the distribu-
tion of dN or indel mutations over the protein was comparable
between HCoV and IAV. In HCoV, more than 70 per cent
(P< 0.0001) of the total amino acid sites with dN or indel muta-
tions were mapped to the S1 subunit, whereas for IAV, about 80
per cent of codons with dN (P< 0.0001) were mapped to the HA1
subunit (Table 2). Moreover, of the total dN and indel mutations
within the S1 subunits, around 35 to 40 per cent (P< 0.05) of all
mutations were located within the RBD , whereas for IAV, about
70 per cent (P< 0.05) of mutations within the HA1 subunit were
located within the RBD (Table 2). In addition to the number of
amino acid exchanges occurring within the RBD, the average
rates of dN within the RBD were higher than in other regions of
the glycoprotein genes by approximately fourfold (P< 0.0001) in
both HCoV-OC43 and IAV H3N2, and sevenfold (P< 0.0001) in
HCoV-229E. In sum, these data suggest that the RBD are hot

spots for amino acid substitutions potentially representing
adaptive evolution in HCoV and IAV.

3.6 Adaptive evolution predominantly affects the RBD of
HCoV and IAV

In IAV, amino acid exchanges conferring escape from adaptive
immune responses are predominantly located adjacent to the
receptor binding site (Koel et al. 2013), which are those sites
within the RBD interacting with the cellular receptor.
Community protective immune responses may have left signs
of positive selection at sites potentially responsible for antigenic
drift in HCoV. Evidence of gene-wide positive selection was
found for both the S genes of HCoV-229E and HCoV-OC43 and
the HA gene of IAV H3N2 (Table 3). Significantly more sites un-
der positive selection were located within the S1 subunits of
HCoV-229E (P< 0.001) and HCoV-OC43 (P< 0.0001), and within
the HA1 in IAV H3N2 (P< 0.05) (Fig. 4, Table 2, Supplementary
Tables S4–S6). Of those sites under positive selection within the
S1 and HA1 subunits, 42.9 per cent (P< 0.05) were located within
the RBD for HCoV-229E, 60.5 per cent (P< 0.01) for HCoV-OC43,
and 86.7 per cent (P¼ 0.08) for IAV H3N2 (Table 2).

Selection pressure analyses can be biased by genetic
changes that are not considered within the framework of the
programs designed to detect and differentiate change resulting
from virus–host population-level interactions. Within SARS-
CoV-2 and to a lesser extent in other HCoVs, host-mediated
editing of the viral genome can lead to erroneous assumption of
sites evolving under pressure, such as mutations by the apoli-
poprotein B mRNA-editing enzyme, catalytic polypeptide-like
(APOBEC) family leading to C!U transitions (Simmonds 2020).
Therefore, we determined if the sites under positive selection
were C!U transitions that may be suggestive of APOBEC-
mediated editing (Simmonds 2020). We found that 1/15 (6.7%) of
these sites had a C!U transition in HCoV-229E, 4/43 (9.3%) in
HCoV-OC43, whereas no such transition was found in IAV H3N2
(Supplementary Tables S4–S6), implying that most sites show-
ing evidence for positive selection were not generated by
APOBEC-like editing.

In sum, sites under positive selection within the RBD of
HCoV may be particularly relevant for immune escape and anti-
genic drift, as has been reported for IAV H3N2 (Koel et al. 2013;
Raymond et al. 2018).

Table 2. Non-synonymous mutations and codons under positive selection.

Virus No. of sequences Gene region Lengtha dN and indel Positive selection

No. of codons P value*b No. of codons P value*b

S 1172 121 15
HCoV-229Eb 59 S1 688 92 <0.0001 14 0.0060

RBD 142 34 <0.0001 6 0.0380
S 1362 217 44

HCoV-OC43b 148 S1 766 152 <0.0001 38 <0.0001
RBD 296 71 0.0225 23 0.0045
HA 566 165 17

IAV H3N2b 477 HA1 330 134 <0.0001 15 0.0192
RBD 217 95 0.0143 13 0.0807

aAmino acid residues.
bGene lengths according to GenBank nos. MH048989 for HCoV-229E, AY903460 for HCoV-OC43, and CY173187 for IAV H3N2.

*Statistical significance according to v2 tests.

indel, insert-deletion mutations; S, spike.

Table 3. Likelihood ratio test for positive selection in viral glycopro-
tein genes.

Virus lnL0 lnL1 2DlnL df P value

HCoV-229E �7293.1 �7288.4 9.4 2 9.1� 10-3

HCoV-OC43 �10513.1 �10474.5 77.1 2 <1.1�10-16

IAV H3N2 �10040.9 �10032.4 17.1 2 1.9� 10-4

lnL, log likelihoods estimated using PAML; lnL0, estimated under M7; lnL1, esti-

mated under M8, 2DlnL, 2(lnL1 - lnL0); df, degrees of freedom for chi-square test.
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4. Discussion

We evaluated the evolutionary dynamics of two ubiquitous en-
demic HCoV in comparison to IAV H3N2.

We found several similarities between both HCoV and IAV
H3N2, including tree shape and the location of both non-
synonymous mutations and sites under positive selection.
Genetic variability potentially compatible with antigenic drift
has been described in preliminary studies analyzing the S genes
of HCoV-229E (Chibo and Birch 2006) and HCoV-OC43 (Ren et al.
2015) individually. Our analysis of relatively larger HCoV and
IAV datasets using identical methodology confirmed those pre-
liminary studies and allowed direct comparisons between the
viruses under study. Our data demonstrate considerably lower
gene-wide change over time in HCoV than in IAV, which may
imply a prolonged ability of vaccine-induced immune responses
to neutralize coronavirus variants arising over time.

However, even a single amino acid exchange can dramati-
cally affect immune escape, as demonstrated for many viruses
infecting humans. In IAV, the recently emerged HA mutation
K166Q reduced HA inhibition titers by �two-fold (Linderman
et al. 2014), prompting for modification of the H1N1 vaccine
strain in 2017 (Raymond et al. 2018). In Polioviruses, immune es-
cape mutations were associated with an outbreak of poliomyeli-
tis in the Republic of Congo in 2010 (Drexler et al. 2014). Even in
hepatitis B virus that evolves several orders of magnitude
slower than IAV and Polioviruses (Muhlemann et al. 2018), vac-
cine breakthrough after mother-to-child transmission and sub-
sequent immunization of the neonate was linked to a single
mutation in the glycoprotein (Romano et al. 2015). It is therefore
not unlikely that single amino acid changes can have a dra-
matic impact on HCoV antigenicity. Indeed, differential neutral-
ization of HCoV-229E strains was linked to substitutions within
the S1 receptor-binding loops within the RBD (Shirato et al.
2012; Wong et al. 2017). Moreover, it was recently demonstrated
that historical human sera collected from 1985 to 1990 had
lower neutralizing activity to pseudotyped viruses bearing the S
of HCoV-229E strains isolated eight to seventeen years later
(Eguia et al. 2020), suggesting antigenic drift.

One year after SARS-CoV-2 was first reported in humans,
several mutations in S leading to deletions or amino acid
exchanges have emerged independently in several countries
(e.g. UK, South Africa, and Brazil) and are becoming regionally
predominant (Plante et al. 2020; Tegally et al. 2020; Faria et al.
2021; Volz et al. 2021). These amino acid exchanges or deletions
in S can lead to increased transmission by increasing infectivity
(e.g. D614G) (Plante et al. 2020), enhancing human ACE2-binding
affinity (e.g. N439K and N501Y) (Starr et al. 2020; Thomson et al.
2020), or conferring partial immune escape by reduction of neu-
tralizing activity to both human-derived polyclonal sera and
monoclonal antibodies (e.g. N439K, E484K, K417N, N501Y, D69/
70) (Kemp et al. 2021; Thomson et al. 2021; Weisblum et al. 2020;
McCarthy et al. 2021; Wang et al. 2021). Most of these mutations
are located within the RBD, which is indicative of the relevance
of that genomic domain for viral adaptive evolution and consis-
tent with our results and those of other studies (Wong et al.
2017; Weisblum et al. 2020). Some of the immune escape
mutations were reported to emerge in immunocompromised
individuals after treatment with monoclonal antibodies and
convalescent plasma (Choi et al. 2020; Kemp et al. 2021).
Although it is possible that prolonged within-host evolution of
SARS-CoV-2 in immunocompromised individuals can enhance
the emergence of mutations conferring immune escape, intense
uncontrolled community transmission of SARS-CoV-2 will

facilitate the emergence of escape variants irrespective of host
immune status. Immune escape is all the more worrying be-
cause weak immune responses against SARS-CoV-2 have been
reported to occur particularly in mild and asymptomatic infec-
tions (Okba et al. 2020; Wajnberg et al. 2020) and sporadically
linked to re-infection with SARS-CoV-2 (Gupta et al. 2020; To
et al. 2020; Tillett et al. 2021). Finally, neutralization assays of vi-
ruses pseudotyped with SARS-CoV-2 spike variants (e.g. UK-
B.1.1.7 and South Africa-B.1.351) demonstrated reduced levels of
neutralization by vaccinee-derived antisera (Madhi et al. 2021;
Tada et al. 2021; Wu et al. 2021). COVID-19 vaccines may there-
fore require constant evaluation during pandemic SARS-CoV-2
spread.

Limitations in our study include the small number of
sequences per year and the different dataset sizes. Another lim-
itation was the use of only S gene sequences, as T-cell reactivity
has been reported for other SARS-CoV-2 proteins such as M, N
and several non-structural proteins (Grifoni et al. 2020; Le Bert
et al. 2020). However, the S protein is the main target of neutral-
izing antibodies (Premkumar et al. 2020), and therefore the
main viral protein used for vaccine development (Jackson et al.
2020; Mulligan et al. 2020).

Alike SARS-CoV-2, IAV H3N2 emerged relatively recently in
1968 from an animal reservoir (Smith et al., 2009). It seems plau-
sible that the evolutionary trajectory of SARS-CoV-2 will bear
similarities with that of IAV H3N2 during the pandemic phase
and in the immediate aftermath, characterized by viral adapta-
tion and accumulation of mutations in the RBD. Under this as-
sumption, it seems plausible that the efficacy of COVID-19
vaccines against emerging SARS-CoV-2 variants requires careful
validation and regular vaccine update during pandemic spread.
In contrast, seasonal HCoV emergence likely dates back longer
time spans, potentially implying several hundred years of puri-
fying selection (Vijgen et al. 2006; Pfefferle et al. 2009; Corman
et al. 2015) that limit comparability of HCoV evolution with pan-
demic SARS-CoV-2 evolution during intense transmission facili-
tated by global connectivity (Findlater and Bogoch 2018).

Nonetheless, the unique presence of the highly conserved
proofreading protein nsp14 across all coronaviruses implies
that SARS-CoV-2 evolution will bear similarities with seasonal
HCoV evolution in a post-pandemic scenario. Enhanced stability
of COVID-19 vaccines in the post-pandemic stage can thus be
expected compared to influenza vaccines, both due to viral
properties and due to relatively stronger T-cell responses
afforded by most COVID-19 vaccines (Corbett et al. 2020; Sahin
et al. 2020) compared to current influenza vaccines (Kang et al.
2004).

Supplementary data

Supplementary data are available at Virus Evolution online.
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