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Abstract

One of the most pressing issues of our time is to move away from fossil fuels to stop or limit
global warming. One important technology which is used to replace energy from fossil fuels are
photovoltaic solar cells. This thesis deals with a material class which can be used as a solar
cell absorber called kesterites (Cu2ZnSnS4-xSex).
All commercially relevant solar cell absorber materials have certain drawbacks like high material
usage and utilizing scarce or poisonous elements. Kesterite solar cells rely on abundant and
relatively environmentally friendly elements. Furthermore kesterites have a high absorption
coefficient for visible light which allows to use them in so called thin-film solar cells which are
very efficient in terms of material usage. Kesterite solar cells are not yet matured to a level
where they can compete commercially. Their biggest issue is a low conversion efficiency of the
incoming solar energy. It stagnated at 13 % for the last 7 years while beyond 20 % conversion
efficiency are required to be successful in the commercial market. One of the causes of the low
conversion efficiency is that kesterites can easily get disordered, in particular Cu and Zn atoms
which share a plane in the unit cell can interchange easily. Partly or fully replacing Cu and/or
Zn with another cation can reduce the tendency to disorder. In this thesis we investigate
unsubstituted kesterite (Cu2ZnSnS4) as well as various substituted variants.
In thin-films compressive stress can occur for various reasons, e.g. if a reactant is sputtered in the
synthesis. We use first principle methods to scan for high pressure phase transitions for ordered
and disordered kesterite and the following substituted variants: Cu2FeSnS4, Cu2MnSnS4,
Ag2ZnSnS4 and Ag2CdSnS4. We investigate how the electronic structure changes through
the structural phase transition. Cu2CdSnS4 has a different crystal structure than Cu2ZnSnS4.
Using first principle methods we determine the maximum amount of Cd which can be used in
Cu2ZnSnS4 to substitute Zn without changing the crystal structure.
For all investigated materials we predict a high pressure transition to a compressed rocksalt
structure. The electronic structure of this high pressure phase is in all cases metallic which
renders the materials useless as a solar cell absorber. The transition pressure for Cu2ZnSnS4
is predicted at 16 GPa, in excellent agreement with experimental results. The transition
pressure for the substituted variants Cu2FeSnS4, Cu2MnSnS4 and Ag2ZnSnS4 are lower but
still well off the pressures we expect in thin-film synthesis. Only the transition pressure for
Ag2CdSnS4 which is 4.7 GPa is close to pressures which can occur in thin-films. Therefore we
advice to monitore the structure if this material is used as a solar cell absorber. For the solid
solution series Cu2CdxZn1–xSnS4 we predict the kesterite-type structure to be most stable up
to Cdx=0.51. Experimentally it is most stable up to Cdx=0.40. We show that the difference
may be due to a small disorder in the experimental samples.
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Kurzzusammenfassung

Einer der wichtigsten Herausforderungen unsere Zeit ist es, die Nutzung fossiler Energieträger zugunsten
erneuerbarer Energieträger einzustellen, um die globale Erwärmung zu stoppen beziehungsweise zu limitieren.
Eine wichtige Technologie für eine nachhaltigen Energieversorgung ist die Photovoltaik. Diese Arbeit beschäftigt
sich mit einer Klasse von Materialen, die als Absorber in Solarzellen eingesetzt werden können, den sogenannten
Kästeriten (Cu2ZnSnS4-xSex).
Alle kommerziell relevanten Absorbermaterialien haben gewisse Nachteile, wie einen hohen Materialverbrauch
oder die Nutzung von seltenen oder giftigen Elementen. Kästerite bestehen aus nicht-giftigen Elementen,
die auf der Erde leicht verfügbar sind. Außerdem haben Kästerite einen hohen Absorptionskoeffizienten für
sichtbares Licht, was sogenannten Dünnschichtsolarzellen ermöglicht, die besonders wenig Material benötigen.
Kästeritsolarzellen sind technologisch noch nicht so ausgereift, dass sie kommerziell relevant sind. Das größte
Problem ist eine zu kleine Effizienz bei der Umwandlung der Solarenergie. Diese Effizient stagniert seit sieben
Jahren bei 13 %, während mehr als 20 % nötig sind um am Markt bestehen zu können. Einer der Gründe für die
niedrige Effizienz ist, dass Kästerite anfällig für Unordnung sind. Speziell Cu- und Zn-Atome, welche sich eine
Ebene in der Einheitszelle teilen, können leicht ihre Plätze tauschen. Indem man Cu und/oder Zn vollständig
oder teilweise durch andere Kationen ersetzt, kann man die Neigung zur Unordnung reduzieren. In dieser Arbeit
beschäftigen wir uns mit unsubstituiertem Kästerit (Cu2ZnSnS4) und einigen substituierten Varianten.
In Dünnschichten kann es zu Druckspannung kommen, z.B. wenn ein Reaktant in der Synthese gesputtert wird.
Wir benutzen First-principle-Methoden um nach Hochdruckphasenübergängen für geordnetes und ungeordnetes
Kästerite und für folgende substituierte Varianten zu suchen: Cu2FeSnS4, Cu2MnSnS4, Ag2ZnSnS4 und
Ag2CdSnS4. Wir untersuchen dabei auch, wie sich die elektronische Struktur durch den Phasenübergang
verändert. Cu2CdSnS4 hat eine andere Kristallstruktur als Cu2ZnSnS4. Mittels First-principle-Methoden
bestimmen wir den maximalen Anteil an Cd, der substituiert werden kann, ohne dass sich die Kristallstruktur
ändert.
Für alle untersuchten Materialien sagen wir einen Hochdruckphasenübergang zu einer gestauchten Kochsalz-
Struktur voraus. Dabei ist die Hochdruckphase immer metallisch, wodurch das Material als Solarzellenabsorber
unbrauchbar wird. Der übergangsdruck für Cu2ZnSnS4 ist 16 GPa, was in sehr guter Übereinstimmung
zum Experiment steht. Die Übergangsdrücke für die substituierten Varianten Cu2FeSnS4, Cu2MnSnS4 und
Ag2ZnSnS4 sind niedriger, allerdings immer noch deutlich über Drücken, die in Dünnschichten zu erwarten sind.
Nur der Übergangsdruck von 4.7. GPa für Ag2CdSnS4 ist im Bereich der Drücke, die in Dünnschichten auftreten.
Für den Mischkristall Cu2CdxZn1–xSnS4 sagen wir voraus, dass die Kästerit-Struktur bis zu Cdx=0.51 am
stabilsten ist. Experimentell liegt die Struktur bis Cdx=0.40 vor. Wir zeigen, dass die Differenz durch kleine
Unordnungen in den experimentellen Proben zu erklären sein könnte.
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Introduction

1 Introduction

1.1 Motivation: solar cells

In the light of global warming, one of the most pressing issues is to move away from fossil
energy sources to prevent the production of more CO2 driving the greenhouse effect. The total
average power available at the earth’s surface in the form of solar radiation exceeds the total
human power consumption by roughly a factor of 1,500. [3] Of course it is not feasible to access
all of that power but the number shows that there is a lot of potential in using solar power.
Still there are many challenges in using solar power, like the fact that the highest power of
solar energy tends to be available in regions with a small population density like deserts and
that it is still a big challenge to store and transport electrical energy. Nevertheless it is widely
recognized that solar power is one of the fundamental building blocks to create a sustainable
energy supply for the whole world. One key technology to exploit solar radiation for energy
production are solar cells which will be briefly explained in the following.

1.1.1 Principle

In solar cells the aim is the conversion of energy from solar radiation to electrical energy. To
demonstrate the physical principle of solar cells we use the pn junction (fig. 1.1) which is
realized in commercial silicone based solar cells. It consists of two adjoint semiconductors, one
of them being p-type and the other one being n-type. A p-type semiconductor has an access
of holes (which are missing electrons), an n-type semiconductor has an access of electrons.
Both types can be produced by doping, which refers to replacing a small amount of atoms of
the semiconductor base material with dopant atoms which have more (n-type) or less valence
electrons (p-type) than the atoms they replace. For silicone phosphorus (n-type) and boron
(p-type) are typically used for doping. The energy of the electron bound to the dopant in
n-type doping is only slightly smaller than the lower edge of the conduction band (fig. 1.2).
The n-type dopants therefore donate their electrons easily to the conduction band. The energy
of an electron of the dopant in p-type doping is only slightly greater than the upper edge of
the valence band. Therefore it accepts an electron easily from the valence band.

Where n- and p-type semiconductors are joined the electrons and holes recombine leaving
behind two ionic zones. Both zones together are called depletion region (fig. 1.1) because we
find neither electron nor holes in this region. In the n-type zone of the depletion region the
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Introduction

remaining ionic charge is positive and in the p-type zone it is negative. This gives rise to an
electric field pointing from the n-type to the p-type semiconductor. If light with at least the
band gap energy penetrates the depletion region the photon is absorbed and an electron hole
pair is formed. The electric field accelerates electron and hole in opposite directions towards
the electrodes. Electrons accumulate in the n-type semiconductor and holes in the p-type
semiconductor, giving rise to a potential difference. If both electrodes are connected through
a consumer an electric current is observed, the electrons travel through the consumer to the
positive electrode to recombine with the holes. Thus electrical energy is generated.
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Figure 1.1: Schematic illustration of a pn junction used as a solar cell. Absorption of solar radiation
induces the electron hole pair formation in the pn junction, then the electron and hole are transported
to the negative and positive electrode, respectively generating a current which is used by the consumer.
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Figure 1.2: Schematic illustration of band diagram of a pn junction for the same semiconductor base
material, e.g. silicone with phosphorus (n-type) and boron (p-type) doping. Doping shifts the valence
and conduction bands as indicated by the orange arrows.
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The electric field in the depletion region makes it less likely that the electron and holes
recombine. It is not the only driving force for the charge carriers though, there is also a
diffusion gradient in the opposite direction. That is due to the lack of holes on the n-type side
and the lack of electrons in the p-type side. The reason why electrons only reach the negative
electrode is that the p-type material outside the depletion region acts as a membrane which
can only be penetrated by holes because electrons immediately recombine with the access of
holes. Also holes can only reach the positive electrode because the n-type material outside
the depletion regions acts as a membrane which only allows for the conduction of electrons as
holes immediately recombine.

Important parameters to characterize solar cells are the open circuit potential VOC, short
circuit current (ISC), fill factor (FF) and the conversion efficiency η. [4] VOC is the potential
difference of the two electrodes under illumination, it is proportional to the band gap. ISC is
the maximum current measured under illumination if the two electrodes are short circuited.
To remove the dependence of the solar cell area, usually the short-circuit current density
(JSC in mA

cm2 ) is listed rather than the short-circuit current. The fill factor is the quotient of
the experimentally measured maximum power of the cell under illumination Pmax and the
theoretical maximum power given by ISC·VOC:

FF = Pmax
VOC · ISC

= Vmax · Imax
VOC · ISC

. (1.1)

The conversion efficiency η is the fraction of solar radiation power incident on the unit area
Pin recovered by the solar cell:

η = Pmax
Pin

= Vmax · Imax
Pin

. (1.2)

1.1.2 Shockley-Queisser-limit

The upper limit of the conversion efficiency of solar cells was predicted in 1961 by Shockley and
Queisser. [5] Initially the paper was not recognized by their peers but their paper has evolved
to become one of the most cited paper in the field of solar cells. It is still considered valid for
conventional pn junctions like Si based solar cells. Nevertheless the Shockley-Queisser-limit
has been beaten in 2013 using an organic material where one photon induces two instead of
one electron hole pairs by Singlet-Exciton-Fission. [6]

Shockley and Queisser took a thermodynamical approach, applying the principle of detailed
balance to solar cells. The general idea is to calculate the absorption flux and the flux emitted
from the solar cell. The difference between the two fluxes (multiplied by the charge) is the
maximum current from the solar cell. The sun and the solar cell itself are regarded as black
bodies at different temperatures, the absorption of all photons with more energy than the band

3
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gap of the semiconductor is assumed to be complete, furthermore the transport of electrons
and holes within the semiconductor is assumed to be lossless. The only considered mechanism
of energy loss from the cell is radiative recombination. The limit depends on multiple factors,
most importantly the band gap and the temperature of the solar cell material. At 300 K
the maximum efficiency is 30 % at 1.2 eV band gap (fig. 1.3). For comparison, commercial
crystalline single junction silicon solar cells reach about 20% efficiency, the record efficiency is
currently at 26 %. [7]

1 2 3
Band gap [eV]

E
ffi

ce
nc

y 
[%

]

10

20

30
Shockley Queisser limit (300K)

Figure 1.3: Efficiency of solar cells with radiative recombination only (as assumed for the Shockley-
Queisser-limit) as a function of their band gap. Adapted from literature. [8]

1.1.3 Thin-film solar cell technologies

The solar market is dominated by polycrystalline silicon cells. Their largest disadvantage is
that they are not efficient. The reason is that silicone has a low absorption coefficient for visible
light which makes a high absorber thicknesses necessary. One trend emerging are thin-film
solar cells, they work with absorber thicknesses of about 1-2 μm, while regular cells have
absorber thicknesses of 200 μm. To have effective thin-film cells the absorber must have a very
high absorption coefficient. Using thin-films has some advantages, the most obvious being that
much less material is used. From that follows a lower energy payback time, which is the time
it takes to recover the energy needed for the production of the solar cell itself. By now the
module prices of thin-film cells have become comparable to polycrystalline silicon cells for
some technologies despite the much lower production volume. Another advantage of thin-films
as absorbers is that they can be extended to flexible substrates, which enables completely
new applications. It is expected that in the long term, thin-film photovoltaic technology will
surpass crystalline technologies in the mass market. However, low-cost manufacturing and
rising efficiencies of crystalline silicon technologies led to a declining demand for thin-film
technologies in the past five years. [9]
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In the following we will briefly introduce the commercially established thin-film solar cell
technologies. The first and oldest technology is amorphous silicon, or α-Si. The first cell was
built in 1976 by Carlson and Wronski. [1] They used hydrogenated α-Si, in the following referred
to as α-Si:H. The hydrogenation passivates dangling bonds which otherwise lead to unwanted
recombination reactions. α-Si:H is transparent up to 1.7 eV and starts to be highly absorptive
at 2 eV. The direct optical band gap is 1.75 eV. The first working α-Si:H cell (fig. 1.14) was
coated on a glass substrate. The first layer is transparent and conducting indium tin oxide
serving as the positive front contact. The pn junction of a crystalline Si solar cell is extended to
a pin junction, where between p and n region an intrinsic region is placed. As in crystal silicon
the n layer is doped with phosphorous and the p layer is doped with boron. The intrinsic
region which is thicker than the other two is only very slightly doped with boron. The intrinsic
region is flooded with charge carriers from the p and n region where they recombine, leaving
behind a much larger depletion region than in the pn junction, described above. Due to the
larger depletion region the separation of the charge carriers is improved in comparison to a pn
junction. At the back of the cell another layer of indium tin oxide and the silver back contact
follow. The first α-Si:H cell achieved an efficiency of 2.4 %. Many technical advances like using
multi junctions, tuning the band gap by incorporating germanium and incorporating a metal
reflector have lead to a record efficiency of 14.0 % in 2016. [10]

+

-

consum
er

Glass

indium tin oxide

p-doped α-Si: H

i-doped α-Si: H

n-doped α-Si: H
indium tin oxide
Ag rear contact

sun
light

<300 nm

Figure 1.4: Schematic drawing of first α-Si solar (p-i-n) cell as built in 1976 by Carlson and Wronski. [1],
drawing adapted from literature. [9]

The commercially most successful thin-film solar cell material at the moment is CdTe. CdTe is
a semiconductor with a direct band gap of 1.44 eV. It adopts a cubic crystal structure with
tetrahedral coordination for all atoms (fig. 1.5). In the CdTe solar cell (fig. 1.6) it is used as
p-doped absorber layer in a pn CdTe-CdS hetero junction. The pn junction is coated onto
glass with a conducting transparent tin oxide layer on top, followed by a metal (e.g. Mo) rear
contact.

CdTe cells can reach high efficiencies beyond 20 %, with a current world record of 22.4 %. [7]

The high efficiency and the simple cell design enable cells as cost effective or even better than
crystal silicone. The challenges with CdTe technology are a shorter life time than Si based cells,
furthermore the toxicity of Cd is concerning and it is unclear if there is enough Te available to
replace Si cells in the mass market.
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Figure 1.5: CdTe with its cubic crystal struc-
ture (SG: F 4̄3m) with indication of bonds be-
tween cations and anions. Green: Cd, orange:
Te.
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Figure 1.6: Schematic drawing of CdTe solar
cell. Adapted from literature. [11]

Copper indium gallium selenide (CIGS) solar cells have a direct optical band gap of 1 to
1.7 eV. The absorber material has varying compositions, it can be constructed from a solution
series of CuInSe2 where Indium is partly replaced with Gallium: CuIn1–xGaxSe2. The absorber
material has a chalcopyrite-type structure (SG: I 4̄2d, fig. 1.7). The band gap is tuned by
varying x. For x equals 0, the band gap of the material is 1.0 eV and for x equals 1, it is
1.7 eV. The absorber material is used in its p-doped variant, forming a pn heterojunction with
n-type CdS. The pn junction is deposited on top of a Mo rear contact on a glass substrate
(fig. 1.8). Mo films have been widely adopted as back contacts for CIGS solar cells because
they are stable at high processing temperatures and resistant to alloying with Cu, also they
exhibit excellent adhesion between the soda lime glass substrates and CIGS absorbers and
they present a low-resistance contact to the CIGS absorber. [12] On top an intrinsic ZnO layer
followed by the transparent conducting front contact made of n-doped ZnO is added.

CIGS cells reach high efficiencies at a relatively low cost. The lab scale record is 23.3 %. The
main problems of this technology are that In and Ga are scarce elements and it is questionable
if there is enough supply to replace silicone cells in the mass market.
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Figure 1.7: CuInSe2 with its tetragonal crys-
tal structure (SG: I 4̄2d) with indication of
bonds between cations and anions. Copper:
Cu, light purple: In, light green: Se.
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Figure 1.8: Schematic drawing of CIGS solar
cell. Adapted from literature. [9]

1.2 Kesterite-type semiconductor thin-film solar cells

In 1997 [13] a different chalcopyrite-based semiconductor material was tested for solar absorbers
in an effort to overcome the shortcomings of CIGS and CdTe solar cells, namely the scarcity
of In and Ga and the toxicity of Cd and Se. The material is called kesterite named after a
mineral with the ideal sum formula Cu2ZnSnS4 (CZTS). The choice was inspired by CIGS
absorbers, if we replace one half of the In in CuInSe2 (fig. 1.7) with Zn and the other half
with Sn, we end up with the kesterite-type structure (fig. 1.9). [14] It has an almost optimal
bandgap (Eg=1.5 eV, measured optical band gap [15]) and a high absorption coefficient in the
visible energy range which is beneficial for the use as an absorber material and it consists
of earth-abundant, low-cost, and relatively environmentally friendly elements. [15,16] Besides
the CZTS sulfide, also the selenide Cu2ZnSnSe4 (CZTSe, Eg=1.0 eV) and the solution series
Cu2ZnSnS4–xSex (CZTSSe) adopt a kesterite-type structure and therefore also belong to the
family of kesterite materials. [17] The band gap can be tuned between 1.5 eV (x=0) and 1.0 eV
(x=4) manipulating the S/Se ratio in the solution series CZTSSe. [18] The cell design itself
(fig. 1.10) has been adopted from the CIGS solar cell. Typically it consists of an Mo rear contact
coated on soda lime glass, followed by the p-type CZTS(e) absorber, n-doped CdS, and a ZnO
window. MgF2 may be added as an anti reflection coating. CZTS(e) shows natural p-type
conductivity due to intrinsic doping by Cu vacancies and CuZn anti sites. [15] The Mo back
contact has been adopted from CIGS cells. The CZTS(e)/Mo interface is thermodynamically
unstable, [19] the resulting formation of secondary phases (mostly MoS(e)2) at the back contact
reduces the efficiency. [20]

The first cell only had an efficiency of 0.66 % [13]. In the following 20 years of research numerous
advances have been made, the current record efficiency is 12.6 % achieved in 2014. [21] One
very important insight is that all high performing kesterites are off-stoichiometric. Therefore
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Figure 1.9: Cu2ZnSnS4 with its tetragonal
crystal structure (SG: I 4̄) with indication of
bonds between cations and anions. Copper: Cu,
pink: Zn, grey: Sn, yellow: S.
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Figure 1.10: Schematic drawing of CZTS so-
lar cell. Adapted from literature. [4]
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Lafond et al. [22] and later Gurieva et al. [23] classified different off-stoichiometric CZTS(e)
compositions each of them corresponding to different cationic balances, combining all possible
poor and rich regions for each cation. They labeled the different compositions with letters
from A to M. Dimitrievska et al. systematically tested 200 off-stoichiometric compositions
with regard to their efficiency in a solar cell (fig. 1.11). [24] It strikes that the high performing
materials are close to the A-line which is Cu-poor, Zn-rich, Sn-stoichometric.

The reason why Zn rich conditions are necessary is thought to be found in the reaction
mechanism. The direct reaction of metals with the chalcogenide to form kesterite is almost
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impossible, as at least the ZnS(e) phase is more stable than the quaternary phase, and it is
therefore expected that simpler binary and/or ternary chalcogenide species are formed first.
Depending on the reaction conditions the chalcogenide species react via one of the following
reactions to form kesterite: [17]

Cu2S(e) + ZnS(e) + SnS(e) + 1
2
S(e)2 ←−→ Cu2ZnSnS(e)4 (1.3)

Cu2SnS(e)3 + ZnS(e)←−→ Cu2ZnSnS(e)4 . (1.4)

Regardless of the mechanism, ZnS(e) is formed first. If initially the composition is Zn-
stoichometric this leads to Zn-poor conditions for the kesterite forming reaction (eq. 1.3
or 1.4). Under those conditions detrimental Zn point defects are formed. [24] This can be
avoided initially using Zn rich conditions. Cu-poor conditions are favored because they lead
to the required p-type conductivity, which is promoted by VCu vacancies. All defects form-
ing under Cu-poor conditions are shallow defects which should have a limited impact on
recombination processes. [25]

Many approaches have been tested to fabricate kesterite solar cell devices: sputtering (ηmax=
8.1 % [26]), evaporation (ηmax= 11.6 % [27]), solution-based approach (ηmax= 12.6 % [21]),
electro-deposition (ηmax= 8.2 % [28]) and metallurgy (ηmax= 5.9 % [29]). Regardless of the
preparation method the highest-performing kesterite absorber materials are post reaction
annealed in H2S(e) atmosphere. Typical annealing temperatures are 500◦C to 600◦C with
annealing times from 5 minutes to 3h. [20] To ensure the stabilization of the thermodynamically
favored crystal structures with as little defects as possible samples are in some cases cooled
at a controlled slow rate, e.g. 60K/h. [30] The annealing leads to a significant improvement in
grain size and morphology of the CZTS(e) thin-film. [31] The H2S(e) atmosphere suppresses
decomposition of the kesterite absorber at the kesterite absorber/Mo interface. [12] The supply
of S/Se ensures that Mo reacts with gaseous S/Se and not the CZTSSe absorber to form
MoSe2, minimizing the formation of undesirable secondary phases within the absorber. [19]

The CZTS top efficiency cell (η= 12.6 % [21]) has a band gap of 1.13 eV. For this band gap
the Shockley-Queisser limits for VOC, JSC, FF and η are 820mV, 43.4 mA

cm2 , 0.871 and 31 %,
respectively. The CZTSSe record cell only achieved a VOC of 513.4 mV, a JSC of 35.2 mA

cm2

and a FF of 0.698, corresponding to 62.6 %, 81.1 % and 80.1 % of the Shockley-Queisser limit
values, respectively. [21] A high performing (η= 20 %) CIGS cell with nearly the same band gap
(1.14 eV) reaches a VOC of 730 mV, a JSC of 35.7 mA

cm2 and a FF of 0.777. [32] This comparison
shows the biggest issue with CZTS(e) solar cells, a large deficit in VOC, and also a smaller
deficit in FF while JSC is comparable to the high performing CIGS cell. A deficit in VOC
means that a significant amount of charge carriers recombine before reaching the electrodes.
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The reasons for the VOC deficit are still not fully understood. I will present the four most
relevant areas which are discussed in the kesterite research community to improve VOC.

Firstly, it is suspected that interface recombination at the CdS/CZTS(e) interface contributes
to the VOC deficit. The band alignment at the interface is important, the difference in energy
between the CdS conduction band and the p-type absorber conduction band is called conduction
band offset (CBO, fig. 1.13). For CIGS the optimal CBO is between 0 and 0.4 eV. Values below
0 lead to increased interface recombination via interface defects while values above 0.4 eV lead
to a barrier which is increasingly harder to pass for the electrons, significantly reducing the
efficiency. There are contradictory results regarding the CBO in CZTSSe solar cells. Haight et
al. noted a CBO of about 0.5 eV at the CZTSSe/CdS interface of solution processed CZTSSe
for all values of [S]

[S+Se] they tested. [33] Bär et al. measured a CBO of -0.33 eV for co-evaporated
CZTS. [34] The different results may result from the different composition of materials at
the CZTSSe surface, because of different sample and surface preparation methods, which
modify the interface band structure. [12] Further testing and optimization is necessary to ensure
minimal interface recombination. From an environmental point of view it is desirable to replace
the CdS buffer layer with a non toxic material like ZnS [19] or In2S3. [35]
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Figure 1.13: Schematic illustration of ideal band diagram of a CZTSSe solar cell. The conduction
band offset (CBO) is highlighted in orange.

Secondly, part of the VOC deficit is expected to be due to bulk recombinations. One cause
for those are bulk inhomogeneities caused by secondary phases. It is challenging to control
the chemical composition of kesterite materials within the copper-poor and zinc-rich chemical
potential window while avoiding the formation of secondary phases, because phase pure
kesterite has a narrow phase stability region. [12] E.g. close to the A-line the formation of
ZnS(e) is likely (fig. 1.12). Another cause for bulk recombinations are deep defects. In CZTSSe
those are SnZn and ZnSn anti sites, Sn vacancies and possibly reduced Sn species. [17]
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Thirdly, one of the principle causes of the VOC deficit is thought to be band tailing. Band
tail states are localized electronic states existing just below the conduction band or right
above the valence band. [36] Consequently if band tailing states are present the band gap gets
reduced. Band tailing has been noted in even the highest performing devices. In comparison
to CIGS absorbers CZTSSe suffers from significantly more band tailing. [37] Band tailing is
typically observed for disordered structures. The kesterite structure can easily be disordered
because CuZn ZnCu anti sites have a low energy of formation. [38] They form in the a-b planes
Cu+ and Zn2+ occupy (fig. 1.9). The exchange is promoted by the similar ionic radii of Cu+

(r=0.60 Å [39]) and Zn2+ (r=0.60 Å [39]). PBE calculations show that clustering of [CuZn+ZnCu]
pairs is favorable and that their density is sufficient to cause a significant reduction of the
effective band gap. Disorder will introduce spatial band gap fluctuations in the range of several
100 meV. [40,41] Another effect which is discussed as the cause of band tailing is fluctuations
in the electrostatic potential also caused by the Cu-Zn disorder. [38] Either way controlling
and avoiding disorder in CZTSSe devices is one of the major challenges towards more efficient
kesterite solar cells.

Fourthly, the Mo/CZTS(e) interface at the back contact needs to be improved. CZTS(e) reacts
with Mo in a thermodynamically favorable reaction to form MoS(e)2, Cu2S(e), ZnS(e), and
SnS(e). [19] Those secondary phases increase the resistance of the back contact and reduce the
efficiency. An alternative back contact material that can withstand the full device processing
and maintain low series resistance needs to be engineered. [9]

For CTZSSe to become a commercially relevant thin-film photovoltaic material it needs to
clearly outperform α-Si cells and become similarly efficient as CIGS and CdTe cells. If we com-
pare the historic development of efficiencies of CTZSe to the commercial thin-film technologies
(fig. 1.14) it strikes that CZTSe research started 20 years after the other technologies. The
initial slope in the first 20 years for CZTSe is comparable to the other three technologies. If
we assume that the future developments in CZTSe will be comparable to the developments for
CIGS and CdTe technology, we can expect CZTS cells with +20 % efficiency in 20-40 years.
The time may also be reduced because of the larger knowledge and better simulation tools in
comparison to the past when CIGS and CdTe technology were developed.

The proposed strategies to advance towards more efficient CZTS(e) solar cells are doping and
alloying with isoelectric elements and with alkali elements. [17] The primary goal is to reduce
the VOC deficit. Cu can be partly replaced by Ag (r=1.00 Å [39]) to reduce the band tailing
associated to Cu-Zn disorder. Zn can be replaced by Cd, Mn, Mg, Fe. This is also expected to
reduce the tendency to disorder but also improve bulk homogeneity as the particularly stable
secondary phase ZnS can not be formed. Furthermore, the deep ZnSn defect can be avoided.
Similarly Sn can be replaced by Ge to avoid the SnZn deep defect. Another important point is
to improve the synthesis process to ensure phase pure KS with large grains. For that purpose
Li, Na and K doping are tested with good results, especially for Li. [42]
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Figure 1.14: Development of the efficiencies of α-Si: H, CdTe, CIGS and CZTSe solar cells from 1970
until now. Plot adapted from literature. [9,17]

1.3 Scope of this work

In this work we probe the effect of compressive stress to CZTS and certain cation substituted
variants. Compressive stress is of importance for the use as thin-film solar cells especially if
their synthesis involves sputtering. The ion bombardment in the sputtering deposition leads to
compressive stress. [43,44] In CZTSSe solar cells either the absorber material itself is sputtered [45]

or the buffer layer CdS, the transparent conducting oxide ZnO and the antireflection coating
MgF2 layer on top are sputtered. [21] Besides Cu2ZnSnS4, we chose to study Ag2ZnSnS4,
Ag2CdSnS4, Cu2MnSnS4 and Cu2FeSnS4 with regard to their high-pressure behavior. All
those substitutions are discussed in the context of improving the VOC deficit of CTZSSe.
Furthermore, we study the stability of disordered structures for Ag2ZnSnS4 and Ag2CdSnS4.
Finally we investigate the solution series Cu2Zn1–xCdxSnS4. Cu2ZnSnS4 has a KS structure
while Cu2CdSnS4 has a different crystal structure. We aim to determine the Cd substitution
fraction xCd where the structure flips because this presents the maximum xCd substitution
fraction for doping of CTZS without losing the KS structure.

The high-pressure study on Cu2ZnSnS4 was carried in collaboration with AG Lerch (TU
Berlin) who synthesized the samples and Dr. Ilias Efthymiopoulos (GeoForschungsZentrum
Potsdam, Universität Greifswald) who supervised the high-pressure X-ray diffraction (XRD)
experiments. Our collaborators at AG Lerch conducted XRD experiments to analyze the
phase transition in Cu2Zn1–xCdxSnS4. The high-pressure studies on Ag2ZnSnS4, Ag2CdSnS4,
Cu2MnSnS4 and Cu2FeSnS4 were carried out purely theoretically.

To address the research questions above we carried out first principle calculations at the
PBE [46] level to determine equilibrium structures of KS, certain substituted variants and the
solution series Cu2Zn1–xCdxSnS4. In the high-pressure projects we furthermore calculated PBE
enthalpies as a function of pressure. Additionally we calculated PBE enthalpies for potential
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high-pressure phases which enables us to predict high-pressure phase transitions of the materials.
We also analyzed the evolution of the electronic structure during the high-pressure phase
transition using the HSE06 [47] hybrid functional.
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2 Theoretical background

2.1 Electronic structure

2.1.1 Hartree-Fock (HF) theory

In 1926 Schrödinger introduced the idea that particles can be fully described by a wave function
which is the foundation of the field of quantum mechanics. He introduced the time-dependent
Schrödinger equation: [48]

ĤΦj(t) = īh ∂

∂tΦj(t) . (2.1)

It contains the Hamilton operator Ĥ, the time-dependent wave function Φj(t) of the state j,
the time t, the imaginary unit i and the reduced Planck constant h̄. The calculation of many
material properties like (crystal) structures or excitation energies (band gaps) do not require a
time-dependent treatment. To describe those properties the stationary Schrödinger equation,
written in atomic units using the electronic structure Hamiltonian, suffices:

ĤΨj = (T̂e + T̂n + V̂en + V̂ee + V̂nn)Ψj (2.2)

=

–
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2∇
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i –
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+
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M∑
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RAB

Ψj (2.3)

= EjΨj . (2.4)

Ψj denotes the time-independent wave function. The electronic structure Hamiltonian Ĥ can
be separated (eq. 2.2) into kinetic energies T̂ of electrons (e) and nuclei (n) and potential
energy V̂ of all possible Coulomb interactions between nuclei and electrons (en, ee, NN). In
eq. 2.3 i and j are electron indices and A and B the indices for the nuclei with masses mA
and mB and charges ZA and ZB. The variables r and R refer to particle distances. ∇2 is the
Laplacian of a particle. The eigenvalue of the equation is the energy Ej of the state.

Analytically solving the stationary Schrödinger equation is only possible for one particle or
two-particle systems that can be described in terms of a reduced mass (e.g. H and He+). To
simplify the problem the Born-Oppenheimer approximation was introduced. [49] The nuclear
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and electronic degrees of freedom are separated which is a reasonable approximation because the
wave function describing the movement of electrons changes instantaneously upon a change in
the external nuclear potential (i.e. nuclear movement). In the Born-Oppenheimer approximation
the nuclei are considered to be static and only the electrons are described by a wave function
Ψelec(~r; ~R) which contains the electronic coordinates ~r explicitly and parametrically depends
on the position of the nuclei ~R. The corresponding electronic Schrödinger equation can be
written as follows:

ĤelecΨelec,j = (T̂e + V̂eN + V̂ee)Ψelec,j (2.5)

= Eelec,jΨelec,j . (2.6)

The aim of the Hartree-Fock formalism is to solve the electronic Schrödinger equation. Thereby
the approximation which is used for the wave function Ψ (= Ψelec,j) is a Slater determinant [50]

(SD) of one particle functions χi(~x) for each electron:

Ψ(~x1,~x2, ...,~xN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣

χ1(~x1) χ2(~x1) · · · χN(~x1)
χ1(~x2) χ2(~x2) · · · χN(~x2)

...
... . . . ...

χ1(~xN) χ2(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣∣∣
= |Ψ〉 . (2.7)

N denotes the number of electrons, the one particle functions are spin orbitals. They are the
product of a spatial orbital ψ and a spin function δ(s) (δ = α, β). Consequently the coordinate
~xi of the spin orbitals is a combined space-spin coordinate. The slater determinant obeys the
Pauli principle. [51] For fermions it states that the wave function has to be antisymmetric upon
the exchange of two electrons.

To find the best SD to describe a quantum system, the variational principle is applied. Thereby
a trial wave function Φ̃(ck) which depends on certain parameters is introduced. For a set of
parameters {ck}, the energy of the trial wave function is minimized:

∂

∂ck
〈Φ̃|Ĥ|Φ̃〉 = ∂

∂ck
Ẽ = 0 . (2.8)

The energy of this trial wave function is an upper limit to the exact ground state energy
Ẽ ≥ Eexact. In the following we will show that applying the Roothaan-Hall approach [52,53]

enables calculation of the HF energy in a systematic fashion. Finding the best wave function
for a quantum system thereby becomes a numerical minimization problem where expansion
coefficients of the atomic basis orbitals are optimized.
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Applying the variational principle to the stationary Schrödinger equation (2.2) using an SD
ansatz for the wave function yields the Fock equation. [54] It is a time-independent eigenvalue
(εa) equation using the spin orbitals χa(~xi) as eigenfunctions:

f̂(~xi)χa(~xi) =

–12∇2
i –

M∑
A=1

ZA
riA

+ v̂HF(~xi)

 χa(~xi) = εaχa(~xi) . (2.9)

The Fock operator f̂(~xi) is acting on electron i. The first and second terms of the operator
correspond to the kinetic energy of electron i and its attractive Coulomb interactions with all
M nuclei with charge ZA. The variable riA denotes the distance of the electron i to a nucleus.
The term v̂HF(~xi) is the Hartree-Fock potential which contains the average interaction of
electron i with all other electrons and is defined as follows:

v̂HF(~xi)χa(~xi) =

 N∑
b
Ĵb(~xi) – K̂b(~xi)

 χa(~xi) . (2.10)

Ĵb is the Coulomb operator and K̂b is the exchange operator. They are defined as follows:

Ĵb(~xi)χa(~xi) =
∫ (
χ
∗
b(~xj)

1
rij
χb(~xj)

)
d~xjχa(~xi) (2.11)

K̂b(~xi)χa(~xi) =
∫ (
χ
∗
b(~xj)

1
rij
χa(~xj)

)
d~xjχb(~xi) . (2.12)

The Coulomb operator Ĵb(~xi) operates on electron i in spin orbital χa, and its eigenvalue
corresponds to the classical Coulomb repulsion with electron j in spin orbital χb. The exchange
operator has no classical analogy, it is a consequence of the anti-symmetric many-body wave
function. The exchange operator only acts on electrons i and j with parallel spin; for anti-
parallel spin it vanishes. Unphysical self interaction, defined as the interaction of an electron
with itself (χb = χa in eq. 2.11 and 2.12), is avoided completely in HF, since the Coulomb and
exchange integrals for self interactions cancel each other out (Ĵa(~xi)χa(~xi) = K̂a(~xi)χa(~xi)).
Summing the orbital energies and the expectation value of v̂HF for each spin orbital the total
Hartree-Fock energy is calculated:

EHF =
N∑
a

(
εa –

1
2 〈χ

∗
a|v̂HF|χa〉

)
. (2.13)

In the Roothaan-Hall approach [52,53] the spatial part of the WF is expanded in a set of basis
functions. They chose to use the atomic orbitals (AOs) related to analytically solving the
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Schrödinger equation for the hydrogen atom. Then the ansatz for all spatial orbitals ψi is a
linear combination of K atom-centered hydrogen-like atomic orbital functions φμ(~r):

ψi =
K∑
μ

Cμiφμ(~r) . (2.14)

Each spatial orbital has an expansion coefficient Cμi which determines how much the AO
contributes to the spatial orbital with index i. Those coefficients are the parameters that are
varied during an optimization procedure. Inserting the expended ψi into the Fock equation
(eq. 2.9) we end up with the following matrix eigenvalue equation:

FC = εSC . (2.15)

The K×K matrix C contains the AO coefficients. F denotes the Fock matrix for which the
elements are defined as as:

F = Fμν =
∫
φ
∗
μ(~r1)f̂(~r1)φν(~r1)d~r1 . (2.16)

The matrix S is the overlap matrix, its matrix elements are defined as:

S = Sμν =
∫
φ
∗
μ(~r1)φν(~r1)d~r1 . (2.17)

Finally, ε is a diagonal matrix containing the orbital eigenvalues.

The HF equations are iteratively solved within the self consistent field (SCF) approach shown
above. [55] That is necessary because eq. 2.15 is non-linear as F depends on C. The calculation
is started with an initial guess for the coefficient matrix C0. Next the Roothaan-Hall equation
(eq. 2.15) is solved which gives rise to a new coefficient matrix C1. This matrix is again plugged
into the Roothaan-Hall equation. This process is repeated until the difference in the total
energy between Cn–1 and Cn is below a user defined threshold, the convergence criterion.

2.1.2 Density functional theory (DFT)

The basic concept of DFT is to determine the energy of a system from its electron density. In
particular the total energy of a system is a function of the electron density, which is a function
itself of ~r, the spatial coordinates. This was shown first by Kohn and Hohenberg. [56] This is a
fundamental difference to other wave function based methods such as the Hartree-Fock method
in which the Schrödinger equation has to be solved to obtain the energy of the system. The
latter involves the computation of wave functions which depend on 3N spatial coordinates
and N spin coordinates for an N electron system system. On the other hand the density used
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in DFT only depends on one spatial coordinate and can be computed with less effort. DFT
methods present the most cost effective approach for many applications.

The basis for DFT methods is provided by the two Hohenberg-Kohn theorems. [56] The first
one is the existence theorem. It states that the density associated with a non-degenerated
ground state wave function uniquely determines the potential and consequently all properties
of the system. [55] The second theorem states that the true ground state electron density ρexact
yields the lowest possible energy E0. The energy Ẽ associated with a suitable candidate density
ρ̃ for a given system is always larger or equal E0:

Ẽ(ρ̃) ≥ E0(ρexact) . (2.18)

The underlying idea of the Kohn-Sham method [57] is to construct a fictitious system of non-
interacting electrons that have for their overall ground-state density the same density as the
real system of interest where electrons do interact. The total energy of the system E[ρ(~r)] can
be separated into the following parts:

E[ρ(~r)] = Tni[ρ(~r)] + Vne[ρ(~r)] + Vee,Coulomb[ρ(~r)] + EXC[ρ(~r)] . (2.19)

Tni[ρ(~r)] represents the kinetic energy of the non-interacting system, Vne[ρ(~r)] represents the
Coulomb interaction between nuclei electrons and Vee,Coulomb[ρ(~r)] represents the classical
electron repulsion. The term EXC[ρ(~r)] accounts for all energy contributions from phenomena
neglected by the simplified approach. This includes the non-classical electron interaction and
additionally a kinetic energy correction because the kinetic energy of the real system is not
accounted correctly. Determining EXC is challenging as an analytical solution is impossible for
the general case of an inhomogeneous electron gas. Furthermore the EXC-functionals can not
be improved systematically. In practice a wide range of EXC-functionals is available some of
which will be presented in the end of this section.

Slater determinant wave functions are exact eigenfunctions for non-interacting systems. The
electron density resulting from N electrons can be expressed as the sum of the single electron
densities:

ρ =
N∑
i=1

|ψi|2 (2.20)

ψi represents an orbital for an electron i. Orbitals that minimize Eq. (2.19) satisfy the following
eigenvalue equations

ĥKS
i ψi = εiψi (2.21)
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where the Kohn-Sham (KS) one-electron operator ĥKS
i is defined as

ĥKS
i = –12∇

2
i –

M∑
A=1

Zk
|~ri –~rk|

+
∫
ρ(~r′)
|~ri –~r′|

d~r′ +VXC (2.22)

and

VXC = δEXC
δρ

. (2.23)

∇2
i represents the Laplace operator for an electron i at the position ~ri, Zk represents the

nuclei charge of a nucleus k at the position ~rk and VXC represents a functional derivative. To
determine the Kohn-Sham orbitals they are expressed within a set of basis functions {μ}. To
calculate the individual orbital coefficients a secular equation with the matrix elements

Fαβ =
〈
μα

∣∣∣ hKS
i
∣∣∣ μβ〉 (2.24)

is solved. Obtaining the energy for a given structure is an iterative process within DFT
calculations. As for the Hartree-Fock method a self-consistent field approach is used, but
instead of the wave function the density (matrix) is guessed and subsequently updated until
convergence (fig. 2.1). Please note that the sum of the eigenvalues cannot be simply related
with the total energy because the KS system is non-interacting. The neglected interactions
have to be included in the final energy using the exchange integral and the XC energy and
potential (highlighted in red in fig. 2.1).
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Guessing the initial density matrix P(0)

Constructing and solving the Kohn-Sham 
secular equations

Construct new density from occupied Kohn-
Sham molecular orbitals

Is the new density matrix P(nsufficiently 
similar to old P(n–density matrix?

Yes

No

(0)

(n)

(n-1)

Calculate total energy:

Figure 2.1: SCF algorithm used in DFT calculations.

The quality of the DFT simulations largely depends on the XC functional. It is separated into
the correlation and exchange parts which are developed separately:

EXC[ρ] = EX[ρ] + EC[ρ] . (2.25)

Among the first approximations to the XC functional was the local density (LDA) approach.
Thereby the exchange-correlation functional of the inhomogeneous electron gas is replaced by
the exchange-correlation functional of the homogeneous electron gas:

ELDA
XC [ρ] =

∫
ρ(~r)εXC[ρ(~r)]d~r . (2.26)

For the homogeneous electron gas the exchange part can be solved analytically while the corre-
lation part is only solvable for high- and low-density limits. [58] The model of the homogeneous
electron gas considers a homogeneous positive background charge, while in molecular systems
the positive charges are localized at the nuclei. Consequently the error in the LDA functional
is quite large. The model can be improved by accounting for the inhomogeneity of the electron
gas by also including the gradient of the electron density in the XC functional:
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EGGA
XC [ρ] =

∫
εXC[ρ,∇ρ]d~r . (2.27)

Functionals of this class are called generalized gradient approximation (GGA) functionals. For
εXC there is no analytical solution. Consequently the number of GGA functionals with different
approaches is relatively large both for the exchange [46,59,60] and correlation [46,60,61,62] part.
In the different implementations various functional forms how the gradient is introduced are
common. The Perdew-Burke-Ernzerhof exchange and correlation functionals used together
give rise to the PBE functional [46] which is a popular choice for periodic systems such as the
semiconductors simulated in this work or metals.

Experience indicates that GGA functionals have certain systematic errors. For instance, they
tend to underestimate barrier heights of chemical reactions. Hartree-Fock theory, on the other
hand, tends to overestimate barrier heights. [55] Similarly band gaps tend to be underestimated
by GGA functionals and overestimated by HF. In an effort to tune DFT functionals towards
experimental chemical results the class of hybrid functionals was created. For those functionals
the exact Hartree-Fock exchange (calculated for Kohn-Sham orbitals) is mixed with a certain
weight α with the exchange of a GGA or the LDA functional:

Ehybrid
X = αEexact

X + (1 – α)EDFT
X . (2.28)

The coefficient α is found by fitting to experimental data, for the functional PBE0 it is 25 %. [63]

Same as the HF method any KS DFT formally scales with N4 (N: number of atoms) due to
the four center integration (eq. 2.11). Still the computational demand of hybrid DFT is larger
than for LDA and GGA DFT. The reason is that the calculation of exact exchange demands
an extra step throughout the SCF procedure to calculate the non-local exchange integrals
(see eq. 2.12). [55] In periodic calculations hybrid DFT is even more expensive than LDA and
GGA DFT because the exchange acts non-locally. That has a big impact on computational
demand in an infinitely extended (idalized) periodic solid state system whereas the impact
for a molecular system is limited. To reduce the scaling for solids range-separated hybrid
functionals have been introduced. Thereby the exact exchange part is screened to only act
short ranging (SR). The long ranging (LR) interaction is described using a LDA or GGA DFT
method. In this work we used the Heyd, Scuseria and Ernzerhof (HSE) functional with the
following XC functional: [47]

EHSE0x
XC = 3

4E
PBE,SR
X (ω) + 1

4E
exact,SR
X (ω) + EPBE,LR

X (ω) + EPBE
C . (2.29)

ω denotes the HF screening parameter, which is set to 0.3 Å–1 for HSE03 and to 0.2 Å–1 for
HSE06. [47] For ω=0 the functional reduces to the PBE0 functional. We use HSE06 to calculate
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accurate band gaps, as PBE is known to underestimated band gaps by up to 100 % in extreme
cases. [64]

2.2 Periodic systems

The kesterite absorber in a thin-film solar cell is a crystal which contains a number of atoms
in the order of the Avogadro constant (6.02 × 1023 1

mol). To explicitly simulate all of them
quantum-chemically is impossible due to the required computational demand. To enable
computation the crystal symmetry of an ideal crystal is exploited. Real crystals exhibit defects
and grain boundaries and are finite. Still their properties can be estimated by considering
an idealized crystal which extends infinitely in all directions. The idealized crystal is fully
characterized by a small structure which contains (at least) all symmetry-inequivalent atoms
called unit cell. The smallest possible unit cell which contains all information about the periodic
system is called Wigner-Seitz cell. The lattice of the unit cell is characterized by the three
basis vectors ~a1, ~a2, ~a3 in real space. This structure is infinitely repeated through translational
symmetry along the basis vectors of the unit cell. So every real space lattice position ~R in the
crystal can be described as a linear combination of the three unit cell basis vectors: [65]

~R = n1~a1 + n2~a2 + n3~a3 , (2.30)

ni are the integer weights of the different basis vectors in real space. Reciprocal space is the
space in which the Fourier transform of a real space function (e.g. spatial wave function) is
represented. It is often useful to describe properties like the electron density of a periodic
crystal. A reciprocal lattice can be constructed, thereby the real space lattice vector ~R gets
transformed to the reciprocal space lattice vector ~K:

~K = m1~b1 +m2~b2 +m3~b3 , (2.31)

where mi are the integer weights of the reciprocal lattice vectors ~bi. The reciprocal lattice
vectors are defined as follows: [65]

~b1 = 2π · ~a2 × ~a3
~a1 · (~a2 × ~a3)

(2.32)

~b2 = 2π · ~a3 × ~a1
~a1 · (~a2 × ~a3)

(2.33)

~b3 = 2π · ~a1 × ~a2
~a1 · (~a2 × ~a3)

. (2.34)
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The absolute of each reciprocal lattice vector is the reciprocal of the corresponding real space
vector times 2π (stems from Fourier transform): |~bi| = 2π × |~ai|–1. A crystal orbital (a one
electron wave function defined by an SD) which describes a periodic potential, like in the unit
cell of the ideal crystal has to fulfill Bloch’s theorem: [66]

ψ(~r + ~R,~k) = ei~k·~Rψ(~r,~k) , (2.35)

which states that the wave function obeys the same translational symmetry as the unit cell.
The vector ~k corresponds to the crystal momentum in periodic systems. It is the solid state
equivalent to the wave vector ~k for free particle matter waves according to de Broglie. [67] The
vector ~k is proportional to the momentum of the particle (wave):

~p = h
2π

~k = h̄~k , (2.36)

where h (̄h) is the (reduced) Planck constant. Functions which fulfill Bloch’s theorem are called
Bloch orbitals. They can be expressed in terms of ~r (real space) or ~k (reciprocal or momentum
space). The equivalent to the Wigner-Seitz cell in k-space is called the first Brillouin zone
(BZ), it represents the smallest possible unit cell in k-space. The BZ for kesterite Cu2ZnSnS4
is shown in fig. 2.2 as an example.

b3

b1

b2

X
Γ

Z

P
N

Figure 2.2: Brillouin zone of the space group I 4̄ for the Cu2ZnSnS4 kesterite unit cell with special
high symmetry points highlighted in orange.

To carry out HF (or DFT) calculations for the idealized crystal the wave function (or electron
density) of one electron ψi(~k,~r) (in solids also called one band) is expressed as a linear
combination of K Bloch orbitals Φμ (~k,~r) (or their electron density):

ψi(~k,~r) =
K∑
μ

Cμi(~k)Φμ(~k,~r) . (2.37)
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With this ansatz the HF or DFT matrix equations are solved with the SCF approach to obtain
the optimal coefficients Cμi(~k):

F(~k)C(~k) = ε(~k)S(~k)C(~k) . (2.38)

The band eigenvalues depend on ~k which means that the HF or DFT calculations have to be
carried out at various k-points throughout the first BZ. To determine properties which do
not depend on the curvature of E(~k) along certain directions like structure relaxations, total
energy or density of states the Monkhorst-Pack scheme is used. [68] Thereby the first BZ is
sampled with equally spaced grid points along every reciprocal basis vector. The number of
grid points is increased until the property of interest converges. If the property of interest
depends on ~k like the band energy ε(~k), the ~k points are sampled along lines between high
symmetry points (e.g. Z-Γ-X-P-Γ-N in fig. 2.2) in the first BZ.

2.2.1 Band structures and density of states (DOS)

Each single electron wave function represents a different molecular orbital extending through
the whole solid. In molecular orbital (MO) theory the number of MOs equals the number of
involved atomic orbitals (AOs). In a molecular bond between two hydrogen atoms for example
we obtain two MOs, one binding and one anti-binding with a certain energy gap in between. In
an N atom long chain of H atoms (so a 1-dimensional solid) there are 2N MOs. For large N (like
the number of atoms in a real solid) the number of energy levels increases to a point that the
difference in energy between them becomes negligible and the states form a quasi continuous
energy band. Hence the name band structure was chosen for a plot of ε(~k). Exemplary the
band structure of CZTS is plotted on the left in fig. 2.5.

All band energies ε(~k) are plotted over ~k along certain high symmetry path in BZ to obtain
the band structure of a solid. Bands up to the so called Fermi energy EF are filled at 0K.

Filled bands below EF which arise from the valence electrons are referred to as valence bands
(VB). Bands above EF are called conduction band (CB). The gap in between them is called
band gap Eg. There are three different classes of solids which are labeled according their
conductivity: metallic conductor, semi-conductor and insulator (fig. 2.3). No band gap enables
conductivity because additional electrons can be transmitted through the unoccupied states
in the conductions band. If the band gap gets large, the CB becomes completely unavailable
resulting in insulating behavior.

The band gap itself can be direct or indirect (fig. 2.4). A direct band gap means that the
maximum of the VB is at the same ~k vector as the minimum of the CB. To excite an electron
only a photon with more than the band gap energy is needed. An indirect band gap means
that the maximum of the VB is not at the same ~k vector as the minimum of the CB, thus
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metal
semi-
conductor
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CB
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CB
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Figure 2.3: Schematic illustration of the band structures of metals, semi-conductors and solids. VB:
valence band, CB: conduction band.

additional momentum transfer is needed to excite an electron. Solar cells and also many
other opto-electrical devices are supposed to work using visible light, which carries nearly no
momentum due to a relatively high wavelength. Thus direct band gap materials are used in
opto-electrical devices.

E

EFermi
EG

CB

VB

E

EFermi EG

CB

VB

direct indirect

k k

Figure 2.4: Schematic illustration of a direct and indirect band gap Eg. VB: valence band, CB:
conduction band.
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The computation of the band structure can be demanding because a number of scans in the
BZ are necessary. Often the required information about the electronic structure (e.g. the band
gap) can be extracted from the so called density of states plot, which can be computed by
grid sampling of the BZ. The density of states is the number of different states at a particular
energy level which electrons can occupy. It is defined as follows: [65]

Di(E) =
1

VBZ

∫
BZ

d~kδ(E – Ei(~k)) . (2.39)

Di(E) denotes the density of states at a certain energy E of the ith band, VBZ refers to the
BZ volume, over which is integrated. The DOS is closely related to the band structure, as
can be seen in fig. 2.5 at the example of CTZS. The higher the density of bands in a certain
energy interval in the band structure the larger the peak of the total DOS. The DOS plot also
features projected DOS for each element, which shows the contribution to the total DOS for
each element separately.
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Figure 2.5: HSE06 Band structure and DOS for the Cu2ZnSnS4 kesterite structure.

2.2.2 Basis sets and pseudopotentials

The wave function or its density is expanded in basis sets for HF and DFT respectively. For
molecular systems atom centered basis sets are used, more specifically mostly Gaussian type
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orbital (GTO) basis sets. [55,69] They often provide more orbitals for the valence electrons than
for the core electrons (split valence) as opposed to the minimal amount (minimal basis set).
Naturally they perform well when describing localized electrons but they are not very efficient
when it comes to describing delocalized systems like the electron gas of a metal. If GTOs
are used in solid state calculations they suffer from numerical instabilities due to linearly
dependent basis functions at different atoms because the basis set is non-orthogonal. [70]

To simulate solids another type of basis functions is commonly used: plane wave (PW) basis
sets. [71] PW basis sets are not atom centered. Also PW basis function are orthogonal which
has computational advantages. In this work we exclusively used PW basis sets. Consequently
they will be discussed in more detail here. Bloch’s theorem (eq. 2.35) formulates a condition
that all solutions ψn(~k,~r) of the Schrödinger equation (eq. 2.4) for a periodic potential (e.g.
determined by the crystal lattice) have to meet:

ψn(~k,~r) = ei~k·~r · un(~r) . (2.40)

The index n refers to the n-th band, ~k refers to any allowed wave vector for the electron and
un(~r) refers to a function with the periodicity of the lattice. The cell periodic function un(~r)
can be expressed by expanding it to a finite number of L plane waves whose wave vectors ~K
are reciprocal lattice vectors of the crystal:

un(~r) =
L∑
~K

Cn~Ke
i~K·~r . (2.41)

Cn~K denotes the expansion coefficient of each basis function. By combining the two equations
above we arrive at the final formulation of the crystal wavefunction for the n-th band:

ψn(~k,~r) =
L∑
~K

Cn~Ke
i(~k+~K)·~r . (2.42)

As the elements of ~K are reciprocal lattice vectors scaled by integers we obtain plane waves
with nodes at the cell boundaries. The number of plane waves L depends on the energy-cutoff
Ecut which is defined as follows:

Ecut =
1
2

~Kmax . (2.43)

A higher cutoff includes plane waves with more nodes which leads to a more accurate description
of the electron density. PWs can more efficiently describe delocalized electrons than localized
electrons.
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In the core region the electrons are highly localized while the valence electrons are more
delocalized in comparison. Describing core electrons with a PW basis set is more expensive
than describing the valence electrons. If the research question is independent from the core
electrons like in this thesis, only the valence electrons are explicitly described with the PW
basis set. The core electrons are replaced with a so called pseudo potential. It contains the
summarized potential of all core electrons in analytical form and enables much smaller energy
cutoffs in comparison to all electron calculations. One of the most popular choices for pseudo
potentials in plane wave calculations is the projector augmented-wave (PAW) method [72,73]

which was also used in this work. The all electron wave function is portioned into an inner part
up to the radius raug and an outer region beyond that. The outer part is explicitly described
with the PW basis. The inner part of the core WF is simplified, it is expanded in a radial
function and spherical harmonics functions. [72] While other pseudo potentials modify the
Hamiltonian with an additional potential, the PAW method does not. It rather smoothes out
the inner part of the core electron orbitals.

2.3 Birch-Murnaghan (B-M) Equation of state

In this thesis we study the behavior of the kesterite absorber materials at elevated pressures.
We essentially compare enthalpies (H (P) = E+PV) of different structural models in a certain
pressure range. To calculate the enthalpy and also the pressure itself we carry out a volume
scan (fig. 2.6 shows example for kesterite CZTS). In a volume scan a structural model is
optimized at different unit cell volumes which are forced to be constant. The scan is typically
carried out around the equilibrium volume.

200 225 250 275 300 325 350 375
cell volume (Å3)

65

60

55

50

45

40

en
er

gy
 (e

V)

Birch-Murnaghan fit
data

Figure 2.6: Volume scan and fitted B-M equation of state for the Cu2ZnSnS4 kesterite structure.

28



Theoretical background

We fit the volume scan data to the Birch-Murnaghan isothermal equation of state. The
B-M equation of state is a relationship between the volume of a body and the pressure to
which it is subjected. Third-order Birch-Murnaghan isothermal equation of state is defined as
follows: [74]

E(V ) = E0 +
9V0B0
16

{[(V0
V
) 2
3 – 1

]3
B

′
0 +

[(V0
V
) 2
3 – 1

]2[
6 – 4

(V0
V
) 2
3
]}

. (2.44)

E0 denotes the energy per unit cell at zero pressure, B0 the bulk modulus at zero pressure,
V0 the reference volume at zero pressure; B

′
0, pressure derivative of the bulk modulus at zero

pressure. We calculate the slope of the equation of state which is related to the pressure:

P(V ) = –
(∂E

∂V
)

(2.45)

P(V ) = 3B0
2

[(V0
V
) 7
3 –

(V0
V
) 5
3
]{

1 + 3
4(B

′
0 – 4)

[(V0
V
) 2
3 – 1

]}
. (2.46)

With the pressure we can finally calculate the enthalpy H (P) to compare between different
structural models.
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Abstract

We have carried out first principle calculations to simulate Ag2ZnSnS4 and Ag2CdSnS4.

We calculated enthalpies of different plausible structural models (kesterite-type, stannite-

type, wurtzkesterite-type, wurtzstannite-type and GeSb-type) to identify low and high

pressure phases. For Ag2ZnSnS4 we predict the following transition: kesterite-type
8.2GPa����! GeSb-type. At the transition pressure the electronic structure changes from

semi-conducting to metallic. For Ag2CdSnS4 we cannot decide which of the experi-

mentally observed structures (kesterite-type or wurtzkesterite-type) is the ground state

structure, because their energy difference is too small. At 4.7 GPa however we pre-

dict a transition to GeSb-type structure with metallic character for both structures.

1
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Regarding the sensitivity of the material to disorder, a major drawback for solar-cell

applications, Ag2CdSnS4 behaves similarly to Cu2ZnSnS4, both show a high tendency

to cationic disorder. In contrast, the disordered structures in Ag2ZnSnS4 are much

higher in energy and therefore the material is less affected by disorder.

Keywords

DFT, materials, AZTS, solar cell absorber, kesterite, high pressure

Introduction

In the research to improve solar energy conversion, one of the well explored materials for

thin-film solar-cell absorbers is the direct-band gap semiconductor Cu2ZnSnS4 (CZTS) and

the corresponding selenide Cu2ZnSnSe4 (CZTSe).1–3 The elements which make up those

materials are naturally abundant and relatively environmentally friendly. Up to this point

they have shown conversion efficiencies up to 12.5%.4,5

On the one side, compressive stress is of importance for the use as thin film solar cells

as they can be sputtered. The ion bombardment in the sputtering deposition leads to com-

pressive stress.6,7 In CZTS(e) solar cells either the absorber material itself is sputtered1 or

the buffer layer CdS, the transparent conducting oxide ZnO and the antireflection coat-

ing MgF2 layer on top are sputtered.5 In a previous experimental and theoretical study on

kesterite-type Cu2ZnSnS4 (fig. 1 a) we have investigated the high pressure behavior to probe

its reaction to compressive stress.8 In this study our DFT calculation matched the experi-

mental high pressure results very well, correctly predicting an irreversible phase transition

towards a metallic GeSb-type structure (fig. 1 b) at 16 GPa.

In this study we will compare the two materials Ag2ZnSnS4 (AZTS) and Ag2CdSnS4

to Cu2ZnSnS4 with regards to their high pressure behavior. Ag2ZnSnS4 has already been

tested as solar cell absorber, but is shows limited efficiencies under 1 % if used in a pn-

2
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(a) KS (b) GeSb

Figure 1: Structural models for (a) kesterite-type (KS, I 4̄) and (b) GeSb-type (P4/mmm)
Cu2ZnSnS4. Copper: Cu, pink: Zn, grey: Sn and yellow: S. For the GeSb-type structure we
show two unit cells (stacked along c-axis)

homojunction.9 The efficiency can be increased to 4.5 % if the material is combined in a

CZTS/AZTS heterojunction.10 Theoretical work proposes a CdS/ACZTS/CZTS (n/p/p+)

solar cell with a potential efficiency close to 20 %.11 Doping Cu2ZnSnSe4 with 10 % Ag leads

to cells with up to 10.2 % efficiency12 revitalizing the interest in AZTS and AZTSe.3

Ag2CdSnS4 is not a suitable candidate for solar cell absorbers as it contains Cd which is

toxic and avoiding its use is one of the advantages of CZTS technology over better performing

CdTe thin film solar cells. Using it in small amounts may be tolerable, doping Cu2ZnSnS4

with 25 % Cd and 5 % Ag led to cells with 10.8 % efficiency.12 Nevertheless we include

Ag2CdSnS4 in our study to understand the influence of the bivalent cation on the high

pressure behavior.

On the other side, one of the biggest issues with Cu2ZnSnS4 is Cu-Zn cationic disor-

der.13,14 The main reason why Cu (ionic radius: 0.77 Å15) and Zn (ionic radius: 0.74 Å15)

can be interchanged easily is their similar ionic radius. In the Ag (ionic radius: 1.15 Å15)

analogue Ag2ZnSnS4 cationic disorder is expected to be less present due to the bigger dif-

ference in size of Ag to Zn in comparison to Cu.16 We also include Ag2CdSnS4 to verify how

the stability of disordered structures changes if the bivalent ion gets larger (ionic radius Cd:

0.95 Å15), getting closer toward the ratio present in Cu2ZnSnS4.

3
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Therefore we will apply first principle DFT methods to investigate both, the pressure

dependence of Ag2ZnSnS4 and Ag2CdSnS4 and the tendencies of the materials to cationic

disorder.

Computational details

Calculation set-up

The periodic density functional theory (DFT) calculations were performed with VASP 5.4.4.17–20

A plane wave basis set with an energy cutoff of 700 eV with the projector augmented (PAW)

potentials 21,22 was used. Thus only the valence electrons of Cu, Zn (both 4s and 3d), Ag,

and Cd (both 5s and 4d) were explicitly considered. The electronic convergence criteria was

set at least to 10�5 eV, whereby the Blocked-Davidson algorithm was applied as implemented

in VASP. The structural relaxation of internal and external lattice parameters was set to

a force convergence of 10�2 eV/Å2 while the conjugate-gradient algorithm implemented in

VASP was used.23 The freedom of spin polarization was enabled and a Gaussian smearing

approach with a smearing factor � of 0.01 eV was utilized. For all fully ordered structures

we simulated 16 atoms which corresponds to the number of atoms in the kesterite unit cell.

The cells were fully optimized with a 8x8x4 (zincblende-type or GeSb-type structures) or

7x7x7 (wurtzite structures) k-grid constructed via the Monkhorst-Pack scheme24 and cen-

tered at the �-point with the PBE functional.25 On top of the PBE-optimized structures,

single point calculations for the band gap and DOS with the HSE06-functional26–29 were

performed with a 4x4x2 (zinc blende-type or GeSb-type structures) or 4x4x4 (wurtzite-type

structures) k-grid to account for an accurate electronic structure. The tetrahedron method

with Blöchl corrections30 was applied for the band structure evaluation. For the disordered

KS structures we fully optimized 64 atoms (equivalent to a 2x2x1 kesterite super cell) using

4x4x4 k-grid.

The pressure dependence was determined by selecting volume points in a range of about

4
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40 Å3 above and below the minima. This corresponds to a pressure range of roughly 0-

12 GPa. We used a step size of 4 Å3 which lead to at least 24 volume points for each

structural model. At each point we optimized the ionic positions and cell shape, while keeping

the cell volume constant. We fitted the total energy versus volume to a Birch-Murnaghan

Equation of State (B-M EoS).31 Then the pressure at each volume was obtained from the

P(V) formulation of the same EoS (for details see supporting information section S.3). For

the B-M EoS fits of the low pressure structures we only use data points below the transition

pressure, because above this pressure the structures start to deform significantly towards to

the high pressure ones. We used at least 16 volume points per fit. Using the pressure we

calculated the enthalpies (H (P ) = E + PV ) for each structural model and compared them

over the investigated pressure range to identify the most stable structures.

Structural models

Ordered structures

In quaternary chalcogenide semiconductors the structure at equilibrium pressure in most

cases are kesterite-type (KS, fig. 2 a), stannite-type (ST, fig. 2 b), wurtzkesterite-type (WZ-

KS, fig. 2 c) or wurtzstannite-type (WZ-ST, fig. 2 d) structures.32 KS and ST are derived

from the zincblende-type (ZB) structure. WZ-KS and WZ-ST are derived from the wurtzite-

type structure. For the WZ structures we use equivalent tetragonal unit cells, but be aware

that the asymmetric unit is hexagonal. In the tetragonal representation of the WZ cell we

can easily see the relation to the corresponding ZB derived structure. For instance, in WZ-

KS the cationic arrangements in the a-c-planes are identical to the cationic arrangements

in the a-c-planes in KS. The same relation holds for both ST structures. We include all

mentioned structures as potential low pressure phases for Ag2ZnSnS4 and Ag2CdSnS4. In

our high pressure study on KS Cu2ZnSnS4 we found the distorted rocksalt structure (GeSb-

type, fig. 1 b) to be the most stable phase beyond 16 GPa. Therefore we also include the

GeSb-type structure as a high pressure phase in this study. For the GeSb-type structure we

5

Preliminary manuscript for ACS omega



utilize two unit cells (stacked along c-axis), so that the number of atoms matches the KS

unit cell.

All ZB and WZ derived structures have a coordination number of 4, due to the same

structural motif they are close in formation energy and the structure formation is dependent

on crystallization conditions. GeSb has a coordination number of 6, so this structure is

fundamentally different from the four fold coordinated ZB and WZ structures. Transitioning

from a four to a six fold coordination is a structural change associated with a large difference

in the energy of formation.

(a) KS (b) ST

(c) WZ-KS (d) WZ-ST

Figure 2: Structural models for the (a) kesterite-type (KS, I 4̄), (b) stannite-type (ST, I 4̄2m),
(c) wurtzkesterite-type (WZ-KS, Pn), (d) wurtzstannite-type (WZ-ST, Pmn21) structure.
Blue: Ag, Green: Zn/Cd, grey: Sn and yellow: S.

Disordered kesterite models

In Cu2ZnSnS4 (KS) Cu-Zn disorder is a common effect. The exchange is thought to only take

place within the Cu-Zn-planes14,33 and is promoted by the similar ionic radii. We classify

disordered structures by their disorder fraction, which we define as the number of atoms

6
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in the two Cu-Zn planes within the cell which have changed their place in comparison to

the fully ordered KS structure divided by the total number of atoms of the planes. In the

kesterite unit cell (fig. 1 a) there are four atoms within the two Cu-Zn planes. Exchanging

two of them leads to a disorder fraction of 50 %. Disorder fractions above 50 % lead to the

same structures as for the disorder fractions below due to the crystal symmetry.

The energies of all possible disorder patterns in a 2x2x1 super cell for Cu2ZnSnS4 were

calculated to understand why disorder occurs easily and how it effects the band gap.34,35 All

possible 910 disorder patterns within this supercell have been investigated. In this study we

want to compare Ag2ZnSnS4 and Ag2CdSnS4 to Cu2ZnSnS4 without calculating all patterns

for each material. We selected 3 to 5 patterns for each disorder fraction (fig. S.4 and S.5 in

supporting information) in such a way, that they span the whole energy range which occurs

for Cu2ZnSnS4.34,35

Results and Discussion

Equilibrium structures

We start by reviewing the equilibrium structures of Ag2ZnSnS4 and Ag2CdSnS4 obtained at

the PBE level (tab. 1) and relate them to other published results.

The mineral pirquitasite, in its ideal composition corresponding to Ag2ZnSnS4, was first

characterized in 1982 by Johan and Picot. Based on their XRD (X-ray diffraction) mea-

surements they concluded that Ag2ZnSnS4 must have a ST or KS structure.36 The question

which of the two ZB structures is more stable was answered in 2013 by Schumer et al.37

Their XRD measurement indicated that Ag2ZnSnS4 has a KS structure at ambient pres-

sure. Those results agree with DFT calculations by Chen et al., which also predict the KS

structure to be most stable.32 In 2019 neutron diffraction measurements by Mangelis et al.

proofed that ATZS has a KS structure.38

Our PBE calculations also predict the KS structure to be most stable (tab. 1). The

7
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WZ-KS structure is only 19 meV less stable, followed by the WZ-ST structure and finally

the ST structure. The PBE lattice parameters for KS match the experimental results,38 a

deviates by +0.4 % and c by �3 %, which we consider to be within the expected PBE error.

Table 1: Optimized lattice parameter a, b, c (in Å) and � (in �) for Ag2BSnS4 (B: Zn, Cd)
KS, ST, WZ-KS and WZ-ST at the PBE level of theory in comparison to other simulated
and experimental (exp.) results. �E denotes the energy difference per unit cell to the most
stable phase (in meV).

B KS ST WZ-KS WZ-ST
a c �E a c �E a b c � �E a b c �E Method

Zn
5.835 11.088 0 5.564 12.177 293 6.665 6.922 8.197 89.98 32 7.831 7.200 6.695 172 PBE
5.812 10.779 exp.38

0 298 19 162 PW9132

Cd
5.910 11.560 0 5.803 11.975 95 6.807 7.150 8.303 90.07 0 8.147 7.260 6.820 40 PBE

6.704 7.037 8.217 90.16 8.217 7.064 6.703 exp.39

14 117 0 38 PW9132

The crystal structure of Ag2CdSnS4 was first determined in the late 1960s by Parthé

and Deitch. They assigned the space group Cmc21 based on their XRD results.40 This

assignment was confirmed in 2005 by Parasyuk et al., again using XRD.41 2020 Heppke et al.

carried out an in-situ XRD study at different temperatures.39 They found a low and high

temperature phase. For the low temperature phase occurring below 200�C they excluded

the space group Cmc21 due to additional reflections in their XRD pattern. Instead they

assigned WZ-KS. At 200�C they observed a first order phase transition to WZ-ST.

Also at the PBE level the WZ-KS structure is the most stable (tab. 1). But it is only

0.1 meV more stable than the KS structure, this energy difference is close to the accuracy

of our calculations, so we cannot predict which of the two structures is more stable. The

WZ-ST and ST structure are 38 and 117 meV less stable than the KS structures at the PBE

level.

The DFT results are in agreement with the assignment of WZ-KS to the low temperature

phase of Ag2CdSnS4 by Heppke et al.39 The PBE lattice parameter for WZ-KS are within

1.5 % of the experimental results. For WZ-ST the deviations are similar, except for b where

we observe a deviation of about 3 %. We consider this agreement to be within the error of

8
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the applied functional.

The predicted relative stability at the PBE level for both materials closely matches the

PW91 results by Chen et al.,32 only the difference in energy between KS and WZ-KS is more

pronounced. The WZ-KS structure is 14 meV more stable than KS at the PW91 level.

The similarity of the DFT results is not surprising as both DFT functionals are from

the same class of functionals, they use a generalized gradient approximation (GGA) for the

exchange-correlation potential.25

High pressure behavior

The high pressure behavior gives hints how the materials perform structurally in thin-layer

solar cells, where compressive stress occurs. For instance in 300nm thin TiN films compressive

stress can amount up to 4 GPa.42 Plotting the enthalpies for Ag2ZnSnS4 (fig. 3a and b) and

Ag2CdSnS4 (fig. 3c and d), we find that the KS structure stays most stable until 8.2 GPa and

4.7 GPa, respectively. At those pressures we predict a transition to the GeSb-type structure

for both materials. This transition leads to a shrinking of the unit cell by 16 % for Ag2ZnSnS4

and 18 % for Ag2CdSnS4. In Ag2ZnSnS4 the low pressure stability is unambiguous, the

energy difference from the most stable KS structure to the second most stable WZ-KS

structure is constantly around 40 meV until the transition pressure, afterwards it decreases

to eventually become less stable around 11 GPa which has no effect on the experimental

findings, because it is well above the transition pressure to the GeSb-type structure. For

Ag2CdSnS4 KS and WZ-KS the enthalpies are similar up to the transition pressure. The

maximum difference is 3 meV at 2.8 GPa. We estimated the error in �H (for details

see supporting information section S.4) and came to the conclusion that the differences in

enthalpy between KS and WZ-KS are not significant up to the transition. Consequently we

cannot decide which of the two structures is more stable at low pressures for Ag2CdSnS4.

As mentioned above experimentally the WZ-KS structure is observed at low pressure.39 At

6.4 GPa WZ-KS also becomes more stable in our calculations, but this cannot be observed
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experimentally as it is beyond the transition pressure for the GeSb-type structure.

In Ag2ZnSnS4 the relative stability of all low pressure phases remains close to the stability

at ambient conditions up to the the transition pressure. For Ag2ZnSnS4 ST and WZ-ST the

energy difference to KS at the transition pressure is 30 and 40 meV smaller than at ambient

pressure. In Ag2CdSnS4 the enthalpy of the ST phase is slowly decreasing from 100 meV to

80 meV above the KS enthalpy. The enthalpy of WZ-ST Ag2CdSnS4 decreases from 50 meV

above KS at ambient pressure to become more stable around 6.5 GPa, which is beyond the

transition pressure to the GeSb-structure.

Ag2ZnSnS4 (a) calculated enthalpy
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Figure 3: (a) and (c) PBE-calculated enthalpies for KS, ST, WZ-KS, WZ-ST and GeSb-
type structural models as a function of pressure for Ag2ZnSnS4 and Ag2CdSnS4. Because
the enthalpy differences are very small we also calculated relative enthalpy differences (b)
and (d) with reference to the most stable structure for Ag2ZnSnS4 and Ag2CdSnS4.
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Now we compare the predicted phase transitions for the two Ag KS/WZ-KS to the phase

transition in Cu2ZnSnS4 (tab. 2). Exchanging Cu for Ag leads to a reduction of the transition

pressure nearly by a factor of two. Additionally exchanging Zn for Cd leads to another 1.75-

fold decrease of the transition pressure. The relative volume change due to the pressure

induced transition however is within 3.1 % in all materials, so quite similar. With reference

to the resistance against stress, we conclude that Ag2ZnSnS4 and Ag2CdSnS4 are significantly

less resistant than Cu2ZnSnS4. Still Ag2ZnSnS4 seems suitable for the use in thin films solar

cells as its transition pressure is two times larger than the maximum compressive stress of

4 GPa expected in thin films.42 The transition pressure of Ag2CdSnS4, however, is only

0.7 GPa larger than the maximum compressive stress in thin films. We conclude that this

could lead to unwanted structural changes in very thin Ag2CdSnS4 films.

Table 2: Predicted transitions for Ag2ZnSnS4 and Ag2CdSnS4 in comparison to experimental
transition for Cu2ZnSnS4. The table contains the transition pressure (pT in GPa) with the
corresponding cell volumina before (V1 in Å3) and after (V2 in Å3) the transition, �V denotes
the relative volume change.

Composition pT transition V1 V2 �V
Ag2ZnSnS4 8.2 KS ! GeSb 337 282 -16.3 %
Ag2CdSnS4 4.7 WZ-KS/KS ! GeSb 374 306 -18.0 %
Cu2ZnSnS4

8 16.0 KS ! GeSb 280 240 -15.2 %

We want to analyze how the bulk modulus changes due to the phase transitions in the

materials Ag2ZnSnS4 and Ag2CdSnS4 and compare to Cu2ZnSnS4. We do that based on the

B-M.-EOS fit coefficients as the bulk modulus and its first derivative are variables in the

EOS. The bulk moduli of the low pressure structures amount to 81 % for Ag2ZnSnS4 and

73/75 % for Ag2CdSnS4 of the bulk modulus of KS Cu2ZnSnS4 (Tab. 3). Comparing the

different materials at low pressure the bulk moduli reflect the different transition pressures.

The lower the bulk modulus, the lower the transition pressure. The bulk moduli of the GeSb-

type high pressure structures amount to 92 % for Ag2ZnSnS4 and 88 % for Ag2CdSnS4 of the

bulk modulus of GeSb-type Cu2ZnSnS4. The first derivative of the bulk modulus is within
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10 % for all materials and structures. For all materials B
0
0 of the GeSb-type structure is

smaller than for the low pressure phases.

Table 3: PBE bulk modulus (B0 in GPa) and first derivative (B0
0) for the listed structural

models (Struc.) for the listed compositions. Derived from the Birch–Murnaghan EoS fit.
For all fit paramters please refer to supporting info section S.3.

Composition Struc. B0 B
0
0

Ag2ZnSnS4 KS 54.71 4.96
Ag2ZnSnS4 GeSb 75.84 4.68
Ag2CdSnS4 WZ-KS 49.50 5.10
Ag2CdSnS4 KS 50.69 5.20
Ag2CdSnS4 GeSb 71.72 4.83
Cu2ZnSnS4

8 KS 68.63 4.64
Cu2ZnSnS4

8 GeSb 82.16 4.57

Electronic structure at ambient and high pressure

For the use as solar cell absorber the size of the band gap is crucial. Therefore we inves-

tigated the electronic band structure for equilibrium and high-pressure structures for both

compounds with the HSE06 hybrid functional.26

The results for the band gap at equilibrium pressure for KS Ag2ZnSnS4 and WZ-KS

Ag2ZnSnS4 are very similar. In both cases we predict a band gap of 1.5 eV (tab. 4). The

experimentally observed band gaps are 2.0 eV43 and 1.93 eV.39 Considering that HSE06

usually gives very accurate band gaps, the deviation of 0.5 eV seems large. We are confident

that the reason for the large deviation is mainly that we did not optimise our structures

at the HSE06 level but only with PBE. We have encountered this phenomena before when

studying Cu2ZnSnS4.35 In Cu2ZnSnS4 the HSE band gap of the PBE optimized structure

is 1.2 eV. If we also optimize with HSE06 the band gap increases to 1.5 eV. Having this in

mind, we think that our HSE06 band gaps are reasonably close to the experimental results.

To test if the band gap is a suitable criterion to distinguish the different structures for

each material, we also calculated the band gaps for all other structural models (tab. 4).
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For Ag2ZnSnS4 we predict the band gaps of all structures within an interval of 0.3 eV,

for Ag2CdSnS4 the interval is 0.4 eV. Within those intervals the differences between the

structures are 0.1 or 0.2 eV. We consider those differences as too small to distinguish them

based on experimental band gaps. The reason for the similar band gaps is that all ZB and

WZ structures have a tetrahedral binding motif around sulfur anions, therefore the chemical

bonding situation is similar and also the resulting DOS (see supporting information S.7.2).

Table 4: Calculated HSE06 band gaps (single point calculations for the optimized PBE
structures) Eg (in eV) for Ag2CdSnS4 and Ag2CdSnS4 for the listed strucutral models (struc.)
in comparison to experimental (exp.) results.

Composition Struc. Eg exp.
Ag2ZnSnS4 KS 1.5 2.043

Ag2ZnSnS4 WZ-KS 1.6 -
Ag2ZnSnS4 WZ-ST 1.4 -
Ag2ZnSnS4 ST 1.2 -
Ag2CdSnS4 WZ-KS 1.5 1.9339

Ag2CdSnS4 WZ-ST 1.3 -
Ag2CdSnS4 KS 1.4 -
Ag2CdSnS4 ST 1.2 -

To analyze how the electronic structure changes due to the pressure induced transition,

we calculated the DOS at the transition pressure for the low and high pressure structure for

Ag2ZnSnS4 and Ag2CdSnS4 (fig. 4). The results for both materials are very similar, we find

that the band gap in KS or WZ-KS closes completely after the transition to GeSb. We observe

that all bands from the valence band now extend in the region from 0 eV to 1.5 eV which

is the band gap region for the KS or WZ-KS structure. The electronic structure changes

from semiconducting to metallic for both materials. Before the transition the band gap in

KS Ag2ZnSnS4 widens by 0.2 eV in comparison to equilibrium pressure. For Ag2CdSnS4 we

plotted the DOS for the WZ-KS for the low pressure phase because the XRD experiments by

Heppke et al.39 indicate it as the equilibrium pressure structure. For Ag2CdSnS4 WZ-KS the

band gap does not widen prior to the transition. We suspect that is because the transition

takes place at a 3 GPa lower pressure than in KS Ag2ZnSnS4. We are confident that the
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results would be the same if we used a KS Ag2CdSnS4 low pressure phase because the DOS

are nearly identical at equilibrium pressure.

Composition pT in GPa DOS1 DOS2 Eg in eV
Ag2ZnSnS4 8.2 KS GeSb 1.7 ! 0.0

Ag2CdSnS4 4.7 WZ-KS GeSb 1.5 ! 0.0

Figure 4: DOS plots at the transition pressure at the HSE06 level for the listed pressure
induced transitions for Ag2ZnSnS4 and Ag2CdSnS4

Disorder

We restrict our investigations to the KS structure, because it is the most stable phase for

Ag2ZnSnS4 and Cu2ZnSnS4. Although the situation is not as defined as in Ag2CdSnS4, also

there the KS structure is one of the two possibilities of the low pressure phases. Also it can

give an indication how doping KS Cu2ZnSnS4 with Ag and Cd together12 influences disorder.

To predict how sensitive the materials Ag2ZnSnS4 and Ag2CdSnS4 are towards disorder,

we calculated at least three disordered structures for each disorder fraction within 2x2x1

super cells. The relative energies with respect to the ideal KS structure (fig. 5 a and b) are

compared to the ones of Cu2ZnSnS4 (fig. S.6 in supporting information). It strikes that the
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results for Ag2CdSnS4 and Cu2ZnSnS4 are nearly identical with relative energies ranging

from 20 to 270 meV. The relative energy order of the patterns within each disorder fraction

is the same, except for small deviations for the disorder fraction of 37.5 % and 50 %. Also

the relative energies themselves for each pattern are similar in Ag2CdSnS4 and Cu2ZnSnS4.

Also it strikes that in both materials there is a disorder pattern with 50 % disorder (pattern

(a), fig. S.5 in supporting information) which is less than 20 meV above the ideal KS. In this

pattern (space group P 4̄2c) both Ag-Cd planes are symmetrical with respect to the middle

Ag-Sn plane of the cell. This pattern is very similar to KS itself, as it can be obtained by

rotating the lower half of the KS unit cell (fig. 2 a) by 90� (or by switching Ag and Cd in

the lower Ag-Cd plane). For Ag2CdSnS4 and Cu2ZnSnS4 there are 5 disorder patterns with

relative energies under 100 meV including pattern (a) at 50 % disorder fraction which is

nearly as stable as ideal KS.

For Ag2ZnSnS4 all relative energies are higher than for the other two, ranging from 100

to 400 meV. For the disorder fractions 25.0 %, 37.5 % and 50 % the order of the patterns is

different than for Cu2ZnSnS4 and Ag2CdSnS4. Some patterns get significantly destabilized

in comparison to the other two materials, those are pattern (a) and (c) at 25.0 % disorder

fraction, pattern (c) at 37.5 % disorder fraction and patterns (a), (c) and (d) at 50 % disorder

fraction.

Cu2ZnSnS4 is known to be affected by cationic disorder and based on the relative energies

of the disordered structures we expect the same for Ag2CdSnS4. All disordered structures

for Ag2ZnSnS4, however, are at least 100 meV above ideal KS and therefore we predict that

this material is much less sensitive to disorder than the other two. DFT calculations for

Ag2ZnSnS4 by Mangelis et al. where only five disorder patterns were considered indicate the

same result.38
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Figure 5: Relative PBE energies of disordered KS structures with reference to ideal KS for
a) Ag2ZnSnS4 and b) Ag2CdSnS4.13 For Cu2ZnSnS4 please refer to fig. S.6 in supporting
information.

Summary and conclusions

We simulated the enthalpies for different structural models for Ag2ZnSnS4 and Ag2CdSnS4

to identify low and high pressure modifications. In agreement with experimental results, we

found the tetrahedrally coordinated KS structure to be the most stable for Ag2ZnSnS4 at

equilibrium pressure. At 8.2 GPa we predict a transition to the six-fold coordinated GeSb

structure. This is accompanied by a change of the electronic structure from semiconducting

to metallic. For Ag2CdSnS4 the situation is not so clear. Numerically we get the same

result as Heppke et al. in their XRD measurements at low temperature,39 that WZ-KS is

most stable. The difference to the next least stable KS structure is only 0.1 meV, which we

consider too small in comparison to the error of our calculations to determine which structure

is more stable. Beyond 4.7 GPa we found the GeSb-type structure to be undoubtedly as

the most stable one. The transition also leads to a change of the electronic structure from

semi-conducting to metallic. Also in Cu2ZnSnS4 we find a metallic GeSb-type high pressure

phase, the transition pressure of 16 GPa, however, is larger by a factor of two for Ag2ZnSnS4

and three for Ag2CdSnS4.

Compressive stress in thin films can amount up to 4 GPa in TiN films.42 Assuming
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similar behavior for thin films of the investigated materials, we conclude that Ag2ZnSnS4

and Cu2ZnSnS4 are sufficiently resistant to compressive stress. The transition pressure of

Ag2CdSnS4 is close to the maximum compressive stress in TiN thin films, therefore it could

become critical for the usage in very thin films. If the WZ-KS or KS to GeSb-type transition

is triggered, the material is rendered useless as a solar cell absorber, due to the metallic

electronic structure of the GeSb-type structure.

By calculating differently disordered KS patterns we also revealed that KS Ag2CdSnS4

is similarly prone to disorder as KS Cu2ZnSnS4. The reason is that the ionic radii of Cu+

and Zn2+ are relatively similar as well as the ionic radii of Ag+ and Cd2+. Those elements

constitute two planes in the KS unit cell which can easily get disordered if the elements are

similar in size. In Ag2ZnSnS4 the effective ionic radii of the elements are sufficiently different

for the disordered structures to be destabilized by 50 to 150 meV each in comparison to

Cu2ZnSnS4 and Ag2CdSnS4. We conclude that Ag2ZnSnS4 is much less sensitive to disorder.
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Summary

4 Summary

In this chapter all publication included in this thesis will be summarized and discussed in relation
to each other. Four papers deal with high-pressure behavior of ideal (paper A) and disordered
Cu2ZnSnS4 (paper B) and substituted CZTS materials (paper C: Ag2(Zn/Cd)SnS4, paper
D: Cu2(Mn/Fe)SnS4). They will be discussed together with the aim of pointing out the
differences arising from the substitution. The final paper E deals with a structural transition
in the solid solution series Cu2Zn1-xCdxSnS4. The papers A, B and E are joined experimental
and theoretical studies, the papers C and D are theoretical studies.

The research question we aimed to answer in the papers A to D is when and how does the
crystal structure of the equilibrium phase of a potential KS solar cell material change under
compressive stress. In thin-film technologies featuring sputtering on substrates compressive
stress up to 3 GPa can occur. [43,44] Also the KS absorber or other layers of the kesterite solar
cell like the CdS buffer layer can be sputtered. In that context it is important to understand
what happens to the absorber material at higher pressure. If the electronic structure is no
longer of semi-conducting character the structural change limits the pressure range in which
the solar cell absorber material functions as such. The reason we also investigate four cation
substituted CZTS materials is that those substitutions are introduced in the hope of solving
the biggest issue of the KS solar cell, the VOC deficit. [17]

Before attempting to predict the high-pressure phases we calculated the equilibrium structures
at zero pressure and compared to experimental results to verify that our calculations give
reasonable results. For each composition we tested various structural models (see selected exam-
ples in fig. 4.1) always including the kesterite-type structure (fig. 4.1a) and the experimentally
most stable structure.

Experimentally disordered kesterite exhibits I 4̄2m symmetry (fig. 4.2a), that means that at
every position in the Cu-Zn planes (framed blue) the probability to find Cu and Zn is equally
0.5. Representing the disordered kesterite phase in a computational model is difficult because
multiple substitution patterns need to be taken into account, and the number grows rapidly
with the unit cell size. In our study we chose to use the most simple model for disordered
kesterite, which can be derived directly from the KS unit cell only using one substitution
pattern. We exchange one of the two Cu-Zn pairs in a plane, which gives rise to a P 4̄2c
symmetric structure (fig. 4.2b) we refer to as DKS. In this structure the number of disordered
atoms in the planes is 2 out of 4 which means it is 50 % disordered just like the I 4̄2m
structure.
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(a) KS (b) WZ-KS

(c) P 4̄ (d) ST

Figure 4.1: Four-fold coordinated structural models for the equilibrium phases: (a) kesterite-type (KS,
I 4̄), (b) wurtzkesterite-type (WZ-KS, Pn), (c) P 4̄ and (d) stannite-type (ST, I 4̄2m) structure. Copper:
Ag/Cu, pink: Zn/Cd/Fe/Mn, grey: Sn and yellow: S. In the P 4̄ structure the unit cell is highlighted in
red, it is only half the size of the others.

In paper D we treat materials which contain the magnetic ions Mn2+ or Fe2+. The unit cells
we use contain two of those magnetic ions. We exploit that to model two different magnetic
phases. In the ferromagnetic (FM) phase the magnetic moments of the two Mn2+ or Fe2+ ions
are set to be parallel. For the anti-ferromagnetic (AM) case the magnetic moments are set
antiparallel. We tested both magnetic phases for all structural models to find the most stable
structural and magnetic phase.

We found a high level of agreement between our PBE calculations and experimental findings
(tab. 4.1). For four out of five material compositions the PBE results predict the experimental
equilibrium structure to be most stable. Only for Cu2MnSnS4 PBE predicts kesterite-type to
be more stable when experimentally the stannite-type (ST, fig. 4.1a) structure is observed.
The energy difference between KS and ST at the PBE level is 22 meV, so numerically the error
is relatively small. For Ag2CdSnS4 PBE does correctly predict the experimental equilibrium
structure WZ-KS to be most stable. But it is only 0.1 meV more stable than KS. When testing
which K-Point grid size is required we converge the energies to 1 meV or less. This determines
the accuracy of our calculations and a difference of 0.1 meV is close to that threshold and
consequently we consider the KS and WZ-KS structures to be equally stable at the PBE level.
The PBE lattice parameter of KS and DKS are nearly identical, which can be explained by
the fact that only one Cu-Zn exchange is necessary to transition between the two structures.
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(a) I 4̄2m

Cu/Zn

Cu/Zn

(b) P 4̄2c

Figure 4.2: Structural models for disordered kesterite (DKS) (a) I 4̄2m symmetric and (b) P 4̄2c
symmetric. Copper: Cu, pink: Zn, grey: Sn and yellow: S.

The largest error in the predicted lattice constants can be found for lattice parameter c for
Ag2ZnSnS4, which is +2.9 %. The average error for lattice constants of solids for PBE is 1.2 %,
the maximum error in the test set used by Zhang et al. is 2.8 %. [75] We conclude that the
deviation of the lattice parameters for all structures is within the expected error for the used
functional.

Table 4.1: Most stable experimental (exp.) and PBE structures (struc.) at equilibrium pressure for
the listed compositions (comp.) and corresponding lattice parameters a, b and c (in Å). SG stands for
space group, AM denotes anti-ferromagnetic.

Comp. PBE exp.
struc. SG a b c struc. SG a b c source

Cu2ZnSnS4 KS I 4̄ 5.465 5.465 10.913 KS I 4̄ 5.431 5.431 10.855 paper A
Cu2ZnSnS4 DKS P 4̄2c 5.465 5.465 10.924 DKS I 4̄2m 5.457 5.457 10.901 paper B
Ag2ZnSnS4 KS I 4̄ 5.835 5.835 11.088 KS I 4̄ 5.812 5.812 10.779 [76]

Ag2CdSnS4 WZ-KS Pn 6.807 7.150 8.303 WZ-KS Pn 6.704 7.037 8.217 [77]

Cu2FeSnS4 (AM) P 4̄ 5.469 5.469 5.346 (AM) P 4̄ 5.433 5.433 5.410 [78]

Cu2MnSnS4 KS(AM) I 4̄ 5.468 5.468 11.020 ST(AM) I 4̄2m 5.517 5.517 10.806 [79]

From the substituted CZTS structures only Ag2ZnSnS4 also crystallizes in the KS structure
which is beneficial for the use in the kesterite solar cell system. It means silver substitution of
Cu is possible in in every extend without changing the KS structure. Additional substitution
of Zn by Cd stabilizes the WZ-KS structure, so there is a structural change which has to be
avoided in KS solar cell absorbers. Also if Fe or Mn is used to substitute Zn in CZTS, the
structure changes at some substitution fraction χFe/Mn and this change has to be avoided in
KS solar sell absorbers. For Cu2Zn1-xFexSnS4 the transition is predicted to be at χFe = 0.40
at the PBE level. [80] For the Mn substituted analogue no published data is available and we
recommend to investigate this problem in the future.

For CZTS we chose the high-pressure structure based on the experimental high-pressure
XRD (x-ray diffraction) results. Our collaborators found the GeSb-type structure (fig. 4.3a)
to be most stable at high pressures. This structure has a coordination number of 6 for all
ions. It is a compressed rocksalt structure, so c is slightly smaller than a and b (which are
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equal). The KS structure can be derived from the sphalerite (ZnS) structure. ZnS exhibits
a high temperature phase transition from sphalerite to wurtzite-type at about 1000◦C. [81]

To challenge the experimental results we also include the four-fold coordinated wurtzite-type
(WZ, fig. 4.3b) structure as a potential high-pressure phase.

(a) GeSb
(b) WZ

Figure 4.3: Tested CZTS high-pressure phases (a) GeSb-type (I4/mmm) and (b) wurtzite-type (WZ,
P21). Copper: Cu, pink: Zn, grey: Sn and yellow: S. For the GeSb-type structure the unit cell is
highlighted in red.

Fig. 4.4a shows the PBE enthalpies of the different tested structural models for Cu2ZnSnS4.
Because the enthalpies are similar it is visually more clear to plot the enthalpies relative to
the equilibrium KS phase (fig. 4.4b). The WZ enthalpy never gets the lowest, so it can not be
observed experimentally. KS presents the most stable phase at low pressures. At 16 GPa we
observe a structural transition to the GeSb-type phase.

Cu2ZnSnS4 (a) calculated enthalpy
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Figure 4.4: (a) Calculated PBE enthalpies for KS, WZ and GeSb-type structural models as a function
of pressure for Cu2ZnSnS4. Because the enthalpy differences are very small we also calculated relative
enthalpy differences (b) with reference to the KS structure.

The PBE prediction agrees well with the experimental XRD results. The XRD reflexes (fig. 4.5a)
indicate a transition in the range from 14 to 16 GPa. The experimental lattice constants
(fig. 4.5b) show a discontinuity at 15 GPa related to the phase transition from KS to GeSb-type.
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The PBE lattice parameters of the low and high-pressure phase are close to the experimental
results. Only the lattice constant c of KS is noticeably overestimated by PBE.

Cu2ZnSnS4 (a) high-pressure XRD

materials and are evidenced by distinct compressibility and
Raman intensity changes, without any alteration of the (aver-
age) crystalline symmetry.58,67–69 A thorough investigation
of such a possibility, however, lies beyond the scope of the
present paper.

B. Structural compression of Cu2ZnSnS4 up to 30 GPa
with argon PTM

We turn now to the Cu2ZnSnS4 structural transition
reported close to 15 GPa towards a disordered RS-type modi-
fication (Table I), where all the metal cations exhibit ran-
dom/mixed occupancy of the cationic site.24 The previous
investigation was conducted up to !18 GPa, with argon serv-
ing as PTM; here, we have expanded upon the previous
high-pressure studies up to 30 GPa, again with argon as PTM
for consistency.

The results are presented in Fig. 6. We can observe that
the KS phase persists up to !14 GPa; at this pressure, several
new Bragg peaks appear in the XRD patterns, signifying a
structural transition. The transition is completed at 15.8 GPa,
in excellent agreement with the previous result.24 The analy-
sis of the measured XRD patterns reveals that the RS-type
phase could reproduce the XRD diffractogram measured at
15.8 GPa; the following XRD pattern collected at 18.5 GPa,
however, could not be fitted with the cubic RS-type structure
satisfactorily. This prompted us to use a tetragonally dis-
torted RS-type modification, noted here as the GeSb-type
(SG I4/mmm, Z¼ 2),70 which resulted in a significantly
improved XRD refinement (Fig. 6). We should point out
here that the reason behind this unsuccessful RS-type struc-
ture indexing attempt involves the pressure-induced

evolution of the recorded Bragg peak positions, which do not
follow the cubic RS-type structural trend (for more details,
see Fig. S7 in the supplementary material).

Therefore, Cu2ZnSnS4 apparently adopts another disor-
dered GeSb-type structure above !18 GPa, again with a
mixed/random occupancy of the cationic site by the Cu/Zn/
Sn ions. This phase persists up to 30 GPa, where the highest
pressure reached. A reasonable question which arises, how-
ever, is the following: does Cu2ZnSnS4 adopt the RS-type
modification within a limited pressure range, i.e., between 15
and 18 GPa, or is the GeSb-type phase adopted from 15 GPa
already? Considering the relevant theoretical results at our
disposal, we tend to favor the second scenario. We will
return to this point later below.

In Fig. 7, we plot the extracted structural parameters for
the various phases of Cu2ZnSnS4 obtained with argon PTM
(this run alone). As we can observe, the KS ! GeSb-type
structural transition is accompanied by a !15% volume
change at the transition point. The latter volume drop results
from the increase in the cationic coordination with respect to
the S2– anions from four to six (Fig. 1). The B-M EoS fitting
results of the P–V data are listed in Table II.

In order to acquire certain insights into the aforemen-
tioned pressure-induced KS ! GeSb-type structural transi-
tion in Cu2ZnSnS4, we have calculated the enthalpies
(HðPÞ ¼ Eþ PV) for the starting KS phase and the disor-
dered GeSb-type modification (Fig. 8). Additionally, we
have calculated the enthalpies of several reported
Cu2ZnSnS4 polymorphs, such as a modified wurtzite-type
phase (WZ, SG P21), the aforementioned DKS modification
(SG P!4), the stannite-type structure (ST, SG I!42m), and the
primitive mixed Cu-Au phase (PMCA, SG P!42m) (Fig. S6
in the supplementary material). As we can observe from the
relative enthalpy difference between the KS and GeSb-type
phases, the transition is predicted to take place at 16 GPa, in
excellent agreement with the experimental transition pres-
sure value between 14 and 16 GPa (Fig. 7). The respective
lattice parameters and volumes for the KS and GeSb-type

FIG. 6. (a) Selected XRD patterns of Cu2ZnSnS4 at various pressures with
Ar PTM (k¼ 0.2913 Å). The black, orange, and blue patterns indicate the
KS, KS/GeSb coexistence, and GeSb-type phases, respectively (see the
text). The background has been subtracted for clarity with Chebyshev poly-
nomial functions. Asterisks and exclamation marks indicate the strongest
Bragg peaks of the Cu2S impurity phase and the argon PTM,36,37 respec-
tively. (b) Examples of Le Bail refinements at 18.5 GPa, using both the RS-
type (top) and the tetragonally distorted GeSb-type (bottom) modifications.
The black circles and the red solid curves correspond to the measured and
the calculated patterns, whereas their difference is depicted as blue curves.
The starting structural parameters are taken from Ref. 24 (RS-type) and Ref.
70 (GeSb-type). The arrow indicates the KS phase residue, and asterisks
mark the strongest Bragg peaks of the Cu2S impurity.

FIG. 7. Pressure-induced variation of the (a) lattice parameters and (b) vol-
ume per formula unit (f. u.) for the various phases of Cu2ZnSnS4 with argon
serving as PTM. The solid curves through the P-V data correspond to fitted
B-M EoS functions.38,39 The closed and open symbols correspond to experi-
mental and DFT-PBE calculated data, respectively. The vertical dashed lines
depict the onset of the KS! GeSb-type structural transition. Error bars are
smaller than the symbols.

085905-6 Efthimiopoulos et al. J. Appl. Phys. 124, 085905 (2018)

(b) lattice parameters

Figure 4.5: (a) high-pressure XRD reflexes for Cu2ZnSnS4. The pattern of KS is depicted in black,
the pattern of GeSb-type is depicted in blue and the mixed signal is shown in orange. (b) Lattice
parameter evolution (a and c) with respect to the pressure, filled symbols are experimental data and
the open symbols are the PBE predictions.

The experimental and theoretical results for DKS (paper B) are very similar to KS. In a
high-pressure XRD experiment a DKS to GeSb-type transition is observed around 15 GPa. The
PBE transition is again predicted at 16 GPa. The disorder has no influence on the transition
pressure. At the PBE level that can be explained with the similarity of the used DKS and KS
structure. We see evidence that the DKS model is not as close to the experimental structure
as for the ordered KS case. The Birch–Murnaghan fit parameter vary significantly between
PBE and the experiment (tab. 4.2). For ideal KS that is not the case; the fit parameter agree
closely.

Table 4.2: Fitted parameter for the Birch–Murnaghan equation of state for Cu2ZnSnS4. B0 (in GPa):
bulk modulus at zero pressure, V0/Z (in Å3): reference volume per f.u. at equilibrium and B ′

0: pressure
derivative of the bulk modulus at zero pressure.

Structure method V0/Z B0 B
′
0 source

KS exp. 160.1 74 4.4 paper APBE 163.7 68.6 4.6

DKS exp. 162.3 43 11 paper BPBE 163.7 68.7 4.6

Our calculations for the materials Ag2ZnSnS4, Ag2CdSnS4, Cu2FeSnS4 and Cu2MnSnS4 are
the first predictions for the high-pressure phase transitions. There is no experimental reference

119



Summary

data available yet. Therefore we will describe the results by themselves and compare to CZTS.
For Ag2ZnSnS4 PBE predicts a transition from KS to GeSb at 8.2 GPa, so only half the
transition pressure of CZTS (tab. 4.3). Additionally replacing Zn by Cd reduces the transition
pressure again nearly by a factor of 2. As the equilibrium phase for Ag2ZnSnS4 can not be
unambiguously determined at the PBE level. We can not predict if we expect a WZ-KS or KS
to GeSb transition. We lean towards the WZ-KS equilibrium phase based on the fact that it has
been observed experimentally at room temperature and ambient pressure. [77] In Cu2FeSnS4
we observe a structural transition from P 4̄ to GeSb-type at 16.3 GPa. The transition pressure
is nearly identical to the pressure for CZTS. The magnetic phase of GeSb-type Cu2FeSnS4
remains antiferromagnetic up to 23.0 GPa when it flips to ferromagnetic. In Cu2MnSnS4 the
transition pressure is slightly reduced in comparison to CZTS. We predict a KS to GeSb-type
transition at 12.1 GPa. Interestingly in this case the magnetic phase changes simultaneously
from anti-ferromagnetic to ferromagnetic.

Table 4.3: Predicted transitions for Ag2ZnSnS4, Ag2CdSnS4, Cu2FeSnS4 and Cu2MnSnS4 in com-
parison to transition for Cu2ZnSnS4. The table contains the transition pressure (pT in GPa, if available
the experimental pT is given in parenthesis) with the corresponding cell volumes before (V1 in Å3) and
after (V2 in Å3) the transition, ΔV denotes the relative volume change. The volumina all refer to the
KS unit cell size, for the P 4̄ and GeSb-type structures that refers to two unit cells.

Composition pT (exp.) transition V1 V2 ΔV paper
Cu2ZnSnS4 16.0 (≈15) KS → GeSb 280 240 -15.2 % A
Cu2ZnSnS4 16.0 (≈15) DKS → GeSb 280 240 -15.2 % B
Ag2ZnSnS4 8.2 KS → GeSb 337 282 -16.3 % C
Ag2CdSnS4 4.7 WZ-KS/KS → GeSb 374 306 -18.0 % C
Cu2FeSnS4 16.3 P 4̄(AM) → GeSb(AM) 272 236 -13.1 % D
Cu2FeSnS4 23.0 GeSb(AM) → GeSb(FM) 226 225 -0.6 % D
Cu2MnSnS4 12.1 KS(AM) → GeSb(FM) 289 248 -14.0 % D

Although the equilibrium structures of the investigated materials slightly differ we can under-
stand the changes in the transition pressures based on the ionic radii [39] of the cations. For
CZTS they are: r(Cu+)=0.60 Å, r(Zn2+)=0.60 Å and r(Sn4+)=0.55 Å. In this material all
cations have a similar radius and it is the most stable material against pressure together with
Cu2FeSnS4. The ionic radii of Fe (r(Fe2+)=0.63 Å) and Zn2+ are similar and we conclude
hence the similar transition pressure. Mn (r(Mn2+)=0.66 Å) has a slightly larger ionic radius
than Fe and Zn and the transition pressure is reduced by 25%. In Ag2ZnSnS4 the radius of the
univalent cation is increase significantly (r(Ag+)=1.00 Å), which we suspect can explain the
drop in transition pressure by 50%. Additionally also replacing Zn by Cd (r(Cd2+)=0.78 Å)
further increase the imbalance in the cation size, which once more reduces the transition
pressure.

To fully understand the consequences of the predicted high-pressure transition for the use as
solar cell absorbers we need to analyze the impact of the transition on the electronic structure.
We calculated the DOS (density of states) before and after the transition at the HSE06 level
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using the PBE structures. For Cu2ZnSnS4 we found that the KS band gap widens from the
equilibrium value of 1.2 eV to 2.1 eV at the transition pressure (fig. 4.6 left). After the transition
to GeSb the DOS changed drastically, and the material is no longer semi-conducting but
metallic (fig. 4.6 right). The metallic character has been confirmed experimentally by UV/vis
measurements.

Composition pT in GPa DOS1 DOS2 Eg in eV
Cu2ZnSnS4 16.0 KS GeSb 2.1 → 0.0
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Figure 4.6: DOS plots at the transition pressure at the HSE06 level for KS and GeSb-type Cu2ZnSnS4.

The situation for all other materials is identical. Prior to the transition the band gap widens
and afterwards the GeSb phase is metallic. That means if the pressure induced transitions are
triggered all studied materials are rendered useless as a solar cell absorbers. The transition
presents a hard physical limitation for the application. All transition pressures except for the
pressure for Ag2CdSnS4 are well beyond 3 GPa which is the maximum we expect in thin-film
processing. Consequently we do not see an issue with using those materials in thin-film solar
cells. For Ag2CdSnS4 the transition pressure of 4.7 GPa is not far off the maximum pressure
we expect in thin-films and we think that this could lead to performance problems and advice
to monitor the structure closely for this material if used as an absorber material.

Another aspect we studied exclusively for Ag2ZnSnS4 and Ag2CdSnS4 (paper C) is KS
disorder. In CZTS one of the recognized issues is Cu-Zn disorder [2,40] in the planes they share
(fig. 4.2a). The main reason why Cu+ (ionic radius: 0.60 Å) and Zn2+ (ionic radius: 0.60 Å)
can be interchanged easily are their similar ionic radii. [39] Although Ag2CdSnS4 has a WZ-KS
equilibrium structure we investigate the disorder in the KS structure which is only 22 meV
less stable. This can give an indication how (partly) substituting KS Cu2ZnSnS4 with Ag
and Cd together [82] influences disorder. We classify disordered structures by their disorder
fraction, which we define as the number of atoms in the two Cu-Zn planes within the cell
which have changed their place in comparison to the fully ordered KS structure divided by
the total number of atoms of the planes. In the kesterite unit cell (fig. 4.1a) there are four
atoms within the two Cu-Zn planes. Exchanging two of them leads to a disorder fraction of
50 % (fig. 4.2b). Disorder fractions above 50 % lead to the same structures as for the disorder
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fractions below due to the crystal symmetry. In a previous study in our group we calculated
all possible disorder patterns for CZTS in 2x2x1 super cells. [41] In this study we picked three
representative disorder patterns for each disorder fraction. We chose a pattern with a high,
medium and low energy of formation for each disorder fraction. We optimized each disorder
pattern for Ag2ZnSnS4 and Ag2CdSnS4 (fig. 4.7a and b) to analyze how the energies of the
disordered structures compare to the energies in CZTS (fig. 4.7c).
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Figure 4.7: Relative PBE energies of disordered KS structures with reference to ideal KS for
a) Ag2ZnSnS4, b) Ag2CdSnS4 and c) Cu2ZnSnS4. [2]

In Ag2ZnSnS4 the disordered structures are destabilized by about 50-100 meV in comparison
to CZTS. Importantly the disorder pattern (a) which corresponds to the P 4̄2c symmetric DKS
structure (fig. 4.2b) is 170 meV less stable than in CZTS. In CZTS this pattern is nearly as
stable as KS and we suspect that the existence of this structure is one if the main reason why
CZTS is sensitive to disorder. The situation in Ag2CdSnS4 is different than in Ag2ZnSnS4,
the energies of the disordered structures including pattern (a) are very similar to the values in
CZTS. We conclude that Ag2ZnSnS4 is less sensitive to disorder than CZTS while Ag2CdSnS4
is similarly sensitive to disorder as CZTS.

122



Summary

We think that the reason is that the ionic radii of Cu+ (r(Cu+)=0.60 Å) and Zn2+ (r(Zn2+)=0.60 Å)
are relatively similar as well as the ionic radii of Ag+ (r(Ag+)=1.00 Å) and Cd2+ (r(Cd2+)=0.78 Å).
Those elements constitute two planes in the KS unit cell which can easily get disordered
if the elements are similar in size. In Ag2ZnSnS4 the effective ionic radii of the elements
are sufficiently different for the disordered structures to be destabilized in comparison to
Cu2ZnSnS4 and Ag2CdSnS4.

Similarly to Cu2MnSnS4 and Cu2FeSnS4 the Cd-substituted CZTS variant Cu2CdSnS4 does
not have a KS equilibrium structure. As explained above this raises the question how much
substitution in CZTS is possible without losing the desired KS structure. The paper E
answers this question by investigating the solid solution series Cu2Zn1-xCdxSnS4. The end
members Cu2ZnSnS4 and Cu2CdSnS4 crystallize in KS (fig. 4.1a) and ST (fig. 4.1d) structure,
respectively. We investigated at which cadmium substitution fraction xCd the structure flips
from KS to ST. Our collaborators synthesized samples with different xCd ranging from 0 to 1.
They measured the XRD reflexes to determined when the structure changes. We generate 2x2x1
super cells of KS and ST with 64 atoms (8 Zn) then we stepwise replace the Zn, only considering
symmetry inequivalent substitution patterns. We optimize each substitution pattern at the
PBE level. Next we average the energies for each xCd and then compare KS and ST to find xCd
where the ST structure becomes more stable. Because disorder is common in CZTS we also
included two disordered structures, one with 12.5 % and one with 50 % disorder (fig. 4.8). The
aim is to understand how the transition is affected by increasing disorder in the KS phase.

KS (12.5 %) KS (50 %)

Figure 4.8: Tested disordered kesterite structures. The number in parenthesis refers to the disorder
fraction. Copper: Cu, pink: Zn, grey: Sn and yellow: S.

To visualize the transition we plot the averaged (disordered) KS PBE energies with reference
to the averaged PBE energies for the ST phase (fig. 4.9). The trend for ideal KS increases from
0 to 1. At 0.51 xCd KS becomes less stable than ST. Our experimental colleagues observed the
transition already at 0.40 xCd, which we consider a good agreement with our PBE prediction.
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We also compared the lattice parameter between PBE and the experiment and found that
they are within the expected error for the PBE functional for all structures and substitution
fractions.
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Figure 4.9: Relative energy of the kesterite phases (solid lines) with respect to the stannite phase
(black dotted baseline) for different Cd substitution fractions. Energies below zero means the KS phase
is more stable.

The trend for the disordered phases shows that KS is destabilized with increasing disorder.
We concluded that part of the deviation between PBE and experiment could be due to the
KS samples containing a small disorder (much smaller than 12.5%). In the plot (fig. 4.8)
we included a grey line to illustrate what trend we would expect for this kind of disordered
structure. We also calculated the HSE06 band gaps for the most stable substitution pattern
at each xCd and they agree well with experimental data, also hinting that the experimental
sample may be slightly disordered.

The material properties of kesterites are in principle very suitable for solar cell absorbers but
so far the synthesis and processing of the cells is not yet at a level that they can convert that
to high performing solar cells. In particular the high VOC deficit remains a big challenge which
has to be overcome for kesterite solar cells to become commercially relevant. One promising way
to achieve that is cationic substitution. In this work we have shown that there is no issue with
using CZTS absorbers in thin-films in terms of structural integrity against pressures expected
in thin-films. Based on our results we think the same holds for Ag, Cd, Mn and Fe substituted
CZTS. Only when simultaneously doping with Ag and Cd we advice caution because the
transition pressure to a metallic high-pressure phase is particularly low for Ag2CdSnS4.
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Carrying out high-pressure XRD experiments requires a lot of time and effort. In this thesis
we have shown that for CZTS the prediction of the transition pressures using PBE works
well yielding similar results as the XRD experiments. Also the electronic properties calculated
with the HSE06 functional agree well with experimental data. We conclude that first principle
calculation are a valuable tool to asses high-pressure phase transitions. We recommend to use
it prior to carrying out experimental XRD studies to screen for materials which are sufficiently
pressure resistant. This enables experimentalist to focus their efforts on materials which are
suitable for the use in thin-film solar cells.
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