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Increasing evidence suggests male sex as a potential risk factor for a higher incidence of
cardiac fibrosis, stronger cardiac inflammation, and dilated cardiomyopathy (DCM) in
human myocarditis. Chronic activation of the immune response in myocarditis may trigger
autoimmunity. The experimental autoimmune myocarditis (EAM) model has been well
established for the study of autoimmune myocarditis, however the role of sex in this
pathology has not been fully explored. In this study, we investigated sex differences in the
inflammatory response in the EAMmodel. We analyzed the cardiac function, as well as the
inflammatory stage and fibrosis formation in the heart of EAM male and female rats. 21
days after induction of EAM, male EAM rats showed a decreased ejection fraction, stroke
volume and cardiac output, while females did not. A significantly elevated number of
infiltrates was detected in myocardium in both sexes, indicating the activation of
macrophages following EAM induction. The level of anti-inflammatory macrophages
(CD68+ ArgI+) was only significantly increased in female hearts. The expression of
Col3A1 and fibrosis formation were more prominent in males. Furthermore, prominent
pro-inflammatory factors were increased only in male rats. These findings indicate sex-
specific alterations in the inflammatory stage of EAM, with a pro-inflammatory phenotype
appearing in males and an anti-inflammatory phenotype in females, which both
significantly affect cardiac function in autoimmune myocarditis.
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INTRODUCTION

Myocarditis is a cardiovascular disease that is associated with
myocardial inflammation and infiltration of immune cells into
the heart muscle (1). Of those immune cells, it is predominantly
macrophages and T-cells that infiltrate the cardiac tissue during
viral or toxic injury in myocarditis (1–3). Impaired regulation of
the autoimmune response against auto-myocardial proteins can
lead to chronic inflammation followed by fibrosis, dilated
cardiomyopathy (DCM), and heart failure at the end stage of
myocarditis (4, 5). Mice infected with coxsackievirus B3 (CVB3)
develop a chronic myocarditis, associated with the presence of
anti-myosin autoantibodies, myocardial fibrosis, and cardiac
remodeling (6–8), leading to alterations in the extracellular
matrix (ECM) (9). In addition, mice or rats immunized with
cardiac myosin and Complete Freund’s Adjuvant (CFA) exhibit
experimental autoimmune myocarditis (EAM) (10, 11). Pro-
inflammatory cytokines e.g., interleukin (IL)-6, IL-1b and tumor
necrosis factor a (TNF-a) together with enhanced reactive
oxygen species (ROS) production play a crucial role in the
development of autoimmune myocarditis (7, 12). In the EAM
model, male animals show an increased fibrotic remodeling of
cardiac tissue, which is linked to DCM development (13).
Moreover, male animals develop cardiac autoimmunity and
chronic inflammation more often than females (14).

Sex differences in cardiovascular diseases leading to heart failure
have been well documented (15, 16). Interestingly, men show higher
prevalence and severity of cardiovascular diseases than
premenopausal women (17–19). However, the risk of negative
cardiovascular events increases in women after menopause (20).
The male sex is more susceptible to the development of DCM or
heart failure due to impaired cardiac remodeling and the cardiac
response to stress (21, 22). Furthermore, female mice show less
acute inflammation compared to male mice in a viral myocarditis
model, although the rate of viral replication is not significantly
different between the sexes (23, 24). Several pathological conditions
in the heart are associated with increased testosterone levels,
promoting increased collagen deposition, fibrosis formation, and
remodeling of the ECM (25–28). Fibroblasts are responsible for
preserving ECM balance (29–31). In cardiac tissue, the most
prominent collagen fibers are collagen type I and collagen type III
(32). Sex-related differences, regulated by sex hormones such as
estrogen and testosterone, are also observed in the immune system
(33, 34). In turn, the immune system also regulates sex hormone
production and secretion (33). Sex hormones have an effect on
cardiomyocytes, endothelial cells and fibroblasts and dramatically
modulate the tissue response to inflammation in a sex-dependent
manner (35, 36), e.g., via p38 and ERK signaling (37). It is
interesting to note that male animals have a higher number of
classically activated M1 macrophages, whereas females develop a
population of alternatively activated TIM3-positive M2
macrophages (38, 39). Moreover, male mice can present a M2
macrophage subpopulation, which expresses the M1 macrophage
marker toll-like receptor (TLR4) and IL-1b. It has been proposed
that this M2 macrophage population is strongly involved in fibrotic
remodeling of cardiac tissue (6, 40). Furthermore, estrogen
decreases TNF-a expression in peripheral blood mononuclear
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cells (PBMC) (33, 41, 42) and increased TNF-a secretion was
detected in premenopausal women who underwent oophorectomy
(43). In contrast, testosterone induces a TH1-type immune response
in both humans and rodents (23, 24, 44–46). Macrophages activate
fibroblasts via TGF-b, platelet-derived growth factor (PDGF), and
TNF-a (47, 48). Activated fibroblasts produce ECM and favor
fibrosis formation after cardiac damage (49, 50). Even though these
sex differences in molecular and cellular mechanisms in the
immune system are well documented, their interplay in specific
diseases is not yet fully understood.

In this study, we investigated sex-related alterations in the
inflammatory state in EAM accompanied by fibrosis formation
and decreased cardiac function. The functional analyses revealed
an impaired cardiac function in male but not female animals. Sex
differences were also found in macrophage polarization and
fibrosis formation. EAM is associated with an increased
expression of inflammatory markers in male hearts.
MATERIAL AND METHODS

Animals
Lewis rats were housed in cages with controlled temperature and
humidity on a 12h light/12h dark cycle. They were kept in groups
of four or five with free access to food and water. Male and female
rats (age: male: 42-56 days and female: 50-80 days; body weight
230-260g, n=16) (Janvier, Le Genest-St-Isle, France) were
immunized as previously described with a myosin dose of 0.25
mg to the rear food pads on day 0 (51). 21 days later the animals
were euthanized; their hearts, spleens, tibias, lungs, livers, and
kidneys were extracted and snap frozen in liquid nitrogen and
stored at -80°C. Non-immunized Lewis male and female rats were
used as the control (n=10). All procedures and experimental
protocols were performed in accordance with the Guide for the
Care and Use of Laboratory Animals published by the U.S.
National Institutes of Health and were approved by the relevant
local authorities (Landesamt für Gesundheit und Soziales).

Cardiac Magnetic Resonance Imaging
Cardiac function was evaluated by electrocardiographically
triggered cardiac magnetic resonance imaging (CMR) as described
in an earlier study (13). Left ventricular ejection fraction, end-
diastolic volume, end-systolic volume, and cardiac output were
measured before, 14 days, and 21 days after immunization.

Analysis of Heart Weight to Body
Weight Ratio
Body weight (BW) was measured before performing CMR. After
euthanasia, the hearts without atria were weighed, and the
relative heart weight (HW) to body weight (BW) ratio (HW/
BW) was calculated as described in (13).

Analysis of Muscle Hypertrophy and
Immune Cell Infiltrate in Heart Tissue
Using the H&E staining, heart muscle hypertrophy score and the
amountof immunecell infiltrateswascounted inmyocardiumfrom
male and female immunized and non-immunized rats (n=12).
May 2021 | Volume 12 | Article 686384
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Immunohistochemistry
Paraffin-embeddedcardiac tissue sectionswere incubatedwithanti-
arginase 1 (clone N-20, 1:100, Santa Cruz, USA) primary antibody
followed by incubationwith secondary antibody biotinylated rabbit
anti-goat (1: 400, Dianova, Germany). Biotin was detected with
alkaline phosphatase-labelled streptavidin (Agilent, USA) and
visualized using RED (Agilent, USA) as a chromogen. Proteins
and enzymes were inactivated with heat and alkaline pH prior to
incubation with anti-CD68 (1:250, Amsbio #1518), followed by
incubation with Alexa488-labelled secondary antibody (1:400,
donkey anti-rabbit, Invitrogen, Germany). DAPI (Sigma,
Germany) was used to stain nuclei and sections mounted with
Fluoromount-G (Southern Biotech, USA). Negative controls were
performed by omitting the primary antibodies. Images were
acquired with an AxioImager Z1 (Zeiss MicroImaging GmbH,
Germany). All evaluations were performed in a blinded manner.

5 µm paraffin-sections of rat LV myocardium were stained
with picrosirius red to obtain collagen content (52).

RNA Extraction and Quantitative
Real-Time PCR
The total RNA from cardiac rat tissue was isolated with RNA-Bee
(Amsbio, UK) and a quantitative real-time PCR was performed
with Brilliant SYBRGreen qPCRmaster mix (Applied Biosystems,
USA). The relative amount of target mRNA was determined using
the comparative threshold (Ct) method as previously described
(53). The mRNA contents of target genes were normalized to the
expression of hypoxanthine phosphoribosyl transferase (HPRT).

Protein Extraction and Immunoblotting
LVmyocardium frommale and female EAM rats was homogenized
inLaemmli buffer (253mMTris/HCLpH6.8, 8%SDS, 40%glycerin,
200mM DTT, 0.4% bromophenol blue) (54). Proteins were
quantified with the BCA Assay (Thermo Scientific Pierce Protein
Biology, Germany). Equal amounts of total proteins were separated
on SDS-polyacrylamide gels and transferred to a nitrocellulose
membrane. The membranes were immunoblotted overnight with
the following primary antibodies: Col3A1 (1:400, Santa Cruz,
USA), ERK (1:1000, Santa Cruz, USA), p-ERK (1:2000, Santa
Cruz, USA), p38 (1:500, Santa Cruz, USA) and p-p38 (1:500,
Santa Cruz, USA). Equal sample loading was confirmed through
an analysis of actin (1:1500, Santa Cruz, USA). Immunoreactive
proteins were detected with ECL Plus (GE Healthcare, UK) and
quantified with ImageLab (Bio-Rad Laboratories, USA).

Statistical Analysis
All data are given as mean ± SEM. The data were evaluated with
the non-parametric Mann-Whitney test for two independent
groups or with two-way ANOVA analysis. Statistical analyses
were performed with GraphPad Prism 5 (GraphPad Software,
USA). Statistical significance was accepted when p < 0.05.

RESULTS

Impaired Cardiac Function in Male EAMRats
Male rats showed a decline in stroke volume 21 days after
immunization with cardiac myosin and CFA (p< 0.05), while no
Frontiers in Immunology | www.frontiersin.org 3
significant changes in female rats were detected (p> 0.05) (Figure
1A). Ejection fraction and cardiac output were significantly
decreased in EAM male rats at 21 days after immunization in a
sex-dependent manner (p< 0.05) (Figures 1B, C).

While male EAM rats had higher body and heart weights than
female EAM rats (p< 0.05) (Supplementary Figures 1A, B), the
relative heart weight to body weight ratio did not vary between
sexes in the EAM rats (p> 0.05) (Supplementary Figure 1C).

The spleen, liver, and kidneys were significantly heavier in
male EAM rats when compared to females, while the weight of
the lungs was similar in both sexes (p< 0.05 and p> 0.05,
respectively) (Supplementary Figures 1D–G).

CD68+ ArgI+ Macrophages Are Increased
in Myocardial Tissue in Female EAM Rats
EAM rats did not show a higher immunohistochemical score for
heart muscle hypertrophy when compared to healthy rats (p>
0.05) (Figure 2A). Despite an increased number of infiltrates
detected both in male and female myocardial tissue after
immunization (p< 0.01) (Figure 2B), female EAM rats showed
significantly fewer immune cell infiltrates than male EAM rats
(p< 0.05) (Figure 2B).

The number of cardiac CD68+ immune-reactive macrophages
was similar in male and female EAM rats (p> 0.05) (Figure 2C).
However, female EAM hearts had an increased number of cardiac
anti-inflammatory CD68+ ArgI+ macrophages (p< 0.05) (Figure
2D), indicating an enhanced infiltration of M2 associated
macrophages in females.

Male EAM Rats Show More Fibrosis
in Myocardial Tissue
Toexplore sexdifferences incollagenexpressionandfibrosis formation
in EAM rats, the RNA and protein expression of collagen (Col3A1,
Col1A1, Col4 and Col6), matrix metallopeptidase (MMP9), tissue
metallopeptidase inhibitor1 (TIMP1)andthepro-fibrotic factor,TGF-
b were examined.

RNAandproteinCol3A1 expressionwas significantly increased
in the heart of EAM rats when compared to healthy controls in a
sex-dependentmanner (p< 0.05 and p> 0.05, respectively) (Figures
3A, B). Female EAM hearts had significantly less Col3A1 than
males (p< 0.01 and p< 0.05) (Figures 3A, B). In accordance with
these data, immunized male rats showed significantly higher
amounts of fibrosis in comparison to female EAM hearts or non-
immunized male hearts (p< 0.05) (Figure 3C).

Col1A1 mRNA expression was also significantly up-regulated in
hearts from male but not female immunized rats (p< 0.05)
(Supplementary Figure 2A). No changes in Col4 and Col6
expression were detected in EAM hearts (p> 0.05) (Supplementary
Figures 2B, C). MMP-9 mRNA expression was up-regulated in
female EAMhearts in comparison tomale immunized rats (p< 0.05)
(Supplementary Figure 2D). In addition, TIMP-1 expression was
significantly up-regulated in female EAM hearts (p< 0.05 vs male
EAM hearts) (Supplementary Figure 2E). Moreover, immunized
female rats showed a significantly decreased TGF-b mRNA
expression when compared with male immunized rats (p< 0.01)
(Supplementary Figure 2F).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barcena et al. Sex Differences in Cardiac Inflammation
A B C

FIGURE 1 | Cardiac function in EAM rats. Cardiac function parameters from the left ventricle were measured by CMR. (A) Stroke volume (SV) (A), ejection fraction
(EF) (B), and cardiac output (C) were assessed before immunization, 14, and 21 days after immunization with cardiac myosin and CFA in male and female rats (n= 9-21).
Data are shown as mean ± SEM. *p < 0.05.
A B

C D

FIGURE 2 | Increased number of cardiac CD68+ ArgI+ macrophages in female EAM rats. Immunohistochemical analysis of heart muscle hypertrophy (A),
myocardial immune infiltrates (B), CD68+ immune-reactive cells (C), and CD68+ ArgI+ cells (D) in myocardial tissue in male and female EAM animals. Data are
shown as mean ± SEM (n= 4-12). *p < 0.05, **p < 0.01. Representative images of cardiac cryosections stained with antibodies against CD68 (C) and CD68 and
ArgI (D) in myocardial tissue in male (♂) and female (♀) EAM animals (n= 4-12). Magnification 200x.
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Sex Differences in the Inflammatory
Response in the EAM Model
Sex differences in the inflammatory response in myocarditis have
been documented in both human and animal models (3). Both
ERK and p38 activation are modulated via ER activation (55)
and play a crucial role in the polarization of pro-inflammatory
macrophages (56). Thus, we examined whether ERK and/or p38
activation (phosphorylation rate) are impaired in EAM hearts in
a sex-dependent manner.

ERK phosphorylation was significantly increased in both
male and female EAM rats (p< 0.05), while the amount of total
ERK was unaffected (p> 0.05) (Figure 4A). In accordance with
these findings, the pp38/p38 ratio was significantly increased in
EAM rats in both sexes (p< 0.05) (Figure 4B). No significant
changes in the p38 expression in EAM rats were found (p> 0.05)
(Figure 4B).

The mRNA expression of the pro-inflammatory marker TLR4
was significantly increased in both male and female hearts from
EAM rats when compared to healthy hearts (p< 0.05) (Figure 5A),
however TLR4 mRNA was significantly up-regulated in male
EAM hearts in comparison to female EAM hearts (p< 0.05)
(Figure 5A). Furthermore, the pro-inflammatory markers c-fos,
IL-6, iNOS, and IL-1b were only up-regulated in hearts frommale
but not female EAM rats (p< 0.05) (Figures 5B–E). In accordance
with these data, IL-10 mRNA expression was significantly up-
regulated in immunized female rats in comparison to immunized
Frontiers in Immunology | www.frontiersin.org 5
male rats (p< 0.01) (Figure 5F). The expressions of TNF-a, NFkB,
c-jun, and STAT1 were unchanged in both sexes after
immunization (p> 0.05) (Supplementary Figures 3A–D).
DISCUSSION

In the current study, we investigated sex-dependent alterations in
inflammation, collagen deposition and fibrosis formation in EAM
rats. The main findings are: 1) Cardiac function was preserved in
female rats after immunization, while the cardiac function was
impaired in male EAM rats; 2) the number of cardiac anti-
inflammatory CD68+ ArgI+ macrophages was only increased in
female EAM rats; 3) collagen deposition and pathological fibrosis
was only enhanced in hearts from male immunized rats; 4) pro-
inflammatory mediators were significantly altered only in male
EAM hearts. To summarize, an impaired inflammatory response
and an exaggerated collagen deposition affecting the cardiac
function were revealed in male EAM rats, while females
demonstrated a protective response to adjuvant-induced EAM.

To the best of our knowledge, this is the first study to
demonstrate sex differences in the inflammatory stage and in
fibrosis formation, with a decline in cardiac function in an EAM
rat model.

In clinical setting, men are more likely to develop myocarditis
and DCM than women (17, 18, 57–59). More pronounced
A B

C

FIGURE 3 | Male EAM rats develop more fibrosis in myocardial tissue. Analysis of Col3A1 mRNA (A) and protein expression (B) in cardiac tissue from control or
EAM, male (♂) and female (♀). Data are shown as the mean ± SEM (n= 4-12). *p < 0.05, **p < 0.01. Representative imaging of western blot analysis; the lanes were
run in the same gel. All data were normalized to the corresponding control and expressed in relative units (r.u.). (C) Representative Sirius red–dyed staining of cardiac
tissue of 6 mm from male (♂) and female (♀) animals and corresponding statistics showing enhanced fibrosis in EAM rats (n= 4-12). Magnification 100x.
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A B

FIGURE 4 | Sex-independent ERK and p38 activation in the EAM model. Western blot analysis of pERK/ERK ratio (A) and pp38/p38 ratio (B) in cardiac tissue
lysates from control or EAM, male (♂) and female (♀). Data are shown as the mean ± SEM (n= 5-12). *p < 0.05. Representative imaging of western blot analysis; the
lanes were run in the same gel. All data were normalized to the corresponding control and expressed in relative units (r.u.).
A B C

D E F

FIGURE 5 | Sex differences in the inflammatory response in the EAM model. Real-time PCR analysis of TLR4 (A), c-fos (B), IL-6 (C), iNOS (D), IL-1b (E) and IL-10
(F) in rat cardiac tissue lysates from control or EAM, male (♂) and female (♀). Data are shown as the mean ± SEM (n= 5-12). *p < 0.05, **p < 0.01.
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inflammation and fibrosis have been reported in male
individuals with myocarditis than in female individuals (21,
22). A potential contribution of sex hormones may be a factor,
as the association of DCM and heart failure with high
testosterone levels has been previously reported (25, 60–62).
These sex differences in humans correspond to sex differences in
the mouse model. It is also interesting to note that female mice
develop less inflammation after infection with CVB3 by similar
viral replication (23, 24).

The EAM immunization protocol is used as a model of the
chronic inflammatory phase of post-viral myocarditis (13),
characterized by ongoing inflammation, fibrotic remodeling,
appearance of anti-myosin antibodies, and development of
DCM in the end-stage (63). Schmerler et al. have shown that
male EAM rats had decreased ejection fraction and stroke
volume (13). In keeping with those results, in our study the
ejection fraction and the stroke volume showed a prominent
decline in male EAM animals but no significant changes in
females were detected, suggesting a preserved cardiac function
in females.

Male EAM rats developed autoimmune myocarditis 21 days
after immunization with cardiac myosin and CFA in the paw,
accompanied by an increased amount of myocardial immune cell
infiltrates and CD68+ immune reactive cells (13). In accordance
with this study, we detected an increased number of immune cell
infiltrates in the heart of male rats after immunization. In female
EAM rats, although the infiltrates in the myocardial tissue were
increased, it was significantly less than in male rats, indicating a
weaker immune response in females.

Macrophages are the central regulator of the immune system in
the heart in a normal state as well as during cardiac inflammation
(64), and their crucial role in pro-fibrotic processes during chronic
inflammationhasbeen reportedelsewhere (65).Thoughwe foundno
sex differences in the number of immune reactive CD68+
macrophages in our EAM model, hearts from female EAM rats
were infiltrated with an increased amount of anti-inflammatory
CD68+ ArgI+ macrophages, suggesting that a predominant
phenotype in females is alternative activated macrophages (M2)
that favor an anti-inflammatory environment thus attenuating
inflammation in female hearts in autoimmune myocarditis.
However, M2 macrophages seem to be involved in the production
of collagen and fibrosis formation (66), associated with an increased
arginase activity (67). In agreement with this, sex differences in viral
myocarditis and post-myocarditis complications, e.g., development
of cardiac autoimmunity andDCM, are not caused by the virus itself,
but rather by sex-related differences in the immune response (11).
Moreover, Fairweather et al. have shown that, in a viral induced
myocarditis model, the detrimental immune response in male
individuals is driven by a predominant M1 response, while female
animals show a stronger M2 response (38, 68). Our results suggest
thatmacrophage polarization plays a crucial role in the development
of sex differences in cardiac inflammation. The activation of the M2
response counteracts the detrimental effects of the pro-inflammatory
macrophage polarization during acute inflammation, suggesting that
a predominant M2 response is cardio protective (42). Our results
indicate a pro-inflammatory M1-mediated and M2-mediated
Frontiers in Immunology | www.frontiersin.org 7
anti-inflammatory immune reaction in the heart of male and
female rats, respectively.

Chronic activation of the inflammatory response leads to
increased collagen deposition and pathological fibrosis is part of
many diseases including myocarditis (69). Here it is important to
remember that macrophages play a key role in the regulation of
fibrosis (70) and activate fibroblasts via TGF-b, platelet-derived
growth factor (PDGF) and TNF-a (47, 48). In our study, we
detected an increased expression of Col3A1 and Col1A1 in the
cardiac tissue from male EAM rats, while female EAM rats
expressed similar amounts of Col3A1 and Col1A1 as healthy
rats. In accordance, the anti-fibrotic factor, TIMP1 was up-
regulated in immunized female rats, while the pro-fibrotic
factor, TGF-b was decreased in females. Additionally, male
EAM rats develop pathological fibrosis in the heart after
immunization, while female EAM rats do not, suggesting that
they undergo a different, fibrosis-independent, immune response.
Indeed, severe fibrosis was previously reported in hearts from
males with EAM (13), which may potentially be caused by
increased testosterone levels (25–28, 71).

Enhanced ERK and p38 activity was detected in EAM rats in
comparison to non-immunized rats of both sexes, arguing that
other cascades are involved in activation of pro-inflammatory
mediators in male EAM rats. In fact, a stronger M1 response and
altered pro-inflammatory mediators were demonstrated solely in
male animals. Male EAM rats showed an increased expression of
TLR4, IL-6, c-fos, and iNOS when compared to healthy animals,
while no significant changes were detected in female EAM rats,
indicating that females did not develop a pro-inflammatory
response after immunization. In accordance, Roberts et al.
demonstrated sex-differences in the cardiac TLR4 expression in
CVB3 infected mice, increasing the pathogenicity in male but not
female infected mice (72). Of note, c-fos is a key transcription
factor for the M1 spectrum, and iNOS is a signature M1 enzyme,
reinforcing the observation of sex-dependent macrophages
polarization in EAM (42, 73, 74).

Fairweather et al. have proposed a pivotal role for sex hormones
in the sex-related differences in cardiac inflammation (75). While
estrogen has cardio-protective properties in females, characterized
by reducing cardiomyocyte apoptosis, counteracting fibrosis (76,
77), and deactivating cellular pathways that induce hypertrophy
(17, 78, 79), testosterone increased cardiac inflammation in a
myocarditis mice model (24) and encouraged a M1 response of
macrophages inmale individuals (25). Moreover, Koenig et al. also
reported pro-inflammatory actions of androgens and anti-
inflammatory actions of estrogen in CVB3 induced experimental
myocarditis (80). Recent studies have also demonstrated that
estrogen directly regulates macrophage polarization in different
pathological tissue states (81–83), suggesting that E2 is directly
involved in the polarization into M2 macrophages in female EAM
rats. However, the spectrum of macrophage phenotypes to be
researched is larger (42) and the role of sexual hormones should
be investigated in the EAMmodel more in depth.

In conclusion, the present study revealed that autoimmune
myocarditis is associated with an increased pro-inflammatory
response in males, leading to fibrotic formation, while in females
May 2021 | Volume 12 | Article 686384
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the model is associated with a muted pro-inflammatory
response, balanced immune-regulation, and preserved
cardiac function.
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Supplementary Figure 1 | Sex differences in heart weight to body weight ratio.
Body weight (BW) (A) and heart weight (HW) (B) and relative heart weight to body
weight (HW/BW) (C) were measured 21 days after immunization with cardiac
myosin and CFA. In addition, the weight from spleen (D), lung (E), liver (F), and both
kidneys (G) was assessed 21 days after immunization with cardiac myosin and CFA
(n= 4-12). Data are shown as mean ± SEM. *p< 0.05, **p< 0.01.

Supplementary Figure 2 | Sex differences in the expression of pro- and anti-
fibrotic factors in EAM. Real-time PCR analysis for Col1A1 (A), Col4 (B), Col6 (C),
MMP9 (D), TIMP1 (E) and TGF-b (F) performed with rat cardiac tissue from control
or EAM male (♂) and female (♀). Data are shown as the mean ± SEM (n= 4-12). *p<
0.05, **p< 0.01.

Supplementary Figure 3 | TNF-a and NFkB are not increased in EAM. Real-time
PCR analysis for TNF-a (A), NFkB (B), c-jun (C) and STAT1 (D) performed with rat
cardiac tissue from control or EAM, male (♂) and female (♀). Data are shown as the
mean ± SEM (n= 5-12).
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