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Spaceflight can be associated with sleep loss and circadian misalignment as a result of 
non-24 h light-dark cycles, operational shifts in work/rest cycles, high workload under 
pressure, and psychological factors. Head-down tilt bed rest (HDBR) is an established 
model to mimic some of the physiological and psychological adaptions observed in 
spaceflight. Data on the effects of HDBR on circadian rhythms are scarce. To address 
this gap, we analyzed the change in the circadian rhythm of core body temperature (CBT) 
in two 60-day HDBR studies sponsored by the European Space Agency [n = 13 men, 
age: 31.1 ± 8.2 years (M ± SD)]. CBT was recorded for 36 h using a non-invasive and 
validated dual-sensor heatflux technology during the 3rd and the 8th week of HDBR. Bed 
rest induced a significant phase delay from the 3rd to the 8th week of HDBR (16.23 vs. 
16.68 h, p = 0.005, g = 0.85) irrespective of the study site ( p = 0.416, g = −0.46), 
corresponding to an average phase delay of about 0.9 min per day of HDBR. In conclusion, 
long-term bed rest weakens the entrainment of the circadian system to the 24-h day. 
We attribute this effect to the immobilization and reduced physical activity levels associated 
with HDBR. Given the critical role of diurnal rhythms for various physiological functions 
and behavior, our findings highlight the importance of monitoring circadian rhythms in 
circumstances in which gravity or physical activity levels are altered.

Keywords: inactivity, spaceflight, medical care, deconditioning, countermeasure, core body temperature

INTRODUCTION

The entrainment of the circadian timing system to the 24-h solar day is essential for various 
physiological and psychological functions. Circadian misalignment can impair cognitive and 
physical performance and lead to considerable negative long-term consequences on mental 
well-being and health (Thun et  al., 2015; James et  al., 2017; Xie et  al., 2019; McGowan et  al., 2020). 
Shift work, transmeridian flights, and spaceflight can challenge the temporal adaptation of the 
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circadian system because of misalignments between the timings 
of the central clock (suprachiasmatic nucleus within the 
hypothalamus), peripheral clocks (tissue and organ systems), 
and external cues, i.e., “zeitgeber” (Baron and Reid, 2014; 
Roenneberg and Merrow, 2016; Dibner, 2020).

An increasing body of research shows that non-photic 
stimuli related to specific behaviors such as sleep (Crowley 
et  al., 2015), regular mealtimes (Lewis et  al., 2020), social 
routines (Mistlberger and Skene, 2004), and exercise (Atkinson 
et  al., 2007) can serve as important cues for the circadian 
entrainment. Whereas improvements in performance and 
health by positive interactions of exercise with the circadian 
system are gaining recognition (Lewis et  al., 2018), the 
effect of reduced physical activity and immobilization on 
circadian rhythms has so far received little attention. In the 
clinical setting, bed rest is used to address various medical 
conditions, often as an initial or prophylactic treatment 
following a medical intervention (Allen et  al., 1999). There 
is evidence that patients treated in intensive care units (ICU) 
are particularly vulnerable to disrupted circadian rhythms 
(Papaioannou et  al., 2014; Oldham et  al., 2016). Whether 
bed rest contributes to circadian disruptions in ICU patients 
remains to be  determined because the patients’ circadian 
rhythms can be affected by environmental factors and medical 
conditions including illness characteristics, delirium, 
medication, altered light-dark cycles, and noise (Korompeli 
et  al., 2017; Telias and Wilcox, 2019).

Space agencies have been using head-down tilt bed rest 
(HDBR) to simulate critical physiological adaptations that 
astronauts encounter during spaceflight (Hargens and Vico, 2016; 
Pandiarajan and Hargens, 2020). Given the highly controlled 
and standardized protocols of this ground-based spaceflight analog 
investigating healthy people as astronaut surrogates (Sundblad 
et al., 2016), they overcome several confounders typically associated 
with clinical studies. They could play an important role in 
elucidating the effects related to bed rest on the circadian timing 
system. Circadian rhythms tend to phase shifts in response to 
HDBR (Samel et  al., 1993; Monk et  al., 1997; Hurwitz et  al., 
2004; Mendt et  al., 2017). However, these studies comprised 
small sample sizes and differed in duration, data collection 
schedules, and circadian variables. To verify whether prolonged 
bed rest induces a robust effect on the circadian phase, 
we  combined data on core body temperature (CBT) profiles 
collected at two different study sites, each investigating the effects 
of 60 days of HDBR. This was possible because the methodological 
approach for determining the circadian phase of CBT was identical 
across both study sites. We hypothesized that the lack of physical 
activity and absence of postural changes (i.e., reduction of the 
diurnal variations in rest/activity and sleep/wake cycles) weakens 
the circadian entrainment as indicated by a phase delay of CBT.

MATERIALS AND METHODS

Study Design
The experiments were performed as part of the following two 
60-day HDBR studies sponsored by the European Space Agency: 

(1) the “2nd Berlin BedRest Study” (BBR2-2), carried out at  
Charité – Universitätsmedizin Berlin, Germany in 2007/2008; 
and (2) “Effects of a nutritional cocktail consisting of anti-
oxidant and anti-inflammatory supplements to prevent the 
deconditioning induced by 60  days of antiorthostatic bed rest” 
(Cocktail) performed at the Space Clinic of the Institute of 
Space Medicine and Physiology (MEDES-IMPS, Rangueil 
Hospital) in Toulouse, France in 2017. The primary objective 
of these studies was to assess the efficacy of a specific 
countermeasure protocol to prevent muscle and bone loss 
(resistive exercise, BBR2-2; antioxidant/anti-inflammatory 
supplement, Cocktail) compared to a control group exposed 
to bed rest only. Details related to the study designs can 
be  viewed elsewhere (Belavý et  al., 2010; Arc-Chagnaud et  al., 
2020). The environmental conditions (i.e., HDBR without 
countermeasure protocol) were comparable across both study 
sites. Participants remained in six-degree HDBR for 24  h/day 
during the entire bed rest period. Physical activities were limited 
to a minimum and performed in a lying position, including 
eating and personal hygiene. Participants were accommodated 
in single or double bedrooms with windows. Room temperatures 
ranged between 20 and 25 °C, humidity between 30 and 50%, 
and normobaric atmospheric pressures between 1010 and 
1025  hPa. Regular sleep-wake cycles were maintained by a 
non-temporal isolated and conventional day/night cycle (natural 
daylight, domestic light) with lights off at 11 pm and scheduled 
wake-up between 6:30 and 7:00  am. In addition, any activity 
that interfered with sleeping was not allowed. The diet was 
carefully controlled and served on a fixed schedule three times 
per day. During their leisure time, participants had access to 
various media (reading, games, video, radio, and internet), 
and could communicate with family and friends via phone 
or email.

Experimental Design
To establish the effect of HDBR on circadian rhythms per se, 
data from participants receiving any intervention were excluded 
from the data analyses. The data collection schedules varied 
between studies. To pool the data across the two sites, 
we  identified those time points that were characterized by 
acceptable overlap. No data on CBT profiles were acquired 
before or after HDBR in the BBR2-2 experiment, limiting a 
comparison of CBT profiles at baseline and recovery. In the 
Cocktail experiment data collection during HDBR was performed 
in two sessions, i.e., on days 19 and 52 of HDBR. Next, 
we  identified comparable time points in the BBR2-2 study in 
the 3rd and 8th  week of HDBR, which corresponded to data 
collections on days 21 and 49. We  then extracted and limited 
our data analyses to these time points (days 19 and 52 for 
Cocktail, and 21 and 49 for BBR2-2) to ensure the comparability 
of the data collected at the two different sites, and strengthen 
the primary objective of the study. First, continuous CBT 
measurements performed during the baseline data collection 
phase of bed rest studies are characterized by varying levels 
of physical activity and postural changes, which may potentially 
jeopardize the data quality for determining circadian rhythms 
in CBT (Waterhouse et  al., 2005). Second, the first weeks of 
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HDBR are prone to various adaptations that may confound 
circadian effects associated with prolonged bed rest. For 
instance, stress markers are significantly elevated after one week 
of HDBR (Rai and Kaur, 2011). Likewise, symptoms of 
discomfort and sleep difficulties have been described during 
the first week of HDBR (Meck et  al., 2009). Therefore, using 
the data of the third week of HDBR as a baseline was 
considered a robust reference that allows assessing the  
change of the circadian rhythm of CBT in response to 
prolonged HDBR.

Participants
Nineteen healthy men (BBR2-2: n  =  9, Cocktail: n  =  10) 
participated in 60 days of bed rest and were not exposed 
to any countermeasure protocol during HDBR. All participants 
had no history or physical signs of chronic diseases, sleep 
disorders, psychological, neuromuscular, hormonal 
disturbances, or addictions (alcohol, medication, or drugs) 
before entering the study. Each study was approved by the 
local ethics committee (BBR2-2: Charité – Universitätsmedizin 
Berlin, Cocktail: CPP Sud-Ouest et Outre-Mer I in Toulouse). 
All participants were informed about the purpose, experimental 
procedures, and risks before giving their verbal and written 
informed consent.

Data Collection
Core body temperature was estimated non-invasively from 
the skin surface using a dual-sensor heatflux technology 
(Gunga et  al., 2008; Uth et  al., 2016). Data were collected 
for 36  h with a sampling rate of 0.5  Hz and all recordings 
started in the evening. The heatflux-based approach for 
determining CBT overcomes several challenges associated 
with standard CBT recording techniques, including but not 
limited to invasiveness, discomfort, compliance, and hygiene 
issues. The methodology has been shown to be  well accepted 
for continuous CBT recordings in astronauts before, during, 
and after spaceflight (Stahn et  al., 2017). Details about the 
underlying biophysical model of the sensor are reported 
elsewhere (Werner and Gunga, 2020). Briefly, the sensor 
calculates CBT from two temperature sensors separated by 
an insulating disk with a known heat-transfer-coefficient. The 
sensor was positioned at the participant’s forehead above the 
right eyebrow underneath the hairline and connected to a 
low battery-powered mobile monitoring system (HealthLab 
System, Koralewski Industrie Elektronik, Hambühren, 
Germany). Data were stored on a replaceable flash disk within 
the monitoring system and transferred to a personal computer. 
In BBR2-2, the so-called Double Sensor was used to record 
CBT, whereas a newer generation of this sensor (Tcore™) 
was used in the Cocktail study (Drägerwerk AG & Co. KGaA, 
Lübeck, Germany). In contrast to the Double Sensor, the 
Tcore™ sensor consists of a flexible self-adhesive material, 
improving the fit to the skin at the forehead, and increasing 
comfort during sleep. Both sensors have been found to record 
CBT accurately in clinical settings (Kimberger et al., 2009, 2013; 
Soehle et  al., 2020). Recently, the technology and the 

measurement site have been found to provide a reliable 
estimate of the rectal temperature rhythm during HDBR 
(Mendt et  al., 2017).

Data Analysis
Data Preprocessing
To ensure data quality, all 36-h temperature recordings were 
visually inspected prior to analysis. Artifacts related to hygiene 
activities and signal errors were manually excluded. Since the 
start of the recordings varied, the temperature profiles were 
centered, i.e., data from 10  pm to 6  am  the day after (32  h) 
were extracted from the 36-h temperature records, and then 
averaged over 6-min intervals. To evaluate temporal changes 
in response to HDBR, temperature profiles were subjected to 
the cosinor analysis using a cosine curve with a period of 
24 h (Cornelissen, 2014). All cosine fits confirmed the presence 
of rhythmicity in the 32-h temperature profile (p  <  0.0001). 
Each time series was quantified by the fitted curve parameters 
mesor (i.e., mean of the fitted curve), amplitude (i.e., half 
the difference between highest and lowest value of the fitted 
curve), and acrophase (i.e., time of highest value of the 
fitted curve).

Statistical Analyses
Rhythm parameters (mesor, amplitude, and acrophase) were 
summarized as means and their nonparametric bootstrap 95% 
CI (5,000 bootstrap resamples) unless stated otherwise. After 
checking the normality and homogeneity of the residuals 
using visual inspection (quantile-quantile plots), differences 
between the 3rd  week and 8th  week of HDBR were assessed 
by a two-way ANOVA with Time as a within-subject factor 
(levels: 3rd  week, 8th  week) and Site as a between-subject 
factor (levels: BBR2-2, Cocktail). Effect sizes were reported 
as Hedges’s g and their 95% CI using bootstrapping (Kirby 
and Gerlanc, 2013). The level of significance was set at 
α  =  0.05 (two-sided) for all testing. All statistical analyses 
and graphical illustrations were carried out using “R” version 
3.6.1 (R Core Team, 2019).

RESULTS

Two out of the 19 participants did not complete the CBT 
sessions, and data of four participants (two for BBR2-2 and 
Cocktail, respectively) contained less than 75% of the 32-h 
recording. These data were excluded so that the final data set 
comprised complete recordings for 13 participants (BBR2-2: 
n = 5, Cocktail: n = 8). The final temperature profiles contained 
97% [91–100%; median (interquartile range)] of the data of 
a 32-h recording [BBR2-2: 95% (89–99%), Cocktail: 98% 
(94–100%)]. Baseline characteristics of the final participants 
are given in Table  1.

The average temperature profile in the 3rd and the  
8th  week of HDBR showed a clear daily rhythm with the lowest 
temperature in the early morning and the highest in the early  
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FIGURE 1  |  Changes in the circadian rhythm of CBT during head-down tilt bed rest (HDBR; n = 13 participants). (A) Average CBT profile in the 3rd week (black) 
and the 8th week (purple) of HDBR. Vertical bars denote SEs. (B) Mean phase and 95% CI are shown in black and for each study site in blue (Cocktail, n = 8) and 
yellow (BBR2-2, n = 5). (C) Changes in rhythm phase for each individual (dashed lines) during bed rest.

evening (Figure  1A). Descriptive means and their 95% CI for 
mesor, amplitude, and phase for the 3rd and 8th  week of HDBR 
are provided in Table 2. Mesor and amplitude remained unchanged. 
This was confirmed by the ANOVA model that did not reveal 
any significant main effects for Time and Site or their interaction 
(Table 3). We observed a phase delay from the 3rd [M = 16.23 h, 
95% CI (15.68, 16.79)] to the 8th  week [M  =  16.68  h, 95% CI 

(16.16, 17.16)] of HDBR. This change was quantified by a large 
and significant main effect for Time on the phase [p  =  0.005, 
g  =  0.85, 95% CI (0.15, 1.51); Table  3]. No significant main 
effect was found for Site, nor was there a significant interaction 
between Site and Time (Table  3). Figures  1B,C highlight the 
study site related and individual changes in circadian phase during 
HDBR. The acrophase in the BBR2-2 study was shifted compared 
to the Cocktail study (Figure  1B), which is likely to be  attributed 
to the wake-up time scheduled 0.5  h later in BBR2-2. Yet, both 
studies elicited similar phase shifts (BBR2-2: 37.8 min after 29 days 
(~1.4  min/day); Cocktail: 19.2  min after 32  days (~0.6  min/day); 
total group: ~0.9  min/day).

DISCUSSION

We investigated the effect of HDBR on the circadian rhythm 
of CBT in healthy men. Data were collected as part of two 

TABLE 1  |  Participant demographics at baseline.

BBR2-2 Cocktail BBR2-2 + Cocktail

Age (years) 28.2 ± 5.8 32.9 ± 9.3 31.1 ± 8.2
Weight (kg) 79.4 ± 5.3 73.6 ± 7.6 75.8 ± 7.2
Height (cm) 177.0 ± 3.2 175.6 ± 5.1 176.1 ± 4.3
Body mass index (kg/m2) 25.4 ± 2.0 23.8 ± 1.9 24.4 ± 2.0

Data are means ± SD. No significant differences between the BBR2-2 (n = 5) and the 
Cocktail (n = 8) study (all p ≥ 0.127, Wilcoxon’s signed rank test).
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independent bed rest studies conducted at different sites. 
We  observed a significant phase delay of CBT from the 3rd 
to the 8th week of HDBR. Moreover, this effect was comparable 
across study sites, suggesting a robust effect of bed rest per 
se on the circadian timing system.

Our findings are in line with previous short-term bed rest 
studies (≤17  days). Samel et  al. (1993) reported a phase delay 
of body temperature by 18  min during 7-day HDBR. Monk 
et al. (1997) assessed changes in rectal temperature in a 17-day 
HDBR study. At the end of bed rest (days 15–17), the phase 
of rectal temperature rhythm in seven men was delayed by 
approximately 40  min compared to days 5–7. Similar findings 
were found for melatonin secretion profiles. Following an 11-day 
HDBR study, the peak of melatonin secretion was delayed by 
16  min (Hurwitz et  al., 2004). They performed the initial data 
collection within the first days of HDBR (≤5 days) and investigated 
the effects of short periods of bed rest (≤12  days), resulting 
in a phase delay between ~1.3 and 4.0  min/day. In addition, 
we  recently published data from the BBR2-2 study showing 
that the circadian phase of rectal CBT is delayed by on average 
of 1  min/day during 50  days of bed rest (Mendt et  al., 2021). 
It can be  speculated that the effects observed during the first 
weeks of HDBR are related to the initial psychophysiological 
adaptations during bed rest. Psychological stress markers are 
significantly increased after one  week of HDBR compared to 

before bed rest (Rai and Kaur, 2011). Pains, aches, symptoms 
of discomfort, and sleep issues especially during the first week 
of HDBR, are often reported by participants (Meck et al., 2009). 
In the present experiments, however, the first data collection 
was performed after a minimum of 19  days of HDBR. The 
timing of these data collections argues against significant 
moderating and/or confounding effects on circadian rhythms 
related to sleep and psychophysiological stressors, and suggests 
that immobilization and reduced physical activity weakened 
the entrainment of the circadian system to the 24-h period.

In both experiments, we  used a non-invasive method for 
monitoring CBT. The average phase delay was considerably 
larger in the BBR2-2 experiment compared to the Cocktail 
experiment (1.4 vs. 0.6  min/day). We  attribute this difference 
to inter-individual responses to long-duration bed rest and 
potential sampling bias due to the small sample sizes. This 
notion is also supported by the visual inspection of individual 
data points. As shown in Figure  1C, the difference was 
substantially driven by a single participant of the BBR2-2 
experiment (BBR2-2 participant whose rhythm phase occurred 
earliest in the 3rd week). Excluding the data of this participant 
decreased the average phase delay from 1.4 to 0.9  min/day. 
As part of BBR2-2, we  also acquired temperature data using 
a rectal probe. These data were published elsewhere (Mendt 
et  al., 2021). To verify the impact of the aforementioned 
individual on the point estimate of the phase delay, we examined 
the circadian rhythms of rectal and heatflux CBT in the subset 
of the BBR2-2 participants reported in the present paper. 
We  observed similar phase delays irrespective of the CBT 
measurement (heatflux CBT: 1.4 min/day, rectal CBT: 1.7 min/
day). Further, excluding the above-mentioned participant with 
the extreme phase also led to a significant drop in the circadian 
phase shift of rectal CBT (heatflux CBT: 0.9  min/day, rectal 
CBT: 1.1  min/day).

The acrophase in BBR2-2 was delayed at both data collection 
points relative to the Cocktail experiment. It is possible that 
this discrepancy is related to the different day-night cycles. 
Participants in both studies were exposed to a 24-h  day-night 
cycle, but the “day” was shorter and the “night” longer in 
BBR2-2 (daytime: 7  am  to 11  pm) compared to Cocktail 
(daytime: 6:30  am  to 11  pm). Exposure to light levels in the 
morning (after CBT reaches its minimum) advances the circadian 
phase, whereas light exposure in the evening (before CBT 
reaches its minimum) delays the circadian phase (Lack and 
Wright, 2007). The participants in Cocktail were awakened 
earlier compared to BBR2-2, increasing the light exposure in 
the morning. As a result, the acrophase may have been advanced 
in the Cocktail experiment relative to the BBR2-2 experiment. 
Given that the data were not collected at identical time points 
across the year (e.g., first data collection took place in February 
for n  =  7 participants, in July for n  =  3 participants, and in 
October for n = 3 participants), it is also possible that seasonal 
effects may have affected our findings (Honma et  al., 1992; 
Meyer et  al., 2016; Stothard et  al., 2017). We  therefore rerun 
the models and included the days until/since the summer 
solstice as a covariate. Adjusting the data for the differences 
of seasons did not affect our findings (p  =  0.008).

TABLE 2  |  Effect of head-down tilt bed rest (HDBR) on core body temperature 
rhythm.

Parameter Site 3rd week 8th week

Mesor BBR2-2 36.73 [36.42, 37.10] 36.81 [36.60, 37.13]
Cocktail 36.87 [36.77, 36.96] 36.91 [36.82, 37.02]
BBR2-2 + Cocktail 36.82 [36.66, 36.97] 36.88 [36.76, 37.01]

Amplitude BBR2-2 0.52 [0.40, 0.63] 0.55 [0.47, 0.65]
Cocktail 0.48 [0.40, 0.57] 0.54 [0.44, 0.63]
BBR2-2 + Cocktail 0.50 [0.43, 0.57] 0.54 [0.47, 0.61]

Acrophase BBR2-2 16.44 [15.47, 17.51] 17.07 [16.40, 17.90]
Cocktail 16.11 [15.43, 16.71] 16.43 [15.79, 16.99]
BBR2-2 + Cocktail 16.23 [15.68, 16.79] 16.68 [16.16, 17.16]

Circadian parameters were determined by cosinor analysis with a 24-h cycle. Data were 
collected during the 3rd and the 8th week of two HDBR studies (BBR2-2: n = 5, 
Cocktail: n = 8). Data are means and their nonparametric bootstrapped 95% CIs.

TABLE 3  |  The effects of Time, Site, and their interaction on circadian 
parameters mesor, amplitude, and acrophase.

Parameter Effect F1,11 p Effect size g [95% CI]

Mesor Time 1.71 0.217 0.34 [−0.18, 0.82]
Site 0.64 0.441 0.43 [−0.63, 1.78]
Time × Site 0.13 0.722 −0.19 [−1.40, 0.89]

Amplitude Time 1.71 0.217 0.39 [−0.17, 0.95]
Site 0.10 0.759 −0.16 [−0.95, 0.61]
Time × Site 0.13 0.728 0.19 [−0.94, 1.21]

Acrophase Time 12.10 0.005 0.85 [   0.15, 1.51]
Site 0.72 0.416 −0.46 [−1.25, 0.35]
Time × Site 1.31 0.278 −0.61 [−1.64, 0.71]

Two-way ANOVA was performed using Time (3rd week, 8th week) as a within-subject 
factor and Site (BBR2-2, Cocktail) as a between-subject factor. F, F-statistic; p, p-value. 
Effect size is Hedges’s g and their bootstrapped 95% CI.
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Notably, the acrophase of CBT was delayed in both BBR2-2 
and Cocktail participants despite highly comparable experimental 
conditions and procedures. External cues in the present 
experiments such as strict sleep-wake/rest-activity cycles, regular 
day-night cycles [participants were exposed to daylight 
illumination corresponding to standard indoor light levels (i.e., 
100–500 lux)], and regular mealtimes are all well-known critical 
“zeitgeber” to synchronize and entrain the circadian rhythm 
to the 24-h  day-night cycle (Mistlberger and Skene, 2005). 
Non-photic behavioral “zeitgeber” have the potential to preserve 
the temporal adaptation of circadian rhythms to the 24-h  day 
irrespective of light levels (Klerman et  al., 1998; Wright et  al., 
2001). For instance, in a study employing light levels as low 
as 1.5 lux, the entrainment to a 24-h  day could be  maintained 
by scheduled sleep/wake (rest/activity) cycles (Wright et  al., 
2001). Yet, irrespective of these various non-photic and photic 
cues, our and previous data from HDBR studies observed a 
phase delay. Given that HDBR studies employed standard indoor 
light levels and followed strict 24-h  day/night (sleep/wake) 
cycles, we attribute the observed phase delays to bed rest rather 
than to the effects of altered light levels and/or non-photic cues.

Although, we observed a phase delay of the circadian rhythm 
of CBT in two standardized and independent HDBR studies 
our data are not without limitations. First, the use of short-
wavelength enriched light-emitting technologies such as laptops 
or smartphones was not restricted (except during night). Short-
wavelength light has been shown to induce a phase shift of 
circadian rhythms (Chang et  al., 2015). Second, our data do 
not allow any conclusions about the effects relative to before 
HDBR or recovery after the cessation of HDBR. We  also did 
not collect any physiological or neurobehavioral data to identify 
the relevance of the observed phase shifts. Investigation of the 
acute effects of horizontal bed rest (HBR) and HDBR on sleep 
revealed a decrease in slow-wave sleep with HDBR (Komada 
et  al., 2006; Boschert et  al., 2019). Data from long-duration 
bed rest studies showed that slow-wave sleep and total sleep 
time decreased after 21  days in HBR and HDBR (Gkivogkli 
et  al., 2016; Morrison et  al., 2017), suggesting that bed rest 
per se rather than tilted posture predominantly accounts for 
sleep disturbances. Circadian rhythms and sleep are tightly 
coupled (Van Someren, 2006; Cooper et  al., 2018). Circadian 
shifts are expected to affect sleep, particularly in the presence 
of fixed sleep/rest cycles prescribed in bed rest studies. This 
assumption is supported by data from Monk et  al. (1997) 
showing that a phase delay of rectal CBT was associated with 
a decrease in total sleep time at the end of a 17-day HDBR 
experiment. In addition to exploring the relationship between 
circadian disruptions and sleep in future studies, it will also 
be  important to identify the effects of circadian changes on 
behavior and cognition. Several studies have shown adverse 
effects of bed rest on brain function and cognitive performance 
(Lipnicki and Gunga, 2009; Brauns et  al., 2019; Friedl-Werner 
et  al., 2020; Basner et  al., 2021), mental health (Liu et  al., 
2012; Stavrou et  al., 2018), cardio-vascular changes (Solbiati 
et  al., 2021), and metabolic regulation (Dandanell et  al., 2016; 
Dirks et  al., 2016) that can be  associated with a lack of sleep 
(Mullington et  al., 2009; Anderson and Bradley, 2013; 

Goel et  al., 2013). To mitigate the adverse neurophysiological 
and psychological effects associated with circadian disruptions, 
effective countermeasures are needed to maintain the entrainment 
of central and peripheral clocks. In addition to melatonin 
supplementation and lighting interventions (Emens and Burgess, 
2015), physical exercise could be  a potent countermeasure to 
mitigate circadian disruptions (Thomas et al., 2020). We recently 
demonstrated that regular physical activity could counteract 
phase shifts in response to long-duration bed rest (Mendt et al., 
2021). Future studies need to verify the optimal timing, dose, 
and type of exercise and its combination with lighting protocols 
to support the entrainment of the circadian timing system 
during prolonged bed rest.

Taken together, our data demonstrate that bed rest induces 
a robust phase-delay effect on the circadian rhythm of CBT, 
as indicated by the average phase delay of about 1  min/day. 
This finding underlines the significance of physical activity 
and postural changes for the entrainment of the circadian 
system and highlights the need for preventive healthcare strategies 
to mitigate the risk of circadian disruptions when physical 
activity levels are limited over extended periods of time.
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