
Geometric Graphs:
Reachability, Long Trees and

Short Cycles

Dissertation zur Erlangung des akademischen Grades
„Doktorin der Naturwissenschaften“

von

Katharina Klost

vorgelegt am

Fachbereich Mathematik und Informatik der Freien Universität Berlin

2021

Betreuer und Erstgutachter: Prof. Dr. Wolfgang Mulzer
Zweitgutachter: Prof. Dr. Sergio Cabello
Datum der Disputation: 21.09.2021

i

Abstract
Given a set S of n point sites, a geometric graph is a graph with S as its vertex set
whose edges are drawn as line segments connecting the sites. The edges that are present
between these sites can be defined by geometric properties of the site set. When talking
about weighted edges, the weight of the edge connecting s and t is the Euclidean distance
between s and t. One such class of graphs are spanning trees of the point set. That is, an
acyclic graph defined on S such that all sites lie in the same connected component.

To define the second broad class of geometric graphs considered in this thesis, we
extend each site with a radius. In this setting the sites can also be interpreted as disks,
by using the site as the center. We consider two kinds of geometrically defined graphs
on these extended sites. The first are disk graphs D(S). In a disk graph two sites are
connected with an edge if and only if their corresponding disks intersect. The second
type of graphs are transmission graphs T (S). These can be seen as a directed version of
disk graphs. In a transmission graph a site s has a directed edge to a site t, if and only if
t is contained in the disk defined by s.

We consider three main types of problems on these graphs:

Triangles and Girth in Disk Graphs and Transmission Graphs We give algorithms
for finding a (shortest) triangle and more generally for finding short cycles. In general
graphs, finding substantially faster algorithms than the naive approach is notoriously
hard. However, better algorithms for special graph classes such as planar graphs exist
in the literature. In this thesis, we obtain similarly e�cient results for disk graphs and
for transmission graphs. More precisely, we show that in a transmission graph a triangle
can be detected and a shortest such triangle can be found in O(n logn) expected time.
Furthermore, the weighted girth of a disk graph can be found within the same time
bound. We also show that cycle with k edges in a transmission graph can be identified in
O(n logn) +n · 2O(k) expected time. For the results on transmission graphs, we develop
batched range query data structures that are of independent interest.

Dynamic Disk Graph Connectivity We consider the problem of designing data
structures that maintain a disk graph under the deletion of sites, while allowing interleaved
connectivity queries. First we consider the setting, where each site has a radius in the range
[1,Ψ] for some fixed value Ψ . In this scenario, we give a data structure that supports m
deletions in O

(
(n log5n+m log9n)λ6(logn) + n logΨ log4n

)
overall expected time, with

O
(logn

loglogn

)
query time, where λ6(n) is the length of a Davenport-Schinzel sequence of

order 6. If we consider disk graphs without bounding the maximal allowed radius, we

iii

obtain a data structure that supports m deletions in O
(
(n log6n+m log10n)λ6(logn)

)
overall expected time, with the same O

(logn
loglogn

)
time bound for queries.

Long Plane Trees We also consider spanning trees on the site set S. To be precise, we
aim to find a plane spanning tree TOPT of S that maximizes the total edge length |TOPT|.
Despite more than two decades of research, it remains open if this problem is NP-hard.

We take two approaches to the problem. The first is to follow the venue of approximation
algorithms which was also the focus of previous research. We describe a polynomial-
time algorithm to construct a plane tree TALG with diameter at most four and |TALG| ≥
0.546 · |TOPT|, where |TOPT| is the total edge length of an optimal plane spanning tree.
This constitutes a significant improvement over the state of the art. Second, we consider
exact polynomial time algorithms for trees of bounded diameter. We give an O(n4) time
algorithm for finding an exact solution for trees of diameter at most three and then extend
this algorithm to special trees of diameter at most four.

iv

Selbstständigkeitserklärung
Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dissertation
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel
angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die
wörtlich oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche
kenntlich gemacht. Diese Dissertation wurde in gleicher oder ähnlicher Form noch in
keinem früheren Promotionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich mich
einverstanden.

Berlin, den 30. Juni 2021

v

Acknowledgments
First of all I would like to thank my advisor Wolfgang Mulzer for making this thesis
possible on many levels. The advanced classes taught by him during my masters studies
strengthened my interest in theoretical computer science and during my time as a PhD
student, he always found a good balance between giving me freedom and guidance in
both research and teaching.

I would also like to thank Sergio Cabello for agreeing to be the second reviewer of this
thesis, especially considering my challenging time constraints.

I would like to thank all members of the theoretical computer science working group
for the pleasant work environment. In particular I thank them for the discussions during
lunch and co�ee round that were often about more than work. I would also like to thank
all people that o�ered to proofread this thesis.

I also thank the Berlin Mathematical School for providing travel funds, and Stefan
Felsner, my mentor in the BMS.

I would like to thank my coauthors, especially those involved in the results that are
presented in this thesis: Alexander, Haim, Kristin, Liam, Michael, Paul, Pepa, Sergio
and Wolfgang. During my time as a PhD student I had the opportunity to attend several
workshops all over the world. I would like to thank the organizers and participants of
the research stay in Sendai, and the DACH and TAUFU workshops for creating such a
pleasant research environment.

Outside of work, I would like to thank my friends for the occasionally needed distraction
from research and teaching, in particular I would like to thank Manuel and Kristin for
sharing the ups and downs of research and sometimes life with me.

A special thanks goes to my family and especially my parents for supporting me
throughout my entire life. Papa, I wish that I could share this step in my life with you.

Last but not least, I thank Jonas for more things than I could ever list here.

vii

Contents

Front Matter i

Abstract iii

Selbstständigkeitserklärung v

Acknowledgments vii

Contents x

1 Introduction 1
1.1 Thesis Organization . 1
1.2 Girth and Triangles in Disk Graphs and Transmission Graphs 2
1.3 Dynamic connectivity . 3
1.4 Long plane spanning trees . 5
1.5 Publications . 7

2 Preliminaries 9
2.1 Geometry, Graphs and Geometric Graphs 9
2.2 Computational Models . 13
2.3 Hierarchical Grids, Z-order and Compressed Quadtrees. 14
2.4 Canonical Decomposition . 18

I Disk Graphs and Transmission Graphs 21

3 Computing the Girth in Disk Graphs 23
3.1 Finding a (shortest) Triangle in a Disk Graph 23
3.2 Computing the Weighted Girth of a Disk Graph 27

4 Triangles and Cycles in Transmission Graphs 31
4.1 Dense Transmission Graphs can be Triangle Free 31
4.2 Finding a Triangle in a Transmission Graph 36
4.3 Finding the Shortest Triangle in a Transmission Graph 39
4.4 Finding a Cycle of Length k in a Transmission Graph 42

ix

Contents

4.5 Batched Range Searching . 50
4.5.1 Queries of Type (R1) . 51
4.5.2 Queries of Type (R2) . 54
4.5.3 Queries of Type (R2’) . 56

5 Dynamic Connectivity in Disk Graphs 59
5.1 Logarithmic Dependency on Ψ . 60
5.2 General Disk Graphs . 71

II Long Plane Trees 79

6 Approximating the Longest Tree 81
6.1 A Simple Approximation Algorithm . 81
6.2 A 2

3 -Approximation for Flat Sets . 83
6.3 A δ=̇0.5467-approximation for general sets 85

6.3.1 |TOPT| is Small or There are Sites Far Away 86
6.3.2 All Sites Lie in the Truncated Lens 89

6.4 Using Small Diameters for Approximation 99

7 Polynomial Time Algorithms for Special Cases 105
7.1 A Simple Greedy Algorithm Fails . 105
7.2 Finding the Longest Tree in a Convex Site Set 107
7.3 Finding the Longest Tree of Diameter Three 108
7.4 Extending the Approach to Special Trees of Diameter Four 113

8 Conclusion 121

Bibliography 125

Zusammenfassung 133

x

CHAPTER 1
Introduction

The connection between graphs and geometry goes beyond their common first letter.
Among the first problems that are now regarded as graph theoretic problems are the
problem of the bridges of Königsberg [Eul41] and the knights path problem [War23].
Both these problems are motivated by geometric descriptions, the map of Königsberg in
the former case and the possible fields on a chess board, a knight can visit in the latter
case. The first mention of the term graph was in an article connecting the valences of
atoms to algebraic structures [Syl78], which can also be seen as a geometrically inspired
application. Since its origins, the field of graph theory has developed towards the
combinatorics of graphs without considering underlying geometry, however geometric
concepts are still central to some aspects of it and there is a flourishing field of geometric
graph theory [Pac04]. In this thesis we focus on graphs that are defined by geometry.
In these graphs, the vertices are defined by a set of point sites in the Euclidean plane
and the edges are defined by the geometrical properties of these sites. The edges can be
naturally represented by straight line segments between the corresponding sites and their
lengths are determined by the lengths of these line segments.

1.1 Thesis Organization

We consider two main types of graphs that are defined on a set of point sites. These
graphs and other concepts that are used throughout the thesis, are formally introduced
in Chapter 2.

For the first type of graphs, considered in Part I, we augment the sites with a radius to
form a disk. We consider the disk graphs and transmission graphs defined by these disks.
In a disk graph, two sites are connected by an edge if and only if their associated disks
intersect. Transmission graphs can be seen as a directed version of disk graphs: there is
a directed edge between a site s and a site t if t lies in the disk defined by s. Even though
these graph classes are often motivated as a simple model for wireless networks [HS95],
the study of their properties has developed into an independent field. For both these
graphs we aim to design algorithms and data structures that use the underlying geometry
to achieve better time bounds than the best currently known bounds for general graphs.
In particular, our running times do not depend on the number of edges. We consider two
families of problems: algorithms for finding triangles and short cycles, and data structures

1

Chapter 1 Introduction

to dynamically maintain the connectivity information of a graph. In Chapter 3, we develop
an algorithm to find the shortest weighted cycle in a disk graph, while in Chapter 4, we
focus on transmission graphs and consider the problems of finding a shortest triangle
and a short cycle. In Section 4.5, we develop range searching data structures that are
used for the algorithms on transmission graphs. These data structures might also be of
independent interest. In Chapter 5 we give two decremental connectivity data structures
for disk graphs, one for the case of a bounded maximum radius and one for general disk
graphs.

The second type of graphs are spanning trees on a given site set. In Part II, we focus
on spanning trees of a site set whose embedded edges do not cross and whose total edge
length is maximized. As finding an exact solution to this problem is conjectured to be
NP-hard, we focus on approximation algorithms in Chapter 6 and on exact polynomial
time algorithms for special cases in Chapter 7. The thesis closes with some concluding
remarks in Chapter 8.

1.2 Girth and Triangles in Disk Graphs and
Transmission Graphs

Given a graph G with n vertices and m edges, the question if G contains a triangle is
one of the most basic algorithmic questions in graph theory, and many other problems
reduce to it [IR78; WW18]. The best known algorithms use fast matrix multiplication
and run in either O(nω) time or in O(m2ω/(ω+1)) time, where ω < 2.37287 is the matrix
multiplication exponent [AYZ97; IR78; Le 14]. Despite decades of research, the best
available “combinatorial” algorithm1 needsO(n3 polyloglog(n)/ log4n) time [Yu15], which
is only slightly better than checking all vertex triples. This lack of progress can be
explained by a connection to Boolean matrix multiplication: if there is a truly subcubic
combinatorial algorithm for finding triangles, there is also a truly subcubic combinatorial
algorithm for Boolean matrix multiplication [WW18]. Itai and Rodeh [IR78] reduced
computing the girth, that is the length of the shortest cycle, of an unweighted undirected
graph to triangle detection. For integer edge weights, Roditty and Williams [RW11] gave
an equivalence between finding a minimum weight cycle (the weighted girth) and finding
a minimum weighted triangle.

For the special case of planar graphs, significantly better algorithms are known. Itai
and Rodeh [IR78] and, independently, Papadimitriou and Yannakakis [PY81] showed that
a triangle can be found in O(n) time, if it exists. Chang and Lu [CL13] presented an O(n)
time algorithm for computing the unweighted girth. The weighted girth can be found in
O(n loglogn) time in both undirected and directed planar graphs [CL13; ŁS11].

Motivated by the vastly better algorithms for planar graphs, triangle detection and
girth computation in disk graphs was considered by Kaplan et al. [Kap+19; Kap+17].
They show that a triangle can be found in O(n logn) time, using a simple geometric
observation to relate disk graphs and planar graphs. By the same geometric observation it

1An algorithm is “combinatorial” if it does not need algebraic manipulations to achieve its goal.

2

1.3 Dynamic connectivity

is also possible to compute the unweighted girth in a disk graph in O(n logn) time. Their
method generalizes to finding a shortest triangle in a weighted disk graph in O(n logn)
expected time. By a reduction from ε-closeness [Pol17], all these bounds are optimal
in the algebraic decision tree model, a contrast to planar graphs, where O(n) time is
possible.

Results In this thesis, we extend the approach of Kaplan et al. to the weighted girth.
More specifically, in Section 3.2 we present an algorithm that computes the weighted girth
of a disk graph in O(n logn) expected time. For this result we also describe a method to
find a cycle that contains a given vertex in an abstract graph.

Furthermore, we consider the same problems in transmission graphs. In Section 4.1, we
first show that the favorable property connecting triangle-free disk graphs to planar graphs
does not extend to transmission graphs. Thus we consider the geometric properties of
directed triangles in transmission graphs and in Section 4.2 develop an algorithm to
identify such triangles in O(n logn) expected time. We extend this result to the weighted
version in Section 4.3, using similar ideas as Kaplan et al. [Kap+19]. In Section 4.4, we give
an algorithm that finds a cycle with at most k edges in O(n logn) +n ·2O(k) expected time.
For all these algorithms, we develop several new techniques for batched range searching,
using linearized quadtrees and three-dimensional polytopes to test for containment in the
union of planar disks. The range query data structures are described in Section 4.5.

1.3 Dynamic connectivity

Preprocessing a graph G in such a way that one can e�ciently determine if two vertices
lie in the same connected component is another fundamental problem in algorithmic
graph theory. If the graph is static, using breadth first search or depth first search to
identify all connected components allows to answer these queries in O(1) time after a
linear preprocessing time. If the graph is dynamic, the situation is more complicated. In
such a dynamic graph the connectivity queries are interleaved with update operations on
the graph. These updates can be the insertion or deletion of edges or vertices. When
having a fixed set of vertices and allowing the insertion of edges only, a disjoint-set data
structure solves the problem. Such a data structure can be implemented e�ciently to
achieve amortized time of O(1) for updates and O(α(n)) for queries, where α(n) is the
inverse Ackermann function [SS05].

If both edge insertions and deletions are allowed, Holm et al. [HdLT01] give the fastest
currently known data structure. The data structure achieves O

(logn
loglogn

)
query time and

O(log2n) amortized time for edge updates. If the underlying graph is planar, there is a
data structure by Eppstein et al. [Epp+92] with O(logn) amortized time for both queries
and updates. If the vertex set is considered to be dynamic, this is done by having a fixed
base set of m edges and activating or deactivating vertices and their incident edges. In
this setting, there is a data structure allowing vertex activation and deactivation with

3

Chapter 1 Introduction

O(m1/3 polylog(n)) amortized query and O(m2/3 polylog(n)) amortized update time by
Chan et al. [CPR11].

In Chapter 5, we study the dynamic connectivity problem on disk graphs. Note that
while the disk graph can be described by specifying the n sites, it might have Θ(n2) edges.
We consider two variants of disk graphs, based on the possible values for the radii. In
the first variant, the ratio Ψ between the largest and the smallest radius is bounded. The
second variant does not impose any restriction on the radii.

We assume that the site set S is dynamic in the sense that sites can be inserted and
deleted. At each site insertion or deletion, the edges incident to the updated site appear
or disappear in D(S). As the degree in D(S) is not bounded, each update can then
lead to O(n) edges changing in D(S). Thus, simply storing D(S) in a Holm et al. data
structure would lead to potentially superlinear update times and would be even slower
than recomputing the connectivity information from scratch.

For disk graphs with arbitrary radius ratio, Chan et al. [CPR11] give a data structure
with amortized O(n(1/7)+ε) query and O(n(20/21)+ε) update time for solving the dynamic
connectivity problem. Their approach uses similar ideas as their vertex update data
structure. This is still the best currently known connectivity data structure that allows
insertions and deletions for arbitrary disk graphs. However, their data structure handles
a more general setting, so there is hope that using the specific geometry of disk graphs
will lead to better results.

Indeed, there is a series of results on disk graphs that achieve polylogarithmic update
and query times. For unit disk graphs, Chan et al. [CPR11] observe that there is a
data structure with O(log10n) update and O

(logn
loglogn

)
query time. This time bound was

then improved by Kaplan et al. [Kap+21a] to O(log2n) amortized update and O
(logn

loglogn

)
amortized query time. In the case of bounded radius ratio, they showed that, using
bichromatic maximal matchings, there is a data structure with an expected amortized
O(Ψ 22α(n) log10n) update and O

(logn
loglogn

)
query time. They also give an algorithm with

an improved expected amortized update time of O(Ψ 2α(n) log10n), at the cost of an
increased O(logn) query time. All these data structures have in common, that they
define a proxy graph with a bounded number of edges. This proxy graph represents the
connectivity of the disk graph and can be updated e�ciently when sites are inserted and
deleted, by updating suitable auxiliary dynamic geometric data structures. To answer
queries the graph is additionally stored in a dynamic connectivity data structure for
general graphs. The queries are then performed on this connectivity data structure,
sometimes encapsulated in a geometric preprocessing step for each query. The time
bounds for updates and queries are then a combination of the time bounds for the
additional geometric data structures and the dynamic connectivity data structures.

Results In this thesis, we only consider the decremental setting in disk graphs. In this
setting, sites are only deleted from the set and never inserted. In the setting of bounded
radius ratio, in Theorem 5.9 we show that we can obtain a logarithmic dependency on Ψ

for the deletion of a site, with O
(logn

loglogn

)
query time. This can be achieved by defining a

4

1.4 Long plane spanning trees

suitable proxy graph based on a set of quadtrees on the set S. The proxy graph is then
stored in a Holm et al. [HdLT01] dynamic connectivity data structure. In order to update
the proxy graph in the Holm et al. data structure, the main challenge is to identify the
edges that have to be updated because the site was deleted. There is a data structure
by Kaplan et al. [Kap+21a; KKM21] that we will use to solve this problem. The exact
result presented in this thesis is a data structure on which we can perform m updates in
overall O((n log5n+m log9n)λ6(logn) +n logΨ log4n) expected time, with a query time
of O

(logn
loglogn

)
.

In Section 5.2 we extend this approach to the case of general disk graphs. The
dependency on Ψ in the approach for the bounded radius ratio resulted from the height
of the quadtrees. By using a compressed quadtree in combination with a heavy path
decomposition and binary search trees, we obtain a data structure with a running time
independent of Ψ . The data structure described in Theorem 5.16 allows deletions in
O((n log6n+m log10n)λ6(logn)) overall expected time, with the same query time as in
the case of bounded radius ratio.

1.4 Long plane spanning trees

Geometric network design is a common and well-studied task in computational geometry
and combinatorial optimization [Epp00; Har11; Mit17; MM17]. In this family of problems,
we are given a set S of point sites in general position, and our task is to connect S into
a geometric graph that has certain favorable properties. Not surprisingly, this general
question has captivated the attention of researchers for a long time. We can find countless
variants, depending on which restrictions we put on the graph that connects S and
which criteria of this graph we would like to optimize. Typical graph classes of interest
include matchings, paths, cycles, trees, or general plane (noncrossing) graphs, that is
graphs, of which the straight-line embedding on S does not contain any edge crossings.
Typical quality criteria include the total edge length [Aro98; dBer+08; Mit99; MR08],
the maximum length edge [Bin20a; EIK01], the maximum degree [AC04; Cha04; FH09;
PV84], the dilation [Epp00; Mul04; NS07], or the stabbing number [MO20; Wel92] of the
graph.

Many famous problems from computational geometry fall into this general setting. For
example, if our goal is to minimize the total edge length, while restricting ourselves to
paths, trees, or triangulations, respectively, we are faced with the problems of finding an
optimum TSP tour [Har11], a Euclidean minimum spanning tree [dBer+08], or a minimum
weight triangulation [MR08] for S. These three examples also illustrate the wide variety of
complexity aspects that we may encounter in geometric design problems: the Euclidean
TSP problem is known to be NP-hard [Pap77], but it admits a PTAS [Aro98; Mit99].
On the other hand, it is possible to find an Euclidean minimum spanning tree for S in
polynomial time [dBer+08], even though, the associated decision problem is not known to
be solvable by a polynomial-time Turing machine. The minimum weight triangulation
problem is also known to be NP-hard [MR08], but the existence of a PTAS is still open;
however, a QPTAS is known [RS09].

5

Chapter 1 Introduction

In Part II of this thesis, we are interested in the interaction of two specific requirements
for a geometric design problem, namely the two desires of obtaining a plane graph and
of optimizing the total edge length. In case we want to minimize the total edge length of
the resulting graph, these two goals are often in perfect harmony: the shortest Euclidean
TSP tour and the shortest Euclidean minimum spanning tree are automatically plane, as
can be seen by a simple application of the triangle inequality. In contrast, if our goal is
to maximize the total edge length, while obtaining a plane graph, much less is known.

This family of problems was studied by Alon et al. [ARS95], who considered the
problems of computing a longest plane matching, a longest plane Hamiltonian path,
and a longest plane spanning tree for a planar point set S in general position. They
conjectured that these three problems are all NP-hard, but this question is still open. The
situation is similar for the problem of finding a maximum weight triangulation for S: here,
we have neither an NP-hardness proof, nor a polynomial time algorithm [QW06]. If we
omit the planarity condition, then the problem of finding a longest Hamiltonian path
(the geometric maximum TSP problem) is known to be NP-hard in dimension three and
above, while the two-dimensional case remains open [Bar+03]. On the other hand, we
can find a longest, typically not plane, tree on S in polynomial time, using classic greedy
algorithms [Cor+09].

We focus on the specific problem of finding a longest plane (that is non-crossing) tree
for a given set S of n ≥ 3 point sites in the plane. As already mentioned above, the
problem is conjectured to be NP-hard for general site sets [ARS95]. For this reason, past
research has focused on designing polynomial-time approximation algorithms. Typically,
these algorithms proceed by constructing several “simple” spanning trees for S of small
diameter and by arguing that at least one of these trees is su�ciently long. One of the
first corresponding results was published by Alon et al. [ARS95]. They showed that a
longest star, a plane tree with diameter two, on S yields a 0.5-approximation for the
longest, not necessarily plane, spanning tree of S. They also argued that this bound is
essentially tight for stars, by considering site sets that consist of two large clusters far
away from each other. Dumitrescu and Tóth [DT10] refined this algorithm by adding
two additional families of candidate trees, now with diameter four. They showed that at
least one member of this extended range of candidates constitutes a 0.502-approximation,
which was further improved to 0.503 by Biniaz et al. [Bin+19]. In all these results, the
approximation factor is analyzed by comparing the tree that results from the algorithm
with the length of a longest, typically not plane, spanning tree. Such a tree may be up
to π/2 > 1.5 times longer than a maximum length plane tree [ARS95], as, for instance,
witnessed by large point sets spaced uniformly over a circle. By comparing against a
longest plane tree, and by considering some trees with diameter five in addition to stars,
the approximation factor was pushed to 0.512 [Cab+20]. This was subsequently improved
even further to 0.519 [Bin20b].

Results In Chapter 6 we focus on approximating the longest plane spanning tree.
We give a polynomial-time algorithm that iterates all candidates for the longest edge of a
longest plane tree. For each candidate edge it constructs two trees that contain the edges

6

1.5 Publications

and have diameter at most four. Additionally, it considers all possible stars, that is trees
where all sites are connected to a singe site. We argue that when considering the actual
longest edge in the optimal plane spanning tree, one of five stars or one of the two special
trees is long enough. As a warm up, we show in Theorem 6.2 that the tree returned by
this algorithm is a 2

3 -approximation, when considering site sets in which the y-coordinates
are neglectable. We also show that the 2

3 bound for the restricted set of sites is tight, when
comparing to the longest, possibly crossing, spanning tree. In Theorem 6.13 we show
that on general site sets the algorithm yields a 0.546-approximation. This is a substantial
improvement over the previous bounds. As all trees considered for approximation in
the literature so far have small diameter, we also consider upper bounds on the quality
of such algorithms. More precisely, in Theorem 6.14, we construct a site set such that
the longest plane spanning tree of diameter at most three cannot give an approximation
factor of more than 5

6 .
Chapter 7 focuses on exact polynomial time algorithms for finding the longest plane

spanning tree. A natural way to design an algorithm for the longest plane spanning tree
problem is the following local search heuristic [WS11]: start with an arbitrary plane tree
T , and as long as possible, exchange an existing edge by a new longer edge such that the
resulting graph tree is still a plane spanning tree. Once no further local improvements
are possible, output the current tree T . We show in Lemma 7.1 that there is a site set, for
that this algorithm fails to compute the optimum answer as it may get stuck in a local
optimum. This suggests that a natural local search approach does not yield an optimal
algorithm for the problem.

However there are polynomial time algorithms for special cases. If S is in convex
position, we show in Section 7.2 that the longest plane tree for S can be found in O(n3)
time by adapting standard dynamic programming methods for plane structures on convex
point sets [Gil79; Kli80]. In Theorem 7.5 we present an O(n4) time dynamic programming
algorithm for finding a longest plane tree among those of diameter at most three. In
Theorem 7.6 we extend this approach to trees, where all sites are connected to one of
three fixed sites on the convex hull. The running time increases to O(n6).

1.5 Publications

The results presented in this thesis are either novel, or were already published in the
following publications:

[Kap+19] Haim Kaplan, Katharina Klost, Wolfgang Mulzer, Liam Roditty, Paul Seiferth,
and Micha Sharir. “Triangles and Girth in Disk Graphs and Transmission Graphs”.
In: 27th Annual European Symposium on Algorithms (ESA 2019). Ed. by Michael A.
Bender, Ola Svensson, and Grzegorz Herman. Vol. 144. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 64:1–64:14. 2019

7

Chapter 1 Introduction

[Cab+21] Sergio Cabello, Michael Ho�mann, Katharina Klost, Wolfgang Mulzer, and
Josef Tkadlec. Long Plane Trees. arXiv: 2101.00445 [cs]. url: http://arxiv.
org/abs/2101.00445. 2021

[Kap+21a] Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang
Mulzer, Liam Roditty, and Paul Seiferth. Dynamic Connectivity in Disk Graphs. arXiv:
2106.14935 [cs]. url: http://arxiv.org/abs/2106.14935. 2021

8

https://arxiv.org/abs/2101.00445
http://arxiv.org/abs/2101.00445
http://arxiv.org/abs/2101.00445
https://arxiv.org/abs/2106.14935
http://arxiv.org/abs/2106.14935

CHAPTER 2
Preliminaries

In this chapter, we define the notions and concepts used in this thesis. We assume a
basic familiarity of the reader with elemental mathematical and in particular geometric
concepts. Additionally, we assume knowledge about the analysis of algorithms. However,
to introduce the notation used for some elemental concepts, we repeat some of the
definitions below.

2.1 Geometry, Graphs and Geometric Graphs

Geometry Most of the geometry considered in this thesis takes place in R
2. Let

p = (px,py) ∈ R2 be the point in the plane with x-coordinate px and y-coordinate py .

Given two points p and q in R
2, let ‖pq‖ =

√
(px − qx)2 + (py − qy)2 be the Euclidean

distance between p and q. For a subset Q ⊆R
2, let the diameter be defined as diam(Q) =

sup{‖pq‖ | p,q ∈ Q}. Given a point p and a radius r we denote by D(p,r) the disk of
radius r with center p. When talking explicitly about the circle bounding a disk, we
denote it by ∂D(p,r). More formally, we define disks and circles as follows:

D(p,r) = {q ∈R2 | ‖pq‖ ≤ r} ∂D(p,r) = {q ∈R2 | ‖pq‖ = r}

Given two points p,q we denote the line segment defined by these two points by
pq = {p +λ(q − p) | 0 ≤ λ ≤ 1}. Let −−→pq = {p +λ(q − p) | λ ≥ 0} be the ray originating in p
and going through q. We call the ray {p −λ(q − p) | λ ≥ 0} starting in p with the same
supporting line as −−→pq that only has p in common with −−→pq the ray opposite to −−→pq .

When talking about geometry in R
3, we denote a point by p = (px,py ,pz). Given a point

set P in R
2 or R3, the convex hull of this point set is the minimum convex set containing

P [dBer+08]. We will also consider halfplanes in R
3. For fixed constants a,b,c ∈R let a

halfplane be the set H = {p ∈R3 | pz = apx + bpy + c}. For a more compact representation,
we also write H : z = ax + by + c to define a halfplane H . The closed upper halfspace
bounded by a halfplane H is defined as {p ∈R3 | pz ≥ apx + bpy + c} where a,b,c are the
coe�cients defining H . In some proofs we consider convex polyhedra. We will consider
two di�erent definition of such polyhedra. The first definition is that of the intersection
of finitely many closed halfspaces. The resulting polyhedron might be unbounded. The

9

Chapter 2 Preliminaries

second definition is that of the convex hull of finitely many points. This definition will
always result in a bounded polyhedron, which we will also call a convex polytope.

Graphs We revisit the definition of a general or abstract graph. A graph G is defined as
a pair consisting of a vertex set V (G) and an edge set E(G). We consider both directed and
undirected graphs. For an undirected graph we have E(G) ⊆

(
V (G)

2

)
, or put di�erently the

members of E(G) are sets of size two. We denote an undirected edge as e = {u,v}. In the
case of directed graphs, the members of E(G) are ordered tuples, so E(G) ⊆ (V (G)×V (G))\
{(v,v) | v ∈ V (G)}. Deviating from the natural tuple notation, we will denote a directed
edge as e = uv. These definitions of the edge sets imply that all graphs are simple i.e. they
do not contain loops or duplicate edges.

A sequence π = v0, . . . , vk−1 of unique vertices is called a path, if for i = {0, . . . , k −2}, vi
can reach vi+1 with an edge. A sequence C = v0, . . . , vk−1 where vi can reach vi+1 if the
indices are considered modulo k is called a cycle in G. Two vertices u and v are connected,
if there is a path π with v0 = u and vk−1 = v.

In a weighted graph there is a function w : E(G)→ R that assigns a weight to each of
the edges. For this thesis we will assume all edge weights to be positive. The unweighted
length of a path or a cycle is the number of edges on the path or cycle, while the weighted
length is the sum of the edge lengths. Let d(u,v) be the (un)weighted length of a shortest
path between u and v. We define the (un)weighted diameter diam(G) of a graph as
max(u,v)∈V×V d(u,v). Furthermore, let the unweighted girth of a graph be the length of the
shortest unweighted cycle and the weighted girth the length of the shortest weighted cycle.

Geometric Graphs A geometric graph is a graph, where each vertex is mapped to a
point in R

2. An edge connecting vertices u and v is embedded as the line segment uv
connecting u and v [Fel04; Pac13]. In the following, we will not distinguish between
the vertices and the points they are mapped to. Similarly, we often do not specifically
distinguish between an edge {u,v} or uv and its associated line segment. In general, these
line segments might intersect. If for a given abstract graph, there is an embedding as
a geometric graph, where no two line segments intersect, we call the graph planar. A
geometric graph where no two edges intersect in their interior is called a plane graph.
Note that being planar is a property of the abstract graph, while being plane is a property
of the given embedding.

For the geometric graphs considered in this thesis, we always assume that the set of
points that are identified with the vertices is given as part of the input. The graph is then
defined based on di�erent geometric properties of these points. In order to distinguish
the input points from other points in the plane, we call the set S of n input points sites,
and only refer to points not in S as points. When talking about weighted geometric graphs,
the weight of edge connecting sites s and t is the Euclidean length ‖st‖. We now define
the types of geometric graphs considered in this thesis.

Disk Graphs and Transmission Graphs The first two types of geometric graphs are
closely related to each other. For both disk graphs and transmission graphs we associate

10

2.1 Geometry, Graphs and Geometric Graphs

(a) The disk graph D(S) (b) The transmission graph T (S)

Figure 2.1: A set of sites with the associated disks.

a radius rs ∈ R, rs > 0 with each site s. This radius together with the site defines a disk
Ds = D(s, rs) in a natural way. When it is clear from the context, we will use s and Ds
interchangeably. We consider both disk graphs and transmission graphs as geometric
graphs as defined above. Thus the vertex set of both the disk graph D(S) and the
transmission graph T (S) is S. In both cases the edges are defined based on the relation
of the distance between two sites and their associated radii.

In a disk graph the edges are undirected and there is an edge {s, t} in the disk graph,
if and only if the associated disks Ds and Dt intersect. Equivalently, we can say that s
and t are connected by an edge if and only if ‖st‖ ≤ rs + rt. The edges in the transmission
graph T (S) are directed. There is an directed edge st in the transmission graph if and
only if t ∈Ds, or equivalently, if ‖st‖ ≤ rs. For disk graphs and transmission graphs, we
will not only consider their representation as geometric graphs, but in some cases also
the abstract graph defined by the set of sites. See Figure 2.1 for an illustration of these
two types of graphs.

For a given disk graph or transmission graph we denote by Ψ the ratio between the
largest and the smallest radius of the sites, Ψ = maxs∈S rs

mint∈S rt
. To ease some of the calculations

and arguments in the following, we assume without loss of generality that S satisfies the
following properties:

(a) The radius associated to the smallest site s ∈ S is 1,

(b) S fits into a single axis parallel square with the origin as a vertex and diameter
2dlogdiam(S)e ≤ 2diam(S),

(c) the maximum radius of a site is at most 2diam(S); and

(d) no two sites have the same radius.

All disk graphs and transmission graphs can be represented by a set of sites satisfying
these conditions. The first and second conditions can be achieved by scaling, translating

11

Chapter 2 Preliminaries

a b

s

Figure 2.2: All edges are directed towards {a,b}. The edge associated to s is marked
blue.

and rotating the point set and radii. For condition (c), first consider the set of sites after
scaling and translating. Setting rs = min{rs,2diam(S)} satisfies condition (c) and does
not remove any possible edges: all disks with radius 2diam(S) contain the whole square
defined by the second condition and thus are connected to all other sites. Conditions (a)
directly implies Ψ = maxs∈S rs.

The last condition holds without loss of generality by perturbing the radii. To see
this, note that each radius can be increased by any amount less than half the smallest
distance between its boundary and the boundary of any other disk without introducing
additional intersections. As increasing the radius cannot remove existing edges, this does
not change the structure of the underlying graph. This construction is similar to the
argument of Gräf et al. [GSW98] which allows the radii of the disks in a unit disk graph
to be increased by a small ε without changing the underlying graph. We only need this
property in some applications, in which it will be made clear that this assumption is used.

Spanning Trees The third type of geometric graphs are spanning trees of a set of sites. A
spanning tree is a minimal set of undirected edges, where all sites are pairwise connected.
It is a well known fact, that the spanning tree on n sites has n− 1 edges. For spanning
trees we assume that the points lie in general position, in the sense that no three points
are collinear. The general position assumption was also used in previous work on this
problem [ARS95; DT10]. Without it, one should specify whether overlapping edges are
allowed, an additional complication that we would like to avoid. Let T (S) be a spanning
tree on a given set of sites. If the site set considered is clear from the context, we will
simply write T instead of T (S). We then define the length of T as the sum of the weights
of the edges T and denote it by |T |. A very simple case of a spanning tree is the star Ta
rooted at the site a. In Ta all sites in S \ {a} are connected with an edge to a.

Given multiple spanning trees, that all contain a common edge {a,b}, in Chapter 6, we
will need a way to compare the weights of the trees, by considering the edges separately.
For this we direct all edges towards the edge {a,b} and assign each site its unique outgoing
edge. Denote the length of the edge assigned to s , a,b in a fixed tree T by `T (s). The
edge {a,b} remains undirected, see Figure 2.2. Then the length of the total tree can be
written as |T | =

(∑
s∈S,s,a,b `T (s)

)
+ ‖ab‖.

12

2.2 Computational Models

y1 = x1 + x2

y2 = y1 · x2

y3 < 0

yesno

y2 ≤ 0y3 = y3 − x2

y4 = y3 ÷ x1

y4 = 0

yes no

yes

yes no

no

yes no

Figure 2.3: Example of an algebraic decision tree of height four.

2.2 Computational Models

Now that we have described the geometric objects considered in this thesis, we describe
the computational models used. The main model of computation used in this thesis is
the model of the real RAM as defined by Preparata and Shamos [PS85]. The real RAM
is often seen as the standard model for computation in the setting of computational
geometry. It is based on the standard (integer) RAM model but instead of storing only
integers, we are allowed to store a single real number in each cell of the RAM. The basic
set of operations consists of {+,−,×,÷} combined with comparisons between numbers as
well as indirect addressing. Depending on the application, additional operations such as
the k-th root, exponential functions and logarithms are added. For this thesis, we add
two additional operations which extend the definition of Preparata and Shamos. The first
is the floor function b·c. The second operation is the function msb(x,y) that yields the
most significant bit in which two positive integers x and y di�er in binary representation.
We assume that all operations take unit cost.

There is a lot of work regarding the power of the unit cost integer RAM when allowing
multiplications [Sch79; vEmd91]. Essentially, allowing multiplication in combination
with arbitrarily large cells allows to pack multiple values into a single cell and perform
operations in parallel. This can then be used to break well-known lower bounds on the
complexity of certain problems. Thus, when working in the RAM model while assuming
unit cost, one has to be careful not to abuse this power. As an integer RAM can be trivially
simulated in a real RAM when using the floor function, all these caveats carry over to
our model of computation. However, there are some good practices which allow us to
use these additional operations without exploiting the power of this model. The essence
of them is to make sure that multiplications, rounding and subsequent bit-operations are
only applied to the input or a scaled version of the input. The only place where we use
the floor function and msb(x,y) is in the context of quadtrees. We will not go into detail
here, but we only use the floor function to round a scaled version of the input points to
the integer grid, and apply the msb(x,y) function to these rounded points. This way we

13

Chapter 2 Preliminaries

do not use the power of parallel computing the real RAM with the floor function gives
us, and stay within a model of computation that can be considered to be “reasonable”.

The model used for giving the lower bound in Section 3.1 is the algebraic decision tree.
This model is closely related to the model of the real RAM in the sense, that every
algorithm in the real RAM model can be described as an algebraic decision tree. The
following description of this model follows Arora and Barak [AB09, Section 16.2]. An
algebraic decision tree is a way of representing a function deciding a decision problem
with input (x1, . . . ,xn) ∈Rn as a binary tree. There are two kinds of inner vertices in the
tree. The first kind is a computation node, in which a new variable is defined by applying
one operator of {+,−,×,÷,√·} to input values or existing variables. Computation nodes
only have one outgoing edge. The second kind of vertices are branching vertices with
two children. In those a given variable is compared to zero with one of {<,≤,=}, and
the edge to each child is associated with a possible outcome. Each leaf is labeled either
yes or no and a given instance of the problem is decided by following the path from the
root to a leaf in the obvious way, see Figure 2.3 for an example. The mapping of input
instances in R

n to 0 or 1, depending on whether the answer to the instance is no or yes,
yields a partition of Rn. The complexity of a decision problem in this model is then
determined by the minimum height of any algebraic decision tree deciding the problem.
For this height, computation nodes that apply a + or − operation are not counted. The
lower bounds given in this model are based on a result by Ben-Or [Ben83] which bounds
the height of the algebraic decision tree based on the number of connected components
defined by either the yes or the no instances.

2.3 Hierarchical Grids, Z-order and Compressed
Quadtrees.

Given some i ≥ 0 we define the grid cells at level i to be all regions, bounded by the
halfspaces

x ≥ χ · 2i
√

2
, x < (χ+ 1) · 2i

√
2

for χ ∈Z and

y ≥ γ · 2i
√

2
, y < (γ + 1) · 2i

√
2

for γ ∈Z.

Note that the grid cells in each level partition the plane R
2 and that each cell at level i

has diameter 2i . We call the union of all grid cells at level i the grid Gi . On every level,
the lower left corner of the cell defined by χ = γ = 0 is the origin. Each grid cell in Gi
can be uniquely indexed by χ and γ . Given a point (px,py) ∈R2, we can determine the

grid cell it belongs to by computing the tuple
(⌊√

2·px
2i

⌋
,
⌊√

2·py
2i

⌋)
in O(1) time. As the cells

are consistent between the levels, we can scale the indices χ,γ on level i to be consistent
with the indices on level 0. This allows us to assume that the cells are defined on the
integer grid when doing arithmetics on the grid cells.

14

2.3 Hierarchical Grids, Z-order and Compressed Quadtrees.

2i

σ

N5×5(σ)

a(σ) γ 2i√
2

(γ +3) 2
i
√
2

(γ − 2) 2i√
2

(χ
+
3) · 2 i√

2

(χ
−
2) · 2 i√

2

χ
· 2 i√

2

2i+1

Figure 2.4: Two levels of the hierarchical grid.

The (infinite) hierarchical grid G is then defined as
⋃∞
i=0Gi . For any cell σ from the

hierarchical grid, denote by |σ | its diameter and by a(σ) its center. Furthermore, for
a given cell σ ∈ Gi identified by a tuple (χ,γ) and an odd number k ∈N, let Nk×k be
the k × k subgrid of Gi which contains the cells (χ′,γ ′) with χ −

⌊
k
2

⌋
≤ χ′ ≤ χ +

⌈
k
2

⌉
and

γ −
⌊
k
2

⌋
≤ γ ′ ≤ γ +

⌈
k
2

⌉
. We also call Nk×k(σ) a neighborhood of σ . See Figure 2.4 for a

depiction of these concepts.
If a site s is contained in a cell σ of some level of the hierarchical grid, there is a

smallest neighborhood of cells around σ , such that a disk with center in s is completely
contained in the union of the cells in the neighborhood. The following lemma makes the
size of this neighborhood explicit.

Lemma 2.1. Let p ∈ R2 be a point and σ be a cell of some grid with p ∈ σ . Then the disk

D(p,r) is completely contained in the
(
2
⌈√

2r
|σ |

⌉
+ 1

)
×
(
2
⌈√

2r
|σ |

⌉
+ 1

)
neighborhood N of σ .

Proof. We are going to show a slightly stronger result, namely that the enclosing square of
D(p,r) is completely contained in N . The diameter of this square is 2

√
2r and the union

of all enclosing squares for possible positions of p is another square ρ with center a(σ);
see Figure 2.5. The size of the neighborhood then is the same as the number of cells
intersected by a diagonal of ρ. To bound this number, we divide the diagonal of ρ into
the part inside of σ and the two disconnected parts outside of σ . Then the part inside of

σ only passes through σ . The two parts on the outside pass through
⌈√

2r
|σ |

⌉
cells each and

thus D(p,r) is completely contained in N . �

15

Chapter 2 Preliminaries

√
2r

p

rσ

ρ

a(σ)

2
⌈√

2
|σ |

⌉
+1

2
⌈√

2
|σ |

⌉
+1

Figure 2.5: The disk D(p,r) is contained in N . The square ρ is marked gray and the
diagonal is divided into the light green, dark green and blue part.

The quadtree Q on S is a rooted tree whose nodes are a subset of cells from the
hierarchical grid. The root is the cell with the smallest diameter that contains all sites
of S. If a cell σ with |σ | = 2i for i ≥ 0 contains at least two sites of S, then the children
of σ are the four cells τ with |τ | = 2i−1 and τ ⊆ σ that partition σ . If a cell σ contains
only one site of S, it does not have any children. By our assumption on S, the root has
diameter Θ(diam(S)). Note that as we do not continue building the quadtree below level
0 the leafs can possibly contain more than one site. In many cases, we will not explicitly
distinguish between a cell σ and its associated vertex in the quadtree.

If we define a quadtree in this way, it has O(n) leaves and height at most dlog(diam(S))e.
This height does not depend on n and can be arbitrarily large. However in some
applications we would like to have a dependence only on n. To avoid the dependency
on the diameter of the point set, we define the compressed quadtree Qc. Let σ1, . . . ,σk be
a maximal path in Q, where all σi , 1 ≤ i < k, have only one non-empty child. In the
compressed quadtree, this path is replaced by the single edge σ1σk, see Figure 2.6. Such
a compressed quadtree has O(n) vertices, height O(n), and it can be constructed in
O(n logn) time (see, e.g., [Buc+11, Appendix A] and [Har11]).

Consider the following order ≤Z on the cells of G. Let σ,τ ∈ G. If σ ⊆ τ, then σ ≤Z τ
and if τ ⊆ σ , then τ ≤Z σ . If σ ∩ τ = ∅, let ρ be the smallest cell such that σ ⊆ ρ and
τ ⊆ ρ. Furthermore, let σ ′ be the largest cells such that σ ⊆ σ ′ ⊂ ρ, and similarly define
τ ′ as the largest cell with τ ⊆ τ ′ ⊂ ρ. We set σ ≤Z τ if σ ′ is before τ ′ in the order shown
in Figure 2.7 and τ ≤Z σ , otherwise. The order defined this way is called the Z-order. It is
known that the Z-order is a total order on the cells of G, see [BM11] for more details. As
restated in the following lemma, given σ,τ ∈ G, we can decide if σ ≤Z τ in constant time.

16

2.3 Hierarchical Grids, Z-order and Compressed Quadtrees.

Q Qc

Q′ Qc ′

(a) Tree representation of a quadtree Q and its compressed version Qc.

Q′ Qc ′

(b) Geometric representation of Q′ and Qc′ from Figure 2.6(a).

Figure 2.6: Compressed quadtrees

Lemma 2.2 (Chapter 2 in Har-Peled [Har11]). Suppose the �oor function and the �rst di�ering
bit in the binary representations msb(x,y) of two given real numbers can be computed in O(1)
time. Then, we can decide in O(1) time for two given cells σ,τ ∈ G whether σ ≤Z τ or τ ≤Z σ .

The linearized compressed quadtree L for S is the sorted sequence of cells obtained by
listing the nodes of the compressed quadtree Qc according to a postorder traversal, where
the children of a node σ ∈ Qc are visited according to the Z-order from Figure 2.7. The
cells in L appear in increasing Z-order, and searching for a given cell σ ∈ G reduces to a
simple predecessor search in L, as is made explicit in the following lemma.

σ
τ

σ ′ τ ′

ρ

Figure 2.7: We order the children in the quadtree by their Z-Order. On the very right
we have σ ≤Z σ ′ ≤Z τ ≤Z τ ′.

17

Chapter 2 Preliminaries

σ

τ ′

τ σ = τ

τ ′

Figure 2.8: If σ is not in Qc all sites in σ are contained in two cells of Qc containing the
same sites. In the other case, σ = τ is the cell in Qc containing the same
sites.

Lemma 2.3. Let σ be a cell of G, and let L be the linearized compressed quadtree on S . Let
τ = maxZ{ρ ∈ L | ρ ≤Z σ } be the Z-predecessor of σ in L or τ = ∅, if the predecessor does not
exist. Then, if σ ∩ τ = ∅, then also σ ∩ S = ∅, and if σ ∩ τ , ∅, then σ ∩ S = τ ∩ S .

Proof. Let Qc be the compressed quadtree on S, and let Qcσ = {τ ∈ Qc | τ ⊆ σ } be the cells
in Qc that are contained in σ . If Qcσ is non-empty, then it is a connected subtree of Qc.
Let τ be the root of this subtree. Then, τ = maxZ{ρ ∈ Qcσ } and τ ≤Z σ . Furthermore, all
other cells in Qc \Qcσ are either smaller than all cells in Qcσ or larger than σ with regard
to the Z-order. Thus, τ is the Z-predecessor of σ in L, and σ ∩ S = τ ∩ S , ∅. Otherwise,
if Qcσ = ∅, the Z-predecessor of σ in L either does not exist or is disjoint from σ . Thus,
in this case, we have ∅ = σ ∩ τ = σ ∩ S. �

Note that as Qc is the compressed quadtree, for each cell σ of G there are at most two
cells τ ′, τ ∈ Qc such that S ∩ τ = S ∩ τ ′ = S ∩ σ , see Figure 2.8. Without loss of generality
it holds that |τ ′ | ≥ |σ | ≥ |τ |. By Lemma 2.3 the Z-predecessor is the smaller of these cells.

2.4 Canonical Decomposition

Given a set X of n elements, where each element x is assigned a unique numerical value rx.
We aim to find canonical subsets of these elements, that allow us to e�ciently represent
all elements of X, having a value in some given interval. There is a standard approach
for this, which is often used in range query applications [dBer+08; WL85].

All concepts defined in this section are depicted in Figure 2.9. The elements of X are
stored in the leaves of a balanced binary search tree B, sorted by the values rx. Each
inner vertex of B corresponds to a subset of X, consisting of consecutive elements. We
call these subsets canonical subsets and denote the canonical subset defined by a vertex v
by Iv .

Now consider the subset X ′ of elements defined by a given interval. This interval can
be given either by upper and lower bounds on the value of the elements, or by explicitly
giving bounding elements. As each element can be represented by its unique value,
we will without loss of generality assume the case of numerical bounds. Furthermore,
depending on the application, the bounds on the interval can be inclusive or exclusive.
Both cases will be handled here.

18

2.4 Canonical Decomposition

a b

Π←(a) Π→(b)

canonical nodes

v

Iv

O(logn)

Figure 2.9: Depiction of the various concepts used in the range queries.

Given a value a, let its predecessor be the element max{x ∈ X | rx ≤ a} and its proper
predecessor the element max{x ∈ X | rx < a}. Similarly the (proper) successor of a is
the element min{x ∈ X | rx ≥ a} (min{x ∈ X | rx > a}). Let the interval considered for the
range query be given by a lower bound a and an upper bound b. To answer the range
queries we then consider the search path to the (proper) predecessor of a and to the
(proper) successor of b. We denote the search path to the predecessor of a by Π•←(a) and
the search path to the proper predecessor of a by Π◦←(a). Similarly, we denote the search
path to the (proper) successor of b by Π◦→(b) and Π•→(b) respectively. We set these paths
to ∅ if the searched element is not in B. Now we can define paths Π←(a) and Π→(b).

Π←(a) =

Π•←(a) if a is excluded from the bound; and

Π◦←(a) if a is included in the bound.

Π→(b) =

Π•→(b) if b is excluded from the bound; and

Π◦→(b) if b is included in the bound.

We call the union of all right siblings of vertices on Π←(a) with the left siblings of
the vertices on Π→(b) the canonical nodes for this interval. Standard arguments, see for
example [dBer+08, Section 5.1], yield the following result:

Lemma 2.4. The total size of the canonical subsets is O(n logn). The tree B and the canonical
subsets can be built in O(n logn) time. The number of canonical nodes for each interval bounded
by a and b is O(logn). The canonical subsets for some interval form a partition of the subset
de�ned by this interval.

Proof. Since element x ∈ X appears in the O(logn) subsets along its search path, the
total size of the subsets is O(n logn). To construct B we first sort the elements and then
construct the binary search tree in a bottom up fashion. As the canonical nodes are
the siblings along two root-to-leaf paths in B, there are at most O(logn) of them. The
partition property follows by construction. �

19

I
Disk Graphs and

Transmission Graphs

21

CHAPTER 3
Computing the Girth in Disk

Graphs

In this chapter we consider the problem of computing the girth of a disk graph. As already
mentioned in Section 1.2, this problem is closely related to that of finding the shortest
triangle. The main result of this chapter is an algorithm that computes the weighted
girth of a disk graph in expected time O(n logn). Recall from Chapter 2 that when we
talk about weighted disk graphs, that an edge between sites s and t is weighted by the
Euclidean distance ‖st‖ between the sites. For this chapter, in addition to the properties
given in Section 2.1, we will assume that all edge lengths (and more generally shortest
path distances) are pairwise distinct and that no site lies on a disk boundary.

The main result described in Section 3.2 extends ideas and approaches used in the
algorithm for the weighted triangles of Kaplan et al. [Kap+19]. For convenience, we
describe their algorithm and highlight the lemmas and theorems of Kaplan et al. relevant
to our result in Section 3.1.1 Also in Section 3.1, we show that the results given in this
chapter and in Sections 4.2 and 4.3 are basically tight. To this end, we explicitly give the
reduction from Element-Uniqueness to the problem of finding a triangle in unit disk
graphs originally given by Polishchuk [Pol17] which implies a lower bound of Ω(n logn)
in the algebraic decision tree model.

3.1 Finding a (shortest) Triangle in a Disk Graph

In this section, we describe the algorithms for finding unweighted and weighted triangles
by Kaplan et al. [Kap+19]. The central part of testing if a given graph contains a triangle
is the following property due to Evans et al. [Eva+16].

1The results on disk graphs in the paper presented at ESA’19 [Kap+19] are the combination of related
results that were presented before at EuroCG’17 [Kap+17] and EuroCG’18 [Kap+18]. The results
presented in Section 3.1 are those presented at EuroCG’17 [Kap+17] which represent the state at a�airs,
when I started to work on this topic.

23

Chapter 3 Computing the Girth in Disk Graphs

Lemma 3.1 (Evans et al. [Eva+16], Lemma 2.1 Kaplan et al. [Kap+19]). Let D(S) be a disk
graph that is not plane. Then there are three sites whose associated disks intersect in a common
point.

Lemma 3.1 tells us that if D(S) is not plane, it contains a triangle. Kaplan et al. now
give a simple algorithm for deciding if the graph is plane. They do repeated line sweeps
over the point set to explicitly construct the disk graph.

They stop this process if at some point they construct more than 6n− 12 edges, and
report that the underlying graph is not planar. This upper bound on the number of edges
in a planar graph follows from the well known Euler’s formula. In the other case the
plane sweeps result in an embedding of the graph. With another plane sweep it can
be checked if the embedding is plane. Again, if the answer is no, there is a triangle by
Lemma 3.1. If the graph is plane, and therefore also planar, Kaplan et al. employ a linear
time algorithm for finding triangles [Cha99; PY81] in a planar graph.

We will need two consequences of this algorithm for the weighted girth. The first is the
following lemma:

Lemma 3.2 (Theorem 2.2 [Kap+19]). Let D(S) be a disk graph on n sites. A triangle in D(S)
can be found in O(n logn) worst-case time, if it exists.

Since we do not only need the information if the triangle exists, but also an explicit
representation of the abstract graph, we make the following corollary of Lemma 3.2
explicit:

Lemma 3.3 (Theorem 2.2 (implicit) [Kap+19]). Let D(S) be a disk graph on n sites. In time
O(n logn), it can be decided if D(S) is plane. If the answer is “yes”, an explicit representation of
the graph can be computed within the same time bound.

Lemma 3.2 settles the unweighted case. Kaplan et al. then use this result as a subroutine
to find the shortest triangle. In the following we repeat their main concepts and results.

The main strategy is to first solve the decision problem: GivenW > 0, doesD(S) contain a
triangle with perimeter at most W ? After an algorithm for the decision problem is available,
Chan’s randomized geometric optimization framework [Cha99] yields an optimization
algorithm with the same time bound.

The decision algorithm uses four shifted grids GI, . . . ,GIV, where |σ | = W
3 for each cell

σ of any of the grids. For some calculations in both the analysis and description of the
algorithm, the side length ` = W

3
√

2
is needed. This definition of the diameter ensures that

if all sites of a triangle lie inside of one cell, the total length of this triangle is at most W .
The grids are shifted, such that GI, . . . ,GIV have a vertex at (0,0), (`2 ,0), (0, `2) and (`2 ,

`
2),

respectively, see Figure 3.1. This shifting makes sure that triangles whose longest edge
has length at most `

2 , will be completely contained in a cell of one of the grids (Lemma
2.3 by Kaplan et al. [Kap+19]). Such triangles can be found by using Lemma 3.2 on each
cell in overall O(n logn) time.

If no such triangle is found, each triangle will have at least one edge with side length
at least `

2 , and thus at least one of its vertices is a site with radius at least `
4 . The sites

are now partitioned into large sites with radius at least `
4 and small sites which are all

24

3.1 Finding a (shortest) Triangle in a Disk Graph

(0, `2) (`2 ,
`
2)

(0,0) (`2 ,0)

Figure 3.1: The four shifted grids, with a cell from each grid shown in red, orange,
green, and blue, respectively. Every square with side length at most `

2 is
completely contained in a single grid cell.

remaining sites. Now Kaplan et al. first note that if any cell contains more than 18 large
sites, there is a triangle in this cell. We restate their lemma here:

Lemma 3.4 (Lemma 2.4 [Kap+19]). Let σ ∈
⋃IV
i=IGi be a nonempty grid cell, and suppose that

σ does not contain a triangle. Then σ contains at most 18 large sites.

As triangles consisting only of small sites would have been found before, the only
remaining options for triangles is to have zero, one or two small sites. Kaplan et al.
consider each of these options separately and give algorithms with O(n logn) running
time for each. The result is summarized in the following lemma:

Lemma 3.5 (Lemma 2.5 [Kap+19]). Let D(S) be a disk graph on n sites, and let W > 0. We
can decide in O(n logn) worst-case time whether D(S) contains a triangle of perimeter at most
W .

The main result then follows from an application of Chan’s randomized optimization
framework, restated here for convenience:

Lemma 3.6 (Lemma 2.1 [Cha99]). Given a problem space Π, let w(P) ∈R be the optimum
and |P | ∈N be the size of some problem P ∈Π. Let α < 1, ε > 0, and r ∈N be constants, and
let δ(·) be a function such that δ(n)

nε is monotone increasing in n. Given any optimization problem
P ∈Π with optimum w(P), suppose that within time δ(|P |),

(a) we can decide whether w(P) < t, for any given t ∈R; and

(b) we can construct r subproblems P1, . . . , Pr , each of size at most dα|P |e, so that w(P) =
min{w(P1), . . . ,w(Pr)}.

Then we can compute w(P) in total expected time O(δ(|P |)).

25

Chapter 3 Computing the Girth in Disk Graphs

1 2 4

(a) T = [1,2,4], all elements are unique.

1 2 4

2

(b) T = [1,2,2,4], the element 2 is contained twice.

Figure 3.2: The reduction from element uniqueness.

Kaplan et al. use Lemma 3.5 to show that (a) holds. For (b), four subsets S0, . . . ,S3 ⊆
S = {s1, . . . , sn} are constructed, where si ∈ Sj with i . j (mod 4). Then any triple a,b,c of
points is contained in at least one set Si and Lemma 3.6 can be applied with α = 3

4 , ε =
1, r = 4 and δ =O(n logn). Their main theorem follows.

Theorem 3.7 (Theorem 2.6 [Kap+19]). Let D(S) be a weighted disk graph on n sites. We can
compute a shortest triangle in D(S) in O(n logn) expected time, if one exists.

Next, we proceed to describe the lower bound due to Polishchuk [Pol17, personal
communication]. This bound holds in the algebraic decision tree model.

Lemma 3.8 (Polishchuk [Pol17]). In the algebraic decision tree model there is an Ω(n logn)
lower bound for testing if a given (unit) disk graph contains a triangle.

Proof. This lower bound follows by a reduction from Element-Uniqueness. The Element-
Uniqueness problem asks for a given set T of n integers, whether all of them are unique.
It is known, that for Element-Uniqueness there is an Ω(n logn) lower bound in the
algebraic decision tree model [Ben83].

The reduction from Element-Uniqueness now works as follows: for each x ∈ T create
the sites (3 · x,0) and (3 · x+ 0.5,0) and call the resulting set S. We now consider the unit
disk graph on these sites, or equivalently set rs = 1 for each site created this way. This
reduction can be applied in O(n) time. Now if all values x ∈ T were unique, the graph
consists of n connected components, where each of the components consist of a single
edge. If on the other hand there are two elements in T that have the same value, this
corresponds to a clique of size four, and thus also a triangle in D(S), see Figure 3.2. �

If the resulting graph in Lemma 3.8 is carefully considered, it can be seen that the result
directly carries over to transmission graphs. Also as each triangle produced this way has
perimeter at most 1, the decision problem of finding a triangle or cycle of length at most
W also inherits this lower bound. Thus, we cannot hope to find deterministic algorithms

26

3.2 Computing the Weighted Girth of a Disk Graph

that are consistent with the algebraic decision tree model and run faster than O(n logn)
for finding (short) triangles and computing the girth in disk graphs and transmission
graphs.

3.2 Computing the Weighted Girth of a Disk Graph

In this section, we show how to adapt and extend the ideas of Kaplan et al. to compute
the weighted girth of a disk graph. First, we describe how to find the shortest cycle
through a given vertex in a weighted graph with certain properties. This is then used as a
subroutine to compute the weighted girth of a disk graph.

Let G be an undirected graph with nonnegative edge weights so that all shortest paths
and cycles in G have pairwise distinct lengths, and for all edges {u,v}, the shortest path
from u to v is the edge {u,v}. We present an e�cient deterministic algorithm that, given
G and a vertex s, computes the shortest cycle in G containing s, if it exists.2 We remark
that there also is a simple randomized algorithm presented by Yuster [Yus11, Section 2].

The next lemma states a structural property of the shortest cycle through s. It resembles
Lemma 1 of Roditty and Williams [RW11] that deals with an overall shortest cycle in G.
This structural property will then be used in Theorem 3.10 to show the correctness of
our algorithm.

Lemma 3.9. The shortest cycle in G that contains s consists of two paths in the shortest path
tree of s, and one additional edge.

Proof. Let C = v0,v1,v2, . . . , v`−1,v` be the shortest cycle in G containing s, where all
vertices vi , 0 ≤ i ≤ ` −1 are pairwise distinct, ` ≥ 3, and v0 = v` = s. For vi ∈ C, let d1(vi)
be the length of the path s,v1, . . . , vi , and let d2(vi) be the length of the path vi ,vi+1, . . . , s.
Let π(vi) denote the shortest path from s to vi , and let ‖vivi+1‖ be the, length of the edge
{vi ,vi+1}. The weights of the edges can be arbitrary and do not have to be connected to
the Euclidean distance between points.

Suppose that C is not of the desired form. Let {vk ,vk+1} be the edge on C with
d1(vk) < ‖vkvk+1‖+ d2(vk+1) and d2(vk+1) < d1(vk) + ‖vkvk+1‖. By our assumptions on G,
the edge vkvk+1 exists and is uniquely defined. In addition we have k < {0, ` − 1}. We
distinguish two cases, illustrated in Figure 3.3.

π(vk)∩π(vk+1) = {s} (Figure 3.3(a)): Let C′ be the cycle defined by π(vk), the edge
{vk ,vk+1}, and π(vk+1). As s , vk and s , vk+1 and since the edge {vk ,vk+1} neither
appears on π(vk) nor on π(vk+1), it follows that C′ is a proper cycle. Furthermore,
by assumption, C′ is strictly shorter than C, because π(vk) is shorter than d1(vk) or
π(vk+1) is shorter than d2(vk+1). This contradicts our assumption on the form of C.

|π(vk)∩π(vk+1)| ≥ 2 (Figure 3.3(b)): Since π(vk) and π(vk+1) are shortest paths, their
intersection is a prefix of both paths. As the shortest path from u to v is the edge
{u,v} by our assumption on G, at least one of v1,v`−1 is not in π(vk) ∪ π(vk+1).

2Even though this seems to be a simple fact, we could not locate a previous reference for this.

27

Chapter 3 Computing the Girth in Disk Graphs

C

vk+1 vk

s = v0

C′π(vk+1)

π(vk)

vk+1 vk

s = v0

C

(a) π(vk) and π(vk+1) intersect only at s.

vk

s = v0

vk+1

vj

C′

vk

s = v0

vk+1

vj

π(vk)∩π(vk+1)

C

(b) π(vk) and π(vk+1) have a common prefix.

s

Figure 3.3: The two cases for π(vk)∩π(vk+1).

Without loss of generality, let this vertex be v1. Let j be the smallest index such
that vj ∈ π(vk)∪π(vk+1). We have j ∈ {2, . . . , k}.

Consider the cycle C′ that starts at s, follows C along v1,v2, . . . until it reaches vj ,
and then returns along π(vk) or π(vk+1) to s. By construction, C′ is a proper cycle.
Furthermore, C′ , C, because even if j = k, the path π(vk) cannot contain the part
of C from vk+1 to s, due to the choice of k. Finally, C′ is strictly shorter than C,
because the second part of C′ from vj to s follows a shortest path and is thus strictly
shorter than d2(vj). Again, we reached a contradiction. �

By using this technical insight, we can use an extension of Dijkstra’s algorithm to get
an e�cient algorithm for finding a shortest cycle with a given vertex s.

Theorem 3.10. Let G = (V ,E) be a weighted graph with n vertices and m edges that has the
properties given at the beginning of this section. Given a vertex s ∈ V , we can compute the shortest
cycle in G that contains s in O(n logn+m) time, if it exists.

Proof. We find the shortest path tree T for s in G, and we traverse T to find for each
vertex v in T \ {s} the vertex b[v] that is the successor of s on the shortest path from s
to v. Then, we iterate over all edges in E that are not in T . For each such e = {u,v}, we
check if b[u] , b[v]. If so, e closes a cycle in T that contains s. We determine the length
of this cycle in O(1) time and return the shortest cycle found in this way.

The correctness follows from Lemma 3.9. As for the running time, it takes O(n logn+
m) time to find the shortest path tree for s with Dijkstra’s algorithm and Fibonacci
heaps [Cor+09, Chapter 24.3]. After that, it takes O(n) time to compute the nodes b[v],
for v ∈ T \ {s}, and O(m) time to iterate over the edges not in T . The length of the cycle
associated with such an edge e can be computed in O(1) time, using the shortest path
distances in T and the length of e. �

Let D(S) be a weighted disk graph on n sites. In the following we show how a careful
combination of the tools by Kaplan et al., described in Section 3.1 and the variant
of Dijsktra’s algorithm described in Theorem 3.10 gives an e�cient algorithm for the
weighted girth of D(S).

28

3.2 Computing the Weighted Girth of a Disk Graph

Check if D(S) contains a triangle

O(n logn)

Compute girth ∆1 for S \ S`
D(S \ S`) is plane
O(n loglogn)

no
Compute girth
D(S) is plane

O(n loglogn) time
yes

Length W
` = W

3
√
2

Find shortest cycle (length ∆2) with at least one site
in S`
Subgraph induced by N7×7(σ) has O(nσ) edges

O(nσ logn) for each σ

return min{W,∆1,∆2}

Figure 3.4: Overview of the weighted girth algorithm.

Theorem 3.11. Given a weighted disk graph D(S) on n sites, we can compute the weighted girth
of D(S) in O(n logn) expected time.

Proof. We consider multiple cases to exclude certain types of cycles one by one. See
Figure 3.4 for an overview of the algorithm. We first find the shortest triangle in D(S),
if it exists, using Theorem 3.7. If D(S) has no triangle, it is plane by Lemma 3.1. By
Lemma 3.3, it then can be constructed explicitly in O(n logn) time. The girth of D(S)
can then be found in O(n loglogn) additional time by using the algorithm of Łącki and
Sankowski [ŁS11, Section 5].

Now, suppose D(S) contains a triangle, and let W be the length of the shortest triangle
in D(S). Clearly W is an upper bound for the girth of D(S). As for the shortest triangle,
set ` = W

3
√

2
, and let GI be the grid where each cell has diameter W

3 , that has the origin

(0,0) as a grid point. Note that the side length of each cell in GI is `. In contrast to
the algorithm for finding the shortest triangle, adding shifted copies of the grid is not
necessary here. We call a site s ∈ S large if rs ≥ `

4 , and we let S` ⊆ S be the set of large
sites. All other sites are called small. As the length of the shortest triangle is already
known, we now shift our focus to cycles in D(S) with more than three vertices and length
less than W . If such cycles exist, the shortest of them realizes the girth of D(S). First,
consider cycles in the induced subgraph D(S \ S`). The graph D(S \ S`) has no triangle,
as such a triangle would have length less than 3 · `2 <W . Then by the same argument as
in the case that D(S) does not contain a triangle at all, D(S \S`) is plane and the shortest
cycle can be found in O(n logn) time. Let ∆1 be the weighted girth of D(S \ S`).

29

Chapter 3 Computing the Girth in Disk Graphs

σ

N7×7(σ)

D(S \ S`)

D(S`)

s

Figure 3.5: The graph D(S \ S`) is plane and the graph D(S`) is sparse but not
necessarily plane. The disk graph D(S ∩ Sσ) has O(nσ) edges.

Next, consider cycles that have at least one large site. Let σ ∈ G be a cell of the grid.
Then for every s ∈ σ by triangle inequality every site contained in the same cycle of
length at most W as s lies in D(s, W2). Note that Lemma 2.1 is not limited to cells of
the hierchical grid. Thus, Lemma 2.1 with |σ | = W

3 and r = W
2 implies that the cycle is

contained in N7×7(σ).
Now, for each grid cell σ , consider all large sites s ∈ S` ∩ σ . For each such site, we

want to find the shortest cycle through s in the subgraph D(Sσ) of D(S) defined on all
sites in N7×7(σ). For this the graph D(Sσ) is constructed explicitly and Theorem 3.10 is
applied with s as the starting vertex for each s ∈ S` ∩ σ . Let ∆2 be the smallest length
of such a cycle, over all grid cells σ and all large sites s ∈ S` ∩ σ . See Figure 3.5 for an
illustration of the following argument. As D(S \ S`) has no triangles, the graph induced
on the small sites in D(Sσ) is plane. Furthermore, if one cell of N7×7(σ) had more than
O(1) large sites, by Lemma 3.4 it would contain a triangle. As all triangles have length at
least W and a triangle inside a single grid cell has length less than W this cannot happen.
Thus D(Sσ) is the union of a plane graph with a constant number of sites, and therefore
has O(n) edges. One run of Theorem 3.10 then takes O(|Sσ | logn) time. As each σ ∈ GI
contains O(1) large sites, the algorithm from Theorem 3.10 is executed O(1) times for
each Sσ . Furthermore, as each site lies in O(1) neighborhoods, we have

∑
σ∈GI
|Sσ | =O(n),

resulting in an overall running time of O(n logn) for this step.
The algorithm returns min{W,∆1,∆2}. As all steps to determine these values can

be implemented in O(n logn) expected time, the overall running time of the algorithm
follows. If the desired output is not only the length of the shortest cycle, but also the cycle
itself, appropriate pointers can be maintained during the execution of the algorithm. �

30

CHAPTER 4
Triangles and Cycles in

Transmission Graphs

In this chapter we consider the problems of finding triangles and cycles in transmission
graphs. The main insight used in the corresponding algorithms for disk graphs is that the
graph is either sparse or contains a triangle. In Section 4.1 we show that this statement
is not true for transmission graphs. We give an infinite family of site sets, such that the
induced transmission graphs are strongly connected and have Θ(n2) edges, while not
containing a directed triangle.

Since similar techniques as for the disk graph case are not feasible, we develop a
di�erent approach for transmission graphs. In Section 4.2 we describe a simple algorithm
to check for the existence of a triangle in a transmission graph, which is then extended to
find a shortest such triangle in Section 4.3. The last algorithm of this chapter is then an
algorithm to find a cycle of unweighted length at most k.

While the algorithms for the unweighted triangle and the cycles of length k are easy to
describe, the main technical challenge is to implement them e�ciently. To this end, we
define three kinds of batched range queries. In Section 4.5 we show how to e�ciently
implement these range queries and in consequence also the algorithms of this chapter.

4.1 Dense Transmission Graphs can be Triangle Free

In this section we show that there is an infinite family of strongly connected transmission
graphs that do not contain a directed triangle while having Θ(n2) edges. We first give a
simple family that does not satisfy the strongly connected property. This family already
shows that triangle-free transmission graphs do not have to be sparse. However, to find
triangles and cycles in transmission graphs, it su�ces to consider the strongly connected
components and one might still hope that the strongly connected components of a triangle-
free transmission graph are sparse. To show that this is also not true, we then extend
the family to one where all induced graphs are strongly connected, while the induced
transmission graphs are still triangle free and have Θ(n2) edges.

31

Chapter 4 Triangles and Cycles in Transmission Graphs

Lemma 4.1. There is an in�nite family A = {A1,A2, . . . , } such that |An| = n+ 1 and T (An)
has Θ(n2) edges while containing no triangle.

Proof. We define the set An = {a0, . . . , an} to be n + 1 sites on the x-axis. Let a0 be the
site in the origin with radius 1 and set the x-coordinate of ai to 2i−1 + (2i − 1) · ε for the
remaining sites, where ε > 0 is a su�ciently small constant. The radii of the sites ai for
i ≥ 1 are the same as their x-coordinates. A depiction of the set An can be found, by only
considering the blue and black sites in Figure 4.1.

We now show that the edge set of T (An) is E(A) = {ajai | i < j}. As all points in An lie
on a horizontal line, we only have to argue about their x-coordinates. By definition, ai
is left of aj for i < j. As the radii are chosen such that the edge aja0 exists for j ≥ 1, all
other edges ajai also exist for i < j. Given ai , to show that no edge to aj with i < j exists,
it su�ces to show that the edge aiai+1 does not exist. This can be seen by considering
the horizontal distance of ai and ai+1.

‖ai+1ai‖x = 2i + (2i+1 − 1)ε − (2i−1 + (2i − 1)ε)

= 2i−1 + 2iε
= rai + ε

Thus, T (An) contains Θ(n2) edges. Furthermore the order a0, . . . , an is a topological
sorting of T (An) and thus T (An) is acyclic and in particular does not contain a directed
triangle. �

Now, we extend this family such that the resulting graph is strongly connected. We
define the family S = {S5,S6, . . . } as follows: Each set Sn consists of 3n sites which can
be partitioned into three sets A = {a0, . . . an}, B = {b1,b2,b3} and C = {c1, . . . c2n−4}. An
illustration of the disks defined by S5 can be found in Figure 4.1, the underlying graph
structure is depicted in Figure 4.2.

Let 0 < ε ≤ 1
2n and α = cos−1(

√
2− 1) and define the sets as follows, where the sites ai

are the same as in the set An defined in the proof for Lemma 4.1:

a0 = (0,0) ra0
= 1

ai =
(
2i−1 + (2i − 1)ε,0

)
rai = 2i−1 + ε(2i − 1) i = 1, . . . ,n

Let r = ran and r ′ = r+ε
2 = 2n−2 + 2n−1ε, we set

bi = (r − i cos(α)r ′, i sin(α)r ′) rbi = r ′ i = 1,2

b3 =

√2
2n−4

,

√
2

2n−4 − 1
√

2− 1

 rb3
=
√

2
2n−4(

= 2n−2
)

ci =

0,

√
2
i − 1

√
2− 1

 rci =
√

2
i

i = 1, . . . ,2n− 4

32

4.1 Dense Transmission Graphs can be Triangle Free

a0

c1

c2

c3

c4

c5

c6 b3

b2

b1

a5a3a2
a1

a5

b1

a4

b2

a4

Figure 4.1: The sites and corresponding disks of S5. The site b2 lies in the square
contained in b3.

Figure 4.2: The graph structure of S5, the coordinates are not to scale.

33

Chapter 4 Triangles and Cycles in Transmission Graphs

Lemma 4.2. The graph T (Sn) consists of the union of the paths an,b1,b2,b3, c2n−4, . . . , c1, a0
and a0, c1, . . . , c2n−4,b3,b2,b1, an with the set of edges E(A) = {ajai | i < j}.
Proof. We will first consider the structure in each set separately and then consider the
three possible types of edges between the sets. The subgraph induced by A has the edge
set E(A) by Lemma 4.1. Now we consider the set B. The definition of b1 and b2 implies
that ‖b1b2‖ = r ′ and thus the edges b1b2 and b2b1 exist. For the edges b2b3 and b3b2 we

first note that rb3
=
√

2
2n−4

< 2n−2 + 2n−1ε = r ′, so it is enough to show the existence of
the edge b3b2. We consider the horizontal and vertical distance separately and show

that both are at most
√

2
2n−5

, which implies that b2 lies in the square with side length√
2

2n−5
= 2n−2
√

2
which is completely contained in b3, refer again to Figure 4.1. We have:

‖b2b3‖x =
∣∣∣∣r − 2cos(α)r ′ −

√
2

2n−4
∣∣∣∣

=
∣∣∣∣r − (
√

2− 1) · (r + ε)− 2n−2
∣∣∣∣

=
∣∣∣∣r(2−√2)− (

√
2− 1)ε − 2n−2

∣∣∣∣
=

∣∣∣∣2n−1(2−
√

2) + ε ·
(
(2n − 1) · (2−

√
2)−
√

2 + 1
)
− 2n−2

∣∣∣∣
=

∣∣∣∣2n−2(3− 2
√

2) + ε · (2n(2−
√

2)− 1)
∣∣∣∣

≤ 2n−2(3− 2
√

2) + 1

<
2n−2
√

2
for n ≥ 1

‖b2b3‖y =

∣∣∣∣∣∣2sin(α)
r + ε

2
− 2n−2 − 1
√

2− 1

∣∣∣∣∣∣
≤

∣∣∣∣0.95(r + ε)− (1 +
√

2) · (2n−2 − 1)
∣∣∣∣

=
∣∣∣∣0.95 · 2n−1 + 0.95 · 2nε − (1 +

√
2) · (2n−2 − 1)

∣∣∣∣
=

∣∣∣∣2n−2 · (2 · 0.95) + 0.95 · 2nε − 2n−2(1 +
√

2) + (1 +
√

2)
∣∣∣∣

=
∣∣∣∣2n−2(0.9−

√
2) + 0.95 · 2nε+ (1 +

√
2)

∣∣∣∣
As 0.95 ·2nε ≤ 1, the term in the | · | is negative for n ≥ 5. As n ≥ 5 by assumption, we get:

‖b2b3‖y ≤ 2n−2(
√

2− 1)− 0.95 · 2nε − (1 +
√

2)

<
2n−2
√

2
,

and therefore the edges b2b3 and b3b2 exist. Note that these calculations also immediately
imply, that b3 is above and left of b2.

34

4.1 Dense Transmission Graphs can be Triangle Free

For the set C we have to show that cici+1 and ci+1ci are edges of T (Sn), but no other
edges exist. As, similarly to the set A, all points in C lie on a vertical line in the order
c1, . . . , c2n−4 and have increasing radii, to show the nonexistence of the other edges, it
su�ces to show that no edge ci+2ci exists. The edge set induced by C follows from the
following calculations:

‖cici+1‖ =

√
2
i+1 − 1− (

√
2
i − 1)

√
2− 1

=

√
2
i
(
√

2− 1)
√

2− 1

=
√

2i = ri

‖cici+2‖ =

√
2
i+2 − 1− (

√
2
i − 1)

√
2− 1

=

√
2
i

√
2− 1

> 2
√

2
i

=
√

2
i+2

= rci+2

Finally we consider edges connecting the di�erent sets. First we note, that Dc1 intersects
the x-axis at ± 1√

2
and the other disks in C do not intersect the x-axis at all. Furthermore,

a0 is the only site in A whose corresponding disk intersects the y-axis at more than one
point. So c1a0 and a0c1 are the only edges connecting A and C.

Now we consider possible edges between A and B. By the definition of b1 it is apparent,
that the edges anb1 and b1an are present. To see that no other edges exist, note that Db1
intersects the x-axis at an and at the point with distance 2r ′ cos(α) to the left of an. As
α > π

3 we have:

2cos(α)r ′ <
r + ε

2
= 2n−2 + 2n−1ε,

whereas ‖an−1an‖ = 2n−2 + 2n−1ε, so no edge (b1, ai) exists for i ≤ n − 1. As rai ≤ r
′ for

i ≤ n− 1 this also implies that no other edges incident to ai with i ≤ n− 1 and b1 exist.
For b2 and b3 we consider the vertical distances. We already saw above, that b3 lies above
of b2 and that rb2

≥ rb3
, so it su�ces to consider b2. We have:

‖aib2‖y = 2sin(α)r ′

≥
√

3
2

(r + ε)

=
√

3r ′.

35

Chapter 4 Triangles and Cycles in Transmission Graphs

Thus considering the vertical distance alone is enough to eliminate the possibility of all
edges bjai and aibj for i = 0, . . . ,n− 1 and j = 2,3. As for possible edges between an and
b2 or b3, note that by definition ‖anb2‖ = (r + ε) > r. Furthermore, as b2 is left of an and
b3 is above and left of b2, we can derive, that b3 lies outside of Dan and thus no edges
anbi or bian for i = 2,3 are possible.

Finally, we have possible connections between B and C. First we consider possible
edges incident to b2. For the x-coordinate of b2 we have:

r − cos(α)(r + ε) = r − (
√

2− 1) · (r + ε)

≥ r(2−
√

2) ≥ r ′

As b1 is to the right of b2 this implies that neither Db1
nor Db2

intersect the y-axis. With
r ′ ≥ 2n−2 this excludes all edges between B and C incident to b1 or b2. Finally, by definition
Db3

intersects the y-axis only at the point c2n−4. As rb3
= rc2n−4

> rci for i ≤ 2n− 5, this
implies that the only edges between B and C are b3c2n−4 and c2n−4b3, concluding the
proof. �

Using this result, we can now show the main claim of this section.

Theorem 4.3. There is an in�nite family S = {S5, . . . } of sets of sites, such that

(a) |Sn| = Θ(n)

(b) T (Sn) has Θ(n2) edges

(c) T (Sn) forms one strongly connected component; and

(d) T (Sn) does not contain a triangle

Proof. Let Sn be the family of sites defined above. By Lemma 4.2, T (Sn) is the union of
the paths an,b1,b2,b3, c2n−4, c2n−5, . . . , c1, a0 and a0, c1, . . . , c2n−4,b3,b2,b1, an with the set of
edges E(A) = {ajai | i < j}. A graph with this structure satisfies the properties of the lemma.
Properties (a) and (b) are satisfied, as 3n ∈Θ(n) and |E(A)| = Θ(n2). The third property
is true since the graph contains the Hamiltonian cycle a0, c1, . . . , c2n−4,b3,b2,b3, an, . . . a0.
For (d), we only have to argue that there are no triangles in E(A) as the remaining parts
of T (Sn) are paths. By Lemma 4.1 this is also true. �

4.2 Finding a Triangle in a Transmission Graph

Given a transmission graph T (S) on n sites, we want to decide if T (S) contains a
directed triangle. We first describe an algorithm for this problem, that is not e�cient
when implemented naively. Then we explain how to use the underlying geometry of the
problem and batched range queries to implement the algorithm in O(n logn) expected
time.

The algorithm iterates over each directed edge e = st with rt ≥ rs, and it performs two
tests: first, for each directed edge tu with ru ≥

rt
2 , it checks if us is an edge in T (S), i.e.,

36

4.2 Finding a Triangle in a Transmission Graph

t us

Figure 4.3: We do not need to check whether u ∈Dt.

if s ∈ Du . If so, the algorithm reports the triangle stu. Second, the algorithm tests if
there is a site u such that ru ∈ [rs,

rt
2) and such that us is an edge in T (S), i.e., such that

s ∈Du . If such a site u exists, it reports the triangle stu. If both tests fail for each edge
e, the algorithm reports that T (S) contains no triangle. The next lemma shows that the
algorithm is correct.

Lemma 4.4. A triple stu reported by the algorithm is a triangle in T (S). Furthermore, if T (S)
contains a triangle, the algorithm will �nd one.

Proof. Let stu be a triple reported by the algorithm. The algorithm explicitly checks that
st and us are edges in T (S). It remains to consider tu. If ru ≥

rt
2 , then stu is reported by

the first test, and the algorithm explicitly checks that tu is an edge in T (S). If ru <
rt
2 ,

then stu is reported by the second test. We have rs <
rt
2 , since s and t are chosen so that

rs ≤ ru <
rt
2 . Furthermore, st and us are edges of T (S), so t ∈ Ds and s ∈ Du . Since the

second test ensures that ru <
rt
2 , the triangle inequality yields

‖tu‖ ≤ ‖ts‖+ ‖su‖ ≤ rs + ru <
rt
2

+
rt
2

= rt.

Thus, u ∈Dt, and tu is an edge in T (S) and the reported triple stu is a triangle in T (S).
This argument is visualized in Figure 4.3.

Next, suppose that T (S) contains a triangle stu, labeled such that rs ≤min{rt, ru}. If
ru ≥

rt
2 , then stu is found by the first test for the edge st. If ru <

rt
2 , we have s ∈ Du and

ru ∈ [rs,
rt
2). Thus, the second test will be successful for the edge st, and the algorithm will

report a triple stu′, such that s ∈Du′ and ru′ ∈ [rs,
rt
2), where the site u′ might be di�erent

from u. The first part of the proof shows that stu′ is a triangle in T (S). �

There are several challenges for making the algorithm e�cient. First of all, there might
be many edges st with rt ≥ rs. However, a consequence of the following lemma is, that if
there are ω(n) such edges, the transmission graph T (S) must contain a triangle.

Lemma 4.5. There is an absolute constant α1 so that for any r > 0, if there is a square σ
of diameter r that contains more than α1 sites s ∈ S with rs ≥ r

4
√

2
, then T (S) has a directed

triangle.

Proof. Cover σ with a 6× 6 grid of diameter r
6 ≤

r
4
√

2
, see Figure 4.4. For every s ∈ S ∩ σ

with rs ≥ r
4
√

2
, the disk Ds completely covers the grid cell containing s. If σ contains more

37

Chapter 4 Triangles and Cycles in Transmission Graphs

σ

r
4
√
2

Figure 4.4: Three disks with radius at least 4
4
√

2
in the same grid cell form a clique.

than α1 = 73 sites s with r
4
√

2
, then a simple volume argument shows that one grid cell

contains at least three such sites. These sites form a directed triangle in T (S). �

Now we define the two range searching problems that are fundamental to e�ciently
implementing the algorithm.

(R1) Let α > 0 be some constant and rmax ≤ 2
√

2 ·max{rs | s ∈ S}. Then either determine
that for every site s ∈ S with rs ≤

rmax

2
√

2
, there are at most α outgoing edges st with

rt ≥
rs
2 and report all these edges, or find a square σ of diameter 0 < r ≤ rmax that

contains more than α sites s ∈ S with rs ≥ r
4
√

2
.

(R2) Given O(n) query triples of the form (p,r1, r2) with p ∈ R2 and 0 < r1 < r2, find a
site u ∈ S such that there is a query triple (p,r1, r2) with r1 < ru < r2, and p ∈Du ; or
report that no such site u exists.

The query (R1) indeed always has a valid outcome: suppose there is a site s ∈ S with
rs ≤

rmax

2
√

2
and more than α outgoing edges st with rt ≥

rs
2 . Then, all the endpoints t lie in

Ds, the bounding square σ of Ds also contains these more than α sites. As σ has diameter
r = 2

√
2rs ≤ rmax these sites have radius at least rs

2 = r
4
√

2
as required by the query.

The next theorem shows that we can detect a triangle in T (S) with linear overhead in
addition to the time needed for answering (R1) and (R2).

Theorem 4.6. If (R1) and (R2) can be solved in time R(n) for input size n, we can �nd a
directed triangle in a transmission graph T (S) on n sites in time R(n) +O(n), if it exists.

Proof. The general idea is to follow the general algorithm described above with some
modifications to optimize the running time. Before starting to explicitly search for
triangles, we perform a range query (R1) with α = α1 as defined in Lemma 4.5 and
rmax = 2

√
2 ·max{rs | s ∈ S}. If it reports a square σ of diameter r that contains more

38

4.3 Finding the Shortest Triangle in a Transmission Graph

than α1 sites s ∈ S with rs ≥ r
4
√

2
, we scan the sites in that square to find a set S ′ of α1 + 1

such sites. By Lemma 4.5, T (S ′) contains a triangle, which can be found in O(1) time by
testing all triples in S ′.

Otherwise, (R1) reports the set E′ of all edges st in T (S) with rt ≥
rs
2 , where |E′ | =O(n).

We go through all edges e = st in E′ with rt ≥ rs, and we check if there is an edge tu in E′

such that us is an edge in T (S), i.e., such that s ∈ Du . If so, we report the triangle stu.
This takes care of the first test in the algorithm, and we check only O(n) triples, because
for each site in S, there are at most α1 outgoing edges in E′.

If we have not been successful, we again go through all edges e = st in E′, and if rt > 2rs,
we create the triple (s, rs,

rt
2). We perform a range query (R2) on the resulting set of O(n)

triples. If (R2) finds a site u ∈ S such that for a query triple (s, rs,
rt
2), we have rs ≤ ru ≤

rt
2 ,

and s ∈Du, we report the triangle stu. The site u satisfies all the properties imposed by
the second test. Otherwise, we report that T (S) does not contain a triangle. Note that
here we use the fact that all radii are di�erent, thus we can be sure that the ≤ condition
considered for the edges of the algorithm is actually a < and applying (R2) yields the
correct result. By Lemma 4.4, this adapted algorithm correctly reports a triangle in
T (S), if it exists. The time for the additional steps is O(n), so the total running time is
R(n) +O(n). �

Using existing methods [WL85], it is easy to solve (R1) and (R2) in O(n log2n) time.
However, a better solution is possible. In Lemmas 4.21 and 4.22, we will implement (R1)
and (R2) in O(n logn) expected time, resulting in the main theorem of this section.

Theorem 4.7. Let T (S) be a transmission graph on n sites. A directed triangle in T (S) can be
found in expected time O(n logn), if it exists.

Proof. The statement follows from combining Theorem 4.6 and Lemmas 4.21 and 4.22. �

4.3 Finding the Shortest Triangle in a Transmission
Graph

We extend Theorem 4.7 to find the shortest triangle in T (S). As in Section 3.1, we solve
the decision problem: given W > 0, does T (S) have a directed triangle of perimeter at most
W ? and then use Chan’s randomized optimization framework to obtain an algorithm for
the optimization problem. We call a site s ∈ S large if rs >

W
4 . Again let S` ⊆ S be the set

of all large sites.
Similarly to the algorithm for the weighted girth in disk graphs, there are several cases

to consider, in order to find the shortest triangle. An overview over the complete algorithm
can be found in Figure 4.5.

Lemma 4.8. We can �nd a triangle in T (S \ S`) of perimeter at most W in O(n logn) time, if
it exists.

39

Chapter 4 Triangles and Cycles in Transmission Graphs

Triangle in T (S \ S`)?

Query of type (R1)

Triangle within a single cell?

Check remaining triangles

yes Return yes
all triangles in T (S \ S`) have length ≤WO(n logn) Lemma 4.8

Cell with many large sites Return yes
Triangle in cell by Lemma 4.5O(n logn) Lemma 4.10

no

All Ds few large sites

O(nσ logn) each, Lemma 4.11

yes Return yes
all triangles in a single cell have length ≤W

O(n) overall, Lemma 4.12

no

yes Return yes
Checked explicitely

no

Return no

Figure 4.5: An overview of the algorithm to find the shortest triangle in a transmission
graph.

Proof. Any triangle in T (S \S`) has perimeter at most W : consider a directed triangle stu
in T (S \S`) with rs ≥max{rt, ru}. Since s has the largest radius of the sites on the triangle,
we have r,u ∈Ds. This implies that ‖st‖,‖us‖ ≤ rs and ‖tu‖ ≤ 2rs. Then the perimeter of
the triangle is at most ‖st‖+ ‖tu‖+ ‖us‖ ≤ 4rs ≤W . We can find a triangle in T (S \S`) in
O(n logn) time by Theorem 4.7. �

The task that remains, is to check for triangles of perimeter at most W with at least
one large site. Some of these triangles have to be considered individually, while the others
can be handled e�ciently in batch mode. The following lemmas show that we either find
a triangle or we may assume that there are few edges from S \ S` to S`.

Lemma 4.9. If T (S) does not contain any triangle, each site t has at most six incoming edges
from sites s with s ∈Dt .

Proof. We consider the set of circular sectors with opening angle 2π
6 with common apex

t that cover Dt. Assume for the sake of contradiction that one of these six circular
sectors contains two sites s, s′ such that st and s′t are both edges in T (S). Without loss
of generality, we assume that s′ is contained in the equilateral triangle defined by the
boundary of the circular sector and the line perpendicular to its bisector and through s,
see Figure 4.6. Then as this triangle is equilateral we have ‖ss′‖ ≤ ‖st‖ ≤ rs and thus ss′ is
an edge in T (S). This edge closes the triangle ss′t where the edge ts exists as s ∈Dt by
assumption. �

40

4.3 Finding the Shortest Triangle in a Transmission Graph

t

s

s′

Figure 4.6: If st is an edge in T (S) then the triangle tss′ exists.

Lemma 4.10. If T (S) does not have a triangle of perimeter at most W , every site in S` has
at most six incoming edges from S \ S`. Furthermore, in O(n logn) time, we can either �nd a
triangle of perimeter at most W in T (S) or determine for each site in S` all incoming edges from
S \ S` .
Proof. Since all sites in S` have a larger radius than the sites in S \S`, Lemma 4.9 implies
the first part of the claim.

As stated above, to find the triangles, we will handle some cases e�ciently in batch
mode. For this we will again use (R1). Suppose there is a square σ in the plane with
diameter 0 < r ≤ W√

2
such that σ contains more than α1 sites s of radius rs ≥ r

4
√

2
, where

α1 is defined as in Lemma 4.5. Then, Lemma 4.5 shows that T (S) contains a triangle
that lies in σ . In particular by the proof of Lemma 4.5 this triangle lies inside a square
with diameter r

6 and thus has perimeter at most 3 · r6 <W .

If there is no such square, it follows that there is no site s with rs ≤ W
4 such that Ds

contains more than α1 sites of radius at least rs
2 , as otherwise s could be enclosed by a

square of side length 2
√

2rs ≤ W√
2

that contains many sites of large radius. Thus, every

site s with rs ≤ W
4 has O(1) outgoing edges to sites with radius at least rs

2 . In particular,
there are O(n) edges from small sites to large sites in T (S).

Using (R1) with α = α1 and rmax = W√
2

we can distinguish these cases. In the first case
the square reported by (R1) contains a triangle of perimeter at most W and we are done.
In the second case, we obtain all edges from S \ S` to S`.

Now assume there is a site s ∈ S` that has indegree more than six from sites in S \ S`.
Then by Lemma 4.9 there is a triangle induced by s and two sites t,u ∈ S \ S`. Assume
without loss of generality that this triangle has the form sut. Then by the definition of
transmission graphs, we have ‖ut‖ ≤ ru and ‖ts‖ ≤ rt, and in particular ‖ut‖+ ‖ts‖ ≤ 2 · W4 .
Since ‖su‖ ≤ ‖ut‖+ ‖ts‖ ≤ 2 · W4 by triangle inequality, this implies that the perimeter of
the induced triangle is at most W . Checking the O(1) sites which have an incoming edge
to s explicitly will either find the at most six sites, or report a triangle. �

41

Chapter 4 Triangles and Cycles in Transmission Graphs

Next, we limit the number of relevant edges between large sites. For this, we subdivide
the plane with a grid GI with cell diameter W

4 . We get the following lemma:

Lemma 4.11. A triangle contained in a cell σ ∈ GI has perimeter at most W . If there is no
triangle in σ , then σ contains O(1) large sites. Such triangles can be found in O(n logn) overall
expected time.

Proof. An upper bound for the perimeter of a triangle contained in σ is 3 · W4 < W .
Furthermore, if there are at least three large sites in σ , these large sites form a triangle,
since the disk of a large site covers σ . By applying Theorem 4.7 to the induced subgraph
in each cell of GI, we can find such a triangle in O(n logn) total expected time. �

Let t be a site and let σ be the cell containing t, then the neighborhood N (t) of t are
all sites contained in N7×7(σ). By again applying Lemma 2.1, similar to the girth in disk
graphs, any triangle of perimeter at most W is contained in N (t).

Lemma 4.12. If each site in S \ S` has at most six incoming edges from S` and these edges are
known, a triangle with at least one large site and perimeter at most W can be found in O(n)
overall time.

Proof. Consider such a triangle tus with rs ≥max{ru , ts}. Then, s ∈ S`, and s, t,u all lie in
N (t). By Lemma 4.10, there are O(1) small candidates for u, and by Lemma 4.11, there
are O(1) large candidates for u in N (t). Having fixed a site t and a possible candidate
u, we iterate over all s ∈N (t) and check if s, u, and t form a triangle with perimeter at
most W . Every site s is contained in O(1) grid neighborhoods, and since there are O(1)
candidate pairs in each grid neighborhood, s participates in O(1) explicit checks. The
result follows. �

The following theorem summarizes the considerations in this section.

Theorem 4.13. We can �nd the shortest triangle in O(n logn) expected time, if it exists.

Proof. Combining Lemmas 4.8, 4.10 and 4.12 we get an algorithm for the decision version
of the problem. As in Theorem 3.7, the result follows from the same application of Chan’s
randomized optimization technique [Cha99] (restated in Lemma 3.6). �

4.4 Finding a Cycle of Length k in a Transmission
Graph

In this section we aim to find a cycle with at most k sites in a transmission graph. For
k = 3 the problem can be solved using Theorem 4.7. So from now on, we can focus our
attention on the case that T (S) is triangle-free. Recall from Theorem 4.3 that this graph
might still have Θ(n2) edges, so simply running the algorithm from Theorem 3.10 with
each vertex as a starting vertex is not faster than on general graphs.

We will once again use the geometry of our setting to find a better algorithm. In contrast
to the algorithm for the girth in disk graphs, we assume that an upper bound k on the

42

4.4 Finding a Cycle of Length k in a Transmission Graph

si

si+1

si+2

Figure 4.7: As si+2si is not an edge in T (S), the radius of si+2 is small compared to the
sum of the radii of si and si+1.

unweighted length of the cycle is given to the algorithm as a parameter. The running
time then has an exponential dependency on k. For su�ciently small values depending
on n or constant values of k this is still an improvement over the naive approach.

Before describing the algorithm we make some structural observations that are crucial
for showing the correctness of the algorithm. In the following assume, that a cycle
C = s0, . . . , sk−1 of length exactly k exists in T (S) and that the sites are named such that
rs0 = max{rs0 , . . . , rsk−1

}. The results carry over to cycles with length at most k.

Lemma 4.14. Let C = s0, . . . , sk−1 be a cycle with length k ≥ 4 and assume that T (S) does not
contain any triangles. Then the following holds, where all indices are interpreted modulo k.

(a) rsi+2
< rsi + rsi+1

(b) max{rsi , rsi+1
} ≥ rs0

2k−i−1 ; and

(c) max{rsi , rsi+1
} ≥ rs0

2k
.

Proof. The first claim follows from a combination of the triangle inequality with the
definition of T (S). The triangle inequality implies that ‖sisi+2‖ ≤ ‖sisi+1‖ + ‖si+1si+2‖.
As sisi+1 and si+1si+2 are edges in T (S), this reduces to ‖sisi+2‖ ≤ rsi + rsi+1

. Finally, as
T (S) contains no triangles, si+2si is not an edge in the transmission graphs, and thus
‖sisi+2‖ > rsi+2

. Combining these bounds yields rsi+2
< rsi + rsi+1

as claimed, see Figure 4.7.
As (c) is a direct consequence of (b), it remains to show (b). For i = k − 1 we have

max{rsk−1
, rs0} ≥

rs0
2k−i−1 , since rs0 =

rs0
20 . For the remaining terms we use inverse induction

on i = k − 2, . . . ,0. For the base case i = k − 2 this is the statement max{rsk−2
, rsk−1

} ≥ rs0
2 ,

which follows directly from (a):

rs0 < rsk−2
+ rsk−1

rs0 ≤ 2max{rsk−2
, rsk−1

}

43

Chapter 4 Triangles and Cycles in Transmission Graphs

s σ

Figure 4.8: (Part of) N (s) together with the corresponding part of S1(s).

The step now goes from i + 1 to i. By the hypothesis we have

max{rsi+1
, rsi+2
} ≥

rs0
2k−i−2

.

Now we distinguish two cases. If rsi+1
≥ rs0

2k−i−2 the claim is immediate, as
rs0

2k−i−2 ≥
rs0

2k−i−1 . In

the other case rsi+2
≥ rs0

2k−i−2 and by using (a) the result again follows:

rs0
2k−i−2

≤ rsi+2

< rsi + rsi+1

≤ 2max{rsi , rsi+1
} �

Now we are ready to describe the algorithm. Similar to Section 4.2 the algorithm is
first described in a general fashion, focusing on a single site s. Then we show that the
algorithm can be implemented e�ciently using batched range queries.

For each s ∈ S the goal is to find a cycle Cs with at most k vertices where s is the site
with the largest radius among the sites of Cs. The general idea of the algorithm is to
collect all sites that can be part of Cs, explicitly compute the transmission graph Ts on
this set and then use an algorithm for general graphs on Ts.

Let l(s) = max{0,blog rs
2k
c} and consider the hierarchical grid at level l(s). Let σ

be the cell of Gl(s) with s ∈ σ . Furthermore, let N (s) be the
(
2 ·

⌈
k · 2k ·

√
2
⌉

+ 1
)
×

44

4.4 Finding a Cycle of Length k in a Transmission Graph

N (s)

N (s′)

t u

u′

Figure 4.9: The site u′ is in both S2(t, s) and S2(t, s′). The site u is only in S2(t, s) as it
is too large for S2(t, s′). In this case we have smax(t) = s.

(
2 ·

⌈
k · 2k ·

√
2
⌉

+ 1
)

neighborhood of σ . The algorithm now collects a set S1(s) of sites

that contains all sites of radius at least 2l(s) in N (s), see Figure 4.8. Furthermore, for a
fixed t ∈ S1(s) let S2(t, s) be the set of all sites u ∈ S with ru ≤ 2l(s) such that the edge
ut exists in T (S). Note that a site t can be in the set S1(s) of multiple sites s. However
as for a fixed t the sites in S2(t, s) are only determined by rs, we have S2(t, s) ⊆ S2(t, s′)
for rs ≤ rs′ . Taking advantage of this observation, we denote by smax(t) the largest site s
such that t ∈ S1(s) and by S2(t) = S2(t, smax(t)) the cardinally largest set defined by t, see
Figure 4.9 for an illustration.

After finding all sets S1(s), we find the set S2(t) for each t ∈ S. Finally the shortest cycle
is found explicitly in the graph Ts = T

(
S1(s)∪

⋃
t∈S1(s)S2(t)

)
. If this cycle has length at

most k the algorithm stops and reports it.

Lemma 4.15. The algorithm described above correctly �nds a cycle with at most k edges.

Proof. First of all, if the algorithm reports a cycle, it is immediate that this cycle is a correct
output for our algorithm. So the main challenge is to show, that if there is a cycle Cs with
at most k edges and largest site s, the algorithm will report it. Let Cs = (s = s0), . . . , sk′
with k′ ≤ k − 1 be this cycle. A simple distance argument shows that all sites on Cs are
contained in D(s,2krs). Furthermore by Lemma 2.1, D(s,2krs) is completely contained
in N (s) and thus no sites on Cs with radius at least 2l(s) are missed by restricting the sites
considered for S1(s) to those in N (s).

What is left to show is that all si in Cs are contained in Ts. If rsi ≥ 2l(s) then si ∈ S1(s) by
definition. In the other case, recall that Lemma 4.14 (c) states that max{rsi , rsi+1

} ≥ rs
2k

. In
particular, by the assumption made in Chapter 2 that each radius is at least 1, this implies
max{rsi , rsi+1

} ≥ 2l(s). Thus if rsi < 2l(s) we have rsi+1
≥ 2l(s), or equivalently si+1 ∈ S1(s).

As sisi+1 is an edge of the cycle, by the definition of S2(si+1) we have si ∈ S2(si+1) and by
consequence also si ∈ Ts. Thus all sites on the cycle are contained in Ts and we cannot
miss Cs. �

45

Chapter 4 Triangles and Cycles in Transmission Graphs

N (s)

Gl′(s)I

Gl′(s)IV
σ2 σ1

σ3 σ4

Figure 4.10: N (s) is contained in Gl′(s)IV.

Now, that we know that the general strategy is correct, we move our focus to e�ciently
implementing it. Similar to the algorithm described in Section 4.2 the main challenge is
to e�ciently find the sets S1(s) and S2(t) e�ciently.

First, observe that if T (S) contains no triangle the number of sites considered for S1(s)
in each cell of N (s) is at most two. Assume to the contrary that there is a cell σ ∈N (s)
containing at least three sites of radius at least 2l(s). Then as rs ≥ 2l(s) = |σ | the sites are
all pairwise contained in each other, forming a clique and thus also a triangle. So from
now on we can assume that each cell in N (s) contributes at most two sites to S1(s).

Lemma 4.16. If T (S) does not contain a triangle, the sets S1(s) for all s ∈ S can be found in
overall time O(n logn) + n · 2O(k). Additionally, the values smax(t) can be determined for all
t ∈ S within the same time bound.

Proof. Let Qc be the compressed quadtree of S and assume without loss of generality
that the leaves of Qc have diameter 1. Furthermore, augment Qc by a bottom-up traversal
such that each cell τ is associated with the set Aτ of the at most two sites that lie in
τ and have radius at least |τ |. Let σ ∈ N (s) be a cell in N (s) and let ρ be the largest
cell in Qc such that ρ ⊆ σ . Recall from Lemma 2.3 that this is equivalent to saying that
ρ is the Z-predecessor of σ . Denote by R the union of all cells defined this way. By
the assumption on the diameter of the leaves, and as l(s) ≥ 0 for each s ∈ S, we have
S ∩N (s) = S ∩

⋃
ρ∈R{s ∈ ρ}. The task of computing S1(s) then reduces to locating the

cells R in Qc and setting S1(s) =
⋃
ρ∈R{t ∈ Aρ | rt ≥ 2l(s)}.

One easy way of finding the set R would be to collect the cells in
⋃
s∈SN (s), sort them by

Z-order and merge them with the linearized quadtree L. By Lemma 2.3 this would yield
for each σ ∈ N (s) its Z-predecessor and thus exactly the set R. As each neighborhood
contains 2O(k) cells the sorting would take an overall of n2O(k) log(n2O(k)) time, which
exceeds the claimed time bound. There are however some geometric observations which
allow us to reduce the cells which have to be sorted toO(n) and thus replace the log(n2O(k))
factor by an additive O(n logn) term. To locate the cells in R, note that N (s) can also be
seen as a square of diameter diam(N (s)) =

(
2
⌈
k · 2k

√
2
⌉

+ 1
)
·2l(s). Let l′(s) be the level of

the hierarchical grid, such that diam(N (s)) ≤ 2l
′(s) ≤ 2diam(N (s)) and denote this level

46

4.4 Finding a Cycle of Length k in a Transmission Graph

σ ′i
l′(s)− 1

l(s)
ρ

σi

2k

Figure 4.11: The cell σ ′i is the first descendant of σi in Qc. There are 2k levels between
σi and ρ.

of the hierarchical grid by Gl′(s)I. Let ` be the side length of a cell in Gl′(s)I and consider
three shifted copies of Gl′(s)I such that (`/2,0), (0, `/2) and (`/2, `/2) are grid points of
Gl′(s)II,Gl′(s)III and Gl′(s)IV, respectively.

Then there is an i ∈ {I, . . . , IV} such that N (s) is completely contained in a grid cell σ
of Gl′(s)i . Let σ1, . . . ,σ4 be the four cells of diameter 2l

′(s)−1 that partition σ . As Gl′(s)i is
shifted by `/2, the cells σ1, . . . ,σ4 are part of the hierarchical grid in level l′(s)− 1, see
Figure 4.10. The cells σ1, . . . ,σ4 might not be in Qc because they were removed due to
compression. However, if they contain at least one site, there are cells σ ′1, . . . ,σ

′
4 ∈ Q

c that
are the largest cells such that σ ′i ⊆ σi , see Figure 4.11. As s ∈N (s) and there is a cell in
Qc containing s with diameter 1, at least one of the cells σ ′i is not empty. Furthermore
by the definition of the compressed quadtree, the union of these four cells contains all
sites that are contained in N (s). We will use these cells as a starting point of an explicit
traversal of Qc to find the cells in R.

The cells σ ′1, . . . ,σ
′
4 for each s ∈ S in Qc can be found in a batched fashion. For all s ∈ S,

the four tuples (s,σi) can be computed in constant time for a fixed s. Collecting these
tuples for all s ∈ S and sorting them in Z-Order of their second component takes overall
O(n logn) time. Merging the linearized quadtree L of Qc with the sorted list of cells,
yields for each σi in a query tuple its Z-predecessor. By Lemma 2.3 the Z-predecessor of
σi is exactly σ ′i , if σ ′i exists. Thus all tuples (s,σ ′i) can be found in O(n) time during the
merging process and then be grouped by their first entry in O(n logn) additional time.

Having the cells σ ′i for each s ∈ S at hand, the set R and thus the sites in S1(s) can
be found as follows: Starting with each σ ′i , the compressed quadtree Qc is traversed
downwards by visiting all cells with a non-empty intersection with N (s). The downward
traversal stops, if the currently visited cell has a diameter smaller than or equal to 2l(s) or
if it has no children. If the traversal stops in a cell ρ, all sites stored in Aρ with radius at
least 2l(s) are added to S1(s). This mirrors the characterization of S1(s) given above.

47

Chapter 4 Triangles and Cycles in Transmission Graphs

This process visits at most l′(s)− l(s) levels. We can bound this quantity as follows:

l′(s)− l(s) = log
(

2l
′(s)

2l(s)

)
≤ log

(2
⌈
k · 2k

√
2
⌉

+ 1) · 2l(s)

2l(s)


≤ log

(
2
⌈
k · 2k

√
2
⌉

+ 1
)

≤ 2k for k ≥ 4

Thus the cells traversed when starting at σ ′i form a subtree of Qc of height at most 2k, and
overall at most 2O(k) cells are visited, again see Figure 4.11. Traversing all four subtrees
defined in this way and reporting all sites with the appropriate radius stored with the
leaves of these subtrees takes 2O(k) time for each site s.

To summarize, after a preprocessing step of O(n logn) time, the sets S1(s) can be
reported in 2O(k) for each s ∈ S. When doing the traversals in decreasing order of the
radii of the sites, we can find the sites smax(t) for each t ∈ S on the fly. After computing
the set S1(s) and storing it with s, check for each t ∈ S1(s) if it was reported for the first
time. If this is the case, set smax(t) = s and ignore it otherwise. �

Next we focus on the sets S2(t) and describe an e�cient algorithm for finding those.
For this we will use the following a variant of (R2):

(R2’) Given a set R ⊆ S×R+ of O(n) query tuples, report for each u ∈ S one of the query
tuples (t, r) ∈ R such that t , u, t ∈Du and ru < r, if it exists.

Lemma 4.17. Assume that queries of (R2’) can be answered in time R(n) and that T (S)
does not contain any triangles. Then the sets S2(t) for all t ∈ S can be found in overall time
O(n logn) +R(n).

Proof. Let t ∈ S be a fixed site and recall that we defined smax(t) to be the largest site s such
that t ∈ S1(s). The set S2(t) now contains all sites u ∈ S with ru < 2l(smax(t)) and t ∈ Du .
All sites in S1(smax(t)) have radius a least 2l(smax(t)), thus we have ru ≤ rt. Furthermore,
S2(t) contains at most six sites by Lemma 4.11. We find the sets S2(t) in two steps. First,
we identify for each t ∈ S the sites u ∈ S2(t) with 1

2rt < ru . In a second step, the remaining
sites in S2(t) are found. Both steps are performed in a batched fashion, finding the relevant
sites in S2(t) for all sites t ∈ S during one computation.

The approach in the first case is similar to that used in the proof of Lemma 4.16.
Again we construct a compressed quadtree Qc on S, assume that the leaves have diameter
1, and augment each cell σ ∈ Qc with the set Aσ of at most two sites with radius at
least |σ |. Recall that if t ∈ S1(smax(t)), then rt ≥ 2l(smax) and that all sites in S2(t) have a
radius smaller than 2l(smax). Observe that a site u ∈ S2(l) with ru >

1
2rt can only exist,

if rt ≤ 2l(smax)+1. Furthermore as rt ≥ 2l(smax(t)), the assumption ru >
1
2rt directly implies

ru ≥ 2l(smax(t))−1, see Figure 4.12.

48

4.4 Finding a Cycle of Length k in a Transmission Graph

2l(smax(t))

t
u

t′

u′

u′′

Figure 4.12: The site u falls in the first categories of sites in S2(t). The radius of u′′ is to
small to fall in this category. The radius of t′ is too large to have any site in
the first category in S2(t′).

Consider the hierarchical grid on level l(smax(t))− 1 and let τ be the cell in this level
containing t. By Lemma 2.1 the disk Dt is completely contained in N13×13(τ). Finding
the sites u in S2(t) with ru ≥ 1

2rt now reduces to finding the Z-predecessors of all cells in
N13×13(τ) with subsequent reporting of the relevant sites. Finding the Z-predecessors can
again be achieved by sorting the O(n) cells from all 13× 13 neighborhoods by Z-order
and then merging them with the linearized quadtree L. After having the Z-predecessors
at hand, we filter each set Aσ and add the sites containing t and having the appropriate
radii to S2(t).

For the second case, we first observe, that there is only one site t such that u ∈ S2(t)
and ru ≤ 1

2rt. This can be seen by the following application of the triangle inequality,
see Figure 4.13. Assume that u is both in S2(t) and in S2(t′). Then the edges ut and ut′

exist in T (S) and therefore also ‖ut′‖ ≤ ru and ‖ut‖ ≤ ru . As ru ≤ rt and ru ≤ rt′ , this also
directly implies the existence of the edges tu and t′u. Furthermore, the triangle inequality

u

t

t′

Figure 4.13: The site u is contained in at most one set S2(t).

49

Chapter 4 Triangles and Cycles in Transmission Graphs

gives ‖tt′‖ ≤ 2ru ≤ rt and thus the edge tt′ also exists in T (S) and closes a triangle, a
contradiction to our assumption on T (S). Thus all that needs to be done is to find for
each u the site t with ru ≤

rt
2 and t ∈ Du, if it exists as in this case u ∈ S2(t). This kind

of query can be handled in a batched fashion using (R2’) by considering a query tuple
(t, rt2) for each t ∈ S.

The time needed in the first step is dominated by the construction of Qc and the sorting
of the cells. Both steps need O(n logn) time. The second steps takes time O(R(n)) after a
linear preprocessing step.

�

In Lemma 4.23 we will see that (R2’) can be answered in O(n logn) expected time.
Combining this with Lemmas 4.16 and 4.17, the running time of the algorithm follows.

Theorem 4.18. A cycle on at most k vertices in a transmission graph can be found inO(n logn)+
n · 2O(k) expected time, if it exists.

Proof. First we can check if T (S) contains a triangle in O(n logn) expected time by
Theorem 4.7. If a triangle is found we have found a cycle with at most k vertices and are
done.

In the other case, we can use the algorithm described above. As each cell of N (s)
contributes O(1) sites to S1(s) and for each t ∈ S1(s) again only O(1) additional sites are
added to Ts because they are in S2(t), this subgraph of T (S) consists of 2O(k) sites and
consequently also 2O(k) edges with a slightly larger constant in the exponent. Explicitly
constructing Ts and finding the shortest unweighted cycle takes time proportional to the
size of Ts. As |Ts| = 2O(k) this takes 2O(k) time for each Ts and thus n2O(k) time in total.
Combining this bound with the preprocessing time detailed in Lemmas 4.16 and 4.17 the
overall time bound follows. �

Corollary 4.19. Given a transmission graph with unweighted girth k. Then the girth can be
computed in time O(n logn logk) +n2O(k).

Proof. Using exponential search, the value k can be determined by O(logk) applications
of Theorem 4.18. �

4.5 Batched Range Searching

After having seen their algorithmic applications, we can now focus on the main technical
challenge of this chapter: to solve the range queries described above e�ciently. For this
we use the general range query data structure described in Section 2.4 as a basis. For all
three types of range queries the sites S, sorted in their radii, are stored in the leaves of
the binary search tree B. The radii of the sites which are relevant to answer the queries
of (R1) and (R2’) are only bounded from one side. So the relevant paths in B for (R1)
are only the paths Π←(rs2) and for (R2’) the paths Π←(r) for the radiii given in the query
tuple. On the other hand, the radius range for (R2) is bounded by the interval (r1, r2)
and thus both paths Π←(r1) and Π→(r2) are considered.

50

4.5 Batched Range Searching

4.5.1 Queries of Type (R1)

We restate the objective for the queries of type (R1) for convenience.

(R1) Let α > 0 be some constant and rmax ≤ 2
√

2 ·max{rs | s ∈ S}. Then either determine
that for every site s ∈ S with rs ≤

rmax

2
√

2
, there are at most α outgoing edges st with

rt ≥
rs
2 and report all these edges, or find a square σ of diameter 0 < r ≤ rmax that

contains more than α sites s ∈ S with rs ≥ r
4
√

2
.

We answer the query for a given set of sites e�ciently by checking the properties for
various subsets of sites s ∈ S simultaneously. Let B be the binary search tree on S, sorted
by the radii as used in the range query structure introduced in Section 2.4. For this we
will use linearized compressed quadtrees Lv for all canonical subsets of the sites. Each
Lv is the linearized version of the compressed quadtree Qcv . The quadtrees Qcv contain
all sites in the canonical subset defined by a vertex v of B. We will show in Lemma 4.20
that it is possible to build all these linearized compressed quadtrees without logarithmic
overhead.

Since (R1) gives us plenty of freedom in choosing the squares reported by the range
queries, we take the enclosing squares of the sites in addition to the cells of the hierarchical
grid. The latter allows us to reduce the range searching problem to that of a predecessor
search in a linear list. The reduction process, described in detail in Lemma 4.21, can be
accomplished by a constant number of tree traversals.

Lemma 4.20. For each v ∈ B the linearized quadtree Lv for the sites in the canonical subset Iv
can be found in O(n logn) time.

Proof. For each v ∈ B, the compressed quadtree Qcv for Iv is build as follows. At the root,
the compressed quadtree Qc for S is computed in O(n logn) time [Buc+11; Har11]. Given
the compressed quadtree Qcv for a node v ∈ B, we compute Qcw for a child w of v using
a postorder traversal of Qv . In each leaf σ of Qcv, check if the sites in σ are in Iw, by
looking at their radii. If none of the sites lie in Iw, σ is removed; otherwise, it remains
in Qcw. If an inner vertex σ of Qcv has no remaining children it is removed. In the other
case, if σ has exactly one remaining child that is not a compressed vertex, σ is marked as
compressed and the traversal continues. If the only remaining child of σ is compressed,
remove this child, connect σ to its grandchild, and mark σ as compressed. This takes
O(|Qcv |) time and gives Qcw.

Once all the compressed quadtrees Qcv are available, the linearized quadtrees Lv
can be found by traversing B and each Qcv encountered. The total time to find the
lists Lv is O(n logn+

∑
v∈B |Qcv |) = O(n logn), since |Qcv | = O(|Iv |), for all v ∈ B, and∑

v∈B |Iv | =O(n logn) by Lemma 2.4. �

For a site s ∈ S let σ be the cell with s ∈ σ and 1
2 |σ | ≤ rs < |σ | and define the neighborhood

of s as N (s) =N5×5(σ). Using Lemma 2.1 it follows that Ds is completely covered by N (s).
By distributing the cells of N (s) to the vertices of B, we can then answer the range query
problem (R1) e�ciently:

51

Chapter 4 Triangles and Cycles in Transmission Graphs

B Qcv

Qcw Qcu

rs
2

R′v = [. . . , (s,σ), . . .]

τσ,sv

v

w u

Figure 4.14: The split query (s,σ) is in the list R′v of the canonical nodes of the path
Π←(rs2). The cell τσ,sv contains all sites in the canonical subset of v that are
also contained in σ .

Lemma 4.21. The range searching problem (R1) can be solved in O(n logn) time.

Proof. We apply Lemma 4.20 to find the linearized quadtree for every canonical subset in
B. Remember that the queries in (R1) are all sites s ∈ S with rs ≤

rmax

2
√

2
. As in the proof for

Lemma 4.16, we split each such query into subqueries, by considering its neighborhood.
Define the set of split queries as R =

⋃
s∈S;rs≤

rmax
2
√

2

{
(s,σ) | σ ∈ N (s)

}
. The purpose of the

split queries is to approximate the associated disks for the query sites by cells from the
hierarchical grid. As each neighborhood contains a constant number of cells, we have
|R| =O(n) and as rs ≤

rmax

2
√

2
also |σ | ≤ rmax√

2
≤ rmax for all σ ∈ R.

We now perform range queries for the cells in the split queries. We do this in a batched
fashion. For each v ∈ B we consider the sorted list R′v of split queries that all have v
as a canonical node and consider all split queries in R′v together. Once these lists are
available, we can answer the queries by merging the linearized quadtrees Lv with the lists
R′v similar to Lemmas 4.16 and 4.17, details follow.

First we describe how to compute the lists R′v . For this we first sort all elements of R in
the Z-order of their second components in O(n logn) time. Next, we distribute the split
queries along their associated search paths Π←(rs2) = Π◦←(rs2). For each v ∈ B, let Rv be
the sublist of queries in R, sorted by the Z-order of the second component, that have v on
their path. By Lemma 2.4 and as N (s) has constant size, we have

∑
v∈B |Rv | =O(n logn).

To find the lists Rv for all v ∈ B in O(n logn) time, we perform a preorder traversal of B,
computing the lists for the children from the lists of the parents. More precisely, given
the sorted list Rv for a node v ∈ B, we can find the sorted list Rw for a child w of v in
time O(|Rv |) by scanning Rv from left to right and by copying the elements that also
appear in Rw. Finally, we distribute the split queries into their canonical nodes. The
canonical nodes of a split query are the right children of the nodes on Π←(rs2). Thus, for

52

4.5 Batched Range Searching

s

σ

N (s)

(a) A cell of N (s) contains more than α sites.

s 2
√
2rs

N (s)

(b) All cells on N (s) contain few sites, we
consider the bounding box of Ds.

Figure 4.15: The two cases of finding a square with many sites.

each v ∈ B we can find the sorted list R′v of split queries with v as a canonical node as
follows: we iterate over all non-root nodes v ∈ B, and we scan the list Rw of the parent
node w of v. We copy all queries that have v as a canonical node from Rw into R′v . This
takes O(n logn) time.

Now we describe how to use this information to answer the query, see Figure 4.14. We
iterate over all v ∈ B, and we merge the lists R′v with the lists Lv, in Z-order. This takes
O
(∑

v∈B |Lv | + |R′v |
)

= O(n logn) time and yields for each (s,σ) ∈ R′v its Z-predecessor
τσ,sv in Qcv . By Lemma 2.3, we know that if σ ∩ τσ,sv , ∅ then we have σ ∩Iv = τσ,sv ∩Iv .
Since these sites are all from Iv, they all have radius at least rs

2 . We can find all these
sites in O(k) time, where k is the output size.

If k > α, we stop and report σ as a square with many sites of large radius, see
Figure 4.15(a). The diameter of σ is at most rs and the radii of the reported sites are at
least rs

2 ≥
rs

4
√

2
. A close look at these bounds shows that the more than α sites that are

reported might have a larger radius than required for the cell. This does not interfere
with the correctness of our data structure. A cell reported this way is definitely a correct
answer for the query. Potential other cells with many large sites will be found in the next
step.

Here, we use the sites in each cell σ to accumulate the sites contained in a query disk
Ds. This can be done by considering all canonical nodes of a split query of s and iterating
over all sites contained in the cell σ . In each such cell there are at most α sites. For each
site t ∈ σ , we can check in constant time if t ∈Ds. If we find a query disk Ds with more
than α sites of large radius, we stop and report its enclosing square with many sites of
large radius. As r = 2

√
2rs is the diameter of the enclosing square, the radii are at least

53

Chapter 4 Triangles and Cycles in Transmission Graphs

p

p̂

D̂s

Ds

D̂s

Ds

Figure 4.16: Lifting disks and points. In the right picture, D̂s is only shown in a
2-dimensional representation.

r
4
√

2
as desired. Otherwise, for each s ∈ S, we have found the at most α sites of radius at

least rs
2 in Ds, see Figure 4.15(b). The whole algorithm takes O(n logn) time. �

4.5.2 Queries of Type (R2)

We again restate the kind of queries we consider in this section.

(R2) Given O(n) query triples of the form (p,r1, r2) with p ∈ R2 and 0 < r1 < r2, find a
site u ∈ S such that there is a query triple (p,r1, r2) with r1 < ru < r2, and p ∈Du ; or
report that no such site u exists.

We will again make use of the binary search tree B as defined in Section 2.4. The
interesting paths are Π•←(r1) and Π•→(r2) for each query (p,r1, r2). As for the queries of
(R1) we again answer queries in a batched fashion by storing suitable data structures in
each inner vertex v of B. The tree structure of B will again be used to quickly construct
the search structures for each canonical subset and then solve all queries for a canonical
subset in one batch.

We exploit the connection between planar disks and three-dimensional polytopes to
represent the query points and sites of S as objects in R

2. Let U = {(x,y,z) | z = x2 + y2}
be the three-dimensional unit paraboloid. For a point p ∈ R2, the lifted point p̂ is the
vertical projection of p onto U . Each disk Ds with s ∈ S is transformed into an upper
halfspace D̂s, so that the projection of D̂s ∩U onto the xy-plane is the set R2 \Ds;1 see
Figure 4.16. The union of a set of disks in R

2 corresponds to the intersection of the lifted
upper halfspaces in R

3.

1This halfspace is bounded by the plane z = 2sxx+ 2syy −
(
s2x + s2y − r2

s

)
, where s = (sx, sy).

54

4.5 Batched Range Searching

Ev

(a) Two-dimensional
representation of Ev .

R̂v

(b) Two-dimensional
representation of R̂v .

Ev

R̂v

(c) The orange points
answer the query.

Figure 4.17: Using halfspace intersection and convex hull, we can answer queries of
type (R2).

Lemma 4.22. The range searching problem (R2) can be solved in O(n logn) expected time.

Proof. For each v ∈ B, we construct a three-dimensional representation of the union of the
disks in the canonical subset Iv . As explained above, this is the intersection Ev of the lifted
three-dimensional halfspaces D̂s, for s ∈ Iv . The intersection of two three-dimensional
convex polyhedra with a total ofm vertices can be computed in O(m) time [Cha16; Cha92].
Recall that by Lemma 2.4 the total number of vertices of these polyhedra is O(n logn).
Therefore, we can construct all the polyhedra Ev , for v ∈ B, in overall O(n logn) time, by
a bottom-up traversal of B. See Figure 4.17(a) for a two-dimensional representation of
the polyhedron Ev .

To preprocess the query processing, we construct a polytope R̂v for each v ∈ B. To
define the polytope R̂v we consider the points p that appear in a query (p,r1, r2) that have
v as a canonical node. R̂v is then defined as the convex hull of the lifted versions p̂ of
these points, see Figure 4.17(b). The lifted query points all lie on the unit paraboloid U ,
so every lifted query point appears as a vertex on R̂v .

To find all polytopes R̂v for v ∈ B e�ciently, we proceed as follows: let A be the
three-dimensional point set obtained by taking all points that appear in a query and
lifting them onto the unit paraboloid. We compute the convex hull of A in O(n logn)
time and store it in the root of B. Then, for each v ∈ B, we find the convex hull CHv of
all lifted queries that have v in Π←(r1) or Π→(r2). This can be done in O(n logn) total
expected time by a top-down traversal of B. We already have the polytope for the root
of B. To compute the polytope for a child node, given that the polytope for the parent
node is available, we use the fact that for any polytope R in R

3 with m vertices, we can
compute the convex hull of any subset of the vertices of R in O(m) expected time [CM11].
For v ∈ B, let CHv be the convex hull of the lifted query points that have v on Π←(r1) or
Π→(r2). Once we have CHv available, we can compute for each v ∈ B the polytope R̂v
that is the convex hull of the lifted query points that have v as a canonical node. For this,
we consider the convex hull CHw stored at the parent node w of v, and again extract the
convex hull R̂v for the lifted query points that have v as a canonical node.

55

Chapter 4 Triangles and Cycles in Transmission Graphs

Now that the polyhedra R̂v and the polytopes Ev are available for all v ∈ B, we can
answer the query as follows: for each node v ∈ B, we check for vertices of R̂v that do not
lie inside of Ev . These are exactly the vertices of R̂v that are not vertices of R̂v ∩Ev . As
mentioned above, the intersections R̂v ∩Ev can be found in linear time for each node
v ∈ B, for a total time O(n logn). Upon a close examination it can be seen that the
algorithm by Chan [Cha16] can be extended to also report the points of R̂v that are
not part of the intersection. The main idea of Chan’s algorithm is to recursively find
the intersection of polyhedra defined by a suitably chosen subset of the planes defining
the original polyhedra, and to then merge the remaining plane with this intersection.
For the merging step, each face of the recursively found polyhedron is triangulated and
all hyperplanes of either input polyhedron that can intersect the triangle are collected
in a candidate list. Now if a hyperplane defining a face of R̂v is not part of any such
candidate list, the vertices that define the face on the hyperplane cannot be vertices of the
intersection and can thus be reported. In the other case, the vertices of the face defined
by the hyperplane have to be checked explicitly. Chan [Cha16] argues that each candidate
list has constant size and finds the intersection explicitly using brute force. During this
brute force step, we can also find the vertices of R̂v that are not part of the intersection.

Figure 4.17(c) illustrates how these points answer the query. If for any such intersection
R̂v ∩Ev , there is a lifted site ŝ ∈ R̂v that is not a vertex of R̂v ∩Ev , we can explicitly find a
disk containing it in linear time and report the range query as successful. If the query is
unsuccessful for all v ∈ B we report the complete range query as unsuccessful. �

4.5.3 Queries of Type (R2’)

The queries of type (R2’), restated here convenience, are actually very similar to the
range queries (R2).

(R2’) Given a set R ⊆ S×R+ of O(n) query tuples, report for each u ∈ S one of the query
tuples (t, r) ∈ R such that t , u, t ∈Du and ru < r, if it exists.

In (R2), for a set of queries of the form (s, r1, r2), we wanted to report one query triple
such that there is a site u with r1 < ru < r2 or to report that there is no such u for any
query triple. In (R2’), we want to find one query tuple for each site. However the general
task: �nd a site within the given radius range, containing a certain point remains the same. It
actually turns out, that we can use geometric duality to adapt the approach for (R2) to
the situation for (R2’).

Lemma 4.23. The range searching problem (R2’) can be solved in O(n logn) expected time.

Proof. Recall that for solving (R2), we represented each disk Ds for s ∈ S by the hyperplane
D̂s : z = 2sx · x + 2sy · y − (s2x + s2y − r2

s) and lifted each query site t to t̂ = (tx, ty , t2x + t2y).
For the problem at hand, we will use a standard duality transformation [dBer+08] which
maps a point p = (px,py ,pz) to the hyperplane p∗ : z = px · x + py · y − pz and vice
versa. Thus, by first using the lifting described in Section 4.5.2, we represent each disk
Ds by the point D̂s

∗
= (2sx,2sy , (s2x + s2y − r2

s)) and each query site t by the hyperplane

56

4.5 Batched Range Searching

D̂s

D̂∗s

p̂p̂∗

p

q̂

q

q̂∗

Ds

Figure 4.18: The point p lies in Ds so the point D̂∗s lies below p̂∗.

t̂∗ : z = tx ·x+ ty ·y − (t2x + t2y). For answering a query in (R2), the question if a query point

t is contained in a disk Ds was reduced to the question, whether t̂ lies below D̂s. For
(R2’) we want to test if a site u ∈ S is contained in the disk defined by a query site t.
This reduces to asking: does D̂u

∗
lie below t̂∗? A two-dimensional representation of this

situation can be seen in Figure 4.18.

To answer the batched range query of type (R2’), we use the same approach as described
in Lemma 4.22, but we use the dual structures. To be precise, again a tree B on all sites
sorted by radii is build. There is only an upper bound on the radius, so we only have
to consider the paths Π•→(r) for the queries. In each vertex v of B we store a convex
polyhedron E∗v representing all sites in the canonical subset of v. For (R2) this polyhedron
was the intersection of the halfplanes defined by the sites, in the dual this translates to the
convex hull of the points D̂∗s for each site s in the canonical subset of v. Recall that given
the convex hull of m vertices, we can compute the convex hull of a subset of vertices in
O(m) expected time [CM11]. Thus we can construct the polyhedra E∗v for each vertex
v ∈ B in overall O(n logn) time.

Furthermore, in each vertex v we want to store a representation of the query sites that
have v as a canonical node. For this, we first distribute all queries to the leaves at the
end of Π→(r) and compute the intersection of the collected halfspaces t̂∗ in the leaves.
Then we compute the intersection of all queries below an inner vertex v in a bottom up
fashion. As we can compute the intersection of two polyhedra with a total of m vertices
in O(m) time [Cha16; Cha92], this again needs O(n logn) overall time. Then we can
copy these polyhedra which are stored in a right child of an inner node to its left sibling.
These copied polyhedra R̂∗v are the desired representation of the sites which have v as a
canonical node.

After having all these polyhedra available, the remaining algorithm is mostly identical
to that given in Lemma 4.22. For each vertex v ∈ B, we can now compute the intersection

57

Chapter 4 Triangles and Cycles in Transmission Graphs

of the polyhedra E∗v and R̂∗v and find the points on E∗v that are not in E∗v ∩ R̂∗v . This can
be done as in Lemma 4.22 in linear time for each v and yields a site set U , were all u ∈U
contain a query site. In contrast to (R2) we do not only need an answer for one site found
this way, but rather for all. If there is a subset U ′ ⊆ U for which we have not already
found a tuple, we construct a vertical ray shooting query data structure on R̂∗v . Now we
can explicitly perform a vertical ray shooting query for each u ∈U ′ which then yields the
query tuple for u. There is a data structure due to Dobkin and Kirkpatrick [DK82] that
allows ray shooting queries in time O(logn) after O(n) preprocessing time. Each site is
used for one vertical ray shooting query and the ray shooting data structures can be build
in O(n logn) overall time. Thus the running time for this last step is again O(n logn),
resulting in the overall running time of O(n logn) expected time as claimed. �

58

CHAPTER 5
Dynamic Connectivity in Disk

Graphs
This chapter deals with the dynamic connectivity problem in disk graphs. To be precise,
given a disk graph on a site set S we describe two data structures that allow the deletion
of sites and queries of the form: given s ∈ S and t ∈ S , are s and t connected in D(S)? The
first data structure works for disk graphs with bounded radius ratio Ψ , while the second
works for general disk graphs. For small values of Ψ the first data structure is more
e�cient. However, as the radius ratio can be potentially unbounded, the second data
structure has a better running time for su�ciently large values of Ψ .

The overall structure of both data structures is very similar. For both we define a set
of regions and a proxy graph on the set of regions and sites. The proxy graph for general
disk graphs can be seen as an extension of the graph for bounded radius ratio. The
definition of these sparse proxy graphs, which accurately represent the connectivity, is
the main technical challenge in this chapter. We store the proxy graphs in a Holm et al.
[HdLT01] data structure for general graphs, that can be queried in O

(logn
loglogn

)
time and

allows edge insertions and deletions in O(log2n) amortized time. As the proxy graph is
sparse, storing it in a Holm et al. data structure allows us to e�ciently query and update
the connectivity information. In addition to the connectivity data structure for general
graphs, we need other auxiliary geometric data structures.

For the preprocessing step, we need access to an e�cient static additively weighted
nearest neighbor data structure (AWNN) given in Lemma 5.1. Furthermore, in order to
e�ciently identify the edges that have to be deleted from the proxy graph at the deletion
of a site, we use a data structure given by Kaplan et al. [Kap+21a]1. For completeness we
give the precise results below.

Lemma 5.1 (AWNN, de Berg et al. [dBer+08], Fortune [For87], and Sharir [Sha85]). Let
P ⊆ R

2 be a set of points, each with an associated weight wp. Then there is a data structure,

1The paper on dynamic disk graph connectivity [Kap+21a] is the combination of a variety of results
related to the topic. It mainly consists of the results given in three papers presented at EuroCG [KKM21;
Kap+21b; Kap+16]. My contribution to [Kap+21a] were the decremental data structures that were
partially presented at EuroCG’21 [Kap+21b]

59

Chapter 5 Dynamic Connectivity in Disk Graphs

2π/
d

σ a(σ)

Figure 5.1: The plane is decomposed into d congruent cones with opening angle 2π
d

and apex a(σ).

that after O(n logn) preprocessing time, can report for a query point q ∈R2 the point p ∈ P that
minimizes ‖pq‖+wp in O(logn) time.

Lemma 5.2 (Reveal data structure (RDS), Kaplan et al. [Kap+21a]). Let R and B be site
sets with |R|+ |B| = n. There is a data structure that after some preprocessing allows the deletion of
sites from R and B. After deleting a site from B, it reports all disks from R now disconnected from⋃
b∈BDb. Preprocessing the data structure takes O(|B| log5nλ6(logn)+ |R| log3n) time. Deleting

m sites from B and an arbitrary number of sites from R takes O((m log9n)λ6(logn)+ |R| log4n)
expected time and O(n log3n) expected space, where λs(n) is the maximum length of a Davenport-
Schinzel sequence of order s on n symbols.

5.1 Logarithmic Dependency on Ψ

This section describes a data structure for the dynamic connectivity problem, whose
update time has a logarithmic dependency on Ψ . We first define the proxy graph and
show its properties in detail before moving on to describing the actual data structure,
using the proxy graph in its core.

The Proxy Graph We start by defining the proxy graph H . The vertex set of H
contains one vertex for each site in S, plus additional vertices that represent certain
regions in the plane, to be defined below. Each region is defined based on a cell of a
quadtree. With each such region A, we associate two site sets. The first set S1(A) ⊆ S is
defined such that all sites s ∈ S1(A) lie in A and have a radius rs comparable to the size
of A, for a notion of comparable to be defined below. A site can be assigned to several
regions. We will ensure that for each region A, the induced disk graph D(S1(A)) of the
associated sites is a clique. The second set S2(A) ⊆ S, associated to the region A contains
a site if it lies in the cell defining the region, its radius is not too large and it intersects

60

5.1 Logarithmic Dependency on Ψ

outer regions inner region
middle regions

9
2 |σ |

|σ |

5
2 |σ | σ

Figure 5.2: The regions defined by a cell σ .

at least one site in S1(A). Again, the vague notions in this description will be specified
below.

The proxy graph H is bipartite, with all edges going between the site-vertices and the
region-vertices. The edges of H connect each region A to the sites in S1(A) or S2(A).
The connections between the sites in S1(A) with A constitute a sparse representation of
the corresponding clique in D(S1(A)). The edges connecting a site in S2(A) to A allow
us to represent all edges in D(S) between S2(A) and S1(A) by two edges in H . Since
D(S1(A)) is a clique, this sparse representation does not change the connectivity between
the sites. Furthermore, we will ensure that the number of regions, and the total size of
the associated sets S1(A) and S2(A) is small, giving a sparse proxy graph.

We now describe the details. The graph H has vertex set S ∪A, where S are the sites
and A is a set of regions. To define the regions, we first augment the (non-compressed)
quadtree Q as follows. For each site s ∈ S, we consider the cell σs in the hierarchical
grid with s ∈ σs and |σs| ≤ rs < 2|σs|, and we set N (s) = N15×15(σs). Note that as the
smallest radius in S is 1, these cells have diameter at least 1 and are thus contained in the
hierarchical grid. We add all cells in

⋃
s∈SN (s) to Q and, with a slight abuse of notation,

still call the resulting tree Q.
The set A defining the vertex set of H is a subset of the set AQ that contains certain

regions for each cell of Q. There are three kinds of regions for a cell σ of Q: the outer
regions, the middle regions, and the inner region. To define the outer regions for σ , we
consider the set Cd1

(σ) of d1 congruent cones with their common apex at the center a(σ)
of σ , for some integer parameter d1 to be determined below, see Figure 5.1. For each
cone C ∈ Cd1

(σ), we intersect C with the annulus that is centered at a(σ) and that has
inner radius 5

2 |σ | and outer radius 9
2 |σ |, and we add the resulting region to AQ. All these

61

Chapter 5 Dynamic Connectivity in Disk Graphs

A

A′

Figure 5.3: The set S1(A) is marked blue. The orange site in A is not in the set because
its radius is too small. The orange site in A′ is not in S1(A′): while its radius
is in the correct range, it does not touch or intersect the inner boundary.

regions form the outer regions of σ . The middle regions of σ are defined similarly, but using
the set Cd2

(σ) of d2 congruent cones centered at a(σ), for another integer parameter d2 to
be determined below, and the annulus that is centered at a(σ) and that has inner radius
|σ | and outer radius 5

2 |σ |. Finally, the inner region for σ is the disk with center a(σ) and
radius |σ |. See Figure 5.2 for an illustration of the regions for a cell σ .

We associate a set of sites S1(A) ⊆ S with each region A ∈ AQ, depending on the type
of the region. This is done as follows: first, suppose that A is an outer region for a cell σ .
Then, the set S1(A) contains all sites t such that

(a) t ∈ A

(b) |σ | ≤ rt ≤ 2|σ |; and

(c) ‖a(σ)t‖ ≤ rt + 5
2 |σ |.

This means that t represents a disk with a size that is comparable to the diameter of σ ,
whose center lies in the region A, and that intersects the inner boundary of A. Second, if
A is a medium or the central region for a cell σ , then S1(A) contains all sites t such that

(a) t ∈ A; and

(b) |σ | ≤ rt < 2|σ |.

That is, the site t represents a disk, again with a size is comparable to σ and center in A.
See Figure 5.3 for an illustration of these definitions. The only di�erence between the
conditions for the outer and the other region types is the upper bound on the distance
‖a(σ)t‖, which is trivially true for a middle or inner region. We define A ⊆AQ to be the

62

5.1 Logarithmic Dependency on Ψ

A

Figure 5.4: The red sites in σ are in S2(A). The radius of the orange site is in the
correct range, but it does not the intersect a site in S1(A) (marked blue).

set of regions where S1(A) , ∅. In the following, we will not strictly distinguish between a
vertex from A and the corresponding region, provided that it is clear from the context.

Additionally for each region A ∈ A we define a set S2(A) as follows and illustrated in
Figure 5.4. Let A be a region defined by a cell σ , then the set S2(A) contains all sites s
such that:

(a) s ∈ |σ |

(b) s is adjacent in D(S) to at least one site in S1(A); and

(c) rs < 2|σ |

We add an edge {s,A} between a site and a region, if s ∈ S1(A)∪ S2(A). Note that the
sets S1(A) and S2(A) are not necessarily disjoint, as for the center region defined by a
cell σ , a site in σ with |σ | ≤ rs < 2|σ | will be both in S1(A) and S2(A). This will however
influence neither the preprocessing time nor the correctness in a negative way.

The following structural lemma will help us to show that H accurately represents the
connectivity, as well as to bound the size and preprocessing time.

Lemma 5.3. Let {s, t} be an edge in D(S) with rs ≤ rt , then

(a) there is a cell σ ∈N (t) such that s ∈ σ and σ de�nes a region A with t ∈ A; and

(b) all cells that de�ne a region A with t ∈ S1(A) are in N (t).

Proof. First, we show (a). By assumption, {s, t} is an edge in D(S), and thus ‖st‖ ≤ rs + rt.
Let τ be the cell containing t with |τ | ≤ rt < 2|τ |. By the assumption on the radii, we have
rs ≤ rt < 2|τ |. Now let σ be the cell of the hierarchical grid with |σ | = |τ | and s ∈ σ . Using
the triangle inequality this yields ‖a(σ)t‖ ≤ 1

2 |σ |+ rs + rt <
9
2 |σ |. Thus, the center of σ has

distance at most 9
2 |σ | to t. Consider the disk D =D(t, 9

2 |τ |). All cells that can contain s

63

Chapter 5 Dynamic Connectivity in Disk Graphs

t

p2

q2p1

`1

`2
`t′ Zt

α1

α2

t′

q1

Figure 5.5: The line segment `t′ intersects q1q2.

have their center in D. By Lemma 2.1, N (t) contains D and thus σ ∈N (t). By symmetry
we also have t ∈ D(a(σ), 9

2 |σ |). The regions defined by σ partition this disk, and thus t
lies in one of the regions.

For (b), note that by the condition on the radius, the only cells defining regions such that
t ∈ S1(A) lie on the same level of the hierarchical grid as the cells in N (t). Furthermore,
by the distance condition, the centers of the cells lie in the disk D(t, 9

2 |σ |). The proof for
(a) already showed that this disk is completely contained in N (t). �

Before we argue that our proxy graph H accurately represents the connectivity of D(S),
we first show that the associated sites of a region in A form a clique in D(S).

Lemma 5.4. Suppose that d1 ≥ 23 and d2 ≥ 8. Then, for any region A ∈ A, the associated sites
in S1(A) form a clique in D(S).

Proof. In the following, let σ be the cell defining A. We handle the three cases where A is
an outer, middle or inner region separately.

Case 1: A is an outer region First, suppose that A is an outer region. Let t be a site
in S1(A), and let C be the cone that is centered at a(σ) and was used to define
A. Consider the line segments `1 and `2 that go through t, lie in C, and are
perpendicular to the upper and the lower boundary of C, respectively. We denote
the endpoints of `1 by p1 and q1, and the endpoints of `2 by p2 and q2, where p1
and p2 are the endpoints at the right angles. See Figure 5.5 for an illustration.

We claim that both `1 and `2 are completely contained in Dt. Let αi be the acute
angle at a(σ) defined by the line segments a(σ)t and a(σ)pi for i = 1,2. By our
choice of C, we have α1 +α2 = 2π

d1
.

64

5.1 Logarithmic Dependency on Ψ

Now, we can compute the following lengths:

‖a(σ)p1‖ = cos(α1) · ‖a(σ)t‖
‖a(σ)p2‖ = cos(α2) · ‖a(σ)t‖

‖p1q1‖ = ‖a(σ)p1‖ · tan
(

2π
d1

)
‖p2q2‖ = ‖a(σ)q1‖ · tan

(
2π
d1

)
.

Combining these bounds, we get

‖`1‖ = ‖p1q1‖ = tan
(

2π
d1

)
· cos(α1) · ‖a(σ)t‖

‖`2‖ = ‖p2q2‖ = tan
(

2π
d1

)
· cos(α2) · ‖a(σ)t‖

The length of `1 and `2 are maximized for α2 = 0 or α1 = 0, respectively. This
yields

‖`1‖,‖`2‖ ≤ ‖a(σ)t‖ · tan
(

2π
d1

)
≤

(
rt +

5
2
|σ |

)
· tan

(
2π
d1

)
≤ 7

2
rt · tan

(
2π
d1

)
≤ rt for d1 ≥ 23.

Thus, `1 and `2, as well as their convex hull Zt, are completely contained in Dt.

Now, we take a closer look at the distance condition for the sites t ∈ S1(A). Recall
that we require ‖a(σ)t‖ ≤ rt + 5

2 |σ | or, equivalently, the disk Dt must intersect or

touch the disk D
(
a(σ), 5

2 |σ |
)
. As ‖a(σ)t‖ ≥ 5

2 |σ |, the line segment q1q2 lies completely

outside of D
(
a(σ), 5

2 |σ |
)
. Now consider the line segment `t = a(σ)t \D(a(σ), 5

2 |σ |). It

is the part of the line segment between t and a(σ) that lies outside of D(a(σ), 5
2 |σ |).

This line segment ends with a point on D(a(σ), 5
2 |σ |). Now, let t′ be another site in

S1(A). If t′ lies in the convex hull Zt, or if t lies in the convex hull Zt′ , we are done,
as this directly implies that t and t′ are neighbors in D(S). Thus, assume without
loss of generality that t′ is separated from a(σ) by the convex hull Zt. Then, `t′
intersects q1q2, and as `t′ ⊆Dt′ and q1q2 ⊆Dt this again induces an edge {t, t′}.

65

Chapter 5 Dynamic Connectivity in Disk Graphs

diam(A)

A
t′

|σ |

5
2 |σ |

α

t

Figure 5.6: The diameter of a middle region is at most 2|σ |.

Case 2: A is a middle region Next, suppose that A is a middle region, and let t, t′ ∈
S1(A). By the definition of S1(A) we have t, t′ ∈ A. The law of cosines yields for
diam(A)

diam(A)2 ≤ |σ |2 +
(5
2
|σ |

)2
− 10

2
|σ |2 cos

(
2π
d2

)
for d2 ≥ 8

≤ |σ |2 +
(5
2
|σ |

)2
− 10

2
|σ |2 cos

(2π
8

)
diam(A) ≤ 2|σ |

As we require that rt, rt′ ≥ |σ |, it follows that {t, t′} is an edge in D(S), see Figure 5.6.

Case 3: A is an inner region Finally, suppose that A is an inner region and let t, t′ ∈ A.
Since t and t′ both lie in the disk D(a(σ), |σ |) of diameter 2|σ |, and since rt, rt′ ≥ |σ |,
we again get that the edge {t, t′} is present in D(S). �

Having Lemmas 5.3 and 5.4 at hand, we can now show that H accurately represents
the connectivity of D(S).

Lemma 5.5. Two sites s, t ∈ S are connected in H if and only if they are connected in D(S).
Proof. First, we show that if s and t are connected in H , they are also connected in D(S).
The path between s and t in H alternates between the site-vertices and the region-vertices.
Thus, it su�ces to show that if two sites u and u′ are connected with the same region
A ∈ A, they are also connected in D(S). This follows directly from Lemma 5.4: if u and
u′ both lie in S1(A), they are part of the same clique and thus adjacent. In the other case
we can assume that u lies in S2(A). Then S2(A) is non-empty, which also implies that
S1(A) is non-empty and u is connected to u′ via the clique induced by S1(A), as can be
seen in Figure 5.7. The claim follows, regardless if u′ lies in S1(A) or in S2(A).

Now we consider two sites that are connected in D(S), and we show that they are also
connected in H . It su�ces to show that if s and t are adjacent in D(S), they are connected

66

5.1 Logarithmic Dependency on Ψ

A
u

u′

A
u

u′

Figure 5.7: The site u ∈ S2(A) is connected to the clique by definition. Then u′ is
connected to u via the clique, no matter if u′ ∈ S1(A) or u′ ∈ S2(A).

in H . Assume without loss of generality, that rs ≤ rt and let σ be the cell in N (t) such
that s ∈ σ . This cell in N (t) exists by Lemma 5.3 (a) and was explicitly added to Q. We
can thus conclude that t ∈ S1(A) for some A ∈ AQ. As the regions with non-empty sets
S1(A) are in A by definition, the edge {t,A} exists in H .

Now, we argue that for the region A found above, s ∈ S2(A) and thus the edge {A,s}
also exists in H . This follows by straightforward showing that properties of a site in S2(A)
hold for s. We have s ∈ σ by the definition of σ and by assumption the radius of s is
bounded by rs ≤ rt < 2|σ |. Finally, to see that at least one site in S1(A) intersects Ds, note
that t is in S1(A) and s and t intersect. �

After we have shown that H accurately represents the connectivity relation in D(S),
we now show that the number of edges in H depends only on n and Ψ and not on the
number of edges in D(S) or the diameter of S. As the size of H only depends on the
number of sites in the sets S1(A) and S2(A), we first take a look at those sizes.

Lemma 5.6. Let A, S1(A) and S2(A) be de�ned as above. Then
∑
A∈A |S1(A)| = O(n) and∑

S∈A |S2(A)| =O(n logΨ).

Proof. For the first claim, Lemma 5.3 (b) tells us that t can only lie in regions A defined
by cells in N (t). There are O(1) such cells and thus t lies in at most O(1) sets S1(A). Now
each site t contributes only O(1) to the sum

∑
A∈A |S1(A)| and we get the claimed bound

of O(n).
Next, we focus on the total size of all sets S2(A). A necessary condition for s to

lie in S2(A) is that s lies in the cell defining A, so we focus on the cells containing s.
There are potentially O(log(diam(S))) cells in Q that contain s. Recall however, that the
set A only contains those cells, that have a non-empty set S1(A) and thus a diameter
proportional to the radii of the sites in S1(A). As the maximum radius in S is at most Ψ ,
the largest cell which is of interest has diameter 2blogΨ c. Thus, regions in A are defined
by cells of the quadtree that lie below the level

⌊
log(Ψ)

⌋
. For a fixed site this implies

that it can lie in at most O(logΨ) sets S2(A) and thus with a similar argument as above,∑
A∈A |S2(A)| =O(n logΨ). �

67

Chapter 5 Dynamic Connectivity in Disk Graphs

Corollary 5.7. H has O(n) vertices and O(n logΨ) edges.

Proof. We can have at most
∑
A∈A |S1(A)| non-empty regions, and thus |A| =O(n). This

constitutes the bound on the number of vertices. Furthermore the number of edges is∑
A∈A(|S1(A)|+ |S2(A)|) =O(n logΨ). �

The Data Structure Now, we can describe how to use the proxy graph H to build a
data structure that allows interleaved deletions and connectivity queries in a disk graph.
The data structure will consist of several components: we store a forest of quadtrees that
contains all regions A ∈ A. For each region A ∈ A we store the sets S1(A) and S2(A)
implicitly in a reveal data structure (RDS) as defined in Lemma 5.2 with S1(A) as the set
B and S2(A) as the set R. Finally, we store the graph H in a Holm et al. [HdLT01] data
structure H.

Our data structure now works as follows. The queries are answered using H. Now we
focus on the deletion of a site s. First, we delete all edges incident to s from H. Then, we
consider all regions A such that s ∈ S1(A). We remove s from S1(A) and the RDS. Let U
be the set of revealed sites from S2(A) reported by the RDS. We delete each site u ∈ U
from S2(A) and the corresponding RDS. Additionally we delete the edges {u,A} for u ∈U
from H for all u ∈ U \ S1(A), these are all sites in U that are not also in S1(A). Finally,
consider a region A such that s ∈ S2(A). We simply remove s from the set S2(A) and the
associated RDS. Note that we do not update the forest of quadtrees, as this would not
change the asymptotic runtime.

We start the analysis of the data structure, by considering the preprocessing time:

Lemma 5.8. Given a site set S we can preprocess the data structure described above in
O(n log5(n)λ6(logn) +n logΨ log3n) expected time.

Proof. In a first step, we build a forest, containing the lowest
⌊
logΨ

⌋
+ 1 levels of the

quadtree Q. For this we identify for each site in S the cell of level
⌊
logΨ

⌋
containing

it. As we can identify the cell in O(1) time, this takes O(n) overall time. The lower
blogΨ c+ 1 levels of Q can now simply be constructed by building separate quadtrees for
all non-empty cells created this way. As the height of each of these separate quadtrees is
O(logΨ), this takes an overall time of O(n logΨ). Following the argument in the proof
of Lemma 5.6 these levels are enough to identify all cells in A. We store the roots of
the quadtrees in a balance binary search tree. This way, we can access the quadtree
containing a site s or a cell σ with |σ | ≤ blogΨ c in O(logn) additional time.

Now there might be some cells in
⋃
s∈SN (s) that are not yet added to the forest. For

each cell in
⋃
s∈SN (s), we can traverse the matching quadtree of the forest to find the

position the cell belongs to. If it is already in the quadtree we are done, in the other
case we create a leaf and connect it to the quadtree with a matching path. In the case
that a new quadtree containing the cell has to be created, its root is added to the binary
search tree in O(logn) time. This takes O(logΨ + logn) time for each cell, resulting in
an O(n(logΨ + logn)) overall time.

Now we are equipped to find the sets S1(A) and S2(A). Fix a site t, by Lemma 5.3
we only have to consider the regions defined by cells in N (t) to find all sets S1(A) with

68

5.1 Logarithmic Dependency on Ψ

t ∈ S1(A). For each cell in N (t), we can iterate all regions defined by it, and find the sets
S1(A) containing t in constant time. Finding the cells in N (t) and iterating the regions
takes O(logn+ logΨ) time for each cell in N (t) for an O(n(logn+ logΨ)) overall time.

In order to be able to find the sets S2(A), we build a static additively weighted nearest
neighbor data structure on all sets S1(A). Each site t ∈ S1(A) gets assigned a weight of
−rt. By Lemma 5.1, these data structures can be constructed in O(|S1(A)| logn) time
each, while allowing a query time of O(logn). As

∑
A∈A |S1(A)| =O(n) by Lemma 5.6, we

need
∑
A∈A |S1(A)| logn = O(n logn) time to compute all data structures in addition to

the O(n logΨ) time needed to traverse the forest of quadtrees. For a site s ∈ S, let πs be
the path in Q from the root to the cell σs with s ∈ σs and |σs| ≤ rs < 2|σs|. For each cell
along πs, we query all nearest neighbor data structures with s. If s intersects the reported
weighted nearest neighbor, we add it to S2(A). As we use the negative additive weight for
the nearest neighbor data structure, we do not miss a site this way [Sei16, Lemma 2.8].
Walking along the path for a fixed site s takes O(logn+ logΨ) time. We perform O(1)
queries to an AWNN in each cell along this path, for a total time of O(n logn logΨ).

The vertices of H are now determined by the sets S and A. We then insert the edges
one by one in overall O(n logΨ log2n) time into an initially empty Holm et al. data
structure and obtain the connectivity data structure H.

Having the sets S1(A) and S2(A) at hand, by Lemma 5.2 we can build the reveal data
structures with B = S1(A) and R = S2(A) in O

(
|S1(A)| log5(n)λ6(log(n)) + |S2(A)| log3(n)

)
expected time for each region A ∈ A. The total time is then dominated by summing over
all regions and using Lemma 5.6:

O

∑
A∈A
|S1(A)| log5(n)λ6(logn) + |S2(A)| log3(n)


=O


∑
A∈A
|S1(A)|

 · log5(n)λ6(logn) +

∑
A∈A
|S2(A)|

 · log3(n)


=O

(
n log5nλ6(logn) +n logΨ log3(n)

)
�

Now we show that the data structure is correct and e�ciently handles the queries.

Theorem 5.9. The data structure described above correctly answers connectivity queries in
O
(logn

loglogn

)
time and handlesm site deletions inO

(
(n log5n+m log9n)λ6(logn)+n logΨ log4n)

)
overall expected time.

Proof. We first show that the answers given by our data structure are indeed correct.
During the lifetime of the data structure, we maintain the invariant, that the sets S1(A)
and S2(A) always contain the sites as defined above, the graph stored in H is the proxy
graph H and each RDS associated with a region A contains the sets S1(A) and S2(A).
Assuming that this invariant holds, Lemma 5.5 implies that the answers given for each
query are correct.

To show that the invariant is maintained, we first note that removing a site from a set
S2(A), does only lead to the deletion of a single edge from H , see Figure 5.8(a). As we

69

Chapter 5 Dynamic Connectivity in Disk Graphs

A
s

A
s

(a) On deleting s from S2(A), no other sites are a�ected.

A A

s s
t t

(b) On deleting s from S1(A), we also have to delete t from S2(A).

Figure 5.8: The invariant is maintained.

make sure to mirror the removal from S2(A) in H and the RDS, removing the site s from
all sets S2(A) containing it, maintains the invariant. Now let A be a region, such that
the site s lies in S1(A). Then for all sites in the matching set S2(A), it is necessary to
intersect at least one site in S1(A). Furthermore, there is a, possibly empty, subset U ′ of
sites in S2(A) that only intersect s, see Figure 5.8(b). So to maintain the invariant, we
have to delete these sites from S2(A) and the matching RDS. As these sites are exactly the
sites reported in the set U , this set is removed by the data structure and the invariant
on S2(A) and the RDS is maintained. As we do not delete the edges that were present
because a site was in S1(A)∩ S2(A), the graph stored in H is still the proxy graph H and
the invariant is maintained.

Now we can focus on the analysis of the running time. Queries are performed in H
with a running time of O

(logn
loglogn

)
. Each edge is removed exactly once from H, for a total

of O(n logΨ log2n) time. Locating the sets S1(A) that have to be changed, can be done
by querying all cells of N (s) in the forest of quadtrees. As there are O(1) such cells, this
takes an overall of O(logΨ + logn) time. Similarly, all sets S2(A) containing s lie on one
path in a quadtree that can be found with the same running time.

The step dominating the running time are the deletions from the RDS. By Lemma 5.2, the
RDS associated to a single region adds at most an expected running time ofO

(
(|S1(A)| log5n+

mA log11n)λ6(logn) + |S2(A)| log4n
)

to the total running time, where mA is the number

70

5.2 General Disk Graphs

of sites deleted from S1(A). Summing over all regions, we have
∑
A∈AmA = O(m) as

each site is contained in O(1) sets S1(A). Furthermore, as we have
∑
A∈A |S1(A)| =

O(n) and
∑
A∈A |S2(A)| = O(n logΨ), the total expected running time of O

(
(n log5n +

m log9n)λ6(logn) + n logΨ log4n
)

for m deletions follows. �

5.2 General Disk Graphs

In this section, we extend the approach from Section 5.1 to give a data structure that
allows update times independent of Ψ . The cost for dropping the dependence on Ψ is
exchanging the additive O(n logΨ log4n) term in the running time in Theorem 5.9 with
an additional O(logn) factor in the first term. The additive O(n logΨ log4n) term in
Section 5.1 came from the size of the sets S2(A) and thus from the height of each quadtree
in the forest of quadtrees. We can get rid of this dependency by using a compressed
quadtree Qc. Recall from Section 2.1 that the height and size of the compressed quadtree
do not depend on the diameter of the point set, but only on n. However the height of
Qc can still be O(n) which is not favorable for our application. In order to reduce the
number of edge in our proxy graph to O(n log2n), we use a heavy path decomposition,
similar to the one defined by Sleator and Tarjan [ST83] on Qc, in combination with the
range query framework from Lemma 2.4 for each heavy path.

The Proxy Graph We will often refer back to Section 5.1, as the proxy graph for
general graphs is similar to that in the bounded radius ratio case. We still have a bipartite
graph with the sites from S on one side and a set of region on the other side. The
regions will again be used to define sets S1(A) and S2(A) that will in turn define the edges.
However, we adapt the definition of the regions and define them based on certain paths
of the compressed quadtree instead of single cells. Furthermore, we relax the condition
on the radii in the definition of the set S1(A).

Similar to the non-compressed approach, we consider an augmented version of the
compressed quadtree on S. Again let N (s) be the 15 × 15 neighborhood of the cell σ
containing s such that |σ | ≤ rs < 2|σ |. We work on the tree Qc that is the union of the
compressed quadtree with the neighborhoods of all sites s ∈ S.

On this tree we build a heavy path decomposition following Sleator and Tarjan [ST83]. Let
T be a rooted ordered tree. An edge {u,v} ∈ T is called heavy if v is the first child of u in
the given child-order that maximizes the total number of nodes in the subtree rooted at v
among all children of u. Otherwise, the edge {u,v} is light. By definition, every internal
node in T has exactly one child that is connected by a heavy edge, see Figure 5.9 for an
illustration.

A heavy path is a maximal path in T that consists only of heavy edges. The heavy path
decomposition of T is the set of all the heavy paths in T . The following lemma summarizes
a classic result on the properties of heavy path decompositions.

71

Chapter 5 Dynamic Connectivity in Disk Graphs

Figure 5.9: A tree with its heavy path decomposition. The heavy edges are marked
green.

Lemma 5.10 (Sleator and Tarjan [ST83]). Let T be a tree with n vertices. Then, the following
properties hold:

(a) Every leaf-root path in T contains O(logn) light edges,

(b) every vertex of T lies on exactly one heavy path; and

(c) the heavy path decomposition of T can be constructed in O(n) time.

Now let R be the heavy path decomposition of Qc and let R ∈ R be a heavy path.
When ordering the cells in the heavy path by their diameter, we can apply the canonical
decomposition framework given in Lemma 2.4 to this ordered set. Note that each of the
O(n logn) canonical subset of the cells in P defined this way, is a subpath of R in Qc. As
our arguments using this decomposition focus on the property, that each canonical subset
corresponds to a path in Qc, in the following we use the term canonical path instead of
canonical subset.

Lemma 5.11. Let σ be a vertex of Qc and let π be the path from the root of Qc to σ . Then there
exists a set Pπ of canonical paths such that:

(a) |Pπ| =O(log2n); and

(b) π is the disjoint union of the canonical path in Pπ.

Proof. Consider the heavy paths R1, . . . ,Rk encountered along π. By Lemma 5.10, we
have that k ∈O(logn) and that π is the disjoint union of the intersections π∩Ri . Each of
these intersections constitutes a subpath of Ri whose largest cell is also the largest cell
of Ri . Let σi be the smallest cell of π∩Ri , then the subpath of Ri consists of all cells in
Ri with a diameter in the interval [|σi |,∞). Using this interval in the framework given in
Lemma 2.4, decomposes π∩Ri into O(logn) canonical paths. As k ∈O(logn) this results
in overall O(log2n) canonical paths needed to represent π. The argument is depicted in
Figure 5.10. �

The vertex set of the proxy graph H again consists of the set of sites S and a set of
regions A. We define O(1) regions for each canonical path in a similar way as we defined
O(1) regions for each cell in Section 5.1. Let σ be the smallest cell and τ be the largest
cell of a canonical path. The inner and middle regions are defined as in the bounded
case, using the smallest cell of the path to define the region, instead of the single cell in

72

5.2 General Disk Graphs

Q′

R3

R2

R1

R4

R5

R1

σ1

σ2

σ3

σ4

σ5

σ1 σ2 σ3

σ5

R2
R3

R5

Pπ

σ4

R4

Figure 5.10: Illustration of Lemma 5.11. Left we see the decomposition of R into
R1, . . .Rk. On the right the vertices defining Pπ are depicted in green.

Section 5.1. More specifically, the inner region is the disk with center a(σ) and radius |σ |.
The d2 middle regions are defined, by intersecting the annulus centered at a(σ) with inner
radius |σ | and outer radius 5

2 |σ | with the cones in Cd2
. For the outer regions, we extend the

outer radius of the annulus. They are defined as the intersections of the annulus of inner
radius 5

2 |σ | and outer radius 5
2 |σ |+ 2|τ |, again centered at a(σ) with the cones in Cd1

. The
set A contains the regions defined this way for all canonical paths.

Given a region A ∈ A with smallest cell σ and largest cell τ, we define the sets S1(A)
and S2(A). The set S1(A) is defined similarly to the set in Section 5.1, again using σ in
the role of the single cell for most parts. The di�erence is that the radius range for t is
larger, as its upper bound depends on the diameter of τ . The set S1(A) contains all sites
t such that

(a) t ∈ A

(b) |σ | ≤ rt ≤ 2|τ |; and

(c) ‖a(σ)t‖ ≤ rt + 5
2 |σ |.

The last condition is only relevant, if A is an outer region, as it is trivially true for middle
and inner regions.

The intuition behind the definition for the sets S2(A) is also similar to the one in
Section 5.1, but its formal definition does not mirror these similarities directly. Let σs be
the cell such that s ∈ σs and |σs| ≤ rs < 2|σs|. Let πs be the path in Qc from the root to σs
and let Pπs be the decomposition of πs into canonical paths as defined in Lemma 5.11.

Let A be a region, defined by a canonical path P , then s ∈ S2(A) if

(a) P ∈ Pπs ; and

(b) s is adjacent in D(S) to at least one site in S1(A).

73

Chapter 5 Dynamic Connectivity in Disk Graphs

πs

ρ

Q′

σs

P

σ

τ Q′

Figure 5.11: σs is the smallest cell such that rs ≤ 2|σs|. P contains ρ.

If σ is the smallest cell in a canonical path defining a region A, then each site s in S2(A)
lies in σ , has a radius less than 2|σ | and intersects at least one cell in S2(A). These are
basically the same conditions we had in Section 5.1. However as the definition is restricted
to the canonical paths in Pπs , not all cells satisfying these conditions are considered. As
we will see below, using only the paths in Pπs su�ces to make sure that the proxy graph
represents the connectivity, while also ensuring that each site s lies in few sets S2(A).

The graph H is now again defined by connecting a site s ∈ S1(A)∪ S2(A) to the region
A. To show that H accurately represents the connectivity in D(S), we need the following
corollary of Lemma 5.4.

Corollary 5.12. Suppose that d1 ≥ 23 and d2 ≥ 8. Then, for any region A ∈ A, the associated
sites in S1(A) form a clique in D(S).
Proof. Recall that the center of the annuli and disks defining A is the center of smallest
cell of the associated canonical path. A close inspection of the proof for Lemma 5.4 shows
that we only use the lower bound on the radii of the sites in S1(A). As this lower bound
is unchanged, all arguments carry over for sites with larger radii. �

Following the approach in Section 5.1 we now show that H accurately represents the
connectivity of D(S) and that H is sparse.

Lemma 5.13. Two sites s and t are connected in D(S) if and only if they are connected in H .

Proof. If s and t are connected in H , the same argument as in the proof of Lemma 5.5
with Corollary 5.12 instead of Lemma 5.4 holds. The more challenging part is to show
that if two sites are connected in D(S) they are also connected in H .

If su�ces to show that if s and t are connected by an edge in D(S), they are connected
to the same region A ∈ A. Refer to Figure 5.11 for a depiction of the following argument.
Assume without loss of generality that rs ≤ rt. Consider the neighborhood N (t) of t. Then
by Lemma 5.3 (a) there is a cell ρ ∈ N (t) that contains s. Consider the path πs in Qc
from the root to the cell σs such that s ∈ σs and |σs| ≤ rs < 2|σs|. The cell σs is in Qc as
it is part of N (s). Then ρ lies on this path πs. Let Pπs be the decomposition of πs into
canonical paths as defined in Lemma 5.11 and let P be the path containing ρ. Again
let σ and τ be the smallest and largest cell on P respectively. By the definition of P we

74

5.2 General Disk Graphs

≤ rt + 5
2 |σ |

≤ |ρ|2

≤ rt + 15
4 |ρ|

≤ rt + 5
4 |ρ|

t

a(ρ)

a(σ)

ρ

σ

Figure 5.12: The cell ρ is in N (t).

have σs ⊆ σ ⊆ ρ ⊆ τ . As {s, t} is an edge in D(S), we have ‖st‖ ≤ rs + rt ≤ 2|σ |+ 2|τ | and
thus ‖a(σ)t‖ ≤ 5

2 |σ |+ 2|τ |. This implies that t lies in a region A defined by P and thus
t ∈ S1(A) for this region. As s intersects t, it intersects at least one site in S1(A) for the
region A. Furthermore, P is a canonical path in Pπs and thus s ∈ S2(A) by definition. As
s, t ∈ S1(A)∪ S2(A), they are connected in H . �

Lemma 5.14. The graph H has O(n) vertices and O(n log2n) edges.

Proof. As discussed in Section 2.3 the compressed quadtree consists of O(n) cells. Each
cell is part of exactly one heavy path, so the total size of the binary search trees that
define the canonical paths is O(n). A balanced binary search tree with n leafs has O(n)
inner vertices, and thus there is a total of O(n) canonical paths. As each canonical path
defines O(1) regions, the number of regions and therefore also the number of vertices in
H follows.

To bound the number of edges, we again count the number of sets S1(A) and S2(A) a
single site can be contained in. Let σ and τ be the smallest and largest cell of a canonical
path respectively. A site t can only be in a set S1(A) if |σ | ≤ rt ≤ 2|τ | and σ is contained
in a cell of N (t). To see the second part, let P be a canonical path such that t ∈ S1(A),
with smallest cell σ . If |σ | ≤ rt < 2|σ |, the statement holds by Lemma 5.3 (b). In the other
case, let ρ be the cell of the hierarchical grid with 2|σ | ≤ |ρ| ≤ rt < 2|ρ| and σ ⊂ ρ. See
Figure 5.12 for an illustration of the following argument. As t ∈ S1(A), we have

‖ta(σ)‖ ≤ rt +
5
2
|σ |

≤ 2|ρ|+ 5
4
|ρ| since rt < 2|ρ| and |σ | ≤

|ρ|
2

≤ 13
4
|ρ|

‖ta(ρ)‖ ≤ 15
4
|ρ| by triangle inequality as σ ⊆ ρ

Lemma 2.1 then implies that ρ ∈N (t) and thus ρ is in Qc and also in P .
Now let ρ be a cell of N (t), and let R be the heavy path containing ρ. Then t

is considered for the set S1(A) for all regions which are defined by a canonical path

75

Chapter 5 Dynamic Connectivity in Disk Graphs

Figure 5.13: Four cells from N15×15(σ) with the virtual sites.

containing ρ. These, are the O(logn) canonical paths defined by the canonical vertices
of the search path Π◦←(ρ) for ρ in the binary search tree on the cells of R. Thus each site
can be part of at most O(logn) sets S1(A).

The number of sets S2(A), a fixed site s can be part of is at most the number of canonical
paths decomposing the path from the root to the smallest cell containing s. By Lemma 5.11
there areO(log2n) such paths. This yields

∑
A∈A |S1(A)|+|S2(A)| =O(n log2n) as an upper

bound for the number of edges. �

The Data Structure The structure of the decremental data structure is the same as in
Section 5.1. We again store the sets S1(A) and S2(A) together with a RDS for each region
A. The set B for the RDS is again S1(A) and the set R is S2(A). Furthermore, we store the
graph H defined by S1(A) and S2(A) in a Holm et al. [HdLT01] data structure H.

Both queries and deletions work exactly as in Section 5.1, however we repeat them
here for completeness. Queries are performed on H. On the deletion of a site s, we
first remove all edges incident to s from H. Then the site is removed from all sets S1(A)
containing it, as well as the associated RDS. The sites U reported as revealed by the RDS
are then removed from the matching S2(A) and the edges {u,A} for u ∈ U \ S1(A) are
removed from H. Finally the site s is removed from all sets S2(A) and the matching RDS.

Lemma 5.15. The data structure described above can be preprocessed in O(n log6(n)λ6(logn))
expected time.

Proof. To find the regions A we first compute the extended compressed quadtree Qc.
This can be done by adding O(n) virtual sites to our site set, similar to a construction
of Har-Peled [Har11]. For each site s ∈ S and each cell σ ∈N (s) we add two virtual sites.
The virtual sites are added at the center of two of the cells one level below σ that are
contained in σ , see Figure 5.13 for an illustration. Now all cells in N (s) have at least
two children in the non-compressed quadtree and thus the cells are also present in the
compressed quadtree. When having Qc at hand, we can, with additional O(n) time, find
the heavy paths by Lemma 5.10 (c) and the binary search trees on the heavy paths by
standard techniques. This gives us the set of regions A.

To find the set S1(A), recall from the proof of Lemma 5.14 that a site t can only lie in
the set S1(A) for a region defined by a canonical path that contains a cell in N (t). The
sets S1(S) can now be found as follows. For each site t ∈ S compute the cells in N (t) and

76

5.2 General Disk Graphs

for each cell ρ find the heavy path R containing it. In the binary search tree defined on R,
follow the search path for ρ and for each canonical path defined along this search path
explicitly find the region containing t and check if the distance condition holds.

When implementing this step naively it takes O(n log2n) time which is fast enough for
our purposes. We could however reduce this time to O(n logn) if we added an additional
preprocessing step on Qc and distributed the sites to the corresponding paths in a batched
fashion. As in Lemma 5.8, we construct a static additively weighted nearest neighbor data
structure on each set S1(A), again assigning the weight −rs to each site s ∈ S. Recall from
Lemma 5.1, that the time needed to construct a single nearest neighbor data structure
is O(|S1(A)| logn). As

∑
A∈A |S1(A)| = O(n logn), the construction of all data structures

takes O(n log2n) time. The query time remains O(logn) in each data structure, as each
data structure contains at most O(n) sites.

Recall from the definition of the sets S2(A), that πs is the path in Qc from the root
to the cell σs that contains s and has diameter |σ | ≤ rs < 2|σ |. To find all sets S2(A)
containing s, we simply follow the decomposition of πs into canonical paths and query
the nearest neighbor data structure with s for all regions defined by these paths. As there
are O(log2n) canonical paths in the decomposition, this takes an additional O(n log3n)
time for all sites. Inserting the O(n log2n) edges into H takes O(log2n) amortized time
each, for a total of O(n log4n).

Again the step dominating the preprocessing time is the construction of the RDS. For a
single region the expected time isO(|S1(A)| log5nλ6(logn)+|S2(A)| log3(n)) by Lemma 5.2.
We have

∑
A∈A |S1(A)| =O(n logn) and

∑
A∈A |S2(A)| =O(n log2n) and thus the claimed

preprocessing time follows. �

Theorem 5.16. The data structure described above correctly answers connectivity queries in
O
(logn

loglogn

)
time with O

(
(n log6n+m log10n)λ6(logn)

)
overall expected update time for m

deletions.

Proof. As the only di�erence in the definition of the data structure is the definition of
the sets S1(A) and S2(A), the correctness follows from Theorem 5.9. Also the O

(logn
loglogn

)
bound for the queries in H again carries over. The preprocessing of the data structure
takes O(n log6λ6(logn)) time by Lemma 5.15. Deletions fromH take O(log2n) amortized
time for each of theO(n log2n) edges for an overall time ofO(n log4n). The paths defining
a region with a set S1(A) or S2(A) that have to be updated can be found in O(log2n) time,
by traversing the underlying tree structure.

The time for the sequence of deletions is again dominated by the time needed for the
updates in the RDS. LetmA be the number of sites deleted from S1(A) for a region A. Then
the time needed by the RDS associated with A is O

(
(|S1(A)| log5n + mA log9n)λ6(logn) +

|S2(A)| log4n
)

by Lemma 5.2. We have
∑
A∈AmA =O(m logn),

∑
A∈A |S1(A)| =O(n logn)

and
∑
A∈A |S2(A)| =O(n log2n). Summing up the time needed for the RDS over all A ∈ A,

we get a running time of O
(
(n log6n+m log10n)λ6(logn)

)
as claimed. �

77

II
Long Plane Trees

79

CHAPTER 6
Approximating the Longest Tree
This chapter considers problems related to approximating the longest plane spanning
tree. Let TOPT be a plane spanning tree of maximum length for a site set S. We call a tree
T with |T | ≥ δ · |TOPT| a δ-approximation. In Sections 6.2 and 6.4 we also deal with �at
site sets. A set S is flat if diam(S) ≥ 1 and the y-coordinates of all its points are essentially
negligible, meaning that their absolute values are bounded by an infinitesimal ε > 0.
For flat site sets, we can estimate the length of each edge as the di�erence between the
x-coordinates of its endpoints, because the error can be made arbitrarily small by taking
ε→ 0.

In Section 6.1, we describe a simple approximation algorithm. In Section 6.2 we show
that this algorithm yields a 2

3 -approximation when applied to a flat set. Furthermore,
we show that the analysis for this algorithm is tight when comparing to the longest
crossing tree. In Section 6.3, we then show that the same algorithm yields a δ=̇0.5467
approximation when applied to general site sets.

The trees returned by algorithms found in the literature [ARS95; Bin20b; Bin+19; DT10]
as well as our algorithm, have a small diameter. In Section 6.4, we study the relation
between longest plane spanning trees of small diameter and those of large diameter. We
show that there is a flat point set S for that a longest spanning tree of diameter at most
three can only approximate a longest plane spanning tree up to a factor of 5

6 .

6.1 A Simple Approximation Algorithm

The algorithm described in this section will be analyzed in detail in Sections 6.2 and 6.3.
For the algorithm, we consider two kinds of trees. The first kind are stars Ta as defined in
Section 2.1 Additionally, the algorithm considers trees Ta,b, for a,b ∈ S, that are defined
as follows: Let Sa be the sites of S closer to a than to b and let Sb = S \ Sa. First, connect
a to every site in Sb. Second, connect each site of Sa \ {a} to some site of Sb without
introducing crossings. Note that as we did not fix a systematic way to connect the sites in
Sa, the tree Ta,b is not uniquely determined. However, after the deterministic first step,
we can already see that Ta,b and Tb,a are di�erent in general. Also, if Sa = {a}, then Ta,b
and Tb,a are the same tree that degenerates to Sa. In the following lemma, we give a
systematic way to e�ciently construct such a tree Ta,b.

81

Chapter 6 Approximating the Longest Tree

a

Ta

Ta,b

a b

Sa Sb

Figure 6.1: A star Ta and a tree Ta,b, the rays bounding the cones are drawn dashed.

Lemma 6.1. Given two sites a,b ∈ S , a plane tree Ta,b can be constructed in O(n logn) time.

Proof. Recall that Sa contains all sites closer to a than to b and Sb = S \Sa. The procedure
above already states that in Ta,b, the site a is connected to all sites in Sb. In order to make
the procedure above deterministic, we describe a systematic way to connect the sites in

Sb to the sites in Sa \ {a}. The rays −→as for s ∈ Sb together with the ray opposite to
−→
ab

partition the plane into convex cones with common apex a. Each such convex cone C

contains a site bC ∈ Sb on the bounding ray that forms the smaller (convex) angle with
−→
ab .

Within each cone C we then connect all sites of C ∩ (Sa \ {a}) to bC . A tree constructed
this way can be seen in Figure 6.1.

This systematic approach can be implemented e�ciently by first sorting the points by
their angular order around a. After the sorting, we do a traversal of the points above
{a,b} in counterclockwise order, starting with b. During this traversal, the last site t in Sb
that we encountered, is stored. We initialize t = b. When we are at a site s ∈ Sa we add
the edge {s, t} to Ta,b. If we encounter a site s ∈ Sb, we update t and add the edge {a, t}.
To also connect the remaining sites, the process is repeated in clockwise order for the
points below the line through ab. This takes O(n logn) overall time and yields the tree
Ta,b. The resulting tree is a plane tree because we add stars within each convex wedge
and the interiors of the wedges are pairwise disjoint. �

Given the above definition of the trees Ta,b, consider the following algorithm that
constructs a tree TALG:

1: Algorithm AlgSimple(S)
2: a′← argmaxa∈S |Ta|
3: (a∗,b∗)← argmax(a,b)∈S×S |Ta,b|
4: TALG← argmax

(
|Ta′ |, |Ta∗,b∗ |

)
5: return TALG

The algorithm simply enumerates all possible stars, and trees Ta,b and Tb,a, and returns
the longest such tree. As all those trees are plane, the resulting tree is guaranteed to also
be plane. Furthermore, there are O(n2) candidate trees. Each can be found in O(n) time
in the case of stars, or in O(n logn) time for the remaining trees by Lemma 6.1. This
results in an overall running time of O(n3 logn).

82

6.2 A 2
3 -Approximation for Flat Sets

t1 t2

s′ s

Figure 6.2: By triangle inequality and symmetry we have ‖s′s‖+ ‖st‖ ≥ ‖s′t‖ = ‖sr‖.

6.2 A 2
3-Approximation for Flat Sets

In this section we show that AlgSimple(S) as described in Section 6.1 yields a 2
3 -

approximation of the longest plane spanning tree. Furthermore, we give a site set that
shows that this analysis is tight.

Theorem 6.2. Let S be a �at site set, let TALG be the result of AlgSimple and Tcr be a �xed
longest, possibly crossing spanning tree. Then |TALG| ≥ 2

3 |Tcr| ≥ 2
3 |TOPT|.

Proof. Since |Tcr| ≥ |TOPT|, it su�ces to prove the first inequality. Let t1 and t2 be the sites
realizing the diameter of S, see Figure 6.2. Consider the four trees Tt1 , Tt1,t2 , Tt2,t1 , Tt2
considered by AlgSimple. By using a weighted average, it su�ces to show that there is a
β ∈ (0, 1

2] such that(1
2
− β

)
· |Tt1 |+ β · |Tt1,t2 |+ β · |Tt2,t1 |+

(1
2
− β

)
· |Tt2 | ≥

2
3
· |Tcr|.

If this inequality holds, then as

max
{
|Tt1 |, |Tt1,t2 |, |Tt2,t1 |, |Tt2 |

}
≥

(1
2
− β

)
· |Tt1 |+ β · |Tt1,t2 |+ β · |Tt2,t1 |+

(1
2
− β

)
· |Tt2 |

we have shown the desired statement. We fix β = 1
3 and equivalently show:

|Tt1 |+ 2|Tt1,t2 |+ 2|Tt2,t1 |+ |Tt2 |
6

≥ 2
3
· |Tcr|.

Note that all four trees on the left-hand side include the edge {t1, t2}. Since t1 and t2
realize the diameter and Tcr allows crossings, we can without loss of generality assume
that Tcr contains that edge too. Thus we can direct all edges towards {t1, t2} and use the
notation `T (s) as defined in Section 2.1. Assume the following holds for all s ∈ S \ {t1, t2}:

`Tt1 (s) + 2`Tt1,t2 (s) + 2`Tt2,t1 (s) + `Tt2 (s)

6
≥ 2

3
· `Tcr

(s), (6.1)

then summing over all points s ∈ S \ {t1, t2} and adding ‖t1t2‖ to both sides yields the
desired result.

Fix a site s and assume without loss of generality, that ‖st1‖ ≥ ‖st2‖. Let s′ be the
reflection of s at the perpendicular bisector of {t1, t2}. Since S is flat, we have `Tcr

(s) ≤
max{‖st1‖,‖st2‖} = ‖st1‖. For the terms on the left hand side, we have `Tt1 = `Tt1,t2 = ‖st1‖

83

Chapter 6 Approximating the Longest Tree

s0

s1

sn

(a) The best plane spanning tree of Sn.
Tcr

s0

s1

sn

(b) The best crossing spanning tree of Sn.

Figure 6.3: The point set Sn consisting of n+ 1 points with equally spaced x-coordinates
0,1, . . . ,n.

and `Tt2 = ‖st2‖ by the definition of the trees. Furthermore, as the edge incident to s in

Tt2,t1 at least crosses the bisecting line between t1 and t2, we have `Tt2,t1 (s) ≤ ‖ss
′‖

2 .
Using the triangle inequality in 4t2ss′, yields the desired result for the left-hand side of

(6.1), see Figure 6.2.

‖st1‖+ 2‖st1‖+ ‖s′s‖+ ‖st2‖
6

≥ ‖s
′t2‖+ 3‖st1‖

6

=
2
3
· ‖st1‖

≥ 2
3
· `Tcr

(s) �

In the following lemma we give a family of site sets that shows that the constant 2
3 is

asymptotically tight when comparing the result to the best crossing spanning tree.

Lemma 6.3. There is an in�nite family of sets of sites S1,S2, . . . where Sn contains n+ 1 sites
and

lim
n→∞

|TOPT|
|Tcr|

≤ 2
3

Proof. The set Sn = s0, . . . , sn is a flat set of sites where all sites lie evenly spaced on a
convex arc with x-coordinates 0, . . . ,n, as shown in Figure 6.3(a). As the point set is
symmetric, we have |Ts0 | = |Tsn |. We argue that the star rooted at s0 is a longest plane
spanning tree of this site set.

First we observe that |TOPT| ≤ |TOPT({s0, . . . , sn−1})|+ maxi=0,...n−1 ‖snsi‖. This can be seen
as |TOPT({s0, . . . , sn−1})| is at least as large as the subtree of TOPT induced by s0, . . . , sn−1 and
the edge connecting sn to this subtree cannot be larger than maxi=0,...n−1 ‖snsi‖.

Now we can inductively show that |TOPT| = |Ts0 |. For the base case we consider S1 and
as there is only one possible edge, the claim holds. Now we consider the step from Sn−1
to Sn. The star on Sn−1 rooted in s0 is a longest plane spanning tree of Sn−1 by induction.
As the sites s0, . . . , sn−1 in Sn have the same pairwise distances and relative positions as the
sites in Sn−1, this directly implies that |TOPT({s0, . . . , sn−1})| = |TOPT(Sn−1)|. As s0 maximizes
the distance to sn among all sites, we have |TOPT| ≤ |TOPT(s0, . . . , sn−1)| + ‖sns0‖ = |Ts0 | as
claimed.

The length of TOPT now follows from simply summing up the length of the edges in Ts0 .

84

6.3 A δ=̇0.5467-approximation for general sets

|TOPT| =
n∑
i=1

i =
(n+ 1)n

2

Let T be the tree so that the sites s1, . . . , sbn/2c are connected to sn and the rest is
connected to s0. This tree is illustrated in Figure 6.3(b). We claim that |T | = |Tcr| and
thus its length gives an exact bound on the length of the longest spanning tree. Consider
a longest crossing spanning tree. As crossings are allowed {s0, sn} is an edge in every
longest spanning tree. So we can use the notation from above and direct the remaining
edges towards {s0, sn}. This gives

|Tcr| = ‖s0sn‖+
∑

1≤i≤n−1

`Tcr
(si)

≤ ‖s0sn‖+
∑

1≤i≤n−1

max
j=0,...,n

‖sisj‖.

By the definition of T , we have `T (si) = maxj=0,...,n ‖sisj‖ and thus |T | ≥ |Tcr|. A straight-
forward summation gives the precise bound for |Tcr|.

|Tcr| ≥ 2
n−1∑

i=dn/2e
i +n−

⌈n
2

⌉
≥ n2 −

⌈n
2

⌉2

≥ 3n2

4
− 1

2
n− 1

4

Combining the values for |TOPT| and |Tcr| we get the desired result:

lim
n→∞

|TOPT|
|Tcr|

≤ lim
n→∞

n2

2 + n
2

3n2

4 −
1
2n−

1
4

=
2
3

�

6.3 A δ=̇0.5467-approximation for General Sets

This section considers the performance of AlgSimple on general site sets. To be precise
we want to give a lower bound on δ, such that AlgSimple returns a δ-approximation of
the longest plane spanning tree. The core part of the proof follows a similar idea as in the
proof of Theorem 6.2 in the sense that we use a weighted average of the lengths of four
trees Ta,Tb,Ta,b and Tb,a. However, here we do not define those trees via the diameter of
the site set, but rather pick the sites that define the longest edge in a fixed optimal tree
TOPT. In contrast to the flat case, we consider some other cases first, before arguing about
the weighted average length of the trees. We first sketch the overall proof strategy and
define some terminology, before going to the technical lemmas.

85

Chapter 6 Approximating the Longest Tree

In the following, assume without loss of generality that diam(S) = 2. Fix an optimal
tree TOPT and let 2d = ‖ab‖ be the length of the longest edge {a,b} in TOPT. As diam(S) = 2,
we get d ≤ 1. Let t1 and t2 be the sites realizing the diameter. If 2d ≤ 1/δ, then in
Lemma 6.4 we show that either Tt1 or Tt2 is long enough. Hence, from then on we can
assume that 2dδ > 1.

By the bound on the diameter, the set S is completely contained in the lens D(a,2)∩
D(b,2). We further subdivide the lens into a region that is close to {a,b} and two regions
that are far away from this edge. If there is a site c in one of the far away regions, we
show in Lemma 6.6 that one of the stars Ta,Tb and Tc is long enough.

In the final case, all sites are close to {a,b}. Let β ∈ (0, 1
2] and consider the weighted

average (1
2
− β

)
· |Ta|+ β · |Ta,b|+ β · |Tb,a|+

(1
2
− β

)
· |Tb|

of Ta,Tb,Ta,b and Tb,a. We will show that it is at least δ · |TOPT|. This directly implies that
the longest of these four trees is the desired δ-approximation. As our fixed tree TOPT and
these four trees all contain the edge {a,b}, we can again use the notation from Section 2.1
to focus on the length of single edges. We define

avg(s,β) =
(1
2
− β

)
· `Ta(s) + β · `Ta,b(s) + β · `Tb,a(s) +

(1
2
− β

)
· `Tb(s).

This reduces the task to showing avg(s,β) ≥ δ · `TOPT
(s). In order to get meaningful lower

bounds on `TOPT
(s), we define three special points. We show in Lemma 6.7 that it su�ces

to consider the distance between s and these special points to get an upper bound on
`TOPT

(s). In Lemma 6.8 we then show that one of the three points can actually be ignored.
Lemma 6.9 gives a very useful lower bound on the weighted average avg(s,β). Using this
bound, we find two sets of upper and lower bounds on the weighting factor β, which
only depend on δ. One of these sets turns out to be tighter than the other, both for the
upper and the lower bound. By setting the upper and lower bound equal and solving the
resulting equation for δ in Lemma 6.12, the approximation factor δ follows. Next, we
describe the details of the argument.

6.3.1 |TOPT| is small or there are sites far away

First, we show that if the longest edge in TOPT is relatively small, the best star rooted at
one of the points realizing the diameter yields a good approximation ratio. This can be
seen by the following slight generalization of a lemma by Alon et al. [ARS95].

Lemma 6.4. Let S be a site set and the sites t1 and t2 realize its diameter. Suppose that ‖t1t2‖ = 2
and that each edge of the optimal tree TOPT has length at most 1/δ. Then max{|Tt1 |, |Tt2 |} ≥
δ · |TOPT|.
Proof. By the triangle inequality, for any site s ∈ S we have ‖st1‖+ ‖st2‖ ≥ ‖t1t2‖. Hence

|Tt1 |+ |Tt2 | =
∑
s∈S

(‖st1‖+ ‖st2‖) ≥ n · ‖t1t2‖ = 2n,

86

6.3 A δ=̇0.5467-approximation for general sets

d d

2dδ
ba

p′

Far regions

Truncated lensu

b′

p

v

Figure 6.4: Decomposition of the lens into the far regions and the truncated lens.

implying that max{|Tt1 |, |Tt2 |} ≥ n. On the other hand, since each of the n − 1 edges in
TOPT has length at most 1/δ, we get

δ · |TOPT| ≤ δ · (n− 1) · 1
δ
≤ n

and we are done. �

Let {a,b} be the longest edge in TOPT and let ‖ab‖ = 2d ≤ 2. By Lemma 6.4 we can
in the following assume that 2dδ > 1. We already established that S lies in the lens
D(a,2)∩D(b,2) and that the sites a and b are in the interior of the lens. Without loss of
generality, suppose that a = (−d,0) and b = (d,0). We split the lens into the far region and
the truncated lens, as follows and depicted in Figure 6.4.

Let p be the point on the positive y-axis such that ‖pa‖ = ‖pb‖ = 2dδ and let p′ be
the point on the negative y-axis that is defined analogously. As 2dδ > 1 the circles
k = ∂D(p,‖pa‖) and k′ = ∂D(p′,‖p′a‖) intersect the boundary of the lens. The far regions
are defined as the regions in the lens above k and below k′. The remaining region of the
lens is called the truncated lens. Let u and v be the two intersection points of k and the
truncated lens with largest y-coordinate. We have the following lemma:

Lemma 6.5. For δ ≥ 0.5, we have ax ≤ ux ≤ 0 ≤ vx ≤ bx.
Proof. The statement follows directly from the definition. Let b′ be the polar opposite
point of b on the circle k. Then xb′ = −xb = xa. Now as 2 · 2dδ ≥ 2d for all δ ≥ 0.5, the
point b′ lies outside of the lens or on its boundary. Since u is the higher of the intersection
points of D(b,2d) and k, it lies to the right of b′ and thus also to the right of a. By a
symmetric argument, v lies to the right of b. �

We can now show that if there is a site c in one of the far regions, the tree TALG returned
by AlgSimple is a δ-approximation.

87

Chapter 6 Approximating the Longest Tree

d d b

S0

g

a

c

R

D((0,0),d)

Figure 6.5: We can chose v = a. The orange disk does not intersect the far region above
the x-axis. The circumradius of the triangle abc is marked red.

Lemma 6.6. Let {a,b} be the longest edge of TOPT. If S contains a point c in one of the far regions,
then max{|Ta|, |Tb|, |Tc|} ≥ δ · |TOPT|.
Proof. Assume without loss of generality that y lies in the far region above the x-axis. Let
S0 = S \ {a,b,c} and let g = 1

|S0|
∑
s∈S0

s be the centroid of this set, see Figure 6.5. Now we

can show for all q ∈R2: ∑
s∈S0

‖qs‖ =
∑
s∈S0

‖q − s‖ ≥ ‖
∑
s∈S0

(q − s)‖

= ‖(|S0| · q −
∑
s∈S0

s)‖

= |S0| · ‖q − g‖ = |S0| · ‖qg‖

Consider the triangle 4abc. By Lemma 6.5, the angles at a and b are at most π
4 . Further-

more, the part of the disk D((0,0),d) above the x-axis is completely contained in the disk
defined by k and c lies above this disk. Thus by Thale’s theorem, the angle at c is also at
most π

4 . By these considerations, the triangle abc is acute-angled and its circumradius R
satisfies R ≥ 2dδ. By the properties of acute-angled triangles, there exists a site v ∈ {a,b,c}
such that ‖vg‖ ≥ R. Combining this with the inequality from above, gives∑

s∈S0

‖vs‖ ≥ |S0| · ‖vg‖ ≥ (n− 3) ·R.

Together with ‖va‖+ ‖vb‖+ ‖vc‖ ≥ 2R which holds for any acute-angled triangle, we get

|Tv | ≥ (n− 3)R+ 2R = (n− 1) ·R ≥ (n− 1) · 2dδ ≥ δ · |TOPT|,

where in the last inequality we used that each edge of TOPT has length at most 2d. �

88

6.3 A δ=̇0.5467-approximation for general sets

p

a b
l

u

2df

d d

t

D
(l,2d)

k

r

v

EN

W

pu

pa pb

s

pb

Figure 6.6: For a site s ∈ E we have `TOPT
(s) ≤ 2d. If the site s lies in N we have

`TOPT
(s) ≤max{‖spa‖,‖su‖}. We have `TOPT

(s) ≤max{‖spa‖,‖spu‖} if s ∈W .

6.3.2 All Sites Lie in the Truncated Lens

From now on we assume that no point lies in a far region and that the length of the
longest edge in TOPT is at least 1/δ. We recall the definition of the point p, which is the
point on the positive y-axis with ‖pa‖ = ‖pb‖ = 2dδ. The point p defined like this has
coordinates p =

(
0,

√
(2dδ)2 − d2

)
. Recall that the circle k = ∂D(p,‖pa‖) always intersects

the lens D(a,2)∩D(b,2). Also u and v are the intersection points of the lens with k
with the largest y-coordinates, where u is to the left of v. We fix a site s = (sx, sy) in the
truncated lens and assume without loss of generality that sx, sy ≥ 0. This is equivalent
to saying that we only consider sites in the first quadrant of the coordinate system. We
further subdivide the truncated lens into regions, see Figure 6.6 for an illustration. First
of all we denote the region inside the truncated lens but outside of D(l,2d) by E. We
further subdivide the remainder of the truncated lens into the part N above the line
defined by u and p and the part W below that line. Based on the position of s we now
define three special points, again refer to Figure 6.6 for an illustration.

(a) pa is the point on the ray −→sa whose x-coordinate equals −(2− d);

(b) pb is the point
−→
sb whose x-coordinate equals 2− d, if sx < d, and pb = b if sx ≥ d.

(c) pu is the the point on the arc of k from u to v that is furthest from s. If s ∈ W ,
the ray −→sp intersects k on the arc from u to v. By triangle inequality this point is
the point on k with the largest distance to s and we pick it as pu . Otherwise, the
furthest point on k lies below u and we set pu = u.

Having these definitions at hand, we can now show that we can bound `TOPT
(s) by only

considering the three points pa,pb and pu .

89

Chapter 6 Approximating the Longest Tree

a bl

v

pf

‖ppf ‖ >max{‖pl‖,‖pu‖}

u

t

Closer to u than to pf

Closer to l than to pf

r

(a) The point pf lies on the arc ul. The points
with ‖spf ‖ >max{‖sl‖,‖su‖} form a convex
wedge with apex b fully contained in the
fourth quadrant.

a b

s

pa pb
l r

(b) The point pf lies in the third of fourth
quadrant. As {s,pf } cannot be blocked by a
or b, pf lies in one of the red triangles.

Figure 6.7: Cases 2(c), 3 and 4 in Lemma 6.7.

Lemma 6.7. For each site s = (sx, sy) in the truncated lens with sx, sy ≥ 0 we have

`TOPT
(s) ≤min{2d,max{‖spa‖,‖spb‖,‖spu‖}}.

Proof. Let l and r be the left- and rightmost points of the lens with r = (2 − d,0) and
l = (d − 2,0). Assume that s lies in E. Then ‖spa‖ ≥ ‖sl‖ ≥ 2d, and the right-hand side
equals 2d. Since the left-hand side is at most 2d by assumption, the claim is true in this
case.

So from now on we can assume that s ∈ N ∪W . This directly implies that pb , b
and (pb)x = 2 − d. Let pf be the point within the truncated lens furthest from s such
that the line segment pf s does not intersect the edge {a,b}. Clearly, pf lies on the
boundary of the truncated lens. Since `TOPT

(s) ≤ 2d by assumption, it su�ces to show
that ‖spf ‖ ≤max{‖spa‖,‖spb‖,‖spu‖}. Let t be the top-most point of the truncated lens.
We distinguish four cases, based on the position of pf relative to the origin:

Case 1: pf lies in the �rst quadrant Consider the reflection p′f of pf along the y-axis.
Since sx ≥ 0, we have ‖sp′f ‖ ≥ ‖spf ‖, and the inequality is strict when sx > 0. Thus,
when sx > 0, this case cannot occur, and when sx = 0, it reduces to the case where
pf belongs to the second quadrant.

Case 2: pf lies in the second quadrant This case is split into three subcases.

(a) pf lies on the arc tu and s ∈N By definition, we have pu = u, which implies
that there is no point on the arc tu with larger distance to s than u. In
particular, this means that ‖spf ‖ ≤ ‖spu‖ which is su�cient to show the claim.

90

6.3 A δ=̇0.5467-approximation for general sets

s = (xs, ys)

d xs

a b

pa

pb

ys

l r

Figure 6.8: The situation for Lemma 6.8 (not to scale).

(b) pf lies on the arc tu and s ∈W By definition, if s ∈W , the point pu is the
furthest point from s of the arc tu and thus ‖spf ‖ = ‖spu‖ and we are done.

(c) pf lies on the arc ul We claim that ‖spf ‖ ≤max{‖sl‖,‖su‖}. Indeed, the per-

pendicular bisectors of segments pf l and pf u intersect at b and thus the points
for which the claim fails all lie in a convex cone with apex b that is fully
contained in the fourth quadrant, see Figure 6.7(a). Since ‖sl‖ ≤ ‖spa‖ and
‖su‖ ≤ ‖spu‖, we get ‖spf ‖ ≤max{‖spa‖,‖spu‖}.

Case 3: pf lies in the third quadrant Then pf lies in the triangle slpa which is shown
in Figure 6.7(b). Thus ‖spf ‖ ≤ ‖spa‖.

Case 4: pf lies in the fourth quadrant Then pf lies in the triangle srpb and ‖spf ‖ ≤
‖spb‖, again see Figure 6.7(b). �

The next lemma shows that we can disregard ‖spb‖ in our considerations, as it will
always be bounded from above by ‖spa‖.

Lemma 6.8. Let s = (sx, sy) be any site in the truncated lens with sx, sy ≥ 0. If ‖spa‖ ≤ 2d,
then ‖spb‖ ≤ ‖spa‖.

Proof. We present a straightforward algebraic proof, as we are not aware of a purely
geometric proof. Even though we show most of the algebraic manipulation steps, one
could also verify the claim by using a computer algebra system.

The case sx = 0 is trivial as it yields ‖ppb‖ = ‖ppa‖. Thus, we only consider the case
sx > 0. Since ‖spa‖ ≤ 2d, we must have sx < d, and therefore pb , b has x-coordinate
(pb)x = 2− d, see Figure 6.8.

91

Chapter 6 Approximating the Longest Tree

From similar triangles and the Pythagorean theorem we get ‖spa‖ = ‖sa‖ · 2−d+sx
d+sx

and

‖sa‖2 = (d + sx)2 + s2y . Therefore, the assumption ‖spa‖2 ≤ (2d)2 can be equivalently
rewritten as:

(
s2y + (d + sx)

2
)
· (2− d + sx)

2

(d + sx)
2 ≤ 4d2

s2y ≤

(
4d2 − (2− d + sx)

2
)
(d + sx)2

(2− d + sx)
2 . (6.2)

Similarly, as with ‖spa‖2, we express ‖spb‖2 as

‖spb‖2 =
(
s2y + (d − sx)2

)
· (2− d − sx)

2

(d + sx)2 (6.3)

and rewrite our goal ‖spb‖2 ≤ ‖spa‖2 as

(
s2y + (d − sx)2

)
· (2− d − sx)

2

(d − sx)2 ≤
(
s2y + (d + sx)

2
)
· (2− d + sx)2

(d + sx)2

s2y ·
(2− d − sx)2(d + sx)2 − (2− d + sx)2(d − sx)2

(d + sx)2(d − sx)2 ≤ (2− d + sx)
2 − (2− d − sx)2,

which, upon expanding the parentheses and dividing by 4sx > 0 transforms into the goal

s2y ·
2(1− d)(2d − d2 − s2x)

(d + sx)2(d − sx)2 ≤ 2− d.

We plug in the upper bound on s2y from (6.2), cancel the term (d + sx)2, and clear the
denominators. This leaves us with proving(

4d2 − (2− d + sx)
2
)
· 2

(
1− d

)(
2d − d2 − s2x

)
≤ (2− d + sx)

2 · (2− d)(d − sx)2,

which, upon expanding the parentheses, reduces to

0 ≤
(
16d − 32d2 + 8d3 + 16d4 − 7d5

)
+ s2x

(
−8d + 16d2 − 10d3

)
+ ds4x . (6.4)

For any fixed d > 0, the right-hand side Q(d,s2x) is a quadratic function of s2x with positive
coe�cient d > 0 by the leading term (s2x)2. Hence, the minimum of Q(d,s2x) is attained
when

s2x =
8d − 16d2 + 10d3

2d
= 4− 8d + 5d2.

Plugging s2x = 4−8d + 5d2 into (6.4) and expanding the parentheses for the one last time
we are left to prove

92

6.3 A δ=̇0.5467-approximation for general sets

d xs

s = (xs, ys)s′

d − xs
a b

Figure 6.9: Mirroring s along the y-axis in Lemma 6.9. By triangle inequality
‖ss′‖+ ‖sb‖ ≤ ‖s′b‖ = ‖sa‖.

0 ≤ 32d2 − 96d3 + 96d4 − 32d5

0 ≤ 32d2(1− d)3,

which is true since d ≤ 1. �

With Lemmas 6.7 and 6.8 we have reduced the task of showing avg(s,β) ≤ δ ·`TOPT
(s) to

that of showing avg(s,β) ≤ δ ·min{2d,max{‖spa‖,‖spu‖}. We aim to find two sets of upper
and lower bounds on β for which avg(s,β) ≤ ‖spa‖ and avg(s,β) ≤ ‖spu‖, respectively,
hold and which only depend on δ. However, first we give a general lower bound on
avg(s,β) which will be useful for the more specific bounds.

Lemma 6.9. Let s = (sx, sy) be any site from our set with sx, sy ≥ 0 and let β ∈ (0, 1
2] be a real

number. Then

avg(s,β) ≥
d · (1− β) + sx · 2β

d + sx
· ‖sa‖.

Proof. Similar to the proof of Theorem 6.2, we have `Ta(s) = `Ta,b(s) = ‖as‖, `Tb(s) = ‖sb‖,
and `Tb,a ≥ sx. Unpacking the definition of avg(s,β), this yields

avg(s,β) =
(1
2
− β

)
· `Ta(s) + β · `Ta,b(s) + β · `Tb,a(s) +

(1
2
− β

)
· `Tb(s)

≥
(1
2
− β

)
· ‖sa‖ + β · ‖sa‖ + β · sx +

(1
2
− β

)
· ‖sb‖.

Let s′ = (−sx, sy) be the reflection of s along the y-axis, see Figure 6.9. The triangle
inequality ‖s′s‖+ ‖sb‖ ≥ ‖s′b‖ = ‖sa‖ leads to β · sx = 1

2β · ‖s
′s‖ ≥ 1

2β · (‖sa‖ − ‖sb‖), and we
obtain

avg(s,β) ≥ (1/2− β) · ‖sa‖+ β · ‖sa‖+
1
2
β · (‖sa‖ − ‖sb‖) + (1/2− β) · ‖sb‖

≥
(1 + β) · ‖sa‖+ (1− 3β) · ‖sb‖

2
.

93

Chapter 6 Approximating the Longest Tree

Next, we claim that ‖sb‖ ≥ d−sx
d+sx
· ‖sa‖. The claim can be seen as follows: upon squar-

ing, using the Pythagorean theorem and clearing the denominators by the following
calculations, this becomes s2y ·

4dsx
(d+sx)2 ≥ 0, which is true.

‖sb‖2 ≥ (d − sx)2

(d + sx)2 · ‖sa‖
2

(d − sx)2 + s2y ≥
(d − sx)2

(d + sx)2 · ((d + sx)
2 + s2y)

s2y ·
(
1− (d − sx)2

(d + sx)2

)
≥ 0

s2y ·
4dsx

(d + sx)2 ≥ 0

Using this bound on the term containing ‖sb‖, we finally get the desired

avg(s,β) ≥
(1 + β)(d + sx) + (1− 3β)(d − sx)

2(d + sx)
· ‖sa‖

= d ·
(1− β) + 2β · sx

d + sx
· ‖sa‖. �

Now we are equipped to show the two sets of bounds whose combination will give us a
good lower bound on the approximation factor δ.

Lemma 6.10. Let s = (sx, sy) be a site in the lens with sx, sy ≥ 0. Suppose δ ≤ 5
8 and

2δ − 1
5− 8δ

≤ β ≤ 1
2
· δ.

Then avg(s,β) ≥ δ ·min{2d,‖spa‖}.
Proof. We distinguish the cases sx ≥ 3d − 2 and sx ≤ 3d − 2. In the first case we show that
avg(s,β) ≥ δ · 2d, while in the second case we show avg(s,β) ≥ δ · ‖spa‖.

Case 1: sx ≥ 3d − 2 Using Lemma 6.9 and the inequalities ‖sa‖ ≥ d + sx and sx ≥ 3d − 2,
we rewrite

avg(s,β) ≥
d · (1− β) + sx · 2β

d + sx
· ‖sa‖

≥ d − dβ + (3d − 2) · 2β
= β(5d − 4) + d.

Hence, it su�ces to prove β · (5d − 4) ≥ d(2δ − 1). Using the lower bound on β and
4 ≤ 8dδ, we get

β · (5d − 4) ≥ β · (5d − 8dδ) ≥ 2δ − 1
5− 8δ

· d · (5− 8δ) = d(2δ − 1)

as desired. Note that 2δ − 1 and 5− 8δ are both positive.

94

6.3 A δ=̇0.5467-approximation for general sets

Case 2: sx ≤ 3d − 2 We have ‖spa‖ = ‖sa‖ · 2−d+sx
d+sx

. Using Lemma 6.9, it su�ces to prove

d · (1− β) + sx · 2β
d + sx

· ‖sa‖ ≥ δ · ‖sa‖2− d + sx
d + sx

d(1− β) + sx · 2β ≥ δ(2− d + sx)
d(1− β)− δ(2− d) ≥ sx(δ − 2β).

Since δ ≥ 2β by assumption, the right-hand side is increasing in sx and we can plug
in 3d − 2 for sx. This leaves us with proving the inequality

d(1− β)− δ(2− d) ≥ (3d − 2)(δ − 2β)
β · (5d − 4) ≥ d(2δ − 1),

which is the same inequality as in the first case. �

Lemma 6.11. Let s = (sx, sy) be a site in the truncated lens with sx, sy ≥ 0. Suppose that
β < 151

304 · δ, that 1
2 ≤ δ ≤

19
32 and that

2δ − 1

2
√

5− 8δ − 1
≤ β ≤ 1− δ

√
4δ2 − 1− 2δ2. (6.5)

Then avg(s,β) ≥ δ ·min{2d,‖spu‖}.
Proof. Because of the lower bound for avg(s,β) in Lemma 6.9, to show the statement it
su�ces to show that

d · (1− β) + sx · 2β
d + sx

· ‖sa‖ ≥ δ ·min{2d,‖spu‖}. (6.6)

We denote by (pu)y the y-coordinate of pu and we consider the two cases sy ≤ (pu)y and
sy > (pu)y separately.

Case 1: sy ≤ (pu)y Define λ = d·(1−β)+sx·2β
d+sx

· ‖sa‖. To show the claim, we have to show
that λ ≥ δ ·min{2d,‖spu‖}. Note that λ is an increasing function in sy , because
‖sa‖ is also increasing in sy . On the other hand, ‖spu‖ is a decreasing function
in sy for sy ≤ (pu)y : if pu , u, then s ∈ W . This also implies that sy ≤ py and
‖spu‖ = ‖ps‖+ 2dδ is decreasing in sy . If pu = u then ‖spu‖ = ‖su‖ decreases when
sy increases for sy ≤ (pu)y .

As min{2d,‖spu‖} is decreasing and λ is increasing in sy for sy ≤ (pu)y , it su�ces
to show (6.6) for sy = 0 to handle our current case . Now we have ‖sa‖ = d + sx, so
we can rewrite λ as λ0 = d · (1− β) + sx · 2β, which is positive.

Let q = (qx,0), qx ≥ 0 be the point on the positive x-axis such that ‖qp‖ = 2d(1− δ).
This means that for s = q we have ‖spu‖ ≤ ‖sp‖+ ‖ppu‖ = 2d, see Figure 6.10. We
further distinguish two subcases, depending on whether 0 ≤ sx ≤ qx or sx > qx.

95

Chapter 6 Approximating the Longest Tree

p

a b
l

u

2df

d

tk

r

v

2d(1− δ)

qs

pu

Figure 6.10: The situation for the first case of Lemma 6.11.

(a) 0 ≤ sx ≤ qx We will show that in this case λ0 ≥ δ · ‖spu‖. The Pythagorean
theorem gives

δ · ‖spu‖ ≤ δ · ‖sp‖+ δ · ‖ppu‖ = δ
√
s2x + (2dδ)2 − d2 + 2dδ2. (6.7)

Therefore, substituting λ0, it su�ces to show

d · (1− β) + sx · 2β ≥ δ
√
s2x + (2dδ)2 − d2 + 2dδ2. (6.8)

When β < 151
304 · δ and δ ≤ 19

32 , the term d · (1− β)− 2dδ2 is positive and (6.8) is
equivalent to

0 ≥ δ2 ·
(
s2x + (2dδ)2 − d2

)
−
(
d · (1− β) + sx · 2β − 2dδ2

)2
.

The right-hand side is a quadratic function in sx whose coe�cient of the leading
term is δ2 − 4β2, which is positive. Hence to show that the right hand side is
smaller than zero in the interval 0 ≤ sx ≤ xp, it su�ces to check the inequality
(6.8) for sx ∈ {0,qx}.

For sx = 0, we need to check that d(1 − β) ≥ δ
(√
d2(4δ2 − 1) + 2dδ

)
, which

reduces precisely to the assumption

β ≤ 1− δ
√

4δ2 − 1− 2δ2.

For sx = qx, the Pythagorean theorem gives

(qx)
2 = (2d(1− δ))2 + (xp)2

= (2d(1− δ))2 + d2 − (2dδ)2

= d2 · (5− 8δ),

96

6.3 A δ=̇0.5467-approximation for general sets

p

a

u

k

s

−d

k

v

d bd

Figure 6.11: The situation for case 2. We have ‖su‖ ≤ 2d and ‖su‖ ≤ ‖sa‖.

hence qx = d
√

5− 8δ.

The point q has been selected such that ‖sp‖+ ‖ppu‖ = 2d, and therefore the
middle expression of (6.7) and also the right hand side of (6.8) are 2dδ. We
thus have to verify that

d(1− β) + d
√

5− 8δ · 2β ≥ δ · 2d (6.9)

β ·
(
2
√

5− 8δ − 1
)
≥ 2δ − 1.

Since δ ≤ 19/32 by the assumptions of the lemma, the term in the parentheses
on the left-hand side is positive, and after dividing we obtain precisely the
assumption.

(b) sx > qx In this case we show that λ0 ≥ δ · 2d. Since the term λ0 is increasing
in sx and 2d is constant, we only need to show that λ0 ≥ δ · 2d for sx = qx.
However, this was already shown in the previous case; see (6.9).

Case 2: sy > (pu)y : See Figure 6.11 for a sketch of the situation in this case. As the part
above u is completely contained inN∪E, we have ‖spu‖ = ‖su‖ ≤ ‖uv‖. Furthermore,
by Lemma 6.5, we have ux ≥ −d as well as sx ≤ d. So we have min{2d,‖spu‖} = ‖spu‖.
This means that to show (6.6) we have to show

d(1− β) + 2xβ
d + sx

· ‖sa‖ ≥ δ · ‖spu‖.

97

Chapter 6 Approximating the Longest Tree

As s lies above the horizontal line through u, we get ‖sa‖ ≥ ‖spu‖, thus it su�ces to
show

d(1− β) + 2xβ
d + sx

≥ δ

d − dβ + 2sxβ ≥ δd + δsx
d(1− (β + δ)) ≥ sx(δ − 2β)

sx ≤ d ·
1− (β + δ)
δ − 2β

.

As we know that sx ≤ d this is true for

1− (β + δ)
δ − 2β

≥ 1

1− (β + δ) ≥ δ − 2β
β ≥ 2δ − 1,

where in the last step we used that δ > 2β. The last condition is a looser bound
than the left hand side of (6.5) as δ ≥ 1

2 and therefore 2 ·
√

5− 8δ − 1 ≤ 1. �

As a close examination shows that the bounds of Lemma 6.11 are stricter than the
ones of Lemma 6.10, we now want to chose δ in such a way that the left and the right side
of Lemma 6.11 are equal. The choice of δ following from this is justified in the following
lemma.

Lemma 6.12. The positive solutions of

2x − 1

2
√

5− 8x − 1
= 1− x

√
4x2 − 1− 2x2

are x = 5
8 and the fourth smallest root of

−80 + 128x+ 504x2 − 768x3 − 845x4 + 1096x5 + 256x6.

Proof. We provide a sketch of how to solve it “by hand”. One can also use advanced
software for algebraic manipulation. Setting the polynomials q1(x) = 4x2 − 1 and q2(x) =
5− 8x, and multiplying both sides of the equation by the denominator on the left-hand
side, we are left with the equation

2x − 2x2 = x
√
q1(x) + (2− 4x2)

√
q2(x)− 2x

√
q1(x)q2(x)

2x − 2x2 + 2x
√
q1(x)q2(x) = x

√
q1(x) + (2− 4x2)

√
q2(x).

Squaring both sides, which may introduce additional roots, we get the following equation
for some polynomials q3(·), . . . , q6(·):

98

6.4 Using Small Diameters for Approximation

q3(x) + q4(x)
√
q1(x)q2(x) = q5(x) + q6(x)

√
q1(x)q2(x)

q3(x)− q5(x) =
(
q6(x)− q4(x)

)√
q1(x)q2(x).

Squaring both sides, which may again introduce additional solutions, we get the polyno-
mial

8
(
x − 5

8

)(
−80 + 128x+ 504x2 − 768x3 − 845x4 + 1096x5 + 256x6

)
= 0

This polynomial has 7 real roots that can be approximated numerically. The smallest three
roots of this polynomial are negative (x � −4.82037, x � −0.657898 and x � −0.523446).
The fourth smallest root, x � 0.546723, is a solution to the original equation. The fifth
and sixth roots are x � 0.577526 and x � 0.596211, which are not solutions to the
original equation. The largest root of the polynomial is x = 5

8 , which is also a solution to
the original equation. �

Combining the line of argumentation and lemmas above, we get the main result of this
section.

Theorem 6.13. For any set of sites S in general position (no three sites collinear), we can compute
in polynomial time a plane tree of Euclidean length at least δ · |TOPT|, where |TOPT| denotes the
length of a longest plane tree on S and δ > 0.5467 is the fourth smallest real root of the polynomial

P (x) = −80 + 128x+ 504x2 − 768x3 − 845x4 + 1096x5 + 256x6.

6.4 Using Small Diameters for Approximation

The algorithms for approximating |TOPT| often produce trees with small diameter. In this
section, we consider upper bounds on the approximation factor achieved by the longest
plane tree among those of diameter at most three. We show the upper bound, by focusing
on convex point sets.

Given an integer d ≥ 2 and a point set S, let T dOPT(S) be a longest plane tree spanning
S among those whose diameter is at most d. One can then ask: What is the approximation

ratio
|T dOPT(S)|
|TOPT(S)| achieved by such a tree? As before, we drop the dependency on S in the

notation and just use T dOPT and TOPT.
When d = 2, this reduces to asking about the performance of stars. A result by Alon

et al. [ARS95, Theorem 4.1] can be restated as
|T 2

OPT|
|TOPT|

= 1
2 . Below we show a specific upper

bound tailored to the case d = 3. This case is especially interesting, as in Theorem 7.5
we will show that such trees can be computed e�ciently.

99

Chapter 6 Approximating the Longest Tree

Sn

1 1 1 1 1 12n+1

TL

4n+1

Figure 6.12: An illustration of the point set Sn when n = 3 with a tree TL.

Theorem 6.14. For every ε > 0 there exists a convex point set such that each longest plane tree of
diameter three is at most (5/6) + ε times as long as each longest plane tree of arbitrary diameter.

Proof. Let Sn be a flat site set with |Sn| = 4n+ 2, consisting of two flat convex point sets
that are symmetric with respect to a horizontal line. As the point set is flat, it su�ces to
specify the x-coordinates of the sites in both convex sets. We set the x-coordinates in such
a way that we have the following sequence of distances between two consecutive sites:

(1, . . . ,1︸ ︷︷ ︸
n×

, 2n+ 1, 1, . . . ,1︸ ︷︷ ︸
n×

).

In other words, Sn consists of two diametrically opposite sites, four unit-spaced arcs of n
sites each, and a large gap of length 2n+ 1 in the middle, see Figure 6.12.

Let TL be the tree depicted in Figure 6.12. On the one hand, straightforward counting,
detailed below, will give |TOPT| ≥ |TL| = 12n2 + 6n+ 1. On the other hand, we claim that
any tree T on S4n+2 of diameter at most 3 has length at most 10n2 + 6n+ 1. Thus

|T 3
OPT|
|TOPT|

≤ 10n2 + 6n+ 1
12n2 + 6n+ 1

,

which is implies limn→∞
|T 3

OPT|
|TOPT|

≤ 5
6 .

First, consider the tree TL. We divide the edges into di�erent parts, as shaded in
Figure 6.12. We have

|TL| = 2
n−1∑
i=0

(3n+ 1 + i) + 4n+ 1 + 2
n−1∑
i=0

(2n+ 1 + i)

= 12n2 + 6 +n,

where the first sum and the 4n+ 1 term come from the edges that are shaded blue in
Figure 6.12 and the last sum from the edges shaded green.

In the rest of this proof we will show that any longest tree T among those of diameter
at most 3 on Sn has length at most 10n2 + 6n+ 1. First, note that as T has diameter at

100

6.4 Using Small Diameters for Approximation

a

i

i(i +1) n2(2n+1) · (i +2n+1)

i +2n+1

(n− i)2

Figure 6.13: The longest star for Sn is short.

most 3 it is either a star or it has a cut edge {a,b} whose removal decomposes T into a
star rooted at a and a star rooted at b.

To sum up the lengths of the edges of the tree, it is often easier to split the edges
into parts: one within the left of the gap, one within the right side of the large gap, and
one crossing the gap. The edges in the parts on one side of the gap have maximum
length n, and the edges going across the large gap, have a length between 2n+ 1 and
2n+ 1 +n = 3n+ 1.

If T is a star, then without loss of generality we can assume that its root a is on the left
of the large gap. Denote the distance from the large gap to a by 0 ≤ i ≤ n. Straightforward
algebra, visualized in Figure 6.13, then bounds of the lengths of union of these edges.
All bounds within their respective sides again follow by using the nth triangular number,
similar to the bound for |TL|. Combining these bounds we get:

|Ta| = (n− i)2 + i(i + 1) + (2n+ 1) · (i + 2n+ 1) +n2

≤ n(n+ 1) + (2n+ 1)(3n+ 1) +n2

= 8n2 + 6n+ 1.

Now suppose T has diameter three and denote the line segments defined by its cut
edge by {a,b}. If {a,b} is vertical then |T | = |Ta| and the above bound applies. In the
remaining cases, we can assume without loss of generality that a is to the left of b. The
line supporting ab then splits the remaining points of Sn into two arcs – one above the
line and the other one below it. As a shorthand we will say that the points above or below
this line are above or below the line segment ab.

We claim that in the longest tree of diameter three, the points of one arc are either
all connected to a or all to b. For the sake of contradiction, fix an arc and suppose c
is the rightmost point connected to a. Then by the choice of c, everything right of it is
connected to b and by convexity everything to the left of c is connected to a. Let ` be
the vertical line through the midpoint of ab, see Figure 6.14 for an illustration. If c lies
to the left of `, moving c to the left increases the length of the tree as the distance to b
for all points left of ` is larger than the distance to a. If otherwise c lies to the right of `,
moving it to the right again increases the length of the tree. Thus we either have c = a or
c = b as claimed.

101

Chapter 6 Approximating the Longest Tree

a

`

c

c′

b

(a) The line ` lies in the large gap.

a

b

c

c′

`

(b) The line ` lies on one side of the large gap.

Figure 6.14: The sites on one side of ab are either all connected to a or all to b.

Since Sn is centrally symmetric and we have already dealt with the case where T is
a star, we can assume without loss of generality that all points above ab are connected
to a and all points below ab are connected to b. Now suppose that a is below the line
`′ through the sites defining the diameter of Sn and consider the reflection a′ ∈ Sn of a
about `′, see Figure 6.15(a). Then the tree T ′ with cut edge {a′,b} is longer than T , since
in T ′ the points to the left of aa′ are connected to b rather than to a and all the other
edges have the same length, see Figure 6.15(b). Hence, we can assume that a lies above
or on `′. Similarly, b lies below `′ or on it.

It remains to distinguish two cases based on whether a and b lie on di�erent sides of
the large gap or not. Either way, denote the distance from the gap to a and b by i and
j, respectively. In the first case, considering the subdivision of the edges as sketched in
Figure 6.16(a), straightforward algebra gives:

|T | = n2 + (2n− j)(i + 2n+ 1) + (i + 2n+ 1 + j) + (2n− i)(2n+ 1 + j) +n2

= 10n2 + 6n+ 1− 2ij

≤ 10n2 + 6n+ 1,

b

`′

a′

a

(a) a and b are both below `′.

a

`′

a′

b

(b) Using a′ instead of a.

Figure 6.15: Flipping a to a′ along `′ increases the total length by the amount in the red
area.

102

6.4 Using Small Diameters for Approximation

i j

n2

n2

(2n− j) · (i +2n+1)

(2n− i) · (j +2n+1)

i +2n+1

j +2n+1
i +2n+1+ j

b

a

(a) Decomposition of the edges for case 1.

i i +2n+1j

n2 − 2nj + i +2ij

(2n+1) · (i +2n+1)

n2

b

a

(b) Decomposition of the edges for case 2.

Figure 6.16: Decomposition of the edges for the upper bounds.

with equality if and only if either a or b (or both) lie on the boundary of the large gap.
In the second case, since a is to the left of b, we have i > j and similar algebra, see
Figure 6.16(b), gives

|T | =
(
n2 − 2nj + i + 2ij

)
+

(
2n+ 1

)(
2n+ 1 + i

)
+ n2.

Since the right-hand side is increasing in i and i ≤ k, we get

|T | ≤
(
n2 +n

)
+
(
2n+ 1

)(
3n+ 1

)
+n2 = 8n2 + 6n+ 1,

which is less than the claimed upper bound 10n2 + 6n+ 1 by a margin. �

103

CHAPTER 7
Polynomial Time Algorithms for

Special Cases
In this chapter we study algorithms that compute exact longest plane spanning trees.
First of all, one might hope that a simple greedy algorithm, that locally improves a given
spanning tree by closing a cycle with an edge and then removing a shorter edge to increase
the overall weight of the spanning tree, works. However, in Section 7.1, we explicitly
construct a set of sites and a matching spanning tree, such that this algorithm fails.

Thus we aim to find e�cient algorithms for special cases. For convex site sets, a standard
dynamic programming approach, similar to the minimum weight triangulation [Gil79;
Kli80], yields an O(n3) time algorithm. We describe this algorithm in Section 7.2

When considering general site sets, we restrict our attention to finding the longest
plane spanning tree with bounded diameter. To be precise, in Section 7.3 we show that
the longest plane spanning tree of diameter at most 3 can be computed in polynomial
time. Such a tree may be relevant in providing an approximation algorithm with a better
approximation factor, but as we will see, its e�cient computation is not trivial.

In Section 7.4 we show how to compute in polynomial time a longest spanning plane
tree of the following form: all sites are connected to one of three distinguished sites on the
boundary of the convex hull. Again, such a tree may play an important role in designing
future approximation algorithms. Intuitively, it seems to be better than the three stars
considered in the approximation algorithm in Section 6.3, in the case when there is a
point in the far region.

7.1 A Simple Greedy Algorithm Fails

The greedy algorithm AlgGreedy(S) works as follows. We start by computing any plane
spanning tree T of S. Then, in each iteration we check if there are four points a,b,c,d
with the following properties:

(a) a and b are currently not connected by an edge,

(b) {c,d} is an edge in the cycle closed by adding the edge {a,b}; and

105

Chapter 7 Polynomial Time Algorithms for Special Cases

r2
r1

α

c
α
2

Figure 7.1: Construction of the site set.

(c) the tree T ′ defined by replacing {c,d} with {a,b} is plane and is longer than T .

If such sites a,b,c,d exist, set T = T ′ and continue. After no more such sites are available,
the algorithm outputs the current tree T .

In the remainder of this section we show that there are cases in which this algorithm
does not yield the correct result.

Lemma 7.1. There is a site set S for which the algorithm AlgGreedy(S)) fails to compute the
longest plane tree.

Proof. We construct a set S consisting of nine sites to show the claim. The first three
sites of S are the vertices of an equilateral triangle. We assume that two of these vertices
are on a horizontal line and we denote by c the center of this triangle. Let r0 be the
circumradius of the triangle.

Inside of this triangle, we place the vertices of two smaller equilateral triangles, where
again the smaller is contained in the larger one. Set α = 17◦, r1 = 2

3r0 and r2 = 1
3r0. We

then place the first of the additional triangles on the circle ∂D(c, r1) in a way that the
vertices have an angle of α to the nearest angular bisector of the outer triangle. We place
the second additional triangle on the circle ∂D(c, r2) again with an angle to the nearest
bisector of the outer triangle. However, this time the angle is α/2. This construction is
visualized in Figure 7.1.

Now consider the tree on this site set depicted by the solid edges in Figure 7.2(a). Note
that the green, blue and orange edges are rotationally symmetric. The purple dashed
edges in Figure 7.2(a) are representatives of the possible edges currently not in the tree,
which connect the outer to the inner triangle. However as they are either the smallest
edges in the cycle they close or they intersect some edge not in a cycle, the algorithm
cannot choose any of these edges as the pair {a,b}.

Representatives of the possible edges connecting the outer to the middle triangle are
depicted in red. The red edge {q1,p2} is not in a cycle with the edge it crosses, and thus
the edge {q1,p2} cannot be added by the greedy algorithm. For the edge {q1,q2} and the
possible edges connecting the middle to the inner triangle, it can similarly be seen that
they are shorter than any edge of the current tree. The possible edge {q1, r3} is shorter
than the blue edge {q2,p1} it crosses, and thus these two edges cannot be swapped. Finally,

106

7.2 Finding the Longest Tree in a Convex Site Set

p2

q2

r2
r1 p1

q1

r3

q3

p3

(a) A tree which cannot be locally
improved.

(b) A tree where each pair of edges in the
same color is at least as long as the
matching pair in Figure 7.2(a).

Figure 7.2: The algorithm AlgGreedy(S) can output a non-optimal spanning tree.

for the edges along the triangles or the edges connecting the interior and the middle
triangle, it can easily be verified that there will be no strictly smaller edge in the unique
cycle closed by them.

On the other hand, in the tree depicted in Figure 7.2(b), each pair of same colored
edges is longer than its counterpart in Figure 7.2(a). Therefore AlgGreedy(S) does not
return a correct result. �

7.2 Finding the Longest Tree in a Convex Site Set

Let S be a site set in convex position. In this section, we give a polynomial time algorithm
that finds the longest plane spanning tree on S in O(n3) time.

Lemma 7.2. The longest plane spanning tree of a convex site set of size n can be found in O(n3)
time.

Proof. We solve the problem using dynamic programming. For this, let the sites be ordered
s1, . . . , sn along their counterclockwise order on the convex hull. In the following, we
interpret all indices modulo n. We consider suitable subproblems: let Z(i, j) be the length
of the longest plane spanning tree for the sites si+1, si+2, . . . , sj−1 where at least one site is
connected to either si or sj . We claim that the following recurrence correctly describes
the solutions for Z(i, j):

Z(i, j) =

 0 if |i − j | ≤ 1
maxk∈{i+1,...,j−1}

(
Z(i,k) +Z(k, j) + max(‖sisk‖,‖sjsk‖)

)
otherwise

(7.1)

To see that the recurrence is correct, let sk be a site and assume that it is either the
last site in the sequence si+1, . . . , sj−1 connected to si or the first site in the same sequence
connected to sj . In both cases, there can be no edge connecting a site in si , . . . , sk−1 to

107

Chapter 7 Polynomial Time Algorithms for Special Cases

sk

∅

T [k, j]
T [i,k]

si

sj

Figure 7.3: To compute Z(i, j), the site sk is either connected to si or to sj . The orange
edge cannot exist.

a site in sk+1, . . . , sj as it would intersect both edges {si , sk} and {sk , sj}, see the dashed
orange edge in Figure 7.3. In order to connect the spanning tree, at least one of the sites
in si+1, . . . , sk−1 has to be connected to si or sk, analogously at least one site in sk+1, . . . , sj−i
has to be connected to sk or to sj . Thus, the length for these optimal trees is exactly
Z(i,k) or Z(k, j), respectively.

We also have to add the length of the edge {si , sk} or {sj , sk} to the weights of the
two subproblems. Thus, if sk is the last site connected to si , we get a total weight of
Z(i,k) +Z(k, j) + ‖sisk‖, and in the other case we get Z(i,k) +Z(k, j) + ‖sjsk‖. As a site sk
with one of the properties is not known in advance, we have to determine the maximum
for both cases and all possible values of k. However, one such site has to exist in a valid
solution for Z(i, j) by the definition of the subproblem. Observe, that for a fixed value of
k, the same subproblems are considered recursively and thus we can merge both cases
into the statement in (7.1). The length of the overall longest spanning tree can then be
determined by iterating over all pairs {si , sj} of sites and picking the pair that maximizes
Z(i, j) +Z(j, i) + ‖sisj‖.

Next, we consider the running time of this algorithm. When filling out an n×n table
for the values of Z(i, j) in increasing sizes of the interval, the entry of each cell can
be found in O(n) time, resulting in an overall O(n3) time. While filling out the table,
appropriate pointers can be maintained within the same time bound, to backtrack the
actual edges that were picked to obtain the value. To find the longest tree, we have to find
the maximum of a total of O(n2) values that can be found in constant time each, once
the table for Z is available. The computation of the table dominates the running time
and the claim follows. �

7.3 Finding the Longest Tree of Diameter Three

In this section we show that we can find the longest plane spanning tree of diameter at
most three in polynomial time. For any two sites a,b of S, a bistar rooted at a and b is

108

7.3 Finding the Longest Tree of Diameter Three

a b

Q(s, t)

a b

s

t

Q(s, t)

s

t

Figure 7.4: Two examples of valid pairs (s, t) with their quadrilaterals Q(s, t) shaded.

a tree that contains the edge {a,b}, where each site in S \ {a,b} is connected to either a
or b. Note that stars are also bistars and have diameter at most three. Conversely, each
tree of diameter at most three has one edge {u,v} where each site s ∈ S has (unweighted)
distance at most 1 to either u or v. It follows that all trees of diameter at most three are
bistars and it su�ces to compute the longest bistar.

We start by describing a dynamic programming algorithm that finds the longest plane
bistar rooted at two fixed sites a and b. Without loss of generality, we can assume that
the sites a and b lie on a horizontal line with a to the left of b. Furthermore, as we can
compute the best plane bistar above and below the line through a and b independently,
we can assume that all other sites lie above this horizontal line. In order to solve this
problem by dynamic programming, we consider suitable subproblems.

The subproblems considered in the dynamic program are indexed by an ordered pair
(s, t) of di�erent sites of S such that the edges {a,s} and {b, t} do not cross. A pair (s, t)
satisfying these condition is a valid pair. For each valid pair (s, t), note that the a,s, t,b,a
in this order form a simple, possibly non-convex, polygon. Let Q(s, t) be the convex
portion of this polygon below the horizontal line y = min{sy , ty}, as shown in Figure 7.4.
We define the value Z(s, t) to be the length of the longest plane bistar rooted at a and
b on the sites in the interior of Q(s, t), without counting ‖ab‖. If there are no sites of S
within the quadrilateral Q(s, t), we set Z(s, t) = 0.

Consider the case when the quadrilateral Q(s, t) contains some sites, and let ks,t be the
site with largest y-coordinate of S inside of Q(s, t). Then we might connect ks,t either to a
or to b. By connecting it to a, we force all sites in the triangle Ls,t defined by the edges as
and aks,t and the line y = (ks,t)y , to be connected to a. Similarly, when connecting ks,t to

b, we force the sites in the triangle Rs,t defined by bt, bks,t and the line y = (ks,t)y to be
connected to b. See Figure 7.5 for an illustration. In the former case we are left with the
subproblem defined by the valid pair (ks,t, t), while in the latter case we are left with the
subproblem defined by the valid pair (s,ks,t). Formally, for each valid pair (s, t) we have
the following recurrence:

Z(s, t) =


0 if no site of S is in Q(s, t),

max

Z(ks,t, t) + ‖aks,t‖+
∑
l∈Ls,t ‖al‖

Z(s,ks,t) + ‖bks,t‖+
∑
r∈Rs,t ‖br‖

otherwise

109

Chapter 7 Polynomial Time Algorithms for Special Cases

a b a

tt

ks,t

s s

b

Ls,t Ls,t
Rs,t Rs,tks,t

Figure 7.5: Fixing ks,k gives two possible triangular regions where edges are fixed.

Lemma 7.3. Using Z(s, t) for all valid pairs (s, t) we can �nd a best plane bistar rooted at a
and b.

Proof. Consider a fixed best plane bistar and assume, without loss of generality, that the
highest site is connected to a; the other case is symmetric. Let t∗ be the highest site that is
connected to b; if t∗ does not exist then the bistar degenerates to a star rooted at a. This
means that all sites above t∗ are attached to a. Let s∗ be the site above t∗ that, circularly
around a, is closest to the edge {a,b}, see Figure 7.6(a). Note that (s∗, t∗) is a valid pair
and all the sites above t∗ are to the left or on as∗. For s ∈ S, denote by Ls the set of sites
in S that, circularly around a, are to the left of as. Similarly, denote by Rt the set of sites
in S below t and to the right of bt, when sorted circularly around b, see Figure 7.6(b).
The length of this optimal plane bistar rooted at a and b is then∑

l∈Ls∗
‖al‖

+

∑
r∈Rt∗
‖br‖

+ ‖as∗‖+ ‖bt∗‖+ ‖ab‖+Z(s∗, t∗).

On the other hand, each of the values of the form∑
l∈Ls

‖al‖

+

∑
r∈Rt

‖br‖

+ ‖as‖+ ‖bt‖+ ‖ab‖+Z(s, t), (7.2)

where (s, t) is a valid pair of sites such that sy > ty , is the length of a plane, not necessarily
spanning, bistar rooted at a and b. It is not spanning, if there is some site above t and to
the right of as.

Taking the maximum of |Ta| for each a ∈ S and (7.2) over the valid pairs s, t such
that sy > ty gives the longest plane bistar for which the highest site is connected to a. A
symmetric formula gives the best plane bistar if the highest site is connected to b. Taking
the maximum of both cases yields the optimal value. The actual edges of the solution
can be backtracked by standard methods. �

Next next step is to show that the dynamic program can be implemented e�ciently.

110

7.3 Finding the Longest Tree of Diameter Three

a b

highest point

s∗

t∗

(a) The site s∗ is the site of S in the orange
region that is angularly closest to t∗ around
a.

a b

t∗

highest point

s∗

Ls∗

Rt∗

(b) The region containing the sets Ls∗ and Rt∗
are marked blue and red. The region with
bars is empty.

Figure 7.6: The best bistar is found by using the dynamic program.

Lemma 7.4. The algorithm described in the proof of Lemma 7.3 can be implemented in O(n2)
time.

Proof. A main complication in implementing the dynamic program and evaluating (7.2)
e�ciently is finding sums of the form

∑
l∈∆∩S ‖al‖ or

∑
r∈∆∩S ‖br‖, and the highest site

in ∆∩ S, where ∆ is a query triangle (with one vertex at a or b). These type of sums
can be seen as range searching queries which can be handled using standard data
structures [CY84; Mat93]: after preprocessing S in time O(n2 polylogn), any such query
can be answered inO(polylogn) time. Noting that there areO(n2) such queries, a running
time of O(n2 polylogn) is immediate. However exploiting our specific structure and using
careful bookkeepingm we can reduce the running time down to O(n2).

As a preprocessing step, we first compute two sorted lists La and Lb of S \ {a,b}. The
list La is sorted by the angle a and, similarly Lb is sorted by the angle at b.

The values
∑
l∈Lp ‖al‖ and

∑
r∈Rq ‖br‖, depicted in Figure 7.6, for all s, t ∈ S can be

trivially computed in O(n2) overall time: there are O(n) such values and for each of them
we can scan the whole set S to explicitly get Ls or Rt in O(n) time. There are faster ways
of doing this, but for our result this su�ces.

Assuming that additionally the values Z(s, t) are already available for all valid pairs
(s, t), we can evaluate (7.2) or the symmetric formula in constant time. For any two sites
s, t we check whether they form a valid pair and whether sy > ty in constant time. We can
then either evaluate the formula, again in constant time. Thus, in O(n2) time we obtain
the optimal solution.

It remains to compute the values Z(s, t) for all valid pairs (s, t). First, we explain how
to compute all the triples of the form (s, t,ks,t) for all valid pairs s, t in O(n2) time. Then
we group these triples in a clever way to implement the dynamic program e�ciently.

We focus on the triples with sy < ty and show how to find the triples of the form (s, ·, ·)
for a fixed s. The case with ty < sy and a fixed t is symmetric. Let W be the sites of S to

the right of the ray
−→
bs above the horizontal line y = sy . Furthermore, let K be the sites of

111

Chapter 7 Polynomial Time Algorithms for Special Cases

a b

s

W

K

Figure 7.7: The regions defining W and K for fixed a, b and s.

S to the right of as and with y-coordinate between ya and sy . An illustration of W and K
can be found in Figure 7.7. Any site t with ty > sy forms a valid pair s, t if and only if t
lies in W . The site ks,t must lie in K by its definition.

We use Lb to find the triples (s, ·, ·). We iterate through the list in clockwise order

starting at the ray
−→
ba and keep track of the highest k∗ ∈ K encountered so far. If the

current site lies in S \ (K ∪W) we simply skip it. If the current site lies in K we update k∗

if necessary. Finally, if the current site lies in W , we report the triple
(
s, t,k∗ = ks,t

)
.

For a fixed s we only iterate Lb once. Thus, for this fixed s the running time for finding
all triples (s, t,ks,t) with (s, t) forming a valid pair and sy < ty is O(n). By applying the
procedure we just described and its symmetric counterpart to all s ∈ S \ {a,b} we find all
triples (s, t,ks,t) where s, t is a valid pair in overall O(n2) time.

To compute Z(s, t) for all valid pairs using dynamic programing, we also need to
compute the corresponding values

∑
l∈Ls,t ‖al‖ and

∑
r∈Rs,t ‖br‖. Refer to Figure 7.5 to

recall the definition of Ls,t and Rs,t. For the following procedure we shift the focus to the
site k. For each site k ∈ S \ {a,b} we collect all triples

(
s, t,k = ks,t

)
, and compute the sums∑

l∈Ls,t ‖al‖ and
∑
r∈Rs,t ‖br‖ in linear time for each fixed k, as follows.

We concentrate on the first type of sum,
∑
l∈Ls,t ‖al‖, where t plays no role, as the

sum is defined by s and k. For the following description we assume that La is sorted in
counterclockwise order. We create a sorted subsequence Lka of La containing only the
sites with y-coordinate below ky and an angle at a larger than the angle between ab and

ak, see Figure 7.8. We iterate over the elements of La, starting at the successor of k.
While iterating, we maintain the last element from Lka we have seen and the prefix sum∑
l ‖al‖ of all points l in Lka we encountered so far. When advancing to the next site s

in La there are two possibilities. If s also lies in Lka, we advance in Lka and update the
prefix sum. Otherwise, we can report

∑
l∈Ls,t′ ‖al‖ to be the current prefix sum for all t′ in

a triple (s, t′, k).

For any fixed k this process iterates through the list La at most twice and can thus be
executed in O(n) time. A symmetric procedure can be carried out for

∑
r∈Rs,t ‖br‖ using

Lb. As in the case for finding the triples, this results in O(n2) overall time to compute all
relevant sums

∑
l∈Ls,t ‖al‖ and

∑
r∈Rs,t ‖br‖.

112

7.4 Extending the Approach to Special Trees of Diameter Four

b

Lka

s
s′

a

s′ k

Figure 7.8: We only consider the sites in the union of the green and blue region. If the
next point after s is contained in Lka, we update the prefix sum. In the other
case we can return the stored sum.

Now we can implement the dynamic program in the straightforward way. Using the
precomputed information we spend O(1) time for each value Z(s, t), for a total running
time of O(n2). �

Theorem 7.5. For any set S of n sites in general position, a longest plane tree of diameter at
most three on S can be computed in O(n4) time.

Proof. In Lemma 7.4 we show that for any two fixed sites a, b, the longest plane bistar
rooted at a and b can be computed in time O(n2). By iterating over all possible pairs of
roots and taking the longest such plane bistar, we find the longest plane spanning tree of
diameter at most three in time O(n4). �

7.4 Extending the Approach to Special Trees of
Diameter Four

Now we show how to extend the ideas presented in Section 7.3 to get a polynomial time
algorithm for special trees of diameter four. Given three sites a,b,c of S, a tristar rooted
at a,b and c is a tree such that each edge has at least one incident site at a, b or c. We
will focus on the case when these three points lie on the convex hull of the site set S
and the sites are fixed in advance. In case, we want to get the longest tristar among all
of this form, we can iterate over all possible triples of specified sites like in the proof of
Theorem 7.5.

In order to be able to use a dynamic programming approach, we first have to make
some assumptions on the site set. Let a,b,c be the specified sites on the boundary of the
convex hull of S. We assume, without loss of generality, that the edges ac and bc are
present in the tristar; the other cases are symmetric. We further assume that a and b lie
on a horizontal line, with a to the left of b.

The regions to the left of {a,c} and to the right of {b,c}, depicted blue in Figure 7.9,
can be solved independently from the rest of the instance: the edges {a,c} and {b,c} block
any edge connecting a site in one of those regions to a site outside the region. Each

113

Chapter 7 Polynomial Time Algorithms for Special Cases

a b

c

Q

Figure 7.9: The regions cut o� by ac and bc can be solved independently as bistars.

one of these regions can be solved as plane bistars, one rooted at a,c and one rooted
at b,c, using Lemma 7.4. It remains to solve the, again independent, problem for the
sites enclosed by ac, cb and the portion of the boundary of the convex hull from a to b in
counter-clockwise order. We call this region Q and in the following assume without loss
of generality that all sites of S are contained in Q.

To solve the problem for Q we will use a variation of the dynamic programming
approach for bistars. For any two sites s, t of S, let us write s �c t, when in the coun-
terclockwise order around c we have the horizontal ray from c towards −∞ to the left,
then −→cs and then

−→
ct , or the segments cs and ct are collinear. Since we assume general

position, the latter case only occurs when s = t.
The subproblems for the dynamic program are defined by a 5-tuple (s, s′,m, t′, t) of

sites such that

(a) s′ and t′ are distinct

(b) s �c s′ �c m �c t′ �c t; and

(c) s′ and t′ are contained in the closed triangle cst.

These 5-tuples extend the definition of a valid pair from Section 7.3 and are called valid
tuples, see Figure 7.10. Note that the first and the second condition imply that as and bt
do not cross. Some of the sites may be equal in the tuple; to be precise we may have s = s′

or t = t′. Intuitively, the role of these five sites can be interpreted as follows. The sites s
and t play the same role as in Section 7.3, in the sense that we assume that s is connected
to a and t is connected to b. Furthermore, m is the lowest site currently connected to
c. The sites s′ and t′ are the sites connected to a and b, that induce the most stringent
constraints on the part of Q below s′ and t′ visible from c. Equivalently, s′ and t′ are the
left and right neighbors of the ray −−→cm in the angular order around c among the sites
connected to a and b respectively.

For each valid tuple (s, s′,m, t′, t), let Q(s,m,t) be the sites of S contained in Q below
the polygonal path a,s, t,b, and below the horizontal line through the lowest of the sites
s,m,r. Note that the point m is used only to define the horizontal line.

Given a valid tuple (s, s′,m, t′, t), we define Z(s, s′,m, t′, t) as the length of the optimal
plane tristar rooted at a, b, c for the sites in the interior of Q(s,m,t), without counting
‖ac‖+ ‖bc‖, and with the additional restriction that a site k can be connected to c only if

114

7.4 Extending the Approach to Special Trees of Diameter Four

a b

ms

t

s′
t′

a,b a,b,c a,b a b

s

t

s′ t′

a,b a,b,c a,b

m

c
�c

c
�c

Figure 7.10: Two examples of valid tuples (s, s′,m, t′, t) with the region Q(s,m,t) shaded.
Each Q(s,m,t) is split into 3 regions telling, for each of them, which roots
can be used for that region.

s′ �c k �c t′. This last condition is equivalent to saying that no edge incident to c in the
tristar can cross as′ or bt′. Thus, we are looking at the length of a longest plane forest in
which each site in the interior of Q(s,m,t) must be connected to either a, b or c, and no
edge crosses as′ or bt′.

If Q(s,m,t) contains no sites, then Z(s, s′,m, t′, t) = 0. In the other case, we find the
highest site k = ks,m,t in Q(s,m,t) and check to which roots it can be attached, and which
edges are enforced by each possible root. We can always connect k to a or b, as Q(s,m,t)
is free of obstacles. If s′ �c k �c t′, then we can also connect k to c. If k is connected to c
it only lowers the boundary of the region Q(·, ·, ·) that has to be considered. However, if k
is connected to a or b, it splits o� independent regions, some of them can be attached
to only one of the roots, some of them are essentially a bistar problem rooted at c and
one of a,b. To state the recursive formulas precisely, for a region R and roots p and q,
let BSp,q(R) be the length of the optimal plane bistar rooted at p and q for the sites in R.
Such a value can be computed using Lemma 7.4.

Formally, the recurrence for Z(s, s′,m, t′, t) looks as follows. If Q(s,m,t) is empty, then
Z(s, s′,m, t′, t) = 0. If Q(s,m,t) is not empty, let k be the highest site in Q(s,m,t) and we
distinguish three subcases:

Case 1 k �c s′: See Figure 7.11 for an illustration of the notions defined for this case.
Let L be the sites of Q(s,m,t) above ak. Let B be the sites of Q(s,m,t) below bk
and let G be the set of sites p ∈ Q(s,m,t) \B such that k �c p �c s′. Let g be the
site with largest angle at b among the sites in G. Then we define R′ to be the set
of all sites p in Q(s,m,t) \B with s′ �c p �c t′ which are above gb and let R be the
remaining sites in Q(s,m,t) above bk. We get the following recurrence:

Z(s, s′,m, t′, t) = max

Z(k,s′,m, t′, t) + ‖ak‖+
∑
l∈L ‖al‖

BSa,b(B) + ‖bk‖+ BSb,c(R′) +
∑
r∈R ‖br‖

(7.3)

115

Chapter 7 Polynomial Time Algorithms for Special Cases

a

c

s
tL

s′

t′

b a b

s
t

R′

s′
t′

k k G

RBQ(k, r, t)

g

�c
c

�c

Figure 7.11: The two cases in the recurrence when k �c s′.

Case 2 s′ �c k �c t′: Let L be the sites p of Q(s,m,t) above ak such that p �c s′ and let
L′ be the sites p of Q(s,m,t) above ak such that s′ �c p �c k. Furthermore, let R′

be the sites p of Q(s,m,t) above bk such that k �c p �c t′, and let R be the sites
p of Q(s,m,t) above bk such that t′ �c p, see Figure 7.12. We get the following
recurrence in this case:

Z(s, s′,m, t′, t) = max


Z(s, s′, k, t′, t) + ‖ck‖
Z(k,k,m,t′, t) + ‖ak‖+ BSa,c(L′) +

∑
l∈L ‖al‖

Z(s, s′,m,k,k) + ‖bk‖+ BSb,c(R′) +
∑
r∈R ‖br‖

(7.4)

Case 3: t′ �c k. The case is symmetric to the case k �c s′.

Theorem 7.6. For any set S of sites in general position and any three speci�ed sites on the
boundary of the convex hull of S, the algorithm described above computes the longest plane tree
such that each edge is incident to at least one of the three speci�ed sites in O(n6) time.

Proof. The values Z(s, s′,m, t′, t) for all valid tuples (s, s′,m, t′, t) can be computed using
dynamic programming and the formulas described above. The dynamic program is

b

s
t

k
L′

L

s′
t′

Q(k,k, t)

c
�c

a

Figure 7.12: One of the cases in the recurrence when s′ �c k �c t′.

116

7.4 Extending the Approach to Special Trees of Diameter Four

a b

c

ca cb
c′

Figure 7.13: Starting Case for the dynamic program.

correct by a simple but tedious inductive argument. We will give the argument for the
most involved subcase where k �c s′. The other cases then follow by similar arguments.

Assume k �c s′, then by definition the line segments ck and as′ intersect. Thus k
can only be connected to either a or b. First assume that in the optimum solution k is
connected to a. Then the edge {a,k} prevents any site in L from being connected to b.
Thus all sites in L are connected to a, which is taken care of by the

∑
l∈L ‖al‖ term in

the recurrence. The sites in Q(k,m,t) can still be connected to both a and b and some
sites possibly also to c. This problem is solved optimally by induction. As L ∪̇Q(k,m,t)
contains all sites in Q(s,m,t), this solves the subproblem for Q(r,m,t).

In the other case, k is connected to b in the optimum solution. In this case we again
define regions that can be solved independently, however the regions are more involved
than in the first case. As k �c s′ any edge connecting c to a site in B would intersect {k,b}.
Thus all sites in B are connected to either a or b, forming a bistar problem, which can
be solved using the algorithm from Lemma 7.4. On the other hand, no site in Q(s,m,t)
above {k,b} can be connected to a, as any such edge would again intersect {k,b}. However,
as the invariant prevents some of the sites above {k,b} to be connected to c, we cannot
simply use these sites as an input for a bistar problem. More precisely, only the sites
which are between s′ and t′ in the angular ordering around c can be connected to c, the
remaining sites can only be connected to b. The region G contains part of the sites that
can only be connected to b. The edge {b,g} is the edge that shaves o� the most restricting
part of the sites between s′ and t′. Connecting any site in this shaved o� region with c
would lead to an intersection with {g,b}, thus all sites in this bottom part also have to be
connected to b. The region R contains all sites that are in one way or the other enforced
to be connected to b and their length is taken care of in the

∑
r∈R ‖rb‖ part of the formula.

The remaining sites, are those that lie in R′. Connecting them to either c or b cannot
cross any of the edges incident to a site in R and thus the optimal solution for this part
can be found by an independent bistar problem.

Now we can focus on the running time. There are a few solutions for bistars that have
to be computed. These have the form BSp,q(R) for p,q ∈ {a,b,c} and some region R of
constant size description. More precisely, each such region is defined by four sites of S in
the case of R′ and B in (7.3), which are defined by k,g, t′, t, or two sites of S in case of L′

and R′ in (7.4). Thus, we have O(n4) di�erent bistar problems, and each of them can be
solved in O(n2) time using Lemma 7.4, for a total of O(n6) time for all bistar problems.

117

Chapter 7 Polynomial Time Algorithms for Special Cases

To compute the optimal plane tristar, we add three dummy sites to S before we start
the dynamic programming. We add a site ca on the edge ac arbitrarily close to c, a site
cb on the edge bc arbitrarily close to c, and a site c′ between ca and cb, see Figure 7.13.
We perturb the sites ca, c′ and cb slightly to get them into general position. Note that
(ca, ca, c′, cb, cb) is a valid tuple. We can now compute Z(ca, ca, c′, cb, cb) by implementing
the recurrence with standard dynamic programming techniques. There are O(n5) valid
tuples. In addition to the bistar problems, we have to find O(1) sums of the form

∑
l∈L ‖al‖

and
∑
r∈R ‖br‖ for each valid pair. After sorting the sites angular around a and b in

O(n logn) time as a preprocessing step, each sum can be found in O(n) time. Thus, after
having the solutions for all possible bistars available, we can find the values Z(s, s′,m, t′, t)
in O(n6) time. By adding ‖ac‖, ‖bc‖ and the lengths of the independent bistars from
Figure 7.9 to Z(ca, ca, c′, cb, cb), we get the length of the longest plane tristar rooted at a,b
and c in the promised time. �

118

CHAPTER 8
Conclusion

In this thesis we considered several algorithmic problems related to geometric graphs.
We considered the related graph classes of disk graphs and transmission graphs, as well
as spanning trees of site sets.

Triangles and Girth We were able to extend the results by Kaplan et al. [Kap+19] on
triangles in disk graphs to the weighted girth. By using a suitable grid and an extension
of Dijkstra’s algorithm, we were able to match the O(n logn) expected time bound of the
unweighted girth. The bound is optimal by the reduction from ε-Closeness of Polishchuk
[Pol17].

We then moved our attention to triangles in transmission graphs, and after showing
that a similar approach as for disk graphs is not feasible, found a new approach for this
type of graphs. By using two types of batched range queries that can both be solved
in expected time O(n logn), we developed a algorithms that find a (shortest) triangle
in a transmission graph in O(n logn) expected time. The O(n logn) bounds for the two
triangle finding problems are again optimal by the reduction from ε-Closeness. For
cycles in transmission graphs, we focused on the decision problem: is there a cycle with at
most k edges in T (S)? We gave an algorithm that has a polynomial dependency on n and
an exponential dependency on k for this problem.

There are still some open problems in this area. Firstly, while our algorithms match
the Ω(n logn) lower bounds for triangles and the girth, we do so with randomized
algorithms. To settle the complexity of these problems, we would have to find deterministic
O(n logn) time algorithms for triangles and the girth in disk graphs, as well as for
triangles in transmission graphs. Secondly, our bound for cycles, even unweighted ones,
in transmission graphs is significantly worse than the situation for disk graphs. As
transmission graphs that do not contain triangles can be dense, finding an algorithm that
is significantly faster than applying Theorem 3.10 to each vertex in both the weighted
and unweighted case and whose running time does not depend on k seem to be hard.
Possible venues of research in this area would be to improve the running time, or to find
general or conditional lower bounds for this case.

A topic that is closely related to finding the girth is that of finding shortest paths in disk
graphs and transmission graphs. There are many results for the single source shortest
path problem in unit disk graphs, that is disk graphs, where all sites have the same radius.

121

Chapter 8 Conclusion

Cabello and Jejčič [CJ15] give an optimal O(n logn) algorithm for the unweighted case.
For the weighted case, Wang and Xue [WX20] give the currently best known algorithm
with a running time of O(n log2n). In their core, both approaches use similar ideas as
Dijkstra’s algorithm, and heavily rely on the underlying geometry. In particular, the
assumption that the graph is a unit disk graph is central to many of their arguments.
There have been some approaches to extend results on unit disk graphs to more general
disk graphs. A first step towards e�cient shortest path algorithms in general disk graphs
or transmission graphs, could be to examine the applicability of these approaches to the
shortest path problem.

Dynamic Connectivity We considered the problem of decremental dynamic connec-
tivity in disk graphs. By tailoring our approach to the deletion-only setting, we were
able to obtain much faster algorithms than in the general case. To be precise, in the
setting where all radii are in the interval [1,Ψ], we managed to reduce the dependency
on Ψ from polynomial to logarithmic. For general disk graphs, we developed the first
decremental data structure with a polylogarithmic update time.

There are still some open questions in the field of dynamic connectivity for disk graphs.
First of all, the running times for the updates come from a quite general data structure
that maintains certain types of lower envelopes [Kap+21a]. Considering specialized data
structures more tailored to disk graphs might improve the update times. For the case
of bounded radius ratio, a very similar approach to the one presented in Section 5.1,
yields an incremental data structure that has a logarithmic dependency on Ψ in the
update time [Kap+21a]. Adapting the proxy graph for general disk graphs given in
Section 5.2 for use in an incremental data structure with similar time bounds than our
decremental data structure poses an interesting question. A next step would then be to
develop fully dynamic data structures. For unit disk graphs, there are already e�cient
data structures [Kap+21a]. For disk graphs with bounded or unbounded radius ratio, the
main issue is that the deletion and subsequent insertion of a single disk can a�ect many
edges. Developing an e�cient data structure that maintains the connectivity information
under insertions and deletions in an e�cient manner seems to be a non-trivial task that is
central to developing fully dynamic connectivity data structures for general disk graphs.

Spanning Trees We considered the problem of finding a long plane spanning tree on a
site set. First, we gave an algorithm that improves the approximation factor for finding
the longest plane spanning tree to 0.546. Furthermore, we gave a dynamic programming
algorithm that finds the longest tree of diameter three in O(n4) time. The dynamic
programming approach was then extended to work on special trees of diameter four.

These results are far from settling all open problems in this area. First of all, while
the analysis given in Chapter 6 is tight in every step, it is hard to believe that the whole
analysis is tight. We conjecture that the actual approximation factor of this algorithm
is better and finding an analysis showing this improved approximation factor would be
of interest. Furthermore, the algorithm in Section 7.3 gives the longest plane tree of
diameter three, while on the other hand we showed that no such tree can give a better

122

approximation factor than 5
6 . This upper bound however is much larger than the bound

given by our approximation algorithm. So a natural question would be to ask, what
approximation factor can be achieved by using the optimal tree with diameter at most
three.

We were able to extend the exact polynomial time algorithm from diameter three
to some trees of diameter four. This poses the question, if there is a polynomial time
algorithm that outputs the best plane spanning tree for any fixed diameter d. This is of
particular interest, as a result of Cabello et al. [Cab+21] implies that a hypothetical PTAS
would have to consider trees of unbounded diameter. Their result gives a constant upper
bound on the approximation factor achieved by any tree of fixed diameter d. As it is
compatible with our current knowledge that a PTAS can be obtained by computing an
optimal tree of diameter say, O

(
1
ε

)
, being able to find an algorithm for any fixed d would

be a step towards finding a PTAS.
Finally, there is the big open problem of settling the complexity of finding the longest

plane tree, especially if a polynomial time algorithm for the problem would be feasible or
if conjectured NP hardness can be shown. This question can also be asked for several
other long plane objects, such as paths, cycles or matchings.

Parting Thoughts We started this thesis by observing that the connection between
graphs and geometry is as old as the field of graph theory. Even though the fields are not
as closely related anymore, many connections can still be made. We considered several
problems on geometrically defined graphs. In the case of the long plane spanning trees,
no interesting questions would arise without the underlying geometry. Disk graphs and
transmission graphs can be represented as abstract graphs, but only the combination of
combinatorial and geometric properties of these graphs allowed us to find algorithms and
data structures with significantly better guarantees than the best currently known bounds
for general graphs.

123

Bibliography
[AYZ97] N. Alon, R. Yuster, and U. Zwick. “Finding and Counting given Length

Cycles”. In: Algorithmica 17.3, pp. 209–223. 1997.

[ARS95] Noga Alon, Sridhar Rajagopalan, and Subhash Suri. “Long Non-Crossing
Configurations in the Plane”. In: Fundam. Inform. 22.4, pp. 385–394. 1995.

[Aro98] Sanjeev Arora. “Polynomial Time Approximation Schemes for Euclidean
Traveling Salesman and Other Geometric Problems”. In: Journal of the ACM
45.5, pp. 753–782. 1998.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge: Cambridge University Press. 2009.

[AC04] Sanjeev Arora and Kevin L. Chang. “Approximation Schemes for Degree-
Restricted MST and Red-Blue Separation Problems”. In: Algorithmica 40.3,
pp. 189–210. 2004.

[Bar+03] Alexander I. Barvinok, Sándor P. Fekete, David S. Johnson, Arie Tamir,
Gerhard J. Woeginger, and Russell Woodroofe. “The Geometric Maximum
Traveling Salesman Problem”. In: Journal of the ACM 50.5, pp. 641–664. 2003.

[Ben83] Michael Ben-Or. “Lower Bounds for Algebraic Computation Trees”. In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing.
STOC ’83. New York, NY, USA: Association for Computing Machinery,
pp. 80–86. 1983.

[Bin20a] Ahmad Biniaz. “Euclidean Bottleneck Bounded-Degree Spanning Tree Ra-
tios”. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020. SIAM, pp. 826–836.
2020.

[Bin20b] Ahmad Biniaz. Improved Approximation Ratios for Two Euclidean Maximum
Spanning Tree Problems. arXiv: 2010.03870 [cs]. url: http://arxiv.org/
abs/2010.03870. 2020.

[Bin+19] Ahmad Biniaz, Prosenjit Bose, Kimberly Crosbie, Jean-Lou De Carufel, David
Eppstein, Anil Maheshwari, and Michiel Smid. “Maximum Plane Trees in
Multipartite Geometric Graphs”. In: Algorithmica 81.4, pp. 1512–1534. 2019.

[Buc+11] Kevin Buchin, Maarten Lö�er, Pat Morin, and Wolfgang Mulzer. “Preprocess-
ing Imprecise Points for Delaunay Triangulation: Simplified and Extended”.
In: Algorithmica 61.3, pp. 674–693. 2011.

125

https://arxiv.org/abs/2010.03870
http://arxiv.org/abs/2010.03870
http://arxiv.org/abs/2010.03870

Bibliography

[BM11] Kevin Buchin and Wolfgang Mulzer. “Delaunay Triangulations in O(sort(n))
Time and More”. In: Journal of the ACM 58.2, pp. 1–27. 2011.

[Cab+20] Sergio Cabello, Aruni Choudhary, Michael Ho�mann, Katharina Klost,
Meghana M Reddy, Wolfgang Mulzer, Felix Schröder, and Josef Tkadlec.
“A Better Approximation for Longest Noncrossing Spanning Trees”. In: 36th
European Workshop on Computational Geometry (EuroCG). 2020.

[Cab+21] Sergio Cabello, Michael Ho�mann, Katharina Klost, Wolfgang Mulzer, and
Josef Tkadlec. Long Plane Trees. arXiv: 2101.00445 [cs]. url: http://
arxiv.org/abs/2101.00445. 2021.

[CJ15] Sergio Cabello and Miha Jejčič. “Shortest Paths in Intersection Graphs of
Unit Disks”. In: Computational Geometry 48.4, pp. 360–367. 2015.

[Cha16] Timothy M. Chan. “A Simpler Linear-Time Algorithm for Intersecting Two
Convex Polyhedra in Three Dimensions”. In: Discrete & Computational Geome-
try 56.4, pp. 860–865. 2016.

[Cha04] Timothy M. Chan. “Euclidean Bounded-Degree Spanning Tree Ratios”. In:
Discrete & Computational Geometry 32.2, pp. 177–194. 2004.

[Cha99] Timothy M. Chan. “Geometric Applications of a Randomized Optimization
Technique”. In: Discrete & Computational Geometry 22.4, pp. 547–567. 1999.

[CPR11] Timothy M. Chan, Mihai Pătraşcu, and Liam Roditty. “Dynamic Connectiv-
ity: Connecting to Networks and Geometry”. In: SIAM Journal on Computing
40.2, pp. 333–349. 2011.

[CL13] Hsien-Chih Chang and Hsueh-I Lu. “Computing the Girth of a Planar Graph
in Linear Time”. In: SIAM Journal on Computing 42.3, pp. 1077–1094. 2013.

[Cha92] Bernard Chazelle. “An Optimal Algorithm for Intersecting Three-Dimensional
Convex Polyhedra”. In: SIAM Journal on Computing 21.4, pp. 671–696. 1992.

[CM11] Bernard Chazelle and Wolfgang Mulzer. “Computing Hereditary Convex
Structures”. In: Discrete & Computational Geometry 45.4, pp. 796–823. 2011.

[CY84] Richard Cole and Chee-Keng Yap. “Geometric Retrieval Problems”. In:
Information and Control 63.1/2, pp. 39–57. 1984.

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord
Stein. Introduction to Algorithms, Third Edition. 3rd. The MIT Press. 2009.

[dBer+08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. 3rd. Springer-Verlag,
Berlin. 2008.

[DK82] David P. Dobkin and David G. Kirkpatrick. “Fast Detection of Polyhedral
Intersections”. In: Automata, Languages and Programming. International Col-
loquium on Automata, Languages, and Programming. Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, pp. 154–165. 1982.

126

https://arxiv.org/abs/2101.00445
http://arxiv.org/abs/2101.00445
http://arxiv.org/abs/2101.00445

Bibliography

[DT10] Adrian Dumitrescu and Csaba D. Tóth. “Long Non-Crossing Configurations
in the Plane”. In: Discrete & Computational Geometry 44.4, pp. 727–752. 2010.

[EIK01] Alon Efrat, Alon Itai, and Matthew J. Katz. “Geometry Helps in Bottleneck
Matching and Related Problems”. In: Algorithmica 31.1, pp. 1–28. 2001.

[Epp00] David Eppstein. “Spanning Trees and Spanners”. In: Handbook of Computa-
tional Geometry. Ed. by Jörg-Rüdiger Sack and Jorge Urrutia. North Holland /
Elsevier, pp. 425–461. 2000.

[Epp+92] David Eppstein, Giuseppe F Italiano, Roberto Tamassia, Robert E Tarjan,
Je�ery Westbrook, and Moti Yung. “Maintenance of a Minimum Spanning
Forest in a Dynamic Plane Graph”. In: Journal of Algorithms 13.1, pp. 33–54.
1992.

[Eul41] Leonhard Euler. “Solutio Problematis Ad Geometriam Situs Pertinentis”. In:
Commentarii academiae scientiarum Petropolitanae, pp. 128–140. 1741.

[Eva+16] William Evans, Mereke van Garderen, Maarten Lö�er, and Valentin Pol-
ishchuk. “Recognizing a DOG Is Hard, But Not When It Is Thin and Unit”.
In: 8th International Conference on Fun with Algorithms (FUN 2016). Ed. by Erik
D. Demaine and Fabrizio Grandoni. Vol. 49. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 16:1–16:12. 2016.

[Fel04] Stefan Felsner. Geometric Graphs and Arrangements. Advanced Lectures in
Mathematics. Wiesbaden: Vieweg+Teubner Verlag. 2004.

[For87] Steven Fortune. “A Sweepline Algorithm for Voronoi Diagrams”. In: Algo-
rithmica 2.1, p. 153. 1987.

[FH09] Andrea Francke and Michael Ho�mann. “The Euclidean Degree-4 Minimum
Spanning Tree Problem Is NP-Hard”. In: Proceedings of the 25th ACM Symposium
on Computational Geometry. ACM, pp. 179–188. 2009.

[Gil79] P. D. Gilbert. New Results in Planar Triangulations. Technical Report R–850.
Univ. Illinois Coordinated Science Lab. 1979.

[GSW98] A. Gräf, M. Stumpf, and G. Weißenfels. “On Coloring Unit Disk Graphs”.
In: Algorithmica 20.3, pp. 277–293. 1998.

[Har11] Sariel Har-Peled. Geometric Approximation Algorithms. Vol. 173. Mathematical
Surveys and Monographs. Providence, Rhode Island: American Mathematical
Society. 2011.

[HdLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. “Poly-Logarithmic
Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Span-
ning Tree, 2-Edge, and Biconnectivity”. In: Journal of the ACM 48.4, pp. 723–
760. 2001.

[HS95] M.L. Huson and A. Sen. “Broadcast Scheduling Algorithms for Radio Net-
works”. In: Proceedings of MILCOM ’95. MILCOM ’95. Vol. 2. San Diego, CA,
USA: IEEE, pp. 647–651. 1995.

127

Bibliography

[IR78] Alon Itai and Michael Rodeh. “Finding a Minimum Circuit in a Graph”. In:
SIAM Journal on Computing 7.4, pp. 413–423. 1978.

[Kap+21a] Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang
Mulzer, Liam Roditty, and Paul Seiferth. Dynamic Connectivity in Disk Graphs.
arXiv: 2106.14935 [cs]. url: http://arxiv.org/abs/2106.14935.
2021.

[KKM21] Haim Kaplan, Alexander Kauer, and Wolfgang Mulzer. “Sampling Hyper-
planes and Revealing Disks”. In: Proc. 37th European Workshop on Computa-
tional Geometry (EWCG). Proc. 37th European Workshop on Computational
Geometry (EWCG), p. 7. 2021.

[Kap+21b] Haim Kaplan, Katharina Klost, Kristin Knorr, and Liam Roditty. “Deletion
Only Dynamic Connectivity for Disk Graphs”. In: 38th European Workshop on
Computational Geometry (EuroCG)EuroCG, p. 8. 2021.

[Kap+19] Haim Kaplan, Katharina Klost, Wolfgang Mulzer, Liam Roditty, Paul Seiferth,
and Micha Sharir. “Triangles and Girth in Disk Graphs and Transmission
Graphs”. In: 27th Annual European Symposium on Algorithms (ESA 2019). Ed. by
Michael A. Bender, Ola Svensson, and Grzegorz Herman. Vol. 144. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 64:1–64:14. 2019.

[Kap+18] Haim Kaplan, Katharina Klost, Wolfgang Mulzer, and Roditty, Liam. “Find-
ing the Girth in Disk Graphs and a Directed Triangle in Transmission Graphs”.
In: Proc. 34nd European Workshop Comput. Geom.(EWCG), p. 6. 2018.

[Kap+16] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. “Dynamic
Connectivity for Unit Disk Graphs”. In: Proc. 32nd European Workshop on
Computational Geometry (EWCG). 2016.

[Kap+17] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. “Finding
Triangles and Computing the Girth in Disk Graphs”. In: Proc. 33nd European
Workshop Comput. Geom.(EWCG). 2017.

[Kli80] Gheza Tom Klincsek. “Minimal Triangulations of Polygonal Domains”. In:
Annals of Discrete Math. 9, pp. 121–123. 1980.

[ŁS11] Jakub Łącki and Piotr Sankowski. “Min-Cuts and Shortest Cycles in Pla-
nar Graphs in O(n loglogn) Time”. In: European Symposium on Algorithms.
Springer, pp. 155–166. 2011.

[Le 14] François Le Gall. “Powers of Tensors and Fast Matrix Multiplication”. In:
Proceedings of the 39th International Symposium on Symbolic and Algebraic Compu-
tation. ISSAC ’14. New York, NY, USA: Association for Computing Machinery,
pp. 296–303. 2014.

[Mat93] Jirí Matoušek. “Range Searching with E�cient Hiearchical Cutting”. In:
Discrete & Computational Geometry 10, pp. 157–182. 1993.

128

https://arxiv.org/abs/2106.14935
http://arxiv.org/abs/2106.14935

Bibliography

[Mit99] Joseph S. B. Mitchell. “Guillotine Subdivisions Approximate Polygonal Sub-
divisions: A Simple Polynomial-Time Approximation Scheme for Geometric
TSP, k-MST, and Related Problems”. In: SIAM Journal on Computing 28.4,
pp. 1298–1309. 1999.

[Mit17] Joseph S. B. Mitchell. “Shortest Paths and Networks”. In: Handbook of Discrete
and Computational Geometry. Ed. by Jacob E. Goodman and Joseph O’Rourke.
3rd. Chapman and Hall/CRC, pp. 607–641. 2017.

[MM17] Joseph S. B. Mitchell and Wolfgang Mulzer. “Proximity Algorithms”. In:
Handbook of Discrete and Computational Geometry. Ed. by Jacob E. Goodman,
Joseph O’Rourke, and Csaba D. Tóth. 3rd. Boca Raton: CRC Press, pp. 849–
874. 2017.

[Mul04] Wolfgang Mulzer. “Minimum Dilation Triangulations for the Regular N-Gon”.
Diplomarbeit. Freie Universität Berlin, Germany. 2004.

[MO20] Wolfgang Mulzer and Johannes Obenaus. “The Tree Stabbing Number Is
Not Monotone”. In: Proceedings of the 36th European Workshop on Computational
Geometry (EWCG), 78:1–78:8. 2020.

[MR08] Wolfgang Mulzer and Günter Rote. “Minimum-Weight Triangulation Is NP-
Hard”. In: Journal of the ACM 55.2, 11:1–11:29. 2008.

[NS07] Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge
University Press, Cambridge. 2007.

[Pac13] János Pach. “The Beginnings of Geometric Graph Theory”. In: Erdős Centen-
nial. Ed. by László Lovász, Imre Z. Ruzsa, and Vera T. Sós. Vol. 25. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 465–484. 2013.

[Pac04] János Pach. Towards a Theory of Geometric Graphs. American Mathematical
Soc. 2004. 300 pp. Google Books: zosbCAAAQBAJ.

[Pap77] Christos H. Papadimitriou. “The Euclidean Traveling Salesman Problem Is
NP-Complete”. In: Theoretical Computer Science 4.3, pp. 237–244. 1977.

[PV84] Christos H. Papadimitriou and Umesh V. Vazirani. “On Two Geometric Prob-
lems Related to the Traveling Salesman Problem”. In: Journal of Algorithms
5.2, pp. 231–246. 1984.

[PY81] Christos H. Papadimitriou and Mihalis Yannakakis. “The Clique Problem
for Planar Graphs”. In: Information Processing Letters 13.4, pp. 131–133. 1981.

[Pol17] Valentin Polishchuk. Personal Communication. 2017.

[PS85] Franco P. Preparata and Michael Shamos. Computational Geometry: An In-
troduction. Monographs in Computer Science. New York: Springer-Verlag.
1985.

[QW06] Jianbo Qian and Cao An Wang. “Progress on Maximum Weight Triangula-
tion”. In: Computational Geometry 33.3, pp. 99–105. 2006.

129

http://books.google.com/books?id=zosbCAAAQBAJ

Bibliography

[RS09] Jan Remy and Angelika Steger. “A Quasi-Polynomial Time Approximation
Scheme for Minimum Weight Triangulation”. In: Journal of the ACM 56.3,
15:1–15:47. 2009.

[RW11] Liam Roditty and Virginia Vassilevska Williams. “Minimum Weight Cycles
and Triangles: Equivalences and Algorithms”. In: Proceedings of the 2011 IEEE
52nd Annual Symposium on Foundations of Computer Science. FOCS ’11. USA:
IEEE Computer Society, pp. 180–189. 2011.

[Sch79] Arnold Schönhage. “On the Power of Random Access Machines”. In: Au-
tomata, Languages and Programming. Ed. by Hermann A. Maurer. Red. by
G. Goos, J. Hartmanis, P. Brinch Hansen, D. Gries, C. Moler, G. Seegmüller,
J. Stoer, and N. Wirth. Vol. 71. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 520–529. 1979.

[SS05] Raimund Seidel and Micha Sharir. “Top-Down Analysis of Path Compres-
sion”. In: SIAM Journal on Computing 34.3, pp. 515–525. 2005.

[Sei16] Paul Seiferth. “Disk Intersection Graphs: Models, Data Structures, and Algo-
rithms”. PhD Thesis. Freie Universität Berlin. 2016.

[Sha85] Micha Sharir. “Intersection and Closest-Pair Problems for a Set of Planar
Discs”. In: SIAM Journal on Computing 14.2, pp. 448–468. 1985.

[ST83] Daniel D. Sleator and Robert Endre Tarjan. “A Data Structure for Dynamic
Trees”. In: Journal of Computer and System Sciences 26.3, pp. 362–391. 1983.

[Syl78] J. J. Sylvester. “Chemistry and Algebra”. In: Nature 17.432 (432), pp. 284–284.
1878.

[vEmd91] Peter van Emde Boas. “Machine Models and Simulations”. In: Handbook of
Theoretical Computer Science (Vol. A): Algorithms and Complexity. Cambridge,
MA, USA: MIT Press, pp. 1–66. 1991.

[WX20] Haitao Wang and Jie Xue. “Near-Optimal Algorithms for Shortest Paths
in Weighted Unit-Disk Graphs”. In: Discrete & Computational Geometry 64.4,
pp. 1141–1166. 2020.

[War23] H. C. von Warnsdorf. Des Rösselsprunges Einfachste Und Allgemeinste Lösung /.
1823.

[Wel92] Emo Welzl. “On Spanning Trees with Low Crossing Numbers”. In: Data
Structures and E�cient Algorithms. Vol. 594. Lecture Notes in Comput. Sci.
Springer, Berlin, pp. 233–249. 1992.

[WL85] Dan E. Willard and George S. Lueker. “Adding Range Restriction Capability
to Dynamic Data Structures”. In: Journal of the ACM 32.3, pp. 597–617. 1985.

[WW18] Virginia Vassilevska Williams and R. Ryan Williams. “Subcubic Equivalences
Between Path, Matrix, and Triangle Problems”. In: Journal of the ACM 65.5,
27:1–27:38. 2018.

130

Bibliography

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, Cambridge. 2011.

[Yu15] Huacheng Yu. “An Improved Combinatorial Algorithm for Boolean Matrix
Multiplication”. In: Automata, Languages, and Programming. Ed. by Magnús
M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 1094–
1105. 2015.

[Yus11] Raphael Yuster. “A Shortest Cycle for Each Vertex of a Graph”. In: Information
Processing Letters 111.21-22, pp. 1057–1061. 2011.

131

Zusammenfassung
Ein geometrischer Graph auf einer Menge von Punkten S ⊆ R

2 ist ein Graph mit S als
Knotenmenge, dessen Kanten durch Strecken zwischen den Punkten dargestellt werden.
Die Punkte können hierbei durch Angabe eines Radius auf Kreisscheiben erweitert
werden. Die Kantenmenge wird dabei durch geometrische Eigenschaften von S definiert.
In dieser Arbeit werden zwei Klassen von geometrischen Graphen betrachtet: Spannbäume
und Graphen die auf Kreisscheiben definiert sind. Die zweite Klasse unterteilen wir in
Disk Graphen und Transmissionsgraphen. Zwei Knoten in einem Disk Graphen sind mit
einer Kante verbunden, wenn sich die zugehörigen Kreisschreiben schneiden. In einem
Transmissionsgraphen sind zwei Knoten s und t verbunden, wenn t in der von s definierten
Kreisscheibe liegt. Wir betrachten drei Arten von Problemen auf geometrischen Graphen:

Dreiecke und Taillenweite in Disk Graphen und Transmissionsgraphen Für Trans-
missionsgraphen beschreiben wir je einen Algorithmus, der ein Dreieck beziehungsweise
ein kürzestes Dreieck in O(n logn) erwarteter Zeit finden kann. Die Länge eines kürzes-
ten gewichteten Kreises eines Disk Graphen, kann mit gleichem Zeitaufwand gefunden
werden. Für Kreise mit maximal k Kanten in Transmissionsgraphen zeigen wir, dass diese
in O(n logn) +n · 2O(k) erwarteter Zeit gefunden werden können. Für alle Ergebnisse in
Transmissionsgraphen entwickeln wir Datenstrukturen für gesammelte Bereichsabfragen,
die von unabhängigem Interesse sind.

Dynamische Zusammenhangsabfragen in Disk Graphen Wir beschreiben verschie-
dene Datenstrukturen für Disk Graphen, die es erlauben einzelne Knoten zu löschen und
Anfragen, ob zwei Knoten in der gleichen Zusammenhangskomponente liegen zu beant-
worten. Für die Situation in der alle Punkte einen Radius im Intervall [1,Ψ] haben, be-
schreiben wir eine Datenstruktur mitO

(logn
loglogn

)
amorisierter Anfragezeit, welchem Lösch-

vorgänge in insgesamt O
((
n log5n+m log9n

)
λ6(logn) +n logΨ log4n

)
erwarteter Zeit

bearbeiten kann. Wenn der maximal erlaubte Radius nicht beschränkt ist, kann die Daten-
strukur so erweitert werden, dass m Löschvorgänge in O

((
n log6n+m log10n

)
λ6(logn)

)
erwarteter Laufzeit durchgeführt werden können, ohne das sich die Anfragezeit verändert.

Lange planare Spannbäume Wir betrachten zudem noch das Problem einen planaren
Spannbaum mit maximaler Gesamtlänge zu finden. In diesem Zusammenhang beschrei-
ben wir einen Approximationsalgorithmus, der einen Approximationsfaktor von 0.5467
erreicht. Zudem geben wir eine obere Schranke des Approximationsfaktors von 5

6 an,
der von einem Baum mit Graphdurchmesser drei erreicht werden kann. Wir betrachten
auch genaue Algorithmen für Sonderfälle. Mithilfe des Paradigmas der dynamischen Pro-
grammierung beschreiben wir einen Algorithmus, der in polynomieller Zeit den längsten
Spannbaum mit Graphdurchmesser maximal drei findet. Dieser wird auf spezielle Bäume
mit Graphdurchmesser maximal vier erweitert.

133

	Front Matter
	Abstract
	Selbstständigkeitserklärung
	Acknowledgments
	Contents

	Introduction
	Thesis Organization
	Girth and Triangles in Disk Graphs and Transmission Graphs
	Dynamic connectivity
	Long plane spanning trees
	Publications

	Preliminaries
	Geometry, Graphs and Geometric Graphs
	Computational Models
	Hierarchical Grids, Z-order and Compressed Quadtrees.
	Canonical Decomposition

	Disk Graphs and Transmission Graphs
	Computing the Girth in Disk Graphs
	Finding a (shortest) Triangle in a Disk Graph
	Computing the Weighted Girth of a Disk Graph

	Triangles and Cycles in Transmission Graphs
	Dense Transmission Graphs can be Triangle Free
	Finding a Triangle in a Transmission Graph
	Finding the Shortest Triangle in a Transmission Graph
	Finding a Cycle of Length k in a Transmission Graph
	Batched Range Searching
	Queries of Type (R1)
	Queries of Type (R2)
	Queries of Type (R2')

	Dynamic Connectivity in Disk Graphs
	Logarithmic Dependency on Psi
	General Disk Graphs

	Long Plane Trees
	Approximating the Longest Tree
	A Simple Approximation Algorithm
	A 2/3-Approximation for Flat Sets
	A δ=0.5467-approximation for general sets
	|Topt| is Small or There are Sites Far Away
	All Sites Lie in the Truncated Lens

	Using Small Diameters for Approximation

	Polynomial Time Algorithms for Special Cases
	A Simple Greedy Algorithm Fails
	Finding the Longest Tree in a Convex Site Set
	Finding the Longest Tree of Diameter Three
	Extending the Approach to Special Trees of Diameter Four

	Conclusion
	Bibliography
	Zusammenfassung

