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Forkhead box O 3 (FOXO3) is a transcription factor involved in cell metabolism,
inflammation and longevity. Here, we investigated if metformin can activate FOXO3 in
human immune cells and affects the subsequent level of reactive oxygen/nitrogen species
(ROS/RNS) in immune cells. AMP-activated protein kinase (AMPK) and FOXO3 activation
were investigated by immunoblot or flow cytometry (FC) analysis, respectively. FOXO3
target gene expression was quantified by real-time PCR. ROS/RNS measurement using
dichlorodihydrofluorescein diacetate (DCFH-DA) dye was investigated by FC. The role of
the FOXO3 single nucleotide polymorphisms (SNPs) rs12212067, rs2802292 and
rs12206094 on ROS/RNS production was studied using allelic discrimination PCR.
Metformin induced activation of AMPK (pT172) and FOXO3 (pS413). ROS/RNS level
was reduced in immune cells after metformin stimulation accompanied by induction of the
FOXO3 targets mitochondrial superoxide dismutase and cytochrome c. Studies in Foxo3
deficient (Foxo3-/-) mouse splenocytes confirmed that metformin mediates its effects via
Foxo3 as it attenuates ROS/RNS in myeloid cells of wildtype (WT) but not of Foxo3-/-mice.
Our results suggest that FOXO3 can be activated by metformin leading to reduced ROS/
RNS level in immune cells. This may add to the beneficial clinical effects of metformin
observed in large cohort studies on longevity, cardiovascular and cancer risk.
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INTRODUCTION

Forkhead box O 3 (FOXO3) belongs to the family of FoxO transcription factors and is crucial in the
regulation of cellular processes such as cell cycle regulation, apoptosis, cell metabolism, stress
resistance and immunity (1). Single-nucleotide polymorphisms (SNPs) for FOXO3 have been found
to be associated with longevity (2, 3) and favorable outcomes in inflammatory disease (4). A role of
FOXO3 in dampening immune reactions was discussed in several studies (5, 6). We showed that
Foxo3 plays an important role in acute viral infection as its activation attenuated natural killer (NK)
cell responses in a viral myocarditis model (7). Thus, FOXO3 modulation would have therapeutic
potential in chronic and autoimmune diseases.
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FOXO3 is phosphorylated by various kinases. Growth factor
induced phosphorylation via phosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) pathway
results in an increased binding to the regulator protein 14-3-3
and consequently in nuclear exclusion. This results in reduction
of its transcriptional activity (1). The energy-sensing AMP-
activated protein kinase (AMPK) mediated phosphorylation
induces activation of FOXO3 (8). Moreover, acetylation/
deacetylation and methylation are implicated in FOXO3
regulation (1).

Metformin (1,1-dimethylbiguanide hydrochloride) is the
first-line oral drug for treatment of type 2 diabetes. It has been
shown to reduce cardiac events in diabetic patients and improve
the overall outcome and prognosis (9). In vitro metformin
activates AMPK, which is upstream of FOXO3 (10). Further, a
reduction of reactive oxygen/nitrogen species (ROS/RNS) in
primary hepatocytes (11) and human monocytes and
macrophages by metformin has been described (12, 13). Based
on the favorable outcome of diabetic patients taking metformin,
several studies are now investigating the influence of metformin
on aging (targeting/taming aging with metformin, TAME study
(14) and metformin in Longevity Study, MILES study,
ClinicalTrials.gov Identifier: NCT02432287). We hypothesized
that metformin is a drug that can activate FOXO3 in immune
cells. Hence, the effect of metformin on FOXO3 activation,
downstream targets and ROS/RNS level in immune cells was
investigated in the present study.
MATERIALS AND METHODS

Isolation of Human PBMCs
The study was approved and performed according to the ethical
guidelines and regulations by the Institutional Ethics Committee
(Charité Berlin). Informed consent was obtained from all
subjects. Fresh PBMCs from healthy subjects were isolated
from heparinized whole blood by density gradient centrifugation.

Mice Studies
Splenocytes of FVB/N wildtype (WT) and FVB/N Foxo3
deficient (Foxo3-/-) littermates were used. Experiments were
conducted conform to the NIH Guide for the care and use of
laboratory animals and were approved by regional authorities for
provisions on labor, health, and technical safety, Berlin,
Germany. WT and Foxo3-/- mice were sacrificed and spleens
were taken. Single cell suspensions were made by passing the
spleen through a cell strainer (BD) and diluting the suspension in
cold PBS (4°C). The cells were cultured in RPMI 1640 containing
l-glutamine and supplemented with 10% FCS, and 1% each of
penic i l l in and streptomycin at 37°C, 5% CO2, or
used immediately.

AMPK Immunoblot
Freshly isolated human PBMCs were incubated for 3 h with
metformin [0.01 - 10 mM]. The cells were then washed twice in
ice cold PBS and solubilized in lysis buffer for 30 min on ice.
After centrifugation for 10 min at 12000 x g and 4°C the
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supernatant was harvested. 20 µg of the protein lysate was
separated on a gradient gel (7.5 -12.5%) and transferred to a
nitrocellulose membrane. After blocking in 5% BSA for 1h, the
membranes were incubated with the primary antibodies
mouse-a-GAPDH (FF26A/F9) (1:10000, BioLegend), rabbit-
a-AMPK (Thr172) 40H9 (1:500; Cell Signaling), mouse-a-
AMPKalpha (F6) (1:500; Cell Signaling). The primary antibody
was incubated overnight at 4°C in 5% BSA (in 0,05% TBS-T)
and the secondary antibody goat-a-rabbit or a -mouse Ig-HRP
1:2000 (#7074/7076 Cell Signaling) was incubated for 1 h.
D e t e c t i on wa s a c h i e v e d b y u s i n g an enh an c e d
chemiluminescence system (Pierce™ ECL Western Blotting
Substrate) according to the manufacturer’s instructions.
Quantification was performed by ImageJ software.

Flow Cytometry for FOXO3 and ROS/RNS
CytoFLEX S, CytoFLEX LX (Backman Coulter), or LSR Fortessa
(BD) was used. Data was analysed with FlowJo software 10.0.08.
All gating strategies are shown in the Supplementary Figure 1.
PBMCs were stained after stimulation with metformin [1 and 10
mM] or Compound C [CC, 10 µM] for 30 min at 37°C. 2%
formalin fixed and 90%methanol permeabilized cells are blocked
with 2% Flebo-g. FOXO3 activation is visualized with an
unlabeled monoclonal rabbit a -phospho-FOXO3 (Ser413)
(D77C9) antibody (Cell Signaling) for 1 h. Secondary AF700-
labelled goat-a-rabbit antibody (Invitrogen) was incubated for
30 min. Cell surface molecules CD3-PB (UCHT1; BioLegend),
CD56-PE (HCD56; BioLegend), and CD14-FITC (HCD14;
Biolegend) are stained afterwards for 15 min at 4°C.

Intracellular ROS/RNS staining was performed following 3 h
metformin stimulation [0.1 - 20 mM]. For this, cells were stained
with CD3-Per.CP-Cy5.5 (SK7); CD14-APC (M5E2); CD19-PE-
Cy7 (HIB19) and CD56-PE (HCD56) purchased from
BioLegend. After 10 min stimulation with phorbol 12‐
myristate 13‐acetate (PMA) (Sigma Aldrich) [100 ng/ml] as
positive control, cells were stained with viable and dead cells
LIVE/DEAD™ Fixable Aqua dead cell stain kit (Life
Technologies) followed by dichlorodihydrofluorescein diacetate
(DCFH-DA) [5 µM; Sigma-Aldrich] incubation for 30 min.
Mouse ROS/RNS measurement was performed according to
the same protocol using staining antibodies (CD3-AF700
(17A2; Invitrogen); CD19-APC (6D5; BioLegend); Nkp46-APC
(29A1.4; BioLegend); CD11b-PE (M1/70; eBioscience); CD45-
PE-Cy7 (30-F11 ; eB io sc i ence) ; Ly6C-PerCPCy5 .5
(HK1.4; Invitrogen).

PCR
Total RNA was extracted (RNeasy® Mini Kit QIAGEN®)
according to the manufacturer’s instructions. cDNA was
prepared by reverse transcription and real-time PCR was
performed using TaqMan® Universal PCR Master Mix
(Applied Biosystems) and TaqMan® Gene Expression Assays
for SOD2, HMOX1, CYCS and 18S rRNA (Applied Biosystems).
All analyses were performed with the ABI7200 and software Step
One Plus as absolute quantification according to manufacturer’s
instruction. Relative expression was analysed using the DDCT
method and normalized against 18S rRNA.
April 2021 | Volume 12 | Article 581799
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SNP Analysis
Genomic DNA was isolated (QIAmp® DNA Blood Mini Kit
QIAGEN®) according to the manufacturer’s protocol. Analysis
of the FOXO3 SNP rs12212067 (ID: C:30780203_10), SNP
rs2802292 (ID: C:16097219_10) and SNP rs12206094 (ID:
C:30780173_10) was performed by allelic discrimination PCR
according to the manufacturer’s instruction using Applied
Biosystems 7500 Fast Real-Time PCR system. 10 ng of
genomic DNA were used in a PCR reaction. TaqMan® SNP
Genotyping Assays were purchased from Applied Biosystems.
SNP genotypes are shown in the Supplementary Table.

Statistical Analysis
Statistical data analysis was carried out using GraphPad Prism
software, version 6.0. and 7.0 Continuous variables were
expressed as median and interquartile range, if not indicated
otherwise. Univariate comparison of two independent groups
were done using Mann-Whitney U test (MannWhitney test) and
of dependent groups with the Wilcoxon matched-pairs signed
rank test (Wilcoxon test). P values were calculated in a two-tailed
manner. In all cases, the significance level was set to *P value <
0.05, **P < 0.01.
RESULTS

Metformin Activates FOXO3 in an AMPK
Dependent Manner in Human
Immune Cells
To investigate the activation of FOXO3, we first studied the effect
of metformin on the AMPK kinase upstream of FOXO3 by
immunoblot. We observed a dose dependent increase of the
activating phosphorylation of AMPK (pT172) after incubation
with metformin in human blood immune cells (Figure 1).

Next, the effect of metformin on the activating phosphorylation
of FOXO3 (pS413) was studied in blood immune cells by FC. We
observed an activation of FOXO3 by upregulation of pS413 in all
Frontiers in Immunology | www.frontiersin.org 3
human immune cell subpopulations including T cells, B cells,
monocytes and both CD56bright and CD56dim NK cells after
metformin incubation (Figure 2A). To elucidate the involvement
of AMPK in metformin induced FOXO3 activation, AMPK was
additionally inhibited by Compound C. The inhibition of AMPK
resulted in a significant reduction of metformin induced
phosphorylation of FOXO3 in all immune cells (Figure 2B).

Metformin Attenuates ROS/RNS
Production
Next, the effect of metformin on ROS/RNS level was studied in
immune cells under similar conditions. PMA-induced ROS/RNS
level was diminished by metformin in CD14+ monocytes, CD3+

T cells, CD19+ B cells and CD56+ NK cells in a dose-dependent
manner (Figures 3A–D). In unstimulated CD14+ monocytes
ROS/RNS level was already diminished when incubated with 10
mM metformin (Figure 3C).

To get further evidence that metformin attenuates ROS via
FOXO3 we comparatively analysed WT and Foxo3-/- mice. As
observed in human monocytes, incubation of splenocytes with
metformin diminished ROS/RNS level in WT CD11b+

monocytes. In contrast metformin had no effect on monocytes in
ROS/RNS in Foxo3-/-mice, providing further evidence that Foxo3 is
involved in this pathway (Figure 4A). ROS/RNS level in CD3+ T
cells of WT mice were not reduced by metformin (Figure 4B).
Stimulation of splenocytes with PMA leads to an increased ROS/
RNS production in 3 of 5 Foxo3-/- mice in CD11b+ (not significant)
and in all 5 Foxo3-/- mice in T cells (p=0.03) (Figures 4C, D).
Interestingly, the rather short incubation time of 10 min with PMA
chosen to avoid toxicity in Foxo3-/-mice was not sufficient to induce
the ROS/RNS production in WT mice.

Metformin Promotes Gene Expression of
Antioxidative Enzymes and the Autophagic
Marker LC3
We further studied the expression of FOXO3 regulated antioxidative
enzymes SOD2,CYCS andHMOX1.Metformin stimulated the gene
A B

FIGURE 1 | AMPK is activated in a dose dependent manner by metformin. (A) Representative image of the protein amount of pAMPK (pT172), AMPKalpha and
GAPDH analysed in lysates of PBMCs stimulated for 3 h with metformin using specific antibodies by immunoblot analysis. pAMPK (pT172) and AMPKalpha are run
on two separate gels in parallel each with GAPDH as control. (B) Activating phosphorylation of AMPK was quantified using Image J (NIH). The median stimulation
index (SI, treated/untreated) is shown for the pAMPK/AMPKalpha ratio normalized to unstimulated control. Significance was calculated with the Mann-Whitney test
between indicated groups. **P ≤ 0.01.
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expression of SOD2 and CYCS but not ofHMOX1 (Figure 5A). The
enhanced gene expression was abolished by coincubation with the
AMPK inhibitor Compound C (Figure 5B).

In addition, we studied the gene expression of MAP1LC3A
coding for the autophagic marker LC3. The gene expression was
induced in PBMCs treated with 10 mM metformin compared to
untreated control (p=0.047) (Figure S2). However, this increase
was not observed in cells co-treated with Compound C,
implicating AMPK in FOXO3 dependent autophagic gene
regulation by metformin.

FOXO3 Gain-of-Function SNPs Do Not
Influence ROS/RNS Level in Human
Immune Cells
Finally, the three different gain-of-function FOXO3 SNPs
rs12212067, rs2802292 and rs12206094 associated with aging
(2, 3) and inflammation (4) were analysed for their potential
influence on ROS/RNS level in immune cells of healthy controls.
We observed neither differences in the ROS/RNS level in
monocytes at baseline (data not shown) nor after 10 min of
PMA stimulation in carriers of the longevity/immune
dampening-associated alleles of the SNPs (Figure 6).
DISCUSSION

FOXO3 is a gene associated with healthy aging in centenarians, a
lower prevalence of cardiovascular events and a better outcome
Frontiers in Immunology | www.frontiersin.org 4
in inflammatory disorders (2–4, 15). Therefore, it is of great
interest to find drugs that activate FOXO3 and target
downstream ROS and inflammatory cytokine responses. Here,
we provide evidence that metformin activates FOXO3 via the
AMPK signalling pathway which subsequently leads to the
induction of FOXO3 antioxidative target genes SOD2 and
CYCS as well as the induction of autophagic gene expression.
Further we show that triggering this pathway by metformin is
associated with reduced ROS/RNS level. To our knowledge this is
the first study providing evidence that FOXO3 can be activated
by metformin in immune cells.

We found that FOXO3 is activated by metformin stimulation
in immune cells. Using the AMPK inhibitor Compound C we
provide evidence that metformin-triggered FOXO3 activation is
AMPK-dependent. However, Compound C has been shown to
inhibit several other kinases, including the FOXO3 regulator Akt
(16). We cannot thus exclude the possibility that other kinases
might have been affected by Compound C in our experiments.
However, in line with our findings a metformin-triggered,
AMPK-dependent activation of FOXO3 was shown previously
by Chou et al. in cancer cells by targeting the Akt-MDM2-
FOXO3 signalling axis (17). Further, we provide evidence in our
study that FOXO3 is phosphorylated at an AMPK specific
phosphorylation site, Serine 413, following metformin
incubation. Furthermore, metformin activates gene expression
of FOXO3 targets SOD2 and CYCS. The upregulation was
diminished by co-treatment with the AMPK inhibitor
Compound C indicating an involvement of AMPK function. In
A B

FIGURE 2 | FOXO3 is activated by metformin in an AMPK dependent manner. (A) FOXO3 (pS413) expression in T cells, B cells, monocytes and NK cells
(total, CD56dim and CD56bright) after 30 min stimulation analysed by flow cytometry. (B) Addition of the AMPK inhibitor Compound C (CC) [10 µM] abrogated
the effect of 10 mM metformin. SI: The MFI (AF700) of FOXO3 (pS413) expression subtracted by background signal (GAR) is depicted in relation to the
unstimulated control. Median with interquartile range is shown. Wilcoxon test is used for statistical analysis in relation to unstimulated control or between
indicated groups. *P ≤ 0.05, **P ≤ 0.01.
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addition, metformin incubation resulted in reduced PMA-
stimulated ROS/RNS production in human immune cells.
Mitochondrial SOD2 is important for neutralizing ROS. The
enzyme binds to superoxide byproducts of oxidative
phosphorylation and converts them to hydrogen peroxide and
diatomic oxygen (18). CYCS is a small hemeprotein found
loosely associated with the inner membrane of the
mitochondrion. It belongs to the cytochrome c family of
proteins and can remove superoxide (O2

–) and H2O2 from
mitochondria (19). Reduction of ROS/RNS levels in human
cells by metformin has already been shown by other groups for
other cell types including primary hepatocytes and vestibular
cells (11, 20). The study of Hou et al. indicates that metformin
reduces ROS by inducing Trx expression via AMPK-FOXO3
signalling in aortic endothelial cells (21). In addition, we
observed an increased gene expression of LC3, an autophagic
Frontiers in Immunology | www.frontiersin.org 5
marker, in metformin treated, but not in Compound C co-
treated cells. These data suggest, that metformin might induce
autophagy in PBMCs probably in an AMPK-dependent manner.
Autophagy is an essential mechanism in response to oxidative
stress and associated mitochondrial dysfunction (22). It enables
the clearance of damaged proteins and cell organelles.
Interestingly, the LC3 gene is described as target gene for
FOXO3 (23) and it was shown in several studies that
autophagy can be induced via AMPK-FOXO3 signalling (24–
26). These data corroborate our results about the effects of
metformin-AMPK-FOXO-signalling in immune cells. In a
recent study by Gillespie et al. it was shown that metformin
stimulation results in decreased fibroblast proliferation and
increased FOXO3 promotor occupancy. However, pathway
analysis of FOXO3 activation and downstream effects were not
studied (27).
A B

C D

FIGURE 3 | Metformin reduces ROS/RNS level in human immune cells in a dose-dependent manner. (A–D) ROS/RNS level was measured in blood immune cells,
cultured with metformin for 3 h (n=6; met alone n=2). Cells were either unstimulated or stimulated with PMA [100 ng/ml] for 10 min and ROS/RNS generation was
measured by FC in (A) T cells, (B) B cells, (C) monocytes and (D) NK cells using DCFH-DA. Median with interquartile range is depicted and Wilcoxon test is used for
statistical analysis. *P ≤ 0.05.
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Using Foxo3-/- mice we provide further evidence that the
reduction of ROS/RNS levels by metformin at least partly
depends on Foxo3 as we observed that metformin reduced basal
intracellular ROS/RNS level in WT but not Foxo3-/- mice. A
metformin dependent reduction of the mitochondrial ROS
production by direct inhibition of mitochondrial complex I was
discussed in several studies (28). We cannot exclude a partial direct
effect of metformin on the mitochondrial ROS production in our
experiments. As metformin-induced antioxidative gene expression
was observed in our study we provide evidence about an AMPK-
FOXO3-axis dependent cellular stress response also involved in the
decline in ROS level. In addition, our experiments using Foxo3-/-

mice further confirm the antioxidative properties of Foxo3, as
PMA enhanced ROS/RNS in CD11b+ and T cells of Foxo3-/- mice
but notWTmice. This is in line with the study of Joseph et al. Here
the ROS production, induced by a chronic Salmonella
typhimurium infection, was more prominent in splenocytes of
Foxo3a−/− when compared to WT mice (29). Furthermore, they
observed a decreased expression of antioxidative genes in infected
Foxo3a−/− mice. In general, the important role of FOXO3 in the
intracellular oxidative stress response and damage repair via gene
expression of antioxidative as well as autophagy-related genes has
been determined in several studies (1, 23).
Frontiers in Immunology | www.frontiersin.org 6
SNPs in FOXO3 were shown in previous studies to be
associated with ameliorated clinical course of rheumatoid
arthritis (30), Crohn´s disease (4) and viral myocarditis (7). In
the study by Lee et al. monocytes from healthy subjects carrying
the SNP rs12212067 had lower TNF-a response upon LPS
stimulation (4). In our previous study, healthy subjects with
the FOXO3 SNP rs12212067 had lower IFN-g production in
peripheral NK cells after 18 h of R848 stimulation (7).
Furthermore two of the here analysed SNPs (rs2802292,
rs12206094) are associated with longevity (2, 3). In the present
study we therefore wanted to investigate if these three SNPs,
located within different intronic regions with a low linkage
disequilibrium, have an influence on ROS/RNS level in human
immune cells and if so may influence the response to metformin.
Grossi et al. showed that the SNP rs2802292 is associated with
diminished ROS content, measured with DCFH-DA in human
primary dermal fibroblasts after stressing the cells with H2O2.
They found that the SNP, located in the intron 2 of FOXO3
influences enhancer function creating a novel binding site for
HSF1, so inducing FOXO3 expression along with stress response
via upregulation of target genes (SOD2, CAT, GADD45A,
HSPA1A) (31). In contrast we could not observe an association
of any of the 3 SNPs with levels of ROS/RNS in immune cells.
A B

C D

FIGURE 4 | ROS/RNS production is reduced by metformin in WT and induced by PMA in Foxo3-/- mice. ROS/RNS level was analysed in WT vs. Foxo3-/- splenocytes
after 3 h of metformin [0.1 mM] (A, B) or 10 min of PMA [100 ng/ml] treatment (C, D). Mouse splenocytes were labeled with DCFH-DA and ROS/RNS level was analysed
by FC (n=6) in (A, C) CD11b+ myeloid cells and (B, D) CD3+ T cells. Significance was evaluated using the Wilcoxon test. *P ≤ 0.05; ns, not significant.
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We have evidence from our previous study that FOXO3
plays a role in attenuating cytokine responses. We could show
that NK cells of Foxo3-/- mice had an increased IFN-g response
to Il-2. Furthermore, healthy carrier of the immune
dampening-associated FOXO3 SNP rs12212067 had reduced
IFN-g producing CD56bright NK cells after 18 h of R848
stimulation (7). Diminished levels of ROS itself may play a
role in attenuation of cytokine levels as it was shown that ROS
activates NF-kB and TH1 cytokine production (32). Thus,
Frontiers in Immunology | www.frontiersin.org 7
FOXO3 may affect cytokine production by reducing
intracellular ROS. However, other studies showed that
metformin can inhibit NF-kB directly (33). Further, it was
shown that FOXO3 antagonizes signalling intermediates
downstream of the Toll‐like receptor (TLR) 4, such as NF‐kB
and IRFs, resulting in decreased IFN‐b expression in human
monocyte‐derived DCs (34). Buldak et al. showed that
metformin in a dose of 0.02 and 2 mM reduces the LPS-
induced TNF-a response in human monocyte derived
A

B

FIGURE 5 | Gene expression of antioxidative enzymes is induced by metformin. (A) RNA expression analysis of SOD2, CYCS and HMOX1, three FOXO3 target
genes after 3 h incubation with different dosages of metformin (n=4-7). (B) Antioxidative gene expression by metformin is AMPK dependent. Gene expression
analysis of SOD2, CYCS and HMOX1 after 3 h incubation with metformin [10 mM] alone or in combination with CC [10 µM] (n=7). Gene expression was normalized
to 18S rRNA and is depicted as fold induction to unstimulated control. Median with interquartile range is shown and significance was evaluated between
unnormalized data and refers to unstimulated control using the Wilcoxon test. *P ≤ 0.05; ns, not significant.
A B C

FIGURE 6 | FOXO3 gain-of-function SNPs have no influence on ROS/RNS level. ROS/RNS level in CD14+ monocytes were investigated following stimulation with
PMA [100 ng/ml] for 10 min by DCFH-DA staining using FC. (A) rs12212067 SNP carrier minor/heterozygous n=12 and major n=30. Minor allele carrier is depicted
with an open circle (○). (B) rs2802292 SNP carrier minor n=10, heterozygous n=21 and major n=11 and (C) rs12206094 SNP carrier: minor n=4, heterozygous
n=21 and major n=17. Median with interquartile range is depicted and Mann-Whitney test is used for statistical analysis between independent cohorts.
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macrophages after 24 h (13). We could not observe an influence
of metformin on LPS induced TNF-a production in human
monocytes under similar conditions (data not shown).

In conclusion, our data provide evidence that metformin
activates FOXO3 in immune cells resulting in reductions of
ROS/RNS stress. This effect may be beneficial in chronic
inflammation and atherosclerosis and may play a role in the
improved morbidity and mortality of diabetes patients
taking metformin (9). Ongoing trials (TAME, MILES) are
examining the effect of metformin on morbidity and mortality
in healthy older people (ClinicalTrials.gov Identifier:
NCT02432287 (14). Based on our findings it would be very
interesting to study the effect of metformin on FOXO3
activation in clinical trials and the potential influence of
FOXO3 SNPs.
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