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ABSTRACT 
TRACKING A PRIMARY BARRIER DYSFUNCTION IN CELIAC DISEASE 

Celiac Disease (CeD) is an autoimmune disease that develops in genetically predisposed 

individuals after the ingestion of gluten. It induces a malabsorption syndrome, commonly 

provoking diarrhea, weight loss and vitamin deficiency and the only standard treatment so far is 

a gluten-free diet. Celiac patients present impaired epithelial barrier function with lower TEER and 

increased permeability to disaccharides. In addition, tight junction strands are discontinuous and 

decreased in celiac patients. Changes in barrier function are mostly attributed to the immune 

process, however, it was shown that treated patients may present impaired barrier function, 

despite the lack of symptoms. Moreover, risk loci for CeD were found in genes related to cell-cell 

adhesion, including LPP and C1orf106. LPP is involved in focal adhesions formation and E-

cadherin cell-cell adhesion. C1orf106 inhibits the degradation of E-cadherin indirectly and its 

depletion causes reduction in TEER.  

In this context, we sought out to study the effect of LPP and C1orf106 in barrier function in 

intestinal cell lines and in patients with CeD. Our results show that cells depleted of LPP and 

C1orf106 present changes in tight junction protein content and present a reduced ability to re-

assemble the tight junctions after a calcium switch assay. In patients, we did not see significant 

changes regarding LPP or C1orf106 protein content, but further analysis of electrical resistance 

and RNA may provide further insights into the importance of both proteins in the barrier 

impairment in CeD. 

THE ROLE OF OSTEOPONTIN IN THE PATHOGENESIS OF CAC 

IBD patients present an increased risk of developing colorectal cancer, namely colitis-

associated cancer (CAC). In the case of CAC, the immune response in the IBD plays an important 

role in tumorigenesis and results in a different progression process than sporadic colorectal 

carcinoma (CRC). For example, the early mutation of APC seen in CRC does not occur as 
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frequently in CAC and when it does, it is only at the final stages of progressions. On the other 

hand, p53 mutations occur very early in CAC progression, whereas in CRC it is a late finding. 

CAC pathogenesis is not as well understood as CRC and there is still much to clarify regarding 

CAC progression.  

Then, we decided to study CAC progression in samples from patients who underwent 

colectomy and performed an RNA analysis for immune-related genes. The results of this 

experiment showed osteopontin (OPN) as the most upregulated gene in both CAC coming from 

ulcerative colitis and Crohn’s disease patients, impelling us to investigate it further. OPN was 

found in both epithelial cells and stromal cells and one of its receptors, CD44, was also identified 

in both cell compartments, with a tendency for being increased in CAC epithelial cells. OPN is 

known to promote tumorigenesis in several cancer types, especially solid tumors, and one of its 

key functions is the induction of epithelial to mesenchymal transition (EMT). Indeed, findings from 

the RNA analysis and immunohistochemical analysis of the patients’ samples point out to the 

presence of the EMT process in CAC. When we sought out to study OPN effects in cell lines, 

OPN activated ERK1/2, but not STAT3, AKT or P-65/NFκB. However, we failed to reproduce EMT 

by exposing the cells to OPN. Finally, we decided to perform an RNA-Seq analysis of the cells 

treated with OPN and found changes in mitochondrial respiratory chain, especially 

downregulation of complexes III and IV. These results suggest a new role for OPN in the 

tumorigenesis of CAC.
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ZUSAMMENFASSUNG 
PRIMÄRER BARRIEREDEFEKT BEI ZÖLIAKIE  

Die Zöliakie ist eine Autoimmunerkrankung, die nach Glutenaufnahme bei genetisch 

Prädisponierten entsteht. Sie verursacht ein Malabsorptionssyndrom, das üblicherweise mit 

Diarrhö, Gewichtsverlust und Vitaminmangelerscheinungen einhergeht und bei der die bislang 

einzig zur Verfügung stehende Behandlung die glutenfreie Diät ist. Zöliakie-Patienten weisen eine 

defekte epitheliale Barrierefunktion auf, die sich durch verminderte transepitheliale Widerstände 

und eine erhöhte mukosale Permeabilität für Disaccharide einhergeht. Entsprechend sind die 

epithelialen Tight Junction- (TJ-)Stränge bei Zöliakie unterbrochen bzw. in ihrer Zahl reduziert. 

Die Veränderungen der Barrierefunktion wurden bislang immer auf die der Zöliakie zugrunde 

liegenden Immunreaktion zurückgeführt. In diesem Sinne wurden sie als sekundär zur mit 

distinkten Zytokinsekretion einhergehenden T-Zellreaktion interpretiert. Allerdings gibt es ex vivo 

Daten zur Barrierefunktion behandelter Zöliakie-Patienten, die trotz Therapie weiterhin eine 

defizitäre Barrierefunktion aufweisen. Außerdem wurden Zöliakie-Risiko-Genloci identifiziert, die 

mit der interepithialen Adhäsion verbunden sind, insbesondere die Gene LPP und C1orf106. LPP 

wurde beschrieben in Zusammenhang mit der Ausbildung von Focal Adhesions beschrieben und 

weiterhin mit der Ausbildung E-Cadherin-abhängiger Interzellularbrücken. C1orf106 hemmt den 

Abbau von E-Cadherin. Es ist zudem bekannt, dass die Verminderung von C1orf106 einen 

Barrieredefekt verursacht. In diesem Zusammenhang begannen wir eine Studie, die das Ziel 

hatte, die Effekte von LPP und C1orf106 auf die Barrierefunktion von intestinalen Epithelzellen 

zu untersuchen. Ergebnisse dieser Studie beinhalten u.a., dass ein Knock-out von LPP oder 

C1orf106 mit Veränderung der TJ-Proteinkomposition einhergeht und, dass die Assemblierung 

von TJ dysfunktional ist. Bei Patienten mit Zöliakie fanden wir zwar keine signifikanten 

Proteinmengenänderungen für LPP oder C1orf106. Es kann aber sein, dass weitergehende 

funktionelle Barriere- und RNA-Untersuchungen einen genaueren Einblick in die Bedeutung der 

beiden Proteine für die Barrierefunktion bei Zöliakie ermöglichen.  
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DIE ROLLE VON OSTEOPONTIN IN DER PATHOGENESE DES COLITIS-
ASSOZIIERTEN KARZINOMS 

Bei Patienten mit chronischen entzündlichen Darmerkrankungen (CED) besteht ein höheres 

Risiko, ein Colitis-assoziiertes Karzinom zu entwickeln (CAC). Dabei ist auszugehen, dass die 

CED-assoziierte mukosale Immunantwort bei CED eine große Rolle spielt. Es ist inzwischen klar, 

dass der Prozess der CAC-Karzinomgenese sich deutlich von dem des sporadischen 

Kolorektales Karzinoms (CRC) unterscheidet. Dazu gehört, dass die beim CRC sehr früh 

auftretende Mutation im APC-Gens nicht oder nur sehr spät in der Karzinogenese des CAC 

auftritt. Auf der anderen Seite treten p53 Mutation sehr viel frühzeitiger beim CAC als beim CRC 

auf. Insgesamt ist die CAC-Pathogenese weitestgehend unverstanden. Wir begannen daher eine 

Studie zur Aufklärung der Karzinogenese-Mechanismus bei CAC unter Verwendung von 

chirurgischen Resektaten von CAC-Patienten (Kolektomiepräparate), isolierten RNA und führten 

eine Expressionsanalyse von Genen durch, die mit dem mukosalen Immunsystem assoziiert sind. 

Resultate dieser Expressionsanalyse ergaben, dass Osteopontin (OPN) das am stärksten 

hochregulierte Gen sowohl bei CAC auf dem Boden einer Colitis ulcerosa als auch bei CAC auf 

dem Boden eines Morbus Crohns ist. Immunhistochemisch konnte OPN sowohl in Epithelzellen 

als auch im Stromazellen identifiziert werden. CD44, einer der OPN-Rezeptoren, wurde ebenfalls 

in beiden Kompartimenten gefunden. Zudem ergab sich eine Tendenz für eine höhere Expression 

in Epithelzellen. Für OPN ist bekannt, dass es die Tumorigenese verschiedener Karzinomtypen 

unterstützt. Zudem ist es einer der zentralen Induktoren der Epithelial-zu-mesenchymalen 

Transition (EMT). Damit in Einklang ergab die Expressionsanalyse sowie auch die 

immunhistochemische Analyse der CAC-Patientenproben den Nachweis EMT-spezifischer 

Genexpression bei CAC. In dieser Situation wechselten wir auf ein Zelllinien-basiertes System 

und konnten zeigen, dass OPN ERK1/2 aber nicht STAT3, Akt oder p65/NFB aktiviert. Allerdings 

konnten wir nicht die Induktion von EMT durch OPN in den Zelllinien nachweisen. Zuletzt führten 

wir an Zellen, die mit OPN behandelt worden waren, eine RNA-Seq-Analyse durch und konnten 
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zeigen, dass OPN Veränderungen der Gene der mitochondrialen Atemkette verursacht, 

insbesondere der Komplexen III und IV. Diese Resultate legen eine neue Rolle für Osteopontin 

in der CAC-Tumorigenese nahe. 
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TEER Transepithelial Electrical Resistance 

TG2 Transglutaminase 2 

TGFβ Transforming Growth Factor β 

Thr Threonine 

TJ Tight Junction 

TNFα Tumor Necrosis Factor alpha 

TR1 FOXP3- Treg Type 1 

Treg Regulatory T cell 

Tris Trisaminomethane 

UC Ulcerative Colitis 

UCAC Ulcerative colitis-associated cancer 

uPA urokinase-type Plasminogen Activator 

Wnt Wingless-related integration site 

WTS Whole Transcriptome Sequencing 

ZEB Zinc Finger E-Box Binding Homeobox 

ZO Zonula Occludens 
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1  INTRODUCTION 
INTESTINAL MUCOSAL BARRIER 

Organs that interact directly with the external environment such as skin, lung, intestine and 

kidney nephrons are lined with epithelial cells that have the dual task of protecting the organism 

from harmful external stimuli while allowing the passage of beneficial agents, such as nutrients. 

The structure and components of the epithelial barrier vary according to the organ function. For 

instance, the intestinal epithelial barrier, the object of study of this project, is formed from lumen 

to the lamina propria by the intestinal microbiota, mucus layer, epithelial cells monolayer and 

immune cells in the lamina propria (1). Impairment of the intestinal epithelial barrier is related to 

many diseases from malabsorption syndromes, celiac disease, inflammatory bowel disease, to 

colorectal cancer. This chapter presents an overview of the components of the intestinal barrier, 

the importance of tight junctions (TJ) to maintaining the barrier selective function, the diseases 

studied in this thesis and their relation to an impaired intestinal barrier function. 

Microbiota 

Recent estimates report the “standard male” human cell numbers to be 3.0 *1013 and the 

resident microbiota cell number, 3.8*1013, resulting on a ratio of 1:1.3. Of note, the colonic 

microbiota alone corresponds to almost 100% of the bacterial population in the human body (2). 

The luminal microbiota composition consists mostly of Firmicutes, Bacteroidetes, 

Actinobacteria and Proteobacteria phyla. Notably, Bacteroides is not only the most abundant but 

also the most variable genus (3). Beyond simply residing in the intestine, the microbiota maintains 

constant interaction with the host and perform a crucial role in some of the host’s biological 

processes, namely metabolism of some nutrients and the prevention of pathogenic bacteria 

colonization (4). As an example of the beneficial role of the microbiota, butyrate producing 

bacteria such as Faecalibacterium prausnitzii positively impact barrier function by reducing 
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severity of DSS colitis in mice and preventing increase in permeability to Cre-EDTA (5) and 

negatively correlates with inflammatory markers in patients that undergone bariatric surgery (6). 

In an opposite way, dysbiosis of the intestinal microbiota is associated with disruption of the 

barrier function and disease. Clostridium difficile is the leading cause of nosocomial diarrhea and 

disrupts intestinal barrier function through the secretion of toxins TcdA and TcdB (7). TcdA 

promotes stronger disruption of the epithelium with the redistribution of Zonula occludens (ZO-1), 

occludin, E-cadherin, F-actin and tubulin (7). Enterohemorrhagic Escherichia coli (EHEC) is 

responsible for foodborne diarrhea that destroys the mucus layer of the intestine and attaches to 

the epithelial cells. Once attached, it promotes displacement of occludin from the membrane and 

increase of claudin-2 with concomitant drop in TEER values (8). 

Mucus layer 

The mucus layer covers the epithelium as mechanical protection coating against sheer 

stress and microbial infiltration and maintains intestinal homeostasis. It is quite complex in 

structure and has a crucial role in the barrier which was however neglected for the first decades 

of intestinal research due to its being washed off in the first steps of immunohistochemical 

preparations. The intestinal mucus is a viscoelastic secretion from goblet cells located in the 

columnar epithelial monolayer that provides a selectively permeable layer for the diffusion and 

absorption of nutrients (9). Its main structural and functional constituents are the mucins proteins, 

but account only for about 1-5% of it. The mucus barrier is 90-95% water, 1% electrolytes (NaCl, 

KCl, NaOH2, PO4
3-, Mg+2, Ca+2) lipids 1-2% and other components (10). Mucins are large proteins 

characterized by specific domain “mucin domain” with multiple repetitive aa sequences in Pro, 

Thr and Ser, the PTS domain. Thr and Ser are heavily O-glycosylated (10). They are divided into 

transmembrane and secreted gel-forming mucins. Transmembrane mucins 1, 3, 4, 12, 13, 15, 17 

and 21 are expressed in the intestine (11).  



15 
Gene expression analysis to study celiac disease and colitis-associated cancer 

 
The main function of the mucus layer is to protect the epithelium against mechanical, 

chemical and biological attacks and maintaining intestinal homeostasis. Ancillary non-mucus 

proteins originated in the interstitial fluid play an important role in mucus defensive function. 

Among those are found defensive proteins (alpha-, beta-defensins, lysozyme, lactoferrin, 

statherins), IgA, IgM, GFs , structural proteins (secretory leukocyte proteinase inhibitor, pancreatic 

secretory trypsin inhibitor) and glycoproteins (12). Defensins are a family of 2-5 kDa antimicrobial 

peptides produced by Paneth cells and that play a role in innate immunity (13). α-defensins 

antiviral capabilities include inhibition of HIV replication, in vitro protection against influenza A, 

enveloped and non-enveloped viruses and present anti-microbial effects through pore-formation 

(13,14). β-defensins target bacteria, virus and yeast also have a role in inflammation and fertility 

(15). Lysozyme is an antimicrobial protein which hydrolyzes bacterial cell wall peptidoglycan. 

Produced by neutrophils and macrophages (16). 

Epithelial cells 

Initially thought to be the only and utmost barrier of the intestine, the intestinal epithelial 

cells (IECs) are currently known to be in communication with all the other components of the 

barrier in a reciprocal relationship and regulation. The study of the intestinal cells can only be in 

the light of the complex architecture of the villi and crypts, where stem cells generate the different 

kinds of IECs which differentiate while migrating towards the tip of the villi. 

Intestinal architecture 

The small intestine presents a peculiar architecture that allows for maximal surface area to 

improve nutrient absorption. The villi are finger-like protrusions covered by a monolayer of 

terminally differentiated epithelial cells and are connected to crypts, which, in opposite, are well-

like structures in which the multipotent intestinal stem-cells reside together with secretory Paneth 

cells (17). Using techniques such as chemical mutagenesis it was proved that all IECs come from 
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an single progenitor, forming labelled “ribbons” as the cells migrate and differentiate from crypt 

bottom to villus tip (18).  

Intestinal stem cells 

There are two different types of stem cells in the intestinal crypts, the proliferating Lrg5+ or 

crypt base columnar (CBC) characterized by the expression of Lgr5, Olm4 CD133 and Lrig1 (19), 

and the quiescent stem cells, also called label retaining cells (LRCs), which are thought to play 

an important role in regeneration of damaged epithelium (20). Of notice, recent evidence suggest 

that either progenitor or differentiated cells of the intestine can also regain stem cell phenotype to 

regenerate the epithelium (21).  

Transit-amplifying cells 

The ever-proliferating Lrg5+ stem cells replenish the intestinal crypt with daughter-cells of 

the transit-amplifying (TA) compartment, which migrate upwards while being exposed to gradients 

of different morphogens and signaling molecules. By lateral inhibition, they commit either to the 

secretory or the absorptive lineage, which will bring about the terminally differentiated intestinal 

cell lines: enterocytes, Paneth cells, goblet cells, enteroendocrine cells, tuft cells and M cells (22). 

Goblet cells 

Goblet cells secrete the mucins that form the mucus layer of the intestine (9). Differentiation 

of secretory progenitors into goblet cells is dependent of the inhibition of Notch signaling (23). 

Enteroendocrine cells 

There are up to 15 different subtypes based on the hormone they produce. They are 

scattered throughout the mucosa representing approximately 1% of the IECs (24). 

Paneth cells 

Paneth cells are secretory cells and the main source of antimicrobial peptides in the 

intestine. They reside the base of the Lieberkühn crypts and contain a large ER and Golgi. 
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Discharge secretory granules into the lumen of the intestine (25). In the differentiation process, 

cells committed to be Paneth cells migrate downwards to the crypt bottom where the mature 

Paneth cells are (26). Being so close to the CBCs, Paneth cells are important for the maintenance 

of their stem-cell state (27).  

Microfold cells 

Microfold (M) cells are responsible for the transport of microorganisms and antigens into 

the mucosal lymphoid follicles helping to strengthen mucosal innate immunity, but since they 

represent a weaker point in the epithelial barrier, it is possible to some pathogens to have 

developed mechanisms of infection through the M cells (28). 

Tuft cells 

The term “Tuft cell” is used to describe a type of cell that can be found not only in the 

intestine, but also trachea and lungs of human beings and whose function remained unknown for 

many decades. Intestinal tuft cells come from the secretory progenitor and have an important role 

in immunity, especially through their interaction with Group 2 innate lymphoid cells (ILC2s) (29). 

Enterocytes 

Enterocytes or columnar cells are the only absorptive lineage of the intestinal crypt and are 

highly polarized cells presenting a brush border specialized in the absorption and transport of 

nutrients. They are the most frequent type of IECs, accounting for approximately 80% of them 

(30). A model of the intestinal crypt and the IECs together with the dedifferentiation model of adult 

cells in order to repair tissue damage.is shown in Figure 1.1. 
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Figure 1.1 

Figure 1.1. The intestinal crypt. Lgr5+ stem cells at the base of the crypt maintain cell renewal. Paneth cells 

reside at the base of the crypt and help maintain the stem cell permissive environment. +4 stem cells are 

quiescent “reserve stem cells”. Transit amplifying cells are rapidly proliferating and differentiate into 

secretory and absorptive progenitors. Absorptive progenitors differentiate into enterocytes, whereas 

secretory progenitors differentiate into Goblet, Paneth, Tuft and Enteroendocrine cells. Image created with 

BioRender.com 

Intraepithelial lymphocytes 

Intraepithelial lymphocytes (IELs) are a unique type of T lymphocytes within the epithelium 

of the small intestine. They are located at the basement membrane and occur in a healthy tissue 

at a frequency of 10-15 IELs/100 epithelial cells (31). They are classified based on ontogeny as 

naturally occurring (Type B) and adaptively induced (Type A) IELs (32). Naturally occurring IELs 

are tissue resident TCRγδ+ T cells existing independently of microbial colonization of the gut (33), 

whereas adaptive IELs express the TCRαβ+CD8αβ+ and TCRαβ+CD4+ T cells generated after 

local tissue damage (34). 
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All TCRαβ+CD8αβ+ IELs express Natural Killer receptors NKG2D as well as CD94 and 

NKR-P1A (35). The IELs are important in celiac disease innate response through the NGK2D 

(36). IELs are thought to participate in the surveillance and maintenance of barrier function due 

to their proximity to the intestinal lumen and their ability to respond to tissue stress via NK receptor 

or classical antigen-specific TCR interaction (37). 

EPITHELIAL CELL JUNCTIONS: THE APICAL JUNCTIONAL COMPLEX 

As mentioned in the beginning of this study, the epithelial barrier has the function of 

protecting the body from harmful stimuli and providing absorption of nutrients. This dual task is 

possible due to the structures through which epithelial cells establish contact with each other. In 

the particular case of the intestine, the columnar epithelial cells are highly polarized in apical and 

basolateral domains and the limits of those are also determined by the same structure: the apical 

junctional complex. The apical junctional complex is formed by the TJ and Adherens junctions 

(AJ). 

ADHERENS JUNCTIONS 

Adherens junctions are cell junctions that localize below the tight junctions and are formed 

by homophilic interactions between E-cadherins (E-cad) from neighboring cells via their 

N-terminal extracellular domain (38). E-cad is a large protein with long extracellular and cytosolic 

domains, the latter interacting with various intracellular proteins, being β-catenin the most frequent 

and best studied interaction, and linking it to the actin-myosin network, vesicle transport and cell 

polarity complexes (39). The AJ also transduces mechanical signals from junctions to the nucleus, 

even inciting the transcription of oncogenes (40). 



20 
Gene expression analysis to study celiac disease and colitis-associated cancer 

 
TIGHT JUNCTIONS 

Bicellular TJ 

TJ are cell junctions localized far up on the lateral membrane of epithelial cells. They were 

first observed by freeze-fracture microscopy as strands forming a net structure on the side of 

intestinal cells and as “kissing points” on electron micrographs (41). They are mainly constituted 

by claudins, TJ-associated MARVEL (MAL and related proteins for vesicle trafficking and 

membrane link) proteins (TAMPs) and cytosolic scaffolding proteins from the membrane-

associated guanylate kinase (MAGUK) family (42). 

Tricellular TJ 

Contacts between cells occur laterally between two cell or on the corners between three 

cells. The bicellular TJ form in the lateral contact points, they are different from the tricellular TJ 

in structure and composition. The tricellular TJ forms a central tube with diameter estimated to be 

around 10 nm, and length up to 1 µm, allowing for the passage of macromolecules (43). The 

major constituents of tricellular TJ are tricellulin and the proteins from the angulin family: angulin-1 

(Lipolysis-stimulated lipoprotein receptor (LSR)); angulin-2 (immunoglobulin-like domain 

containing receptor (ILDR1)) and angulin-3 (ILDR2; LISCH-like or C1orf32) (44). 

Claudins 

Claudins are the proteins responsible for establishing cell-cell contact in the TJ via 

homophilic and heterophilic interactions. 27 claudins have been described, being 26 found in 

humans and one (claudin-13) only found in mice. They are small proteins, with molecular masses 

ranging from 21 to 34 kDa and present four transmembrane helices: a short intracellular 

N-terminal domain, a longer intracellular C-terminal region, a small intracellular loop and two 

extracellular loops (ECL1 and 2) (45). There is a signature domain in the ECL1 and a 

COOH-terminal PDZ binding motif that mediates interaction to the PDZ domains of the 
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scaffolding/adaptor proteins (46). Claudins can be divided by phylogeny in eight subgroups or 

four major clusters: cluster 1 (subgroups A and B) claudin-3 -4, -5, -6, -9 and 8; cluster 2 

(subgroups D and E) claudin-1, -7, -19, -2, -14, -20; cluster 3 (subgroup F) 

claudin-10, -11, -15, -18, and cluster 4 (subgroups C, G and H) claudin-

21, -22, -24, -12, -16, -25, -23, -26, and -27 (47).  

Barrier- and pore-forming claudins 

Claudins are the ones responsible for the regulation of transport through the paracellular 

pathway and for that reason can present properties for preventing transport (barrier) or promoting 

transport (pore) of ions and water. The pore-forming claudins can be divided into cation 

permissive: claudin-2, -10b and -15,-16 and -21 and anion permissive: claudin-10a and claudin-

17 (48–50). The barrier-forming claudins are claudin-1, -3, -4, -5, -6, -8, -9, -11, -14, and -18 (50). 

TJ are ubiquitous in epithelial tissues and, consequently, claudins. A different set of claudins 

is found in the various epithelial tissues of the human body and they described in table 1.1. 

Table 1.1 

Table 1.1. Distribution of claudins by organ   

Organ Claudins Reference 

Choroid plexus 1, 2, 5, 11 (51–53) 

Cochlea 1, 2, 3, 8, 9, 10, 

11, 12, 14, 18 

(54) 

Distal respiratory tract 3-5, 7, 8, 15, 18-1 (52,55,56) 

Epidermis 1, 3, 4, 5, 7, 8, 11, 

12, 17 

(57)(58) 

Epididymis 2, 4, 5, 7, 10 (59) 

Exocrine pancreas 1-5, 7 (60)(61) 

Eye  1, 4, 7, 10 (62) 

Gall bladder 1-4, 10, 7, 8 (63) 

Intestine  
1-5, 7, 8, 10, 12, 

15, 18, 20, 21, 23 
(64,65) 
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Kidney nephron Glomerulus 5, 6, 1 (66–68) 

Kidney nephron Proximal tubule 2, 10a, 17, 6, 9 (48,49,66,69,70) 

Kidney nephron Upper thin descending limb 2 (66,70) 

Kidney nephron Lower thin descending limb 7, 8 (71) 

Kidney nephron Thin ascending limb 3, 4, 16, 19 (66,72) 

Kidney nephron Thick ascending limb 
3, 10a, 10b, 16, 

18, 19 
(49,66,72–75) 

Kidney nephron Macula densa 10 (48) 

Kidney nephron 
Distal tube, connecting tubule 

and collecting duct 
7, 8, 10 (48,71,76) 

Kidney nephron Collecting duct 
3, 4, 7, 8, 10a, 

10b, 14, 18 
(48,49,66,71,73,77) 

Liver  1-3- 5-9, 14 (61,78–80) 

Mammary gland 1-5, 7, 8, 15, 16 (81–84) 

Proximal respiratory tract 1, 3-5, 7, 10, 18 (55,56) 

Retinal pigment epithelium 3,10, 19 (85) 

Ovary 1, 5 (86) 

Prostate 1, 3, 4, 5, 7, 8, 10 (87) 

Salivary gland 
1, 2, 3, 4, 7, 8, 10, 

12 
(88–90) 

Seminiferous tubule 3, 5, 11 (52)(91) 

Stomach  3, 4, 5, 12, 18, 23 (55,92,93) 

Taste bud  4, 6, 7, 8 (94) 

Urinary bladder  4, 8, 12 (95) 

 

TJ-associated MARVEL proteins 

Occludin  

Occludin was the first described TJ integral protein (96), however, its function in the TJ is 

not yet known. It has four transmembrane domains, two extracellular loops, short N-terminal and 

long C-terminal region. The C-terminal region can bind to the MAGUK family proteins ZO-1, ZO-2 



23 
Gene expression analysis to study celiac disease and colitis-associated cancer 

 
and ZO-3 as well as F-actin (97). Even though being expressed in all epithelial TJ, occludin knock-

out mice do not present barrier impairment (98). 

MARVEL D3 

MARVEL D3 (MD3) occurs in two isoforms: MD3-1 and MD3-2 and was the last MARVEL 

protein described. It also has four transmembrane domains; however, the C-terminal region does 

not bind to ZO-1 in contrast to occludin and tricellulin. MD3 co-localizes with occludin and ZO-1, 

however, it is not essential for TJ formation and barrier function (99).  

Tricellulin 

As mentioned above, tricellulin (MARVEL D2) participates in the tricellular TJ, forming the 

central tube. Overexpression of tricellulin increases transepithelial electrical resistance (TEER) 

and its down-regulation results in impaired barrier function (100,101). 

Junctional adhesion proteins (JAMs) 

There are three JAM proteins: JAM-1, -2 and -3 (also called JAM-A, -B and -C) all around 

40 kDa. They possess a single transmembrane domain and an extracellular region whose folding 

resembles an immunoglobulin. They are, in fact, members of the immunoglobulin superfamily; 

play an important role in TJ assembly and localize in the TJ laterally to the claudins (102).  

Scaffold proteins 

The TJ scaffold proteins belong to the MAGUK family and includes ZO-1, -2 and -3. They 

are very large proteins and present three PDZ domains, which is important for binding membrane 

proteins; one Scr homology 3 (SH3) and a guanylate kinase domain, all of them important for the 

assembly and homeostasis of the TJ (103). They mediate the interaction between the TJ structure 

and its transmembrane proteins and intracellular structures and signaling molecules for the 

regulation of TJs and are essential for efficient TJ assembly and tricellulin localization at the 

tricellular TJ (104). 
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Tight junctions of the intestine 

The expression of claudins has been thoroughly assessed in mouse and rat intestines. The 

most expressed claudins are 2, 3, 7 and 15 and only 6, 16, 19, 22 and 24 were not detected (64). 

Many claudins present regional distribution throughout the intestine. Claudin-8 is more 

expressed in the colon, conversely, claudin-15 is more expressed in the duodenum. Claudin-2 

only appears in deep crypts. Claudins-2, 8, 10, 12, 15 and -18 seemed to be restricted to the TJ, 

whereas 1, 3, 4, 5 and 7 were also found at the basolateral membrane (64) 

THE INTESTINAL IMMUNE SYSTEM 

The intestine harbors the largest compartment of the human immune system, presenting 

both adaptive and innate immunity. It is constantly exposed to antigens from the microbiome and 

the diet and it is also the entry point for many pathogens into the organism. The adaptive immune 

response is located in the gut-associated lymphoid tissue (GALT) and the draining lymph nodes, 

whereas the innate immune cells are widespread throughout the lamina propria and epithelium 

(105). 

Organized lymphoid structures 

The GALT are the mean lymphatic organs in the mucosa and submucosa of the intestine 

and are composed of lymphoid aggregates surrounded by a “follicle-associated epithelium” with 

M cells, which transports antigens from lumen to the dendritic cells at the subepithelial dome 

(SED). The GALT also includes smaller lymphoid aggregates that are collectively termed isolated 

lymphoid tissues (ILTs) (106).  

Peyer’s patches are the best characterized GALT structures and are located on the small 

intestine. They consist of numerous B cell follicles surrounded by smaller T cell areas. They are 

not encapsulated and always contain germinal centers (107). ILTs are microscopic structures 
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containing germinal centers and primarily consisting of B cells without a defined T cell zone. The 

human intestine contains approximately 30000 ILTS (108) 

Effector cells 

The effector cells in the lamina propria are very diverse, consisting of B cells, T cells and 

numerous innate immune populations, including dendritic cells, macrophages, eosinophils, and 

mast cells.  

Lamina propria T cells 

There are proximately twice as more CD4+ than CD8+ T cells in the intestinal lamina propria 

and since most of them present effector memory characteristics, they are believed to be originated 

in the thymus and primed in different secondary lymphoid organs before homing to the intestine 

(109). The repertoire of T cells in the lamina propria is very diverse, containing IL2+, IL2+IFNγ+, 

IFNγ+, IL-17+, forkhead box P3 (FOXP3)+ IL-10-producing regulatory T cell (TReg) and FOXP3- 

Treg type 1 (TR1) cells. IL-10 and IL-17 producing cells seem to be more present in the colon 

(110). 

B cells 

Intestinal lamina propria contains a large number of plasma cells increasing to the distal 

end of colon in number and in proportion of IgA secreting cells from 75% in the duodenum to 90% 

in the colon. The rest of them secrete IgM. The production of secretory IgA (SIgA) is dependent 

of the presence of microbiota and polymeric Ig receptor (PIGR) expression, which transports the 

SIgA to the lumen (111) 

Innate lymphoid cells 

There are three types of ILCs: ILC1, ILC2 and ILC3. ILC1 is expressed along the small and 

large intestines in equal proportions, whereas ILC2 is not described in the colon and ILC3 

proportion is higher in the colon (112). ILC2 function is strongly influenced by circadian rhythm-
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dependent feeding cycles, which are controlled by the hormone vasoactive intestinal peptide 

(113). Most of the ILC3 cells produce IL-22 and express the NKp46 receptor and are found in the 

ILTs and colonic patches, but they also populate the lamina propria (114). 

Invariant T cells 

There are minor subsets of T cells that express invariant forms of the TCR including 

CD3+CD161hiCD8αα+ (or CD4-CD8-) mucosal-associated invariant T cells (MAIT cells), and 

invariant natural killer T cells (iNKT cells). MAIT cells were only described in human jejunum, 

accounting for 2-3% of lamina propria T cells. They produce cytokines and exert cytolytic activity 

upon recognizing bacteria infected cells (115). iNKT react to self-antigens and bacterial lipids, by 

recognizing glycolipids presented by the Major Histocompatibility Complex MHC class I-molecule 

CD1d (116). 

Mononuclear phagocytes 

Mononuclear phagocytes are macrophages and dendritic cells (DCs). The distinction of 

these two subtypes is sometimes questioned because they share many surface markers such as 

CD11c, MHC class II, CD11b and CX3C-chemokine receptor (CX3CR1) (117). 

Macrophages 

Macrophages are abundant in the intestinal lamina propria and fulfill an array of functions 

to maintain homeostasis such as phagocytosis of microorganisms and dead cells, production of 

mediators to promote tissue renewal and maintenance of T cells. They produce great amounts of 

IL-10, suppressing the immune response triggered by pattern recognition receptors (118) and 

promote survival of FOXP3+ TReg cells (119). 
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DCs 

There are two subsets of DCs in the lamina propria: the CD103+CD11b- and 

CD103+CD11b+. CD103+CD11b- play a role in the initiation of adaptive immune response by 

cross-presenting antigens to CD8+ T cells (120). 

Other innate cells 

Eosinophils 

Eosinophils can account for 30% of all myeloid cells and are believed to assist maintain the 

populations of CD103+ DCs, IgA+ plasma cells, and FOXP3+ Treg cells, through secretion of 

transforming growth factor β (TGFβ)-activating metalloproteinases (121). 

Mast cells 

Mast cells are found in healthy mucosa and submucosa of the intestine and secrete 

molecules that mediate barrier function, permeability, peristalsis, and vascular tone as well as 

interact with the enteric nervous system (122). 

DISEASES IN THIS STUDY 

Within the present thesis research was made on different autoimmune diseases of the 

intestine, celiac disease, and colitis-associated cancer (which involves the study of inflammatory 

bowel disease as well). On the first view, these diseases fall into two groups with only limited 

commonalities. However, recent research has uncovered the mucosal barrier as a central 

structure in the initiation of all three diseases.  

Celiac disease 

Celiac disease (CeD) is a T-cell-dependent immune-modulated disease that develops in 

genetically susceptible individuals upon gluten ingestion (123). Classically known to mainly affect 

the duodenum, the condition nowadays is regarded as a systemic malabsorptive disease 

presenting chronic diarrhea, abdominal pain, weight loss or failure to thrive, nutrient/vitamin 
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deficiency besides presenting extraintestinal manifestations ranging from neurological, ocular, 

dermatologic, oral, musculoskeletal, cardiovascular, pulmonary, renal, cardiovascular, hepatic, 

endocrine and reproductive manifestations (124). Prevalence for celiac disease worldwide is 

around 1,4% with Asia present the highest (1.8%) and South America, the lowest (1.3%) (125). 

An interesting fact is that CeD incidence and prevalence are increasing, as seen is studies which 

measured incidence overtime (126). CeD can develop at any age, but recent cohort studies 

reported that most patients develop CeD before 10 years of age (127). Prevalence rates are 

higher in females than in males (126), but it can be biased due to male patients being less likely 

to undergo biopsy examination than females, even though presenting CeD-related symptoms 

(128). 

Genetic predisposition to CeD is dependent on the expression of specific human leukocyte 

antigen (HLA)-DQ2 and/or HLA-DQ8 haplotypes in the membrane of antigen-presenting cells 

(129). However, they are not a sufficient cause for celiac disease development since they are 

expressed in virtually 40% of the general population (130). 

Gluten is a nomenclature that comprises the storage proteins of wheat, barley, rye, and 

other related grains. Of those, gliadins are the class of proteins that are most important etiologic 

factors of gluten-related disorders (131). Gluten proteins present high solubility in alcohols, due 

to their high glutamine and proline content, which also renders them resistant to complete 

digestion in the human intestine. Different gliadin peptides are formed as a result of this partial 

digestion being the immunogenic 33-mer (pp.57-89) known to induce a strong adaptive response, 

and the 25 AA peptide (pp. 31-35) reported to induce IL-15 expression in enterocytes and dendritic 

cells (132). 

Upon ingestion of gluten-containing food, the gluten peptides permeate the epithelial barrier 

and reach the lamina propria, where they are deamidated by the enzyme tissue-transglutaminase 
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2 (TG2), enhancing their affinity to the specific HLA haplotypes (133). Those are necessary for 

triggering the immune response by activating gluten-specific CD4+ T-cells with the immunogenic 

gliadin peptides. Competent gluten-specific CD4+ T-cells are a small population of 0.5%-2% of 

all intestinal CD4+ T cells found only in celiac patients (134) and upon activation, they promote a 

pro-inflammatory phenotype and go to the lamina propria where they initiate the immune response 

by secreting great amounts of IFNγ and IL-21 (135). Concomitantly, gluten- and TG2-specific B-

cells differentiate into plasma cells and produce antibodies against deamidated gliadin peptides 

(DGPs) and TG2, which are used in diagnostics as specific markers of CeD (135). 

Hallmarks of CeD include the positive serology for anti-TG2, anti- endomysium (EMA) and 

DGP antibodies; positive HLA-DQ2 or -DQ8 testing and the histological finding of villous atrophy 

and crypt hyperplasia that resolve with the adherence to a strict gluten-free diet (GFD), which is 

the only standardized treatment until now (131). Of notice, a percentage of patients does not 

respond to a GFD and present persistent malabsorption and villous atrophy even after 1 year of 

strict GFD; being, for that reason, regarded as refractory celiac disease (RCD) patients (136).  

The RCD patients are divided in two different categories depending on their population of 

IELs. One the one hand, RCDI are those who present an increased, but normal repertoire of IELs, 

with no T-cell receptor (TCR) clonality. On the other hand, RCDII patients present abnormal IEL 

population of more than 25% of CD103+ or CD45+ lacking surface CD3 or 50% of IELs expressing 

intracellular CD3ε but no CD8 and/or clonal rearrangement of the TCRγ chain (137). The RCDII 

patients are of special concern due to the increased risk of developing enteropathy-associated T-

cell lymphoma (EATL) a disease presenting 5-year overall survival rate of 44-58% (137). 

Barrier impairment in Celiac disease 

Epithelial barrier impairment in celiac disease is studied since the 1970s, when it was 

observed that patients with villous atrophy present increased permeability to disaccharides and 
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decreased permeability to monosaccharides (138–140). Moreover, macrostructural changes are 

also observed in the TJ network where celiac patients present fewer and discontinued TJ strands 

that can be recovered with a gluten-free diet (141). Around 50% reduction in TEER was observed 

in active celiac patients (142,143) as well as a partial recovery in gluten-free adherent patients 

(142,144). In the background of those structural and functional alterations there are molecular 

changes in celiac disease intestinal mucosa. Increased pore-forming claudins-2 and -15 together 

with diminution of protein content of ZO-1, occludin, barrier-forming claudins -3, -5 and -7 as well 

as membrane displacement of those proteins were reported in celiac patients samples (143,145). 

In addition, there is evidence for a correlation between an impaired polarization process and the 

molecular changes described above (144).  

The immune response in CeD also affect the barrier properties of the intestinal mucosa. To 

exemplify that, TNFα and IFNγ exposure also displace ZO-1, occludin, and E-cadherin from the 

plasma membrane of Caco-2 cells (145). Comparably, TGFβ prevents epithelial cells from 

polarizing correctly by inhibiting TJ assembly (143). Furthermore, the innate immunity in CeD 

disrupts the barrier by provoking apoptosis of epithelial cells through gliadin-induced IL-15 (146). 

IL-15 promotes the expression of MHC class I chain-related protein A (MICA) in epithelial cells 

and the survival of IELs presenting NKG2D receptor. IELs induce apoptosis in epithelial cells 

through interaction of MICA and NKG2D. Moreover, the innate immunity in CeD disrupts the 

barrier by provoking apoptosis of epithelial cells indirectly by IL-15. IL-15, whose expression can 

be triggered by gliadin fragments (147), on the one hand, promotes the expression of MICA in 

epithelial cells and, on the other hand, promotes survival of NKG2D-expressing IELs (137), which 

cause epithelial lysis through the interaction between the NKG2D receptor to the MICA molecule 

(147). 

These alterations point to a disturbance in the function of the TJ and even though they 

mostly disappear after GFD, the small remaining difference points to a genetic cause.  
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Evidence for genetic cause for barrier impairment 

The first study that pointed out for a primary cause for barrier impairment in celiac disease 

reported that the lactulose/mannitol ratio of healthy relatives of celiac disease patients is 

significantly higher than control patients’ (148). With the advent of genome wide association 

studies (GWAS) more non-HLA loci contributing to CeD risk were described (149,150). So far 39 

loci comprising 57 independent genetic SNP variants have been identified; however, around 80% 

of the variants are located in noncoding regions of the genome, suggesting the genetic variation 

impacts transcription regulation rather than the gene sequence (151). Four of those loci were 

predicted to have an impact in cell-cell adhesion, including the genes LPP and C1orf106 (151). 

Lipoma preferred partner 

Lipoma preferred partner (LPP) was described in a subset of lipomas, one of the most 

common mesenchymal tumor types in humans and characterized for having translocations 

involving chromosome segment 12q13-q1, as a preferred fusion partner for HMG1C, a member 

of the high mobility group (HMG) protein gene family. It contains a proline-rich domain in the N-

terminal region, a leucine-zipper and three C-terminal LIM domains, indicating it should the 

categorized as a LIM family protein (152). After its characterization, LPP has been reported to 

mostly localize in focal adhesions and possess a nuclear exportation signal (NES) sequence and 

the ability to act as a transcription factor (153). LPP was also identified among proteins proximal 

to E-cadherin. Despite having a PDZ domain, it is not dependent of ZO-1 to localize to cell 

contacts. LPP knock-out cells have weaker E-cadherin adhesion contacts and had an impaired 

barrier re-establishment as evaluated by a calcium-switch assay (154). LPP was found to be a 

risk factor for celiac disease in a genome wide association study (GWAS) (155) and also has a 

role in cancer metastasis progression (156).  
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C1orf106 

C1orf106 (INAVA) was found in GWAS as a risk factor for celiac disease, ulcerative colitis 

(157) and Crohn’s disease (158). It is highly expressed in IECs, where it co-localizes to ZO-1 at 

the TJ. C1orf106 function is thought to be the regulation, by inducing ubiquitination and 

degradation, of the cytohesins 1 and 2 (159,160). Cytohesins are GEFs (guanine exchange 

factor) for the GTPase ADP-ribosylation factor 6 (ARF6), which in turn promotes internalization of 

E-cad e AJ disassembling (161). Caco-2 cells which were knocked-down of C1orf106 present 

lower TEER and increased permeability to lucifer yellow (160). In addition, C1orf106 KO in mice 

rendered mice more susceptible to barrier impairment after TNFα exposure (159). 

Inflammatory Bowel Disease 

Inflammatory bowel disease (IBD) comprises a spectrum of diseases characterized by a 

chronic inflammatory process in the gastrointestinal tract, being Crohn’s disease (CD) and 

Ulcerative colitis (UC) the two broadest subtypes of IBD. Epidemiology of IBD varies greatly 

worldwide. Both diseases clinically present abdominal pain and diarrhea. UC often causes rectal 

bleeding more than CD. CD patients often have weight loss and perianal disease (162). 

Diagnosis of IBD often requires colonoscopy examination, with biopsy acquisition for 

histologic examination. Laboratory exams that assist in the diagnosis are erythrocyte 

sedimentation, (ESR), serum C-reactive protein (CRP) and fecal calprotectin (162). High 

calprotectin correlates with histologic grade of mucosal inflammation with a sensitivity of 94% and 

a specificity of 64% (163). 

Ulcerative colitis 

UC presents a greater incidence in Europe, ranging from 0.97 to 57.9 per 100000 and 

greater prevalence in Europe, from 2.42 to 505 (164). It is characterized by a mucosal chronic 

inflammation that starts in the rectum and progresses up into the colon in a continuous way (165).  
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The pathogenesis of UC is not completely understood, nonetheless, it is believed to develop 

through a combination of genetic and environmental factors (166). Around 260 risk loci for UC 

were found in whole genome sequencing experiments (167–169). 67% of which are shared with 

CD (170) and the strongest genetic signals coming from HLA regions (171). Regarding 

environmental factors, UC incidence is rising in industrialized countries and urbanization, 

exposure to pollution and changes in diet are considered contributory factors (172). Interestingly, 

smoking is protective against UC and the disease only develops after the person has quitted 

smoking (173). 

Gut microbiota in UC is altered with depletion of protective bacteria (174).The epithelial 

barrier is thought to also play a role in the disease pathogenesis, especially regarding impaired 

production of antimicrobial molecules by Paneth and goblet cells (175). Inflammation also plays 

an important role in barrier dysfunction, as the secretion of TNFα, IFNγ and IL-13 affect intestinal 

barrier function (176,177). 

The immune response in UC is classically described as a TH2 response (178), however, 

some findings state otherwise, for example, IL-23 being largely expressed in UC mucosa (179), 

the increased numbers of Th17 and Th9 lymphocytes and the fact that anti-IL-23 drugs such as 

mirikizumab and ustekinumab are effective in the treatment of UC (180,181). 

Crohn’s disease 

CD incidence is greater in Oceania, ranging from 12.9 to 29.3 and prevalence in Europe 

ranging from (164). Different from UC, CD is characterized for causing transmural inflammation 

and by skip lesions that can be found anywhere In the GI tract (182). Similar to UC, CD is thought 

to develop through a combination of genetic and environmental factors. 

There are around 200 risk loci described for CD (170,183), being the most important NOD2, 

IL-23, HLA ATG16L1, IRGM, and LRRK2/MUC19 SLC22/OCTN on 5q31 and TNF (184). Among 
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the environmental factors associated to CD risk are smoking, oral contraceptive use, antibiotics 

and anti-inflammatory drugs, urban development (185,186). 

CD is treated with corticosteroids, mostly for symptom management; immunomodulators 

and nowadays mostly with biologicals against TNF, integrins and IL-12 (187–189). 

Colitis-associated cancer 

IBD presents as its most deadly complication the development of intestinal cancer, 

specifically called colitis-associated cancer (CAC). This type of cancer is relatively rare, incidence 

of 1,7 in all IBD patients (190), representing 2% of all cancer cases, and it is associated with 

significant morbidity and mortality reaching up to 15% of cases. The risk factors associated with 

CAC are the age at onset of IBD, duration of disease, anatomic extent, histological changes, 

primary sclerosis cholangitis (PSC) and family history of cancer, which is the only independent 

factor on this list. Regarding the age of onset, patients that develop IBD before reaching 15 years 

of age have 40% of risk, whereas this risk drops to 25% in those who developed it between 15 

and 39 years. The duration of IBD is a very important risk factor because it is also determinant for 

the surveillance interval and it is calculated to be around 8% for both UC and CD after 20 years 

of disease. The anatomic extent is especially important for UC, since CD can present patchy 

lesions in the whole extension of the gastrointestinal tract, whereas UC is restricted to the colon. 

In UC, the disease is denominated extensive when it extends beyond the splenic flexure and 

those patients have a higher risk of developing CAC (incidence = 7); left-side UC is restricted to 

the descending colon and presents an intermediate risk for CAC (SIR= 1.7), finally, 

proctosigmoiditis is restricted to the end of the colon and has low to inexistent risk of developing 

CAC (190). For CD, any colon involvement accounts for an SIR of 2. Both diseases in studies 

made in referral centers, extensive colon involvement accounts for an SIR of 18.2 (190). 

Histological changes are an important risk factor as well as diagnostic finding for CAC, the more 

extensive or multiple, the greater the risk of developing or even determine an initial stage of CAC. 
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PSC is a hepatic disease intrinsically associated with UC and its presence accounts for 4-fold 

increased risk for cancer development. Finally, family history features an independent factor for 

all cancer types as well as for CAC. 

Conversely from sporadic colorectal carcinoma (CRC), CAC does not progress from an 

adenoma to carcinoma but rather from a dysplastic lesion, which are usually flat lesions and often 

difficult to identify during colonoscopy. Dysplasia is present in 75 to 90% of CAC patients, 

however, CAC may occur without a prior history of dysplasia. Besides, some lesions are only 

identified in histological examination and for that are called microscopic dysplasia or invisible 

dysplasia. For that reason, IBD patients undergo a strict surveillance protocol to diagnose CAC 

as early as possible. This surveillance is done with periodic colonoscopies and collection of 

random biopsies every 4 cm of colon up to 30-40 samples that are histologically examined 

afterwards. When a visible lesion is identified, it is immediately resected. When there is suspicion 

of a lesion, or when an invisible lesion is detected in histology, it should be followed by a 

chromoendoscopy, in which a fluorescent dye is locally injected to improve the detection of 

lesions. High-grade invisible dysplasia, multifocal low-grade dysplasia or unresectable lesions are 

indications for colectomy, which is the standard treatment for CAC (190).  

Inflammation-driven carcinogenesis 

Tumor progression differs in between CRC and CAC not only in the type of initial lesion, but 

also in the chronology of genetic alterations and the fact that the chronic inflammatory process 

contributes to tumorigenesis. On the one hand, CRC tumor progression is very well described in 

a model of sequential somatic alterations beginning with APC mutation, followed by microsatellite 

instability and KRAS mutation and finally presenting p53 mutation/allelic deletion in its final stage 

(191). On the other hand, even though microsatellite and chromosomal instability also play a role 

in CAC as well as KRAS mutation, CAC often does not present APC mutation, or it is only 

observed in the final stages of progression. Moreover, p53 mutation is an early event occurring in 
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85% of cases and p53 allelic deletion occurs in 50% of cases and it is known to sustain activation 

of NFκB aggravating the extent of colitis and accelerating the progression to high grade dysplasia 

and carcinoma (192). Finally, the inflammatory milieu of IBD is complex and inflammatory 

cytokines such as interleukin (IL)-6, IL-11 and TNFα were shown to contribute to colorectal cancer 

tumorigenesis (193–195). Among the cytokines that are secreted in the microenvironment and 

influence the fate of immune and epithelial cells is osteopontin (OPN), which is a secreted 

glycoprotein that acts as a cytokine and promotes differentiation of immune cells such as 

macrophages and dendritic cells (191). 

OSTEOPONTIN 

Human OPN is a glycoprotein important for many biological processes, such as bone 

homeostasis, angiogenesis, cell migration, inflammatory process, and tumor progression (196). 

It is expressed by osteoclasts, osteoblast, immune cells such as DCs, NKs, T and B cells as well 

as an array of epithelial cells from the intestine, kidney, bladder, breast, lung, gallbladder and 

different cell populations from different organs such as Kupfer cells of the liver, islet cells of the 

pancreas, Leydig cells of the testis, Hoffbauer cells from the placenta, follicular cells of the thyroid 

et cetera (197). 

Structure and function 

OPN, which is also known as Secreted Phospho-Protein 1 (SPP1), Bone Sialoprotein 1 

(BSP-1) and Early T-lymphocyte Activation 1 (ETA-1), was first identified as a component of bone 

extracellular matrix (198). It is a member of the SIBLING (Small Integrin-Binding Ligand, N-linked 

Glycoprotein) family and it is codified by the SPP1 gene, which is a single-copy gene with 7 exons, 

mapped in a primary culture of human bone cells to chromosome 4q13 (199). The product of this 

gene is a ~34 kDa protein that contains several domains which are highly conserved among 

species such as the main integrin binding motif GRGDS (or only RGD) (199), transglutaminase-

reactive glutamines (200), the thrombin cleavage motif SVVYGRL, calcium binding sites and 2 
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putative heparin binding domains. OPN binds to integrin αvβ3 (201), αvβ1, αvβ5 (202), CD44 

(203), α8β1 (204), α9β1 through the SVVYGRL domain (205), as well as α4β1 and α4β7 (206). 

α4β1 also binds a different domain of the N-terminal OPN (207). αvβ6 binding depends on amino 

acids upstream of the RGD and α5β1 binding depends on both RGD and amino acids downstream 

of it (208). 

Isoforms 

OPN exists in a variety of splicing isoforms and posttranslational modifications, e.g., 

phosphorylation, glycosylation, and cleavage.  

Soluble OPN 

 OPN-a Is the full-length protein, OPN-b lacks exon 5 which contains phosphorylated Ser 

and Thr; and OPN-c lacks exon 4, which contains the transglutaminase binding sequence and 

due to that cannot form polymeric complexes (209). Those isoforms present different expression 

patterns in different tissues and even prognostic value for some cancers. For example: OPN-c is 

detected in breast cancer cells, but not in the healthy surrounding tissue; conversely, OPN-a 

and -b are found in both (210). In addition, OPN-c increased expression correlates with tumor 

grade and poor prognosis (211). In pancreatic cancer, OPN-b is associated with poorer prognosis 

and OPN-c with metastasis (212). OPN-c is used a biomarker to distinguish between prostate 

cancer and prostate benign hyperplasia (213). Finally, OPN-a and -c induce invasiveness in 

glioma cells, but not OPN-b (214). 

Intracellular OPN 

iOPN It is a truncated form of OPN lacking the signal sequence (215). It has been shown to 

play important roles in immune cells. NK cells lacking iOPN present impaired expansion and 

increased apoptosis (216). In follicular T helper cells iOPN supports differentiation by inhibiting 

Bcl-6 degradation (217). 
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PTM 

Among the posttranslational modifications suffered by OPN, cleavage by thrombin is the 

most largely studied and has been shown to separate the integrins and CD44 binding domains 

(218). Thrombin-cleaved OPN N-terminal fragment binds to integrins αvβ3, αvβ5, α9β1 and α4β1 

to promote cell adhesion (208). On the other hand, the C-terminal fragment binds to CD44v6 and 

v3 to promote invasion and tumorigenesis (219). OPN is also cleaved by MMP3 and MMP7, which 

enhances binding to integrins β1 and inducing migration (220). 

Osteopontin signaling 

OPN is reported to activate several signaling pathways in different cells (Figure 1.2). By 

interaction with CD44, it activates PI3K/AKT pathway through phospholipase C and regulates 

gene expression in immune cells. Proliferation signals from OPN usually are associated with 

interaction with EGFR, for example: in prostate cells, OPN induces proliferation by 

EGFR/PI3K/AKT (221). Another example is OPN induction of cell motility in breast cancer cells 

by PI3K/AKT/NFκB production of urokinase type plasminogen activator (222). 

Role of OPN in inflammation 

OPN regulates several monocyte/macrophage functions such as adhesion, migration, 

differentiation, and phagocytosis. OPN inhibits macrophage apoptosis by interaction with integrin 

α4 and CD44 (223,224). In addition, it regulates DC migration by CD44 and αv, inhibits apoptosis 

and induces Th1 polarization (225,226). In T cells, it induces Th1 and Th17 polarization by 

inducing the expression of IFNγ and IL-17A (227). OPN induces neutrophil migration through ERK 

and p38 (228). Moreover, in NK cells, it induces expansion and differentiation by mTOR activity 

(229). 
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Figure 1.2 

Figure 1.2. Osteopontin signaling pathways. Osteopontin binds to Integrin αvβ3 activating AP1 through 

nuclear factor-inducing kinase (NIK)/extracellular signal-related kinase (ERK) and mitogen activated protein 

kinase kinase1 (MEKK1)/c-Jun N-terminal kinase 1 (JNK) signaling pathways. Transactivation with 

epidermal growth factor receptor (EGFR) promotes phosphorylation of ERK and activation of AP1. Upon 

binding to CD44, OPN activates anti-apoptotic signals in tumor cells through phospholipase C-γ 

(PLCγ)/protein kinase C (PKC)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Akt is also involved in 

activation of HIF1α, leading to angiogenesis via VEGF. Image created with BioRender.com. 
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Role of OPN in tumorigenesis 

Its role in cancer progression has been thoroughly studied, mostly in solid tumors. OPN is 

increased in many types of cancer, such as breast, prostate, squamous cell carcinoma, 

melanoma, osteosarcoma and glioblastoma (230). OPN promotes tumorigenesis in many 

different ways: it was reported to promote invasion in melanoma (231); growth in breast cancer 

through the up-regulation of hypoxia-inducible factor-1 alpha (HIF1α) (232). OPN levels correlate 

with poorer prognosis in colorectal cancer (233). Of notice, there is a special interest in the 

promotion of epithelial to mesenchymal transition, which confers the migratory and invasive 

capabilities to epithelial cells and is crucial for solid tumors to metastasize. 

EPITHELIAL TO MESENCHYMAL TRANSITION 

EMT is a natural process in embryogenesis, crucial for the neural crest migration (234), and 

in wound healing (235), however, in cancer it means a greater concern for treatment and 

prognosis. In the process, epithelial cells lose their epithelial characteristics, such as apical-

basolateral polarization and cell-cell and cell-extracellular matrix junctions and acquire a flat 

morphology and migratory capabilities as well as produce enzymes that degrade the ECM, 

contributing to the invasion of tissues. These changes are the consequence of several 

transcriptional changes regulated by a set of transcription factors: SNAI1, SNAI2, TWIST1, 

TWIST2, ZEB1 and ZEB2 that are categorized as EMT-core genes. These transcription factors 

suppress the transcription of epithelial genes such as E-cadherin, EpCAM, and tight junction 

genes and induce the expression of mesenchymal genes such as N-cadherin, vimentin, 

fibronectin and metalloproteinases (236). SNAIL directly suppresses expression of E-cadherin by 

binding to its promoter (237). ZEB1 is also known for repressing E-cadherin expression and 

inducing vimentin expression (238). Furthermore, SNAIL activates expression of MMPs, 

facilitating the degradation of the basement membrane and invasion (239). 
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Role of OPN in EMT 

As mentioned above, OPN is an inducer of EMT in cancer. In breast cancer, for example, 

OPN was shown to increases the transcription factors TWIST, SNAIL and SLUG. OPN promotes 

TWIST phosphorylation, which in turn binds to Bmi-1 and causes EMT (240). Also in 

hepatocellular carcinoma OPN activates TWIST, promoting invasion and decreasing cell-

adhesion (241). Activation of TWIST by OPN occurs through expression of HIF1-α, which in turn 

binds to the TWIST promoter and activates its transcription, a phenomenon observed in ovarian 

and breast cancers (232,242). Apart from affecting cancer cells directly, OPN is also reported to 

influence the tumor microenvironment, enhancing metastasis (243). 
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2 AIM 
TRACKING A PRIMARY BARRIER DYSFUNCTION IN CELIAC DISEASE 

  It is known that CeD impairs barrier function, and that this impairment is not completely 

explained by the inflammatory process only, since treated patients may still present some barrier 

impairment and healthy relatives of celiac patients also present some impairment in barrier 

function. Other findings are the risk loci presenting genetic polymorphisms associated with CeD 

development and cell-adhesion in LPP and C1orf106 genes. In an attempt to study 

mechanistically the impact of those two genes in barrier impairment, we used knock-out cell 

models for both genes and measured barrier function parameters such as TEER, TJ protein 

western blot, calcium switch. In addition, to expand our findings to patients’ samples, we 

performed protein analysis through Western Blot of LPP and C1orf106 in celiac patients. 

 

THE ROLE OF OPN IN THE PATHOGENESIS OF CAC 

 CAC pathogenesis is different from sporadic CRC and not as well understood. CAC 

develops in IBD patients and the immune response is known to contribute to tumorigenesis. Thus, 

we examined the RNA of CAC patients’ samples using Nanostring for the human immunology 

panel plus a list of custom genes. The results pointed out to OPN being the most upregulated 

gene in CAC and we decided to investigate it further. We analyzed OPN by immunohistochemistry 

to learn in which cell compartment it was found in the tissue as well as proteins putatively involved 

in OPN signaling. Since one of the most studied functions of OPN in tumorigenesis is the induction 

of EMT, we investigated whether there were signs for it in CAC patients’ samples in the Nanostring 

analysis as well as using immunohistochemistry. At last, we used epithelial intestinal cell lines 

HT29/B6 and T84 as models to study the impact of OPN in cells. After incubation of cells with 

human recombinant OPN, we performed western blot for phosphorylated proteins to determine 

which signaling pathway was activated by OPN. In addition, immunofluorescence staining was 
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performed to analyze NFκB translocation. RT-qPCR was performed to analyze the expression of 

EMT-related genes and, finally, we performed an RNA-Seq analysis on the cell lines exposed to 

OPN to have a general idea of the changes triggered by OPN. 
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3 MATERIALS AND METHODS 
REAGENTS 

Human recombinant OPN was purchased from R&D Systems Inc. (Minneapolis, USA), TNFα, 

TGFβ1 and IFNγ from Peprotech (Cranbury, USA), while IL-22 and IL-15 from BioLegend (San 

Diego, USA). 

CELL CULTURE 

Caco-2 cells were grown in MEM AQmedia (Invitrogen, Thermo Fisher Scientific Inc, Waltham, 

USA)  supplemented with 15% fetal calf serum (FCS) (Gibco, Thermo Fisher Scientific Inc., 

Waltham, USA) and 1% penicillin/streptomycin (Gibco, Thermo Fisher Scientific Inc., Waltham, 

USA); T84 cells were kept in DMEM/Ham’s F12 (Corning Inc., Manassas, USA) supplemented 

with 10% FCS (Gibco, Thermo Fisher Scientific Inc., Waltham, USA) and 1% 

penicillin/streptomycin (Gibco, Thermo Fisher Scientific Inc., Waltham, USA) antibiotics and 

HT29/B6 cells were kept in RPMI (Gibco, Thermo Fisher Scientific Inc., Waltham, USA) 

supplemented with 10% FCS and 1%antibiotics. All cells were kept in an incubator at 37° C 

and 5% CO2 (Heraeus, Hanau, Germany). 

ESTABLISHMENT OF LPP AND C1ORF106 KNOCK-OUT CACO2 CELL LINES 

The Knock-out of LPP and C1orf106 genes in Caco-2 cells and the genetic characterization of 

the clones were done in the Department of Genetics of the University of Groningen by our 

collaborators Dr. Iris Jonkers, Dr. Sebo Withoff, Renée Moerkens and Joram Mooiweer. 

Knocking-out of the LPP and C1orf106 genes in Caco-2 cells was achieved by using 

CRISPR/Cas9-mediated genome engineering. For that, the 20-nt sgRNA sequence containing 

Cas9-gRNA complex and a GFP selection marker was cloned into the pSpCas9(BB)-2A-GFP 

(PX458) plasmid (a courtesy of Feng Zhang, Addgene plasmid, Watertown, USA). Successful 

introduction of sgRNA into the plasmid was confirmed by Sanger sequencing. Following 
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validation, the PX458-sgRNA plasmid and PX458 empty plasmid (control) were nucleofected 

into Caco2 cells according to the manufacturer’s protocol (Lonza, Basel, Switzerland). Briefly, 

cells (1*106) resuspended in nucleofector solution were electroporated with 2 µg plasmid and 

seeded in culture plates. The guideRNA sequences for LPP and C1orf106 knockout are shown 

in Table 3.1. 

Table 3.1 

Table 3.1. guideRNA sequences for CRISPR/Cas9-mediated knockout 

Target gene Exon sgRNA sequence 5’ to 3’ 

C1orf106 3 Sense: TGCAGTGCACAAGCAGCAGA  
Antisense: TCTGCTGCTTGTGCACTGCA 

LPP 3 Sense: CCACCCAAAAAGTTTGCCCC 
Antisense: GGGGCAAACTTTTTGGGTGG 

 

For Caco2 Empty Control D4, D6, E5, F10: 48 hours post nucleofection, GFP-positive cells 

were single-cell sorted using a SH800S cell sorter (Sony Biotechnology, San Jose, USA) and 

grown in separate wells in a 96-well culture plate.  

For Caco2 LPP and C1orf106 knock-out cell lines and control line Empty Control B4: 48 hours 

post nucleofection, GFP-positive cells were sorted using a SH800S cell sorter (Sony 

Biotechnology, San Jose, USA) and cryopreserved in bulk. GFP-positive cells were thawed, 

grown, and seeded as single cells using SH800S cell sorter (Sony Biotechnology, San Jose, 

USA) or diluted in maintenance media, plated, and sequestered as single cells using PYREX® 

cloning cylinders (Corning Inc., Manassas, USA). Cloning cylinders were only used in 

generating Caco2 knock-out line C1orf106 Cyl2. 

From residual unsorted cell suspension, DNA was isolated, the CRISPR/Cas9-targeted region 

of the genome was amplified by PCR and the efficiency of CRISPR/Cas9-mediated gene 
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disruption was analyzed by T7 Endonuclease I mismatch detection assay. The sgRNA and 

primer sequences are provided in Supplementary Table 3.2. 

 

Table 3.2 

Table 3.2. Primers to test genomic disruption 
Target Primer sequence 5’ to 3’ 

gRNA target site in C1orf106 Forward: ACAAGAAAGAAGAGGCTTAT 
Reverse: GACCTCTTTCTGATCACTTC 

gRNA target site in LPP Forward: CTTTATCAGGATGCATTTAG 
Reverse: GAGTTTGAATAAGCTGCTAA 

 

CHARACTERIZATION OF GENOMIC SEQUENCE OF LPP AND C1ORF106 
KNOCK-OUT CACO2 CELLS 

Single cell-derived clones were grown to confluency in 96-wells plates and DNA was isolated. 

The CRISPR/Cas9-targeted region of the genome was amplified by PCR and disruption of 

target genes was validated by Sanger sequencing. As the Caco2 cell line is tetraploid, 

additional sequencing was performed to validate target gene disruption on the individual 

chromosomes. Briefly, the targeted genomic region was amplified by PCR for each Caco2 cell 

clone, PCR products were purified using the Qiaquick PCR purification kit (Qiagen, Hilden, 

Germany). Purified PCR products were cloned into competent E. coli cells using the CloneJET 

PCR Cloning kit (ThermoFisher Scientific Inc., Waltham, USA), after which each E. coli cell 

harbors one purified PCR product that is derived from a single chromosome. E. coli cells were 

plated on agar plates containing Ampicillin for plasmid selection and grown overnight. For each 

Caco2 knock-out clone, 12 E. coli colonies were picked and grown in suspension culture in LB 

medium. The next day, plasmids were isolated and purified using the GeneJET Plasmid 

Miniprep Kit (ThermoFisher Scientific, Waltham, USA). The PCR product insert in the plasmid 

was amplified by PCR and sequenced by Sanger sequencing, to validate gene disruption in 
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individual chromosomes of each knock-out line. Results of sequencing individual 

chromosomes are shown in Table 3.3. 

TRANSEPITHELIAL ELECTRICAL RESISTANCE MEASUREMENTS 

Caco-2 cells were plated in 12 mm millicell inserts (Millipore) with 4 µm pore. TEER was 

measured using chopstick electrodes in different days for up to 19 days. Total resistance was 

corrected for the resistance of the empty inserts and the average of 8 biological replicates per 

time-point was obtained for each individual experiment. Statistical analysis was performed in 

Graphpad Prism v5 using the 2-way ANOVA test with Bonferroni post-test comparing all clones 

to the control clones EC B4 and EC D4. 

PROTEIN EXTRACTION FROM CELL LINES 

Cells were washed with cold PBS + and then lysed using total lysis buffer (10 mM Tris-Cl 

pH7.5; 150 mM NaCl; 0.5% Triton X-100; 0.1% SDS) supplemented with phosphatase and 

protease inhibitors. Cells were harvested using a cell scraper, transferred to a microcentrifuge 

tube, and then left on ice for 1h, being vortexed every 10 min. Cells were then centrifuged at 

12000 g at 4°C for 10 minutes. The supernatant was collected to a new microcentrifuge tube 

and kept at -20° C. 

PROTEIN EXTRACTION FROM TISSUE SAMPLES 

Biopsies were placed in glass Teflon dounce homogenizers on ice and lysed with either total 

lysis buffer (10 mM Tris-Cl pH7.5; 150 mM NaCl; 0.5% Triton X-100; 0.1% SDS) supplemented 

with protease and phosphatase inhibitors. The samples were homogenized with the dounces 

until no fragments could be seen, then were transferred to syringes and passed through 0.8 

mm needles for 10 times and then for insulin 0.3 mm needles for 10 times to further 

homogenize the tissue. Samples were centrifuged at 12000 g and 4°C for 10 minutes. 

 



48 
Gene expression analysis to study celiac disease and colitis-associated cancer 

 

 

 

Table 3.3 

Table 3.3. Characterization of genomic sequence 

Clone 

Total # 
PCR 

products 
sequenced 
(out of 12)* 

Total # WT 
alleles 

sequenced 

# different 
alleles 

sequenced 
(out of 4) 

Allele 
1 

Allele 2 
Allele 

3 
Allele 4 

LPP B5 7 0 3 Del. 
G 

Del. T; 
Transition 

G to A 

Del. 
TG 

 

LPP B11 
 

8 0 2 Del. 
G 

Del. TG   

C1orf106 
Cyl 2 

5 0 3 Del. 
100 
bp 

Del. C Ins. T  

C1orf106 
C2 

7 0 4 Del. 
100 
bp 

Del. C Ins. T Ins 
GTGCA 

* Result of sequencing an allele on one of the four chromosomes (PCR product) 12 times via subcloning 
in E. coli. The lower numbers are due to sequencing an empty vector that self-closed without a PCR 
product insert. 

 

WESTERN BLOT 

Protein lysates were quantified using the Pierce BCA (Invitrogen) kit and read at the 

Spectrophotometer at 640nm. Protein samples were prepared in Laemmli sample buffer 

containing 5% β-mercaptoethanol in order to achieve 15 ng of protein in 10µl of sample. The 

electrophoretic separation was performed in pre-cast acrilamyde gels (Bio-Rad Laboratories 

Inc., Hercules, USA), at 100V. Proteins were transferred to Polyvinylidene fluoride membranes 

(Perkin Elmer, Weiterstadt, Germany) in a semi-dry Fast Blot system (Bio-Rad Laboratories 

Inc., Hercules, USA). Unspecific protein epitopes were blocked by a PVP-40 solution at 1% 

and 0.05 SDS, for 1h. Membranes were incubated in overnight at 4°C with primary antibodies 

(Table 3.4), washed with TBS-Tween 0.05% and incubated with secondary antibodies (Table 
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3.4) for 2h before being washed again with TBS-T. Membranes were exposed to the 

chemiluminescent reagent Lumi-LightPLUS western blotting kit (Roche, Basel, Swizerland) for 

1-3 minutes and then developed at the Fusion FX7 (VilberLourmat, Eberhardzell, Germany). 

Densitometric analysis was performed using the Image Studio™ Lite (LI-COR Biosciences, 

Lincoln, Nebraska USA). 

CALCIUM SWITCH ASSAY 

Caco-2 cells were cultivated in Millicell 12 mm diameter, 4 µm pore, cell inserts (MilliporeSigma, 

Burlington, USA) for 2 weeks before the start of the experiment. Cells were washed 4 times 

with PBS- and then put in DMEM calcium-free (Gibco, Thermo Fisher Scientific Inc., Waltham, 

USA) with 2.5% FCS low grade Calcium, Glutamax 1% (Gibco, Thermo Fisher Scientific Inc., 

Waltham, USA) and 1% penicillin/streptomycin (Gibco, Thermo Fisher Scientific Inc., Waltham, 

USA) for 6 hours to disrupt cell adhesions. After 6 hours, 1.8 mM CaCl2 was added to the media 

and cells were left to re-establish cell contacts. TEER was measured in different time-points 

with chopstick electrodes for 8 biological replicates for each clone.  
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able 3.4 

Table 3.4: Antibodies used for Western Blot Analysis 

Name Company dilution species 

Anti-ERK1/2 Cell signaling 1:1000 Rabbit 

Anti-phospho ERK1/2 (Thr 202/Tyr 204) Cell signaling 1:1000 Rabbit 

Anti-AKT Cell signaling 1:1000 Rabbit 

Anti-phospho AKT (Tyr 308) Cell signaling 1:1000 Rabbit 

Anti-STAT3 Cell signaling 1:1000 Rabbit 

Anti-phospho STAT3 (Tyr 705) Cell signaling 1:1000 Rabbit 

Anti-β-actin Invitrogen 1:5000 Mouse 

Anti-LPP Cell signaling 1:1000 Rabbit 

Anti-C1orf106 Abcam 1:1000 Rabbit 

Anti-C1orf106 Atlas 1:500 Rabbit 

Anti-Claudin-1 Invitrogen 1:1000 Rabbit 

Anti-Claudin-2 Invitrogen 1:1000 Rabbit 

Anti-Claudin-3 Life Technology 1:1000 Rabbit 

Anti-Claudin-4 Invitrogen 1:1000 Mouse 

Anti-Claudin-5 Invitrogen 1:1000 Mouse 

Anti-Claudin-7 Invitrogen 1:1000 Rabbit 

Anti-Claudin-8 Invitrogen 1:1000 Rabbit 

Anti-occludin Invitrogen 1:1000 Rabbit 

Anti-Par3 Millipore 1:1000 Rabbit 

Anti-E-cadherin/clone E36 BD 1:1000 Mouse 

Anti-Rabbit conjugated to peroxidade 
Jackson 

Immunology 1:10000 Goat 

Anti-Mouse conjugated to peroxidase 
Jackson 

Immunology  1:10000 Goat 

 

IMMUNOFLUORESCENCE 

Cells were cultured in Millicellinserts (MilliporeSigma, Burlington, USA) were washed with 

PBS+ and fixed with 2% paraformaldehyde (PFA) for 15 minutes, then stored in PBS+ at 4°C. 

Cells were permeabilized with 5% TritonX-100 for 5 minutes, blocked with blocking solution 

(PBS+ 6% Goat serum) for 30 minutes. The incubation with primary antibodies (Table 3.5) was 
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performed for 1h at 37°C, followed by wash with blocking solution and incubation with 

secondary antibody or phalloidin (Table 3.5) again for 1h at 37°C. Then, cells were incubated 

with DAPI diluted 1: 2000 in PBS for 10 min, room temperature protected from the light, washed 

in PBS then washed in distilled water then mounted to glass slides with Mount Fluor (Thermo 

Fisher Scientific Inc., Waltham, USA). Slides were analyzed in a LSM780 confocal microscope 

(Carl Zeiss AG, Oberkochen, Germany). 

Table 3.5 

Table 3.5: Antibodies used for Immunofluorescence 

Name Company dilution species 

Anti-phospho-P65 Cell signaling 1:100 Rabbit 

Phalloidin 488 Dyomics 1:100  

Phalloidin 647 Dyomics 1:100  

Anti-Mouse secondary 
antibody conjugated to 
AlexaFluor 488 

Life Technology 1:250 Goat 

Anti-Rabbit secondary 
antibody conjugated to 
AlexaFluor 488 

 Life Technology 1:250 Goat  

 

RNA EXTRACTION FROM CELL LINES 

Total RNA was extracted using the mirVana™ mRNA Isolation Kit (Thermo Fisher Scientific 

Inc., Waltham, USA) according to manufacturer’s recommendations. Cells were scraped with 

Lysis Binding buffer, and then the RNA Homogenate solution was added at a 1/10 of the Lysis 

buffer volume. Samples were vortexed and placed on ice for 10 minutes. A volume equal to 

the Lysis buffer of Phenol Chloroform was added, then samples were thoroughly vortexed and 

centrifuged at 10000 x g for 5 minutes at room temperature. The aqueous phase was collected 

in a new tube and 1.25 volume of 100% ethanol ACS was added. Samples were then 
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transferred to filter cartridges and washed once with washing buffer 1 and twice with washing 

buffer 2/3. The RNA was then eluted in nuclease-free water at 95 °C and stored at -80 °C. 

RNA QUANTIFICATION AND CDNA SYNTHESIS 

RNA quantification was performed using the NanoDrop 1000 (Thermo Fisher Scientific Inc., 

Waltham, USA). 1µg of total RNA was used to make cDNA using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, USA) 

according to the manufacturer’s instructions. Reactions were prepared according to Table 3.6 

and the reverse transcription reaction was performed according to the Steps described in Table 

3.7. 

Table 3.6 

Table 3.6: Reverse transcription mixes 

  
Component 

Volume per 
reaction 

RT Master Mix 

10x RT Buffer Mix 2 µl 

10x Random Primers 0.8 µl 

25x dNTP Mix (100mM) 2 µl 

MultiScribe™ Reverse 
Transcriptase (50 U/µl) 1 µl 

Nuclease-free H2O 4,2 µl 

   

RNA sample 
RNA sample up to 10 µl 

Nuclease-free H2O Q.S.* to 10 µl  

  Total per reaction 20 µl 
*Q.S. = Quantitysufficient 
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Table 3.7 

Table 3.7: Reverse transcription cycles 

Steps Temperature Time 

1 25 °C 10 minutes 

2 37 °C 120 minutes 

3 85 °C 5 minutes 

4 4 °C Hold 

 

RECRUITMENT OF PATIENTS AND SAMPLES COLLECTION 

Patient recruitment and targeted tissue dissection of paraffin-embedded samples were 

performed by Maximilian Sehn. 

Between January 2018 to June 2020 at the Charité Campus Benjamin Franklin in Berlin celiac 

patients were recruited regardless of disease status and control patients with non-celiac 

gastrointestinal complains unrelated to the duodenum. Exclusion criteria were patients younger 

than 18 years, inflammatory bowel disease, oncology, or any non- celiac condition affecting 

the duodenum. All patients signed a written consent with the ethical approval EA4/116/18. 

Duodenal samples were obtained from included patients during endoscopic procedure and 

were kept in MEM (Invitrogen, Thermo Fisher Scientific Inc, Waltham, USA) supplemented with 

10% FCS (Gibco, Thermo Scientific Inc., Waltham, USA) and 1% antibiotics (Gibco, Thermo 

Scientific Inc., Waltham, USA) and placed on ice, until further processing. 

 For the colitis-associated cancer project, a total of 60 patients who underwent surgery for 

colectomy at Charité campus Benjamin Franklin between 2005 and 2015 for one of the 

following conditions: Crohn’s colitis, ulcerative colitis, Crohn’s associated cancer, ulcerative 

colitis associated cancer, sporadic colorectal carcinoma and controls (diverticulitis patients). 

Each group included ten patients. FFPE (formalin-fixed-paraffin-embedded) samples were 
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obtained and significant areas of colonic mucosa containing inflammation and/ or carcinoma 

were identified together with a GI- pathologist.  The areas of interest were marked 

microscopically for targeted tissue dissection. The marked areas were then dissected and 

sliced for hematoxylin and eosin (H&E) staining, immunohistochemical staining and total RNA 

extraction.  

RNA EXTRACTION OF FORMALIN-FIXED-PARAFFIN-EMBEDDED SAMPLES 

RNA extraction from FFPE material and the Nanostring analysis were performed by Maximilian 

Sehn and Hedwig Lammert. 

RNA extraction was subsequently performed using the RNA FFPeasyTM-Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol. Extracted RNA quality and quantity were 

then assessed with NanoDropTM(Thermo Scientific Inc., Waltham, USA) and Qubit™ (Thermo 

Scientific Inc., Waltham, MA). 

For the amplification-free NCounterTM RNA expression analysis (Nanostring, Seattle, USA) 

the commercially distributed Human Immunology v2 Panel containing 594 gene targets was 

used and a list of 30 custom genes (Table 3.8) was added to the analysis.RNA expression 

analysis was carried out according to the manufacturer’s protocol. 

IN SILICO ANALYSIS OF GENE EXPRESSION DATA 

Nanostring raw data was submitted to the nSolver software (Nanostring, Seattle, USA) where 

the raw data was normalized according to endogenous control genes and differential 

expression was assessed for different comparisons between groups. In total, 9 comparisons 

were made: IBD vs CTRL, CAC vs IBD, CAC vs CRC, CAC vs CTRL, CRC vs CTRL, UC vs 

CTRL, CD vs CTRL, CD-CAC vs CD, UC-CAC vs UC. 
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Ratios were then uploaded to Ingenutity Pathway Analysis (Qiagen, Hilden, Germany) and the 

core analysis was performed. Among the tools used in the core analysis there were the Disease 

and Functions, Upstream regulator Analysis and Mechanistic Networks tools. 

Heatmaps, volcano plots, principal component analysis were made in RStudio software using 

R version 3.6.0 R. https://www.R-project.org/.  
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Table 3.8 

Table 3.8. Custom genes added to the Nanostring panel 

HGNC gene 

name 

Probe NSID Total 

Isoforms 

Isoforms Not Hit By Probe 

ACTB NM_001101.2:1010 2   

AKT1 NM_001014432.1:1275 6   

FAPC NM_000038.3:6850 3   

BUB1B NM_001211.4:835 1   

CCND1 NM_053056.2:690 2   

CDH1 NM_004360.2:535 6   

CDK8 NM_001260.1:370 6 XM_011534865.1 

CLDN2 NM_020384.3:2540 3   

CLDN7 NM_001307.3:175 3   

CLDN8 NM_199328.2:805 1   

CRB3 NM_139161.3:300 3   

DLG1 NM_001098424.1:1460 27   

F2RL2 NM_004101.2:475 2   

FLT1 NM_002019.4:530 5   

GRHL2 NM_024915.3:1818 4   

GSK3B NM_002093.2:925 4   

KDR NM_002253.2:1420 1   

KRAS NM_004985.3:327 4   

MYC NM_002467.3:1610 1   

OCLN NM_002538.3:5130 3   

PAWR NM_002583.2:824 5 XR_944560.1;XR_944561.1 

PDCD4 NM_014456.3:1115 3   

PFKFB3 NM_001145443.1:495 7   

PIK3CA NM_006218.2:2445 3   

PMM1 NM_002676.2:497 8   

PRKCH NM_006255.3:850 5   

PRKCZ NM_002744.4:771 14   

PSMB6 NM_002798.1:695 2   

PTEN NM_000314.4:1351 9   

VEGFA NM_001025366.1:1325 20   
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IMMUNOHISTOCHEMISTRY OF FFPE SLIDES 

Immunohistochemical staining was performed in the iPATH. Berlin by Dr. Anja Kühl and 

Simone Spieckermann. 

Paraffin sections (1-2 µm) were dewaxed prior to heat-induced epitope retrieval using citrate 

buffer (pH 6). Sections were rinsed with running tap water and incubated with antibodies 

directed against CD44 (clone IM7, Cell Signaling Technology, Danvers, USA), beta-catenin 

(clone 6B3, Cell Signaling Technology, Danvers, USA), EpCAM (clone E6V8Y, Cell Signaling 

Technology, Danvers, USA), pSMAD3 (polyclonal rabbit anti-human, Abcam, Cambridge, UK), 

at room temperature for 30 minutes. Antibodies were detected using EnVision+ Single Reagent 

(HRP. Mouse or HRP.rabbit; Agilent Technologies, Santa Clara, USA). HRP was visualized 

with diaminobenzidine (DAB) as chromogen (AgilentTechnologies, Santa Clara, USA). Nuclei 

were counterstained with hematoxylin (Merck, MilliporeSigma, Burlington, USA) and slides 

coversliped with glycerol gelatin (Merck, MilliporeSigma, Burlington, USA). Primary antibodies 

were omitted in negative control sections. 

OPN EXPOSURE OF INTESTINAL CELL LINES INFILTERS 

T84 and HT29 cells were seeded in Millicell 12 mm diameter, 3 µm pore, cell inserts 

(MilliporeSigma, Burlington, USA) for 1 week before incubation with their respective media with 

1% FCS (Gibco, Thermo Fisher Scientific Inc., Waltham, USA) for 24h. Cells were then 

incubated with media containing OPN on both apical and basolateral sides in concentrations 

and for time-points optimized for each experiment. 

Protein analysis was performed by incubating cells with 200 or 500 ng/ml of OPN (R&D 

Systems Inc., Minneapolis, USA) for 10, 30 and 60 minutes and then cells were lysed for protein 

extraction. TNFα 2000 U/ml and IL-22 10 ng/ml (Peprotech, Cranbury, USA) were used as 

positive controls for the phosphorylation of ERK1/2 and STAT3, respectively. 
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For the analysis of phosphorylated P65, Caco-2 cells were cultivated in Millicell inserts 

(MilliporeSigma, Burlington, USA) for 2 weeks and then incubated with either 200 ng/ml of OPN 

or 5000 U/ml of TNFα for 20 minutes and later fixed for immunofluorescent staining. 

OPN TREATMENT OF INTESTINAL CELL LINES IN PLATES 

Intestinal cell lines T84 and HT29/B6 were seeded 2*105 and 1*105 cells respectively in 12-

well plates and left to attach for 2 days. Normal media was then exchanged for media 

containing 1% FCS overnight and then incubated with media containing 200 ng/ml of OPN 

(R&D Systems Inc., Minneapolis, USA) for 3h and 24h. RNA was then extracted from the cells 

and TGFβ1 (Peprotech, Cranbury, USA) and IL-22 (Biolegend, San Diego, USA) was used as 

positive control for the activation of expression of SNAI1, SNAI2 and TWIST1 genes. 

REAL TIME-QUANTITATIVE PCR 

Real time-qPCR reactions were performed using 1 µL of cDNA template, 1 µL of the desired 

probe (Table 3.9), 10 µL of RT-qPCR MasterMix (Applied Biosystems, Thermo Fisher Scientific 

Inc., Waltham, USA) and nuclease-free water to a final volume of 20 µL. Comparative CT 

reactions were performed in triplicates using the 7500 Fast Real-Time PCR System instrument 

(Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, USA). Calculations for gene 

expression changes were performed using the 2-ΔΔCT method. 

Table 3.9 

Table 3.9: TaqMan Probes    

Target Probe Name Species Fluorochrome Company 

SNAI1 Hs00195591_m1 Human FAM Applied Biosystems 

SNAI2 Hs00161904_m1 Human FAM Applied Biosystems 

TWIST Hs00161904_m1 Human FAM Applied Biosystems 

ACTB Hs01060665_g1 Human FAM Applied Biosystems 

MMP7 Hs01042796_m1 Human FAM Applied Biosystems 

GAPDH Hs99999905_m1 Human FAM Applied Biosystems 
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RNA-SEQ 

RNA-Seq analysis was made by Novogene Co. Ltd. as described below. 

RNA-Seq experiments were performed in T84 and HT29 cells exposed to osteopontin (as 

described above) for 3h and 24h in 3 biological replicates. After incubation, total RNA was 

extracted using the mirVana™ mRNA Isolation Kit (Thermo Fisher Scientific Inc., Waltham, 

USA) (as described before), quantified and then sent to Novogene (Novogene Co. Ltd., Beijing, 

China) where the RNA-Seq analysis was performed. 

In short, using 1 µg of total RNA, libraries were made using NEBNext®Ultra™RNA Library 

Prep Kit for Illumina® (NEB, USA) according to manufacturer’s recommendations and index 

codes were added to each sample. mRNA was purified using poly-T oligo-attached magnetic 

beads. Fragmentation was performed in NEBNext First Strand Synthesis Reaction Buffer (5x) 

using divalent cations in high temperature. First strand cDNA was generated using random 

hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second strand cDNA was 

subsequently performed using DNA Polymerase I and RNase H. Overhangs were converted 

into blunt ends via exonuclease/polymerase activities. Following adenylation of 3’ ends of DNA 

fragments, NEBNext Adaptor with hairpin loop were ligated to prepare for hybridization. The 

fragments were purified using AMPure XP system (Beckman Coulter, Beverly, USA) to enrich 

DNA fragments of 150~200 bp in length. Samples were incubated with 3 µl of USER Enzyme 

(NEB, USA) at 37 °C for 15 min followed by 5 min at 95 °C before PCR. PCR was carried out 

using Phusion High-Fidelity DNA polymerase, Universal PCR primers Index (X) Primer. Lastly, 

PCR products were purified (AMPure XP systems) and library quality was assessed on the 

Agilent Bioanalyzer 2100 system. 
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Clustering of index-coded samples was done on a cBot Cluster Generation System using PE 

Cluster Kit cBot-HS (Illumina Inc, San Diego, USA) following manufacturer’s instructions. The 

library preparations were then sequenced on an Illumina platform and paired-end reads were 

generated. 

BIOINFORMATICS OF THE RNA-SEQ DATA 

Bioinformatic analysis was performed by our collaborator Dr. January Weiner from CUBI 

BIH. 

RNA-Seq reads were aligned to the Gr38 human genome using STAR aligner (244). 

Count data were analyzed using the R package DESeq2 (245) and a two-factor (treatment/time 

point) model with interaction. P-values were corrected for multiple testing using the Benjamini-

Hochberg procedure (246). Gene set enrichment analysis was performed using the R package 

tmod (247). 

STATISTICS 

Statistical analyses were performed using GraphPadPrism® 5. Mean ± standard 

deviation was plotted, unless stated otherwise. The standard deviation was calculated for 3 or 

more independent experiments. For TEER analysis of Caco-2 clones, statistical analysis was 

performed using 2-way ANOVA with Bonferroni posttest. The unpaired student’s t-test was 

used to determine significant differences between two groups in cell line experiments. Mann 

Whitney test was employed in the analysis with patients’ samples in Nanostring counts and 

immunohistochemical staining intensity analysis. Were considered statistically significant (* p 

< 0.05, ** p < 0.01, *** p < 0.001). 

DEVICES AND CONSUMABLES 

All devices, the version and the supplier are listed in Table 3.10 
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Table 3.10 

Table 3.10. Devices.   

Device Version Supplier 

Centrifuge 
PerfectSpin 24R Refrigerated 

Microcentrifuge 
PEQLAB Biotechnologie 

GmbH, Germany 

Centrifuge Hermle z233MK  Wehingen 

Chemiluminescence 
signal detector 

Fusion FX7 Vilber Lourmat, Germany 

Fluorometer Qubit® Fluorometer 
Thermo Fisher Scientific 

Inc., USA 

Fragment analyzer 
5200 Fragment Analyzer 

System 
Agilent Technologies, USA 

Heating block AccuBlockTM 
Labnet international, Inc., 

Corning Inc., USA 

Heating block Digital Dry Bath 
Labnet international, Inc., 

Corning Inc., USA 

Incubator for cell culture  Heraeus, Germany 

Laminar Flow Workbench SAFE 2020  
Thermo Electron 

Corporation, Thermo Fisher 
Scientific Inc., USA 

Laser scanning 
microscope  

LSM 780 
Carl Zeiss Jena GmbH, 

Germany 

Magnetic stirring  Merck, Berlin 

Nanodrop NandoDrop 1000 
Thermo Fisher Scientific 

Inc., USA 

Nanostring machine nCOUNTER MAX 
Nanostring Technologies, 

USA 

pH meter  HI 9017 microprocessor 
Hanna Instruments, 

Germany 

Power supply Blotting device 200/2.0 
Bio-Rad Laboratories 

GmbH, Germany 

Resistance measuring 
device 

 Institut für Klinische 
Physiologie, CBF, Germany 

RT-qPCR device 
7500 Fast Real-Time PCR 

Sytem instrument 
Applied Biosystems, Thermo 

Fisher Scientific Inc., USA 

Scale  Sartorius, Germany 

Shaker Rocking platform Biometra, Germany 

Shakers Rocking platform VWR, Germany 
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Thermocycler PeqSTAR 
Peqlab Biotech. GmbH, 

Germany 

Ussing-chambers  Institut für Klinische 
Physiologie, CBF, 

Vortex device LSETM Corning Inc. USA 

Vortex device Vortex mixer Corning Inc. USA 

Water bath 1002 GFL, Germany 

 

 

Table 3.11 

Table 3.11. Chemicals and kits 

Chemicals/kits Supplier 

4', 6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich Chemie GmbH, Germany 

Agarose Invitrogen, USA 

Ammonium persulfate (APS) MilliporeSigma, USA 

BCA-Protein Assay (Reagents A and B) Pierce, USA 

Blotting grade blocker non-fat dry milk  Carl Roth, Germany 

Mercaptoethanol Clontech, Germany 

Bovine serum albumin (BSA)  Biomol GmbH, Germany 

DMSO (cell culture quality) Biochrom AG, Germany 

Dulbecco's PBS with Mg2+/Ca2+  Gibco Inc., U.S.A 

Dulbecco's PBS without Mg2+/Ca2+  Gibco Inc., U.S.A 

Ethanol J.T. Backer, Netherlands 

FBS Biochrom, Germany 
Glucose  

Glycin Carl Roth GmbH, Germany 
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Immersion oil for microscopy  VWR International GmbH, Germany 

Immomount  Thermo Fisher Scientific Inc., USA 

Lumilight Western Blotting Kit Roche, Switzerland 

Methanol Merck, Germany 

mirVana™ mRNA Isolation Kit 
Thermo Fisher Scientific Inc, USA 

Penicillin/streptomycin (P/S) Carl Roth GmbH , Germany 

Pierce Protease Inhibitor mini tablets Roche, Switzerland 

Polyacrylamide mix (30%) Serva, Germany 

Protein-Marker PageRuler Thermo Fisher Scientific Inc., USA 

Sodium azide Carl Roth GmbH, Germany 

Sodium chloride Serva, Germany 

Sodium-Dodecyl sulfate (SDS) MilliporeSigma, USA 

Tetramethylethylenediamine (TEMED) Thermo Fisher Scientific Inc., USA 

Tris Merck, Germany 

Tris Base Calbiochem, Germany 

Tris-HCl 0.5M, pH 6.8 Biorad, Germany 

Tris-HCl 1.5M, pH 8.8 Biorad, Germany 

Triton X-100 Roche, Switzerland 

Trypsin/EDTA Biochrom, Germany 

Tween 20 MillipoerSigma, USA 

 

Table 3.12 

Table 3.12. Consumables  

Consumables Supplier 

12-well-tissue culture plate TPP Techno Plastic Products AG, Germany 
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15 ml PPN tube Greiner, Germany 

24-well-tissue culture plate 
TPP Techno Plastic Products AG, Trasadingen, 

Germany 

25 cm2-tissue culture flask  Corning Incorporated, NY, USA 

50 ml PPN tube Nunc, Germany 

6-well-tissue culture plate TPP Techno Plastic Products AG, Germany 

75 cm2-tissue culture flask Corning Inc., USA 

Cell and tissue culture dishes Nunc, Germany 

Cell scraper Coster, Corning Inc., USA 

Cryotubes Corning Inc., USA 

Microscope slides Menzel-Gläser, Thermo Scientific Inc, USA 

Microtiter plate 96 wells Sarstedt, Germany 

Mini-PROTEAN TGX, Stain-free gels 
Bio-Rad Laboratories Inc. 

Nitrocellulose membrane (Amersham 
Hybond) 

GE Healthcare, UK 

Pipettes Eppendorf, Germany 

PVDF transfer membrane Perkin Elmer, Germany 

Reaction tubes Eppendorf, Germany 

Standard tips 10, 200, 1000 μl Eppendorf, Germany 

Trans-Blot Turbo Midi 0.2 µm PVDF 
Transfer Packs Bio-Rad Laboratories Inc. 

Transwell filters (Millicell-HA, 0,6 cm²) MilliporeSigma, USA 
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4 RESULTS 
TRACKING A PRIMARY BARRIER DYSFUNCTION IN CELIAC DISEASE 

Establishment of knock-out clones of Caco-2 cells 

As a model to study the importance of the LPP and C1orf106 genes in barrier function of 

intestinal epithelial cells, knock-out (KO) clones were established in Caco-2 cells using the 

CRISPR-Cas 9 at the department of genetics of the University of Groningen. Of all the acquired 

clones, control clones B4 and D4, LPP KO clones B5 and B11 and C1orf106 KO clones C2 and 

Cyl2 were selected for our study. 

Protein evaluation of the 6 selected clones showed that the LPP KO clones B5 and B11 are 

depleted from LPP protein band (Figure 4.1), similarly, C1orf106 KO clones C2 and Cyl2 did not 

present a band for C1orf106 (Figure 4.1). Densitometric analysis of the bands is shown in 

Supplementary figure 1. 

 

Figure 4.1 

Figure 4.1: Protein analysis of Caco-2 knocked-out (KO) clones. The Caco-2 CRISPRed clones EC B4, EC 

D4 (controls); LPP KO clones B5 and B11 and C1orf106 KO clones C2 and Cyl2 were lysed and total 

protein extracted and processed for western blot analysis for LPP and C1orf106 proteins. β-actin was used 

as loading control. Figure representative of three independent experiments. 
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Characterization of the barrier function in the Caco-2 knock-out clones 

 Transepithelial electrical resistance 

In order to determine whether the KO promoted functional changes of the tight-junction 

barrier, the clones were evaluated for their barrier functionality. TEER. values were measured for 

several days starting one day after seeding. In the first week, TEER values were oscillating for all 

clones since the monolayer is most likely not yet formed. From the second week on culture, all 

clones tended to stabilize to a certain resistance value range and on the third week no significant 

changes in TEER in all clones except EC D4 were observed (Figure 4.2A). Control clones EC B4 

and EC D4 as well as LPP B5 KO clones presented constantly high resistance values. Looking 

more closely into three timepoints, one for each week, LPP B11 clone, but not LPP B5, presented 

statistically lower resistance values (compared to EC D4) in the second week. However, C1orf106 

KO clones C2 and Cyl2 were the ones which consistently presented lower TEER over the second 

week in culture, suggesting there is a barrier impairment effect related to the knock-out of this 

gene (Figure 4.2B).  

Tight junction proteins content 

Following the TEER measurement, protein content evaluation of occludin, barrier-forming 

claudin-1, -3, -4, -8; claudin-7; as well as pore-forming claudin-2 were performed on the KO clones 

(Figure 4.3A). Even though some clones presented individual tendencies, for example, LPP B11 

presented lower Claudin-4 than the others and increased occludin content, there were differences 

consistently seen in both clones for each gene. Of those, only the increase in Claudin-3 in the 

LPP KO clones was statistically significant (Figure 4.3B). C1orf106 KO clones presented a 

tendency for increased occludin. LPP KO clones had a tendency for higher claudin-7 

(Supplementary figure 2). Changes consistently seen in both clones suggest specific relation to 

the lack of C1orf106 and LPP genes, respectively (Figure 4.3). 
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Figure 4.2: Transepithelial electrical resistance (TEER) of Caco-2 clones. Cells from the control clones EC 

B4 and D4, LPP knock-out clones LPP B5 and B11 and C1orf106 knock-out clones C2 and Cyl2 were 

seeded in filters and resistance was measured with chopstick electrodes for 19 days. A) shows a graphical 

representation of the TEER values for each clone overtime and B) shows 3 time-points (days 3, 10 and 17) 

within the 19 days of measurement where statistical calculations were performed. Statistical analysis was 

performed using 2-way ANOVA test with Bonferroni post-test and * = p < 0.05; ** = p < 0.01 and *** = p < 

0.001.  

Figure 4.2 
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Figure 4.3 

Figure 4.3: Protein content of tight junctional proteins. Caco-2 control clones EC B4 and D4, LPP knock-

out clones B5 and B11, and C1orf106 knock-out clones C2 and Cyl2 were cultivated for 2 weeks in filters. 

Total protein was extracted and western blot analyses with antibodies against occludin, claudin-1, -2, -

3, -4, -7, -8 and β-actin were performed A). Densitometric analysis of Claudin-3 shows significant increase 

in LPP knock-out clones. Statistical analysis performed using unpaired t-test. Image representative of 4 

independent experiments. 

 

Tight junction re-assembling capacities of the knock-out clones 

One of the processes that could be impaired by the loss of either LPP or C1orf106 is the re-

assembling of TJ. Aiming at evaluating the ability of the KO clones to re-assemble TJ, they were 

submitted to a calcium-switch assay. In this assay, cells are deprived of calcium and consequently 

lose cell-cell adhesion, then calcium is then re-introduced, and the time needed for the re-

assembling of the cell junctions is monitored by TEER measurements. In all clones, there was a 

drastic decrease in TEER after calcium deprivation (Figure 4.4). Following calcium replacement, 

resistance values gradually increased, but at different rates for the KO clones. 16 hours after 
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calcium re-introduction TEER levels reached a plateau where it is patent that the KO clones 

revealed lower resistance values than the control clones (Figure 4.4). 
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Figure 4.4 

Figure 4.4: Tight junction re-assembling after calcium depletion and replacement. Caco-2 control clones B4 

and D4, LPP KO clones B5 and B11 and C1orf106 KO clones C2 and Cyl2 were seeded in filters for 2 

weeks, depleted from calcium for 6 hours, then calcium was replaced. Transepithelial electrical resistance 

was measured in different points in time for 48 hours. 

Barrier function of celiac patients 

Patients’ characteristics 

Decreased expression of LPP and C1orf106 were reported for a proportion of celiac patients 

(248). In order to investigate whether the levels of LPP and/or C1orf106 proteins in celiac patients 

would be associated with disease status or refractory disease, protein analysis was performed in 

duodenal samples from 25 patients whose characteristics are described below in table 4.1.  
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Of those, eight were control patients who underwent endoscopic examination for causes 

not related to celiac disease or affecting the duodenum; seven were celiac patients responding to 

a gluten-free diet; eight were refractory celiac disease patients and two were active celiac 

patients. 

Table 4.1 

Protein content for LPP and C1orf106 was assessed using Western Blot (Figure 4.5A) 

followed by densitometric analysis of the bands which showed significant scatter for all disease 

groups, however, no statistical significance difference was found between groups (Figure 4.5B 

and C). 

Table 4.1. Clinical characteristics of celiac patients 

Group 
number of 
individuals 

Gender 
f, m 

Age median 
(range) 

Anti-TTG 
IgA 

(U/ml) 

Anti-TTG 
IgG 

(U/ml) 

Control 8 5, 3 51.5 (19 - 66) NA NA 

GFD 7 5, 2 52.0 (27 - 68) 2.2 2.1 

RCD 8 6, 2 45.5 (20 - 74) 8.1 3.8 

ACTIVE 2 2, 0 39.5 (33 - 46) 57.5 12.6 

TTG = Tissue transglutaminase    
IgA = Immunoglobulin A     
IgG = Immunoglobulin G     
GFD = Gluten-free diet     
RCD = Refractory celiac disease    
NA = Not applicable      
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Figure 4.5 

Figure 4.5: LPP and C1orf106 protein content in celiac mucosa. Protein was extracted from duodenal 

biopsies of celiac patients and controls and protein content of LPP, C1orf106 and β-actin was analyzed 

using western blot as shown in a representative blot (A). Densitometry of C1orf106 (B) and LPP (C) bands 

was performed. 

THE ROLE OF OPN IN THE PATHOGENESIS OF CAC 

Patients’ characteristics 

In order to better understand CAC pathogenesis, patients who underwent colostomy and 

were diagnosed with Crohn’s disease-colitis, ulcerative colitis, colitis-associated cancer or 

sporadic colorectal cancer were retrospectively recruited from the Charité database after approval 

by the Charité ethical commission EA/1/204/14. CAC patients were categorized according to the 

previous IBD condition of the patients in Crohn’s disease CAC (CDAC) and ulcerative colitis CAC 

(UCAC). For the control were selected inflammation-free borders of colon resections of 

diverticulitis patients. The clinical characteristics of the patients are listed in table 4.2.   
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Gene expression analysis of colitis-associated patients’ samples 

In an attempt to have a comprehensive view of gene expression differences between 

patients’ groups, a Nanostring analysis was performed of 624 genes from the human immunology 

panel plus 30 custom genes. For the purposes of this study, the comparisons between the CAC 

conditions and their underlying IBD conditions were prioritized. Heatmaps of the 20 most 

upregulated and 20 most downregulated genes for CDAC vs CD and UCAC vs UC show that CD 

and CDAC patients clustered separate (Figure 6A) and that the clustering was almost perfect for 

UC and UCAC patients except for 1 UC patient (Figure 4.6B). The same genes are described in 

Tables 4.3 and 4.4 where we observe that SPP1 was the most upregulated gene in both 

comparisons, despite them being totally independent from each other. Among the upregulated 

genes there are genes from signaling pathways such as MAPK/ERK, AKT, TGFβ and SRC. 

Amidst of the downregulated genes, we observed genes related to B-cells and T-cells as well as 

TNF receptor superfamily members.  
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Age and duration of disease values correspond to the median in years.  
1 One of the above had segmental colitis sparing the transverse colon. 
2 Metastases: Two liver. Once liver and peritoneum. Once lung. 
3 Metastases: Once liver. Once peritoneal metastases. 
4 Histologically reported inflammation without activity level was counted as low/moderate for this synopsis.  
6 One patient: Unknown tumor spread. 
7 Metastases: Twice peritoneal.  
Table 4.2 

Table 4.2. Clinicopathological characteristics of included patients 

  Control CD UC CRC CDAC UCAC 

Gender f/m  5/5 6/4 3/7 4/6 7/3 5/5 
Age median 

(range) 
 62 

(52-80) 
42 

(20-61) 
34.5 

(19-51) 
77.5 

(49-86) 
47 

(31-90) 
45.5 

(36-78) 

Inflammatory 
activity 

High 6 5 6 - 3 3 
Low - 5 4 - 1 74 

None 4 - - 10 6  
Perforations  4 1 - 1 1 1 

Location 
(inflammation/ 

tumor) 

Pancolitis/ 
multilocular tumor - 81 7 - - 2 

Right hemicolon - - - 4 5 1 
Transverse Colon - - - 1 0 1 

Left hemicolon - 2 3 5 4 4 
Rectum - -  - 1 2 

(Ileum)  3   - - 

Duration of 
disease 
(range) 

 - 

14.5 
(4-27) 

8 
(0-24) 

1 
patient 

n.a. 

- 

20 
(3-37) 

3 
patients 

n.a. 

18 
(1-39) 

Tumor type Mucinous - - - 0 6 9 
 Non Mucinous - - - 10 4 1 

Tumor stage 
(T) 

pT1: - - - 0 1 2 

 pT2: - - - 3 2 1 
 pT3: - - - 5  2 4 
 pT4: - - - 2 5 3 
 N0: - - - 6 6 4 
 N1a: - - - 3 2 3 
 N2: - - - 1 2 3 
 M0: - - - 6 8 8 
 M1: - - - 42 23 27 

Recurrent 
tumor(s) 

 - - - 0 0 0 

Adenoma(s) 
present 

 1 0 1 5 2 6 

Steroid 
treatment 

 - 7 8 - 
2 

(8 n.a.) 
4 

(4 n.a.) 
Biological 
treatments 

 - 9 8 - 
1 

(7 n.a.) 
0 

(6 n.a.) 



74 
Gene expression analysis to study celiac disease and colitis-associated cancer 

 

 

Figure 4.6: Heatmaps of the 20 most up- and downregulated genes in Nanostring. Normalized counts were 

acquired using the nSolver software and unsupervised heatmaps using k-means clustering algorithm and 

Figure 4.6 
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featuring the 20 most upregulated and 20-most downregulated genes were made for the comparisons 

CDAC vs CD (A) and UCAC vs UC (B). 

Table 4.3 

Table 4.3. Most up- and downregulated genes in CDAC vs. CD. 

 Gene Fold change p-value 

Upregulated 
genes 

SPP1 18.29 <0.0001 
FN1 6.68 <0.0001 

 DUSP4 4.60 0.0001 
 CLDN2 4.40 0.0344 
 CCL26 3.42 0.0002 
 CD276 3.01 <0.0001 
 THY1 2.83 0.0086 
 ICAM5 2.78 0.0102 
 F2RL2 2.77 0.0097 
 CLEC5A 2.74 0.0123 
 MSR1 2.69 0.0185 
 TGFBI 2.66 0.0006 
 LIF 2.65 0.0054 
 HAMP 2.62 0.0035 
 PLAU 2.61 0.0272 
 TNFSF4 2.3 0.0023 
 C6 2.26 0.0228 
 CCND1 2.26 0.0009 
 ZEB1 2.21 0.0018 
 EGR2 2.19 0.0064 
    
Downregulated 
genes 

PIGR -23.69 0.0007 
CXCL13 -11.11 0.0003 

 MS4A1 -9.77 <0.0001 
 CD79A -7.51 0.0003 
 NOS2 -7.34 0.0024 
 CR2 -6.58 0.0004 
 CCL19 -6.44 0.0001 
 CD45 (RA) -6.33 >0.0001 
 TNFRSF17 -6.12 0.0003 
 TNFRSF13B -5.38 0.0002 
 CD19 -4.88 0.0001 
 IDO1 -4.22 0.0198 
 TNFRSF13C -4.21 >0.0001 
 IRF4 -4.14 0.0006 
 CD27 -4.08 0.0005 
 PLA2G2A -3.88 0.0007 
 SLAMF7 -3.8 0.0009 
 CCR7 -3.63 0.0001 
 BTLA -3.57 <0.0001 
 BLNK -3.45 <0.0001 
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Table 4.4 

Table 4.4. Most up- and downregulated genes in UCAC vs. UC. 

 Gene Fold change p-value 

Upregulated 
genes 

SPP1 8.41 0.0007 
CCL26 2.91 0.0220 

 GRHL2 2.71 0.0008 
 DUSP4 2.67 0.0296 
 CCND1 2.65 0.0143 
 FN1 2.22 0.0385 
 CEACAM6 2.05 0.0319 
 CD9 1.78 0.0128 
 SRC 1.70 0.0114 
 TRAF2 1.68 0.0082 
 CD276 1.63 0.0015 
 IL13RA1 1.47 0.0089 
 AKT1 1.46 0.0049 
 PTK2 1.45 0.0186 
 CDK8 1.38 0.0154 
 GPI 1.36 0.0411 
 PPIA 1.34 0.0404 
 TRAF4 1.32 0.0323 
 CD46 1.24 0.0444 
    

Downregulated 
genes 

DEFB4A -18.33 0.0002 
S100A8 -14.97 <0.0001 

 PIGR -11.10 0.011 
 NOS2 -10.15 0.0002 
 S100A9 -8.56 0.0002 
 MS4A1 -8.20 0.0004 
 IRF4 -7.90 <0.0001 
 CXCL13 -7.31 0.0014 
 TNFRSF13B -7.26 0.0013 
 IL1B -7.00 0.0004 
 CD45 (RA) -6.87 0.0003 
 CD19 -6.73 0.0001 
 CD79A -5.89 0.0006 
 CD27 -5.72 0.0004 
 ARG1 -5.47 0.0023 
 TNFRSF17 -5.45 0.0003 
 CD79B -5.42 0.0002 
 CCL8 -5.36 <0.0001 
 CSF3R -4.89 0.0001 
 SELL -4.89 0.0001 
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OPN might account for a poorer prognosis 

Since OPN was independently found as the most upregulated genes in both comparisons, 

we decided to further investigate it. Analysis of the osteopontin counts from the Nanostring 

evaluation shows significant scattering especially for the CAC conditions, with two separate 

groups of patients expressing either high or low osteopontin (Figure 4.7A). The analysis of the 

survival data from the CAC patients regarding high or low OPN expression showed a tendency 

for lower survival rate of the high OPN-expressing patients (Figure 4.7B) even though it was not 

statistically significant. 

 

Figure 4.7 

Figure 4.7: Osteopontin expression implicates in lower survival rates. Osteopontin counts resulting from the 

Nanostring analysis of patients (A). Survival curves of high vs low OPN expressing CAC patients (CDAC 

and UCAC together) shows a tendency for lower survival of high-OPN-expressing patients (B). 
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Osteopontin is expressed by epithelial and stromal cells in patients 

As in the Nanostring it is not possible to determine in which cellular compartment OPN 

protein is found in the colon of CAC patients, immunohistochemical analysis of osteopontin was 

OPN to determine which cellular compartment was responsible for its production. OPN is 

expressed by both epithelial and stromal cells with a higher epithelial expression in CAC patients 

than in IBD or controls patients (Figure 4.8). Inserts show OPN nuclear localization in CAC 

patients, but not in the other groups. 

 

Figure 4.8 

Figure 4.8: Immunohistochemical analysis of osteopontin in colonic tissue. Paraffin embedded samples 

were stained for osteopontin and analyzed in a confocal microscope LSM 780. Scale bars correspond to 

200 µm. 

Mechanistic network of OPN 

Once we had determined the expression and location of OPN, we sought out to find possible 

signaling pathways involved in OPN activation. Nanostring data were submitted to Ingenuity 
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Pathway Analysis to determine which gene expression changes were possibly triggered by OPN 

in our samples. A mechanistic network of OPN as an activated upstream regulator predicted 

several putative down-stream targets for osteopontin. Among those, molecules such as β-catenin, 

SMAD3, STAT3, NFκB and FOS were cited (Figure 4.9). 

 

Figure 4.9 

Figure 4.9. Osteopontin is predicted as an upstream regulator. The anaylsis of the ratios for the gene 

expression differences between the CAC vs IBD conditions yielded osteopontin as one of the activated 

putative upstream regulators in the dataset. Image acquired from Qiagen 2000-2020. 

Immunohistochemistry for OPN signaling 

We then focused on searching for candidates to examine, including OPN putative targets 

and genes which were among the most upregulated genes, culminating in a list that contained: 

OPN, CD44, phosho-SMAD3, phospho-STAT3, cyclin D1, P-65, β-catenin, and GRHL2. 

Phospho-STAT3, and cyclin D1 were excluded for not presenting visible difference between the 

groups (data not shown) and GRHL2 and P-65 are not discussed here due to other research 

interests. Slides of patients’ tissue were stained for the selected targets and a blinded analysis of 

staining intensity was performed. CD44 is one of OPN receptors and showed a tendency for 

higher expression in the epithelium of CAC patients (Figure 4.10). β-catenin was described as 

one possible downstream effector of osteopontin (Figure 4.9) and showed no significant different 

in membrane staining (data not shown), however, nuclear staining was found only in CAC patients 
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(Figure 4.11A). SMAD3 was also described as downstream of osteopontin, but no differences 

between disease groups were observed in the analysis of phospho-SMAD3 (Figure 4.11B). 

 

Figure 4.10 

Figure 4.10. Immunohistochemistry of putative osteopontin targets. The osteopontin receptor CD44 was 

stained in the patients’ slides by immunohistochemistry and a blinded analysis of staining intensity was 

performed. 5 different pictures in 10x magnification were taken using a confocal microscope LSM 780 and 

were then scored according to staining intensity from 0 to 3 by a blinded evaluator. Results of the blinded 

analysis are depicted in the dot plot chart and statistical analysis was performed using non-parametric 

Mann-Whitney test. Scale bars represent 200 µm. 
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Figure 4.11 

. 
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Figure 4.11. Immunohistochemistry of putative osteopontin targets. The signaling molecules β-catenin (A) 

and P-SMAD3 (B) were stained in the patients’ slides by immunohistochemistry and a blinded analysis of 

staining intensity was performed. 5 different pictures in 10x magnification were taken using a confocal 

microscope LSM 780 and were then scored according to staining intensity from 0 to 3 by a blinded 

evaluator. Results of the blinded analysis are depicted in the dot plot chart and statistical analysis was 

performed using non-parametric Mann-Whitney test. Scale bars represent 200 µm. 

OPN as an EMT-inducing molecule 

One of the most discussed functions of OPN in tumorigenesis is the ability to induce 

epithelial-to-mesenchymal transition (EMT). In fact, two EMT-related genes: the transcription 

factor ZEB1 and the extracellular matrix protein fibronectin (FN1) were present in the Nanostring 

panel, were among the most upregulated genes (Tables 4.3 and 4.4) and shown to be 

differentially expressed in CDAC (Figure 4.12 A and B). To further investigate EMT in the patients, 

paraffin slides were stained for EpCAM, a known epithelial marker which should be decreased in 

EMT. The blinded analysis of the slides reported a tendency for lower EpCAM in the CAC tissue, 

supporting the hypothesis that EMT is present in the CAC patients (Figure 4.12C). 

Protein analysis of intestinal cell lines exposed to osteopontin. 

With the intention of validating our data in a different study model, the effects of OPN on 

intestinal epithelial cells were analyzed using the human intestinal cell lines HT 29/B6 and T84. 

The activation of signaling pathways by OPN was analyzed by protein phosphorylation of 

signaling pathway molecules in both cell lines and showed that OPN did not induce STAT3 

phosphorylation in neither of the tested cell lines (Figure 4.13). Similarly, for AKT, no changes in 

the phosphorylated compartment were trigged by OPN. In contrast, ERK1/2 were phosphorylated 

after exposure to osteopontin in both cell lines (Figure 4.13B), however, no statistical significance 

was found (Supplementary figures 3 and 4). 
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Figure 4.12 

Figure 4.12. Epithelial to mesenchymal transition in colitis-associated cancer. The EMT markers FN1 (A) 

and ZEB1 (B) were evaluated in the Nanostring experiment. The epithelial marker EpCAM was analyzed 

by immunohistochemistry in patients’ slides using 5 different 10x magnification pictures per patient slide 

and a blinded analysis of staining intensity was performed (C). Scale bars represent 200 µm. 
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Figure 4.13 

Figure 4.13. Western blot protein analysis of intestinal cell lines exposed to osteopontin. Intestinal cell lines 

T84 (A) and HT29 (B) were incubated with different concentrations of osteopontin for different periods of 

time before protein extraction and western blot analysis for total and phosphorylated STAT3, AKT and 

ERK1/2 and β-actin. Image representative of 3 independent experiments. 
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 Analysis of the phosphorylation of P56 after OPN treatment 

Since NFκB was one of the signaling molecules that could be activated by OPN according 

to prediction (Figure 4.9), we sought out to investigate whether in intestinal cell lines OPN would 

induce P-65 phosphorylation and translocation to the nucleus. Caco-2 control clones EC B4 and 

EC D4 were exposed to OPN for 20 minutes and then were fixed and stained for phospho-P-65. 

OPN did not induce P-65 phosphorylation and translocation to the nucleus whereas there was a 

strong nuclear signal when cells were incubated with the positive control TNFα, showing that OPN 

did not activate P65 in cell line model (Figure 4.14).  

 

Figure 4.14 

Figure 4.14. NFκB P-65 phosphorylation after osteopontin exposure. Caco-2 control clone EC B4 was 

exposed to 200 ng/ml of osteopontin for 20 minutes before being fixed and stained in order to assess 

nuclear translocation of phosphor-P-65 (green staining). Immunofluorescence was performed using 

antibodies against phosphorylated P-65 (green), phalloidin (red) and DAPI (blue). Images were taken in the 

confocal microscope LSM 780. Scale bars correspond to 50 µm. 
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mRNA analysis of cell lines after osteopontin incubation 

To evaluate in the cell lines whether OPN could also trigger EMT, quantitative PCR analysis 

of the known EMT transcription factors SNAIL, SLUG and TWIST1 as well as metalloproteinase 

7 - which is a later marker for EMT - was performed after exposure of the intestinal cell lines T84 

and HT29/B6 to OPN. In HT29/B6 osteopontin failed to induce transcription of SNAIL and MMP7 

(Figure 4.15). There was a slight induction in SLUG after 24h of osteopontin exposure and TWIST 

could not be estimated in this assay, for this cell line. In T84 cells there was no significant induction 

of any of the genes by osteopontin (Figure 4.16), which confronts the hypothesis that osteopontin 

promotes EMT in the analyzed intestinal cell lines.  

Figure 4.15  

Figure 4.15. Quantitative PCR evaluation of HT29/B6 for EMT markers. HT29/B6 cells were exposed to 

200 ng/ml of osteopontin for 3h or 24h and quantitative PCR was performed using TaqMan probes for 

SNAIL, SLUG, TWIST1 and MMP7. ATCB was used as endogenous control and expression changes were 

calculated using 2-ΔΔCT method and the dashed line represents the expression of the control condition. 
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Figure 4.16 

 

Figure 4.16. Quantitative PCR evaluation of T84 for EMT markers. T84 cells were exposed to osteopontin 

200 ng/ml for 3h and 24h and then quantitative PCR was performed using TaqMan probes for SNAIL, 

SLUG, TWIST1 and MMP7. ACTB was used as endogenous control and expression changes were 

calculated using 2-ΔΔCT method and the dashed line represents the expression of the control condition. 

 RNA-Seq of cell lines 

Not finding transcriptional regulation of EMT transcription factors presented a big setback 

for our primary hypothesis. In an attempt to understand how the two intestinal cell lines were 

responding to OPN a whole transcriptome sequencing RNA-Seq analysis was performed in the 

cell lines exposed to osteopontin. The RNA-Seq yielded clustering of samples by time-point and 

treatment condition as seen in the PCA plots (Figure 4.17 A and B). Greater differences are seen 

after 24h of treatment and not at 3h, and in HT29/B6 the samples exposed to osteopontin for 24h 
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do not cluster together, indicating that our biological replicates presented variance among 

themselves (Figure 4.17A). In T84 we also do not see significant difference between conditions 

at 3h, but in 24h the controls and treated replicates cluster separate from each other (Figure 

4.17B). In the volcano plot for HT29/B6 at 24h we observe that few genes are differentially 

expressed (Figure 4.17C) and the same is observed for T84 (Figure 4.17D). 

Figure 4.17 

Figure 4.17. RNA-Seq analysis of intestinal cell lines exposed to osteopontin. Intestinal cell lines HT29/B6 

and T84 were exposed to osteopontin for 3 and 24 hours and then analyzed via RNA-Seq in three biological 



89 
Gene expression analysis to study celiac disease and colitis-associated cancer 

 

 

replicates per condition. PCA plots for HT29/B6 (A) and T84 (B) show that greatest variances between 

untreated and treated cells are seen in the 24 hour-exposure. Volcano plots of the 24h time-point of 

HT29/B6 (C) and T84 (D) were made show that some genes are significantly regulated by osteopontin in 

both cell lines. 

Among the most upregulated genes in HT29/B6 there are genes related to DNA damage 

such as STK33 and splicing SRSF12. On the other hand, the most downregulated genes include 

genes related to chromatin remodeling such as H4C4, BCL11A and H2BC10 (Table 4.5).  

For T84, the list of upregulated genes includes genes without described function, but also 

MN1 which is a transcriptional regulator. The downregulated genes include cytoskeleton-related 

genes, such as ARHGAP22 and MARK1, and the extracellular matrix gene FBN2 (Table 4.6). 

Table 4.5 

Table 4.5. Genes differentially expressed in HT29/B6 

 Gene Fold change p-value 

Upregulated 
genes 

STIMATE 4.21 0.0031 
SRSF12 3.71 0.0234 

 SH2D4B 3.53 0.0146 
 MMP23B 3.48 0.0142 
 NPY4R2 3.46 0.0057 
 MT1G 3.44 0.0058 
 CLDN19 3.40 0.0304 
 BTLA 3.39 0.0061 
 LINC00885 3.34 0.0341 
 STK33 3.33 0.0173 

    
Downregulated 

genes 
H4C4 -5.00 0.0005 

BARHL1 -4.81 0.0012 
 TDRD9 -4.32 0.0027 
 RRH -4.00 0.0073 
 BCL11A -3.58 0.0066 
 MIR3177 -3.35 0.0379 
 CELP -3.32 0.0138 
 SEMA3D -3.31 0.0227 
 TERB1 -3.21 0.0325 
 H2BC10 -3.03 0.0489 
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Table 4.6 

Table4.6. Genes differentially expressed in T84 

 Gene Fold change p-value 

Upregulated genes 
LINC01585 4.45 0.0023 

LOC100505501 3.60 0.0077 
 SNORD14E 3.49 0.0137 
 MN1 3.49 0.0108 
 ODF3 3.33 0.0009 
 GFPT2 3.31 0.0142 
 RN7SL2 3.30 <0.0001 
 FAM87A 3.28 0.0220 
 ABCA6 3.27 0.0324 
 MT1M 3.20 0.0337 

    
Downregulated 

genes 
FBN2 -3.98 0.0046 
DAW1 -3.88 0.0039 

 SPARCL1 -3.45 0.0156 
 FAM95C -3.44 0.0124 
 ARHGAP22 -3.29 0.0092 
 PCBP3 -3.27 0.0221 
 LINC01771 -3.23 0.0161 
 EID2B -3.18 0.0128 
 LOC285095 -3.16 0.0427 
 MARK1 -3.05 0.0417 

 

Gene enrichment sets of the RNA-Seq analysis 

Enrichment analysis was performed using the tmod database. HT29/B6 presented very few 

enriched sets, involved in mitochondrial respiration and DNA repair (Table 4.7). ROC curves of 

the gene sets enriched in HT29/B6 show the genes which were regulated in the set distributed 

according to p-value and colored according to the direction of regulation. Gene sets LI.M219 and 

LI.M231 present highly significant upregulated genes (Figure 4.18). 
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Figure 4.18 

Figure 4.18. ROC curves of the enriched gene sets in HT29/B6 cells. Gene sets with area under the curve 

> 0,7 and adjusted p-value <0,01 were represented as ROC curves displaying the fraction of regulated 

genes according to p-value versus the list of all genes in the set. Bright colors are strongly significant and 

dark colors mean moderate significance. Red stands for up- and blue, down-regulation 

 

N1, number of genes in the set 
AUC, Area under the curve 
Gene sets were filtered for AUC >0.7 and adj. p-value<0.01 
 

In T84 cells many gene sets were enriched involving cellular transport, cell-cycle, 

phosphatidylinositol signaling, DNA repair, splicing, mitochondrial respiration and protein 

synthesis (Table 4.8). The ROC curves for the enriched gene sets in T84 show that most of the 

genes are downregulated, especially for gene sets LI.M147 and LI.M144 and reinforcing that both 

cell lines respond in a completely different manner to the OPN stimulus (Figure 4.19). 

Table 4.7. Gene enrichment analysis of HT29/B6 cells exposed to osteopontin for 24 hours. 

ID Title N1 AUC 
Adj. P-
value 

Significant genes 

LI.M219 
Respiratory electron 

transport chain 
(mitochondrion) 

17 0.80 0.0008 
COX5A; COX5B; 
COX6B1; COX7C 

LI.M231 
Respiratory electron 

transport chain 
(mitochondrion) 

9 0.79 0.0007 
NDUFAB1; COX5A; 
NDUFB4; NDUFB1 

LI.M22.0 Mismatch repair (I) 27 0.75 0.0079 
SMC1A; POLA1; MSH2; 

GMNN; RMI1; MCM6 Table 4.7 
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Table 4.8 

Table 4.8. Gene enrichment analysis of T84 cells exposed to osteopontin for 24 hours. 

ID Title N1 AUC 
Adj. P-
value 

Significant genes 

LI.M147 Intracellular transport 17 0.87 0.0002 

SIRT1; EXOC1; VPS4B; 
NUP107; CLINT1; 
ZFYVE16; SEC63; 
ZFAND6; PIK3C2A; 
PPP1R12A; RAD21; 

G3BP2; SRP9 

LI.M144 Cell cycle. ATP binding 15 0.84 0.0002 

RBM7; UBA3; HDAC2; 
TLK1; RAD21; COPS5; 

PPP1R12A; VPS4B; 
CCNC; CUL5; PSMC6 

LI.M101 
Phosphatidylinositol 

signaling system 
13 0.83 0.0052 

AGL; PIK3C2A; DEK; 
PPP1R12A; PIK3C3; 

MICU2; SLC35A1 

LI.M169 
Mitosis (TF motif 

CCAATNNSNNNGCG) 
16 0.82 0.0042 

SMC1A; TMPO; ORC4; 
CASP8AP2; CETN3; 

UPF3B; ORC3; ACTR6 

LI.M22.0 Mismatch repair (I) 27 0.81 0.0019 

SMC1A; RFC4; MSH2; 
TMPO; MSH6; RFC2; 
GMNN; RMI1; PRIM1; 

CENPK; FIGNL1; 
MCM6; SSBP1; 
TOPBP1; SMC2 

LI.M250 Spliceosome 12 0.77 0.0052 
SNRPE; LSM3; RBMX; 

SNRPA; SNRPD2 

LI.M226 Proteasome 12 0.76 0.0067 
PSMD14; PSMA3; 
PSMC6; PSMA4; 
PSMC2; POLR2K 

LI.M219 
Respiratory electron 

transport chain 
(mitochondrion) 

17 0.74 0.0052 

COX5A; COX5B; 
UQCR10; COX7B; 
UQCRB; UQCRH; 

COX7A2L 

DC.M4.3 Protein Synthesis 37 0.74 <0.0001 

RPL6; ZFAND1; RPL36; 
RPS3; RPS14; HSF2; 

EEF1B2; RPL7A; 
SNRPD2; ELP2; APRT; 
MPHOSPH10; RPL9; 
RPA1; RPL5; RPL12; 

MCCC1; DDX18; RPS20 
N1, number of genes in the set 
AUC, Area under the curve 
Gene sets were filtered for AUC >0.7 and adj. p-value<0.01 
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Figure 4.19. ROC curves of the enriched gene sets in T84 cells. Gene sets with area under the curve > 0,7 

and adjusted p-value <0,01 were represented as ROC curves displaying the fraction of regulated genes 

according to p-value versus the list of all genes in the set. Bright colors are strongly significant and dark 

colors mean moderate significance. Red stands for up- and blue, down-regulation. 

 

 

Figure 4.19 
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A closer look at the genes described as significant genes in the mitochondrion respiratory 

chain gene sets, we see that respiratory complexes I, III and IV are represented (Table 4.9). There 

is a tendency for Complex I upregulation in both cell lines, whereas complex III genes are 

downregulated especially in T84. Complex VI seems upregulated in HT29/B6, but there is no 

clear trend for T84 once it shows up- and downregulation of different genes from this complex 

(Table 4.9). 

Table 4.9 

Table 4.9. Mitochondrial respiratory chain gene sets 

Gene 
name 

Full name 
Part of respiratory 
chain complex # 

Cell line 
Up- or 

downregulat
ed 

COX5A 
Cytochrome c oxidase 

subunit 5A 
Complex IV 

HT29/B6 and 
T84 

up 

COX5B 
Cytochrome c oxidase 

subunit 5B 
Complex IV 

HT29/B6 and 
T84 

down 

COX6B1 
Cytochrome c oxidase 

subunit 6B1 
Complex IV HT29/B6 up 

COX7A2
L 

Cytochrome c oxidase 
subunit 7A-related 

protein 

Complex IV T84 down 

COX7B 
Cytochrome c oxidase 

subunit 7B 
Complex IV T84 down 

COX7C 
Cytochrome c oxidase 

subunit 7C 
Complex IV 

HT29/B6 and 
T84 

up 

NDUFA
B1 

Acyl carrier protein, 
alternative NADH-

ubiquinone 

Complex I 
HT29/B6 and 

T84 
up 

NDUFB
1 

NADH dehydrogenase 
[ubiquinone] 1 beta 

subcomplex subunit 1 

Complex I T84 up 

NDUFB
4 

NADH dehydrogenase 
[ubiquinone] 1 beta 

subcomplex subunit 4 

Complex I 
HT29/B6 and 

T84 
up 

UQCR1
0 

Cytochrome b-c1 
complex subunit 9, 

alternative Ubiquinol-

Complex III 
HT29/B6 and 

T84 
down 

UQCRB 
Cytochrome b-c1 

complex subunit 7, 
alternative Ubiquinol-

Complex III T84 down 

UQCRH 
Cytochrome b-c1 

complex subunit 6, 
alternative Ubiquinol-

Complex III T84 down 
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5 DISCUSSION 
TRACKING A PRIMARY BARRIER DYSFUNCTION IN CELIAC DISEASE 

Barrier defect in celiac disease is a well-known phenomenon and its roots have been 

studied throughout the years. It is undeniable that the inflammatory process greatly affects the 

epithelial barrier function through the secretion of cytokines and the induction of apoptosis 

(143,145,146). However, the evidence for a genetic cause has been long envisioned and recently 

proven with the identification of susceptibility loci in genes related to cell-cell adhesion (248). 

Among the indicated genes, LPP, C1orf106 and PTPRK were functionally proven to play a role in 

cell adhesion (154,160,249).  

In the light of those findings, we aimed at determining the role of LPP and C1orf106 genes 

in cell lines and whether their depletion would affect barrier function of intestinal cell line Caco-2. 

Both genes were knocked-out via CRISPR-Cas9 editing and the clones were established. In 

TEER measurement, both genes, but especially C1orf106 showed reduced electrical resistance 

when compared to controls. This is in accordance with what was found in C1orf106 KO models 

(159,160). Furthermore, after the thorough evaluation of protein content of claudins, we found 

that Claudin-3 was significantly upregulated in LPP clones and claudin-1 and -7 showed a 

tendency for being increased, but it was not significant. Similarly, Claudin-7 and -8 showed a 

tendency for downregulation in C1orf106 KO clones. Claudin protein content evaluation in LPP 

or C1orf106 KO models has not been performed by previous studies; it was reported, though, that 

LPP KO MDCK cells presented normal levels of ZO-1, ZO-2, occludin, catenins, but reduced E-

cad (154). In C1orf106 KO cells ZO-1 was displaced from the membrane (159). To conclude this 

part of our evaluations, a calcium switch assay showed that both KO clones are not able to re-

assembly TJ in a way to display a similar TEER as the controls. Impaired TJ re-assembly was 

observed in LPP clones before (154), but not C1orf106. 
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In order to achieve a broader impression on the impact of LPP and C1orf106 depletion, we 

performed an WTS RNA-Seq with the clones in normal conditions and exposed to cytokines 

(IL-15, IL-22, IFNγ and TNFα). First results show that controls, LPP and C1orf106 KO clones 

present significant variance to cluster separate from each other in a PCA analysis (Figure 5.1). 

Indeed, we believe a gene-enrichment analysis will clarify the functions altered by the lack of 

those two genes. 

LPP is a protein with multiple functions, being found both in focal adhesions where it 

interacts with VASP and α-actinin; and in the nucleus, where it has the ability to act as a 

transcription factor (153). LPP interacts with α-actinin, which is a cross-linking actin protein found 

in focal adhesions (250) and was reported to be necessary for TGFβ-induced migration in ErbB2-

positive breast cancer cells (251). LPP-deficient present deficient migration (252). Which 

opposites its role in E-cad-dependent cell adhesions since it is related to EMT induction in cancer 

cells (154). Considering those recent findings, LPP-KO cells could present a stronger epithelial 

phenotype than LPP-containing cells, which would be in accordance with our KO clones B5 and 

B1 presenting increased claudin-3 and not showing significance TEER decrease in normal 

conditions. On the hand, the fact that LPP is important for E-cad adhesions, could explain the 

apparent delay in TEER recovery after the calcium switch.  

C1orf106 has an indirect role in the negative regulation of E-cad internalization. It was 

shown to induce degradation of cytohesins-1 and -2, which inhibits their activation of the GTPase 

ARF6 (159,160), which in turn induces E-cad membrane displacement and degradation (161). 

Moreover, ARF6 has multiple roles in tumorigenesis such as inducing migration, invasion in 

proliferation in cancer cells (253). ARF6 inhibition by C1orf106 could be protective in epithelial 

cells against tumorigenesis. 
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Figure 5.1 

Figure 5.1. RNA-Seq analysis of Caco-2 knock-out clones. Total RNA was extracted from Caco-2 clones 

EC B4, LPP B5 and C1orf106 C2 and a whole transcriptome sequence RNA-Seq analysis was performed. 

Variance between expression profile made the clones cluster separate from each other and in both 

analyzed time-point as shown in the Principal Component Analysis plot (A). Volcanos plots for EC B4 vs 

C1orf106 C2 (B) and LPP B5 (C) were made and showed that many genes were differentially regulated 

between clones. 
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The depletion of C1orf106 led to decrease in TEER, increase in the permeability for lucifer-

yellow (160). Moreover, C1orf106 depletion was shown to render mice more susceptible to barrier 

impairment, shown by diarrhea with increased fecal water content and FITC-dextran leakage, 

after TNFα injection (159). Considering this information, C1orf106 KO could be especially 

important in a CeD context, for epithelial cells are exposed to a milieu of inflammatory cytokines 

during disease activity. 

After characterization of the basic barrier function in the caco-2 clones, we sought out to 

investigate the expression of LPP and C1orf106 in duodenal samples coming from celiac patients.  

A significant decrease in expression level of both genes was found in celiac patients when 

compared to healthy individuals (248). However, in our Western Blot analysis, we observed a 

rather non-significant scatter in all our patient groups. Since we so far have a limited number of 

patients enrolled in the study, it could be that with the increase in the number of patients such 

differences will become clearer. Furthermore, we have measured TEER of those patients in order 

to correlate with protein and RNA findings (data not shown), however, since in active and RCD 

patients there can be a significant villus atrophy and crypt hyperplasia, further correction of TEER 

values with epithelial surface needs to be made. Finally, we also collected frozen biopsies and 

aim at evaluating expression level of target genes, which we expect to compare to the data 

acquired from the KO clones and report on specific gene set enrichment or altered pathways. 

ROLE OF OSTEOPONTIN IN CAC 

For the second part of this thesis, we analyzed colitis-associated cancer, which has been 

reported to have a progressive decrease in excess risk for IBD patients. This decrease is 

attributed to better implementation of surveillance strategies and better control of disease activity 

by the new treatments. On the other hand, the decrease in risk could also result from the aging 

of the cohorts (190). FFPE material was obtained and a Nanostring was performed. The choice 
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for the Nanostring rather than other RNA-based screening method was due to it showing more 

stability in the analysis of fragmented RNA samples than the amplification-based techniques 

(254). The human immunology panel was selected for CAC having an IBD background and our 

interest in investigating how the inflammatory process contributes to its development. The most 

up- and downregulated genes show an idea of general changes in the immune cell compartment 

and inflammation status. For example: the finding that IBD-related genes A1009 and A1008 (163) 

being downregulated in CAC. 

Being OPN the most upregulated gene in both comparisons, which are completely 

independent from each other, led us to think it could be involved in a mechanisms of CAC 

tumorigenesis shared by UC and CD-colitis and instigated us to investigate it further. Indeed, 

higher OPN expression is in accordance to literature in CRC and various other types of solid 

cancers (230). We pursued a correlation between expression level and survival rate but, likely 

due to our small number of patients per group, could not find significance. OPN levels in tissue 

and peripheral blood have been correlated with survival rates and tumor stage in various types of 

cancer, including CRC (233). Such an analysis had not been done before, specifically in CAC. 

We believe that with a larger cohort, we can establish a significance in the survival rate of CAC 

patients based on their OPN expression levels. 

When we examined the histological slides stained for OPN we observed its localization not 

only in the epithelium, but also in stromal cells. Indeed, OPN is produced and secreted by many 

immune cells such as, DCs, NKs, T and B cells (230) as well as various epithelial cells, including 

intestinal epithelial cells (197). In some cancer patients (without significant difference between 

disease groups) nuclear OPN staining was present, which is reported in the literature as a 

negative prognostic indicator for survival (255). 
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Next, to determine possible pathways that could be regulated by OPN, we searched the 

Qiagen knowledge base to find possible targets, which showed us several molecules and 

signaling pathways. We then sought out to evaluate candidates, including CD44, beta-catenin 

and SMAD3.  

CD44 showed a tendency of increase in epithelial cells of CDAC and UCAC patients. In 

carcinomas, it is regarded as a marker for cancer stem cells (256). Moreover, OPN-induced 

migration of macrophages was seen to be dependent of CD44 expression in mice (223). In 

hepatocellular carcinoma cells, the OPN promoted cell proliferation through CD44 (257).  

For β-catenin, the most important change was not in increased signal, but rather nuclear 

localization being found only in a few CAC patients. In CRC patient samples, there was a string 

correlation between OPN and nuclear β-catenin IHC staining. Moreover, co-expression of these 

two proteins correlated with lymph node metastasis, tumor invasion and TNM stage (258). In 

prostate cancer cells, OPN induces β-catenin nuclear translocation through activation of AKT and 

resulting in expression of MMP7 and CD44 (259).  

SMAD3 is necessary for EMT induction in lens epithelium during the development of 

posterior capsule opacification in the eye (260). OPN was seen co-expressed with phosphorylated 

SMAD3 in the calcification process blood vessels in cerebral amyloid angiopathy (261). 

Since one of the most studied functions of OPN in tumors is the ability to promote EMT, we 

investigated whether our patients’ samples present changes related to the EMT process. Indeed, 

amidst the Nanostring data we found the transcription factor ZEB1 and the extracellular matrix 

protein fibronectin (FN1). ZEB1 is one of the EMT core genes and directly represses E-cadherin 

and induces expression of vimentin (238). Fibronectin expression is increased as a consequence 

of EMT (236). In our analysis, both genes were upregulated in CDAC patients compared to CD, 

in UCAC there was a tendency for upregulation, however, without statistical significance. Those 
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corroborate with the hypothesis that OPN contributes for EMT in the CAC patients. Therefore, we 

sought out to study it mechanistically in two human intestinal cell lines HT29/B6 and T84. 

When those cells were exposed to OPN there was phosphorylation of ERK1/2, but not of 

AKT or STAT3. In addition, phosphorylation and translocation of NFκB P-65 was not observed. 

We then evaluated transcriptional regulation of the EMT-core genes SNAI1, SNAI2 and TWIST1 

as well as the MMP7; Nonetheless, we could not find significant changes in the expression of 

those genes. Only SLUG showed a significant up-regulation in HT29 after 24h of OPN incubation, 

however, it was not sufficient to trigger the EMT process.  

OPN promoted proliferation and invasion in intestinal HCT116 cells through activation of 

PI3K/AKT (262) and also was shown to induce TWIST expression in hepatocellular carcinoma 

cells through the same pathway, promoting expression of MMP2 and uPA (urokinase-type 

plasminogen activator). In addition, OPN knock-down decreased the expression of N-cadherin 

and increased E-cadherin protein content (241). In ovarian cancer cells, OPN induced 

proliferation, migration, and invasion with expression of vimentin and N-cadherin through both 

AKT and ERK1/2 pathways (263). In breast cancer cells, OPN induced migration and uPA 

expression by phosphorylation and nuclear translocation of NFκB P-65 through PI3K/AKT (222). 

Finally, again in breast cancer cells, OPN induced migration and inhibition of apoptosis, as well 

as expression of Bcl-2 and Cyclin D1 through activation of JAK2/STAT3 (264). 

This was also proven in colorectal cancer cell lines HT29 and COLO205. OPN induces 

proliferation, migration and invasion of those cell lines, accompanied of increased protein content 

of β-catenin, SNAIL, MMP2, 3 and 9 while reducing E-cad (233,262). OPN knock-down impaired 

migration, cell cycle progression, and increased apoptosis rate. Also decreased vimentin 

expression and increased E-cad (265). 
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All those data indicate OPN could have activated any of the pathways we investigated, 

inducing EMT, however, despite a slight activation of ERK1/2, we did not observe the same in our 

cell lines. We hypothesize that the lack of signaling activation and EMT induction could be due to 

the use of full-length recombinant OPN, instead of a different isoform, such as OPN-c and OPN-

b or the thrombin cleaved OPN. 

One other thing that could have influenced our results was the substrate onto which the 

cells were seeded or the confluency of the culture at the start of the experiments. Those 

possibilities were investigated once we seeded cells in both cell inserts and plates. Cell inserts 

on the one hand provide for apical and basolateral stimulation, on the other hand does not allow 

observation of the culture growth and for that is used at a stage in which the cells should be 

confluent. We performed OPN exposure of the cells, followed by quantitative PCR analysis of 

EMT genes, but saw no induction of expression for those genes (data not shown). Our second 

approach was to seed the cells in plates and start the experiment at around 50% confluency, 

which are the results presented in this document. Nevertheless, both approaches rendered similar 

results without significant regulation of the EMT transcription factors, indicating the seeding 

substrate was not the reason why we did not find EMT in the cell lines. 

Finally, we performed an RNA-Seq analysis of the cell lines after exposure to OPN. The 

analysis showed that longer exposure times were necessary to achieve significant variance in 

between treated and untreated cells. Even though not many genes were significantly regulated, 

gene set enrichment showed regulation of respiratory chain, protein synthesis, splicing and 

transcription, especially in T84 cells. Further analysis of the genes belonging to the respiratory 

chain sets, showed that there is a tendency for upregulation of Complex I in both cell lines, 

whereas complex III is downregulated only in T84 and complex IV is upregulated in HT29/B6 and 

has no specific trend in T84. 
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In the literature associating OPN to mitochondrion respiration, OPN inhibits the expression 

on cytochrome c oxidase in murine macrophages (266). Moreover, OPN, via CD44 binding, 

induces apoptosis of rat cardiomyocytes through the mitochondrial death pathway, with the 

activation of JNKs and induction of expression of Bax and cytochrome C and ER stress pathway 

with increased expression of Gadd153 (267). Further investigation revealed that OPN induces 

ROS production by increasing expression of NOX-4 (NADPH oxidase isoform 4) and decreasing 

expression of SOD-2 (superoxide dismutase-2). OPN decreased mitochondrial transmembrane 

potential and induced mitochondrial remodeling with fragmentation of cristae. As a conclusion, 

the effects of OPN in mitochondrial remodeling and apoptosis were associated to increased 

expression of BIK (268). Furthermore, in a murine model of heart failure with preserved ejection 

fraction (HFpEF), OPN deletion improved diastolic function and reduced myocardial fibrosis. The 

HFpEF mice presented elevated oxidase stress, including significant reduction in the levels of 

mitochondrial electron transport chain complexes I, II and IV and swollen mitochondria with 

disorganized cristae. OPN effects coincide with decrease in OGDHL protein. In contrast, OGDHL 

overexpression improved mitochondrion function of cardiomyocytes (269). 

These findings corroborate with the downregulation of mitochondrial respiratory chain 

complexes III and IV seen especially in T84 cells exposed to OPN, suggesting a new mechanism 

for OPN in tumorigenesis of CAC. 

The fact that HT29/B6 and T84 are cell lines established from colorectal carcinoma patients 

indicate that those cell lines are not the best model for the study of CAC. Indeed, we believe we 

would have a more reliable response had we used a better model for that. Mice CAC models 

include Azoxymethane (AOM)/Dextran sodium sulfate (DSS) model, in which the mice are 

injected with a carcinogen followed by colitis induction by the ingestion of a heparin-like 

polysaccharide (DSS) dissolved in water has been largely used and recapitulates the key aspects 

of CAC tumorigenesis (270). A second model is the AOM/IL-10-/- mice. IL-10 KO mice are 
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inflammation-susceptible and an established model of IBD. The intraperitoneal injection of AOM 

triggers the tumorigenesis of CAC in those mice (271). Moreover, a recent established model 

combines Mucin-2 mutation and APCMin/+. This model results in an inflammatory background with 

genetic predisposition to small intestinal polyposis. Mice showed dysplastic lesions from 5 weeks 

along the entire colon (272). In addition, when OPN-/- mice were treated with DSS, there was an 

aggravation of the acute experimental colitis, whereas OPN depletion was protective in chronic 

colitis (273). 

When it comes to the study of human diseases, mice models have been extremely important 

over the decades, however, they do not represent a substitution of the human cells and tissues. 

In this regard, organoids have been shown to be flexible human models that overcome many 

limitations of immortalized cell lines, such as forming a 3D structure that reproduces tissue 

architecture and homeostasis and can be derived from virtually any tissue for a long-term 

propagation. They have been reported to be reproducible and can be used as patient-specific 

in vitro models (274). Thus, the continuation of this project will focus on studying the mechanisms 

of OPN in CAC progression in organoids established from IBD and CAC patients, which will be 

more reliable models than immortalized cell lines coming from CRC and which reproduce the 

diversity of the intestinal microenvironment. 
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6 CONCLUSIONS 
TRACKING A PRIMARY BARRIER DYSFUNCTION IN CELIAC DISEASE 

Our results show that the knock-out of LPP and C1orf106 genes result in alterations in TJ 

and TJ function. C1orf106 clones presented lower TEER values, whereas LPP KO clones 

presented changes in tight junctional protein content, especially the up-regulation of Claudin-3. 

After calcium depletion and replacement, KO clones presented lower TEER levels then controls, 

indicating their barrier function is impaired in comparison to the controls. The protein analysis of 

LPP and C1orf106 in patients was inconclusive, with no significant difference found between 

disease groups. Further investigation is needed in order to define the contribution of both proteins 

in barrier impairment in CeD. 

THE ROLE OF OPN IN THE PATHOGENESIS OF CAC 

The RNA analysis from patients’ samples retrieved many findings, being OPN the most 

upregulated gene in the analyses between CDAC vs CD and UCAC vs UC. A decrease in the 

inflammatory process was also observed in the CAC conditions compared to their respective IBD 

group. Further analysis of OPN revealed a tendency for a poorer survival in high-expressing 

patients. OPN was present in both epithelium and stroma of CAC patients. Investigation of 

molecules related to OPN signaling showed that CD44 has a tendency for being increased in 

CAC patients, as well as β-catenin nuclear translocation. No changes were observed in phospho-

SMAD3.There was a tendency for increased EMT in CAC patients as seen by the upregulation of 

FN1 and ZEB1 in CDAC patients and the immunohistochemical analysis of EpCAM by 

immunohistochemistry. 

On the second part of the project, intestinal cell lines showed phosphorylation of ERK1/2, 

but not of STAT3 or AKT. Nuclear translocation of P-65 was also not observed after OPN 

exposure. OPN failed to induce EMT-genes transcriptional regulation in both intestinal cell lines, 
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being only a slight upregulation in SLUG observed in HT29/B6. Attempting to have a better 

comprehension of the effects of OPN in the intestinal cell lines, an WTS RNA-Seq experiment 

was performed. Among the most regulated genes in HT29/B6 there are genes of DNA-damage 

response and chromatin remodeling. On the other hand, in T84 the most downregulated genes 

are related to the cytoskeleton and the extracellular matrix. Enrichment analysis showed 

enrichment of gene sets related to mitochondrial respiration. Of those gene sets, the regulated 

genes were associated with the complexes I, III and IV, being the complexes III and IV 

downregulated in both cell lines. Since OPN is known to induce apoptosis and reactive oxygen 

species production through the mitochondrial death pathway, this could be a new mechanism by 

which it contributes to the tumorigenesis of CAC. 
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9 SUPPLEMENTARY MATERIAL 
 

 

Supplementary Figure 1. 

Supplementary figure 1. Densitometric analysis of Caco-2 knock-out clones. Cells from the Caco-2 control 

clones EC B4 and D4 and knock-out clones for LPP B5 and B11 and for C1orf106, C2 and Cyl2 had their 

protein content of LPP and C1orf106 analyzed using Western Blotting. Densitometric analysis was 

performed using actin as loading control and statistics were calculated using unpaired t test by comparing 

each knock-out clone to the average of the control clones EC B4 and EC D4. 
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Supplementary Figure 2. 

Supplementary figure 2. Densitometric analysis of tight junctional proteins in Caco-2 knock-out clones. Cells 

from the Caco-2 control clones EC B4 and D4 and knock-out clones for LPP B5 and B11 and for C1orf106, 

C2 and Cyl2 were analysed by Western Blotting for tight junctional proteins Claudin-1, -2, -4, -7, -8, and 

occludin. Densitometric analysis was performed using actin as loading control and statistics were calculated 

using unpaired t test by comparing each knock-out clone to the average of the control clones EC B4 and 

EC D4. 
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Supplementary figure 3 

Supplementary figure 3. Densitometric analysis of HT29/B6 cells exposed to osteopontin. HT29/B6 cells 

were exposed to different concentrations of osteopontin for 10, 30 and 60 minutes and then examined by 

Western Blotting for phosphorylated and total ERK 1/2 (A) AKT (B) and STAT3 (C). Densitometric analysis 

was performed using actin as loading control and then a ratio between phosphorylated protein and total 

protein was calculated. Statistics were calculated using unpaired t test by comparing each experimental 

condition to the untreated control (CT). 
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Supplementary figure 4 

Supplementary figure 4. Densitometric analysis of T84 cells exposed to osteopontin. T84 cells were 

exposed to different concentrations of osteopontin for 10, 30 and 60 minutes and then examined by Western 

Blotting for phosphorylated and total ERK 1/2 (A) AKT (B) and STAT3 (C). Densitometric analysis was 

performed using actin as loading control and then a ratio between phosphorylated protein and total protein 

was calculated. Statistics were calculated using unpaired t test by comparing each experimental condition 

to the untreated control (CT). 
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