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Abstract

The dynamical behavior of social systems can be described by agent-based models.

Although single agents follow easily explainable rules, complex time-evolving patterns

emerge due to their interaction. The simulation and analysis of such agent-based models,

however, is often prohibitively time-consuming if the number of agents is large. In this paper,

we show how Koopman operator theory can be used to derive reduced models of agent-

based systems using only simulation data. Our goal is to learn coarse-grained models and

to represent the reduced dynamics by ordinary or stochastic differential equations. The new

variables are, for instance, aggregated state variables of the agent-based model, modeling

the collective behavior of larger groups or the entire population. Using benchmark problems

with known coarse-grained models, we demonstrate that the obtained reduced systems are

in good agreement with the analytical results, provided that the numbers of agents is suffi-

ciently large.

1 Introduction

Systems of multiple agents that act and interact within a social network lead to complex dynam-

ics and collective social phenomena. An agent can represent an individual person, a household,

an organization, or any kind of discrete entity in an environment, which can be given, e.g., by

geographical conditions, resources, infrastructure, but also rules or laws. Applications such as

innovation spreading and infection kinetics (e.g., [1, 2]) range from data-based micro-simula-

tions to abstract agent-based models (ABMs). A well-studied application concerns opinion

dynamics and can be traced back to the voter model introduced by Clifford and Sudbury [3],

developed in the 1970s. The name was coined by Holley and Liggett [4] a few years later. In this

model, an agent imitates the opinion of its neighbors. This means that whenever two agents

with different opinions interact with each other, one of them copies the opinion of the other

agent. There exist various modifications of the voter model, e.g., regarding the representation of

the opinions, imitation, and interaction structure, see, for instance, [5–8] for an overview.

Agent-based models provide an easily explainable and accessible framework for studying

the dynamical behavior of interacting agents without requiring an extensive mathematical
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background. Models range from (highly detailed) microscopic stochastic descriptions follow-

ing spatial movement and neighbor interactions [9] and individual-based stochastic descrip-

tions in a network without movement [10] to Markov chain approaches for collective

population dynamics [11]. Most agent-based models have in common that they are hard to

analyze due to their high-dimensionality. Additionally, simulations are often time-consuming

so that a detailed analysis of such systems or parameter studies are typically infeasible. Espe-

cially for real-time decision and policy making this is clearly a disadvantage. One way to miti-

gate this is to compute surrogate models via machine learning approaches that can be used for

calibration, sensitivity analysis, and parameter studies, see [12]. Another way is to represent

the agents as a system of ordinary or stochastic (partial) differential equations (ODEs, mean-

field ODEs, SDEs, or SPDEs), see, for instance, [13–16]. Assuming that the population of

homogeneous agents that interact with each other (e.g., via a complete network) is sufficiently

large, this system can be modeled as a Markov jump process (see also [10, 11]), which in turn

can be approximated using ordinary or stochastic differential equations [8, 17]. This does not

hold for all ABMs (consider, e.g., network-free or off-lattice models).

A drawback is that the aforementioned methods require knowledge about the process itself,

which might not be available. Thus, there is a growing interest in learning the interaction laws

of social dynamics in a data-driven fashion. One method is the so-called equation-free
approach pioneered by Kevrekidis et al. [18, 19], which aims at circumventing the derivation

of macroscopic, system-level equations when they are believed to exist but cannot be expressed

in closed form. In [20], the equation-free approach is used to obtain a reduced model of a spa-

tio-temporally varying agent-based civil violence model. The obtained model is a stochastic

differential equation that depends on two coarse-grained variables. The estimation of the drift

and diffusion terms is accomplished by suitable short realizations of the agent-based simula-

tion. Other applications of the equation-free approach are, e.g., bifurcation and stability analy-

sis for ABMs or rare-event analysis [21, 22]. One key problem is the discovery of the right

coarse-grained variables. If these are not known from physical insights or intuition, it is possi-

ble to use, e.g., a data-mining approach. In [23], the authors propose to use diffusion maps to

learn the essential variables, resulting in an equation-free-variable-free approach. In [24], a

non-parametric approach for learning the interaction laws that is similar to parameter estima-

tion problems for ordinary differential equations is proposed, assuming that the interaction

depends only on pairwise distances between agents. Furthermore, it is shown that the learning

rate is then independent of the dimension, making their approach suitable for large-scale sys-

tems. The data-driven approach described in [25] utilizes memory terms to improve the accu-

racy of the coarse-grained model.

Our approach to learn coarse-grained systems for complex ABM dynamics relies on Koop-

man operator theory. The Koopman operator and its generator have been used for computing

metastable and coherent sets, stability analysis, and control, but also for system identification,

e.g., [26–29]. It was shown that by expressing the full-state observable in terms of the basis

functions or eigenfunctions, it is possible to learn the governing equations of dynamical sys-

tems from data. While this has been mostly applied to ordinary differential equations [26, 30–

32], the approach can be naturally extended to stochastic differential equations, where the drift

and diffusion terms are then estimated in a similar fashion [33]. While Koopman operator-

based methods have been successfully applied to molecular dynamics, fluid dynamics, engi-

neering, and physics problems, the application of these methods to complex social systems

such as ABMs, however, is still lacking, although notions like metastability and coherence exist

in this context as well. The goal then is to study the coarse-grained behavior of complex ABMs

based on data. If the model describes, for instance, the voting behavior of a large population,

we are often not interested in each agent’s decision but in the collective behavior of larger
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groups or the entire population. In [34, 35], the authors use Koopman mode analysis to inves-

tigate the dynamics of the spatial-temporal distribution of different agent types or to extract

non-obvious information from the system’s state indicating changes in the dynamics. Is was

shown in [17] that the long-term characteristic behavior of ABMs can be determined by simu-

lating (many) short trajectories of the corresponding SDE instead.

Our goal is to illustrate how coarse-grained models of complex ABM dynamics can be

learned from data. The approach is based on [33], with the difference that we here directly

learn reduced models. Since we know the resulting limit processes in this case, which are given

by a systems of ODEs or SDEs, we can compare the numerical results obtained for finitely

many agents with the theoretical results. We demonstrate that under appropriate conditions

the estimated models are in good agreement with known limit cases. The aim is to use the

reduced models also for sensitivity analysis, parameter optimization, and control, by combin-

ing it with techniques proposed in [28, 36, 37]. The main contributions of this work are:

• We show that the Koopman generator can be used to learn reduced stochastic models from

aggregated trajectory data that represents the collective behavior of larger groups or the

entire population.

• We demonstrate for a voter model defined on a complete network that the obtained reduced

models are in good agreement with the SDE approximation for large population sizes and

can not only be used for system identification but also for predictions of the temporal evolu-

tion. Furthermore, we show how the transition rate constants of the underlying Markov

jump process corresponding to the ABM can be reconstructed.

• We show that the proposed procedure also yields good reduced models that allow prediction

in some other cases where the limit process is unknown or even far from a limit case. We

demonstrate this for incomplete, clustered interaction networks (demonstrated again for the

voter model) as well as models that do not have a network-based formulation (using a preda-

tor-prey model).

In general, this method requires a lot of data, which, however, is no problem in simulation

studies where a surrogate model is required for the optimization or control of the full-com-

plexity ABM.

The remainder of this paper is structured as follows: In Section 2, we introduce the stochas-

tic Koopman operator, its generator, and generator extended dynamic mode decomposition
(gEDMD). We then briefly summarize the representation of ABMs as Markov jump processes

and its SDE limit model for large population sizes in Section 3. Furthermore, we introduce the

voter model and the predator-prey model, which are used as guiding examples throughout the

paper. In Section 4, we learn reduced models for complex ABM dynamics purely from aggre-

gated data. We show in Section 5 that, under certain conditions, the coarse-grained models

agree with known limit cases. Furthermore, considering both ABMs with clustered interaction

networks and ABMs without any underlying network structure, we demonstrate that the

reduced models also allow prediction for other cases. Concluding remarks and future work

will be discussed in Section 6.

2 Koopman operator theory

In this section, we will briefly introduce the stochastic Koopman operator, its generator, and

generator EDMD, a variant of extended dynamic mode decomposition that can be used to

approximate differential operators, see [33] for details.
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2.1 The Koopman operator and its generator

In what follows, let X � Rd
be the state space and f 2 L1ðXÞ a real-valued observable of the

system, which can represent any kind of measurement. Furthermore, let E½ � � denote the

expected value. Given a stochastic differential equation of the form

dXt ¼ bðXtÞdt þ sðXtÞdWt; ð1Þ

where b: Rd ! Rd is the drift term, s: Rd ! Rd�s the diffusion term, and Wt an s-dimensional

Wiener process, the stochastic Koopman operator is defined by

ðKt f ÞðxÞ ¼ E½f ðFtðxÞÞ�:

Here, Ft is the flow map associated with (1). It can be shown that the infinitesimal generator of

the stochastic Koopman operator is

Lf ¼
Xd

i¼1

bi
@f
@xi
þ

1

2

Xd

i¼1

Xd

j¼1

aij
@

2f
@xi@xj

;

where a = σσ> The adjoint operator is given by

L�f ¼ �
Xd

i¼1

@ðbi f Þ
@xi

þ
1

2

Xd

i¼1

Xd

j¼1

@
2
ðaij f Þ

@xi@xj
:

The function uðt; xÞ ¼ Ktf ðxÞ solves the Kolmogorov backward equation given by the sec-

ond-order partial differential equation @u
@t ¼ Lu, see [38]. Moreover, @u

@t ¼ L�u is called Fokker–
Planck equation [39]. For deterministic dynamical systems, σ� 0 and consequently also a� 0

so that we obtain a first-order partial differential equation, namely the Liouville equation.

2.2 Infinitesimal generator EDMD

While the classical extended dynamic mode decomposition (EDMD) approximates the Koop-

man operator or the Perron–Frobenius operator [27, 40], we now seek to approximate their

generators from data. We thus introduce generator EDMD or, in short, gEDMD, which was

proposed in [33]. Assume that we have m measurements of the system’s state fxl g
m
l¼1

, its drift

fbðxlÞg
m
l¼1

, and diffusion fsðxlÞg
m
l¼1

. We will discuss in Section 4 how to obtain these point-

wise estimates. Then, choosing a set of basis functions fcig
n
i¼1

, which is sometimes also called

dictionary, and writing it in vector form as ψ(x) = [ψ1(x), . . .,ψn(x)]>, we define

dckðxÞ ¼ ðLckÞðxÞ ¼
Xd

i¼1

biðxÞ
@ck

@xi
ðxÞ þ

1

2

Xd

i¼1

Xd

j¼1

aijðxÞ
@

2
ck

@xi@xj
ðxÞ:

For all measurements and basis functions, we can now assemble the matrices

CX ¼

c1ðx1Þ � � � c1ðxmÞ

..

. . .
. ..

.

cnðx1Þ � � � cnðxmÞ

2

6
6
6
6
4

3

7
7
7
7
5

and dCX ¼

dc1ðx1Þ � � � dc1ðxmÞ

..

. . .
. ..

.

dckðx1Þ � � � dckðxmÞ

2

6
6
6
6
4

3

7
7
7
7
5
; ð2Þ

whereCX; dCX 2 R
n�m. Assuming there exists a matrix M such that dCX = MCX, we solve the

problem in the least-square sense by minimizing kdCX −MCXkF since in general this problem

cannot be solved exactly. Here, k�kF denotes the Frobenius norm. The least-squares solution is
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given by

M ¼ dCXC
þ

X ¼ ðdCXC
>

X ÞðCXC
>

X Þ
þ
;

where A+ denotes the Moore–Penrose pseudoinverse of a matrix A. The matrix L = M> is an

empirical estimate of the matrix representation of the infinitesimal generator L as shown in

[33]. In the infinite data limit, gEDMD converges to a Galerkin approximation of the genera-

tor, i.e., a projection onto the space spanned by the basis functions.

2.3 System identification

Let X be bounded so that the full-state observable g(x) = x is (component-wise) contained in

L1ðXÞ. With the aid of the full-state observable, it is possible to reconstruct the governing

equations of the underlying dynamical system. We assume that the function g(x) = x can be

represented by the basis functions ψ. The easiest way to accomplish this is to add the observ-

ables fxig
d
i¼1

to the dictionary. Let B 2 Rn�d
be the matrix such that gðxÞ ¼ B>cðxÞ. The sys-

tem can directly be represented in terms of the basis functions,

ðLgÞðxÞ ¼ bðxÞ � ðLBÞ>cðxÞ;

which, for a deterministic dynamical system, is equivalent to SINDy [41]. For non-determin-

istic systems and for ψk(x) = xi xj, note that the diffusion term can be identified by

aijðxÞ � ðLckÞðxÞ � biðxÞxj � bjðxÞxi; ð3Þ

provided that bi and bj as well as bi(x)xj and bj(x)xi are contained in the space spanned by the

basis functions. If the drift term σ itself is needed, we can obtain it using a Cholesky decompo-

sition of a, see [33].

3 Modeling agent-based systems

We consider agent-based systems of N interacting agents. For each system, there is a set {S1,

. . .,Sd} of types available to the agents, a set {R1, . . .,RK} of transition rules that define possible

changes between the types Si, and a set of propensity functions specifying the rates of random

occurrences of the transitions. The ABM state space is given by {1, . . .,d}N and grows like dN,

which is problematic for large N. For this reason, we describe the ABM via the population

state, i.e., we count the number of agents of each type. The population state space grows like

Nd in the worst case. If we assume random interactions between all agents (e.g., via a complete

network) and indistinguishable agents, then the population state space description is exact. In

all other cases it involves an approximation error due to aggregation of the ABM state space.

We will consider two different agent-based models and modeling approaches. The first one

is a continuous-time voter model without spatial resolution where the agents are nodes in an

interaction network and each of them can switch between d different types according to some

given transition rules. This model is similar to the discrete-time model in [11]. The second

ABM is a spatial (i.e., there is no underlying network) predator-prey model formulated in dis-

crete-time. Unlike in the first model, the agents are not changing their types (in this context

called breed). Instead, transitions in the population state are caused by reproduction and death

of predators and prey. The population size is thus not constant.

We will now describe the representation of agent-based systems (using the population

state) as a Markov jump processes and their approximation by SDEs for large population sizes.

For further details, we refer the reader to [17].
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3.1 Agent-based models as Markov jump processes

At any time t, the population state x 2 X of the ABM is fully described by the vector

x ¼ ½x1; . . . ; xd�
>
2 Nd

0
;

where xi is the number of agents of type Si. For the sake of simplicity, we assume in this subsec-

tion random interactions between all agents so that transitions between agent types imply

transitions between population states. We use a formalism that is most commonly used in the

chemical context, where each transition rule is represented by an equation of the form

Rk : a1k S1 þ . . .þ adk Sd 7! b1k S1 þ . . .þ bdk Sd:

It induces an instantaneous change in the system’s state of the form x 7! x + νk, where νk =

(νik)i = 1, . . .,d, defined by νik≔ bik − aik, describes the net change in the number of agents of

each type Si due to transitions Rk. Transition Rk occurs in an infinitesimal time step dt with

probability akðxÞdt, where ak: X! ½0;1Þ denotes the propensity function associated with

transition Rk. We assume that the propensity αk is proportional to the number of combinations

of agents in x, and, moreover, that it scales with the total population size N, i.e.,

akðxÞ ¼
gkN
Yd

i¼1

1

Naik

xi
aik

� �

; if xi � aik for all i ¼ 1; � � � ; d;

0; otherwise:

8
>><

>>:

Here, γk> 0 denotes the rate constant for the kth transition Rk.
The evolution of the population state can be described by a continuous-time stochastic pro-

cess {Xt}t � 0 with

Xt ¼ ðxiðtÞÞi¼1;���;d 2 X;

where xi(t) denotes the number of agents of type Si at time t. It is a Markov jump process, i.e.,

it is piece-wise constant with jumps of the form Xt 7! Xt + νk.
Let Pðx; tÞ≔P½Xt ¼ x j X0 ¼ x0� denote the probability of finding the process in state x at

time t given some initial state x0. The temporal evolution of {Xt}t � 0 can then be described by

the Kolmogorov forward equation given by

dPðx; tÞ
dt

¼
XK

k¼1

akðx � nkÞPðx � nk; tÞ � akðxÞPðx; tÞ½ �: ð4Þ

By setting αk(x) ≔ 0 and P(x, t) ≔ 0 for x=2Nd
0
, we exclude terms in the right-hand side of

(4) where the argument x − νk contains negative entries. Since in general the Kolmogorov for-

ward equation of the ABM process cannot be solved analytically, the distribution of the process

can be estimated by Monte Carlo simulations, which can be generated using Gillespie’s sto-

chastic simulation algorithm [42].

Assuming convergence of the propensity functions for N!1, it is well-known that the

rescaled jump process Xt N−1 converges to the frequency process C(t), t� 0, given by the SDE

dCðtÞ ¼
XK

k¼1

~akðCðtÞÞnkdt þ
XK

k¼1

1
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~akðCðtÞÞ

p
dWkðtÞnk; ð5Þ

with initial state C(0) = limN!1 X0 N−1, independent Wiener processes Wk(t), k = 1, . . .,K,

and rescaled propensities, i.e., ~akðcÞ ¼ N � 1akðcNÞ [43]. The SDE limit model (5) is also known
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as the chemical Langevin equation in the context of chemical reaction kinetics [44]. Written as

an SDE of the form (1), the drift and diffusion terms b(c) and σ(c) are given by

bðcÞ ¼
XK

k¼1

~akðcÞnk; ð6Þ

sðcÞ ¼
1
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffi
~a1ðcÞ

p
n1 � � �

ffiffiffiffiffiffiffiffiffiffiffi
~aKðcÞ

p
nK

� �
: ð7Þ

3.2 Extended voter model

Throughout the paper, we will use the extended voter model (EVM) with N agents, d types, and

two sorts of transitions as one of two guiding examples. This model is well-known, e.g., as the

noisy multi-state voter model, for describing foraging ant colonies, or chemical systems, see [8,

45, 46]. The agents are the nodes in an interaction network. Given two agents with types Si 6¼
Sj, imitation or adaption is a second-order transition of the form Rij: Si + Sj 7! 2Sj, whereas

exploration or mutation is a first-order transition of the form R0ij: Si 7!Sj. Imitation happens

whenever one agents of type Si adopts the type of another agent with different type Sj. It can be

interpreted as adopting an opinion or technology, or also as being infected. Exploration corre-

sponds to an independent change of the agent’s type. Given a complete network, the propen-

sity functions for imitative and exploratory transitions Rij and R0ij are given by

aijðxÞ ¼
gij

N
xixj and a0ij ¼ g

0

ijxi;

where gij; g
0
ij > 0 denote the rate constants for the transitions. Fig 1A shows a graph with

N = 10 nodes representing the interaction network. Here, the agents can have three different

types (represented by blue, red, and yellow vertices). Fig 1B shows a trajectory of the Markov

jump process.

Fig 1. Extended voter model. (A) Network of N = 10 agents having three different types (blue, red yellow) and (B) a

possible trajectory of the jump process for the rate constants γ12 = γ23 = γ31 = 2, γ32 = γ21 = γ13 = 1 and g0ij ¼ 0:01 for i,
j = 1, . . .,3.

https://doi.org/10.1371/journal.pone.0250970.g001
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3.3 Predator-prey model

The second agent-based model we consider as a guiding example in this work is a predator-

prey model (PPM), where the agents move freely in a given domain. We formulate the PPM in

discrete time using intuitive text-based transition rules to emphasize its ABM character.

Given a continuous and periodic space, all agents are constantly performing Gaussian ran-

dom walks with normally distributed step size. This means, given its current position in space

xi(k0), after k time steps the agent is located at position xiðk0 þ kÞ ¼ xiðk0Þ þ
Pk

i¼1
xi for

xi �
ffiffiffi
h
p

N ð0; 1Þ. There are two breeds of agents: predator agents and prey agents. We will

denote them as predators and prey, respectively. At each time step, all agents carry out the fol-

lowing steps corresponding to their breed:

• A prey moves and reproduces with probability prep. The offspring is placed randomly in the

space.

• A predator moves and looks for prey within a radius of vision v. If there is prey within the

radius of vision, the predator chooses its victim randomly and kills it. The predator can only

reproduce with probability p0rep if it killed a prey before. The offspring is placed randomly in

the space. If there is no prey in the radius of vision, the predator dies with probability pdeath.

A flow chart describing the PPM in more detail can be found in Fig 2. In the absence of

predators, the prey has an unlimited growth, which can be interpreted as independence of

resources. There is no competition between the prey. The growth is only kept in check by the

existence of predators. The population size is clearly not constant here. Fig 3A shows a snap-

shot of the PPM for a realization using the parameters summarized in Table 2. Green and red

dots represent prey and predators, respectively. The search radius for prey is indicated by the

light-red area around the red dots. The aggregate state is given by the number of prey and

predators, respectively.

Remark 3.1 Due to the spatial component of the PPM, it cannot be formulated directly

using the formalism summarized in Section 3.1. Assuming a well-mixed system and denoting

prey by S1 and predators by S2, the rules given above translate to

S1 7! 2S1; ðreproduction of preyÞ

S1 þ S2 7! 2S2; ðreproduction of predatorsÞ

S2 7! ;; ðdeath of predatorsÞ

for some rate constants γi> 0, i = 1, . . .,3. Then the aggregate state of the PPM resembles the

stochastic Lotka–Volterra predator-prey differential equations.

In the next section, we will show how we can obtain reduced models of agent-based models

using simulation data only.

4 Learning coarse-grained models from data

We will now illustrate how to learn reduced models for large agent-based dynamics from

aggregated trajectory data using the Koopman generator. The approach is based on [33]. First,

we estimate drift and diffusion pointwise, cf. Section 2.2. Subsequently, we apply gEDMD to

the estimates to obtain a global description of the drift and diffusion terms, cf. Section 2.3. For

the EVM, we will show in Section 5.1 that the identified SDE coincides with the SDE limit

model (5), provided that the number of agents is sufficiently large. We will now go through the

main steps that are necessary to learn the Koopman generator from data generated by an

ABM.
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Fig 3. Simulation of predator-prey model. (A) Snapshot of the state of the predator-prey ABM at time t = 250. Red

and green dots represent predators and prey, respectively. The radius of vision is indicated by the light-red area around

the predators. (B) Simulation of the predator-prey model for the parameters given in Table 2 on page 17. The vertical

gray dashed line indicates the time where the snapshot in (A) is taken.

https://doi.org/10.1371/journal.pone.0250970.g003

Fig 2. Predator-prey model. Flow chart of the predator-prey model.

https://doi.org/10.1371/journal.pone.0250970.g002
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4.1 Measurements

Assume that we have access to m measurements of an aggregate state variable of a given ABM.

This aggregate state can represent the number of agents sharing, e.g., the same type Si or

belonging to some group. These m measurements will be the starting point. Let us denote

them by fxlg
m
l¼1

. If possible, we choose the measurements xl such that they are uniformly dis-

tributed in the aggregate state space X to ensure a good coverage of the whole (aggregate)

space. One way to achieve this is by constructing an appropriate map from the macroscopic

(aggregate) state to the microscopic ABM state. By appropriate we mean that the mapped mac-

roscopic state and a naturally developed ABM state with same aggregate variables agree in

probability. Practically, this means that if, e.g., the agents follow a certain spatial distribution,

this needs to be taken into account when constructing the map. Another, rather straightfor-

ward, possibility is to gather the measurements “on the fly”, i.e., by using the states belonging

to trajectories obtained from the simulation of the ABM.

4.2 Pointwise estimates

Since the drift and diffusion terms b and σ are in general unknown, we estimate them point-

wise via finite difference approximations for each measurement fxl g
m
l¼1

using the Kramers–

Moyal formulae

bðxÞ≔ lim
t!0
E

1

t
ðXt � xÞjX0 ¼ x

� �

; ð8aÞ

aðxÞ≔ lim
t!0
E

1

t
ðXt � xÞðXt � xÞ>jX0 ¼ x

� �

: ð8bÞ

The formulae can be deduced from the Kramers–Moyal expansion, see, e.g., [47]. These

expressions can be evaluated by Monte Carlo methods via multiple short trajectories at each

data point fxl g
m
l¼1

. The simulation of multiple short realizations of the original ABM is compa-

rable to the equation-free approach and common practice in the context of transfer operator

approximations. These pointwise estimates of the drift and diffusion for each training data

point form the first stage to obtain a global description of them via gEDMD.

4.3 Conservation laws

If the aggregate state is subject to a conservation law, e.g., if the number of agents is constant

for all time t� 0, we have only d − 1 degrees of freedom and the aggregated trajectory data

belongs to a d − 1 dimensional system, i.e., the number of agents xj(t) can be expressed by

xjðtÞ ¼ N �
X

i6¼j

xiðtÞ:

We thus reduce each measurement by keeping, without loss of generality, only the first d
− 1 entries. This eliminates redundant representations of the system. Additionally, we can

scale the measurements by the number of agents, N, to obtain a frequency representation

ciðtÞ ¼
xiðtÞ
N .

4.4 Basis functions

Next, we need to choose a set of basis functions fcig
n
i¼1

. This is a non-trivial step since in gen-

eral it is not clear how the drift term b and diffusion term σ of the SDE (1) look like. If we
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assume that the SDE approximation of the ABM adheres to the model structure introduced in

Section 3 and comprises at most pth order transitions, we can show that monomials of degree

up to p + 1 are sufficient to correctly identify the model of the form (5). The highest order tran-

sition coincides with the maximum degree of all propensity functions. First, to identify the

drift term (6), we conclude from the propensity functions that the set of basis functions needs

to contain at least monomials up to degree p. Second, as gEDMD identifies a = σσ> and not

the diffusion term (7) itself, we obtain for c = x/N

aðcÞ≔sðcÞsðcÞ> ¼
XK

k¼1

1

N
~akðcÞnkn

>

k ;

which shows that monomials are sufficient for the identification of the diffusion term as well.

Finally, to identify the diffusion term via (3), we argue that also monomials of degree p + 1 are

needed.

4.5 Identification

We are now able to assemble the matrices CX and dCX in (2) and solve the minimization

problem kdCX −MCXkF to obtain an approximation L = M> of the infinitesimal generator L
associated with the ABM. For a suitable projection matrix B, we identify the drift and diffusion

terms. These are now global descriptions (i.e., functions depending on x) forming the second

stage, cf. Section 2.3. The overall procedure is summarized in the following algorithm.

Algorithm 4.1 (Learning coarse-grained models from data)

1. Generate m measurements fxlg
m
l¼1

of the aggregated state of the ABM.

2. Estimate the drift and diffusion terms fbðxlÞg
m
l¼1

and faðxlÞg
m
l¼1

at the measurement points,

e.g., via Monte Carlo simulations for short lag times τ using the Kramers–Moyal formulae

(8).

3. If applicable, normalize the data:

a. Reduce the training data by keeping only d − 1 components of each measurement as

well as its drift and diffusion estimates.

b. Scale by the number of agents N, i.e., ciðtÞ ¼
xiðtÞ
N .

4. Choose a suitable set of basis functions fcig
n
i¼1

and compute the matrices CX and dCX.

5. Minimize kdCX −MCXkF and obtain a generator approximation L = M> and identify the

drift and diffusion terms using (3).

5 Numerical results

We will now apply Algorithm 4.1 to three benchmark problems. First, we compare the numer-

ical result with the theoretical SDE limit model (5) for the EVM in Section 3.2 for varying

numbers of agents N and numbers of Monte Carlo samples k for the pointwise drift and diffu-

sion estimates as these are two crucial parameters for the quality of the numerically obtained

model. In Section 5.2, we will then show that it can also be applied to the case where the net-

work is not fully connected but consists of clusters connected by a few edges only. In Section

5.3 we show for the PPM that it is also possible to obtain a reduced model for systems not

based on interaction networks.
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All results are compared using the root mean square error (RMSE), which is defined by

err≔
1

l

Xl

i¼1

ðŷi � yiÞ
2

 !1=2

;

where yi and ŷi denote the measured quantity and its prediction, respectively.

5.1 Complete networks

Let us consider the EVM defined in Section 3.2 and assume that the network is complete. The

state space of this ABM is given by the d − 1 dimensional simplex XN , with

XN ≔ x 2 Nd
0
:
Xd

i¼1

xi ¼ N

( )

:

We consider now d = 3 types and set the rate constants to

g12 ¼ g23 ¼ g31 ¼ 2; ð9aÞ

g32 ¼ g21 ¼ g13 ¼ 1; ð9bÞ

g0ij ¼ 0:01; ð9cÞ

for i, j = 1, . . .,3. Due to the conservation law, this is essentially a two-dimensional system.

Thus, we eliminate one equation of the limit SDE (5) such that we can compare it with the

data-driven SDE obtained by Algorithm 3.1. Additionally, after scaling the measurements by

the number of agents, N, we obtain

cjðtÞ ¼ 1 �
X

i6¼j

ciðtÞ: ð10Þ

We will then evaluate the quality of the identified coarse-grained model.

Utilizing c3(t) = 1 − c1(t) − c2(t), we obtain the drift and diffusion terms

b : X! R2; ð11aÞ

a : X! R2�2
; ð11bÞ

respectively. Note that a(c) = a(c)> = (aij(c)). Their derivation can be found in S1 Appendix.

Following the arguments in Section 4, for a correct identification, we need a set of basis

functions comprising monomials up to degree 3 as the highest order transition is of order 2.

For any given number of agents N, we can construct the first columns of the approximation LN
of the generator L analytically via the coefficients of b and a. E.g., for N = 10 we obtain the

matrix entry l22 from the coefficient of c1 in b1, i.e., l22 ¼ g31 � g13 � g
0
12
� g0

13
� g0

31
, see
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S1 Appendix for details. The first columns of L10 are then given by

L10 =

2
666666666666664

1 c1 c2 c21 2c1c2 c2 :::

1 0 0:01 0:01 0:001 0 0:001 : : :
c1 0 0:97 0 0:321 0:009 0 : : :
c2 0 0 ¡1:03 0 0:009 0:321 : : :
c21 0 ¡1 0 1:64 0 0 : : :
c1c2 0 ¡2 2 0 ¡0:36 0 : : :
c22 0 0 1 0 0 ¡2:36 : : :
c31 0 0 0 ¡2 0 0 : : :
c21c2 0 0 0 ¡4 1 0
c1c

2
2 0 0 0 0 ¡1 4

c32 0 0 0 0 0 2

: : :
: : :
: : :

3
777777777777775

2 R10£10:

We will compare the numerical results to the corresponding columns of LN and the drift

and diffusion terms (11a) and (11b), respectively. The identified system has the following

structure:

biðcÞ≔b
i
5
c2

1
þ b

i
4
c2

2
þ b

i
3
c1c2 þ b

i
2
c1 þ b

i
1
c2 þ b

i
0
; ð12aÞ

aijðcÞ≔k
ij
5 c2

1
þ k

ij
4 c2

2
þ k

ij
3 c1c2 þ k

ij
2 c1 þ k

ij
1 c2 þ k

ij
0; ð12bÞ

where the coefficients are given by the expressions derived for (11a) and (11b), see S1 Appen-

dix for details. The coefficients b
i
h of (12a) can immediately be obtained from the second and

third column of LN. The coefficients k
ij
h of (12b) are extracted from the columns four to six by

using (3). E.g., for a12(c) we obtain

b1ðcÞ ¼ ðLc2ÞðcÞ ¼ � c2
1
� 2c1c2 þ 0:97c1 þ 0:01;

b2ðcÞ ¼ ðLc3ÞðcÞ ¼ c2
2
þ 2c1c2 � 1:03c2 þ 0:01;

a12ðcÞ ¼ ðLc5ÞðcÞ � b1ðcÞc2 � b2ðcÞc1 ¼ � 0:3c1c2 � 0:001c1 � 0:001c2:

Comparing the coefficients of the SDE limit model with its corresponding parts in the data-

driven system, we can (under certain conditions) recover the rate constants of the underlying

Markov jump process. For the considered example we compare the coefficients of (11) with

(12). We set up a system of linear equations Aγ = v for a suitable matrix A, where γ and v are

given by

g ¼ ½g12; g13; � � � ; g32�
>
;

v ¼ ½b
1

5
; � � � ; b

2

0
; k11

5
; � � � ; k22

0
�
>
:

Note that for this example with the rate constants chosen in (9) the system cannot be solved

exactly in general since the model is symmetric in the sense that imitation is possible in both

ways (i.e., γij 6¼ 0 for all i 6¼ j). Thus, we only find values for γij and γji satisfying the differences

appearing in (11a) and (11b), see S1 Appendix for details. However, this has only an influence

on the reconstruction of the underlying Markov jump process but not on the coarse-grained

model.

5.1.1 Evaluations. For both the number of agents N and the number of Monte Carlo sam-

ples k, we set a maximum of 5000. Since the state space XN is discrete and N constant, the

amount of distinct points is finite and depends on N and d; more precisely for a d-dimensional
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regular discrete simplex with N + 1 points on each edge, the number of points is given by Nþd
d

� �

for d� N [48]. In our example, we have a two-dimensional simplex and thus Nþ2

2

� �
points. The

number of uniformly chosen measurements is given in Table 1 for different N. We then esti-

mate the drift and diffusion term for each point via (8) for k short simulations of the Markov

jump process with a lag time of τ = 0.01 resulting in a total of m � k training data points.

Fig 4 shows the approximation error of the numerically obtained coefficients and their the-

oretical counterparts appearing in (11a) and (11b) depending on the number of agents and the

number of Monte Carlo samples. For both parameters, the RMSE decreases by several orders

of magnitude as N and k increase. Note that the number of agents N has a significantly larger

influence than the number of samples k. Especially for small N, e.g., N = 10, we observe that

higher values of k do not improve the results. This is consistent with the literature as the SDE

model (5) approximates the Markov jump process for large N.

As it is not only important to identify the coefficients of an SDE limit model, we also com-

pare how well the reduced model approximates the dynamics of the ABM, e.g., to make predic-

tions about the number of agents of a specific type. Fig 5A shows a comparison for a long-time

realization in terms of expectation (solid line) and standard deviation (dashed line) for the

Table 1. Measurement set sizes.

Number of agents N Measurements m

10 7

25 35

50 133

100 515

250 3163

N� 500 10000

Measurement set sizes for given number of agents N. For each measurement, we estimate the drift and diffusion term

with k short Monte Carlo simulations for a lag time τ = 0.01 resulting in a total training data set size of m � k.

https://doi.org/10.1371/journal.pone.0250970.t001

Fig 4. Root mean square error of drift and diffusion coefficients. Approximation error defined as the RMSE of the

coefficients of (A) the drift and (B) diffusion estimates for the EVM in Section 3.2 compared to the exact SDE limit

model (5) depending on the number of agents N and number of Monte Carlo samples k for the estimation via

Kramers–Moyal formulae. The brighter the color, the smaller the error and the better the identification of the reduced

system. For increasing N and k the approximation error decreases.

https://doi.org/10.1371/journal.pone.0250970.g004
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data-driven model and its theoretical equivalent estimated from 103 Monte Carlo samples.

Both first- and second-order moments are almost indistinguishable from the theoretical SDE

limit model. Considering the numerical effort that renders the simulation required for Fig 5A

infeasible in many cases, the estimated coarse-grained model yields valuable results. Addition-

ally, it is obtained in a fraction of the time it takes to simulate the original ABM.

Fig 5B shows the dependency of the RMSE on the number of measurements m for two

fixed ki, namely k1 = 10 (dashed line) and k2 = 100 (solid line). The error is averaged over 100

simulations for 5000 agents. We observe that for greater m the error, as expected, decreases by

several orders of magnitude, independently of k. However, the impact of increasing m is larger

than the one of increasing k. For small values m � ki, the error is smaller for k1 = 10 (dashed

line) than for k2 = 100 because the measurements cover the state space more densely: For k1 =

10, for example, we have m = 10 measurements while for k2 = 100 we only have m = 1 measure-

ment. Thus, there are two tuning parameters for the amount of training data to be used.

5.2 Clustered networks

Let us now consider the case where the network consists of Q (not necessarily equally-sized)

clusters. Within a cluster each agent is connected to all other agents, i.e., each cluster q is a

complete sub-graph of size Nq. Two agents of different clusters are connected with probability

p. If p is sufficiently small, then the clusters are connected only by a few edges and the corre-

sponding sub-matrix of the adjacency matrix is sparse. As before, each agent is influenced by

its neighbors. However, due to the non-completeness of the network, the resulting transition

propensities depend on the size of the individual neighborhood; therefore, they might differ

among agents. Here, we do not model the population state of the ABM as described in Section

3 since the overall aggregation leads to errors in this case. Instead, we augment the population

state by subpopulations, i.e., an aggregation by cluster. We will use these to learn a coarse-

grained model of the agent dynamics.

Fig 5. Prediction of extended voter model for complete networks. (A) Expectation (solid) and standard deviation

(dashed) of the SDE limit model Ci(t) and its data-driven approximation (gray) estimated from 103 Monte

Carlo simulations for the dynamics of the EVM of Section 3.2 for N = 5000 agents and initial state

cð0Þ ¼ ½0:2; 0:7; 0:1�> 2 X. The relative number of agents of type S3 can be reconstructed using (10) and is therefore

not displayed. The approximate moments (gray solid and dashed lines) agree with the SDE limit model. (B)

Approximation and evaluation error of the drift and diffusion estimates for the EVM in Section 3.2 compared to the

exact SDE limit model (5) depending on the number of measurements m for fixed k1 = 10 (dashed), k2 = 100 (solid)

and N = 5000 agents. The error is averaged over 100 simulations. Clearly, for higher amounts of training data a smaller

error can be expected. This holds for both parameters m and k.

https://doi.org/10.1371/journal.pone.0250970.g005
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5.2.1 An SDE limit model for clustered networks. We can set up a limit model that

describes the relative frequencies of each type per cluster. As mentioned before, this limit

model contains an approximation error that is due to the aggregation of types in each cluster.

However, under certain conditions (e.g., uniformly drawn connecting edges) the model yields

a good approximation.

We extend (5) such that it describes the temporal evolution of the relative frequencies for a

network that consists of Q clusters. Assume that the connecting edges are drawn uniformly

with probability p. Let N be the number of agents in cluster q = 1,. . .,Q. For simplicity we

assume that all clusters are equally sized. We augment the system state such that it has the rela-

tive frequencies of each type per cluster, i.e.,

CðtÞ ¼ ½c1ðtÞ
>
; � � � ; cQðtÞ

>
�
>
2 RdQ

:

Let ~aq;k be the rescaled propensity function for transition k in cluster q and nq;k 2 R
dQ

its

corresponding net change vector. We obtain

dCðtÞ ¼
XQ

q¼1

XKq

k¼1

~aq;kðCðtÞÞnq;kdt þ
XKq

k¼1

1
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~aq;kðCðtÞÞ

q
dWq;kðtÞnq;k

" #

: ð13Þ

Note that equation (13) can be rewritten so that clusters can also have different sizes. Given

a cluster q the diffusion term corresponding to transitions within the cluster scales with

1=
ffiffiffiffiffiffi
Nq

p
while transitions induced by another cluster q0 scales with 1=

ffiffiffiffiffiffi
Nq0

p
.

Example 5.1 (SDE limit model for two clusters). Let us consider a network consisting of

Q = 2 clusters each having N1 and N2 agents, and let p be the probability for an edge connect-

ing two agents of cluster Q1 and Q2. We define the connection strength of cluster Q1 and Q2 as

the ratio between the number of edges E connecting both clusters and the total number of pos-

sible connecting edges Emax = N1 N2. The expected connection strength is given by p since

E
E

Emax

� �

¼
E½E�
Emax
¼
pN1N2

N1N2

¼ p:

As in Section 3.2, we consider imitation and exploration. The latter is independent of the

considered network, while the former is either induced from the inside or outside. If the tran-

sition is caused from the inside, we call it intra-cluster transition and inter-cluster transition if

it is caused from the outside. Intra-cluster transitions are denoted by Rij and R0ij. Imitation as

an inter-cluster transition rule is given by

Rqq0 ;ij: Sq;i þ Sq0;j ! Sq;j þ Sq0 ;j:

For the intra-cluster transitions the propensity functions are given by

aij ¼
1

Nq þ pNq0
gq;ij xq;i xq;j;

while for the inter-cluster transition they are given by

aqq0 ;ij ¼ p
1

Nq þ pNq0
bq;ij xq;i xq0 ;j

as each agent has Nq þ pNq0 possible partners for interaction.

For simplicity, we assume that both clusters are of the same size. For the corresponding net

change vector, it holds that νqq0,ij = νq,ij as the inter-cluster transitions Rqq0,ij only influences

PLOS ONE Data-driven model reduction of agent-based systems using the Koopman generator

PLOS ONE | https://doi.org/10.1371/journal.pone.0250970 May 13, 2021 16 / 23

https://doi.org/10.1371/journal.pone.0250970


state cq(t) and not cq0(t). For CðtÞ ¼ ½c1ðtÞ
>
; c2ðtÞ

>
�
>
2 R2d

, the SDE solution is given by

dcq;i tð Þ ¼
�
X

i6¼j

1

pþ 1ð Þ
gq;ji � gq;ij

� �
cq;i tð Þcq;j tð Þ ð14aÞ

þ
X

i6¼j

�
g0q;jicq;j tð Þ � g

0

q;ijcq;i tð Þ
�

ð14bÞ

þ
X

i6¼j

p
pþ 1ð Þ

�
bq;jicq;j tð Þcq0 ;i tð Þ � bq;ijcq;i tð Þcq0 ;j tð Þ

�
�

dt ð14cÞ

þ
1
ffiffiffiffi
N
p

�
X

i6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pþ 1ð Þ
gq;jicq;i tð Þcq;j tð Þ

s

dW im
q;ji tð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pþ 1ð Þ
gq;ij cq;i tð Þ cq;j tð Þ

s

dW im
q;ij tð Þ ð14dÞ

þ
X

i6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0q;ji cq;j tð Þ

q
dWex

q;ji tð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0q;ij cq;i tð Þ

q
dWex

q;ij tð Þ ð14eÞ

þ
X

i6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

pþ 1ð Þ
bq;ji cq;j tð Þ cq0 ;i tð Þ

r

dW int
q;ji tð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

pþ 1ð Þ
bq;ij cq;i tð Þ cq0 ;j tð Þ

r

dW int
q;ij tð Þ

�

: ð14fÞ

The addends (a), (b), (d), and (e) correspond to intra-cluster transitions, while (c) and (f)

correspond to inter-cluster transitions. We will drop the index q whenever it is clear from the

context.

5.2.2 Evaluations. We now simulate the EVM in discrete time with step size tstep = 0.01,

see S2 Appendix for the pseudocode. While it can be applied to arbitrary networks, we restrict

ourselves to highly clustered networks as depicted in Fig 6A and 6B. We create k = 1000 reali-

zations for each of the m = 1000 uniformly drawn initial states of the ABM for a lag time of τ =

0.01. The network consists of two equally sized clusters, each containing N = 50 agents. We

assume γq,ij = γq0,ij, g0q;ij ¼ g
0
q0 ;ij, and βq,ij = βq0,ij = γq,ij for all i,j. The rate constants for imitative

transitions are given by (9a) and (9b). For exploratory transitions we set g0ij ¼ 0 for all i, j.
We compare the data-driven model and the model defined in (14) for two networks with

different connection strengths. The adjacency matrices of both networks are shown in Fig 6A

and 6B. The first network has a connection strength of p = 0.01 while the second has a

20-times larger connectivity, i.e., p = 0.2. The first network is a subgraph of the second. We

apply Algorithm 3.1 to the cluster-based aggregate states of the agent dynamics for each net-

work to obtain the data-driven coarse-grained model. Fig 6C and 6D show the prediction of

the temporal evolution of the first moments for each type per cluster. Note that the colors are

different from Fig 1. Both realizations start from the same initial value. The difference in their

temporal evolution results directly from the network structure. As described in Section 5.1 for

complete networks, the results improve for larger values of N, m, and k. We can also observe in

Fig 6D that for a higher connectivity, i.e., larger p, both clusters synchronize so that the relative

numbers of agents per type are identical in each cluster.

Remark 5.2 Consider a random network of N = 500 nodes where two agents are connected

with a probability of 10%. The resulting network is sparsely connected and exhibits an approx-

imate average degree of 50. Fig 7 shows the expectation of the data-driven model (solid) com-

pared to the EVM (dashed) for this random network estimated from 103 Monte Carlo

simulations. For short times t, the data-driven model agrees with the ABM. However, for

larger time t the prediction deteriorates mainly due to the sparsity of the network. Note that

the absence of a ground truth model for the EVM on this sparse network complicates the anal-

ysis. Compared to the expectation obtained via the SDE limit model (5) (indicated in gray, dot-

ted) the data-driven model yields a better approximation.
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5.3 Predator-prey model

Let us now consider the PPM introduced in Section 3.3. The parameters we use are listed in

Table 2. We learn a data-driven model from m = k = 1000 measurements and samples. The lag

time for estimating drift and diffusion is set to τ = 1. Although the defined PPM has a spatial

component, i.e., relatively slow movement of the agents with respect to the dimension of the

space and search radius v of the predators, we use the classic Lotka–Volterra differential equa-

tions as a starting point for the set of basis functions. The set consists of monomials up to

degree 3 so that we can identify the coefficients of the drift and diffusion terms. Fig 8A and 8B

show the phase portrait of the first-order moment of the reduced SDE model and the PPM

averaged over 958 realizations. In 42 out of 1000 realizations the predators died out before the

prey so that the size of the prey population grows exponentially. The results show that the

reduced model is able to approximate the qualitative dynamical behavior of the PPM. Fig 8C

shows a realization of the reduced SDE model.

Fig 6. Prediction of extended voter model for clustered networks. (A) & (B) Adjacency matrices of the networks

where black represents 1 (existing edge) and white 0 (no edge). (C) & (D) First-order moment of the data-driven

coarse-grained model (solid) and the limit SDE (dotted) (14) for two clusters with N = 50 agents, γ12 = γ23 = γ31 = 2, γ13

= γ21 = γ32 = 1, g0ij ¼ 0 for all i, j = 1, . . ., 3 and c(0) = [0.85, 0.1, 0.05, 0.2, 0.5, 0.3]>. The data-driven model is estimated

using k = 1000 realizations of m = 1000 measurements for lag time τ = 0.01.

https://doi.org/10.1371/journal.pone.0250970.g006
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6 Conclusion

In this work, we showed how the Koopman generator can be used to obtain coarse-grained

stochastic models from aggregate state data of agent-based dynamics. We demonstrated the

procedure for two different ABMs, namely a voter model and a predator-prey model. The

ABM codes used for generating the results presented in this paper can be found at https://

github.com/Henningston/ABMs.

In the first case we considered complete and clustered interaction networks of homoge-

neous agents such that each agent can interact at any time with all other agents (or within their

cluster, respectively). We showed that under certain conditions the reduced models agree with

their respective SDE limit models. In both considered cases, we showed that the data-driven

reduced models are suitable for predictions. The results of Section 5.1 showed that when con-

sidering incomplete, clustered networks, aggregation of state variables led to an approximation

error in the population state model. As a consequence, the data-driven model and its SDE

approximation agreed only for short time intervals, see Fig 6A. It also showed that the number

of agents per cluster needs to be large enough or, alternatively, the connectivity between them

high enough for the data-driven coarse-grained model and the SDE model (14) to agree, see

Fig 6B. First experiments showed that for networks with an arbitrary structure the prediction

Fig 7. Prediction of extended voter model for random networks. Expectation of the data-driven reduced model

(solid) compared the EVM (dashed) on a random network with average degree of approximately 50, estimated from

103 Monte Carlo simulations for N = 500 agents and initial state cð0Þ ¼ ½0:2; 0:7; 0:1�> 2 X. The deterministic part of

the SDE limit model (5) is indicated in gray (dotted). The data-driven model is estimated using m = k = 1000

measurements and realizations for the lag time τ = 0.01.

https://doi.org/10.1371/journal.pone.0250970.g007

Table 2. Parameters used during the simulation of the PPM.

Parameter Value

Space height × width 100 × 100

Variance h 1

Reproduction probability prey prep 0.03

Reproduction probability predator p0rep 0.5

Probability of death pdeath 0.02

Radius of vision v 3

https://doi.org/10.1371/journal.pone.0250970.t002
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horizon can be shorter which implies that, if the state of an ABM depends strongly on the spa-

tial structure, e.g., formation of clusters, coexistence or spatial heterogeneity, this needs to be

taken into account, see Fig 7.

For the second model—the predator-prey system—we showed in Section 5.3 that it is also

possible to identify a reduced model for an ABM that is not bound to interaction networks

and whose time step is comparably large (i.e., not close to zero as in the first case). The reduced

model is able to capture the qualitative behavior.

Our approach is limited to ABMs where it is believed that the aggregated dynamics can be

meaningfully represented by ODEs or SDEs. However, this approach might fail if spatial inter-

action or interaction with the space itself have a strong influence on the behavior of the agents

and therefore the outcome of the model.

In general, our approach relies on the assumption that all types of agents are available in

sufficient numbers. If the number of agents (more generally speaking the size of the system) is

large enough, it is known that the SDE accurately approximates the chemical master equation

[15]. However, there exist cases where the SDE fails to capture the behavior of a discrete ABM,

more precisely noise-induced metastability. This is the case when bi- or multi-stability stems

from the discreteness of the system (that is, if the size of the system is not large enough) [49,

50]; see also Figs 1B and 5A for systems with small and large numbers of agents, respectively.

Additionally, the approach relies on accurate, pointwise estimates of the drift and diffusion

terms. Inaccurate, insufficient estimates lead to nonsparse solutions of the generator

Fig 8. Prediction of predator-prey model. Phase portraits of first-order moment of (A) the reduced SDE model and

(B) the PPM estimated from 958 Monte Carlo simulations. (C) Realization of the reduced SDE solution learned from

m = k = 1000 measurements and samples for the PPM with parameters given in Table 2.

https://doi.org/10.1371/journal.pone.0250970.g008
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approximation. Additional techniques like iterative hard thresholding or denoising might be

applied to improve the results, see [33] and references therein.

Our approach to obtain data-driven coarse-grained models from agent-based dynamics

opens up new possibilities for further analysis and has the potential to reduce the numerical

effort when investigating ABMs. In addition to parameter optimization or sensitivity analysis,

which are often infeasible due to the complexity of the ABM, the reduced model can also be

used to find control schemes to steer the system to a desired state. More precisely, the reduced

model can be used to find, e.g., harvesting schedules for systems like the predator-prey models

or to develop strategies to persuade agents to change their opinion (e.g. electoral or commer-

cial campaigns, or use of green technology). Future research will address the control of ABMs

using data-driven reduced models.
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man generator: Model reduction, system identification, and control. Physica D: Nonlinear Phenomena.

2020; 406:132416. https://doi.org/10.1016/j.physd.2020.132416

34. Fonoberova M, Mezić I, Mezić J, Mohr R. An agent-based model of urban insurgence: Effect of gather-

ing sites and Koopman mode analysis. PLoS ONE. 2018; 13(10). https://doi.org/10.1371/journal.pone.

0205259 PMID: 30289939

35. Hogg J, Fonoberova M, Mezić I, Mohr R. Koopman mode analysis of agent-based models of logistics

processes. PLoS ONE. 2019; 14(9). https://doi.org/10.1371/journal.pone.0222023 PMID: 31509569

36. Peitz S, Klus S. Koopman operator-based model reduction for switched-system control of PDEs. Auto-

matica. 2019; 106:184–191. https://doi.org/10.1016/j.automatica.2019.05.016

37. Peitz S, Otto SE, Rowley CW. Data-Driven Model Predictive Control using Interpolated Koopman Gen-

erators. SIAM Journal on Applied Dynamical Systems. 2020; 19(3):2162–2193. https://doi.org/10.1137/

20M1325678

38. Metzner P. Transition path theory for Markov processes: Application to molecular dynamics. Freie Uni-

versität Berlin; 2007.

39. Lasota A, Mackey MC. Chaos, fractals, and noise: Stochastic aspects of dynamics. vol. 97 of Applied

Mathematical Sciences. 2nd ed. Springer, New York; 1994.

40. Williams MO, Kevrekidis IG, Rowley CW. A Data-Driven Approximation of the Koopman Operator:

Extending Dynamic Mode Decomposition. Journal of Nonlinear Science. 2015; 25(6):1307–1346.

https://doi.org/10.1007/s00332-015-9258-5

41. Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data: Sparse identification of

nonlinear dynamical systems. 2015; 1(609):1–26. https://doi.org/10.7860/JCDR/2015/14662.6877

PMID: 26870704

42. Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled

chemical reactions. Journal of computational physics. 1976; 22(4):403–434. https://doi.org/10.1016/

0021-9991(76)90041-3

43. Kurtz TG. Limit theorems and diffusion approximations for density dependent Markov chains. In: Sto-

chastic Systems: Modeling, Identification and Optimization, I. Springer; 1976. p. 67–78.

44. Gillespie DT. The chemical Langevin equation. The Journal of Chemical Physics. 2000; 113(1):297–

306. https://doi.org/10.1063/1.481811

45. Biancalani T, Dyson L, McKane AJ. Noise-induced bistable states and their mean switching time in for-

aging colonies. Physical Review Letters. 2014; 112(3):1–5. https://doi.org/10.1103/PhysRevLett.112.

038101

46. Ohkubo J, Shnerb N, Kessler DA. Transition Phenomena Induced by Internal Noise and Quasi-Absorb-

ing State. Journal of the Physical Society of Japan. 2008; 77(4):044002. https://doi.org/10.1143/JPSJ.

77.044002

47. Risken H, Frank T. The Fokker–Planck Equation: Methods of Solutions and Applications (Springer

Series in Synergetics); 1996.

48. Costello J. On the number of points in regular discrete simplex (Corresp.). IEEE Transactions on Infor-

mation Theory. 1971; 17(2):211–212. https://doi.org/10.1109/TIT.1971.1054599
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