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Abstract
Key message  Root-specific expression of a cytokinin-degrading CKX gene in maize roots causes formation of a larger 
root system leading to higher element content in shoot organs.
Abstract  The size and architecture of the root system is functionally relevant for the access to water and soil nutrients. A 
great number of mostly unknown genes are involved in regulating root architecture complicating targeted breeding of plants 
with a larger root system. Here, we have explored whether root-specific degradation of the hormone cytokinin, which is a 
negative regulator of root growth, can be used to genetically engineer maize (Zea mays L.) plants with a larger root system. 
Root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene of Arabidopsis caused the formation 
of up to 46% more root dry weight while shoot growth of these transgenic lines was similar as in non-transgenic control plants. 
The concentration of several elements, in particular of those with low soil mobility (K, P, Mo, Zn), was increased in leaves 
of transgenic lines. In kernels, the changes in concentration of most elements were less pronounced, but the concentrations 
of Cu, Mn and Zn were significantly increased in at least one of the three independent lines. Our data illustrate the potential 
of an increased root system as part of efforts towards achieving biofortification. Taken together, this work has shown that 
root-specific expression of a CKX gene can be used to engineer the root system of maize and alter shoot element composition.

Keywords  Cytokinin · Cytokinin oxidase/dehydrogenase · Maize · Mineral nutrition · Root system · Zea mays

Introduction

Roots fulfil important functions for plants, including anchor-
ing in the soil and providing access to soil nutrients and 
water. Plant roots are known to be an important factor 
determining the agricultural performance of crop plants. 

However, because root traits are difficult to assess and select 
for, their potential for crop plant improvement has as yet not 
been fully exploited and numerous details of factors and 
genes controlling root system traits remain underexplored 
(Lynch and Brown 2012; White et al. 2013; Rogers and Ben-
fey 2015; Hochholdinger 2016; Koevoets et al. 2016; Bray 
and Topp 2018).

Root traits are also of vital importance for maize (Zea 
mays L.), which is one of the most important cereal grains 
grown worldwide (Shiferaw et al. 2011). A recent study 
using a machine learning program for trait analysis of 57 
commercial maize hybrids concluded that root traits were 
most important for predicting yield (Tucker et al. 2020). 
Several root traits have been identified in maize that are rel-
evant for the exploration of soil resources, particularly in 
resource-poor environments (Lynch and Brown, 2012; York 
et al. 2013). For example, drought tolerance is associated 
with an increase in rooting depth and water acquisition from 
the subsoil (Gao and Lynch 2016). Plants with improved 
root traits may contribute to relieve a major constrain for 
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the production of maize in developing countries, which is 
low soil fertility and high water requirement (Rusinamhodzi 
et al. 2011; Reynolds et al. 2015; ten Berge et al. 2019).

It is thought that selection for yield has indirectly selected 
also for root traits contributing to enhance maize yield 
(Hammer et al. 2009; Bray and Topp 2018). However, the 
genes regulating these traits are mostly unknown although a 
large number of QTLs associated with root traits have been 
identified in maize (Hund et al. 2011; Bray and Topp, 2018). 
However, so far only eight maize genes were identified that 
are involved in regulating root growth and development but 
their individual relevance for plant performance is as yet 
not clear (Hochholdinger et al. 2018). To understand and 
fully exploit the potential of roots for crop improvement, 
it would be important to compare near isogenic lines that 
differ principally in their root system while shoot growth 
and development should not be altered. To achieve this, we 
explore here an experimental approach based on changing 
the endogenous content of the plant hormone cytokinin by 
genetic engineering.

The hormone cytokinin is a well-known inhibitor of root 
elongation and branching (Werner et al. 2001, 2003; Chang 
et al. 2013, 2015). Cytokinin is degraded by cytokinin oxi-
dases/dehydrogenases (CKX), which are encoded by small 
gene families in plants including maize (Schmülling et al. 
2003). Enhanced degradation of cytokinin by enhanced 
expression of a CKX gene in roots caused the formation of 
a larger root system in Arabidopsis thaliana (Werner et al. 
2010), barley (Ramireddy et al. 2018a,b), oilseed rape (Neh-
nevajova et al. 2019), rice (Gao et al. 2014) and chickpea 
(Khandal et al. 2020). Thus, it was shown repeatedly that 
a single dominant gene may be used to regulate a complex 
trait such as root system size. CKX transgenic plants with a 
larger root system were shown to respond less sensitive than 
the cognate wild-type plants to drought (Werner et al. 2010; 
Ramireddy et al. 2018a) underpinning the beneficial effect 
of a larger root system under water deficit (Comas et al. 
2013; Gao and Lynch 2016; Klein et al. 2020). A surprising 
common feature of these plants had been the higher content 
of distinct micro- and macro-elements in their shoots. In 
particular, the concentration on zinc (Zn), a microelement 
missing in the diet of about 2 billion people, was found to be 
significantly increased in the seeds of CKX transgenic barley 
plants grown in the greenhouse and in the field (Ramireddy 
et al. 2018a,b). Consequently, it has been proposed that root 
enhancement might contribute to a sustainable solution for 
nutrient deficiencies (Werner et al. 2010; Ramireddy et al. 
2018a; Gao et al. 2019; Khandal et al. 2020).

Here, we have explored the potential to engineer the 
maize root system by enhanced root-specific expression of 
a CKX gene. Transgenic maize lines formed a larger root 
system without reducing shoot growth demonstrating the 
potential of root engineering in maize. The shoots of these 

plants contained higher concentrations of several essential 
elements underpinning the role of cytokinin in regulating 
mineral nutrition.

Results

Generation of transgenic maize plants 
with enhanced CKX gene expression in roots

We chose the RCc3 promoter of rice (Xu et al. 1995) to 
achieve root-specific expression of the Arabidopsis CKX1 
gene in the maize inbred line B104 (Coussens et al. 2012). 
The RCc3 promoter has been used to drive root-specific 
expression of several genes in rice and barley (Jeong et al. 
2010; Gao et al. 2014; Ramireddy et al. 2018a). The maize 
ortholog of rice RCc3 (GRMZM2G410338_T01) was also 
shown to be expressed in a root-specific manner (Sekhon 
et al. 2011). The CKX1 gene was chosen as its root-spe-
cific expression enhanced root growth in tobacco, Arabi-
dopsis (Werner et al. 2010) and barley (Ramireddy et al. 
2018a). Self-fertilization of transgenic T1 plants in which 
the T-DNA was in a single locus resulted in homozygote 
lines. Expression of the transgene was quantified by qRT-
PCR using RNA isolated from entire shoots and roots. Three 
independent transgenic lines (A2, B9, C4) showing a high 
expression of CKX1 in roots and no or a much lower expres-
sion in shoots (Fig. 1A) were selected for further analysis.

In order to explore the cytokinin status of the roots of 
these lines, the expression levels of two primary cytokinin 
response genes, ZmRR1 (Zea mays response regulator1) 
and ZmRR2 (Sakakibara et al. 1999; Asakura et al. 2003) 
were determined in roots. The results showed a significantly 
reduced expression of ZmRR1 and ZmRR2 in roots of two 
of the three independent transgenic lines as compared to the 
non-transgenic control (NTC) (Fig. 1B). The reduction of 
the expression levels of the two maize cytokinin response 
genes is comparable to the decrease observed in cytokinin 
signaling mutants of Arabidopsis and rice (Argyros et al. 
2008; Worthen et al. 2019). These results therefore suggest 
that enhanced expression of Arabidopsis CKX1 causes a 
reduced cytokinin status in maize roots.

Transgenic maize plants exhibit enlarged root 
systems

In order to analyse the consequences of enhanced expression 
of the CKX1 gene in roots of maize we compared transgenic 
lines with a NTC at different developmental stages and upon 
growth in different conditions, i.e. plants were grown either 
in a hydroponic system or in soil.

Ten days old seedlings of all three independent trans-
genic lines grown in a hydroponic system showed a larger 
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root system as compared to NTC (Fig. 2). Total root length 
was increased between 20 and 33% (Fig. 2B) and total root 
surface area was increased between 18 and 23% in the three 
transgenic lines (Fig. 2C), while the root diameter was not 

altered (Fig. 2D). Consequently, the mean root volume of 
transgenic plants was 15–21% larger than that of the NTC 
(Fig. 2E).

Analysis of 18-d-old plants grown in a hydroponic system 
(Fig. 3A) confirmed the increased root growth in transgenic 
lines. At this stage, root dry weight of the transgenic lines 
was increased by 11–23% (Fig. 3B). In contrast, shoot dry 
weight of transgenic lines did not differ significantly from 
the control line (Fig. 3C). This differential growth resulted in 
an increased root-to-shoot ratio in two of the three transgenic 
lines (Fig. 3D).

Finally, root and shoot dry weight of five-week-old soil-
grown plants were compared. Visual inspection of these 
plants revealed no changes of shoot size while the root sys-
tem of transgenic lines showed enhanced growth (Fig. 4A). 
The root dry weight of the two transgenic lines that were 
tested was 1.80 ± 0.30 g (line A2) and 1.76 ± 0.10 g (line 
C4) while roots of the control line had on the average a 
dry weight of 1.23 ± 0.20  g (Fig.  4B), representing an 
increase of 43–46% in the transgenic lines. The shoot and 
leaf dry weight was similar to the control or increased by 
12% (Fig. 4C, D). Several leaf growth parameters were ana-
lysed in more detail (Supplemental Fig. S1). The results 
indicated that there was no difference of the leaf elongation 
rate between transgenic and non-transgenic maize plants 
(Supplemental Fig. S1A, S1B). However, several param-
eters including leaf length (+ 4%), leaf blade area (+ 11%) 
and fresh weight (+ 12%) were slightly increased in both 
or at least one of the transgenic lines when compared to 
their respective NTCs (Supplemental Fig. S1C to S1F). 
Collectively, this analysis has shown that increased CKX 
gene expression in the roots of maize causes increased root 
growth with similar or slightly increased shoot growth. 

Root enhancement caused an increased 
accumulation of distinct elements in the shoot

One important function of roots is the uptake of elements 
from the soil. In order to explore the eventual impact of an 
increased root system size on the element concentration in 
the shoot, we measured the concentrations of 17 different 
elements in leaves of four-week-old soil-grown plants as 
well as in seeds.

As shown in Fig. 5A, in the leaves of the CKX overex-
pressing maize several elements show consistent changes as 
compared to the leaves of NTC plants. The element showing 
the strongest increase in concentration in all three transgenic 
lines was sodium (Na), which increased by 40–67% in the 
leaves of CKX maize plants compared to the control (Fig. 5 
and Supplemental Table S1). Among the other macro-ele-
ments, the concentrations of potassium (K) and phosphorus 
(P) were consistently and significantly increased by ~ 10% 
in the leaves of transgenic plants (Fig. 5B, Supplemental 
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Fig. 1   A Root-specific expression of pRcc3:CKX1 in transgenic 
maize. The expression analysis of CKX1 was carried out by qRT-
PCR. Total RNA was extracted from roots and shoots (leaves) of 
14-days-old plants. Relative expression of the transgene is shown 
as 40-ΔCT value, with 28 being the threshold value for expressed 
genes. A2, B9 and C4 are independent transgenic lines. B Expres-
sion of primary cytokinin response genes in roots. The expression 
of ZmRR1 and ZmRR2 was analysed in roots of 7-days-old trans-
genic and NTC seedlings. For A and B ß-TUB (NP_001105457) and 
EF1a (NM_001112117) were used as reference genes to normalize 
expression levels. Three (A) and four (B) biological replicates were 
analyzed for each genotype. Data are means ± SD. The significance 
of differences between the transgenic lines and NTC in (B) was calcu-
lated by One-way ANOVA (ZmRR1) or Kruskal–Wallis non-paramet-
ric test (ZmRR2) with Benjamini Hochberg correction (*, p < 0.05; 
**, p < 0.01). NTC, non-transgenic control
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Table S1). In contrast, the content of other macro-elements 
like S and Mg was either similar or slightly reduced com-
pared to control plants (Fig. 5A, Supplemental Table S1).

In the case of micro-elements, the molybdenum (Mo) 
and zinc (Zn) concentrations were increased by 7–16% and 
12–17% (Fig. 5B), respectively, whereas the concentration 
of boron (B) was decreased compared to the control plants 
(Supplemental Table S1).

The concentrations of heavy metals were changed as 
well in leaves of transgenic plants. The concentration of 
cobalt (Co), chromium (Cr) and lead (Pb) were consist-
ently decreased by 20–40% in the transgenic plants whereas 

cadmium (Cd) increased by 17–30% compared to NTC 
plants.

Next, we analyzed whether the changed element concen-
trations in leaves would be reflected by similar changes in 
maize kernels. Figure 6A shows that the changes of ele-
ment concentration in kernels clearly differed from those 
measured in leaves. Seeds from transgenic lines contained 
13–70% higher concentrations of copper (Cu), which was 
also found in barley (Ramireddy et al. 2018a) and 13–49% 
higher concentrations of manganese (Mn). The concentra-
tion of zinc was significantly increased by 19% in one of the 
transgenic lines while the other two lines showed a similar or 

Fig. 2   Root–specific expression of pRCc3:CKX1 increases the root 
system size of maize. A Root phenotype of 10-days-old lines grown 
in hydroponic culture. Representative images of root systems from 
individual plants are shown. B Total root length; C total root surface 
area; D mean diameter of roots, and E root volume of 10-days-old 
plants. Total root length, surface area, mean diameter and root vol-

ume were calculated using the WinRHIZOTM software. Data in 
(B–E) represent means ± SD (n = 12). Asterisks indicate statistically 
significant differences compared to NTC as determined by two-tailed 
Student’s t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). NTC, non-
transgenic control
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slightly decreased zinc concentration compared to the con-
trol (Fig. 6 and Supplemental Table S2). When it comes to 
heavy metals, the concentration of Cr and Ni was decreased 
by ~ 70–80%, and the concentration of Co and Pb increased 
by ~ 40–70% in seeds of CKX maize compared to control 
plants, but all concentrations were very low (Fig. 6 and Sup-
plemental Table S2).

Discussion

Maize plants overexpressing a cytokinin-degrading CKX 
gene in their roots formed a larger root system with longer 
roots, an increased surface area and enhanced dry weight. 
Importantly, root enhancement as documented for different 

Fig. 3   Root-specific expression of pRCc3:CKX1 increases maize 
root system size in hydroponic culture. A Root phenotype of 18-d-
old plants grown in hydroponic culture. B Root dry weight. C Shoot 
dry weight. D Root/shoot ratio. Data in (B–D) represent means ± SD 

(n = 12). Asterisks indicate statistically significant differences 
compared to NTC as determined by two-tailed Student’s t-test (*, 
p < 0.05; **, p < 0.01). NTC, non-transgenic control
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developmental stages was significant for all independent 
transgenic lines in all stages (Figs. 2B, C; 3B; 4B). This 
showed that the regulatory role of cytokinin in roots is simi-
lar in maize as in other species and has been conserved dur-
ing evolution and domestication.

The increased root system was already established at the 
seedling stage showing that cytokinin regulates the develop-
ment of embryonic roots. The size of the early root system of 
maize seedlings is associated with nutrient acquisition and 
drought resistance (Kumar et al. 2012; Abdel-Ghani et al. 
2013; Li et al. 2015). Early root growth is also a relevant trait 
supporting seedling establishment and vigor (Sanguinetti 
et al. 1998). The root enhancement in CKX overexpressing 
maize was persistent until later developmental stages as well 
as under different growth conditions indicating that develop-
ment of post-embryonic roots establishing the main part of 
the root system of adult maize plants is also under control 
of cytokinin. The increase of the different root traits (length, 
surface area, number of tips, root volume, dry weight) was 
in the range of 23 to 46%, which is in a similar range as the 
increase found in CKX overexpressing rice and CKX over-
expressing barley (Gao et al. 2014; Ramireddy et al. 2018a). 
For comparison, the minimal and maximal root dry weights 
of commercial maize hybrids showed about 20% difference 
from the average value of all 57 hybrids (Tucker et al. 2020), 
indicating that the increase in root size of CKX maize cov-
ers at least a substantial part of the variation and may even 
exceed it. In a comparison of drought-sensitive and drought-
tolerant maize varieties, an increase of root length (33%) 

was shown to be associated with increased drought tolerance 
(Rosa et al. 2019). This suggests that the size increase of the 
CKX maize root system is functionally relevant and might 
be advantageous under drought. An even higher increase of 
root system size might be achieved by overexpressing a CKX 
protein that is targeted to the extracellular space and not to 
the endoplasmatic reticulum as CKX1 (Niemann et al. 2018) 
and thus has access to a different cytokinin pool (Werner 
et al. 2010; Ramireddy et al. 2018a, b).

Importantly, root enhancement did not negatively impact 
shoot growth and development of CKX maize. Instead, there 
was rather a tendency to improved shoot growth in these 
plants (Fig. 4; Supp. Fig S1), indicating that plants do not 
suffer from source limitation but sufficient carbon is fixed to 
support growth of a larger root system. This is an important 
result as source limitation and the consequential negative 
impact of root enhancement on shoot growth could restrict 
the engineering of plants with a larger root system. Notably, 
it was shown in Arabidopsis that combining root and shoot 
engineering may even lead to plants with a larger root sys-
tem and larger shoots (Vercruyssen et al. 2011).

The concentration of a number of several elements (K, P, 
Mo, Na and Zn) was significantly increased in leaves of all 
three independent CKX maize lines (Fig. 5). The macroele-
ments showing consistently an increased concentration in 
leaves of all three CKX lines were phosphorus (+ 9–11%) 
and potassium (+ 6–8%). This confirms that root growth 
of maize is particularly crucial for the uptake of immobile 
nutrients such as phosphorus and potassium (Lynch 2011; 

Fig. 4    pRCc3:CKX transgenic plants have normal shoot growth. A 
Shoots and roots of five-week-old plants grown in soil-filled pots. A 
representative image from shoot and root systems of individual plants 
is shown. B Root biomass. C Shoot biomass. D Leaf biomass of four-

week-old plants. Data are means ± SD (n = 8–10). Asterisks indicate 
statistically significant differences to the NTC as determined by two-
tailed Student’s t-test (*p < 0.05; **p < 0.01). NTC,  on-transgenic 
control
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Fig. 5   Mineral element 
concentrations in leaves of 
pRCc3:CKX1 transgenic maize 
plants. A Relative changes in 
mineral element concentrations 
in transgenic lines compared to 
non-transgenic control plants 
(NTC). The concentration of 
each mineral element in NTC 
leaves was set to 100% and 
relative differences in trans-
genic lines are shown in a heat 
map generated using Multi-
experiment Viewer v4.9 (Saeed 
et al. 2003). The complete data 
set is shown in Supplemental 
Table S1. B Concentrations of 
different mineral elements in 
leaves of four-weeks-old soil-
grown plants. Four biological 
replicates for each genotype 
were analysed, each containing 
shoots from 2–3 plants. Data 
shown are means ± SD. Aster-
isks indicate significant differ-
ences to the NTC as determined 
by two-tailed Student’s t-test 
(*, p < 0.05; **, p < 0.01; ***, 
p < 0.001). NTC, non-transgenic 
control

A2

B9

PbCa Cd Cu Fe K Mg Mn Mo Ni P S ZnB Co NaCr

C4

pR
C
c3

:C
K
X1

  130%50%   100%

A

B

Mo 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1
El

em
en

t c
on

ce
nt

ra
tio

ns
 [µ

g 
g

 D
W

]

RCc3:CKX1 lines
C4B9A2NTC

***
**

0

50

100

150

200

250

300

0

10

20

30

40

50

60 Zn 

******
***

RCc3:CKX1 lines
C4B9A2NTC

RCc3:CKX1 lines
C4B9A2NTC

***
****

Na

0

10

20

30

40

50

60

-1
El

em
en

t c
on

ce
nt

ra
tio

ns
 [m

g 
g

 D
W

]

*** **

K

RCc3:CKX1 lines
C4B9A2NTC

0

1

2

3

4

5

6

7

-1
El

em
en

t c
on

ce
nt

ra
tio

ns
 [m

g 
g

 D
W

] P
*** ** **

RCc3:CKX1 lines
C4B9A2NTC



562	 Plant Molecular Biology (2021) 106:555–567

1 3

Rosa et al. 2019). A role for cytokinin in regulating the 
response to the availability of phosphorus and potassium 
has been shown in Arabidopsis (Franco-Zorrilla et al. 2005; 
Nam et al. 2012).

A third macroelement that was increased between 40 and 
67% in the leaves of CKX maize plants was sodium. Sodium 
is most often seen as problematic because of increasing soil 
salinity but it is known to be essential for plants that perform 
C4 or CAM photosynthesis and it may replace K to some 
extent (Adams and Shin 2014). In sorghum, a close relative 
of maize, an increased concentration of Na+ ions in leaves 
was shown to activate the expression of phosphoenolpyru-
vate carboxylase‐kinase (PEPCase‐K) under light and dark 
conditions. PEPCase-K is crucial for the carbon fixation 

efficiency of the C4 photosynthesis pathway (García-Mau-
riño et al. 2003). In how far the strongly increased sodium 
content of leaves in CKX maize affects physiology remains 
to be determined.

The concentrations of only two microelements were con-
sistently changed in leaves, molybdenum (+ 7–16%) and 
zinc (+ 12–17%). Molybdenum is required among others for 
redox enzymes such as nitrate reductase and molybdenum 
deficiency is common in many different types of soil (Kaiser 
et al. 2005), often resulting in nitrate accumulation (Kovács 
et al. 2015).

The increase in shoot zinc concentration in CKX maize 
is of special interest as around two billion people worldwide 
suffer from nutritional deficiency of zinc and methods to 
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Fig. 6   Mineral element concentrations in seeds of pRCc3:CKX1 
transgenic maize plants. A Relative changes in mineral element con-
centrations in transgenic lines compared to non-transgenic control 
(NTC) plants. The concentration of each mineral element in NTC 
seeds was set to 100% and relative differences in transgenic lines are 
shown in a heat map generated using Multi-experiment Viewer v4.9 
(Saeed et al. 2003). The complete data set is shown in Supplemental 

Table S2. B Concentrations of copper (Cu) and manganese (Mn) and 
zinc (Zn) in seeds of transgenic lines in comparison to NTC seeds. 
Four biological replicates for each genotype were analysed, each con-
taining seeds from 2–3 plants. Data shown are means ± SD. Asterisks 
indicate significant differences to the NTC as determined by two-
tailed Student’s t-test (*, p < 0.05; **, p < 0.01). NTC, non-transgenic 
control
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achieve biofortification are needed. Often the mainly plant-
based diets are not a sufficient source of this essential ele-
ment (Prasad 2013; Menguer et al. 2018). Maize is a staple 
crop in many countries and zinc deficiency in the kernels is 
the cause of zinc malnutrition in maize consumers. In most 
maize lines, there is a solid gap between zinc concentrations 
and biofortification target values (Zhao et al. 2020) mak-
ing maize a suitable target for zinc biofortification. In CKX 
maize, the zinc increase in leaves occurred in all lines but 
only one out of three lines showed a 19% increase of zinc 
concentration in the seeds. However, the zinc concentration 
in this line was as high as 35.6 μg g−1 DW, which reaches 
almost the target concentration of 38 μg g−1 DW set by the 
HarvestPlus biofortification program (Bouis and Welch 
2010). The International Maize and Wheat Improvement 
Center (CIMMYT) has identified maize varieties with more 
than 33 μg zinc g−1 DW and recommended these varieties 
for future zinc biofortification breeding programs (Maqbool 
and Beshir 2019). The increase in zinc concentration in 
CKX maize shows that root enhancement in maize may be 
part of a zinc biofortification strategy but that selection of 
suitable lines would be required.

Noteworthy, the increase of the zinc concentration in 
shoots was the only change that was consistently found in 
all species with an enhanced root system analysed so far, 
namely Arabidopsis, tobacco (Werner et al. 2010), oilseed 
rape (Nehnevajova et al. 2019), barley (Ramireddy et al. 
2018a,b), rice (Gao et al. 2019) and chickpea (Khandal et al. 
2020). The increases varied between 32 and 68% but were 
stable under different growth conditions, in different soils 
as well as in hydroponics. In barley it was found in plants 
grown in the green house as well as in plants grown in the 
field. This stability and the fact that the increase occurred in 
monocot and dicot crop plants shows that this is a very stable 
trait positively correlated with an increase in root biomass. 
In Arabidopsis and rice CKX plants expression of zinc trans-
porter genes was upregulated suggesting that derepression 
of these genes is responsible for the increased Zn uptake 
(Werner et al. 2010; Gao et al. 2019).

In addition to zinc, there was an increase in copper 
(13–74%) and manganese (13–49%) in the kernels of some 
maize lines. Both are also essential trace elements required 
for human nutrition (White and Broadley 2009; Bouis and 
Welch 2010) but they are generally in sufficient quantity 
in human diets. Manganese is mainly known for its essen-
tial role for photosynthetic activity and as an activator and 
co-factor for several metallo-enzymes (Schmidt and Hus-
ted 2019). The seed manganese concentration has been 
shown to be important to support seedling growth and vigor 
in wheat, particularly in dry, calcareous, and sandy soils 

where manganese deficiency is commonly observed (Singh 
and Bharti 1985; Moussavi-Nik et al. 1997). Wheat plants 
grown from grains with an increased manganese concentra-
tion withstood the take‐all (white heads) disease better and 
yield was higher than in plants from the grains of the same 
cultivar with a lower manganese concentration (McCay‐
Buis et al. 1995). Whether or not the manganese content 
of maize seeds has a similar impact on plant performance 
is not known.

The accumulation of increased concentrations of ele-
ments in shoot organs is a common feature of different 
model and crop plants with enhanced root systems due to a 
lowered cytokinin content (Werner et al. 2010; Ramireddy 
et al. 2018a; Nehnevajova et al. 2019; Gao et al. 2019; Khan-
dal et al. 2020). However, the element accumulation pro-
file of CKX maize showed some peculiarities such as an 
increase in potassium not found in most other species and a 
lack of increase in sulfur and calcium, which was detected in 
most other CKX plants. This distinct profile argues against 
a general and common reason for the increased shoot ele-
ment contents of CKX plants, such as the larger soil volume 
that is explored or a regulation of transfer cell density by 
cytokinin (Andersen et al. 2018). The differential impact of 
root enhancement on uptake of minerals in different species 
seems at least partially be unlinked to the growth regula-
tory effect of cytokinin. It might rather be due to differential 
regulation of respective transporter genes by cytokinin as 
was noted above for zinc transporter genes (Werner et al. 
2010; Gao et al. 2019).

Taken together, we have expanded the use of root-specific 
cytokinin degradation as a means to achieve root enhance-
ment to the important crop plant maize. Despite the com-
plexity of the maize root system, it was possible to expand 
its size by expressing a single dominant gene. This approach 
might partially overcome limitations caused by the numer-
ous genes contributing to shape the maize root system (Bray 
and Topp 2018). The recent description of a set of root-
specific promoters of maize with distinct spatio-temporal 
expression profiles (Li et al. 2019) will be helpful to refine 
and optimize the approach in order to design different root 
ideotypes of maize for crop improvement.

Evidently, further analysis of the molecular basis of the 
enhanced shoot element content and testing of CKX maize 
plants under field conditions is required. It will be particu-
larly interesting to explore how CKX maize performs on 
soils with micronutrient deficiencies as they are common 
in arable soils of sub-Saharan Africa where simultaneous 
deficiencies of several microelements enhanced in CKX 
maize such as zinc, molybdenum and copper occur (Kihara 
et al. 2020).
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Experimental procedures

Plant material and growth conditions

Immature embryos of the maize inbred line B104 were trans-
formed by Agrobacterium tumefaciens co-cultivation (Cous-
sens et al. 2012). In short, immature B104 embryos were 
co-cultivated with A. tumefaciens for three days followed 
by one-week growth on non-selective medium. Transformed 
embryogenic calli were subsequently selected on increas-
ing concentrations of phosphinotricin. After shoot induction 
from the selected calli, transgenic T0 plants were transferred 
to soil. T0 plants were backcrossed once with B104 wild 
type, resulting in a collection of T1 seeds from independ-
ent transgenic events that were self-pollinated. Homozygote 
transgenic lines and non-transgenic siblings were identified 
by quantitative PCR performed on genomic DNA by iDNA 
Genetics (Norwich, UK). In all experiments except the eval-
uation of leaf growth, an outsegregated non-transgenic sib-
ling of line C4 was used as a non-transgenic control (NTC). 
In the comparison of leaf growth (Fig. S1), we compared 
lines A2 and C4 with their respective outsegregated NTCs.

For phenotypic analysis maize plants were grown 
under controlled greenhouse conditions (26/20 °C; 16/8 h 
light/dark cycle; 500 μmol m−2 s−1 by metal halide lamps 
(HQI) supplemented with tungsten bulbs). Plants for leaf 
growth monitoring were grown under growth chamber 
conditions with controlled relative humidity (55%), tem-
perature (24 °C day/18 °C night), and a light intensity of 
170–200 μmol m−2 s−1 photosynthetic active radiation at the 
plant level in a 16/8 h (day/night) cycle.

RNA isolation and quantitative real‑time PCR 
analysis

Total RNA was extracted from tissues using TRIzol rea-
gent (Invitrogen) following the manufacturer’s protocol. 
RNA was purified using the RNayes MinElute clean up kit 
(Qiagen). Removal of genomic DNA was achieved using 
RQ1 RNase-Free DNase (Promega). 2 µg of total RNA 
were taken for cDNA synthesis using the RevertAid First 
Strand cDNA Synthesis Kit of Fermentas (St. Leon-Rot, 
Germany) and oligodT-primers. To test cDNA yield, qPCR 
was performed using primers of the maize elongation factor 
1α (EF1α; NM_001112117) and tubulin β-chain (β-TUB; 
NP_001105457) as maize reference genes (Lin et al. 2014). 
Supplemental Table S3 lists the primer sequences used in 
this study. The cDNA samples were used to determine CKX1 
transgene expression and cytokinin primary response genes 
ZmRR1 (gene ID Zm00001d001865) and ZmRR2 (gene ID 
Zm00001d026594) levels by quantitative real-time PCR 
according to Cortleven et al. (2014).

Quantification of root system size and biomass

Maize seeds were germinated on soil and three days after 
germination seedlings were carefully lifted from the soil and 
cautiously washed to remove bound soil particles. Seedlings 
of similar size were transferred to a hydroponic system and 
cultivated for another seven days for root system size analy-
sis, and 15 d for biomass quantification. For the hydroponic 
system 0.1 × Hoagland solution (1 mM KH2PO4, 0.5 mM 
KNO3, 0.4 mM Ca(NO3), 0.2 mM MgSO4, 0.1 mM FeNaE-
DTA, 0.01 mM H3BO3, 2 μM MnSO4, 0.2 μM ZnSO4, 
0.2 μM CuSO4, 0.1 μM Na2MoO4 and 0.02 mM NaCI) was 
used (Krämer et al. 1996). 12 L nutrient solution per box was 
properly aerated and changed every second day. After har-
vest, roots and shoots were separated and their fresh weights 
were determined. Thereafter, samples were dried in an oven 
at 80 °C for 68 h and the dry weight was recorded. For root 
system size analysis by WinRHIZO™, roots were carefully 
lifted from the box and spread out in a root-positioning tray 
(20 × 30 cm) to minimize root overlap and scanned with a 
flatbed scanner (EPSON, EU-88, Japan). Greyscale images 
obtained in tiff format were analysed with WinRHIZO™ 
(Pro Version 2005a; Regent Instruments Inc., Canada). For 
quantification of root system size of soil-grown transgenic 
plants, soil-filled 30 cm diameter pots were used. After five 
weeks of growth in soil, plants were harvested and sepa-
rated into shoots and roots. Roots were carefully washed to 
remove bound soil particles and aggregates. Samples were 
dried in an oven at 80 °C for 68 h and the dry weight was 
recorded.

Quantification of leaf and seed element content

Quantification and analysis of leaf and seed elements was 
performed as described in Ramireddy et al (2018a). Briefly, 
seeds of three independent transgenic lines and the NTC 
were germinated on filter paper in vitro. Three-day-old 
seedlings were transferred to the greenhouse into an unfer-
tilized (type 0) soil supplied by the company Einheitserde 
(Sinntal-Altengronau, Germany). Composition of unfer-
tilized soil was tested and certified by Institut Koldingen 
GmbH (Sarstedt, Germany) as described by Drechsler 
et al. (2015). Plants were grown further for four weeks by 
supplementing equal amounts of fertilizer solution every 
second or third day depending on soil moisture. The fer-
tilizer solution was based on the composition of modified 
Hoagland solution (2 M KNO3, 1 M NH4NO3, 1 M KH2PO4, 
2 M Ca(NO3)2 4 H2O,,2 M MgSO4 7 H2O, 100 μM Na-Fe-
EDTA, 50 μM H3BO3, 50 μM MnSO4, 18.5 μM ZnSO4, 
50 nM CuSO4, 50 nM CoCl2, 0.5 μM NaMoO4 and 2 mM 
MES). The solution was adjusted to pH 5.7 with 1 M KOH. 
Total leaves from four-week-old plants were dried for 72 h 
at 80 °C and grounded carefully. Then equal amounts of 
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powder (1 g) were weighed into polytetrafluoroethylene 
tubes and digested with a HNO3 + H2O2 mixture in a pres-
surized microwave digestion system (MARS from CEM 
GmbH; Kamp-Lintfort, Germany). The concentrations of 
macro- and microelements were analyzed by inductively-
coupled plasma optical emission spectrometry (ICP-OES, 
iCAP 6500 dual OES spectrometer; Thermo Fischer Scien-
tific) with certified standard reference samples as control. 
The element content from seed samples was determined in 
a similar way as outlined above.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11103-​021-​01173-5.
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