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Abstract: Background: Uveal melanoma (UM) is the most common intraocular tumor in adults.
Ferroptosis is a newly recognized process of cell death, which is different from other forms of cell
death in terms of morphology, biochemistry and genetics, and has played a vital role in cancer biology.
The present research aimed to construct a gene signature from ferroptosis-related genes that have the
prognostic capacity of UM. Methods: UM patients from The Cancer Genome Atlas (TCGA) were
taken as the training cohort, and GSE22138 from Gene Expression Omnibus (GEO) was treated as the
validation cohort. A total of 103 ferroptosis-related genes were retrieved from the GeneCards. We
performed Kaplan-Meier and univariate Cox analysis for preliminary screening of ferroptosis-related

genes with potential prognostic capacity in the training cohort. These genes were then applied into an
check for

updates overall survival-based LASSO Cox regression model, constructing a gene signature. The discovered

gene signature was then evaluated via Kaplan-Meier (KM), Cox, and ROC analyses in both cohorts.
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The Pearson correlation coefficient examined the correlations between risk score and UM common
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study the functional annotation of the gene signature and the character of each kind of immune cell
in the tumor microenvironment. Results: A seven-gene signature was found from the training cohort
and validated in all cohorts by Kaplan—Meier and Cox regression analyses, revealing its independent
prognosis value in UM. Moreover, ROC analysis was conducted, confirming the strong predictive
ability that this signature had for UM prognosis. A total of 52.24% (256 /490) autophagy-related genes
were significantly correlated with risk scores. Analyses of GSEA and immune infiltrating detailed
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exhibited specific pathways associated with the seven-gene signature, also confirming the crucial
role that Mast cells resting played in the prognosis of the seven-gene signature. Conclusions: In
this study, a novel ferroptosis-related seven-gene signature (ALOX12, CD44, MAP1LC3C, STEAP3,
HMOX1, ITGA6, and AIFM2/FSP1) was built. It could accurately predict UM prognosis and was
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1. Introduction
This article is an open access article

Uveal melanoma (UM) is the most common ocular malignant tumor in adults, with
an overall mortality rate of 50% [1]. Although UM is rare, it accounts for 85-95% of all
Attribution (CC BY) license (https:// ~Ocular melanoma cases [2]. About 85% of the tumor cases arise from the choroid, while the
creativecommons.org/licenses /by / remaining cases arise from the iris (3-5%) and ciliary body (5-8%) [2,3]. Approximately
4.0/). 40% of UMs have metastatic disease, of which the liver is the most affected site, causing
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a high mortality rate [4,5]. The primary disease treatment is the surgical removal of the
tumor, but conservative approaches, such as radiotherapy, are also often adopted in clinical
practice [6]. With the deepening of research, although considerable progress has been
made in the diagnosis and treatment of primary UM, the survival rate has not improved
significantly in the last three decades [1].

Ferroptosis is a newly introduced type of programmed cell death discovered in
recent years. The process of ferroptosis is usually accompanied by a large amount of
iron accumulation and lipid peroxidation [7]. This is closely related to the maintenance
of homeostasis and the development of diseases, especially cancer [8]. The induction
of ferroptosis leads to mitochondrial dysfunction and toxic lipid peroxidation in cells,
which play a key role in inhibiting the growth and development of cancer [8]. In the
past few years, ferroptosis has been found to be a promising trigger option for cancer cell
death, especially for malignant tumors that are resistant to traditional therapies [9-11].
Ferroptosis is a double-edged sword in tumor development because ferroptotic cancer
cells release a variety of signaling molecules, either to inhibit tumor growth or to promote
tumor proliferation [12]. The role of the signals released from ferroptotic cancer cells in
tumor microenvironment needs further investigation [12]. A recent report suggests that
ferroptosis suppress metastasis in blood, but ferroptosis is suppressed in the lymph [13].
Therefore, it is essential to address how ferroptosis genes affect the prognosis by analyzing
the correlation between each ferroptosis gene and tumor patients’ prognosis.

Currently, several studies are mining the prognostic gene signature related to ferrop-
tosis in tumors from public databases [14,15]. Liu confirmed that the ferroptosis-related
nineteen-gene signature could predict glioma patient survival [14]. Liang et al. discovered
a novel ferroptosis-related prognostic gene signature for hepatocellular carcinoma [15].
However, there is still no study declaring whether a ferroptosis-related prognostic gene
signature can predict UM prognosis. In order to fill this gap and widen the options in
the diagnosis and therapy of UM, the present study performed comprehensive analyses
utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), along
with ferroptosis-related genes identified in previous studies, to determine and validate the
optimized prognostic genes of UM. Besides, the gene signature characteristics in the tumor
microenvironment were studied through GSEA and immune infiltration analysis.

2. Materials and Methods
2.1. Cohorts and Ferroptosis-Related Genes

The dataset with project ID: TCGA-UVM (80 UM patients) was chosen as a training
cohort and downloaded from the GDC Xena Hub (https:/ /gdc.xenahubs.net). For valida-
tion, an independent cohort, GSE22138, which contained 63 UM cases, was selected from
the Gene Expression Omnibus database (GEO, https://www.ncbinlm.nih.gov/geo/). A
comprehensive list containing a total of 103 ferroptosis-related genes was retrieved from
GeneCards [16] (https:/ /www.genecards.org/) and are provided in Table S1.

2.2. Identification and Validation of the Prognostic Ferroptosis-Related Gene Signature

Kaplan—-Meier and univariate Cox regression were conducted in the training cohort
to screen potential prognostic genes. Only genes that showed significant (p-values < 0.05)
in both Kaplan-Meier and Cox analysis were considered as potential prognostic genes.
The genes in the overlapped part of potential prognostic genes and ferroptosis-related
genes were identified as potential prognostic ferroptosis-related genes, which ewre then
entered into an overall survival-based LASSO Cox regression model in the training cohort.
The LASSO analysis with ten cross-validations were conducted by applying the “glmnet”
R package study, the best penalty parameter lambda [17-20]. According to the optimal
lambda value, a prognostic gene list with coefficients was generated from the LASSO
model. As shown in the following formula, each patient’s risk score can be obtained from
the gene expression level and corresponding coefficients. In the formula, n, Expi, and (i
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represented the number of hub genes, gene expression level, and regression coefficient
value, respectively.

n
Risk score = ZExpi * Bi (1)
i

In the training cohort, patients were divided into low- and high-risk groups using
the median risk score as a cut-off point. The survival difference between the two groups
was measured by Kaplan-Meier analysis. Cox and ROC analyses were also conducted for
further assessment of the gene signature prognostic ability. Moreover, in the validation
cohorts, the same formula and statistical methods were adopted to validate the prognostic
capacity of the gene signature.

2.3. Correlation between Gene Signature and UM Common Mutations

In UM, chromosomal aberrations and gene mutations are closely related to treatment
options and prognosis. Most of the samples in the validation cohort own the information
on chromosome 3 status. Besides this, Robertson and collogues detailed studied the status
of chromosome 3, 8q, and 6p of every patient in the TCGA-UVM project in their latest
public research [21] (Table S2). The Pearson test was conducted to examine the correlation
between copy number aberrations and gene signature risk score in the TCGA-UVM cohort.

2.4. Relationships between Gene Signature and Autophagy in UM

Autophagy is a conserved intracellular degradation system that plays a dual role in
cell death; thus, therapies targeting autophagy in cancer are somewhat controversial [22].
Accumulating studies have revealed crosstalk between autophagy and ferroptosis at the
molecular level [22]. To explore the relationship between autophagy and our gene signature,
we first identified 232 autophagy-associated genes from the Human Autophagy Database
(HADD; http:/ /www.autophagylu/index.html), which contains an exhaustive, up-to-date
list of human autophagy-related genes [23]. Another 363 autophagy-related genes were
retrieved from the Molecular Signatures Database (version 7.1, https:/ /www.gsea-msigdb.
org/gsea/msigdb/indexjsp). Through merging them, a list of 490 autophagy-related
genes was obtained (Table S3). Pearson test was performed to examine the correlation
between autophagy and gene signature risk score.

2.5. Gene Set Enrichment Analysis

GSEA, using the JAVA program (http://software.broadinstitute.org/gsea/index.jsp),
was employed for assessing the possible mechanisms between high- and low-risk groups
based on the Hallmark (v7.1, https:/ /www.gsea-msigdb.org/gsea/downloads.jsp) gene set
collections. The number of random sample permutations was set at 1000, and | NES | > 1,
NOM p-value < 0.05, and FDR g-value < 0.25 were set as the significance threshold.

2.6. Relationship of Gene Signature and the 22 Tumor-Infiltrating Immune Cells (TICs)

The relative proportion of 22 TICs in the training group was calculated using the
CIBERSORT algorithm [24,25]. After the quality filtering (p-value < 0.05), 43 UM cases
were qualified for subsequent analysis. The Pearson coefficient examined the correlations
between 22 kinds of TICs. To identify the relationship between 22 TICs proportion and
risk score, an integrated analysis of the Spearman coefficient and Wilcoxon rank-sum was
applied. Besides, univariate Cox and Kaplan—-Meier analyses were deployed to screen 22
TICs with prognostic meaning using TICs proportion and survival data.

2.7. Statistical Analysis

Kaplan—-Meier analysis was conducted using “survival” and “survminer” R packages.
Cox proportional hazard regression analyses were performed using the “survival” R
package. ROC analysis was conducted using the “survivalROC” R package. p-value < 0.05
indicates statistical significance.
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3. Results
3.1. Characteristics of UMs

The present study’s flow diagram is displayed in Figure 1. A total of 80 UM patients
in TCGA-UVM dataset were treated as the training cohort. GSE22138, a dataset from the
GEO database, contained 63 UMs, was selected as the validation cohort. In Table 1, the
clinical characteristics of each patient included in this study were summarized.

Training cohort
(TCGA-UVM, 80 cases)

Kaplan-Meier and univariate

103 ferroptosis-related genes Cox regression analysis
(7025 genes identified)

Intersected

vy
22 ferroptosis-related
potential prognostic genes

Y

LASSO Cox regression
model analysis

Validation cohort
(GSE22138, 63 cases)

Integrated ferroptosis-related Relationship between
r seven-gene signature | signature risk and 22 TICs
Validation j -
|
[ A
ikl
Kaplan-Meier analysis, Cox N > Correlation with UM common .
analysis, and ROC analysis mutations Erognosticivalielof22iTICs

f
Mast cells resting is

! : correlated with risk score and
N—>{ Correlation with autophagy (v et e el «
capacity in UM

\ 5 Gene Set Enrichment
Analysis

with UM prognosis. Mast cells resting may play a vital role
in the prognostic ability of the gene signature

[rhe ferroptosis-related seven-gene signature is associated
Figure 1. Flow chart of the study. LASSO: the least absolute shrinkage and selection operator

Cox regression model; UM: uveal melanoma; ROC: receiver operating characteristic; TICs: tumor-
infiltrating immune cells.
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Table 1. Clinical characteristics of patients involved in the study.

Training Cohort Validation Cohort

Characteristics (TCGA-UVM, 80 Cases) (GSE22138, 63 Cases)
age
<65 45(56.25%) 36(57.14%)
>65 35(43.75%) 27(42.86%)
gender
female 35(43.75%) 24(38.1%)
male 45(56.25%) 39(61.9%)
T classification
T1 0 NA
T2 4(5%) NA
T3 36(45%) NA
T4 38(47.5%) NA
unknown 2(2.5%) NA
M classification
MO 73(91.25%) 28(44.44%)
M1 3(3.75%) 35(55.56%)
unknown 4(5%) 0
tumor stage
stage | 0 NA
stage II 36(45%) NA
stage III 40(50%) NA
stage IV 4(5%) NA
extrascleral extension
yes 7(8.75%) 5(7.94%)
no 68(85%) 48(76.19%)
unknown 5(6.25%) 10(15.87%)
tumor diameter, mm
<20 60(75%) 44(69.84%)
>20 19(23.75%) 9(14.29%)
unknown 1(1.25%) 10(15.87%)
tumor thickness, mm
<10 29(36.25%) 10(15.87%)
>10 51(63.75%) 53(84.13%)
tumor eye side
left NA 33(52.38%)
right NA 30(47.62%)
tumor location
all over the eye NA 1(1.59%)
anterior to equator NA 3(4.76%)
on equator NA 42(66.67%)
posterior and on equator NA 3(4.76%)
posterior to equator NA 9(14.29%)
unknown NA 5(7.94%)
tumor cell type
epithelioid NA 21(33.33%)
mixed NA 23(36.51%)
unknown NA 19(30.16%)
eye color
blue 9(11.25%) NA
brown 15(18.75%) NA
green 6(7.5%) NA
unknown 50(62.5%) NA
person neoplasm cancer status
with tumor 9(11.25%) NA
tumor free 56(70%) NA
unknown 15(18.75%) NA
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Table 1. Cont.

Characteristics Training Cohort Validation Cohort
(TCGA-UVM, 80 Cases) (GSE22138, 63 Cases)
radiation therapy
yes 3(3.75%) NA
no 63(78.75%) NA
unknown 14(17.5%) NA
ethnicity
hispanic or latino 1(1.25%) NA
not hispanic or latino 52(65%) NA
unknown 27(33.75%) NA
tissue or organ of origin diagnosis
choroid 67(83.75%) NA
ciliary body 5(6.25%) NA
overlapping lesion of eye and adnexa 8(10%) NA
retinal detachment
yes NA 36(57.14%)
no NA 22(34.92%)
unknown NA 5(7.94%)
mitotic count
<20 42(52.5%) NA
>20 11(13.75%) NA
unknown 27(33.75%) NA
chromosome 3 status
disomy NA 18(28.57%)
monosomy NA 37(58.73%)
unknown NA 8(12.7%)

TCGA: The Cancer Genome Atlas; TCGA-UVM: A project ID in The Cancer Genome Atlas database; NA: data not available.

3.2. Identification of Prognostic Ferroptosis-Related Gene Signature

The analyses of Kaplan—-Meier and univariate Cox were conducted over the training
cohort, and 7025 potential prognostic genes were identified (Table S4). The potential prog-
nostic genes and 103 ferroptosis-related genes were intersected to obtain a list containing 22
ferroptosis-related potential prognostic genes (Table 2). The 22 ferroptosis-related potential
prognostic genes were then subjected to an overall survival-based LASSO Cox regression
model (Figure 2A). When seven genes were gathered, the regression model reached the
optimal ability (Figure 2B). The regression coefficient of each gene was calculated and
shown in Table 3.
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Figure 2. Prognostic gene signature construction using he least absolute shrinkage and selection
operator Cox regression model (LASSO). (A) Distribution of LASSO coefficients of the 22 ferroptosis-
related potential prognostic genes in training cohort. (B) The generated coefficient distribution plots
for the logarithmic (lambda) sequence for the selection of the best parameter (lambda).
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Table 2. 22 ferroptosis-related potential prognostic genes generated from the training cohort.

Gene Symbol Description Category fen?’nic Kaglsellll;g:lel‘ Univariate Cox Regression Analysis
ocation (p-Value) HR HR_95L HR_95H p-Value
VDAC1 Voltage Dependent Anion Protein chr5 712 x 106 5291343504 1781142996 1571929771 271 x 103
Channel 1 Coding
STEAP3 STEAP3 Metalloreductase g‘(’;ﬁg chr2 3.19 x 1073 4206162616  2.092921898  8.453160136  5.49 x 1075
SLC39A8 Solute Carrier Family 39 Member gf)‘gf;g chra 377x 102 3869852511 1326333156 1129109861 133 x 102
SLC11A2 Solute Carrier Family 11 Member gifgf;‘g‘ chr12 476 x 1073 3.094601274 1570769273  6.096730571  1.09 x 103
PEBP1 Phosphatidylethanolamine Protein chrl2 486 x 102 0234529606 0075635069  0.727230595  1.20 x 10-2
Binding Protein 1 Coding
MAPK1 Mitogen—Activated Protein Protein chr22 9.03x 10 2895607401 1163501743  7.206299663  2.23 x 10~2
Kinase 1 Coding
MapiLc3c ~ Microtubule Associated Protein 1 Protein chrl 131 x 1072 0459748503 0271733125 0777853955  3.78 x 103
Light Chain 3 Gamma Coding
Long Intergenic Non-Protein RNA 3 o
LINC00472 Coding RNA 472 Core chré6 636 x 10 0.043258919  0.003322917 0563160037  1.65 x 10
ITGA6 Integrin Subunit Alpha 6 gro‘(’;f:fg‘ chr2 113 x 1073 4613594536 2.148024539  9.909223176  8.85 x 105
Heat Shock Protein Family A Protein 3 3
HSPA5 (Hsp70) Member 5 Coding chr9 891 x 10 225326069 1228917946 4131426149  8.63 x 10
HMOX1 Heme Oxygenase 1 g"’dtf:l‘g‘ chr22 219 x 1073 2334473768 159857086  3.409149952  1.14 x 105
GSS Glutathione Synthetase &‘gﬁfg‘ chr20 331 x 1073 3.851728269  1.85357871  8.003874117  3.02 x 10~*
FTH1 Ferritin Heavy Chain 1 &‘gﬁfg‘ chrll 464 % 1073 4040699109  1.10619952  14.75976891  3.46 x 102
CD44 CD44 Molecule (Indian Blood Protein chrll 6.66 x 103 0.304760194  0.142947413  0.649740862  2.10 x 1073
Group) Coding
CASP8 Caspase 8 gf)‘gfrlé chr2 391 x 1072 2604965341 1209052632  5.612530215  1.45 x 10~2
BAP1 BRCA1 Associated Protein 1 g"gﬁ‘g‘ chr3 1.40 x 10~ 0561778701 0412394493 0765275275  2.56 x 10~
AURKA Aurora Kinase A gg‘gf;; chr20 254 % 1072 3390492663 1565174215  7.344511806  1.96 x 102
ANO6 Anoctamin 6 gg‘gfrfg‘ chr12 256 x 102 2263254914 1292723147 3962428319 426 x 1073
ALOX12 Arachidonate 12-Lipoxygenase,  Protein chrl7 148 x 1073 0.022909689  0.002539428 020668188  7.66 x 104
12S Type Coding
Apoptosis Inducing Factor Protein 6 6
AIFM2/FSP1 N e in Acsebintod 2 Coding chr10 6.03 x 10 6.104896507  2.780109603  13.40586045  6.55 x 10
ACSL6 Acyl-CoA Synthetase Long Protein chr5 456 x 104 2283441779  1.099533069  4.742109633  2.68 x 102
Chain Family Member 6 Coding
ACSL1 Acyl-CoA Synthetase Long Protein chra 664 x 103 1873686292 1236619189  2.838950221  3.06 x 10~
Chain Family Member 1 Coding

Table 3. 7 ferroptosis-related prognostic genes obtained from LASSO Cox regression model.

Gene Symbol Description Role Risk Coefficient
STEAP3 STEAP3 Metalloreductase Marker [26] 0.055060532
MAP1LC3C Microtubule Associated Protein 1 Driver [27] 0202884346
Light Chain 3 Gamma '
ITGA6 Integrin Subunit Alpha 6 Suppressor [28] 0.34461317
Driver [29-32],
HMOX1 Heme Oxygenase 1 Suppressor [33,34], 0.125266141
Marker [35,36]
CD44 Molecule
CD44 (Indian Blood Group) Suppressor [37] —0.316011897
Arachidonate 12-Lipoxygenase, Driver [38-40], B
ALOX12 125 Type Marker [41] 1.311120914
AIFM2/FSP1 Apoptosis Inducing Factor g\ o1 14 431 0.710789029

Mitochondria Associated 2

Drivers are genes that promote ferroptosis. Suppressors are genes that prevent ferrop-
tosis. Markers are genes that indicate the occurrence of ferroptosis.

3.3. The Prognostic Capacity of the Seven-Gene Signature

Each UM case’s risk score was a linear combination of each seven-gene signature
expression level and its risk coefficient. Patients were sorted into high- and low-risk groups
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based on their median. The distribution of risk scores, outcome status, and gene profiles
of the seven-gene signature in training and validation cohorts are shown in Figure 3. As
demonstrated in the figure (Figure 3A-C), more events happened in the high-risk groups
than that in their corresponding low-risk groups. Additionally, the patients in high-risk
groups had less survival time than those in the respective low-risk groups. Besides this, we
checked the capacity of the seven-gene signature from five-year survival (Figure 3D-F) and
found more events and less survival time in the high-risk groups, which was consistent
with the results shown in Figure 3A—C. The heat maps show that AIFM2/FSP1, ITGAS6,
HMOX1, and STEAP3 were overexpressed, while MAP1LC3C, CD44, and ALOX12 were
downregulated in high-risk cases.
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Figure 3. The overall performance of the seven-gene signature in all cohorts. The upper and middle parts of each plot (A-F)
indicate the distributions of risk score and patients’ survival time, respectively. Bottom parts show heatmaps of seven gene

expression profiles.

Kaplan—-Meier curves displayed that the high-risk patients have poor overall survival
and progression-free survival in TCGA-UVM (p-value < 0.0001, Figure 4. Kaplan—-Meier
curves of the seven-gene signature risk score in all cohorts). The middle part of each graph
indicates the number of patients at risk. The differences between the high- and low-risk
groups were measured by log-rank (p-value < 0.05).
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Figure 4. Kaplan—-Meier curves of the seven-gene signature risk score in all cohorts. The middle part of each graph (A-F)
indicates the number of patients at risk. The differences between the high- and low-risk groups were measured by log-rank
(p-value < 0.05).

Figure 4A,B showed poor metastasis-free survival in GSE22138 (p-value < 0.0001,
Figure 4C) compared to specific low-risk patients. The Kaplan-Meier curves of five-
year survival showed the same pattern as high-risk score groups, which had signifi-
cantly unfavorable outcomes compared to those in their corresponding low-risk groups
(p-value < 0.00026, Figure 4D-F).

Univariate and multivariate Cox models were built in both cohorts using the over-
all, progression-free, or metastasis-free survival data and other available co-variables,
including risk score, gender, age, ethnicity, tumor stage, mitotic count, radiation therapy,
chromosome 3/6p/8q status, etc., to validate the prognostic capacity and the independence
of the seven-gene signature among other clinic-pathologic characteristics (Table 4). In
the overall survival-based Cox regression model of the training cohort, both univariate
and multivariate results suggested that the seven-gene signature was a powerful player
(HR =5.22, 95% CI = 2.59-10.5, p-value = 3.99 x 10, and HR = 68.6 95% CI = 3.36-1400,
p-value = 0.00598, respectively). Consistent with those in the training cohort, either in
univariate or multivariate analysis, the seven-gene signature showed excellent ability, in an
independent validation cohort, to predict metastasis-free survival (p-value <= 0.0388). We
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also utilized progression-free survival data in the training cohort to perform the Cox analy-
sis, and found that the seven-gene signature had the ability to predict the outcomes not only
in univariate, but also in multivariate models (p-value <= 0.0334). These pieces of evidence
indicate that the seven-gene signature was an independent and prognostic variable.

Table 4. Univariate analysis and multivariate analysis of the correlation of gene-signature risk score with outcomes among

uveal melanoma patients in two cohorts.

Univariate Cox Analysis

Multivariate Cox Analysis

Variable
Coef HR (95% CI) z p-Value Coef HR (95% CI) z p-Value
TCGA-UVM (overall survival) *
age 0.0447 (1‘011'9509) 2.35 0.0186 0.101 1.11 (0.976-1.25) 1.57 0.115
gender (male vs. female) 0433 o er}ié 6) 0.984 0.325
tumor stage (stage III vs. stage II) 0.336 © 5516.:13 52) 0.713 0.476 —3.06 0.047 (0.00199-1.11) -1.9 0.0579
tumor stage (stage IV vs. stage II) 4.37 79.3 (7.55-834) 3.64 0.000269 NA NA NA NA
extrascleral extension (yes vs. no) 154 464 (1.5-144) 266 0.00774 —a25 M0E §3>.<9§5<8) ~0343 0732
tumor diameter 0.155 a 011'_11735) 2.12 0.0344 0.723 2.06 (1.11-3.83) 2.29 0.0221
tumor thickness o g o 2 133 0.183
radiation therapy (yes vs. no) 1.68 a 0593’25 6.3) 2.07 0.0389 7.79 10,%;4_1103(;1 ‘i41>8 1) 0.617 0.537
ethnicity (hispanic or latino vs. not -~ 1.09 x 1077 -~
hispanic or latino) 16 (0-Inf) 0.00205 0.998
tissue or organ of origin diagnosis -~ 0.751 -~
(choroid vs. not choroid) 0.286 (0.254-2.22) 0517 0-605
mitotic count —0.0119 © 9%19_81805) —0.394 0.693
0.156
chromosome 3 copy number —1.86 (0.0574-0.422) —3.65 0.00026 2.76 15.9 (0.894-281) 1.88 0.0597
chromosome 6p copy number 106 1%3_%8687) ~3.04 0.00237 0874 0417(0.0559-3.11)  —0.852 0.394
chromosome 8q copy number 0.516 1.67 (1.27-2.2) 3.68 0.000235 —0.88 0.415 (0.126-1.37) —1.44 0.149
risk score 1.65 @ 559312 0.5) 4.61 3.99 x 10~° 4.23 68.6 (3.36-1400) 2.75 0.00598
TCGA-UVM (progression-free
survival) #
age 0.0271 (0.9916(331.06) 17 0.0886
gender (male vs. female) —0.139 © 4%;_71 8) —0.376 0.707
tumor stage (stage III vs. stage II) 0.381 © 6615%3 2) 0.946 0.344 —0.959 0.383 (0.094-1.56) —1.34 0.181
tumor stage (stage IV vs. stage II) 3.31 27.4 (5.06-149) 3.84 0.000124 2.87 17.6 (0.677-455) 1.73 0.0845
extrascleral extension (yes vs. no) 145 a 5‘;'_2161 5 285 0.0044 0682 0506 (0.00917-27.9)  —0333 0.739
tumor diameter 0.113 © 99191_21 25) 1.94 0.0527
tumor thickness 0.008%9 (o o 6 0.119 0.905
radiation therapy (yes vs. no) 0.0846 (0.112'2%.333 0.0814 0.935
ethnicity (hispanic or latino vs. not _ 3.98 x 10~ _
hispanic or latino) 7 (0-Inf) 0.00217 0-998
tissue or organ of origin diagnosis 1.09
choroid vs. not choroi ’ 0.377-3.16 ’ ’
horoid horoid 0.0872 0.161 0.872
mitotic count 0.0545 1.06 (1.01-1.1) 2.64 0.00829 0.0575 1.06 (0.976-1.15) 1.37 0.17
chromosome 3 copy number —1.86 (0.06%115)(?.386) —4.02 5.88 X 10> -13 0.272 (0.0293-2.52) -1.15 0.252
chromosome 6p copy number —0.628 (0.3%5—?)‘.}888) —2.42 0.0155 0.709 2.03 (0.611-6.75) 1.16 0.247
chromosome 8q copy number 0.521 a 311'_62816) 4.08 4.56 X 10~° 0.146 1.16 (0.546-2.45) 0.381 0.703
risk score 0.933 254 425 213 x 10~° 0.703 2.02 (0.486-8.39) 0.967 0.0334

(1.65-3.91)
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Table 4. Cont.
Variable Univariate Cox Analysis Multivariate Cox Analysis
Coef HR (95% CI) z p-Value Coef HR (95% CI) z p-Value
GSE22138 (metastasis-free survival) &
1.02
age 0.0213 (0.995-1.05) 1.59 0.113
gender (male vs. female) 0.353 © 7114?2 84) 1 0.316
tumor eye side (left vs. right) —0.193 © 2232_% 6) —0.57 0.569
. 0.723
tumor location (on equator vs. others) —0.325 (0.357-1.46) —0.903 0.366
tumor diameter ~0.0165 (0.8%39% 05) ~0336 0737
. 1.12
tumor thickness 0.116 (0.951-1.33) 1.37 0.171
tumor cell type (epithelioid vs. mixed) ~ 0.753 (0.954372) 185 0.0649
retinal detachment (yes vs. no) 1.06 a 2%1‘—86768) 2.45 0.0142 0.857 2.36 (0.981-5.66) 1.92 0.0553
}fxtrascleral extensiozl (yes vs. no) 0.563 06 38261 62) 1.14 0.253
chromosome 3 status (monosomy vs. 5.29
disomy) 1.67 (1.82-15.3) 3.07 0.00217 1.24 3.45 (1.04-11.5) 2.02 0.0435
risk score 0.646 a 317921 78) 3.37 0.000745 0.523 1.69 (1.03-2.77) 2.07 0.0388

* Multivariate Cox analysis: Concordance = 0.936 (se = 0.049), Likelihood ratio test = 38.13 on 9 df, p =2 x 103, Wald test = 11.72 on 9 df,
p = 0.2, Score (logrank) test =29.7on 9 df, p =5 x 10~%; # Multivariate Cox analysis: Concordance = 0.815 (se = 0.067), Likelihood ratio
test = 24.64 on 8 df, p = 0.002, Wald test = 19.68 on 8 df, p = 0.01, Score (logrank) test =47.01 on 8 df, p =2 x 10~7; & Multivariate Cox

analysis: Concordance = 0.764
(logrank) test = 19.56 on 3 df, p

(se = 0.05), Likelihood ratio test =20.65on 3 df, p =1 x 104, Wald test = 17.24 on 3 df, p=6x 104, Score
=2 x 107%; The bold p-value indicates statistical significance.

We conducted ROC analysis to evaluate the seven-gene signature performance in
predicting UM outcomes. As displayed in Figure 5A, the risk score AUC in the TCGA-UVM
cohort ranked the highest among other clinical characteristics, which was 0.874. The AUC
of the seven-gene signature in the TCGA-UVM cohort predicting progression-free survival
reached 0.766, which was the leading variable compared to other factors (Figure 5B). In
the GSE22138 cohort, the AUC of the gene signature was 0.732, which was the best and
superior to the chromosome 3 status (AUC = 0.715) (Figure 5C).

3.4. Identification of the Correlation between Seven-Gene Signature and UM Common Mutations

The chromosome copy number aberrations of each UM patient in the TCGA-UVM
cohort were downloaded from Robertson’s public research (Table S2) [21]. The Pearson test
was conducted to evaluate the correlation between the gene signature and the chromosome
copy number aberrations. The results exhibited that, in the TCGA-UVM, the gene signature
was negatively correlated with chromosome 3 copy number (R = —0.73, p-value = 1.0 X
10~y and 6p (R = —0.55, p-value = 1.1 x 10~7), and positively correlated with chromosome
8q copy number (R = 0.59, p-value = 8.6 x 10~%) (Figure 6A-C). As in TCGA-UVM,
the chromosome 3 copy number in GSE22138 had a negative correlation with risk score
(R = —0.56, p-value = 7.0 x 10~°) (Figure 6D).
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Figure 5. ROC curves of the seven-gene signature. The ROC curves were constructed by risk score,
age, gender, T classification, M classification, tumor stage, etc. to show the prognostic ability of each
variable. The ROC analyses were conducted in TCGA-UVM cohort based on overall survival and
progression-free survival (A,B), and in GSE22138 cohort based on metastasis-free survival (C). ROC:
Receiver operating characteristic; AUC: area under the ROC curve. TCGA: The Cancer Genome
Atlas; TCGA-UVM: A project ID in The Cancer Genome Atlas database.
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Figure 6. Correlations between the gene signature and the chromosome aberrations in UM (A-D).
The blue line in each graph fits a linear model that indicates the proportional trend of copy number
and the risk score. The grey shading around the blue line indicates the 95% confidence interval. The
correlation examination was conducted by the Pearson coefficient.

3.5. Identification of the Autophagy Correlation with the Seven-Gene Signature

Moreover, the Pearson correlation coefficient was used to evaluate the relation-
ship between autophagy-related genes and the seven-gene signature risk score. Of the
490 autophagy-related genes, 256 (52.24%) were significantly correlated with risk scores,
of which 197 were positively correlated and 59 were negatively correlated (Table S5). As
shown in Figure 7, HTR2B, LAMTOR?2, BAX, HMOX1, FKBP1A, SPHK1, DAP, ITGAG®,
BNIP1, and ATP6V0B are the top ten autophagy-related genes that positively corrected
with the risk score, while MTMR14, PRKCD, RAF1, ST13, PIK3R4, GATA4, DLC1, RAB7A,
TOMM?7, and SNCA are the leading ten that have negative relationships with the seven-
gene signature risk score.
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Figure 7. Correlations between the gene signature and the autophagy-related genes in UM. The blue line in each graph

(A,B) fits a linear model that indicates the proportional trend of the expression level of each gene and the risk score. The

grey shading around the blue line indicates a 95% confidence interval. Pearson coefficients examine the correlation test.

Only top ten positive and negative correlations are plotted. UM: uveal melanoma.

3.6. Gene Set Enrichment Analysis

In view of the negative correlation between risk score and UM prognosis, we con-
ducted GSEA between high- and low-risk groups. The results displayed that all enriched
gene sets were in the high-risk group, mainly involved in mechanisms related to IL-
6/JAK/STAT3 signaling, notch signaling, glycolysis, transplant rejection, reactive oxygen
species, IL2, estrogen, complement system, apoptosis, and epithelial-mesenchymal transi-
tion (Figure 8 and Table S6).
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Figure 8. Gene set enrichment analysis performed using HALLMARK collection. INES| > 1, NOM p < 0.05, and FDR
q < 0.25 are set as the significance threshold.

3.7. Identification of the Relationship between the Seven-Gene Signature and 22 TICs

To better study how the seven-gene signature and the immune microenvironment
interact, the CIBERSORT algorithm was applied, and comprehensive comparisons with
the risk score were made. The relative content distribution of 22 TICs in the TCGA-UVM
cohort, and the correlation between 22 TICs are shown in Figure 9.

Comprehensive analysis of the results of difference (Figure 10A) and correlation
analyses (Figure 10B and Table S7), seven TICs in the overlapping part were shown to have
a strong association with the gene signature (Figure 10C). Specifically, T cells CD4 memory-
activated, T cells CD8, Macrophages M1, Dendritic cells resting, and T cells follicular helper
were found to have positive correlations with the gene signature, and Monocytes and Mast
cells resting showed negative correlations with it.
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Figure 9. TIC distribution map and correlation analysis of UMs in the training cohort. (A) The bar
graph shows the relative content distribution of 22 TICs of UMs in the training cohort. Columns
represent UM cases. (B) The heatmap shows the correlation between 22 TICs. The color and number
in each box indicate the coefficient between the two TICs. The coefficient of X-shaped coverage is not
significant. Correlation test is conducted by the Pearson coefficient. p-value < 0.05 is the significance
threshold. UM: uveal melanoma; TIC: tumor-infiltrating immune cell.
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Figure 10. Relationship between TICs and seven-gene signature risk score. (A) The Violin plot shows the ratio differentiation

of each of 22 TICs between high- and low-risk groups. Wilcoxon rank-sum was applied for the significance test. (B) The

correlations between the TICs and seven-gene signature risk score (only correlations with significate were plotted). The blue

line in each graph fits a linear model that indicates the proportional trend of the TICs and the risk score. The grey shading

around the blue line indicates the 95% confidence interval. Correlation test is conducted by the Spearman coefficient.

(C) The Venn diagram exhibits that the seven TICs have a strong correlation with the risk score. This strong correlation

is co-determined by the results of the violin and scatters plots. p-value < 0.05 is the significance threshold. UM: uveal

melanoma; TIC: tumor-infiltrating immune cell; * p-value < 0.05.
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Furthermore, to examine each TIC’s prognostic capacity, Kaplan-Meier and univariate
Cox analyses were conducted. As shown in Figure 11, Kaplan-Meier analysis (Figure 11A
and Table S8) indicated that Mast cells activated, T cells CD4 memory activated, Mast cells
resting, and T cells CD8 can predict the survival of UM, while univariate Cox regression
model (Figure 11B) highlighted that Mast cells resting and Mast cells activated impacted
the prognosis. Based on the survival analysis listed above, we can see that Mast cells resting
and Mast cells activated had a potential prognosis capacity in UM cases.
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% 0.75 % 0.75 T cells CD4 memory resting 0965 0.889-1046 -0.868 0.385 |
g ] | . }% 'go %6 B cells naive 0.967 0.881-1.061 -0.714 0475 |
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0 2 4 6 0 2 4 6 NK cells resting 0997 0.908-1.096 -0.057 0.954 l
Time in years Time in years B cells memory 1019  0933-1112 0413 0680 |
T cells foliicular helper 1021  0934-1116 0459  0.646 f
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0.00 ' ' 0.00 Macrophages M1 1.424 0.980 —-2.068 1.855 0.064
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Figure 11. Evaluation of the prognostic ability of 22 TICs. (A) Kaplan—Meier survival curves of TICs that own prognosis
value in UM. p-value < 0.05 in the log-rank test are set as the significant threshold. (B) Univariate Cox regression model
built for 22 TICs based on overall survival. Asterix shown in the B plot indicate p-value is statistically significant.

Taking together, the above findings revealed that Mast cells resting not only have a
significant correlation with the risk score, but also have prognostic value in UM. Therefore,
the significant infiltration with Mast cells resting may play a vital role in contributing to
the prognostic value of the seven-gene signature in UM.

4. Discussion

In this study, we built a ferroptosis-related seven-gene signature for UM prognosis
by comprehensively mining TCGA and GEO databases. After discovering the potential
ferroptosis-related prognosis genes using Kaplan—-Meier and univariate Cox analyses in
the TCGA-UVM cohort, the LASSO Cox regression model was applied, and a seven-gene
signature was generated which was related to the outcome of UM. By applying the seven-
gene signature in training and validation cohorts, pronounced statistical differences were
seen in Cox regression models, ROC curves, and Kaplan—-Meier analysis between patients
in terms of high- and low-risk score, demonstrating the effectiveness and broadness of
the gene signature in predicting UM prognosis. The seven-gene signature was found
in the following correlation analysis, correlated with the common mutations of UM and
most autophagy-related genes. The GSEA and analysis of immune infiltration exhibited
critical pathways that relate to the signature, as well as the vital role that Mast cells resting
may play in backing the seven-gene signature influencing UM outcome. Compared with
previous studies on UM’s prognostic gene signature, we are the first group to utilize
ferroptosis-related genes for training and validated in an independent cohort. This work
aimed to present future UM research with more information.
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Ferroptosis is a new form of regulatory cell death, which is caused by the excessive
accumulation of iron-dependent reactive oxygen species and lipid peroxides. It is character-
ized by increased mitochondrial membrane density and cell volume contraction, which is
different from other morphological, biochemical, and genetically regulated cell death [7,44].
Recent research has shown that ferroptosis is closely associated with the pathophysiological
process of many diseases, such as tumors, neurological disorders, ischemia-reperfusion
injury, kidney injury, and blood diseases [7]. The fast-growing studies of ferroptosis in
cancer have boosted the perspective of its usage in cancer therapeutics [45]. Ferroptosis is
a newly introduced phenomenon in melanoma, and research is increasing to discover its
role in melanoma [46]. Zhang and colleagues showed that the role of ferroptosis regulation
by miR-9 in melanoma, and the knocking-down of miR-9, induce ferroptosis in melanoma
cells [47]. miR-137 negatively affects necroptosis in melanoma cells and the inactivation of
miR-137 enhances the antitumor activity of erastin by elevating ferroptosis [48]. The mito-
chondrial complex I inhibitor is a critical target in the induction of ferroptosis in melanoma
cells [49]. A recent study performed by Ubellacker et al. exhibited that Oleic acid kept
melanoma cells away from ferroptosis in an Acsl3-dependent manner and increased their
ability to form metastatic tumors [13]. They also found that increased exposure to the lym-
phatic environment protects melanoma cells from ferroptosis and improves their capacity
to survive during subsequent metastasis through the blood [13]. These pieces of evidence
have highlighted the potential importance of ferroptosis in UM therapeutics, but the roles of
ferroptosis in tumorigenesis and development remain unclear. Many studies have recently
begun to mine the prognostic gene signature related to ferroptosis in tumors from public
databases. For example, Liu confirmed that the ferroptosis-related nineteen-gene signature
they discovered could predict glioma cell death and glioma patient progression [14]. Liang
et al. found a novel ferroptosis-related gene signature, which can predict the prognosis of
hepatocellular carcinoma [15]. However, there is still no explanation of whether a prognos-
tic gene signature exists in UM. In order to fill this blank, we conducted in-depth research
and discovered a ferroptosis-related seven-gene signature that is strongly linked to the
prognosis of UM.

The ferroptosis-related seven-gene signature that we discovered showed strong prog-
nostic prediction capabilities in the training cohort and the independent validation co-
hort after being examined by various statistical methods. Our signature was composed
of seven genes, which were ALOX12, CD44, MAP1LC3C, STEAP3, HMOX1, ITGA6
and AIFM2/FSP1, respectively. In the signature model, STEAP3, HMOX1, ITGA6, and
AIFM2/FSP1 were unfavorable genes for UM prognosis, while other genes showed a
protective effect on the outcome. Lipid peroxidation plays a crucial role in ferroptosis
execution. ALOX serves as one of the major enzymes for the oxygenation of arachidonic
acid, an essential PUFA, finally triggering lipid peroxidation [38,50]. ACSLA4 is a key protein
in ferroptosis. ALOX12 was shown to be related to ferroptosis independently of ACSL4. In-
activation of ALOX12 can reduce p53-mediated ferroptosis, caused by active oxygen stress,
and eliminate the dependence of p53 on tumor growth [38,50]. ALOX12 plays an important
role in inflammation and oxidation, while abnormal DNA methylation and genetic variants
of ALOX12 are associated with various human diseases and pathological phenotypes,
including cancer [50]. MAP1LC3C is involved in the KEGG pathway of ferroptosis and
was found to be downregulated in colorectal cancer [51]. AIFM2, also known as FSP1 or
PRG3, has recently been demonstrated as an endogenous ferroptosis suppressor [42,43,52].
AIFM2 /FSP1 blocks erastin-, sorafenib-, and RSL3-induced ferroptotic cancer cell death
through a mechanism independent of ubiquinol, the reduced and active antioxidant form
of coenzyme Q10 [42,43,52]. ITGAG6 is a potential clinical prognostic marker for gallbladder
carcinoma [53]. Public, database-based research revealed that ITGA6 expression is an inde-
pendent prognostic factor of survival in breast cancer patients [54]. Besides this, Brooks et al.
reported that ITGA®6 is a hypoxia-inducible factor-dependent target gene, and high ITGA6
expression enhances invasion and tumor-initiating cell activities in models of metastatic
breast cancer [54]. ALOX12 and MAP1LC3C, which promote ferroptosis [27,38—41], are
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downregulated in the high-risk group based on our findings; however, AIFM2/FSP1 and
ITGA6, which inhibit ferroptosis, are upregulated in the high-risk population, suggesting
that ferroptosis might be suppressed in patients with low prognosis. Cancer cells with
stem cell and EMT properties are resistant to multiple therapies, leading to poor prognosis.
Interestingly, these cancer cells are highly sensitive to ferroptosis [55-57]. CD44 expres-
sion suppressed ferroptosis in cancer cells in an OTUB1-dependent manner [37]. Notably,
overexpression of the cancer-stem-cell-marker CD44 enhanced the stability of SLC7A11 by
promoting the interaction between SLC7A11 and OTUBI; the depletion of CD44 partially
abrogated this interaction [37]. A previous study reported that soluble CD44 inhibits the
growth of melanoma tumors by blocking cell surface CD44 binding to hyaluronic acid [58].
CD44 is a well-known stem cell marker and is known to be activated in malignant tu-
mors [59]. Our study found that CD44 has a protective effect on the prognosis of UM,
which may not be directly administered by CD44 but is determined by genes that are
upstream or downstream of CD44; there is still no research revealing the impact of CD44 on
UM prognosis, which makes our findings interesting and worth further research. STEAP3
was reported to play a role in ferroptosis by mediating iron metabolism [7,45]. STEAP3 is a
positive regulator of Mytl and, together, STEAP3 and Myt1 cause a pronounced effect on
the cell cycle, delaying the G2-M progression [60]. However, it belongs to an unfavorable
factor in our study for UM prognosis. Since ferroptosis might not be activated in tumors,
STEAP3 might affect poor prognosis independently of ferroptosis [45]. The role of HMOX1
is largely controversial. Previously, it was well known as an antioxidant enzyme, but sev-
eral studies suggest that HMOX1 promotes ferroptosis [29,30,61]. HMOX1 is anti-cancer,
anti-inflammatory, anti-apoptotic, anti-proliferative, and antioxidant [30]. The expression
of HMOX1 is upregulated in different types of cancer, but its role in cancer or UM has not
been elucidated [30].

Several studies have confirmed that chromosome aberrations and gene mutations
in UM patients are very closely linked to prognosis [21,62—69]. The chromosome 3 loss
(Monosomy 3) is associated with an increased metastasis possibility and bad outcomes [62].
Besides chromosome 3, the increased chromosome 8q and lack of 6p gain are found to
be associated with poor prognosis [21,62—-69]. Given the backgrounds listed above, the
Pearson method was performed to examine the relationships between chromosome 3, 8q,
and 6p and the signature. The results showed that the signature was negatively correlated
with chromosome 3 and 6p, and positively correlated with 8q (Figure 6). These pieces of
evidence further identified the importance of the signature in predicting UM outcomes.

Autophagy is the natural, regulated mechanism of the cell, which removes unnec-
essary or dysfunctional components. It allows the orderly degradation and recycling of
cellular components [70]. The original study shows that ferroptosis is morphologically,
biochemically, and genetically distinct from autophagy and other types of cell death [71].
However, recent studies demonstrate that the activation of ferroptosis is indeed dependent
on the induction of autophagy [71]. Additionally, accumulating studies have revealed
crosstalk between autophagy and ferroptosis at the molecular level [22]. Autophagy is a
vital cellular process that maintains cellular homeostasis through the recycling of intra-
cellular constituents. Previous studies on the role of autophagy in cancer have caused a
debate as to whether autophagy is cancer-promoting or anti-cancer [72]. Autophagy is
commonly upregulated in UMs and may be associated with hypoxia and intense pigmenta-
tion [73]. In the advanced stage of malignant tumors, melanoma cells hijack the autophagy
mechanism to alleviate drug-induced and metabolic stress in the tumor microenvironment,
thereby enhancing resistance to multiple therapies and tumor cell survival and progres-
sion [72]. In this research, we found that the risk score correlated with more than half of
the autophagy-related genes (52.24%, 256 /490), which elaborated the relation between
the ferroptosis-related seven-gene signature and UM, and, moreover, introduced further
capacity and more information for autophagy-targeted strategies.

The GSEA in HALLMARK collection found that gene sets regarding IL-6/JAK/STAT3
signaling, notch signaling, and glycolysis were most enriched. The IL-6/JAK/STAT3
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pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation
is generally associated with a poor clinical prognosis. In the tumor microenvironment,
IL-6/JAK/STATS3 signaling acts to drive the proliferation, survival, invasiveness, and
metastasis of tumor cells, while strongly suppressing the antitumor immune response [74].
IL-6 sends signals directly to melanoma cells through the JAK/STAT3 pathway, which
leads to increased tumor production (immunosuppressive cytokines) [75]. Notch signaling
denotes the Notch intracellular domain’s cleavage, its translocation to the nucleus, and
subsequent activation of target gene transcription. The involvement of Notch signaling in
several cancers is well known [76]. Notch signaling is a complex pathway that can regulate
multiple aspects of the biology of melanoma and many other cancers. Not only can Notch
signaling in melanoma cells interact with additional pathways involved in tumorigenesis,
it can influence the fate of melanoma tumors through interaction with supporting stromal
cells [77,78]. Changes in energy metabolism are the biochemical fingerprints of cancer cells
and represent one of the “hallmarks of cancer”. This metabolic phenotype is characterized
by preferentially relying on glycolysis to produce energy in an oxygen-independent man-
ner [79,80]. These GSEA results gave a detailed description of the ways and methods by
which the seven-gene signature participates in UM’s progress, which may benefit future
precision medicine research.

Moreover, the CIBERSORT algorithm-based TICs analysis discovered that Mast cell
resting has a strong prognostic capacity in UM, and a significant correlation with the
ferroptosis-related seven-gene signature risk score, revealing that the activities of Mast cells
resting may act as a key player affecting the seven-gene signature prognostic ability. Mast
cells can be used as an essential innate immune sentinel. They can enhance the immune
response mediated by T cells, but, in other cases, also show the ability to suppress the
immune response [81]. Consistent with their functional plasticity, the number of mast
cells in TME is associated with cancer progression and improved patient survival [81].
Mast cells are prototype innate cells that respond to various stimuli, including signals and
components from the human microbiota, so they can be used as modulators of suppressive
immune responses to initiate tumor immune control [82]. Mast cells are an essential
source of CXCL10, and CXCL10 plays a vital role in melanoma’s immune defense. Thus,
the mast cells are a promising potential choice for future melanoma treatment strategy
development [82]. Based on our research, Mast cells resting can target the signature for the
UM treatment means, and effort should be made to investigate these immune cells further.

5. Conclusions

Our study found a novel, robust ferroptosis-related seven-gene signature for UM. The
signature is strongly associated with the prognosis of UM and can precisely detect UM
risk level. Remarkably, we validated the reliability and applicability of this signature by
applying it to an independent cohort and identified the vital role that Mast cells resting
might interplay in the new gene signature’s prognostic capacity, which could advance the
discovery of new treatments for UM.
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