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1. Abstrat 

1.1 Deutsch 

Einleitung: Das Nebenschilddrüsenhormon (PTH) und der Fibroblasten-

Wachstumsfaktor 23 (FGF23) sind Regulatoren des Vitamin-D-Stoffwechsels und der 

renalen Phosphatausscheidung. Bei chronischer Nierenerkrankung (CKD) steigen die 

Konzentrationen von zirkulierendem FGF23 und PTH mit abnehmender Nierenfunktion 

progressiv an. Die Oxidation von PTH an 2 Methioninresten (Positionen 8 und 18) 

verursacht einen Verlust der biologischen Funktion. Der Einfluss von nicht-oxidiertem 

PTH (n-oxPTH) und oxidiertem PTH (oxPTH) auf die FGF23-Synthese und wie die n-

oxPTH- und oxPTH-Konzentrationen durch CKD beeinflusst werden, ist jedoch noch 

unbekannt.  

Methoden: Wir analysierten die Auswirkungen von PTH1-34 und seinen oxidativen 

Derivaten auf die FGF23-Genexpression in osteoblastenähnlichen UMR106-Zellen. 

Darüber hinaus wurde die Beziehung zwischen n-oxPTH bzw. oxPTH mit FGF23 bei 620 

Kindern mit CKD untersucht.  

Ergebnisse: N-oxPTH stimulierte die FGF23-mRNA-Synthese in vitro, während die 

Oxidation von PTH insbesondere an Met8 zu einer deutlich schwächeren Stimulation von 

FGF23 führte. Wenn beide Methioninreste (Positionen 8 und 18) oxidiert wurden, war der 

Effekt noch stärker. In der klinischen Studie ist n-oxPTH, aber nicht OxPTH, positiv und 

unabhängig von bekannten Confoundern mit FGF23 assoziiert. Mit verschlechterneder 

Nierenfunktion stiegen zudem intaktes PTH (iPTH) und oxPTH signifikant an, während 

das biologisch aktieve n-oxPTH nur mäßig zunahm.  

Fazit: N-oxPTH, aber nicht oxPTH, stimuliert die FGF23-Genexpression. Der Anstieg von 

PTH bei abnehmender GFR ist hauptsächlich auf eine Erhöhung von oxPTH in 

fortgeschritteneren Stadien der CKD zurückzuführen. 
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1.2 English 

Introduction: Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are 

regulators of vitamin D metabolism and renal phosphate excretion. In chronic kidney 

disease (CKD), the concentrations of circulating FGF23 and PTH increase progressively 

with decreasing renal function. The oxidation of PTH at 2 methionine residues (positions 

8 and 18) causes a loss of biological function. However, the influence of non-oxidized 

PTH (n-oxPTH) and oxidized PTH (oxPTH) on FGF23 synthesis and how n-oxPTH and 

oxPTH concentrations are affected by CKD is still unknown. 

Methods: We analyzed the effects of PTH1-34 and its oxidative derivatives on FGF23 

gene expression in osteoblast-like UMR106 cells. Furthermore, we investigated the 

relationship between n-oxPTH and oxPTH with FGF23 in 620 children with CKD. 

Results: N-oxPTH stimulated the FGF23 mRNA synthesis in vitro, whereas the oxidation 

of PTH especially at Met8 led to a significantly weaker stimulation of FGF23. When both 

methionine residues (positions 8 and 18) were oxidized, the effect was even stronger. In 

the clinical study, n-oxPTH, but not oxPTH, is positively and independently of known 

confounders associated with FGF23. In addition, as renal function deteriorated, intact 

PTH (iPTH) and oxPTH increased significantly, while n-oxPTH increased only moderately. 

Conclusion: Non-oxPTH, but not oxPTH, stimulates FGF23 gene expression. The rise 

in PTH with a decrease in GFR is mainly due to an elevation of oxPTH in more advanced 

stages of CKD. 
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2. Introduction 

Fibroblast growth factor 23 (FGF23), a 32 kDa glycoprotein, is mainly produced by 

osteoblasts and osteocytes in bone under physiological conditions.(1) It plays a central 

role in the regulation of phosphate homeostasis by the coordinated modulation of kidney 

phosphate handling, parathyroid hormone (PTH) secretion and vitamin D metabolism.(2) 

In the kidney, FGF23 controls reabsorption of phosphate by inducing the internalization 

of sodium–phosphate cotransporters (NaPi-IIa and NaPi-IIc) from the luminal side into 

proximal nephron segments. This reduction in the membrane expression of NaPi 

transporters restricts the kidney's phosphate resorption capacity and stimulates 

phosphate excretion.(2) FGF23 also downregulates the 1α-hydroxylase enzyme to inhibit 

the activation of 25-hydroxycholecalciferol into 1,25-dihydroxycholecalciferol and 

upregulates 24-hydroxylase to promote vitamin D catabolism. The resulting decrease in 

circulating active vitamin D levels limits gastrointestinal absorption of phosphate, which is 

an integral component of the phosphate lowering effects of FGF23.(2) Moreover, the 

secretion of PTH in the parathyroid gland is also under the control of FGF23 and PTH 

releases phosphate from the bone, so this is another integral part of the phosphate-

lowering action of FGF23.(2) 

In chronic kidney disease (CKD), with a progressive decrease in glomerular filtration 

rate (GFR), an increase in FGF23 plasma concentration occurs very early in the disease, 

even before the appearance of significant hyperparathyroidism (measured by the 

currently used intact PTH assays) and hyperphosphatemia. (3, 4) Whether elevated 

FGF23 levels measured at a single time or slowly increasing FGF23 trajectories by serial 

measurements are strongly associated with an increased risk of mortality in patients with 

CKD. (5) 

Known regulators of FGF23 production include PTH(6), 1,25(OH)2D3(7), 

inflammation(8), the iron status(8), dietary phosphate(9), calcium(10), or TGFβ2(11). 

Most previous studies have shown a very close correlation between PTH (measured by 

conventional intact PTH assays) and FGF23 serum levels. It is believed that PTH and 

FGF23 mutually regulate each other in a negative feedback loop in which FGF23 
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suppresses PTH synthesis and PTH in turn stimulates FGF23 production.(6) The 

prevailing assumption is that the binding of FGF23 to FGFR1c and αKlotho, which are 

co- expressed on parathyroid cells, mediated the suppression of PTH by FGF23.(2) It is 

noteworthy that concentrations of both PTH and FGF23 are high in CKD, as 

downregulation of the FGF23 receptor complex Klotho-FGFR1 leads to a resistance of 

the parathyroid to FGF23.(2) Secondary hyperparathyroidism (SHP) is the main factor 

behind the high levels of FGF23 in CKD.(6) In vivo, parathyroidectomy both prevented 

and corrected elevated FGF23 serum levels in rats with short-term adenine-induced 

kidney failure.(6) In addition, in vitro PTH elevated FGF23 mRNA levels in osteoblast-like 

UMR106 cells of the rat via both the PKA and Wnt pathways.(6) Later, Meir et al.(12) 

demonstrated that the effect of PTH to increase FGF23 transcription is mediated by the 

nuclear receptor-associated protein-1 (Nurr1) in vitro and in vivo. 

The PTH molecule, a 84-amino acids containing peptide hormone, is synthesized and 

secreted by the main cells of the parathyroid gland. There are two methionine amino acids 

at positions 8 and 18, which can be oxidized in vivo, either individually or together (13-

15). (Figure 1A) The receptor binding site is also located within this region of the PTH 

molecule. Their oxidation can lead to reduced binding to the PTH receptor. A number of 

studies have clearly shown that the PTH oxidation is critical for the biologic activity of PTH. 

In our previous study, we have described the presence of a varying level of oxidized PTH 

(oxPTH) in the circulation of patients after kidney transplantation, during dialysis and with 

CKD.(13) The relationship between non-oxidized PTH (n-oxPTH) and oxPTH is highly 

variable and cannot currently be predicted in individual patients.(13-15)  

So far, three generations of PTH assays have been developed.(16) The second and 

third generation of PTH assays are currently in use and their clinical performance appears 

to be comparable. The first generation of PTH assays—RIAs—have major limitations and 

is no longer used. As it is a typical single antibody directed against the middle region of 

the PTH1-84 sequence and detects a mixture of mature PTH1-84, N-terminal PTH 

fragments and bio inactive C-terminal fragments. (Figure 1B) Since the biological activity 

of the hormone was discovered in the amino-terminal residues of the molecule and 
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truncated PTH fragments exist, especially in patients with CKD, leading to falsely elevated 

results in the assay, second-generation assays have been developed that allegedly 

measure "intact PTH". The second generation of PTH assays is immunoassays at two 

sites using a pair of affinity-purified antibodies specific for two different regions of the PTH 

molecule. The capture antibody was directed against the C-terminal region of the 

hormone (amino acids 26-32 or 39-84), while the detection antibody was specific for the 

N-terminal (normally against amino acids 12-24). (Figure 1B) This type of assay design 

increased the specification of the PTH assays by avoiding cross-reactivity with C-terminal 

PTH fragments. Next, the third generation of PTH assays was developed. The difference 

to the second generation PTH assays is that the detection antibody epitope has been 

further directed towards the N-terminus of PTH1-84 towards amino acids 1-4. (Figure 1B) 

There is no doubt that the development of second and third generation of PTH assays 

was a huge step towards the goal of developing PTH assays that measure bioactive PTH 

only. However, they still have major shortcomings, ignoring a second biological process 

that changed native PTH1-84 (unlike PTH fragmentation): the PTH oxidation. A new 

assay system was therefore developed to measure only n-oxPTH. The detection process 

for n-oxPTH is described in the methods section. 

In the current study, we explored the relationship of oxidized and non-oxidized PTH 

with FGF23. We analyzed the effects of PTH1-34 and its oxidative derivatives on FGF23 

gene expression in UMR106 osteoblast-like cells. In addition, we investigated the 

relationship between oxPTH, n-oxPTH, and iPTH (the sum of oxPTH and n-oxPTH) with 

FGF23 in 620 children with CKD, considering known confounders(6, 9, 10, 17), and also 

analyzed the relationship between GFR and n-oxPTH, oxPTH, iPTH, as well as FGF23. 
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Figure 1. Schematic diagram of the full-length PTH (1–84) molecule and first to third 

generation parathyroid hormone (PTH) assays target different regions of PTH 

molecule. 

(A) There are two methionine amino acids at positions 8 and 18 of PTH 1–84, which can 

be oxidized in vivo, either individually or together. Their oxidation can lead to reduced 

binding to the PTH receptor. 

(B) The first generation of PTH assays (RIAs) is a typical single antibody directed against 

the middle region of the PTH1-84 sequence. The second generation of PTH assays is 

immunoassays at two sites using a pair of affinity-purified antibodies specific for two 

different regions of the PTH molecule. The capture antibody was directed against the C-

terminal region of the hormone (amino acids 26-32 or 39-84), while the detection antibody 

was specific for the N-terminal (normally against amino acids 12-24). The difference of 

the third generation of PTH assays to the second generation PTH assays is that the 

detection antibody epitope has been further directed towards the N-terminus of PTH1-84 

towards amino acids 1-4. Methionine residues that might be oxidized are marked with red 

triangles.  

This figure is adapted from our previous publication.(16)  
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3. Materials and methods 

3.1 Patients 

We analyzed plasma samples from a prospective multi-center observational cohort study, 

in 6 to 17-year-old children participating in the Cardiovascular Comorbidity in Children 

with Chronic Kidney Disease (4C) Study, with a GFR of 10 to 60 ml/min/1.73 m² at 

baseline. (18, 19) The study protocol was approved by the ethics committee of the 

University of Heidelberg. Patients´ custodians gave their informed consent, and patient 

information and consent forms (translated into the national language) were checked and 

approved by the local Institutional Review Boards in each participating institution. 

Children’s demographic data (age, gender, BMI, height etc.) were obtained from the 

patients' medical records. A previously published GFR estimating formula for children with 

CKD was used to calculate the estimated glomerular filtration rate (eGFR): 

GFR(ml/min/1.73m2)=39.1[height(m)/Scr(mg/dl)](0.516)x[1.8/cystatin C 

(mg/L)](0.294)[30/BUN (mg/dl)](0.169)[1.099](male)[height (m)/1.4](0.188).(20) At the 

beginning of the study and every 6 months during follow-up period, blood and urine 

samples were collected, stored and analyzed in a central laboratory (Synlab, Heidelberg). 

We divided children with CKD into 7 groups according to eGFR (for details, see Figure 

6) and calculated the mean (SEM) circulating concentration of each analyte in patients 

within different eGFR intervals to observe trends in the concentrations of the analytes and 

the relationship among them with decreasing GFR. 

 

3.2 Laboratory methods 

The electrochemiluminescence immunoassay for intact PTH (ECLIA; Roche PTH, Intact 

[iPTH]) a biotinylated monoclonal antibody reactive with amino acids 26-32 and a capture 

ruthenium-complexed monoclonal antibody reactive with amino acids 55-64 was used. 

The measurements were performed on Roche Modular E 170®. (19) The second and 

third generation PTH assays currently used in clinical practice (also called intact PTH 

assays) measure both together: oxPTH and n-oxPTH (iPTH = n-oxPTH + oxPTH), which 
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cannot distinguish between oxidized and non-oxidized PTH. N-oxPTH was measured by 

a new detection process consists of two steps. In the first step, all oxidized forms of 

oxPTH at the positions Met8 and/or Met18 are removed from the sample by a specific 

affinity chromatography column (Immundiagnostik AG, Bensheim, Germany) with a 

monoclonal antihuman ox-PTH antibody immobilized on Sepharose. These mAbs have 

shown high specificity against all forms of human oxidised PTH in previous 

experiments(15). In the second step, the remaining n-oxPTH is measured in a 

conventional second generation PTH system (Hoffmann-La Roche, Basel, Switzerland). 

In short, the columns were centrifuged at 3000 rpm for 2 minutes to remove any PBS 

buffer from the column before 300 ml plasma sample was applied. After sealing, the 

columns were incubated and mixed end to end for 1 hour at room temperature. The 

columns were put on a sample tube and centrifuged again at 3000 rpm for 2 minutes to 

collect the eluate. The eluates were then used for analysis for nox-PTH. 

We used the following ELISAs for cFGF23, TRAP5b and sclerostin in the paediatric 4C 

study(Table 1):  cFGF-23 (Immutopics, San Clemente, CA, USA, see: 

https://www.quidel.com/sites/default/files/product/documents/PI6061001EN00.pdf); 

TRAP5b (Quidel, CA, USA, see: https://www.tecomedical.com/en/Laboratory-IVD-Kits-

Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel) ; 

sclerostin (TECOmedical, Sissach, Switzerland, see: 

https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-

parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive). 

Creatinine, albumin, calcium, phosphate, cholesterol, fasting blood glucose, HbA1c, 

1,25(OH)2D, and urinary protein were measured using standardized laboratory 

techniques. 

All samples were measured in duplicate and all assays were subject to routine quality 

control. 

 

 

 

https://www.quidel.com/sites/default/files/product/documents/PI6061001EN00.pdf
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive
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3.3 Cell culture 

Cell culture and experiments with UMR106 rat osteoblast-like cells (ATCC®, CRL-1661™) 

were conducted as described by Bär et al. recently(21). Cells were cultured under 

standard culture conditions in DMEM high-glucose medium containing 10% FBS (Gibco, 

Life Technologies) and 100 U/mL penicillin/100 μg/ml streptomycin (Gibco, Life 

Technologies). The cells were first cultured for 24 hours and then treated with or without 

the various PTH 1-34 derivatives as indicated for another 24 hours. PTH 1-34 derivatives 

include n-oxPTH, PTH oxidized at Met18 (Met18(ox)-PTH), PTH oxidized at Met8 

(Met8(ox)-PTH) as well as PTH oxidized at both methionine amino acids (Met 8 and 

Met18) (Met8, Met18(di-ox)-PTH), which were purchased from JPT Peptide Technologies 

GmbH (Volmerstraße 5 (UTZ), 12489 Berlin, Germany).  

The quality of the PTH peptides used was proven by HPLC, the HPLC analysis showed 

the purity of >95% of all peptides. FGF23 and the reference gene mRNA was quantified 

by qRT-PCR consists of three steps. In the first step, RNA was extracted with peqGOLD 

TriFast (Peqlab). In the second step, cDNA was synthesized using GoScript Reverse 

Transcription System (Promega). In the third step, qRT-PCR was performed with GoTaq 

qPCR Master Mix (Promega) (95 °C for 2 min, followed by 40 cycles of 95 °C for 10 s, 

57 °C (Fgf23, Rpl13a), 60 °C (Sost), 54 °C (Il6), 58 °C (Actb) or 55 °C (G6pd) for 30 s, 

and then 72 °C for 25 s) using following rat primers: Fgf23: 5´-

TAGAGCCTATTCAGACACTTC and 5´-CATCAGGGCACTGTAGATAG; Rpl13a: 5´-

GCACAAGACCAAAAGAGG and 5´-CGCTTTTTCTTGTCATAGGG; Sost: 5´-

ATGATGCCACAGAAATCATC and 5´-CACGTCTTTGGTGTCATAAG; IL6: 5´-

CAGAGTCATTCAGAGCAATAC and 5´-CTTTCAAGATGAGTTGGATGG; Actb: 5´-

CGCCACCAGTTCGCCAT and 5´-TACCCACCATCACACCCTGG; G6pd: 5´-

ATTGCTTGTGTGATCCTTAC and 5´-CACTTTGACCTTCTCATCAC. 
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Table 1. Intact PTH, cFGF23, sclerostin and TRAP5b assays. 

 Lower limit of 

detection/upper limit of 

detection 

Additional Assay information’s 

provided by the maufacturer 

iPTH (ECLIA; Roche PTH) 

https://www.roche.de/res/content/

9933/_pth_factsheet.pdf 

LOD: 5.50 pg/ml; 

Upper limit of detection: 

2300 pg/ml; 

LLOQ: 10.0 pg/ml 

The test only detects biologically 

intact PTH (1-84). 

cFGF-23 (Immutopics, USA) 

https://www.quidel.com/sites/defa

ult/files/product/documents/PI606

1001EN00.pdf 

LOD: 1.5 RU/mL; 

Upper limit of detection: the 

highest concentration of 

human FGF ‐ 23 

measurable without dilution 

is the value of the highest 

standard 

LLOQ: no data 

The assay measures both intact 

FGF23 and C-terminal 

fragments of FGF23. 

sclerostin (TECOmedical, 

Sissach, Switzerland) 

https://www.tecomedical.com/en/L

aboratory-IVD-Kits-

Reagents/Bone-and-Cartilage-

parameters/Bone-

metabolism/Sclerostin-TECO-

High-sensitive 

LOD: 0.009 ng/ml 

Upper limit of detection: 3 

ng/ml 

LLOQ: 0.058 ng/ml 

The Human Sclerostin HS 

Enzyme Immunoassay for the 

quantitation of Sclerostin in 

human plasma and serum is a 

two-step procedure utilizing (1) 

a microassay plate coated with 

streptavidin and a biotinylated 

goat polyclonal antibody that 

binds specifically to human 

Sclerostin, (2) a HRP-

conjugated monoclonal anti-

human Sclerostin antibody, and 

(3) a chromogenic substrate. 

TRAP5b (Quidel, CA, USA)  

https://www.tecomedical.com/en/L

aboratory-IVD-Kits-

Reagents/Bone-and-Cartilage-

parameters/Bone-

metabolism/TRAP5b-Human-

Quidel 

LOD: 0.2 U/L 

Upper limit of detection: 

15.5 U/L 

LLOQ: 2.5 U/L 

Naturally occurring, inactive 

TRAP5b fragments in the serum 

may interfere with the detection 

of TRAP5b in physiological 

samples. The Quidel® TRAP5b 

Assay avoids the influence of 

the inactive fragments by using 

two different monoclonal 

antibodies.  

LOD, the lower limit of detection; LLOQ, the lower limit of quantification. 

 

 

 

https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/Sclerostin-TECO-High-sensitive
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel
https://www.tecomedical.com/en/Laboratory-IVD-Kits-Reagents/Bone-and-Cartilage-parameters/Bone-metabolism/TRAP5b-Human-Quidel
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3.4 Statistics 

Statistical analyses were performed using SPSS, version 19 (IBM, Armonk, NY, USA) and 

p<0.05 were regarded as statistically significant.  

The one-way ANOVA test followed by Dunnett's test was applied for comparison of FGF23, 

G6PD, actin, IL6 and SOST gene expression induced by n-oxPTH- and different forms of 

ox-PTH-peptides in cultured UMR106 cells. The statistical difference in the mean value 

of the individual parameters of the three patient groups (CKD stage 1-2, stage 3 and stage 

4-5) of the paediatric 4C population was analyzed using one-way ANOVA. The values of 

the variables with non-normal distribution were ln transformed. The correlation of iPTH 

and cFGF23 with oxidized or non-oxidized PTH respectively were performed by the linear 

correlation analysis. The correlation between FGF23 and either oxPTH or n-oxPTH in the 

clinical studies were investigated by linear multivariate regression models considering 

known confounding factors for FGF23 syntheses. We used Spearman's rho to assess 

bivariate associations of CKD-MBD biomarkers, sclerostin and TRAP5b with iPTH, n-

oxPTH and oxPTH in children with CKD. 

 

4. Results 

4.1 In vitro studies 

4.1.1 Effect of n-oxPTH and oxidized PTH-derivatives on FGF23 expression in 

cultured cells. 

UMR106 osteoblast-like cells were cultured with n-oxPTH and various forms of oxidized 

PTH to determine the effect of PTH oxidation on the transcriptional regulation of FGF23. 

We performed a dose-response curve to investigate the following concentrations of n-

oxPTH and different forms of oxidized PTH in the cell culture medium: 3, 10, 30, 100 and 

300 nmol/l. (Figure 2) All investigated dosages of n-oxPTH stimulated the expression of 

FGF23 mRNA. Met18 oxPTH has a partial agonistic effect on the synthesis of FGF23 

mRNA. Neither Met8 oxPTH nor Met8, Met18 di-oxPTH led to a significant stimulation of 

FGF23 mRNA synthesis at any of the investigated dosages.  
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Figure 2. Effect of non-oxidized PTH (n-oxPTH) and different forms of oxidized PTH 

on FGF23 expression in cultured UMR106 osteoblast-like cells.   

The cells were first cultured for 24 hours and then treated with or without the addition of 

different dosages (3, 10, 30, 100 and 300 nmol/l) of the various PTH 1-34 derivatives as 

indicated for another 24 hours. FGF23 mRNA expression (relative to RPL13a) was 

measured by qRT-PCR. The experiment was repeated 7 times. All investigated dosages 

of n-oxPTH and Met18 oxPTH stimulated the expression of FGF23 mRNA. Neither Met8 

oxPTH nor Met8, Met18 di-oxPTH led to a significant stimulation of FGF23 mRNA 

synthesis at any of the treated dosages. (Dunnett's test) The x axis represents the 

concentration of PTH-peptides. The y axis represents FGF23 expression relative to 

control group. This figure is adapted from our published paper.(19) 

 

4.1.2 Effect of n-oxPTH and oxidized PTH-derivatives on G6PD, actin, IL6 and SOST 

expression in cultured cells. 

Beside the experiments on the stimulation of FGF23 gene expression by different PTH-

peptides, we also did the experiments with negative (actin and glucose-6-phosphate-

dehydrogenase) and positive (IL-6 and sclerostin,(22-25)) controls in UMR106 cells, see 

Figure 3. The expression of the negative controls (actin and glucose-6-phosphate-

dehydrogenase) was not influenced by any dose of the PTH peptides (3 and 10 nmol/L). 

However, it is of interest the positive control behaved like FGF23, non-oxidized PTH does 

stimulate IL-6. Met18(ox)-PTH was also stimulating the expression of IL-6, whereas 

Met8(ox)-PTH and Met8, Met18(di-ox)-PTH did not stimulate IL-6. Exactly the same 
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pattern was seen for the stimulation of FGF23. N-oxPTH and Met18(ox)-PTH also 

suppresses the expression of sclerostin, whereas Met8(ox)-PTH and Met8, Met18(di-ox)-

PTH did not alter the expression of sclerostin. 
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Figure 3. Effect of non-oxidized PTH (n-oxPTH) and different forms of oxidized PTH 

on G6PD, actin, IL6 and SOST expression in cultured UMR106 osteoblast-like cells.  

Cells were first grown for 24 h and then treated with or without the addition of two dosages 

(3 and 10nmol/l) of the different PTH 1-34 derivatives as indicated for additional 24 h. 

Glucose-6-phosphate-dehydrogenase (G6PD), actin, Interleukin 6 (IL6) and SOST gene 

expression (relative to RPL13a) was measured by qRT-PCR. The experiment was 

repeated 7 times. 

(a, b, c & d). Neither n-oxPTH nor different forms of oxidized PTH led to a significant 

stimulation of G6PD and actin mRNA synthesis at any of the investigated dosages 

(Dunnett's test).  

(e, f, g & h) Two dosages of n-oxPTH and Met18 oxPTH led to a significant stimulation of 

IL6 and SOST mRNA synthesis. Neither Met8, Met18 di-oxPTH nor Met8 oxPTH caused 

a significant stimulation of IL6 and SOST mRNA expression at any of the investigated 

dosages. The x axis denotes the concentration. The y axis denotes relative FGF23 

expression. This figure is adapted from our published paper.(19) 

 

4.2 Patients cohorts 

4.2.1 Testing of the time stability of the n-oxPTH assay 

We have recently shown that the affinity column can completely remove oxidized PTH(15), 

controlled by liquid chromatography-mass spectrometry (LC-MS). Figure 4 shows that n-

oxPTH values measured after our anti-oxPTH column are stable over a wide range of 

times (10 min to 120 min) on column (60 min in the standard time for the assay used in 

this study). This also rules out “column-induced oxidation” which means an oxidation of 

PTH on the column. It is of note that the rate of oxidation is lower in the healthy controls. 

The intrinsic difference in oxidation levels of PTH between healthy and CKD plasma 

specimens remains stable. 
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Figure 4. N-oxPTH independent of time on column and intrinsically different in 

healthy and CKD samples. 

Plasma of CKD patients (n=8, mean iPTH: 394.1±200.7) and healthy volunteers (n=8, 

mean iPTH: 22.9±8.4) was incubated on the anti-oxPTH column for various time intervals, 

followed by a conventional iPTH sandwich assay. Data (mean ± SD) is given in mOD in 

percentage of the values at 0 min column time. N-oxPTH values measured after our anti-

oxPTH column are stable over a wide range of times (10 min to 120 min) on column (60 

min in the standard time for the assay used in this study). Modifications adopted from our 

published paper(19). 

 

4.2.2 Patient characteristics 

A total of 620 children with CKD, 216 females (34.8%) and 404 males (65.2%) were 

enrolled in this study. The baseline characteristics are presented in Table 2. Twenty-one 

patients showed a higher than required GFR (> 60ml/min/1.73m2) after recruitment than 

during the screening visit, but were retained in the study (CKD stage 1-2).  

At study entry, mean (SD) age of patients was 12.1(3.3) years, and the mean height 

standard deviation score was -1.4(1.5). The mean estimated glomerular filtration rate 

(eGFR) was 32.8(13.3) mL/ min/1.73m2. The average plasma concentrations of oxPTH, 

n-oxPTH and iPTH were146.5 (160.8) pg/ml (n=618), 17.4(14.6) pg/ml (n=618) and 

163.5(172.3) pg/ml (n=620), respectively. We used cFGF23 data from the 4C study(26) 

which are measured only in patients with a GFR < 60 mL/min/1.73 m2; the mean 
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concentration of cFGF23 was 322.4(491.6) pg/ml(n=552).  

Table 2. Patient characteristics of children with CKD (n=620). 

 All Stages 1-2 Stages 3 Stages 4-5 P 

N 620 21 296 298  

Sex (female/male) 216 f/404 m 7 f/14 m 93 f/203 m 114 f/184 m  

Age at study entry (years) 12.1(3.3) 11.7(2.9) 12.2(3.3) 12.1(3.4) 0.691 

Height standard deviation 

score 
-1.4(1.5) -1.1(1.7) -1.1(1.5) -1.6(1.4) <0.001 

Cystatin C (mg/L) 2.8(0.9) 1.4(0.3) 2.3(0.4) 3.5(0.8) <0.001 

eGFR (mL/min/1.73 m2) 32.8(13.3) 72.6(14.3) 40.3(7.5) 22.5(4.6) <0.001 

Plasma calcium(mmol/L) 2.2(0.2) 2.2(0.3) 2.2(0.2) 2.2(0.2) 0.839 

Plasma phosphate (mmol/L) 1.5(0.4) 1.5(0.6) 1.4(0.4) 1.6(0.4) <0.001 

Sclerostin (ng/ml) 0.32(0.14) 0.31(0.14) 0.31(0.16) 0.33(0.15) 0.225 

TRAP5b (U/L) 12.7(6.5) 13.0(6.2) 11.7(5.9) 12.6(6.9) 0.587 

BAP (mcg/L) 150.0(84.8) 134.3(78.0) 146.5(77.1) 155.3(92.5) 0.315 

Plasma creatinine (mg/dl) 2.6(1.4) 0.9(0.2) 1.8(0.5) 3.6(1.4) <0.001 

OxPTH (pg/ml) 146.5(160.8) 46.1(51.3) 110.4(118.0) 190.0(188.9) <0.001 

N-oxPTH (pg/ml) 17.4(14.6) 13.8(23.2) 13.6(11.2) 21.5(15.8) <0.001 

Intact PTH (pg/ml) 163.5(172.3) 59.9(44.9) 123.5(126.7) 211.5(202.4) <0.001 

C-terminal FGF23 (pg/ml) 322.4(491.6)  204.6(321.5) 444.4(598.2) <0.001 

Data are given as mean (SD) or n. The 4C study provides cFGF23 data without giving 

reasons only for patients with GFR <60 mL/min/1.73 m2. There are 5 patients without 

GFR data. The statistical difference in the mean value of the individual parameters of the 

three patient groups (CKD stage 1-2, stage 3 and stage 4-5) of the the paediatric 4C 

population was analyzed using one-way ANOVA. The statistical difference in mean C-

terminal FGF23 between patients with stage 3 and stage 4-5 CKD was analyzed by two 

independent T-test. Patients were categorized according to CKD stages as described.(27, 

28) BAP, bone alkaline phosphatase; TRAP5b, tartrate-resistant acid phosphatase 5b. 

Modifications adopted from our published paper(19). 
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4.2.3 The correlation between cFGF23 and oxidized or non-oxidized PTH 

To translate the cell experiment findings showing that n-oxPTH stimulates the expression 

of FGF23 gene in vitro into clinical science, we investigated the relationship of FGF23 

and either n-oxPTH or oxPTH in 620 children with CKD. Linear correlation analysis 

indicated that C-terminal FGF23 plasma concentrations are significantly positively 

correlated with n-oxPTH (Figure 5, p<0.001), but not with oxPTH (p=0.0514). 

Since the secretion of FGF23 is also influenced by many other factors, we have 

considered the following confounding factors in a multivariate linear regression analysis: 

patient age, score of the height standard deviation, GFR stage, calcium, and phosphate. 

The results showed that the concentration of cFGF23 was independently associated with 

n-oxPTH (95% CI 0.011 - 0.236; p=0.0313) but not with oxPTH (95% CI -0.074 - 0.076; 

p=0.9742). (Table 3) Intact PTH – the sum of n-oxPTH and oxPTH –was also not 

correlated with C-terminal FGF23 (Table 4).  

Taken together, the linear correlation analysis between hormone concentrations (Figure 

5) as well as the multivariate linear regression analysis (Table 3) show that n-oxPTH, but 

not oxPTH, is positively and independently of known confounders associated with FGF23 

in children with CKD. 
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Table 3. Multivariate linear regression of variables associated with C-terminal 

FGF23 plasma concentrations in children with CKD. 

 

Standardized 

Beta 
T P 

95% Confidence Interval 

for B 

Contains oxPTH     

Age -0.015 -0.380 0.704 -0.023 - 0.016 

Height standard deviation 

score 
0.189 4.862 <0.001 0.066 - 0.156 

GFR stage 0.409 10.260 <0.001 0.512 - 0.754 

Calcium 0.052 1.285 0.199 -0.093 - 0.445 

Phosphate 0.184 4.588 <0.001 0.242 - 0.604 

OxPTH  0.001 0.032 0.974 -0.074 - 0.076 

Contains n-oxPTH     

Age -0.017 -0.437 0.662 -0.024 - 0.015 

Height standard deviation 

score 
0.195 5.036 <0.001 0.069 - 0.158 

GFR stage 0.384 9.426 <0.001 0.470 - 0.718 

Calcium 0.070 1.799 0.073 -0.022 - 0.498 

Phosphate 0.169 4.277 <0.001 0.211 - 0.569 

N-oxPTH 0.090 2.159 0.031 0.011 - 0.236 

GFR stage: stage 1: eGFR ≥ 90 mL/min/1.73m2; stage 2: eGFR 60-89 mL/min/1.73 m2; 

stage 3: eGFR 30-59 mL/min/1.73m2; stage 4: eGFR 15-29 mL/min/1.73 m2; stage 5: 

eGFR <15 mL/min/1.73m2. OxPTH, oxidized parathyroid hormone; n-oxPTH, non-

oxidized parathyroid hormone. Modifications adopted from our published paper(19). 
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Table 4. Multivariate linear regression of variables associated with C-terminal 

FGF23 plasma concentrations in children with CKD. 

 

Standardized 

Beta 
T P 

95% Confidence 

Interval for B 

Age -0.018 -0.470 0.638 -0.024-0.015 

Height standard deviation score 0.189 4.882 <0.001 0.066-0.155 

GFR stage 0.407 10.197 <0.001 0.508-0.750 

Calcium 0.055 1.377 0.169 -0.080-0.456 

Phosphate 0.180 4.508 <0.001 0.234-0.595 

Intact PTH 0.020 0.463 0.644 -0.061-0.099 

GFR stage: stage 1: eGFR ≥ 90 mL/min/1.73m2; stage 2: eGFR 60-89 mL/min/1.73 m2; 

stage 3: eGFR 30-59 mL/min/1.73m2; stage 4: eGFR 15-29 mL/min/1.73 m2; stage 5: 

eGFR <15 mL/min/1.73m2. Modifications adopted from our published paper(19). 

 

 

Figure 5. The correlation between cFGF23 and oxidized or non-oxidized PTH. 

C-terminal FGF23 plasma concentrations are positively correlated with n-oxPTH, but not 

oxPTH in children with CKD. Modifications adopted from our published paper(19). 

 

4.2.4 Correlation of iPTH, n-oxPTH, oxPTH, and sclerostin, TRAP5b 

In addition to analyzing the correlation of FGF23 and various PTH peptides, we also 

performed an evaluation of other circulating CKD-MBD biomarkers, sclerostin and 

TRAP5b, and their relationship to iPTH, n-oxPTH and oxPTH. The results showed that 

both were correlated with n-oxPTH and oxPTH. (Table 5) 
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Table 5. Correlation of iPTH, n-oxPTH, oxPTH, and sclerostin, TRAP5b in children 

with CKD at study entry. 

  intact PTH n-oxPTH oxPTH 

Sclerostin rs -0.102 -0.142 -0.141 

 p 0.014 0.001 0.001 

 n 588 585 590 

TRAP5b rs 0.192 0.228 0.229 

 p <0.001 <0.001 <0.001 

 n 598 595 600 

We used Spearman's rho to evaluate bivariate associations. TRAP5b, tartrate-resistant 

acid phosphatase 5b. Modifications adopted from our published paper(19). 

 

4.2.5 The correlation between intact PTH and oxidized or non-oxidized PTH 

The linear correlation analysis demonstrated a close to linear correlation between iPTH 

and oxPTH (r2 =0.9938; p < 0.0001), but a much weaker correlation between iPTH and 

n-oxPTH (r2 = 0.74; p < 0.0001; Figure 6).  

 

 

Figure 6. The correlation between intact PTH and oxidized or non-oxidized PTH. 

Intact PTH correlates very well with oxPTH but to a much weaker extent with n-oxPTH. 

 

 

 



24 

 

 

4.2.6 Plasma levels of cFGF23 and different forms of PTH according to eGFR 

In the 4C study population, with the decrease in eGFR, iPTH and oxPTH started to 

increase substantially in early stage CKD, while n-oxPTH increased only moderately in 

late stage CKD. (Figure 7) From CKD stage 1-2 to stage 4-5, iPTH increased from 59.9 

(44.9) pg/mL to 211.5 (202.4) pg/mL. The elevation of iPTH (151.6 pg/mL) is mainly due 

to an increase in oxPTH (+143.9 pg/mL), while n-oxPTH (+7.7 pg/mL) contributed only 

slightly to this iPTH increase. (table 2) 

 

 

Figure 7. Plasma levels of C-terminal FGF23, iPTH, non-oxidized and oxidized 

forms of PTH according to increments of eGFR in children with CKD. 

The patients were divided into 7 groups based on the eGFR and calculated the mean 

(SEM) concentrations of each analyte in circulation in patients with various intervals of 

the eGFR, respectively. 90 represents eGFR > 90 ml/min/1.73m2; 75 represents eGFR > 

75 and ≤ 90 ml/min/1.73m2; 60 represents eGFR > 60 and ≤ 75 ml/min/1.73m2 ; 45 

represents eGFR > 45 and ≤ 60 ml/min/1.73m2; 30 represents eGFR > 30 and ≤ 45 

ml/min/1.73m2; 15 represents eGFR > 15 and ≤ 30 ml/min/1.73m2; 0 represents eGFR > 

0 and ≤ 15ml/min/1.73m2. The y axis represents the average circulating concentrations 

of the individual analytes (n-oxPTH [pg/ml] in green; oxPTH [pg/ml] in blue; iPTH [pg/ml] 

in orange and FGF23 [pg/ml] in red). The concentration of n-oxPTH is 4.6 times higher, 

when eGFR is 0-15 ml/min/1.73m2 compared to an eGFR of over 90 ml/min/1.73m2 

(P=0.0043). We used cFGF23 data from the 4C study(26) measured only in patients with 

a GFR < 60 mL/min/1.73 m2. Modifications adopted from our published paper(19).  
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5. Discussion 

5.1 Summary of the important findings 

This study confirms different biological functions of non-oxidized and oxidized forms of 

PTH (Figure 8). While n-oxPTH stimulated the synthesis of FGF23 mRNA in vitro, the 

oxidation of PTH led to a significantly weaker stimulation of FGF23 mRNA synthesis, 

especially at the position Met8. In the 4C study population, FGF23 concentrations was 

only associated with n-oxPTH, but not with oxPTH, regardless of known confounding 

factors. With progressive deterioration of renal function, concentrations of FGF23 and 

iPTH increased substantially, while the biologically active n-oxPTH increased far less than 

iPTH and oxPTH. 

 

 
Figure 8. A graphical abstract of the main findings of the present study 

N-oxPTH, but not oxPTH stimulates the synthesis of FGF23 in vitro. The results of the 4C 

cohort study are consistent with this finding and show an independent association of 

FGF23 with n-oxPTH, but not with oxPTH. With decreasing GFR, n-oxPTH increases only 

moderately. The increase in PTH reported in the literature - measured by iPTH assays - 

with decreasing GFR is mainly due to an elevation of oxPTH. Modifications adopted from 

our published paper(19). 

 

5.2 N-oxPTH but not oxPTH stimulates FGF23 

The cell culture experiments showed that n-oxPTH 1-34 stimulates the synthesis of 

FGF23 mRNA much stronger than oxPTH 1-34, which is oxidized especially at the 

position Met8. These findings are in agreement with the literature. The parathyroid 

hormone/thyroid hormone-related protein receptor (PTH/PTHrP type 1 receptor, also 
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known as PTHR1) is a member of the family of G-protein coupled receptors (GPCR), 

which is primarily expressed in kidney, cartilage and bone, but is also expressed in other 

tissues including blood vessels. (29) Studies on the structure-activity relationship of 

ligands and receptor mutagenesis suggest that bioactive PTH (1-34) interacts with 

PTHR1 through a two-component mechanism. The C-terminal portion of PTH(1–34) 

interacts with the amino-terminal extracellular domain of PTHR1 (site 1), while the N-

terminal portion interacts with extracellular connecting loops and the transmembrane 

helices (site 2).(29) The interactions with site 1 provide the majority of the energetic drive 

for binding, whereas contacts with site 2 induce the conformational changes in the 

receptor that initiate intracellular signaling. 

Two methionine amino acids at positions 8 and 18 of PTH molecule can be oxidized in 

vivo and there is overwhelming evidence that n-oxPTH and oxPTH have different 

biological properties. These results are reflected in the following three lines of evidence: 

a) Initial studies focused on the binding affinity to the PTH receptor and the generation 

of the second messenger of the PTH receptor, cAMP. It has been shown that oxPTH 

has a much lower binding affinity to the PTH receptor in classical receptor binding 

assays. (13) In contrast to n-OxPTH, OxPTH does not stimulate the PTH receptor 

to generate cAMP. (13) 

b) OxPTH loses its biological effect on smooth muscle cell/vascular contraction in 

tissues such as the uterus, renal tubules, trachea, and aortic rings. Only after 

incubation with n-oxPTH, but not with oxPTH, can the stimulation of alkaline 

phosphatase activity by PTH be observed in cultured neonatal cranial bone cells of 

mice. Other studies demonstrate that only n-oxPTH -but not oxPTH- is able to 

regulate the metabolism of calcium and phosphate in vivo. For further details see 

the review of these studies in Hocher et al. (13) 

c) Our finding that the effect of oxidation at methionine 8 seems to be more critical for 

the effects of PTH on its receptor is well consistent with structural analysis of 

oxidized PTH peptides. The study by Zull et al(30) showed that the oxidation of the 

methionine residue at position 8 causes significant changes in the secondary 
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structure, whereas the oxidation of the methionine at position 18 has only a minor 

effect. Oxidation of both positions produces secondary structure changes that are 

greater than the sum of those seen upon oxidation of the individual positions.(30) 

Another study showed that oxidation at methionine 8 was more potent than at 

methionine 18 to inhibit the formation of the second messenger of PTH, cAMP(31), 

which is in line with our data and the data by Zull et al.(30). 

 

5.3 The correlation between cFGF23 and oxidized or non-oxidized PTH 

A positive correlation of n-oxPTH - but not oxPTH - with FGF23 independent of known 

confounding factors was observed in the 4C study cohort. 

Previous in vitro and in vivo studies investigating the relationship between PTH and 

FGF23 had contradictory results. For example, an increase in the expression of FGF23 

mRNA from murine osteocytes in vitro by activation of the PTHR1 receptor has been 

demonstrated(6, 32), while some animal experiments showed a decrease in plasma 

FGF23 concentration during PTH treatment(33-35).  

In humans, Burnett-Bowie et al. (36) demonstrated that a PTH infusion in healthy men 

increased FGF23 levels over 18 h(36), whereas Guiterrez and colleagues(37) showed an 

acute decrease in FGF23 levels with a PTH infusion within 6 h. The reason for these 

inconsistent results is not fully understood and may partly be due to differences in the 

populations studied. We have previously described the existence of high concentrations 

of ox-PTH in the circulation of CKD patients(13); here we show significant differences in 

comparison to n-oxPTH concentrations in their associations with FGF23 and GFR, which 

further confirms their different biological properties in vivo. 

In contrast to the present literature on the relationship between PTH and decreasing 

GFR(3, 38), biologically active n-oxPTH increased significantly less than iPTH and oxPTH 

as renal function deteriorated. These results suggest that oxidation of PTH increases 

progressively with the decrease of GFR, reflecting the extent of oxidative stress as 

described by others.(39) 

These data indicate that the increase in PTH with the decrease of GFR described in 
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textbooks on renal physiology primarily reflects the increase in oxPTH, but not n-oxPTH. 

Our data suggest that the progressive increase of FGF23 with decreasing GFR does not 

appear to be related to the moderate increase of n-oxPTH, but that other factors may play 

a more important role in regulating the concentration of FGF23 in CKD. (40) 

 

5.4 The correlation between intact PTH and oxidized or non-oxidized PTH 

The linear correlation analysis demonstrated a close to linear correlation between iPTH 

and oxPTH, but a much weaker correlation between iPTH and n-oxPTH. It suggests that 

the currently used iPTH assays primarily describe oxidative stress in CKD patients but 

not PTH bioactivity – for which these iPTH assays were originally developed. 

 

5.5 Study limitations 

This study had several limitations that should be considered when interpreting the results. 

Firstly, our study pointed out that the effect of n-oxPTH on FGF23 is CKD-stage 

dependent. However, it needs be confirmed by injection of n-oxPTH at different stages of 

CKD in experimental animal models. Secondly, as the assay used for oxPTH in the clinical 

study cannot discriminate between the different forms of oxPTH, we were unable to 

analyze the relationship between FGF23 and each form of oxPTH and their respective 

trends with decreasing GFR. There is a need for a clinically suitable measurement system 

that can distinguish between different forms of PTH. Given the enormous clinical impact 

of PTH, our research may stimulate the development of such methods. Finally, the extent 

of oxidative stress and its effects on circulating concentrations of FGF23 and PTH could 

not be assessed because no markers of oxidative stress were measured in the clinical 

studies. In this context, it is quite important to know that PTH oxidation occurs in vivo and 

is largely independent of sample handling(14) and appears to be influenced by vitamin 

D(41). 
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5.6 Expand 

We suspect that our research is of universal importance, far beyond understanding the 

PTH biological properties. It could suggest that the oxidation of peptide hormones alters 

the biological properties of these hormones. Many hormones contain methionine in their 

amino acid sequence. This could have similar consequences as shown for PTH. 

The use of iPTH measurements to identify patients with secondary 

hyperparathyroidism, as previously conducted in the EVOLVE trial, could lead to the 

selection of patients without true secondary hyperparathyroidism(42) and therefore 

contribute to the failure of such clinical trials, although the drug under investigation is 

potentially effective. The data provided here, as well as published clinical data on the 

topic(13, 14, 43-47), make the emergence of iPTH analysis for clinical purposes critical. 

It may currently be more appropriate to measure bone alkaline phosphatase for clinical 

use until further research allows the guidelines for n-oxPTH to be established. Oxidized 

PTH is more likely to be a biomarker of oxidative stress. Oxidative stress is for sure also 

harmful to CKD patients and will further promote the progression of the disease. However, 

the treatment of oxidative stress is certainly different from the treatment of PTH disorders 

in CKD patients. The majority of PTH is present in oxidized form and has no biological 

activity. Only assay systems that measure bioactive PTH (n-oxPTH) are capable of 

correctly guiding clinical decision making. However, PTH assays designed for clinical use 

should measure bioactive PTH since clinicians need to correctly adjust medications such 

as calcimimetics, phosphate binders or vitamin D based on this information. All of these 

drugs are essential for patients with CKD and can affect the endocrine PTH system. The 

use of a clinical laboratory instrument that cannot actually measure bioactive PTH makes 

clinical decision making for patients quite difficult or even risky. 

 

5.7 Conclusion 

Only n-oxPTH, but not oxPTH, stimulates the synthesis of FGF23 in vitro. The results of 

our cross-sectional cohort study are consistent with this finding showing an independent 

association between FGF23 and n-oxPTH, but not oxPTH. Furthermore, we could 
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demonstrate that with decreasing GFR, n-oxPTH increases only moderately. The 

increase in PTH reported in the literature - measured by iPTH assays - with decreasing 

GFR is mainly due to an elevation of oxPTH.  
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