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Abstract

We consider the class of compact Riemann surfaces which are ramified coverings of
the Riemann sphere C. Based on a triangulation of this covering we define discrete
(multivalued) harmonic and holomorphic functions. We prove that the corresponding
discrete period matrices converge to their continuous counterparts. In order to achieve
an error estimate, which is linear in the maximal edge length of the triangles, we
suitably adapt the triangulations in a neighborhood of every branch point. Finally, we
also prove a convergence result for discrete holomorphic integrals for our adapted
triangulations of the ramified covering.
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1 Introduction

Smooth holomorphic functions can be characterized in different ways. In particular,
the real and imaginary part of any holomorphic function is harmonic and both are
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related by the Cauchy-Riemann equations. This perspective naturally led to linear
discretizations of harmonic and holomorphic functions, starting with results for
square grids, see [12, 14, 23]. Lelong-Ferrand further developed this theory of
discrete harmonic and holomorphic functions in [19, 25]. MacNeal and Duffin
generalized these notions in [15-17, 27]. In particular, they considered arbitrary tri-
angulations in the plane and discovered the cotan-weights. The cotan-Laplacian is
also considered for triangle meshes, for example for surfaces in discrete differential
geometry, see [35], or for applications in computer graphics, see for example [32].
Further properties and theorems of the smooth theory of holomorphic functions have
found recently discrete analogues in the discrete linear theory in [2, 3].

Note that there are other important nonlinear discretizations of holomorphic func-
tions, for example involving circle packings or circle patterns [8, 9, 36, 38], connected
to cross-ratios [6, 28], using discrete conformal equivalence [1, 10], or based on bi-
colored triangles [18, 34]. The linear theory of holomorphic functions on rhombic
lattices can be obtained as infinitesimal deformation of circle patterns [5].

Mercat generalized in [29] the discrete linear theory from planar subsets to discrete
Riemann surfaces and introduced in [30, 31] discrete period matrices. In [4] numer-
ical experiments are considered to compute discrete period matrices for polyhedral
surfaces explicitly and compare them to known period matrices for the correspond-
ing smooth surfaces. A convergence proof for the class of polyhedral surfaces was
obtained in [7].

The interest in numerical computation of period matrices is for example motivated
by the computation of finite-genus solutions of integrable differential equations. As
Riemann surfaces may be represented as algebraic curves, this is often taken as a
starting point for computing discrete period matrices. Recent results in this context
include [13, 20-22, 33].

In this article, we take a different approach and consider Riemann surfaces which
are ramified coverings of the Riemann sphere C. Based on a triangulation of this cov-
ering discrete period matrices can be obtained from this discrete data. Furthermore,
we prove convergence of the discrete period matrices to their continuous counterparts
(Theorem 3). In particular, we obtain an error estimate, which is linear in the maxi-
mal edge length of the triangles if we adapt the triangulations in a neighborhood of
every branch point. The details of our ‘adapted triangulations’ will be explained in
Section 2.3.

The convergence of discrete analytic functions to their continuous counterparts
remains an important issue, although several results have been proved by now. In par-
ticular, for the linear theory, convergence was first shown for the square lattice [12,
25] and recently for more general quadrilateral lattices [7, 11, 37]. In this article,
we prove the convergence of discrete holomorphic integrals (Abelian integrals of
first kind) obtained from suitable triangulations of the ramified covering to their
continuous counterparts (Theorem 4).

Our main results are stated in Section 2 and proved in Section 3. The proof is
inspired by [7] and uses energy estimates which allow to prove the convergence of
the discrete period matrices directly. Our results are also applied to improve the con-
vergence results of [7] in Section 5. Finally, in Section 6, we present some numerical
experiments.
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2 Convergence Results for Discrete Period Matrices and Discrete
Holomorphic Integrals for Ramified Coverings of C

In the following, we consider any compact Riemann surface % of genus g > 1 which
allows a branched covering map f : # — C. Using this covering map as a local
chart, we always locally identify points in % with their images in C. Then for points
in the complex plane C = C \ {oo} we use the standard complex coordinate z. This
map from Z to C is denoted by Prg and gives a local chart in a neighborhood about
every point, except at branch points and infinity. For further use, we fix aradius p > 1
such that the images of all branch points, except possibly oo, have a distance at most
p/2 from the origin. In order to consider a neighborhood of infinity, we consider a
second chart with the local coordinate 1/z. This map from & to C is denoted by
Prg.

Let T = Ty be a triangulation of % such that all branch points are vertices. We
assume that every triangle is contained in only one sheet of the covering. We will
mostly consider this triangulation via its (local) image under the charts Prg and
Prg;. In this sense, without further mention, we always identify this triangulation

with the corresponding (multi-sheeted) triangulation on C (which is the image f(T)
under the covering map) and with the (multi-sheeted) image of this triangulation of C
under the charts Prg and Prg;. We assume that this triangulation is a locally planar

embedding in the complex plane C or equivalently in the Riemann sphere ¢, except at
the branch points. From now on, we consider the vertices of the triangulation as points
of C, that is, we always apply the local charts Prg and Prz;. The edges connecting
incident vertices will be straight line segments or circular arcs in C, depending on the
following distinction.

(i) All triangles whose images under the chart Prg have at least two vertices in
the open disc B, (0) of radius p about the origin are geodesic, that is Euclidean
triangles. We always consider these triangles to be embedded in C.

(ii) All triangles whose image under the chart Prg; have all vertices contained in
the closed disc B /p(0) of radius 1/p about the origin (that is, in the images
under the chart Prg all vertices are contained in the complement C \ B,(0))
are geodesic, that is Euclidean triangles. We always consider these triangles to
be embedded in C. Note that in the image under the chart Prg these triangles
are preimages of a geodesic triangulation with Euclidean triangles under the
map z — 1/z. Therefore, these triangles are in general bounded by circular
arcs in the image under the chart Prg.

(iii) The remaining triangles in the ‘boundary region’ are consequently in gen-
eral bounded by two straight lines and one circular arc in the image under
the chart Prg. These triangles will be called boundary triangles and denoted
by F,. Finally, we assume that the edge lengths of all boundary triangles are
strictly smaller than max{p/2, 1}. As in the first case, we always consider these
triangles under the chart Prg to be embedded in C.
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We denote by V, E, E, F the sets of vertices, edges, oriented edges, and faces of
T4, respectively, and identify them locally with their images under the charts Prg
and Pr%?.

2.1 Discrete Harmonic Functions

We define weights on the edges E of the triangulation 7 essentially by using cotan-
weights, but we distinguish two cases for edges e = [x, y] € E corresponding to the
different cases above:

(i) If both triangles incident to e are contained in the open disc B, (0) under the
chart Prg or in the closed disc By/,(0) under the chart Prg;, we use cotan-
weights

1 1
cle) = 3 coto, + 3 cot Be, @))

where o, and f, are the angles opposite to the edge e € E in the two adjacent
triangles, see Fig. 1.

(i) If e = [x, y] is incident to a boundary triangle in F),, we use the chart Prg
and define the weight similarly as above as a sum c(e) = C| + C; of two parts
corresponding to the two incident triangles A, Aj. If there is a non-boundary
triangle, say A1, incident to e, we consider the angle «, in this triangle opposite
toeandset C; = % cota,. The second part C; = Cly ) is defined below in (4)
using a suitable interpolation function and the smooth Dirichlet energy. More
details and explicit calculations are given in Appendix A.1l.

Using our edge weights, we can define discrete harmonicity and a discrete Dirich-
let energy for functions # : V — R on the vertices of the triangulation 7. In
particular, u is called discrete harmonic if for every vertex x € V there holds

> ellx, yh(y) — u(x) =0. ©)
yeVix,yleE
The energy of u is
Er@) = Y e(lx, yDu(y) —u@x)>*. 3)
e=[x,y]eE

. L . =
Fig. 1 Notation associated with an edge ¢ = [f,, h.] € E and with its oriented version e = t.h,, see
Sections 2.1 and 2.2
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The motivation for our choice of weights, in particular for the choice of weights
for boundary triangles, is the following connection of discrete and smooth Dirichlet
energies. Recall that for a continuous function on a compact Riemann surface %
which is smooth almost everywhere the Dirichlet energy is defined as

E(u) =/ |Vul.
R

Then the discrete energy of a function # : V — R is in fact the Dirichlet energy
of the continuous interpolation function Itu, defined piecewise on every triangle
Alx, y, z] as follows:

(i) If at least two of the three vertices x, y, z are contained in the open disc B, (0)
under the chart Prg or in the closed disc B /p(0) under the chart PrZ 7 We
define I7u|A[x,y,7) on this triangle as the linear interpolation of the values of u
at the vertices.

(i) In the remaining case, A[x, y, z] is a boundary triangle in F, and under the
chart Prg there is exactly one vertex in B, (0), say x. We first define /7u on the
boundary edges consistently with the definitions in (i). The two edges [x, y] and
[x, z] are straight lines. On these edges we define /T u as the linear interpolation
of the values of the vertices. On the arc yz connecting y and z we use the
corresponding transformed function # = u o 1/7 and the interpolating function
ITu| Afx,y,z1 = ITuj o 1/z. Then for every straight line segment connecting x
to a point on the arc yz we define I7u as the linear interpolation of the values
on the endpoints.

Using this interpolation function, we obtain by elementary calculations (see
Appendix A.1 for details) that

/ [ ]|VITu|2 = Cley)@(x) — u(»))? + Cry o @(y) — u(2))*
X,¥,2

+Cpzx(z) — u(x))?, 4)

where the constants Ci,y1, C[y,z], C|z,x] only depend on the triangle A[x, y, z],
see (13)—(15), and give one part of the weights associated to the edges
[x, ¥1, [y, zl, [z, x] respectively.

It is easy to see that for every triangulation of a ramified covering & of C as above,

I7u is a well-defined continuous function on . Furthermore, we have

Lemma 1 (Interpolation lemma)

E(Itu) = ET(u).

Proof We can split the energy according to triangles A s for f € F.
EUrw= Y f ViuP+ Y [ vt Y / IV Irul
AFCB,(0) A,ce\B,0 " 2 Af€eF,(0)

In particular, elementary calculations show that (4) holds for any triangle A[x, y, z].
with suitable constants Cix y], Cfy.z], C|z,x] depending only on A[x, y, z]. Duffin
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showed in [16, Section 4] that for Euclidean triangles these constants are one half
of the cotan of the opposite angles. Using the conformal invariance of the Dirichlet
integral for the triangles in ® \ B, (0) and our choice of weights in the cases (i)—(ii)
above, we obtain the claim. O

Remark I It will be important to note that the constants Ciy y], Cy,z], C[z,x] defined
by (4) are only small perturbations of the usual cotan-weights in the following sense.
If the maximal edge length 4 in the boundary triangle A[x,y,z] € F, is small
enough and the angles in A[x, y, z] as well as the angles in the Euclidean triangle
formed by the vertices x, y, z lie in [§, w — &] for some § > O, then elementary
calculations and estimates show that

%cot&e —Cs,p-h<C. < %cot&e +Csp-h.

for some constant Cs , > 0, where &, denotes the angle opposite to the edge e
in the Euclidean triangle formed by the vertices x, y, z. The details are given in
Appendix A.1.

Note that the difference between the the angles in the Euclidean triangle with
vertices x, y, z and the corresponding angles in A[x, y, z] is of order A. Thus, for &
small enough, the corresponding estimates on |C, — % cot o, | also hold for the actual
angles o, in the triangle A[x, y, z].

2.2 Discrete Analytic Functions, Discrete Holomorphic Integrals and Discrete
Period Matrices

In the following, we define discrete analytic functions and discrete holomorphic
integrals analogously as in [7].

For an oriented edge ¢ € E, we denote by i, € V and #, € V the head and the tail
of ¢,and by [, € F and r, € F the left shore and the right shore of €, respectively,
see Fig. 1. Two functions u : V. — Rand v : F — R are conjugate, if for each
oriented edge ¢ € E we have

v(le) —v(re) = cle)(u(he) — ulte)). (%)
The pair f = (u : V — R, v : F — R) of two conjugate functions is called
a discrete analytic function. We write Ref := u and Imf := v. If both u and v

are constant functions, not necessarily equal to each other, we write f = const. A
direct checking shows that on simply connected surfaces discrete harmonic functions
are precisely real parts of discrete analytic functions. Note that for non-zero weights
c(e) # 0 we define the (discrete) energy of a function v : F — R by

._ 1 _ 2
Er(v) = E:leyJEE 3D (v(y) — v(x)% (6)

We will consider multi-valued functions on the vertices and the faces of the trian-
gulation 7. Informally, a multi-valued function changes its values after performing
some nontrivial loop on the surface.

Recall that the Riemann surface & is a branched covering of C with genus
g > 1. Denote by p : %# — % the universal covering of % and by p : T >T
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the induced universal covering of T. Fix a base point zo € % and closed paths
at,...,ag, B ..., Bg : [0,1] — Z forming a standard basis of the fundamental
group 71 (%, p(zp)) such that alﬁlaflﬁf] . ~agﬂga;1,3g_l is null-homotopic. An
example for an algorithm to compute this basis on a computer can be found in [24,
39]. Each closed path y : [0, 1] — Z with y(0) = y(1) = p(zo) determines the
deck transformation d,, : # — %, that is, the homeomorphism such that pod, = p
and dy, (z0) = y(1), where y : Z — Z is the lift of y : [0,1] — S such that
7 (0) = zo. The induced deck transformation of T is also denoted byd, : T—>T.

A multi-valuedfunc{éon with periodSNAl, ...,Ag, B1,..., By € Cis a pair of
functionsj = (Rgf :V > R, Imf : F — R) such that foreachk =1,..., g an
eachz € V, w € F we have

Re f(dy, (z)) —Re f(z) = Re(Ap), Re f(dg, (z)) — Re f(z) = Re(By),
Im f (de, (2)) — Imf(z) = Im(Ag), Im f(dg, (z)) —Imf(z) = Im(By).

The numbers Ay, ..., Ag and By, ..., B, are called the A-periods and the B-periods
of the multi-valued function f, respectively. Analogously, we can also define multi-
valued functionsu : V — R, v : F - Roru : Z — R. Note in particular, that
for each multi-valued function u : V — R and every edge [x, y] € E the difference
u(x) — u(y) is well defined. The (discrete) energy of the multi-valued function is

Er@) =Y e(x yD) —u(y)>

[x,yleE

Similarly, for each multi-valued function u : % — R, which is smooth on every
face of F, at each point inside a face A € F the gradient Vu is well defined. The
(Dirichlet) energy of the multi-valued function is

E(u) = Z/ [Vul?.
Ay

A/‘GF

A multi-valued discrete analytic function is called a discrete holomorphic integral or
discrete Abelian integral of the first kind.

Theorem 1 [7, Theorem 2.3] For any numbers Ay, ..., Ay € C there exists a
discrete holomorphic integral with A-periods Ay, . .., A,. It is unique up to a constant.

Foreach! =1, ..., g denote by ¢ZT = (Red:lT V> R, Im¢IT :F — R) the
unique (up to constant) discrete holomorphic integral with A-periods given by Ay =
Sr1, where k = 1, ..., g. The g x g-matrix 17 whose [-th column is formed by the
B-periods of qblT, where [=1, ..., g, is called the period matrix of the triangulation T .

2.3 Convergence of Energy and Discrete Period Matrices
So far, we have defined our notions like discrete energy for a rather general class
of triangulations. In view of our convergence results, we now make some additional

assumptions. In order to measure distances and other metric properties, we always
consider the images of the triangles in C under the charts Prg and Prg;. By our
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assumptions above, these are Euclidean triangles if they are contained in B, (0) after
applying Pr andin B /p(0) after applying Prg;. Therefore, we can use the standard
metric in C. We also apply this metric for boundary triangles in F, after applying
Prg. Alternatively, we could work on C with the chordal metric.

First we determine the maximal distance between two vertices in a triangle which
lies inside B, (0) or B\ /p(0) or on the boundary F, resp. The maximum is called
maximal edge length and denoted by & = h(T).

Furthermore, we suppose that near all branch points of & the edge lengths are
adapted to the singularity which then guarantees an approximation error of order 4.
In particular, for every branch point vp € V with f(vg) # oo, choose a radius rp
such that the disks of these radii are disjoint for different points O = Prg(vg) € C.
Furthermore, we assume that all these disks are all contained in B, (0). Let %’0@ be
the neighborhood of vp in &# which projects onto this disc B,,(0) = Pre@(%g ).
If O = oo, we first apply the the chart and PrZ; assume that ro = 1/(2p). For all
branch points we already have a natural complex structure and charts. In particular if
O # oo, we consider the chart go(z) = (z — 0)Y0, s0 gp o Prgp maps %gj onto
a neighborhood of the origin in C. If O = oo, consider gp(z) = 1/z70 instead. We
can also introduce “polar coordinates” (r, ¢) on %2? with the origin at the vertex O.
We map all vertices of T in %0% to a neighborhood of the origin in C by the chart
go(r, @) :=rv0 elvod .

In any case, consider all triangles in %‘0@ which are incident to vo. The aperture
of O is the sum of all the face angles at O of the projection of these triangles. Denote
by yo the value 27 divided by the aperture. Note that for branch points we have
yo €{l/n:n=2,3,4,...},s0y0 < 1/2.

We demand that the triangles in the neighborhood % of O have an adapted size:
as an additional condition, we demand that

— the images under the chart g of any two incident vertices in ¥p have maximum
distance h.

In particular, consider any triangle A in Prg(‘fgj ) (or Prg (ng ) if O = o00)
whose vertex z nearest to O satisfies |Oz| > ho = h'/?v0) where |Oz| denotes the
distance of z to O in the chart in C. Then we deduce from our assumption that the
maximal edge length in A is smaller than & - |Oz|' =70,

In Section 5 we explain how our ideas can be used for polyhedral surfaces with
more general conical singularities with 0 < yp < 1/2.

We will always assume that the maximal edge length /4 is strictly smaller than
max{p/4,ro/4, 1}.

A triangulation 7 which satisfies these additional properties for all its branch
points will be called adapted triangulation.

Theorem 2 (Energy convergence) For each § > 0 and each smooth multi-valued
harmonic function u : % — R there are two constants Const, 5 % ,,const, s z , >
0 such that for any adapted triangulation T of % with maximal edge length h <
const, s g , and minimal face angle > § we have

|ET(uly) — E(u)| < Const, 5 % , - h.
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The assumption on the minimal face angle in the theorem cannot be dropped,
see [7, Example 4.14].

Based on energy estimates from this theorem, we deduce convergence of discrete
period matrices. To this end, recall that % is a Riemann surface which is a branched
covering of C. Therefore, a basis of holomorphic integrals qbl %# — C and the
period matrix I1g of # are defined analogously to the dlscrete case above.

Theorem 3 (Convergence of discrete period matrices) For each § > 0 there are two
constants Consts g ,, consts g , > 0 such that for any adapted triangulation T of
X with maximal edge length h < const, s o , and minimal face angle > § we have

[T — Iz| < Consts 7, - h. @)
Both theorems are proved in Section 3.
2.4 Convergence of Discrete Holomorphic Integrals

For the next theorem, we need some addltlonal notions 51m11arly as in [7]. The dis-
crete holomorphlc integral d)T = (Re ¢T V> R, Im ¢>T F — R) is normalized
at a vertex z € T and a face w € F if Re ¢>T (z)=0=1Im ¢T (w). Similarly, we call
a holomorphic integral ¢% : % — C normalized at a point z € Z if qb(l% () =0.

Recall that a triangulation T is Delaunay, if for every edge e € E we have o, +
Be <.

Let {7, } be a sequence of adapted triangulations of the surface % with maximal
edge length & < max{p/4, ro/4, 1}. Such a sequence of adapted triangulations is
called non-degenerate uniform, if there is a constant Const, not depending on n, such
that for each member of the sequence:

(A) the angles of each triangle are greater than 1/Const.

(D) for each edge the sum of opposite angles in the two triangles containing the
edge is less than w — 1/Const. (In particular, the triangulation is Delaunay
within B,,(0) and within By, (0).)

(U) the number of vertices in an arbitrary intrinsic disc about z of radius equal to
the maximal edge length is smaller than Const if z is not contained in any of
the neighborhoods % of a singularity O. Within such a neighborhood %,
first map the vertices to a disc about the origin by the map ¢ — (¢ — 0)Y0 if
O # oo (or ¢ — 1/¢Y0 if O = o0). Then we require that after this mapping
in each disc of radius equal to the maximal edge length the number of image
points of vertices is smaller than Const.

A sequence of functions f, =(Re f; : ‘7” —R, Imf, : fn — R) converges to a func-
tion f: % — C uniformly on compact subsets if for every compact set K C % we have
max_ |Ref,(z) —Ref(z)] = 0 and
zeKNV,

max Imf, (Alx, y,z]) = Imf(z)| > 0 asn — oo.
Alx,y,z]eF,Alx,y,zINK #)
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Theorem 4 (Convergence of discrete holomorphic integrals) Let {T,} be a sequence
of non-degenerate uniform adapted triangulations of % with maximal edge length
hy — Qasn — oo. Let z, € Vi be a sequence of vertices converging to a point
720 € #. Let Ay € F, be a sequence of faces with its vertices converging to zo.
Then for eacft 1 < I < g the discrete holomorphic integrals ¢IT = (Re ¢IT V-
R, Im ¢>IT : F — R) normalized at z,, and A, converge uniformly on each compact
set to the holomorphic integral (/)loj : % — C normalized at 20-

This theorem is proved in Section 4.

3 Proof of Convergence of Energy and Period Matrices

In this section, we prove convergence of the discrete energy to the corresponding
Dirichlet energy and convergence of discrete period matrices to their continuous
counterparts. The main ideas of the proof follow [7, Section 4], but we improve
the estimates near branch points (which can be considered as special conical
singularities) by using the additional properties of the adapted triangulations.

In the following, all triangles being considered are in C after application of Prg
or Prg; resp.

We denote by Const, ;. a positive constant which only depends on the param-
eters a, b, c. The symbol Const may denote distinct constants at different places
of the text, for example in 2 - Const < Const. Furthermore, we set || Du(z)|| :=

o u
m(Z)‘~

maxog j<k
3.1 Energy Estimates in a Triangle

First we consider only one triangle A of the triangulation 7. Letu : A — R be a
smooth function which smoothly extends to a neighborhood of A. Let ITu : A —
R be the corresponding interpolation function defined in Section 2.1. Then we set
Ex(u) = [,|Vul*dxdy and E1,(u) = [, |VIru|*dxdy. Denote by 8 the minimal
angle of the triangle A.

Lemma 2 (Energy approximation on a triangle) (i) If the triangle A is contained

in B,(0) under the chart Prg or in the closed disc B, /p(0) under the chart
Prg;, denote by lyax the maximum edge length of A. Then

|ET, (1) — Ea(u)] < Consts - (max 1D u(w)|| + gy - max IIDzu(w)H)
weA weA
Inax - max |[D>u(w)|| - Area(A).
weA

(ii) If'the triangle A is a boundary triangle in F, then

|Er, () — Ea(u)| < Consts,, - max I D u(w)|* - Area(A)
we
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Proof (i) For triangles contained in B, (0) under the chart Prg or in the closed
disc E]/p (0) under the chart Pr%? this is Lemma 4.4 in [7].
(ii) For boundary triangles we estimate the discrete and the smooth energy sepa-
rately. For the smooth energy, we have Ex(#) < Const - maic 1D u(w)|? -
we

Area(A). For the discrete energy, an estimate of E7,(u) is contained in
Appendix A.2, see in particular (16).
O

3.2 Energy Estimates Near a Branch Point

Let vp € Z be a branch point of Z with yo < 1/2. In this subsection we only con-
sider those triangles of the adapted triangulation 7 which are completely contained
in the neighborhood %0% . Denote by T the connected component of these triangles
which contains vg. For the estimate of the difference of energies for these triangles
we consider in particular E7,, (1) = ZAGFO E7,(u) and Es, (u) = ZA€F0 Ex(u),
where Fop denotes the set of triangles in Tp and So is the neighborhood of vo
covered by these triangles.

As the partial derivatives of u# (considered in a chart) are not necessarily bounded
near the vertex O, we consider triangles in a ‘very small’ neighborhood of O sep-
arately. Let Sp ,, be the union of faces of Tp whose images under Prg intersect
the disc of radius ho := h'/(370) about O and let To.n, be the restriction of Tp to
So0,h,- Denote by Fo 5, the set of faces of Tp .. Note that we use polar coordinates
(p, ¢) as introduced in Section 2.3 as a chart for ‘552 .

Lemma 3 (Derivative Estimation Lemma, [7, Lemma 4.5]) For each w = (p, ¢) €
(f’g) such that w # O we have
ID U@l < CoNsturg,yo-p7°~" and  IID*u@)lull < CONSt g, y0-p7 2.

Lemma4 [7, Lemma 4.12] For every A € Tp , we have E7,(u) < Consts o ro.u-
[ p?0 " dpde
AP pag.

Lemma S Forevery A € To \ To n, we have |E7,(u) — EA(u)| < Consts vy ro.u -
h- [, pYo~ dpd¢.

Proof Let z € A be the vertex closest to O. As A € Fp \ Fo , we have for each
point (p, ¢) in A that
htlvo < pt/@ro) <10z < p < |0z] + h|0z]' 770 < 2|0z].

This also implies # < |Oz|"?. Furthermore, on Fop \ Fo,,, we can use Lemma 3
together with our assumption that the edge lengths in A are smaller than | Oz|' =70,
If we also apply Lemma 2 and the above estimates on p, we obtain

|ET, () — Ea(u)] < Consts iy rou | 1021707 +h1Oz|' 770 - |Oz|702

<|0zro~!
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h10z|'770 . |0z]7072 . Area(A)
e e’

=/, pdpd¢

< Consts,yy.rou - / 70" Ydpde .
A

O
Lemma 6 We have |Eto\1,,,, () = Eso\s0., )] < CONSts yg ro,u - h-
Proof We use Lemma 5, sum the inequalities and estimate the integral.
|ETo\To sy ) = Esp\so, @] < Y |Ez, () — Ea(w)]
AEF()\F(),hO
< Consts g rp.u - B / oo ldp
So\So.ng
< Consts g rou - b 0
Now we estimate the energies on So 5, and Fo j, separately.
Lemma 7 We have ESO.hO (u) < Consty,, , - h.
Proof Using Lemma 3 and our definition of S¢ ;, we obtain
27/yo 2V @ro)pt/ro)
2
Esg,, ) = Y / |Vul*dxdy < Constyo,u/ /
A€Fo 4 = p=0
2o Vdpdp < Consty,, , - h. 0
Lemma 8 We have ETO.hQ (u) < Consts - h.
Proof We deduce from Lemma 4 similarly as in the previous lemma that
2m/yo  p2Y@ro)pl/Cro)
Erpy, ) = Y f |V IrulPdxdy < Consts y, /
AcFop, 4 ¢=0  Jp=0
2o\ dpdp < Consts y.u - h. m

3.3 Convergence of Energies
Let Gr = F \ {F, U U0 branch point £ o} be the set of triangles which are neither
contained in the neighborhood of any branch point nor are boundary triangles. Denote

by G the subset of Z covered by the triangles in G 7.

Lemma 9 We have |Eg, (u) — Eg(u)| < Consts , 5 ,, - h.
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Proof By applying the charts Prgp and Pr%f’ respectively, the triangles of G are
mapped into the intrinsic disc B,(0) of radius p and intrinsic disc B\ /p(0) of radius
1/p about the origin respectively.

Our assumption on the maximal edge length, the definition of the discrete energy,
the compactness of Z, and the estimates in Lemma 2 imply that

|EG, ) — Eg)| < ) |Er,(u) — Ea(u)]

AeGr
< Z Consts . - (1 +h) - h - Area(A)
AeGr
< Z Const(;’u’p-h~/ pdpdo <Const5,u,poh~/ pdp
A A G
eGr
< Consts , ., - h. O

Lemma 10 We have Esp (u) < Consty , - h, where S, denotes the subset of % which
is covered by triangles of F.

Proof This estimate is due to the fact that the derivative of u is bounded away from
the branch points. Furthermore, the area of the ring {p —h < |z| < p+h} is bounded
by 4w ph and the degree of the branched covering is fixed. Therefore,

Es,(u) = / |Vul*dxdy < Const, , 2 - h.
Sp [

Lemma 11 We have Er, (u) := }_scp, E1,(u) < Const, 5., 7 - h.

The proof of this lemma is given in Appendix A.2.

Proof of Theorem 2 Summing up the estimates obtained in Lemmas 6-11 we get the
desired result:

|Er(ulp)—E@)| < |Eg, @) —Ec@|+Er,)+ Y (Erp\1p,, @)
O branch point of Z

_ESO\SO.hO (u)| + ESO,h() (M) + ETOJI() (I/l))
< Consts , ., - h. O

3.4 Convergence of Discrete Period Matrices
For our convergence proof we start with some further useful theorems and definitions.

Lemma 12 (Variational principle [7, Lemma 3.6]) A multi-valued discrete harmonic
function has minimal energy among all multi-valued functions with the same periods.

Theorem 5 [7, Theorem 3.9] For each P = (Ay, ..., Ag, Bi, ..., By) € R there
exists a unique (up to a constant) discrete holomorphic integral ¢t p = (Re¢r,p :
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V> R, Im¢r p: F— R) whose periods have real parts Ay, ..., Ag, By, ..., B,
respectively.

Denote ur, p = Re ¢, p, where ¢ p is the discrete holomorphic integral defined
in Theorem 5 for each vector P € RZ?$. Analogously, let ¢; zp - £ — C
be a holomorphic integral whose periods have real parts Ay, ..., Ay, By, ..., By,
respectively. Denote uz p = Re ¢y p.

Lemma 13 For every § > 0 and every vector P € R28 there are constants
Constp 5 ,,, constp 5 % , > 0 such that for any adapted triangulation T of Z with
maximal edge length h < constp 5 % , and minimal face angle § > 0 we have

|Er(ur,p) — E(ug,p)| < Constp s 2 , - h.

Proof From the interpolation Lemma 1 we know that E7(ur p) = E(lrur,p)
and the interpolation function I7ur p is continuous and piecewise smooth. Using
Lemma 12 and its smooth counterpart (Dirichlet’s principle) we deduce from
Theorem 2 that

< E(rur,p) — E(ug.p) = Er(ur,p) — E(ug,p) < ET(ug,ply) — E(ug, p)
< Constp 5 %, - h. O

Foreach! =1, ..., g denote by ¢IT* = (Re¢IT* (V> R, Imd)IT* . F — R)
the unique (up to constant) discrete holomorphic integral with A-periods given by
A =18k, wherek =1, ..., g. The g x g-matrix IT7+ whose [-th column is formed
by the B-periods of qblT* divided by i, where [ = 1, ..., g, is called the dual period
matrix of the triangulation 7.

The following theorem connects the period matrices to the energies.

Lemma 14 [7, Lemmas 3.14 & 3.15]

(i) The energy ET(ut, p) is a quadratic form in the vector P € R?¢ with the block

matrix
£y . (Relr-(Imldr+)” IRelTr + ImITr —(ImIT7+) " 'Rellr
T —RelTy+(Imy+)~! (ImIT7+)~! :
(ii) The energy E(ug, p) is a quadratic form in the vector P € R?¢ with the block
matrix
£ .— (Relz(ImIlg)” IRely + ImITy —(ImI1y) 'Relly
7z —ReTp(ImI1y;)~! (ImI1)"! '

Combining Lemmas 13 and 14, we obtain:

Corollary 1 Let {T,} be a nondegenerate uniform sequence of adapted triangula-
tions of Z with maximal edge length tending to zero as n — oo. Let P, € R*8 be
a sequence of 2g-dimensional real vectors converging to a vector P € R?8. Then
Er,(ut, p,) = E(ug p) asn — oo.
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Proof of Theorem 3. Both E7, (ur, p) and E(ug p) are quadratic forms in P € R28
by Lemma 14 with block matrices E7T and E g, respectively. Thus by Lemma 13 for
every § > 0 there are constants Consts g ,, consts 5 , > 0 such that for any adapted
triangulation 7' of & with maximal edge length 7 < consts 5 , and minimal face
angle 8 > 0 we have |[ET — Egl| < Consts  ,, - h. From this inequality we deduce
estimates on ||Re [T — Re I14|| and ||[Im [T — Im I14|| of the same type, but with
different constants which are derived in the following. These estimates complete the
proof.

— As |(ImM7+)~' — (ImM5) Y| < Consts g, - h for h < consts 5 , there exist
new constants Const; ,, > 0 and const; 5, > consty ,, > 0 such that
(ImITr=|| < Constg’%’p forh < constg’%,’p.

— Thus for & < constj , we deduce

Consts. ., - h > ||(ImIT7+)"'Relly — (ImI15) 'Rellz||
= ||(ImIT7+) "' (RelTy — Relly)
—((ImIT) ™" — AmMT7+)"HRel |

> |(ImII7+) 7| - |RelTr — Relly||
— [ (ImT7r) " — (ImIT5) " - Rl ||
> (Const; )" - IRellr — Relly|

—Consts %, - h - [Rellz].

Therefore, |Reflr — Relly| < Consty , , * h, where Const{ ,, , =
Constg’%p -Consts % , - (1 + [|[RelIz]).
Analogously, we see that |[Rellr+ — Rellg| < Constg’%’p - h.
— By similar estimates as for the previous item, we obtain

IRelT7+(ImMT7+)~'RelTr — Relly(ImIT)~'Relly| < Consty, - h,

where Const;’, = Const{ ,, - [[(ImIT)~"[[(1 +2[|[Refll|) + Consts », -
(Const{ ,, + IRelT4|)>2.

—  Finally, we deduce from
||IRe T+ (ImHT*)_lReHT + Imlly — RCH%(IIHH%)_IRCHQ — ImIgz|
< Consts g, - h

/"

together with the previous estimate that |[Im/1r — ImI1%|| < (Consty P +
Consts % ,) - h. ]

4 Proof of Convergence of Discrete Holomorphic Integrals

The strategy of the proof of Theorem 4 follows the corresponding ideas in [7, Section 5].
Due to our different setup, we need some modifications.
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4.1 Equicontinuity

In this section we consider triangulations T’ of branched coverings with boundary.
The main goal is to consider (sufficiently small) intrinsic discs about a branch points
or about a regular point and derive an estimate for harmonic functions there. A func-
tion u : V' — R is discrete harmonic on 7" if it satisfies (2) at every non-boundary
vertex. Denote E/T,(u) = > c([x, y]) (u(y) — u(x))?, where the sum is
e=[x,y]eE'\OE’

over non-boundary edges. Let the eccentricity e denote the number Const such the
triangulation 7" satisfies conditions (A), (D), (U) from Section 2.4, where (A) and
(D) only hold for every non-boundary edge.

Let T be a non-degenerate uniform adapted triangulation of the branched covering
of Z. We assume that 7" is a simply connected part of T'. For simplicity, we directly
consider the projection of all triangles into C by Prg or Prg; resp.

Lemma 15 (Equicontinuity lemma) (i) Let T’ be contained in an open disc
B, (v) C C where 2r is smaller than the minimum distance of v to any branch
point, but r > 10-h. Denote by h' twice the maximum circumradius of the trian-
glesof T'. Letu : V' — R be a discrete harmonic function. Let z, w € V' with
Euclidean distance |z — w| > h' and such that 3|z — w| < r < dist(zw, 0T")
for some r > 0. Here dist(zw, dT') denotes the distance of the straight
line segment from z to w to the boundary of T'. Then there exists a constant
Const, > 0 such that

~12
|u(z) — u(w)| < Const, - Ef,(u)"/* - (log _r ‘ )
3|z — w]

For |z — w| < k' < r/3 the same inequality holds with |z — w| replaced by h'.
(ii) Let T’ be contained in an open intrinsic disc By, (0) C C about some branch
points O # oo. Let u : V' — R be a discrete harmonic function.

Consider the chart go(z) = (z — 0)Y°, which maps the triangulation
T’ contained in o to an embedded triangulation Tgf in a neighborhood of
the origin in C. Denote by h' twice the maximum circumradius of the tri-
angles of Té. Let z,w € V' with Euclidean distance |go(z) — go(w)| =
[(z — 0)° — (w — 0)Y°| > K’ and such that 3|(z — 0)Y° — (w — 0)"°| <
r < dist(go(@)go(w), 8Tg’) for some r > 0. Here dist(go(z)go (w), dT")
denotes the distance of the straight line segment from go(z) to go(w) to the
boundary of Té. Then there exists a constant Const, > 0 such that

—-1/2
— < Const, - E ()% - (10 d )
u(2) — u(w)| e B @) (log 5o
For |(z — 0)Y0 — (w — 0)Y°| < h' < r/3 the same inequality holds with
[(z — 0)Y0 — (w — 0)Y°] replaced by h'.
(iii) If O = o0 is a branch point, an analogous estimate as in case (ii) holds for all
triangles in the open intrinsic disc By, (O) C C after applying the chart Prg.
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Proof The claims are proved analogously to a similar estimate for quadrilateral
lattices in the plane [37, Equicontinuity Lemma 2.4], see also [37, Section 1 and
Remarks 3.4 and 4.8], using the approach of [26, Section 5.4]. For the sake of
completeness, we present a proof in Appendix A.3.

In case (ii), we consider the harmonic function u as defined on the image triangu-
lation Té. The proof only uses the fact that u satisfies a maximum principle which
still holds in our case. For the third case, we just work with the triangulation 77 /2
under the projection Prg;. O

Lemma 16 Let T be a triangulation of a ramified covering with boundary such
that all angles are in [§, 1 — §] for some w/4 > & > 0. Then there exist constants
consts ,, Consts , > 0 such that for 0 < h < consts , and every functionu : V. — R
we have E7.,(u) < Consts , - ET(u).

Proof Let A € F’ be a triangle with vertices x,y,z € V such that [x, z] is a
boundary edge of 7'. Denote the angle in A at the vertex v € {x, y, z} by a.
First consider the case that A ¢ F), is no boundary triangle. We want to show that

Er,(u) = g cotay (u(y) — u(2))* + 3 cota (u(x) — u(y))*
+5 cotary (u(z) — u(x))> (10)
> Consts - |3 cotary|(u(z) — u(x))>. (11)
holds for some constant Consts > 0. Thus we only need to consider the case o, >

/2. Take Consty = 1/(cot> § —1). As ay, ; > & and a, +ay+a; = m, elementary
calculations imply that

0< 1+Consts-(1—cotay-cota;) = cotay-cota;+cotay(1+Consts)(cot o, +cotay).

This implies (10).
If A € F,, we know that

Cix,zl =cotaf+h-ry, Cley) = cotal +h-ry, Ciy,x] :cotaf%—h-rw
where o denotes the angle at the vertex v in the Euclidean triangle with ver-
tices x, y, z and |ry| < Consts ,,, see Appendix A.1. Therefore, there are constants
consta,p,agﬁig,p > 0 such that for all 0 < 2 < consts , we have E1,(u) >
Consts, | Cpr. 21| (u(2) — u(x))*.

Take Consts, , = max{Const;s ,, Consts}, sum the above inequalities over all such
faces and deduce E/T,(u) — E7(u) < Consts,, - E7(u). Now the claim follows. [

4.2 Convergence of Multi-valued Discrete Harmonic Functions and Discrete
Holomorphic Integrals

As a first step, we can deduce that the uniform limit of a sequence of discrete har-
monic functions is harmonic. To this end, we say that a sequence of triangulated
polygons {7} approximates a domain £2 C C, if for n — oo the following three
quantities tend to zero: the maximal distance from a point of the boundary 97}, to the

@ Springer



23 Page 18 0f 30 Math Phys Anal Geom (2021) 24:23

set 02, the maximal distance from a point of 9£2 to the set 97}, and the maximal
edge length of the triangulation T7,,.

Lemma 17 [7, Lemma 5.2] Let {T,,} be a non-degenerate uniform sequence of
Delaunay triangulations of polygons with boundary approximating a domain 2, such
that no branch point is on 952. Let u, : V, — R be a sequence of discrete har-
monic functions uniformly converging to a continuous function u : 2 — R. Then the
Sfunction u : 2 — R is harmonic.

Theorem 6 (Convergence of multi-valued discrete harmonic functions) Let {T,} be
a non-degenerate uniform sequence of adapted Delaunay triangulations of % with
maximal edge length h, tending to zero as n — o0o. Let z, € V, be a sequence
of vertices converging to a point 7y € % Let P, € R?¢ be a sequence of vectors
converging to a vector P € R, Then the functions ur, p, : V, — R satisfying
ur,,p,(z2n) = 0 converge to ug p : % — R with ug, p(z0) = 0 uniformly on every
compact subset.

Proof We will start with some estimates on compact subsets of % of a special form.
Letw = Prg o p : % — C be the local projection map Prg composed with the
universal covering p. For v € # denote by B, (v) C Z the subset which projects for
7 (v) € C to an open intrinsic dis¢ B, (7 (v)) = 7 (B,(v)) with radius r about 7 (v).
If 7w (v) = oo, we assume that (B, (v)) = C\ By,,(0). We restrict ourselves to the
following cases:

— m(v) = O is a branch point and r = rp(v) > 0 its associated radius defined in
Section 2.3, ' . .
- @) € By \ U By, (0) and )" /8 < r < rp'" /2, where rpy'" /2 1=
O branch point

min ro/2,
O branch point

- m(w)=ocandr =1/p.

Note that the union of these sets Er(v) covers % and every compact set K C Z is
contained in the union of finitely many of these sets.
_ Let B, (v) be one of these sets. Consider those triangles of the given triangulation
T, which are completely contained in B, (v) and denote by 7, (v, r) the connected
component of these triangles which contains v. Choose n such that for all n > n| the
maximal edge length is sufficiently small, for example say &, < rg” " /200. Consider
UG vy = UT,,P,|§, (v.r)- By Lemma 16 and Corollary 1 the sequence of energies
ET . r)( V. (v.ry) 1s bounded. Thus the Equicontinuity Lemma 15 implies that the
function uy wnlvn By has uniformly bounded differences. That is, there exists

a constant Constg p 5 such that for all n > ny and z, w € Vn N E;r(v) we have
T 4

lur, p,(2) — ur, p,(w)| < Consty p s. Lemma 15 also implies that the sequence is
equ1cont1nu0us that is, there exists a function §(g) for ¢ > 0 such that for each n >
nyandz, w €V, ﬂBz +(v) with |z —w| < §(¢) we have |uz, p,(z) —ur, p,(W)| < &.
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Now take a sequence of compact sets K1 C K, C -+ C % such that # =
U;’;l K ;. Assume that K contains all point of the convergent sequence {z,}. Since
K is compact, it is contained in the union of finitely many of the sets considered
above. Therefore, the sequence uz,, p, | ng, is equicontinuous and has uniformly
bounded differences (this bound also depends on Ki). Furthermore, as all z, € K}
and u7, p,(z,) = 0, the sequence ury, p, |\7nﬂ e is uniformly bounded. We deduce
from the Arzela-Ascoli theorem that there is a continuous function #; : K1 — R and
a subsequence {l3} with [; = n; such that Uty , P, CONVerges to u uniformly on K.

Analogously, we see that there is a continuous function u; : K — R and a
subsequence {my} of {{x} with m| = n1, my = I, such that UT,, , Py, CONVEIgES to us
uniformly on K. Clearly, we have u; = u; on K. This procedure can be continued
and eventually we obtain a continuous function u : #Z — R and a subsequence {rny}
of {1,2,3,...} such that Ut,, P, CONVerges uniformly to u on each compact subset

of %. Also, u has the same periods P as ug p and u(z9) = 0. Applying Lemma 17
to bounded domains not containing any branch point, we see that the limit function
u : Z — Ris harmonic in & except possibly at the branch points. But as u is locally
bounded, these singularities can be removeg and therefore the continuous function u
is in fact harmonic on the whole surface %. Thus u = UZG p by our normalization
u(z0) = 0 = uj (20).

Since the limit function u = Ug p is unique, it follows that the whole sequence
ut,,p,, Not just the subsequence ur, ,p, , converges to uj , uniformly on every
compact subset. O

Proof of Theorem 4 Let P,, P € R?¢ be the periods of the real parts ReqblTn V>R
and Re¢>‘l%, : % — R of the discrete and smooth holomorphic integrals, respectively.
Then by Theorem 5 Red)lTn = ur, p, and Red)l% = ug p- Theorem 3, implies that
P, — P asn — oo. Thus we deduce from Theorem 6 that the real parts ReqﬁITn

converge to Req{l@ uniformly on every compact subset. Convergence of the imaginary
parts is proven analogously due to the following Lemma 18. O

Lemma 18 (Conjugate Functions Principle) Let f = (Ref : V>R, Im f: F—
R) be a discrete holomorphic integral. Then ET(Re f) = Er(Imf).

Proof This follows immediately from (5) together with the definitions of the discrete
energies in (3) and (6). O]

5 Improved Convergences of Period Matrices and Holomorphic
Integrals for Polyhedral Surfaces

The techniques applied for adapted triangulations near branch points may also be
used to improve the order of convergence of period matrices and holomorphic inte-
grals for polyhedral surfaces compared to the results obtained in [7]. A polyhedral
surface . is an oriented two-dimensional manifold without boundary which has a
piecewise flat metric with isolated conical singularities. An example is the surface of
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a polyhedron in three-dimensional space. Let T be a geodesic triangulation of the
polyhedral surface .# such that all faces are flat triangles. Note in particular, that all
singular points of the metric are vertices of 7.». On all edges we use cotan weights
given by (1).

If yo > 1/2, we do not adapt the triangulation further. But for singularities O
with ypo < 1/2 we consider a chart g, which maps a neighborhood % of O to
a neighborhood of the origin in C. Furthermore, we can introduce as above “polar
coordinates” (r, ¢) on o with the origin at the vertex O. We map all vertices in
%o to a neighborhood of the origin in C by the chart gp : €p — C, go(r, ¢) =
r70ei70? If yo < 1/2 we demand that the images of any two incident vertices in €
have maximum distance 4. Consider any triangle A in ¥p whose vertex z nearest to
O satisfies |Oz| > ho = h'/?v0) where |Oz| denotes the distance of z to O in .7
As in Section 2.3 we deduce from our assumption that the maximal edge length in A
is smaller than 4 - |Oz|'~70.

Applying the estimates of Sections 3.1 and 3.2, we obtain the following improved
versions of Theorems 2.5 and 2.7 of [7].

Theorem 7 (Energy convergence) For each § > 0 and each smooth multi-valued
harmonic function u : ¥ — R there are two constants Const, s o, const, 5 .o >
0 such that for any adapted triangulation T of . with maximal edge length h <
const, 5. and minimal face angle > § we have

|E7(uly) — Eu)| < Const, 5 & - h.

Theorem 8 (Convergence of discrete period matrices) For each § > 0 there exist
constants Consts o, consts o > 0 such that for any adapted triangulation T of ./
with maximal edge length h < const, 5 & and minimal face angle > § we have

ITr — M| < Consts - h.

Theorem 9 (Convergence of discrete holomorphic integrals) Let {T,,} be a sequence
of non-degenerate uniform adapted triangulations of . with maximal edge length
hy — 0asn — oo. Let v : ¥ — § be the universal covering of .. Denote by
T, the corresponding trzangulatlon ofy such that JT(T ) =Ty Let z,, € Vn be a
sequence of vertices converging to a point 7o € 7. Let A, € Fybea sequence
of faces with its vertices convergmg to zg. Then for each 1 < | < g the discrete
holomorphic integrals ¢T (Red)T :V > R, Im¢T : F — R) normalized
at z, and w, converge uniformly on each compact set to the holomorphic integral
¢>7) ¥ — C normalized at 20-

6 Numerical Experiments
In the following, we present some numerical analysis for our convergence results

detailed above. We are very grateful to Stefan Sechelmann for writing software and
performing numerical experiments.
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Mainly, we apply the scheme described in Section 2, but with some small changes.
In particular, we could use stereographic projection from the sphere S? = CtoC
from the north pole (0o) and the south pole (0) resp. as our charts Prg and Pr%?. We
could then work with Euclidean triangles in the plane C as in the previous sections
or with their preimages on S> = C. For practical reasons, we do not work with these
triangles in S> C R3. Instead, we take the vertices and add straight line segments
in R? between incident vertices. For every original triangle A on S* we obtain a
corresponding triangle AS in R3, see Fig. 2 for some examples of triangulations.

Furthermore, we use an approximation of the discrete energy E7 and of the dis-
crete multi-valued harmonic functions ur,p because we use slightly different weights
instead of those given in Section 2.1. As p is fixed and the maximum edge length &
tends to zero, any angle « in the triangle A and the corresponding angle o in the tri-
angle AS only differ by an error of order /, in particular |« —a| < Consts, 0 Imax (A).
Thus, for uniform Delaunay triangulations which we consider, the weights ¢5(e) =
%(cot aeS + cot ,365 ), using the cotan-formula for the angles of the triangles AS, can
be estimated using the original weights c(e) for 7. More precisely, there is a constant
Consts , such that c(e) - (1 — Consts , - h) < cSe) <cle)- (14 Consts,, - h). This
implies E7(u) - (1 — Consts , - h) < E%(u) < Er(u) - (1 + Consts,,, - h). Thus for
0 < h < 1/Consts , and some constant Constp s 2 , > 0 we obtain similarly as in
the proof of Lemma 13 that

|E3 (3. p) — E(uz,p)| < Constp s g, - h.

As concrete examples we consider two surfaces with known period matrices,
namely the torus .7 of genus 1 with branch points 0.5 4+ 0.4i, —0.3 4+ 0.2i, —0.1,
0.1 — 0.2i and Lawson’s minimal surface . of genus 2 which corresponds to the
hyperelliptic curve uz = 2% — 1 with branch points eikm/ 3.k =0,1,...,5. The
smooth period matrices are [15 ~ 0.175 + 1.017i and [1 ¢ = ﬁ (_21 _21 )

We compare four different types of triangulations of S* which are used as basis for
the computations of the discrete period matrices. Figure 2 shows an example for each
of these four types. In order to simplify calculations and the construction of cycles,
we always use the same triangulation on every sheet of the covering.

Random: We sample points at random on the sphere and then build the correspond-
ing Delaunay triangulation.

Fig.2 Examples of our four types of triangulations used for the torus .7: Random with adapted triangles
(Adapted Random o), Homogeneous with adapted triangles (Adapted Homogeneous [), Random without
adapted triangles (Random ¢)), Homogeneous without adapted triangles (Homogeneous A
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Homogeneous: The points on a sphere are evenly distributed by means of a
Fibonacci spiral. This leads to very ‘regular’ or ‘homogeneous’ triangulations with
triangles which are almost equilateral, except near branch points, which are in
general additional vertices.

These two types of triangulations are directly used for further computations (called
Random ¢ and Homogeneous A). In these two cases the estimates of [7] apply. Our
numerical results are plotted in the lower rows of Figs. 3 and 4. The log-log plots
show that the error behaves indeed like /4 for ‘Random’, where / is the maximal
edge length. This was also observed in the example studied in Section 7.3 of [7].
Nevertheless, for the more regular triangulations using Fibonacci spirals (Homoge-
neous), our numerical evidence indicates a higher order of the error bound, possibly
a linear dependence on /.

According to our new idea of adapted triangulations explained in Section 2.3, we
refine the examples of the two types of triangulations above in a neighborhood of the
branch points by suitably adding vertices (called Adapted Random o and Adapted
Homogeneous [J). Our results in Figs. 3 and 4 confirm that the error between smooth
and discrete period matrices decreases indeed faster in the adapted case. In particular,
the log-log plots in the upper row of Figs. 3 and 4, respectively, show that for our
adapted method the error depends at least linearly on the maximal edge length % (as

O Adapted Random | 0 Adapted Homogeneous |

N N

Q <

2 2

< <

o | (SIS

e &

© ©

< 4 <

o T T T T T T 2 T T T T T T
0.05 0.10 0.20 050 1.00 2.00 0.05 0.10 0.20 0.50 1.00 2.00

_| © Random © A Homogeneous |

o I

< <

2 2

< <

< <

2 2

© ©

< 4 < 2

o T T T T T T o T T T T T T
0.05 0.10 0.20 0.50 1.00 2.00 0.05 0.10 0.20 050 1.00 2.00

Fig. 3 For a variety of examples — for each of the four different types of triangulations respectively — the
plots show the approximation error for the period matrices of the torus 7 plotted over the maximal edge
length of the triangulation. We have added some lines to the log-log-plots. The black line (in all plots)
has slope 1 and corresponds to an error estimate of order /. This is our estimate for the adapted case as
shown in Theorem 3. The green line has slope 2 (order h?), the blue line has slope 3 (order h3), and the
red line has slope 1/2 (order /A, proven in [7]). Our results are scattered, as we only control the maximal
edge length, but no other parameter like for example the minimal angle in the triangles. The plots for the
Homogeneous case (adapted and non-adapted) suggest that the order of the error in terms of the maximal
edge length increases for these more regular triangulations
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Fig.4 For a variety of examples — for each of the four different types of triangulations respectively — the
plots show the approximation error for the period matrices of Lawson’s minimal surface . of genus 2
plotted over the maximal edge length of the triangulation. We have added some lines to the log-log-plots.
The black line (in all plots) has slope 1 and corresponds an estimate of order 4. This is our estimate in the
adapted case as shown in Theorem 3. The green line has slope 2 (order 42), the blue line has slope 3, and
the red line has slope 1/2 (order +/%, proven in [7]). Our results are scattered, as we do only control the
maximal edge length and no other parameter like for example the minimal angle in the triangles. This may
also explain the upward outliers in the plots in the non-adapted cases (Random and Homogeneous). The
plots for the Homogeneous case (adapted and non-adapted) suggest that the order of the error is terms of
the maximal edge length increases for these more regular triangulations

proven in Theorem 3) and is again probably even of higher order for more regular
triangulations using Fibonacci spirals.

Recall that the actual bounds on the approximation error also depend on the angles
in the triangles which differ for all examples we computed. This is one reason why
our numerical results scatter within some domain and even include some outliers like
in the Random and Homogeneous case for Lawson’s minimal surface . in Fig. 4. In
our proof we only use some (rough) estimate of the angles such that our constants in
Theorems 3 and 13 depend only on the minimal angle of the adapted triangulation.
We did not study the dependence of the angles in detail, but our numerical results
suggest that the order of convergence also depends significantly on further parameters
of the triangulations, as regularity and the distribution of angles in the triangles.

Appendix A.1:Interpolation Function on Boundary Triangles
and Estimates on Corresponding Edge Weights

In the following, we expose the calculations for the energy of the interpolation
function and the corresponding edge weights.
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Let Alx, y, z] € F, be a boundary triangle. Without loss of generality, we assume
that the vertices are labelled such that x € B,(0) and y, z € C\ B,(0). Therefore,
the triangle A[x, y, z] is bounded by two straight edges [x, y] and [x, z] and by the
trace of the curve s : [0,1] — C, s(¥) = %, connecting y and z which is in
general a circular arc. We parametrize this triangle by

p:[0,1] x [0, 1] = Alx,y,z], p(r,0)=x+0o(s(r) —x).

Note that p is bijective for o # 0. In this parametrization, the interpolation function
iSua(r,o) := Itu(p(r,0)) = uy + 0y — uy + t(u; — uy)) as explained in
Section 2.1. Here we use the notation u,, = u(v) for the values of the given smooth
function u at the vertices x, y, z. Therefore, we obtain

1 1

f \VITM\2=f f Du(zr,a)Dp~ (p(r, 0)(Dp~ (p(zr,0))) (Dua(z, 0))" |det Dp(z, o)|dvdo
0 Jo

Alx,y,z]

/'/1 <(u_ 215 =3 = 20Re((s(0) = DT @) + 215 P
0 ) Im((s(7) — x)s(1) 2
Is'(x)[?
[Im((s(z) — x)s'(1))|?
27[s'(7)[> —2Re((s (1) —x)s' (7))

U —uy) (U —Uy — det Dp(t, o)|drd
F(uyv —uy) (U —uy) (G @) — 05 @)L ) etDp(z, o)|drdo

1/1 ((m ) Is(t) — x|* — 2tRe((s(v) — x)s"(x)) + 2|5/ (D) ?
2.Jo ) [Tm((s (r) — x)s'(x))]
Is'(0))?
Im((s(7) — x)s'(7))]
2t)5(r) > — 2Re((s(r) — x)s’(r))) "
[Im((s(t) — x)s'(7))|

+(uy — uX)2

+(uy - MX)Z

+(uy - u.x)(uz - uy)

12

as Dua(r,0) = (o(u; — uy),uy — ux + t(u; — uy)), Dp(r,0) =

Re(s'(7)) R - —
<Zh§g,§2; Irﬁgg; - 3 ) and det(Dp(t, o)) = oIm((s(t) — x)s(z)). Thus we
deduce that

\VIrul®

Alx,y,z2]

Cle, 1 @(x) — u())? + Cly 21 (y) — u(2)* + Cpzx)(u(z) — u(x))?,

— 2 _
where C[x’y]: L= DI @ +Re((s(1) ~ (D) .

[Im((s(r) = x)s' ()]

o _ 1/1 |S(T) —X|2 + T(T — l)ls (‘l,')l2 +Re((s(f) _X)S/(T))d'[ (14)
[y.2] [Im((s(z) — x)s'(1))|

Clox] = = / TS (@ —Re((s(0) = 0)5'@) (15)
[z.x] 2Jo Im((s(t) — x)s' (7))

This gives an explicit way to calculate the edge weights. Note that by the same
method we can obtain the usual cotan-weights on the Euclidean triangle with vertices
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x,y,z,if weuse sg(t) =y +t(z — y) instead of s(¢) for ¢ € [0, 1]. The function sg
is the usual linear parametrization of the straight edge from y to z.

An important observation is that these seemingly ‘complicated’ weights are in
fact only small perturbations of the usual cotan-weights if the edge length is small
enough. To see this, we will estimate the quantities in the above integrals compared
to the corresponding quantities for sg.

Proof of the estimate in Remark 1 We assume that there is some § > 0 such that all
angles in the triangle A[x, y, z] are in [§, 7 — §] and also all angles of the Euclidean
triangle with vertices x, y, z are in [§, w —&]. In the following, we will always assume
that T € [0, 1] as in the integral terms above. Also, we are not interested in the best
possible estimates, any constant, depending only on the indicated parameters, will
suffice.

First note that [Im((s(t) — x)s’(t))| = |s(t) — x||s’()|sin8 and |Im((sg(z) —
x)sg()| = |sp(r) — x||z — y|siné. Denote by h the maximal edge length of
Alx, y,z], so h > max{|y — x|, |z — x|, length(s)}. As A[x, y, z] is a boundary
triangle, we have

02

(p+h)? =

s'(1)

s (@) < (,0+h)2'
sg(T)

Cly—zl P2

s(t)—x

Furthermore, we deduce that 1 — Consts , - h < TGS

< 1+ Consts , - h as

(T — 1)(y—z)2 1

s(t) —sg(7) . ‘< h
z+t(y—20 (G —x)+t@—y)| psin?s

sg(t) —x

Further, note that using the sine law

se(m —x| _J0-—0+r@=— _ 1

2
sin“ § < = —.
S sl ly —zl =7 T sing

Combining these estimates, we have

ls(z) — se(@)ls"(7)] < @ sz @Il sS@ | L < Consts., - h.
Im((sp(2) =0)sp(@) — se@) —x||se(D)] sind
/ 2 l / 2
SO Y@ WOF o
Im((sg (t) — x)sg ()] se(@)] Isg(Olse(r) — x|sind
s (z) — x|? _ @ —xp? lsE(r) — x|

——— < I, - < Consts ,, - h.
Im((sg(r) —x)sp (o) Be@ —x17 [sg(@)lse(t) — x[sind

Furthermore, as h < p/2,

Ise(@) = xlls'(@) =5 @] _ '@ =55 @ _ Iy =zl v =2’ +2rz -2 _ 6
Im((s£(r) —x)sp(0)] |1y —zlsing e+t —2)Psing " psing
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Therefore, we obtain
Im((s() —x)s'(1)
Im((sg(t) — x)sg (7))
+Im((S(f) — x)(s' (1) — s5(1)))
Im((sg(7) — x)s5 (7))

_ | Im((s(0) — s£(0))s(D)
Im((s(v) = 2)s (7))

< Const, 5 - h

Re((s(t) — s£(1))s'(7))
Im((sg (1) — x)s5 (7))

Re((s(7) — x)5'(7)) — Re((sp(v) — x)s7, (7)) ‘ B

Im((sg (v) — )5}, (7)) B

| Re(GE(D) = 0)6'(@) — sp(0)
Im((s () — x)sp (7))

Re((s(1)—x)s' (7)) Re((sg (1)=x)sy (7))

Im((Sb (1)—x)s% (1)) Im((sg (t)—x)s (7))

Const’ ' s Denote by oe € [§, m — 8] the angle in the Euclidean triangle with vertices
X, y, z Then the previous estimates imply

/
< Constp’a -h

This also implies + Const) s - h <

2

ot [ A= 00 @F e 5 (0) I (P
|Clayy = 5e0tel] < 5 7
o Im((sg(t) — x)sg ()]

In(s() -0V @) _ 1‘+ SOE |5 o)

[Re((s(x) = x)s' (7))

Im((s()—x)s'(@)  _ |
Im((sz (1) =x)s5 (1)

Im((sg(t) — x)sE ()|
n [Re((s(7) — x)s'(7)) — Re((sp(7) — x)S%(t))l) d

m((se (r) = x)sp ()]

< Const)s - h.
Similarly, we can deduce that |Cly, ;] — Scotaf| < < Const)s - h and |Cz x —
%cotay | < Const’” - h. O

Appendix A.2: Proof of Lemma 11

Note that as u is smooth, there exist constants Const, ,, const, , > 0 such that for
0 < h < const, , we have |u(x) — u(y)|*/|x — y|> < Consts_, ~m§i(||D1u(w)||2 <
w
Const, , for all edges e = [x, y] of boundary triangles in F, with edge lengths
smaller than .
Using our estimates of Appendix A.l1 we deduce that there exists a constant
Consts , such that under our assumptions on angles and edge lengths we have the
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following estimates: For every boundary triangle A[x,y,z] € F, and with the
notation of Appendix A.1

— 2 / 2
|2 () x|_ < Consts , ly —x 2 s @)l —
ITm((s (1) — x)5' (7)) |2 IIm((s () — x)s5' (7)) 2
[Re((s(t) — x)s'(1))]
IIm((s (1) — x)s'(7))|?

lz—y

< Consts , |y — x|z — |

< Consts .

Now formula (12) leads to the estimate

/ \VIrul> < Consts , - Area(A[x, y, z]), (16)
Alx,y,z]
where Consts , , < Const; , - maﬁ | D'u(w)||>. Summing up these energies, we
we

obtain

Ep,w) = Y Er,(w) =Y IVIrul* < Y Consts ., - Area(Alx, y, z])
A€F, AEF,JA[X’},’Z] A€F,

< Consts p,u - Area(By14(0) \ By—1(0)) < Consts - 4hp - d < Const, s , 9 - h,

where d denotes the degree of the covering map for Z.

Appendix A.3: Proof of Equicontinuity Lemma 15

First note that condition (D) from Section 2.4 implies that for every path in a non-
degenerate uniform adapted triangulation 7" with consecutive vertices vgvy . . . v, We
have

m

Z Const
Eugupon =3 et ve]) - o) —ue-1)® > Y T (uwg) — ulvp-1))?

e

k=1 k=1
m 2
C t 1
> oens T (;u(vk)—u(vk—l))
_ SO o) —uo)?. (T)
e-m

Here e denotes the eccentricity as defined in Section 4.1 and for the last estimate
we have used Schwarz’s inequality.

Now consider a simply connected triangulation 7’ with boundary contained in an
open disc B,(v) C C. This is the assumption for part (i) of the lemma. In the case
of part (ii), we consider the image triangulation Tg’ by the chart gp(z) = (z — 0)7°.
By abuse of notation, we still denote this image triangulation by 7. Also, we denote
the vertices of 7/ by Z and W, which are the actual vertices z, w in the first case and
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the images Z = gp(z), W = go (w) in the case of a branch point. For simplicity, we
assume that the edges between vertices are straight line segments, as we do not need
the actual, possibly curved edges.

Letu : V' — R be any function which assumes its maximum and its minimum on
the boundary for any subgraph of 7”. Let Z, W be two distinct interior vertices of T".
Denote by ZW the straight line segment joining these points. Let dist (ZW, dT") be
the Euclidean distance of this straight line segment to the curve of boundary edges.
We assume that |Z — W| < r/3 < dist(ZW, 3T")/3 for some r > 0. Let‘Zh/ v(ti/?n()te

| Z—

twice the maximum circumradius of the triangles of 7’. Let m = =571 be

the largest integer smaller than # We consider auxiliary rectangles Ry, k =
1,...,m, which are centered at (Z + W)/2 with one pair of sides parallel to ZW
with length ZW + 2k - i’ and other pair of sides orthogonal to ZW of length 2k - A'.
Then the interior of R, k = 1, ..., m, is covered by triangles of T’. Denote by V/
the set of vertices contained in Ry \ Rx_1, where Rp = ZW. Then any two vertices
VA, UB € Vk/ may be connected by a path vgvy ... vy with vg = v, vy = vp and all
vertices v; € V/ as k' is larger than any edge length.

Without loss of generality, assume that u(Z) > u(W). As u assumes its maximum
and minimum on the boundary, there exists Zy, Wy € Vk’ such that u(Zy) > u(Z) >
u(W) > u(Wy). The length of the path joining Z; and Wy is at most the number of
vertices in Vk/. The set of these vertices can be covered by at most Const- (|Z — W|+
4kh')/ k' discs of radius h’/2. Therefore, by condition (U) of Section 2.4 the number
of vertices in V/ is less than Const- e - (|Z — W|/ h’ +4k). Therefore, we can estimate
the energy for a path vov; ... vy in V) from vy = Zi, vy = Wi using (17)

Eze.w () > e-(Const»e-((\:gisxtw/h/+4k)) - (u(Z) — u(W))* = Const - (u(Z)ZZM(W»Z ) kh/+|£l,—W|/4'
Summing these estimates and estimating » ;. m >  Const
r—|Z—W|
-2 t
W mZowia veeet
m 2 r—=|Z-Ww|
u(Z) —u(W)) / 2 dt
E'(u) > E u) > Const: —————— - _
()/; Zew (1) > — . TTZ—Wia
Z) — u(W))? 2r—1Z-Ww
> Const. (u(Z2) 2u( ) log r—| |
e 4h' +1Z - W|
Z) —u(W))?
> Const - w(2) ZM( ) -log d .
e 3max{|Z — W|, h'}

This implies the desired inequalities (8) and (9).
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