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Abstract: Pneumonia due to respiratory infection with most prominently bacteria, but also viruses,
fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults
and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has
helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines
and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and
high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global
threat. As such, a better understanding of pathogen virulence on the one, and the development of
innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of
men against microbes. Recent data show that the secretome of bacteria consists not only of soluble
mediators of virulence but also to a significant proportion of extracellular vesicles—lipid bilayer-
delimited particles that form integral mediators of intercellular communication. Extracellular vesicles
are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive
bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane
vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens
including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence
in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity.
In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their
natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such
vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K.
pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and
their immunogenic potential could pave the way to novel treatment strategies in pneumonia and
effective preventive approaches.

Keywords: pneumonia; lower respiratory tract infection; extracellular vesicles; outer membrane
vesicles; membrane vesicles; vaccine

1. Microbial Etiology of Lower Respiratory Tract Infections

Pneumonia as the most common lower respiratory tract infection is the leading cause
of infection-associated death worldwide, and the fourth most common cause of death
globally [1,2]. Pneumonia is commonly classified into community-acquired pneumonia
(CAP) and hospital-acquired pneumonia (HAP) [3], with HAP as the most frequent health
care-associated infection [4]. Bacteria traditionally form the main causative pathogens
of pneumonia [5]. While this is still the case for HAP, where Staphylococcus aureus and
Pseudomonas aeruginosa dominate [6], vaccinations have changed the microbial etiology in
CAP. In Europe Streptococcus pneumoniae (Pneumococcus) and Haemophilus influenzae are
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still the leading causes [7,8], whereas in the United States respiratory viruses have become
more frequently detected as possible causes of CAP as compared to bacterial pathogens [9],
as summarized in Table 1. Epidemiological data suggest a U-shaped age distribution in
pneumonia patients, with both younger children and elderly as main risk groups [10]. In
addition, the risk of pulmonary infections is increased in patients with chronic respiratory
diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF)
and in immunocompromised individuals [11–14].

Table 1. Microbial etiology of lower respiratory tract infections in different conditions [6–9,11,12,15–20].

Disease Common Pathogens Proportion * Less Common Pathogens

CAP

Streptococcus pneumoniae
Haemophilus influenzae

Influenza, other respiratory viruses

13–68%
1–45%

up to 71%

Mycoplasma pneumoniae
Legionella pneumophila
Staphylococcus aureus
Moraxella catarrhalis
Klebsiella pneumoniae

Mycobacterium tuberculosis

HAP Staphylococcus aureus
Pseudomonas aeruginosa

15–36%
17–28%

Klebsiella pneumoniae
Acinetobacter baumannii

Enterobacter spp.
Escherichia coli

Stenotrophomonas maltophilia
Serratia spp.

Predisposition

COPD

Haemophilus influenzae
Streptococcus pneumoniae

Haemophilus parainfluenzae
Moraxella catarrhalis

Influenza, other respiratory viruses

14–39%
13–25%
13–25%
7–13%

20–40%

Pseudomonas aeruginosa
Chlamydia pneumoniae

Mycoplasma pneumoniae

CF

Staphylococcus aureus
Pseudomonas aeruginosa

Stenotrophomonas maltophilia
Haemophilus influenzae

Achromobacter spp.

45–80%
20–75%
10–18%
5–30%
3–30%

Burkholderia cenocepacia
Mycobacterium abscessus

Mycobacterium
avium-intracellulare

* Proportion of all patients in which pathogens were identified. Underlying data were published before the
SARS-CoV-2 pandemic. CAP, community-acquired pneumonia; HAP, hospital-acquired pneumonia; COPD,
chronic obstructive pulmonary disease; CF, cystic fibrosis.

Advances in antimicrobial antibiotic therapy have drastically refined the treatment
of pulmonary infections [5]. Additionally, the development of vaccines against common
causes of lower respiratory tract infections, including S. pneumoniae, H. influenzae type
B, Bordetella pertussis, and seasonal influenza, has significantly reduced, albeit not elimi-
nated, morbidity and mortality due to respective infections [21–23]. Concomitantly, new
challenges have arisen for the treatment of patients with pneumonia. First, these include
adaptive changes in microbial properties, like the rise of strains resistant to current vaccina-
tions and established antibiotic regimes [24]. Second, a series of new zoonotic respiratory
pathogens causing virgin soil epidemics in humans have arisen of late including swine and
avian flu, and coronaviruses such as SARS, MERS, and SARS-CoV-2. Third, the pathophysi-
ology of both acute and long-term complications of pneumonia including acute respiratory
distress syndrome, sepsis, and cardiovascular complications, remain widely unknown and,
therefore, at present difficult to treat or prevent [25–29].

Of late, extracellular membrane vesicles released from bacteria are increasingly recog-
nized as molecular shuttles of nucleic acids, proteins, lipids, and carbohydrates involved in
bacterial pathogenicity with the ability to target and (de)regulate host cells. Consequently,
bacterial membrane vesicles start to receive noticeable attention for their potential role
as detrimental mediators in bacterial infections [30]. In this review we summarize recent
insights into the emerging role of bacterial membrane vesicles in the pathophysiology of
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pneumonia and its complications, and on their adoption as auspicious targets for future
preventive and therapeutic approaches.

2. (Outer) Membrane Vesicles—Biogenesis, Characteristics, and Analytical Methods

Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are spontaneously
released from cells but, unlike cells, cannot replicate [31]. The release of EVs is a highly
conserved mechanism in the vast majority of cells and organisms. As such, it is not limited
to complex eukaryotic organisms, but equally present in bacteria, archaea, fungi, and
parasites [32]. Both Gram-positive and Gram-negative bacteria produce EVs, which are
referred to as membrane vesicles (MVs) and outer membrane vesicles (OMVs), respectively,
based on their proposed mechanism or release [30]: while OMVs are thought to bleb from
the outer membrane of Gram-negative bacteria and as such encapsulate periplasmatic
content, MVs are considered to bud from the cytoplasmatic membrane of Gram-positive
bacteria and accordingly, contain cytoplasmatic components [33,34]. In addition to OMVs,
it has become clear that Gram-negative bacteria also release double and even triple mem-
brane vesicles, which could be produced upon bacterial lysis or as a result of encapsulated
bacteriophages respectively, even though these hypotheses need to be affirmed by ap-
propriate testing and, thus, remain subjects of current research [34,35]. Yet, triggers and
signaling pathways stimulating (O)MV release, and the (selective) transfer of cargo into the
vesicles and the molecular mechanisms regulating membrane-release remain incompletely
understood. In contrast to fungi and mammalian cells, the mechanism of EV formation
in intracellular multivesicular bodies, which release exosomes upon fusion with the cell
membrane, does not seem to play a role in bacteria [31,33,36].

(O)MVs are sized between 20 and 400 nm and contain a variety of cargo, including both
cytosolic and surface proteins, nucleic acids, and virulence factors [30,32,34,37]. Notably,
membrane composition of OMVs and MVs differs profoundly as a function of the releasing
organism. For example, high levels of lipopolysaccharide (LPS) are omnipresent on OMVs,
but non-existent on MVs [34]. OMVs were first discovered in the 1960s in Escherichia coli
and considered as extracellular globules transporting the extracellular lipoglycopeptide
consisting of LPS and polysaccharides [33,38]. In contrast, Gram-positive bacteria, and
other organisms with thick cell walls, were long considered incapable of releasing EVs. This
assumption led to a protracted discovery of MVs and a sustained knowledge gap regarding
the mechanisms by which MVs break through the bacterial cell wall upon their release [33].
Although important aspects of (O)MV genesis thus remain incompletely understood, recent
studies have begun to shed light on the biological role of (O)MVs. Specifically, (O)MVs
were found to play important roles in bacterial virulence, mediate horizontal gene transfer
and other forms of cell-to-cell communication, and to confer immunomodulatory effects in
host organisms [34].

Due to considerable heterogeneity in terminology, characterization, and analysis of
EVs in initial studies—including those on (O)MVs—rigorous efforts have been undertaken
of late with the aim of methodological standardization, and resulted in recent guidelines
by the International Society for Extracellular Vesicles [39]. A broad variety of methods
are presently used for both purification and isolation of EVs and in analytical approaches.
Purification can be achieved by either (ultra-) centrifugation, size exclusion chromatogra-
phy, affinity-based approaches, and other, less frequently applied methods, limiting direct
comparability of purified EV samples in analytical and functional assays [40]. Key methods
for the characterization of EVs/(O)MVs comprise (i) electron microscopy, which yields
information on EV/(O)MV shape and size, yet is poorly suitable for high-throughput anal-
ysis [41]; (ii) light scattering-based methods, e.g., nanoparticle tracking analysis that allows
for determination of EV/(O)MV size distribution and concentration yet without direct
visualization [42]; and (iii) approaches to identify the molecular composition of EV/(O)MV.
Among the latter, flow cytometry is most commonly used for the characterization of sur-
face molecules [43], while classical biochemical and molecular biological methods and in
particular innovative OMICS approaches can deliver in-depth analysis of important classes
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of EV/(O)MV cargo including proteins, nucleic acids, and lipids [39,44–46]. As none of
these methods provides a comprehensive characterization of EVs/(O)MVs on its own, a
panel of methods is ideally employed in order to provide robust data on EVs’/(O)MVs’
physicochemical and biochemical properties.

3. (O)MVs in Pneumonia—Release and Cargo

Although the species of pathogens causing bacterial pneumonia are manifold, almost
all strains release OMVs or MVs, respectively. In pneumonia, (O)MVs may be released
by both common bacterial strains—like S. pneumoniae [47]—but also by less common
pathogens such as P. aeruginosa, L. pneumophila, M. tuberculosis, A. baumannii, and M.
catarrhalis [48–52]. These (O)MVs are increasingly recognized as essential parts of the
secretome of lung pathogens that may carry a variety of cargo, which includes, but is
not limited to proteins, nucleic acids, fatty acids, lipoproteins, and glycolipids [47–50].
Importantly, (O)MVs can transport relevant virulence factors such as pneumolysin in S.
pneumoniae-secreted MVs, cystic fibrosis transductance regulator (CFTR) inhibitory factor
(Cif) in P. aeruginosa-released OMVs, and macrophage infectivity potentiator (Mip) in L.
pneumophila-derived OMVs [47,49,53–55]. While (O)MV cargo thus includes potentially
harmful substances, limited data are available on the distribution of virulence factors as
soluble mediators versus its encapsulated form in (O)MVs. Notably, the protein content of
L. pneumophila-released OMVs and the composition of the respective soluble fraction of
the extracellular fluid differ not only quantitatively, but also qualitatively. Specifically, the
majority of virulence factors were identified in OMVs, including several proteins like Mip
and flagellin uniquely present in OMVs but not detectable in the extracellular fluid [49].
However, further investigations are needed to assess the distribution of virulence factors
for other pathogens, and to evaluate the relevance of this subcompartmentalization for the
pathogenicity of the respective bacteria.

Interestingly, accumulating data indicate that host and environmental factors are able
to modify both quantity of (O)MV release and quality of (O)MV cargo. For example, P.
aeruginosa isolates from CF patients release OMVs bearing higher concentrations of the
P. aeruginosa aminopeptidase (PaAP) as compared to an environmental isolate, which
was demonstrated to favor OMV binding to epithelial cells, even though the underly-
ing mechanisms of enhanced OMV-binding remain elusive [56,57]. As such, the specific
microenvironment of a disorder may directly foster the development of highly virulent
pathogens that release potent OMVs in the alveolar compartment. Similarly, antibiotic treat-
ment against the colonialization with pathogens may trigger OMV release. For example, A.
baumannii produces more than twofold higher concentrations of β-lactamase-, protease-,
and other protein-loaded OMVs when treated with imipenem [58]. Bacterial β-lactamases
are able to deactivate a variety of β-lactam antibiotics (e.g., imipenem), pointing towards
adaptive mechanisms that bacteria can upregulate in response to extrinsic stress [58]. In
line with this notion, β-lactamases in OMVs from M. catarrhalis were found to reduce antibi-
otic effects of amoxicillin on S. pneumoniae in vitro [52]. These observations highlight the
potential of (O)MVs to modulate pharmacological substances; a point of consideration that
should be taken into account in the future design of treatment regimens against bacterial
lung infections and in the growing problem of emerging antibiotic resistance.

Several pathogenic bacterial species causing atypical pneumonia also evolved in-
genious strategies to traverse host epithelial barriers by hijacking phagocytic host cells,
i.e., alveolar macrophages. In this “Trojan Horse” mechanism M. tuberculosis is phago-
cytosed and transported across the gas–blood barrier using diapedesis of the infected
macrophage [59]. Moreover, mycobacteria, e.g., M. tuberculosis and most other pathogenic
strains of this species, and legionella, e.g., L. pneumophilia, exploit macrophages as their
replicative niche for most of the lifecycle; a competence that constitutes a defining feature
of the species’ pathogenicity [60,61]. A prerequisite for this very efficient strategy is the
ability of these intracellular pathogens to release molecules that modulate the host immune
response. Here, (O)MVs emerge as mediators of pathogenicity that allow bacteria to outwit,
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exploit, or bypass host defense mechanisms. Specifically, EVs released from mycobacteria-
infected macrophages bear bacterial cargo, and in turn activate proinflammatory responses
and modulate innate immune mechanisms [62–67]. Of note, recent data show that vir-
ulent mediators of M. tuberculosis comprising bacterial lipoglycans and lipoproteins are
released from macrophages in bacterial MVs as opposed to “regular” macrophage-derived
EVs [68]. So far, insight into the intracellular biogenesis and release of (O)MV in host cells
is limited; yet it seems plausible that the intracellular milieu of the host cell could have
a major influence on (O)MV characteristics and quantity. Taken together, environmental
circumstances and the intra- and extracellular host milieu have a considerable influence
on bacterial (O)MV cargo and release. Therefore, these important confounders should be
recognized in a comparison of the modulating effects of (O)MVs of diverse bacterial origin
on the infected tissue.

4. The Interaction of (O)MVs with The Respiratory Epithelium—A First Step
in Immunoactivation

Upon colonialization of the mucosal surfaces of bronchi and bronchioles, and/or the
alveolar compartment with bacterial pathogens the epithelial barrier forms the primary
antimicrobial barrier but concomitantly also the first surface of interaction with (O)MVs.
(O)MVs bind to the bronchial epithelium, as shown for P. aeruginosa OMVs [69], and alveo-
lar epithelial cells, as demonstrated for A. baumannii OMVs and S. pneumoniae MVs [51,70].
Notably, for EVs an important role of CD44 in the EV binding process has been well
documented [71,72]. As CD44 is the hyaluronic receptor, and hyaluronan forms an im-
portant constituent of both the alveolar epithelial glycocalyx and airway mucus, a similar
“attachment chemistry” may also exist in (O)MVs but remains to be identified [73,74].
Interestingly, the (O)MV–epithelial interaction is not limited to membrane binding, since
P. aeruginosa OMVs are able to fuse with bronchial epithelial cells [75], and (O)MVs from
several bacteria such as A. baumannii and S. pneumoniae can be incorporated by alveolar
epithelial cells [51,70,76]. In this context it is worth to speculate whether (O)MVs could
actually be transcytosed through the alveolar barrier allowing for infectious dissemination
throughout the body. While such mechanisms were not described in the lung yet, it was
already shown in the gut that (O)MVs are indeed able to cross epithelial barriers and enter
the vascular system [77,78]. On the functional level, OMVs from a variety of lung pathogens
including P. aeruginosa, L. pneumophila, A. baumannii, K. pneumoniae, M. catarrhalis, and S.
maltophilia can induce the release of proinflammatory mediators from the epithelium. The
generated cytokines include but are not limited to interleukin (IL)-1β, IL-6, IL-7, IL-8, IL-13,
tumor necrosis factor α (TNF-α), interferon-γ (IFNγ), granulocyte colony-stimulating fac-
tor (G-CSF), and monocyte chemoattractant protein 1 (MCP-1) [49,56,79–82]. While these
findings document a considerable range of cytokines released from the epithelium upon
the OMV challenge, the underlying mechanisms how OMVs trigger cytokine release from
epithelial cells remain largely unknown. That notwithstanding, the resulting epithelial
cytokine responses do have a major impact on the immune response to pathogens and,
importantly, also on alveolar barrier function. P. aeruginosa OMV challenge was shown
to be sufficient to induce alveolar barrier failure, as indicated by cellular infiltration and
protein leak into the alveolar space [83]. Other studies also revealed cytotoxic effects of
OMVs from L. pneumophila, A. baumannii, and S. maltophilia on the alveolar epithelium, as
indicated by epithelial delamination, mitochondrial fragmentation, and the development
of a necrotic phenotype [51,82,84]. In the case of A. baumannii OMVs may carry the outer
membrane protein A (OmpAb), which activates the host GTPase dynamin-related protein
1 (DRP1) in alveolar epithelial cells in vitro [51]. DRP1 activation leads to mitochondrial
fragmentation, production of reactive oxygen species, and, eventually, epithelial cell death.
Both bacterial/OMV-transported OmpAb and its activation of DRP1 were shown to play
important roles in the virulence of A. baumannii as bacterial loss of OmpAb reduced bacterial
growth and systemic spread in vivo, and DRP1 RNA interference prevented OMV-induced
epithelial damage [51]. Whereas this recently identified mechanism of OMV-induced mito-
chondrial dysfunction sparks efforts to understand OMV-mediated epithelial cell injury,
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further studies are needed to understand whether this pathway may constitute a common
pathogenic mechanism shared by other pulmonary pathogens in the induction of alveolar
barrier disruption as hallmark of respiratory failure.

Pulmonary epithelial dysfunction plays a particularly important role in CF. Affected
patients suffer from genetically determined dysfunction of the anion channel cystic fi-
brosis transmembrane conductance regulator (CFTR), which causes decreased chloride
and bicarbonate secretion from the epithelium, resulting in airway surface dehydration
and impaired mucociliary clearance [16,85]. The resulting highly viscous mucoid plaques
within the airways form a fertile breeding ground for infections, which are responsible
for a high proportion of CF morbidity and are commonly caused by methicillin-resistant
S. aureus, and opportunistic respiratory pathogens such as P. aeruginosa [17,86]. CFTR
mutations are classified into six groups, with class I to III comprising no residual CFTR
function, whereas class IV to VI maintain residual CFTR function, which is highly predic-
tive for disease outcome [16]. Accordingly, inhibitory effects on residual CFTR should be
avoided as they further worsen the clinical outcome in CF patients. P. aeruginosa—being
one of the main infectious agents in CF—releases OMVs that bind to airway epithelial cells
and interact specifically with cholesterol-rich lipid rafts and the neural Wiskott–Aldrich
syndrome protein (N-WASP), which mediates the interaction of extracellular ligands with
the actin cytoskeleton [69,75]. P. aeruginosa-secreted OMVs transport various virulence
factors, i.e., β-lactamases, hemolytic phospholipase C, and, as aforementioned, Cif [75].
As such, OMVs can inhibit epithelial CFTR in a Cif-dependent manner [75]. Specifically,
Cif inhibits the deubiquinating enzyme ubiquitin specific peptidase 10 (USP10), thereby
reducing the USP10-mediated deubiquination of CFTR and promoting CFTR trafficking to
and degradation in lysosomes [87]. As a result, Cif inhibits physiological cellular functions
that depend on intact CFTR function [88]. Reduced USP10 activity in response to Cif
also increases degradation of the transporter associated with antigen processing 1 (TAP1),
lowering antigen presentation on major histocompatibility complex-I (MHC-I) molecules
on epithelial cells through decreased peptide antigen translocation into the endoplasmic
reticulum, which subsequently reduces the adaptive immune response [89]. Hence, P.
aeruginosa OMVs may initiate a vicious cycle of opportunistic infection resulting in a wors-
ening of mucociliary clearance and restriction of a competent immune response, which
further increase the susceptibility to bacterial and other infections. An initial approach
to overcome this pathophysiology by reducing membrane cholesterol by cyclodextrins
(hydroxy-propyl-β-cyclodextrin and methyl-β-cyclodextrin) proved efficient in limiting
the binding of P. aeruginosa-released OMVs to epithelial lipid rafts and thus restoring
Cl− secretion in airway epithelial cells in vitro [69]. Future research will have to probe
whether strategies to reduce membrane cholesterol levels in vivo by, e.g., statins or dietary
restrictions may similarly reduce OMV-binding to epithelial target cells and thus overall
bacterial pathogenicity.

5. The Effect of (O)MVs on Innate Immunity—Novel Regulators of Immune Response

Alongside the interaction of (O)MVs with the lung epithelium their role in facilitating
a proinflammatory response that activates innate immune cells has received considerable
attention (Figure 1). Binding and uptake of (O)MVs was also shown for cells of the in-
nate immune system. In ex vivo experiments, L. pneumophila OMVs primarily bind to
macrophages within human tissue sections [84] and are subsequently internalized in a
predominantly phagocytosis-independent manner [90]. Similarly, MVs from S. pneumoniae
can be incorporated into both macrophages and dendritic cells (DCs), with uptake into DCs
happening noticeably faster and again at least partially independent of phagocytosis [70,76].
(O)MVs induce inflammatory activation of innate immune cells, as reflected by increased
release of cytokines including IL-1β, IL-6, IL-8, TNF-α, and CXCL2 from macrophages
exposed to (O)MVs from P. aeruginosa, L. pneumophila, H. influenzae, S. pneumonia, A. bau-
mannii, or M. catarrhalis [90–95]. In DCs, MVs from S. pneumoniae were likewise shown to
increase the production of IL-6, IL-8, IL-10, and TNF-α, even though associated functional
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consequences on DC activity with respect to phagocytosis, migration to lymph nodes,
and expression of costimulatory molecules remain unclear [70,76]. Analysis of underlying
signaling mechanisms revealed that the stimulation of innate immune cells by (O)MVs
is mediated via unique activation pathways. For example, P. aeruginosa-secreted OMVs
trigger NLRP3 inflammasome activation, resulting in macrophage activation and IL-1β pro-
duction and release [91,92]. This macrophage activation seems to be essentially dependent
on toll-like receptor (TLRs)-signaling that leads to non-canonical inflammasome-dependent
caspase-11 activation, which neglects the canonical AIM2 and NLRC4 inflammasome chal-
lenge [92]. Murine caspase-11 has two human homologues, caspase-4 and caspase-5, of
which caspase-5 has been identified to be specifically activated by the OMV interaction
with macrophages, whereas cytoplasmic LPS results in caspase-4 activation [92]. Since LPS
is expected to be present on all OMVs one could speculate that LPS also accounts for TLR-
dependent caspase-5 activation upon challenge with P. aeruginosa-derived OMVs. Indeed,
evidence was provided that inhibition of LPS on P. aeruginosa OMVs markedly reduced
macrophage activation, as indicated by decreased IL-6, TNF-α and CXCL2 release [93].
Nonetheless, further studies will have to consolidate whether macrophage activation
by OMVs via the non-canonical inflammasome pathway is in fact LPS-dependent, and
whether this potential mechanism can be translated to other pathogens.

Similar to P. aeruginosa, OMVs released from L. pneumophila and A. baumannii also acti-
vate macrophages in a TLR-dependent manner [95,96]. A proinflammatory response in un-
infected macrophages can be initiated in a TLR- and myeloid differentiation factor (MyD88)-
dependent way. In the case of L. pneumophila TLR2 is required for bystander macrophage
polarization by OMVs carrying pathogen-associated molecular patterns (PAMPs) [96],
which goes in line with the observation that OMVs quantitatively enhance proinflamma-
tory cytokine secretion from initially classically activated macrophages [97]. While this
activation results at first in a suppressed bacterial expansion, OMVs subsequently promote
bacterial growth, as demonstrated for intracellular L. pneumophila replication by miRNA-
146a-dependent Interleukin-1 receptor-associated kinase 1 (IRAK1) degradation within
macrophages later during infection [97]. Additionally, L. pneumophila-secreted OMVs can
attenuate phagosome–lysosome fusion in macrophages, thus further contributing to the
elevated bacterial load [98].

In case of A. baumannii infection the induction of IL-6 secretion from macrophages
depends on TLR4 signaling [95]. TLR-dependency of the innate immune response is
also evident in vivo, as macrophage and neutrophil infiltration into the alveolar space
in response to OMV exposure was reduced in TLR4-deficient mice [95]. Moreover, A.
baumannii-derived OMVs also cause mitochondrial damage via an OmpAAb-dependent
pathway in alveolar macrophages in vivo, as mechanistically described above concerning
pulmonary epithelial cells [51]. Hence, OMVs not only induce an innate immune response
via various mechanisms but also promote bacterial immune evasion. Future research
will need to probe to which extent either of these pathways contributes to the pulmonary
congestion and neutrophil infiltration observed upon stimulus with A. baumannii-derived
OMV [95].

While the aforementioned studies mainly focused on the cellular aspect of innate
immunity and resulting changes in cytokine release, limited data are available with regard
to the direct interaction of (O)MVs with humoral mediators. S. pneumoniae-released MVs
were shown to inhibit the release of neutrophil extracellular traps (NETs) by transferring
the bacterial DNAse TatD to neutrophils [55]. NETs trap extracellular bacteria and fungi in
complexes of nuclear chromatin and bactericidal proteins to reduce their dissemination
and limit the spread of infection [99]. Consequently, depletion of TatD in S. pneumoniae
decreased bacterial replication in a murine pneumonia model in vivo, and as such pro-
tected against fatal outcome [55]. Another study demonstrated that S. pneumoniae-secreted
MVs bind to the complement proteins C3, C5b-9 and factor H, and reduce complement-
dependent opsonophagocytic killing of S. pneumoniae by macrophages in an adhesion
and phagocytosis assay in vitro [70]. C3 and C5b-9 have key roles in the opsonization of
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pathogens [100,101], whereas factor H is considered as an inhibitor of the complement
system, maintaining balance between pathogen defense and inhibiting complement acti-
vation by host factors [102]. Therefore, the exact mechanisms by which the imbalance in
the complement cascade resulting from parallel binding of MVs to both stimulating and
suppressing components diminishes bacterial killing remain to be elucidated.
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Figure 1. Functional properties of (O)MVs in pneumonia. Inner ring: (O)MV-releasing bacterial species; middle ring:
(O)MV target cells; outer ring: (O)MV-mediated effects on target cells. Red areas: Gram-positive bacteria; green areas:
Gram-negative bacteria. CFTR, cystic fibrosis transductance regulator; DC, dendritic cell; EpiC, epithelial cell; G-CSF,
granulocyte colony-stimulating factor; hCASP5, human caspase-5; mCASP11, murine caspase-11; IFNγ, interferon-γ; IL,
interleukin; K. pn., Klebsiella pneumoniae; M. tb, Mycobacterium tuberculosis; MCP-1, monocyte chemoattractant protein-1;
MHC-I, major histocompatibility complex-I; MΦ, macrophage; NET, neutrophil extracellular trap; S. ma., Stenotrophomonas
maltophilia; TLR, toll-like receptor; TNFα, tumor necrosis factor α.

An increasing body of work sheds light on important immunomodulatory interac-
tions of (O)MVs with cellular and humoral components of the innate immune system in
pneumonia. (O)MVs released by a variety of pulmonary pathogen species are capable
of inducing potent (pro)inflammatory responses and in parallel facilitate a broad range
of immune evasion mechanisms of the host pathogen, which can aggravate the course
of disease. (O)MVs alone are competent to evoke pathologies comparable to bacterial
pneumonia, as exemplarily shown for K. pneumoniae-derived OMVs [80]. Yet, the molecular
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mechanisms by which (O)MVs mediate evasion of pathogens from the complement system
and NETs remain unclear so far and form an important topic for antimicrobial research.

6. (O)MVs and Adaptive Immunity

Knowledge on the effect of (O)MVs on the adaptive immune system is limited. How-
ever, the altered cytokine response of pulmonary epithelial cells and tissue-resident and
immigrating innate immune cells can be expected to trigger activation of both B- and
T-cells, their maturation in lung draining lymph nodes and at the site of infection, and
eventually the formation of tertiary lymphoid organs in the lung. However, the evidence
for lymphocyte infiltration and expansion upon stimulation with (O)MV remains limited
for pneumonia. The first indication of a putative modulation of adaptive immunity by
(O)MVs was provided by the observation that intracellular MVs produced by M. tuber-
culosis in infected macrophages shuttle mycobacterial lipoglycans—known as virulence
factors—to CD4+ T-cells [50]. As a result, MVs decreased IL-2 secretion and, thereby,
limited autocrine-activation of T-helper cell expansion and maturation [50]. These initial
signs of T-cell anergy are highlighted by mycobacterial MVs inducing expression of the
gene related to anergy in lymphocytes (GRAIL) and consequently reduced proliferation
upon restimulation [50].

M. catarrhalis is a respiratory-tract commensal organism, which not only causes in-
fections of the lower but also the upper respiratory tract [103]. As commensal organism
M. catarrhalis often resides in the tonsils that are part of the pharyngeal lymphoid tissue.
In fact, tonsils are secondary lymphoid organs that are constantly exposed to airborne
antigens and are predominantly populated by B-cells, which accordingly play an important
role in the regulation of M. catarrhalis infection [104]. Like other secondary lymphoid
tissues, tonsils are sites of increased expansion of B-cell diversity and memory providing
an environment for plasma cell differentiation and effector B-cell development, including
IL-10 and IL-35 secreting regulatory B-cells (Breg), which play significant roles in the control
of the tonsillar commensal bacterial flora [105,106]. OMVs released by M. catarrhalis bind
to immunoglobulin D (IgD) B-cell receptors depending on moraxella IgD binding protein
(MID), induce Ca2+ influx, and, eventually, B-cell receptor internalization [104]. On top of
that, OMVs activate an inflammatory response in B-cells as indicated by IL-6 and IL-10
release and antibody production, which is attenuated in absence of MID on OMVs [104].
However, the functional consequences of this response remain unclear. While Vidakovics
et al. hypothesize that this pathway leads to a T-cell-independent B-cell response with
impaired bacterial killing, evidence for increased bacterial survival is outstanding and
remains to be tested in further studies [104].

7. (O)MVs as Novel Vaccine Candidates against Pulmonary Infection

Several bacterial pathogens that induce infections in the lung are at present still poorly
treatable and have detrimental long-term effects that could be prevented by effective vac-
cination. These include, e.g., B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae,
the two latter causing mainly nosocomial infections [107,108], whereas B. pertussis and S.
pneumoniae are commonly community-acquired [109,110]. (O)MVs have been considered
as auspicious vaccine candidates since they elicit potent immune responses, could be an
easy-to-store off-the-shelf product, and distribute well in the organism after parenteral ap-
plication [111,112]. Together, these beneficial properties initiated the development of a first
clinically licensed OMV vaccine, which acts against Neisseria meningitidis serogroup B, repre-
senting the first effective vaccine against this meningococcal disease causing pathogen [113].
Nonetheless, like other vaccine candidates, (O)MV vaccines require careful consideration
regarding the balance of immunizing effects and potential side effects, including a strong
inflammatory response or even proinfectious effects in case of bacterial superinfection.

Due to the fact that B. pertussis has developed high levels of resistance against the acel-
lular vaccine that is currently used in large parts of the world [114] substantial efforts have
been made to develop B. pertussis OMVs as a vaccine candidate against whooping cough.
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Several studies show that application of B. pertussis OMVs can prevent subsequent fatal
infections with B. pertussis and reduce bacterial load in mice [115–118], while also efficiently
preventing infection by serotypes commonly unaffected by conventional acellular vaccina-
tion [119,120]. Mechanistically, OMVs induced a combined T- and B-cell response (Table 2),
as demonstrated by a profound Th1, Th2, and Th17 response, and production of neutralizing
antibodies and colonization of lung resident B- and T-cells [115,116,118–122]. Importantly,
effective immunization by OMVs seems to depend on the presence of virulence proteins ex-
posed on the vesicular surface, including pertussis toxin [123,124]. Accordingly, thorough
testing for the safety of vaccine candidates is mandatory to exclude that OMV-associated
toxins could confer harmful effects. Approaches to reduce OMV toxicity by expressing the
lipid A deacylase PagL in OMVs released by B. pertussis yielded promising results, in that
vaccine toxicity was reduced yet immunogenicity preserved [125]. Besides considerations
for safety, immunogenicity, and protective efficacy, the ideal administration route and/or
method for OMV vaccines remains to be determined. Indeed, intranasal inhalation as
compared to subcutaneous or intraperitoneal injection of OMVs elicits qualitatively distinct
immune responses, resulting in incomplete protection following subcutaneous injection as
compared to intranasal application [115,116].

Table 2. Immunogenic properties of (O)MV vaccine candidates against bacterial pathogens causing lower respiratory
tract infections.

Pathogen Immunogenic (O)MVs Cellular and Humoral Immunity Vaccine Efficacy Side Effects
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S. pneumoniae is the leading causative pathogen for CAP and, therefore, not only
accounts for a high proportion of infectious mortality, but also confers serious long-term
morbidity, i.e., a high incidence of cardiovascular events [10,27,29]. Three conventional
vaccines are currently licensed against S. pneumoniae infection, which successfully reduced
all-cause pneumonia and also invasive pneumococcal disease, although it remains to be
shown whether all-cause mortality can be similarly reduced by these vaccines [21]. Con-
sequently, and due to a need for broader serotype coverage and more effective long-term
protection [139], efforts have been launched to test the potential of an (O)MV-based vaccine
against S. pneumoniae infection. An initial study demonstrated the efficacy of native S. pneu-
moniae MVs applied intranasally in a mouse model, as displayed by robust IgG responses
and markedly reduced mortality after infection [47]. The MVs used for these experiments
were carrying well-known virulence proteins, including pneumolysin and pneumococcal
surface protein A (PspA). These virulence factors were selected to induce a potent and
broad immune response, as, e.g., pneumolysin is known to be present on virtually all S.
pneumoniae serotypes [140,141]. However, it is questionable whether such vaccine formula-
tions may be applied to humans due to considerable safety concerns, as native S. pneumoniae
OMVs are able to induce harmful effects by interacting with humoral components of in-
nate immunity, as described above [55,70]. Thus, a number of studies focused on OMVs
from either S. typhimurium or E. coli, which were genetically modified in order to express
pneumococcal proteins. Intranasal application of PspA-loaded S. typhimurium-derived
OMVs reduced bacterial replication following subsequent S. pneumonia infection in vivo
resulting in a considerable reduction in infection-attributed deaths [126,127]. Nevertheless,
tolerability and safety concerns will also require careful assessment in this strategy, as
some of the animals exhibited serious weight loss of more than 20% after vaccination [127].
With respect to safety concerns, the use of OMVs from a non-pathogenic E. coli strain (e.g.,
CLM37, which lacks O antigen and enterobacterial common antigen (ECA) synthesis [142])
may provide a promising approach. Intraperitoneally injected CLM37 E. coli-derived OMVs
engineered to express a capsule glycan of S. pneumoniae serotype 14 were sufficient to in-
duce the production of neutralizing antibodies [128]. Even though the surface molecule
used in this study would not provide protection against other serotypes, it provides an
encouraging proof-of-principle that glyco-engineered OMVs from non-pathogenic bacteria
could present an efficient and safe vaccine strategy.

While of limited importance in community-acquired infections, A. baumannii has be-
come a global threat as nosocomial pathogen accounting for both respirator-associated and
systemic infections, with an emerging concern regarding multidrug-resistant strains [143].
Accordingly, development of an efficient vaccine is of great demand. Similar to vaccine
development programs against B. pertussis and S. pneumoniae, native OMVs of the pathogen
itself, OMVs from modified A. baumannii strains, and engineered OMVs from other bacteria
have been tested as vaccine candidates. Native OMVs, applied mostly via the intramuscu-
lar, but also the intraperitoneal or the intranasal route, are able to induce a robust antibody
response and prevent death following infection with A. baumannii, including multidrug-
resistant strains [129–133]. At the cellular level, OMVs not only activated B-cells, but also
upregulated the costimulatory molecules CD80 and CD86 and MHC-II in DCs in vitro, and
consequently induced a robust Th2 response in vivo [134]. Efforts to achieve better tolerabil-
ity include testing of LPS-depleted OMVs, which yielded mixed results. OMVs secreted by
an A. baumannii strain with reduced LPS endotoxicity protected from infection-associated
mortality (including multidrug-resistant strains) when administrated together with an A.
baumannii surface protein (biofilm-associated protein (Bap) (1-487aa)) [135]. However, OMVs
from an LPS-deficient strain (IB010) were inferior to OMVs from a wildtype strain (ATCC
19606), expressing higher levels of LPS [131]. Similar to strategies against S. pneumoniae
discussed above, it seems promising to evaluate the immunogenic potential of OMVs from
other non-pathogenic bacterial strains, which could be genetically modified to express A.
baumannii antigens. Indeed, E. coli-derived OMVs genetically engineered to express the
Acinetobacter surface protein Omp22 efficiently reduced systemic inflammatory responses
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and bacterial replication upon A. baumannii infection, and protected from a fatal course
of the disease after subcutaneous injection [136]. Further studies will have to confirm
whether this promising vaccine candidate can become a contender for clinical testing of
new vaccination strategies against A. baumannii.

Quite similar to A. baumannii, K. pneumoniae is frequently the cause for antibiotic-
resistant nosocomial infections, even though the pathogen is most prevalent in immuno-
compromised individuals [108]. The concept of OMV vaccination also seems to work for
this pathogen as demonstrated by induction of a Th1 response and prevention of infectious
death following intraperitoneal administration of native K. pneumoniae-secreted OMVs in a
mouse model [137]. A novel approach evaluated whether binding of OMVs to albumin-
based nanoparticles could enable an effective vaccination. A previous study already
highlighted that a similar approach of coating gold nanoparticles with E. coli membranes
allowed for efficient vaccination [144]. Indeed, the application of a nanoparticle-bound
OMV vaccine was effective in preventing mice from infection with carbapenem-resistant K.
pneumoniae after subcutaneous OMV application [138]. Intriguingly, this formulation led
to even higher levels of antibodies and was more efficient in preventing fatal outcome as
compared to native K. pneumoniae-derived OMVs, which was attributed to a potentially
higher stability of the OMVs when bound to nanoparticles [138]. Taken together, (O)MVs
from less pathogenic serotypes or surface-engineered (O)MVs from other, less pathogenic
bacteria may pave the way for the development of not only effective but also safe (O)MV-
based vaccines for airborne pathogens that continue to pose serious global threats at the
current state.

8. Conclusions

A growing body of work is starting to highlight the role of (O)MVs in bacterial infec-
tious diseases of the lung. While (O)MVs from various bacteria induce an inflammatory
activation of both the pulmonary epithelium and innate immune cells, distinct virulence
mechanisms exist for specific pathogens. Specifically, emerging evidence suggests that
OMVs play an important role in the pathogenicity of P. aeruginosa in CF patients where
they may aggravate bronchial epithelial hyposecretion in infectious exacerbations. Fur-
ther effects with pathogenic potential include the induction of mitochondrial damage
in both pulmonary epithelial cells and macrophages by A. baumannii OMVs, increased
intracellular replication of L. pneumophila in macrophages following exposure to OMVs,
inhibition of complement components and neutrophil extracellular traps by S. pneumoniae
MVs, and induction of CD4+ T-cell anergy by M. tuberculosis MVs. At present, our insight
into these effects is yet confined to a limited number of pathogen–host interactions, and a
better in-depth understanding of the underlying molecular processes is required for the
identification of specific targets for potential therapeutic approaches to treat pulmonary
infections.

An important, yet so far rather unexplored aspect, which could additionally contribute
to a better understanding of the development of bacterial infections and their virulence,
is a more detailed exploration of the role of the commensal lung microbiome. While it is,
for example, well known that the commensal microbiome plays a key role in maintaining
gastrointestinal homeostasis not only by preventing infections but, e.g., also by protecting
barrier integrity, information is limited with respect to its composition and physiological
role in the lung [145,146]. Yet, an initial study on lung fibrosis in mice highlights not only
the importance of the commensal pulmonary microbiome but also the pathogenic potential
of its dysregulation and the mediating effects of related (O)MVs [147].

Notably, the effects of (O)MVs on the respiratory tract are not confined to respiratory
infections, as (O)MVs are also present in indoor dust in sufficient amounts to induce
inflammatory responses in vivo [148,149]. Potential pathophysiological effects of (O)MVs
should, therefore, not only be considered in the context of infection immunology but rather
also in the growing field of human-environment interaction.
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Apart from their important role in bacterial pathogenicity, (O)MVs have gained con-
siderable interest as a novel vaccine platform. To date no clinical trials for (O)MV-based
vaccines against pulmonary pathogens have been performed. Yet, a number of studies
highlight the potential of (O)MV-based vaccine candidates against B. pertussis, S. pneu-
moniae, A. baumannii, and K. pneumoniae in vivo, which could, when successfully tested
in the clinics, help overcome limited vaccine coverage for certain bacterial serotypes and
reduce the marked morbidity induced by nosocomial infections. However, one has to
consider that a rocky road might still lie ahead before such ambition may turn into reality,
as major obstacles still remain to be overcome. On the one hand, pharmacological aspects
like optimized formulation and administration route need to be addressed. On the other
hand, it remains to be resolved how (O)MVs may be utilized as safe vaccine candidates in
spite of their ability to induce severe inflammatory phenotypes. First approaches, like the
use of less pathogenic strains for the formulation of safer (O)MV-based vaccines, or surface-
engineered (O)MVs from other, less pathogenic bacteria yield promising results, but remain
to be translated into the clinical scenario. At present, (O)MVs remain a double-edged
sword with both pathophysiological impact and immunizing potentials.
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