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Abstract

We will investigate computational aspects of several problems from discrete geometry in
higher dimensions. In the plane, many of them are well understood and can be solved
efficiently, but as the dimension increases, most of them seem to be considerably harder
to solve. In this thesis, we make progress towards explaining this phenomenon by showing
computational hardness for some of these problems. To this end, we also make use of
parameterized complexity theory in order to show stronger relative lower bounds than
those possible with classical complexity theory only. For one of the problems, we moreover
develop several approximation algorithms. In the process, we pay particular attention to
the exact dependence of the running time on the dimension.

We will use and develop different techniques for showing hardness of the problems
in unbounded dimension. These include the technique of deconstructing the space into
orthogonal planes, into which gadgets are placed. Using this technique, we are able to
show a relative lower bound of nΩ(d) for several problems related to testing the discrepancy
of a point set and verifying ε-nets.

We then present a more natural reduction technique that reduces from the d-Sum
problem to show relative lower bounds for many problems arising from theorems in combi-
natorial geometry. These include computing minimal Helly sets, certain decision versions
of the ham-sandwich problem, and computing the Tverberg depth of a point set.

We then turn to computing a maximum size subset of points in convex position. While
all the previous problems admit straightforward nO(poly(d)) algorithms in d dimensions, here
we are able to show that the problem already becomes hard in 3 dimensions. This shows
a strong dichotomy between a low and a higher dimensional case, because in the plane the
problem was known to be solvable in polynomial time.

As a positive result, we then consider the problem of computing a point of high Tverberg
depth in d dimensions. We present a novel lifting approach that allows us to compute deep
points for a point set in high dimension from deep points of its projection to some lower
dimensional space. The approach is very generic, and we show how to combine it with
other known methods in order to get even better algorithms.

Finally, we give a short outlook and suggest further open problems on the subject.
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Zusammenfassung

In dieser Arbeit betrachten wir algorithmische Aspekte verschiedener Probleme der diskre-
ten Geometrie in höheren Dimensionen. Während viele von ihnen in der Ebene intensiv un-
tersucht und effizient lösbar sind, werden sie deutlich schwieriger, wenn sich die Dimension
erhöht. In dieser Arbeit machen wir einen Versuch, dieses Phänomen zu erklären, indem
wir zeigen, dass sie im komplexitätstheoretischen Sinne schwer sind. Dazu benutzen wir
unter anderem parametrisierte Komplexitätstheorie, die es uns erlaubt, schärfere relative
untere Schranken zu zeigen, als sie alleine mit klassischer Komplexitätstheorie möglich sind.
Für eines solcher Probleme entwerfen wir außerdem verschiedene Approximationsalgorith-
men. Besonderes Augenmerk liegt dabei auf der Untersuchung der exakten Abhängigkeit
der Laufzeit von der Dimension.

Wir entwerfen und benutzen verschiedene Techniken, um die Schwerheit der Prob-
leme in unbeschränkter Dimension zu zeigen. Ein Beispiel dafür ist die Zerlegung des
d-dimensionalen Raumes in orthogonale Ebenen, in die wir bestimmte Teile einer Kon-
struktion platzieren können. Damit ist es uns möglich, relative untere Schranken von nΩ(d)

für die Laufzeit von Algorithmen für verschiedene Probleme zu zeigen. Diese beinhalten
das Berechnen der Diskrepanz von Punktmengen oder die Verifikation von ε-Netzen.

Wir stellen anschließend eine etwas natürlichere Reduktionstechnik vor, die vom d-
Sum Problem reduziert. Damit zeigen wir relative untere Schranken für einige Entschei-
dungsprobleme, die zu Sätzen der Diskreten Geometrie gehören. Dieses sind zum Beispiel
das Bestimmen einer minimalen Hellymenge, bestimmte Entscheidungsvarianten des Ham-
Sandwich Problems, und das Berechnen der Tverbergtiefe eines Punktes.

Anschließend wenden wir uns dem Problem zu, eine maximal große Untermenge in
konvexer Lage zu finden. Während die bisherigen Probleme durch einfache Algorithmen
in nO(poly(d)) Zeit lösbar sind, tritt hier das Phänomen auf, dass das Problem schon in 3
Dimensionen NP-schwer ist. Das zeigt einen starken Unterschied zwischen einem niedrig-
und einem höherdimensionalen Problem, da es in der Ebene in polynomieller Zeit gelöst
werden kann.

Für ein positives Ergebnis wenden wir uns dann dem Problem zu, einen Punkt mit
hoher Tverbergtiefe in d Dimensionen zu berechnen. Wir entwerfen einen neuen Ansatz,
der höherdimensionale aus niedrigdimensionalen Tverbergpunkten berechnet. Unser Algo-
rithmus ist sehr generisch und lässt sich einfach mit bisherigen Algorithmen kombinieren,
um noch bessere Resultate zu erhalten.

Am Ende geben wir noch einen Ausblick auf mögliche weitere Forschungsvorhaben.
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Introduction

0.1 Motivation and Overview

In computational geometry, many problems are well understood in the plane. Most often,
they can be solved by optimal algorithms that match the respective lower bounds.

However, as the dimension goes up, many of them seem to become considerably harder,
and their complexity status becomes less clear. Often, the problems become NP-hard as the
dimension increases—a phenomenon commonly referred to as “the curse of dimensionality”.
Still, for many of these problems it is not clear how hard they actually become once the
dimension goes up. While there are many problems that can be solved in time nO(d) in d
dimensions by simple algorithms, others become NP-hard already in 3 dimensions.

In any case, one has to cope with the problems once they turn out to be NP-hard.
The main approach to this have been approximation algorithms, but recently, a different
approach has been developed: parameterized complexity. Using this theory, one tries to
bound the exponential dependence on the dimension, and sometimes it is possible to indeed
find algorithms that are asymptotically optimal in every dimension (even though they
might have exponential factors in d in the running time). On the other hand, negative
results enable us to prove stronger hardness results than those that are possible with the
theory of NP-completeness only.

In this thesis, we are particularly interested in problems that arise from existence the-
orems of discrete (or combinatorial) geometry. Theorems of this type usually deal with
geometric objects such as points, hyperplanes, or circles, and guarantee the existence of
“interesting” objects under certain conditions. At the same time, they often easily gen-
eralize to arbitrary dimensions, and as such they provide an excellent starting point for
studying the dichotomy in the computational complexity of lower and higher dimensional
problems.

We omit a detailed introduction into the huge field of combinatorial geometry here,
but instead state the theorems we are going to consider in the respective chapters. For a
detailed introduction to the subject we refer the reader to the textbook by Matoušek [68],
which contains all theorems related to the problems considered in this thesis.

In what follows, we first give a short introduction into the field of parameterized com-
plexity theory. Then, we present earlier work that has dealt with bounding the dimension
in terms of fixed-parameter tractability. Finally, we give a high level overview of our results.

1
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0.2 Parameterized Complexity

Throughout this thesis, many results can be interpreted in terms of parameterized com-
plexity. Here, we will give a short introduction into the subject that suffices to understand
the results in the subsequent sections.

Parameterized complexity has been developed in the 1990’s, most notably by Rod
Downey and Mike Fellows. The idea is very natural: instead of taking one parameter
as the input size to a problem and describing the running time depending on this single
parameter, we now take as input two or more parameters. Several algorithms of that kind
are known in computational geometry, often formulated using parameterized complexity
only implicitly. One of a myriad of examples is Chan’s convex hull algorithm [21] that
computes the convex hull of a given point set in time O(n log h), where n is the number of
points in the input, and h is the number of points on the boundary of the resulting convex
hull.

However, the theory only develops its full strength when dealing with otherwise NP-
hard problems. Problems that are tractable when one parameter is small are called fixed-
parameter tractable, and this is the central concept of parameterized complexity. Moreover,
also in this framework hardness results are known. The problems which are considered
not to be fixed-parameter tractable are usually captured by the notion of hardness for
the complexity class W[1]. As for usual NP-hardness proofs, hardness results are often
obtained via parameterized reductions from existing hard problems.

In what follows, we will explain these concepts in detail. For more concise introductions
to the subject of parameterized complexity, we refer the reader to the textbooks by Downey
and Fellows [38], Flum and Grohe [49], and Niedermeier [82].

0.2.1 Fixed-Parameter Tractability

We begin with the central definition of a parameterized problem.

Definition 1. A parameterized problem L is a subset L ⊆ Σ∗ × N, where Σ is a finite
alphabet. For an element (x, k) ∈ Σ∗ × N, k is called the parameter.

A standard example is the parameterized version of the Vertex-Cover problem. For
a graph G = (V,E), a subset C ⊆ V is called a vertex cover for G, if every edge of E is
incident to a vertex of C.

Definition 2. The parameterized problem k-Vertex-Cover is defined as

{(G, k) | there exists a vertex cover C ⊆ V of size k} .

The notation suggests that k be the parameter in the problem. In order to make
this more readable, in what follows we will usually write parameterized problems in the
following way.
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Definition 3. k-Vertex-Cover
Input: A graph G = (V,E), and k ∈ N
Parameter: k
Question: Is there a vertex cover of size k for G?

What have we gained from such a definition? We are now able to express the running
time for solving this problem in terms of two parameters, namely n := |G| and k. Clearly,
the k-Vertex-Cover problem can be solved in time O(nk+1), by simply checking each
subset of vertices for being a vertex cover. But can we do better? For k-Vertex-Cover,
indeed we can, and this leads to the central definition of parameterized tractability.

Definition 4. Let L be a parameterized problem. L is said to be fixed-parameter tractable,
if there is an algorithm that decides whether (x, k) ∈ L in time

O (f(k)|x|c) ,

where f is a computable function which depends only on k, and c is a constant independent
of |x| and k. Here, |x| denotes the encoding length of x.

An algorithm with that running time is called an fpt algorithm, and we say that the
problem can be solved in fpt time (with respect to a certain parameter). The class of all
parameterized problems that admit fpt algorithms is denoted as FPT.

How can we use this to find a better algorithm for the k-Vertex-Cover problem?
We will present an algorithm that solves the problem in fpt time and is presumably due
on Mehlhorn [76]. Like many fpt algorithms, it uses the paradigm of bounded search trees.

It is based on a simple observation, also used for the standard 2-approximation for
Vertex-Cover: consider a graph G = (V,E), and any edge e = uv ∈ E. Now any vertex
cover for G must contain either u or v, for otherwise the edge e between them would not
be covered.

We thus obtain an algorithm as follows: take any edge e = uv, and create two new
instances (G′, k − 1) and (G′′, k − 1). G′ is the graph obtained from deleting u and all
incident edges, and G′′ is the graph obtained by deleting v and all incident edges. Recurse
on both instances separately. If k = 0, accept if and only if there are no edges left.

The correctness of the algorithm follows from the above observation. For the running
time, it holds that f(|G|, k) ≤ 2f(|G|, k− 1) +O(|G|), and so f(|G|, k) ∈ O

(
2k|G|

)
. Thus,

this algorithm runs in fpt time.

This means that, for any fixed k, the Vertex-Cover problem is solvable linear time—
a huge improvement compared to the trivial O(nk+1) algorithm. Of course, this raises the
question of parameterized hardness. Is it always possible to find such algorithms?

0.2.2 Parameterized Hardness and Reductions

Consider the parameterized version of the Clique problem:
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Definition 5. k-Clique
Input: A graph G = (V,E), and k ∈ N
Parameter: k
Question: Does G contain a complete subgraph with k vertices?

Is it possible to also find an algorithm solving this problem in fpt time? So far, no one
has managed to find such an algorithm, and this motivates the notion of parameterized
hardness.

As usual, hardness results will mostly be obtained by reductions between parameterized
problems. In order for this to work, we will need the reductions to capture the notion of
fixed-parameter tractability—and “normal” NP-hardness reductions are often not strong
enough for this. Thus, for a problem L′ to be at least as hard as another problem L, we
must be able to reduce L to L′ by a parameter preserving reduction.

Definition 6. Let L,L′ be two parameterized problems. We say that L reduces to L′ by
a parameterized reduction, L ≤fpt L

′, if there are computable functions φ, ψ : N→ N and
f : Σ∗ × N→ Σ∗ such that

• f(x, k) can be computed in time O (φ(k) poly(|x|, k)) and

• (x, k) ∈ L if and only if (f(x, k), ψ(k)) ∈ L′.
While the second point is what we would expect from any reduction, the definition

further ensures that the size of the new parameter only depends on the old parameter, but
not on the entire input. From this, we derive the main property of such reductions:

Proposition 1. If L ≤fpt L
′, and L′ can be solved in fpt time, then L can also be solved

in fpt time.

We now define the complexity class W[1], which can be seen as the analog of NP
in classical computational complexity. As in the case of NP, which is captured by non-
deterministic Turing machines, the lowest level of parameterized hardness can be defined
by reductions from the following machine-type problem:

Definition 7. k-Short-Turing-Machine-Acceptance
Input: A non-deterministic Turing machine M , given by its transition table, and k ∈ N
Parameter: k
Question: Does M halt in k computation steps on the empty input?

Intuitively, this problem should take time |M |Ω(k), and indeed no better algorithm is
known. As this problem and k-Clique can be reduced to each other by a parameterized
reduction, we can thus simply define the class W[1] as follows:

Definition 8. The class W[1] is the class of all parameterized problems which can be
reduced to k-Clique by a parameterized reduction. Consequently, a problem is said to be
W[1]-hard, if the k-Clique problem (and thus every other problem in W[1]) can be reduced
to it by a parameterized reduction.
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The prevailing conjecture is that FPT 6= W [1], i.e., that there are problems in W[1]
which do not permit fpt algorithms.

We should mention that the classical W[1]-hard problem is defined via a circuit problem
with unbounded weft, which is also were the “W” stems from. We do not find it very
instructive to define the problem here; intuitively, it defines a class of circuit problems
where a bounded search tree approach will not work.

A most simple example of another problem that is W[1]-hard with respect to the size
of the solution is k-Independent-Set: the reduction from k-Clique simply maps G to
the complement graph, and lets the parameter remain unchanged. On the other hand,
the standard NP-hardness reduction from Independent-Set to Vertex-Cover is not
a parameterized reduction, and thus does not show any hardness in terms of parameterized
complexity.

In what follows, we will give an example of a different parameter very suitable for
geometric problems.

0.3 The Dimension as a Parameter

In addition to the size of a solution, for geometric problems the dimension of the underlying
space is a very natural parameter—based on the motivation of lowering the running time
for d-dimensional problems from nΩ(d) to f(d)nc. Without using parameterized complexity
explicitly, Megiddo [73] showed that linear programming with d variables and n constraints

can be solved in time O
(

22dn
)

(see Matoušek, Sharir, and Welzl [72] for the fastest, and

Seidel [89] for the simplest algorithm with such a running time). This shows that linear
programming is fixed-parameter tractable with respect to the dimension as a parameter,
and can be solved in polynomial, even linear time, for any fixed number of variables.

This motivation has led several other researchers to work on the subject of lowering the
dependence on the dimension for other geometric problems. More or less recent progress
includes the following examples.

Subset-Congruence (Cabello, Giannopoulos, and Knauer [16]): The problem of decid-
ing whether a point set Q is congruent to a subset of another set P is easily seen to be
NP-hard if the dimension is part of the input (see Akutsu [3]). However, this does not
exclude an algorithm with a running time of O(f(d)nc) in Rd. The authors show that,
unless FPT=W[1], such an algorithm is not possible. In fact, an even stronger result is
derived: the problem is W[1]-hard with respect to both parameters, k and the size of the
smaller set |Q|, excluding an O(f(d, |Q|)nc) algorithm for the problem.

Klee’s measure problem (Chan [23]): For Klee’s measure problem, we are given a set
of rectangles in the d-dimensional cube, and want to determine the volume of their union.
In this paper, a very small improvement over the previous best algorithm is given: it can
be solved in nd/22log∗ n time. At the same time, it is shown that the decision problem is
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W[1]-hard by a simple parameterized reduction from k-Clique, making an fpt algorithm
very unlikely.

Geometric Clustering (Cabello et al. [17]): Here, the problem of finding a so called
k-center in Rd is investigated with respect to different metrics. The problem is already NP-
complete for k = 2 (for L2) and k = 3 (for L∞) if d is part of the input (see Megiddo [74]).
However, in this paper it is shown that in d dimensions, for the case L∞, the decision
problem can be solved in time O(6ddn + dn log n) for k = 3, making it fixed-parameter
tractable. On the other hand, for the k ≥ 2 and L2, and k ≥ 4 and L∞, it is shown that
no such algorithm exists: in these cases, the problem becomes W[1]-hard with respect to
the dimension.

Covering Points with Hyperplanes (Langerman and Morin [67]): Here, the problem
of covering n points with k hyperplanes in Rd is considered. The decision problem is known
to be NP-hard even in R2 (see Megiddo [75]), if k is part of the input. The authors show
that the problem is fixed-parameter tractable with respect to both, d and k, by giving an
algorithm with a running time of O(kdkn).

0.4 Our Contribution—a High Level Overview

In this thesis, we are going to analyze computational problems in high dimensions in a
similar manner. All problems considered come from “standard” theorems in combinatorial
geometry. Yet, for some of them, no complexity results in higher dimension were known
so far, while for others, the actual dependence on the dimension was unclear until now.

Discrepancy and ε-nets (Part I): Here, we investigate the question of computing the
discrepancy of a given point set in Rd for implicit range spaces. While for the most
common ranges this can be done in time nO(d), we show that it is not possible to reduce
this dependence on d significantly. Our results hold for both the combinatorial as well as
the continuous discrepancy. Subsequently, similar results are obtained for problems related
to ε-net computation and verification. This part is based on the paper by Giannopoulos,
Knauer, Wahlström, and Werner [52].

Affine degeneracy and ham-sandwich cuts (Part II): In this part, we revisit a tech-
nique by Erickson of embedding instances of the d-Sum problem into (d+ 1)-dimensional
space. We first consider several decision problems related to basic problems from combi-
natorial geometry, such as computing minimum Helly sets or Carathéodory sets. Then, we
apply our technique to the problem of deciding the existence of a linear ham-sandwich cut
for a point set in Rd, and to that of computing the Tverberg depth of a point set. This
part is based on the paper by Knauer, Tiwary, and Werner [64].
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Erdős-Szekeres theorem (Part III): In this part, we consider the problem of computing
maximum subsets of points in convex position. This is motivated by the Erdős-Szekeres
theorem, the starting point of geometric Ramsey theory. In the plane, it was known that
maximum sets in convex position can be computed in polynomial time. Here, we are able
to show that the dependence on the dimension is even worse than in the previous parts: the
problem already becomes NP-hard in 3 dimensions. This also leads to several interesting
problems for further research. This part is based on the preliminary paper by Knauer and
Werner [65].

Tverberg points (Part IV): In this part, we present the fastest known algorithm for
computing points of high Tverberg depth in Rd. As the basis for this, we first give a novel
lifting argument that allows us to compute high depth points in higher dimension from
high depth points in lower dimensions. The technique developed here is highly generic and
can be combined with any previous method for computing such points. We subsequently
present several variants of this to improve the approximation factor as well as the running
time of the algorithm. This part is based on the paper by Mulzer and Werner [80].
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Part I

Discrepancy, Empty Boxes, and
Verification of ε-Nets in Rd
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Chapter 1

Introduction and Motivation

Assume we are given a large set of points on which we have to perform some costly opera-
tion. In order to do this more efficiently, we would like to approximate it by a smaller set
with similar properties. If we can guarantee that the smaller set behaves not too differently
from the original set, we will be able to replace costly operations on the large set by much
cheaper operations on the smaller one, while getting a similar result.

One property that is of particular interest in many cases is the behaviour of the point
set with respect to certain measures. This leads to the notion of geometric discrepancy :
intuitively, if the discrepancy of two sets is small, it means that one approximates the other
quite well with respect to a certain measure.

Geometric discrepancy has led to significant applications in Computational Geometry,
many of which can be found in the textbooks by Chazelle [25], Drmota and Tichy [39], and
Matoušek [70]. Also, in several other areas, including optimization, statistics, combina-
torics, and computer graphics, it is of high interest. In particular, the star discrepancy of
a point set is important in multi-variate numerical integration, where the error of a quasi-
Monte Carlo integration is bounded as a function of the star discrepancy of the point set
used in the integration (by the Koksma–Hlawka inequality, see Niederreiter [83]).

Closely related is the notion of ε-nets and ε-approximations. Based on the seminal
works of Vapnik and Chervonenkis [95] and Haussler and Welzl [57], they are of particular
interest in the area of approximation algorithms for geometric problems (see also Har-
Peled [56]). It is a vivid area of research to find small size ε-nets for particular range spaces
(see Alon [4], Pach and Tardos [84], and Chan et al. [24] for recent celebrated results.), as
often both the running time as well as the approximation ratio strongly depend on the size
of the nets. This relation is stated in the seminal paper by Brönnimann and Goodrich [14],
and in an alternative, somewhat simpler formulation also by Even et al. [47].

However, many constructions of small ε-nets are based on randomized algorithms and
random sampling of points. As such, these approaches usually lead to Monte-Carlo algo-
rithms, and consequently it is of particular interest to check in reasonable time whether
such a construction has indeed produced an ε-net.

This motivates the main computational questions we want to investigate in this chapter:

• How quickly can we determine the discrepancy of a set with respect to certain range

11
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spaces in Rd?

• How quickly can we decide whether a given set is an ε-net for a set P with respect
to certain range spaces in Rd?

First, we define the different notions of discrepancy in detail and build a connection to
the theory of ε-nets and ε-approximations. Afterwards, we give a high level overview of
the results in this part.

1.1 Discrepancy and ε-Nets

A set system, or hypergraph, (X,R) consists of a (possibly infinite) ground set X, and a
subset R of the power set of X. In many areas, these set systems arise from intersections
of geometric objects, such as points and half-spaces, in which case we usually call them
(geometric) range spaces. If the underlying set is clear, we will often denote a range space
simply by R.

A simple example is H := {h | h is a half-plane}, the range space of all half-planes with
respect to all points in R2. For a particular finite set of points P ⊆ R2, we then denote as

HP := {h ∩ P | h is a half-plane}

the set of all combinatorially different ranges induced by intersections of P with the half-
planes. Observe that even though there are uncountably many half-planes, HP is a finite
set. Again, we will denote a range space simply by R when the underlying set P is clear.

For many geometric ranges, the number of combinatorially different sets determined in
Rd is of order nΘ(d), where n = |P | is the number of points, and d is the dimension of the
underlying space. Thus, in order to define a reasonable decision problem, in the following
considerations all range spaces are given implicitly—otherwise, the input would already be
huge. That means that the input to our problem is the set of points, and the ranges are
determined implicitly by all combinatorially different intersection with the possible ranges.
In what follows, it is helpful to think of the ranges as the set of all axis-parallel rectangles,
or boxes for short. Without loss of generality, we will assume that all points lie inside the
unit cube Id := [0, 1]d in Rd.

1.1.1 Combinatorial Discrepancy

First, we want to define the notion of combinatorial discrepancy, or red-blue discrepancy.
Here, we are given a set of points P and a range space R, and we want to color the points
red and blue so that every range contains roughly as many red points as blue points, i.e.,
we want to minimize the maximal difference between all red and blue points among all the
ranges. While this seems like a somewhat artificial problem, it has significant implications,
e.g., on the theory of ε-nets and many other fields in computational geometry (see the
textbook by Chazelle [25]).

Formally, we define the combinatorial discrepancy, or red-blue discrepancy, as follows.
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Definition 9. Let P = Pr ] Pb be a set of red points Pr and blue points Pb in Rd, and let
R be a set of ranges. The combinatorial discrepancy of P with respect to some R ∈ R is
defined as

ḊR(Pr, Pb) := ||R ∩ Pr| − |R ∩ Pb|| .
The combinatorial discrepancy of P with respect to R is then defined as as the maximum
discrepancy over all ranges:

ḊR(Pr, Pb) := max
R∈R

ḊR(Pr, Pb) = max
R∈R
||R ∩ Pr| − |R ∩ Pb|| .

From this, we derive the canonical decision problem: for a set P of red and blue points
and an implicit range space R, determine whether the discrepancy is larger than some
given value k. We will state the exact definitions of decision problems and its variants just
before considering it in the respective sections.

We should mention that we would get a different definition by defining the discrepancy
as a relative value: if we divide both terms by the respective cardinalities, we get a discrete
probability measure, and for these, the discrepancy can be defined as well.

Definition 10. Let P = Pr ] Pb be a set of red points Pr and blue points Pb in Rd, and
let R be a set of ranges. The relative combinatorial discrepancy of P with respect to some
R ∈ R is defined as

D̂R(Pr, Pb) :=

∣∣∣∣
|R ∩ Pr|
|Pr|

− |R ∩ Pb||Pb|

∣∣∣∣ .

The relative combinatorial discrepancy of P with respect to R is then defined as as the
maximum discrepancy over all ranges:

D̂R(Pr, Pb) := max
R∈R

D̂R(Pr, Pb) = max
R∈R

∣∣∣∣
|R ∩ Pr|
|Pr|

− |R ∩ Pb||Pb|

∣∣∣∣ .

This definition has the advantage that it allows two sets of very different sizes to
have small discrepancy, and thus can be used to determine how well a small set approx-
imates a large set. This will be particularly helpful once we state the connection to ε-
approximations. The way we have chosen to define it though, via absolute values, will be
used later in the hardness proofs.

1.1.2 Continuous Discrepancy

With the continuous discrepancy, or Lebesgue discrepancy, we want to define how well the
counting measure of a discrete point set approximates the continuous volume with respect
to certain ranges. To this end, we replace one of the discrete measures by a continuous
measure. What would we expect from such an approximation? Certainly, in order to
approximate the continuous measure well, for each box the fraction of points in that box
should roughly equal its volume.
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Definition 11. Let P be a set of points in Rd, and let R be a set of ranges. The continuous
discrepancy of P with respect to some R ∈ R is defined as

D̄R(P ) := ||R ∩ P | − n vol(R)| .

The continuous discrepancy of P with respect to R is then defined as as the maximum
discrepancy over all ranges:

D̄R(P ) := sup
R∈R

D̄R(P ) = sup
R∈R
||R ∩ P | − n vol(R)| .

In most cases that we are considering, there are actually only a finite number of signifi-
cant ranges, so we can replace the sup by a max. Again we could define relative continuous
discrepancy, but in this case, converting one value to the other would simply mean mul-
tiplying (or dividing) by n. The way we have chosen to define it will simplify notation
later.

A remark. To see that combinatorial discrepancy and continuous discrepancy are actu-
ally closely related, we want to point out that both definitions fall under a common, more
general definition of discrepancy: for any two measures µ, µ′, we can define how well one
measure approximates the other:

Definition 12. Let µ, µ′ : [0, 1]d → [0, 1] be measures with µ([0, 1]d) = µ′([0, 1]d). We
define the discrepancy of µ and µ′ with respect to R ∈ R as

DR(µ, µ′) := |µ(R)− µ′(R)| .

The discrepancy of µ and µ′ with respect to R is then defined as as the maximum discrep-
ancy over all ranges:

DR(µ, µ′) := sup
R∈R

DR(µ, µ′) = sup
R∈R
|µ(R)− µ′(R)| .

This generalizes both definitions: If we set µ, µ′ to be the (relative) counting measure
on the red and blue set, respectively, we obtain the definition of (relative) combinatorial
discrepancy. If we set µP to be the counting measure on P , and µ′(R) = |P | vol(R), we
get the definition of continuous discrepancy.

In any case, the first main question of this part stems from the canonical decision
problems arising from these definitions: how quickly can we decide whether the discrepancy
of a point set is at least some given value k?

1.1.3 ε-Nets and ε-Approximations

We now give a very short introduction into the theory of ε-nets and ε-approximations, a
subject whose influence on computational geometry can hardly be overestimated.

The idea behind an ε-net is to have a small set of elements of X that hit all heavy sets
in a range space R.
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Definition 13. Let (X,R) be a (finite) range space, and ε > 0. A set N ⊆ X is an ε-net
for X, if for all Y ⊆ X with |Y | ≥ ε|X| we have N ∩ Y 6= ∅.

In terms of computational complexity, an ε-net is thus a hitting set for the set system
defined by all sets of size at least ε|P |.

While this only requires each heavy set to contain at least one point of N , for the case
of ε-approximations we require a property that is a lot stronger: it should approximate
the given set well in the sense that in each range the fraction of points in the set should
roughly equal the fraction of all points.

Definition 14. Let (X,R) be a (finite) range space, and ε > 0. A set S ⊆ X is an
ε-approximation for X, if

∀R ∈ R :

∣∣∣∣
|R ∩ S|
|S| − |R ∩X||X|

∣∣∣∣ ≤ ε.

This justifies the name ε-approximations, and it is the point where the connection
to discrepancy becomes more obvious: an ε-approximation is a set with small relative
discrepancy with respect to R; in the notation of the previous section, this means that
D̂R(S,X) ≤ ε.

So far, these definitions are not so interesting—for example, every set is an ε-approxi-
mation for itself. The definitions will only become useful once we can guarantee that we
can construct ε-nets (and -approximations) that are much smaller than the original set.
For this to hold, we need some more information about the underlying range spaces.

To this end, we define the notion of Vapnik-Chervonenkis dimension of a range space,
which was introduced in [95].

Definition 15. Let (X,R) be a range space. A subset Y ⊆ X is shattered by R, if

{R ∩ Y | R ∈ R} = 2Y .

Now the VC-dimension is the size of a largest set shattered by R:

Definition 16. Let (X,R) be a range space. The Vapnik-Chervonenkis dimension of
(X,R) is defined as

max
Y⊆X
{|Y | | Y is shattered by R}.

It turns out that the VC-dimension of geometric range spaces is often strongly related
to the dimension of the underlying space. For example, the range space (Rd,H) has VC-
dimension d + 1, as one can derive from Radon’s theorem (cf. Section 12.1). In general,
it is known that range spaces of bounded description complexity (like boxes in Rd) have
bounded VC-dimension, see Sharir and Agarwal [90].

Set systems of finite VC-dimension are of particular interest in computational geometry,
most notably because of the following two theorems due to Haussler and Welzl [57] and
Vapnik and Chervonenkis [95], respectively.
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Theorem (ε-Net theorem; Haussler and Welzl [57]). Let (X,R) be a range space of VC-
dimension d and P ⊆ X be a finite set. Let ε > 0. Then there exists an ε-net N of size at
most

cd
1

ε
log

1

ε
,

where cd ∈ O(d).

And the analogous result for ε-approximations:

Theorem (Vanik and Chervonenkis [95]). Let (X,R) be a range space of VC-dimension
d and P ⊆ X be a finite set. Let ε > 0. Then there exists an ε-approximation S of size at
most

cd
1

ε2
log

1

ε
,

where cd is a constant only depending on d.

This means that the sizes of ε-nets and ε-approximations only depend on the value of
ε and the VC-dimension d, but are independent of the number of points in P .

Even though the two theorems about ε-nets and ε-approximations guarantee the ex-
istence of small sets, so far this does not give any method to efficiently find such them.
While there are deterministic methods to generate small ε-nets and ε-approximations in
time f(d, 1

ε
)nc (Chazelle [25]), they are usually very complicated. But, fortunately, as one

reads off from the proofs of the two theorems, something a lot stronger is actually true: a
random sample S of points of P of the respective size forms an ε-net or ε-approximation
with high probability! Thus, by picking each point with probability c′d

1
ε

log 1
ε
/n, we are

likely to end up with an ε-net. While this is surely one of the simplest algorithm one can
think of, it has a serious flaw: when given such a sample, we would like to know whether
it really is a net. Thus, an efficient and simple algorithm for checking such a net would
allow us to replace the complicated deterministic methods by a simpler sample-and-check
algorithm that guarantees us to deliver such a net.

This leads us to the second main question of the chapter: can we, in reasonable time,
check whether a given set is an ε-net for a given point set and an implicitly defined set of
ranges?

1.2 Our Contribution

Unfortunately, every known method for computing the discrepancy of a point set is compu-
tationally intensive for most of the ranges; given a set P of n points in d dimensions, every
known algorithm for getting even a constant-factor approximation of its star discrepancy
has a running time of nΘ(d).

The main question we ask here is whether this dependency on d is necessary. Specifi-
cally, we ask whether the decision version for star discrepancy (and other related problems)
can be solved in O(f(d)nc) time, i.e., whether it is fixed parameter tractable with respect to
the dimension (cf. Section 0.2). We will exclude the existence of such an algorithm under
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standard complexity theoretic assumptions, using tools from parameterized complexity, by
showing that the problems considered are W[1]-hard with respect to the dimension. The
reductions are based on a general framework by Cabello et al. [17] of deconstructing the
space into orthogonal planes, into which point sets are placed.

We will concentrate on computing the discrepancy and the related problem of finding
large monochromatic or empty boxes (which, by definition, have high discrepancy). Each
of the six main variants of the problem considered in Chapters 2 and 3 is interesting in
its own right, and often they have been considered in separate papers, as the related work
shows. Fortunately, we are able to tackle all of them in a similar fashion by our approach.

First, in Chapter 2, we will consider the discrete versions of the problem, i.e., computing
the combinatorial discrepancy and finding large monochromatic boxes. For this, the least
technical detail is required. However, the essence of the reduction is already stated clearly
there and forms the basis of the hardness proofs in later chapters.

In Chapter 3, we use this reduction to prove the hardness of the related problem of
computing the continuous discrepancy. We consider several variants of the problems, such
as computing a maximum volume box that does not contain any points, and each of these
requires some new idea for the reduction to go through.

Using this technique, in Chapter 4 we state similar results with respect to half-spaces
and simplices. We also elaborate the precise connection of these problems to the verification
of ε-nets, partially answering the main question given in the introduction to this part. In
particular, we show that it cannot be verified in time O(f(d, 1/ε)nc), whether or not a set
is indeed an ε-net with respect to another.



18 CHAPTER 1. INTRODUCTION AND MOTIVATION



Chapter 2

Combinatorial Discrepancy

In this section, we will consider the two discrete variants of the problem, namely computing
an axis-parallel box with a maximum number of blue points that contains no red points,
and computing the combinatorial discrepancy of a colored point set.

2.1 The Bichromatic Rectangle Problem

We will first consider the Bichromatic-Rectangle problem. We define the parameter-
ized version of the decision problem as follows:

Definition 17. k-d-Bichromatic-Rectangle
Input: A set Pr of red points and a set Pb of blue points in Rd, and k ∈ N
Parameter: k, d
Question: Is there an axis-parallel box H with H ∩ Pr = ∅ and |H ∩ Pb| ≥ k?

We remark that the name Monochromatic-Rectangle would have been much more
suitable, but the former has been used throughout the literature.

The problem was shown to be NP-hard by Eckstein et al. [41], and in the same paper,
a straightforward O(n2d+1) algorithm was given, where n denotes the number of points.
However, the hardness proof creates instances whose dimensions grows linearly in the size
of the input, and thus is not a parameterized reduction.

Recently, an output-sensitive O(m logd−2 n) time algorithm was developed by Backer
and Keil [9], where m is the number of significant boxes. In the worst case, this can be as
much as Ω(nd). Further, Aronov and Har-Peled [7] gave a (1−ε)-approximation algorithm
that runs in time O

(
nbd/2c(ε−2 log n)dd/2e

)
for half-spaces as ranges. They ask whether their

algorithm can be improved, and here we will show that in terms of asymptotic behaviour
of the exponent of n, this is not the case.

All further results in this and the upcoming chapters heavily rely on the construction
that follows now, so it should be read with care.

In what follows, we will show that the k-d-Bichromatic-Rectangle problem is W[1]-
hard with respect to both these parameters, excluding the possibility of an algorithm with

19
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running time O (f(d, k)nc) for the problem. Observe that in terms of hardness, this is a
stronger parameterization than the parameterization only by d: hardness for the latter
would still leave the possibility of an algorithm with the aforementioned running time.

A box that does not contain any red point will be called feasible. Let B denote the set
of (closed or open) axis-parallel boxes inside the unit cube Id. For a given set of points
P = Pr ] Pb, let

E(Pr, Pb) = EB(Pr, Pb) := max
B∈B,B∩Pr=∅

|B ∩ Pb|

denote the size of an optimal solution. We are thus interested in the problem of computing
a feasible box B ∈ B that maximizes |B ∩ Pb|.

2.1.1 The Idea

In order to show that the k-d-Bichromatic-Rectangle problem is W [1]-hard, we will
give a reduction from the k-Clique problem. For a given simple graph G = ([n], E), where
[n] := {1, . . . , n}, we will construct point sets Pr = Pr(G, k) and Pb = Pb(G, k) in R2k such
that G has a clique of size k if and only if E(Pr, Pb) ≥ k + 1. Observe that both the size
of the solution k + 1 as well as the dimension 2k depend only on k and not on the size of
G. Thus, it is a parameterized reduction.

We first describe the reduction on a higher level before presenting the details in the
subsequent Section 2.1.2.

We will put blue and red points into k pairwise orthogonal coordinate planes. As we
will see (cf. Observation 1), this will allow us to consider point sets in different planes
independently of each other—whether or not a certain point is contained in a box B will
only depend on the (two) non-zero coordinates. These points will be used to encode the
vertices of G. Additional red points will then be used to encode the edge-set of G, each of
which will lie in the product of two planes, and thus have four non-zero coordinates. Finally,
we put a single blue point at the origin to make sure that a maximal monochromatic box
contains the origin, simplifying our arguments a little.

Each of the k planes will contain n blue points, corresponding to the vertices of the
graph, and n−1 red points. The red points are placed such that no feasible box can contain
more than one blue point from a single plane. Thus, at most k of these blue points can be
contained in any feasible box. At the same time, each choice of k points corresponds to a
choice of k vertices from our input graph G. In our construction, a box can contain points
x and y from two different planes if and only if the corresponding vertices are connected in
G. This is achieved by putting red points into the product of the respective planes (which
is a four-dimensional subspace).

With the origin as an additional blue points, this will ensure that any feasible box
containing k + 1 blue points corresponds to a k-clique in G, and vice versa.
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2.1.2 The Construction

Preliminaries

First, let us introduce some basic notation. Let {ei | 1 ≤ i ≤ 2k} denote the standard
basis of R2k. For a set of vectors {x1, . . . , xl}, let 〈x1, . . . , xl〉 denote their linear span, i.e.,

the set
{∑l

i=1 αixi | αi ∈ R
}

. For 1 ≤ i ≤ k, we then define the two-dimensional subspace

Si := 〈e2i−1, e2i〉 ⊆ R2k.

Further, for 1 ≤ i < j ≤ k, we then set Sij to be the sum of Si and Sj, i.e., Sij := 〈Si,Sj〉.
For p ∈ Si and q ∈ Sj, observe that the unique point in Sij that (orthogonally) projects to
p (into Si) and to q (into Sj) is p+ q.

For an axis-parallel box in Rd defined as B = Πd
i=1[xi, x

′
i], let us say that (x1, . . . , xd) is

the lower left corner, and (x′1, . . . , x
′
d) is the upper right corner.

All reductions are based on the following observation:

Observation 1 (Decomposition). Let B be an axis-parallel box and let x = (x1, . . . , xd) be
a point in Rd. Then x ∈ B if and only if pri(x) = xi ∈ pri(B) for all 1 ≤ i ≤ d, where pri
denotes the projection to the i-th coordinate.

While this is quite obvious, it will prove to be very helpful in further considerations.
Observe that for general boxes that are not axis-parallel, this does not hold.

As we will at first mainly consider boxes whose lower left corner is the origin, it will be
helpful to also state this in a slightly different form.

Corollary 1. Let B = Πd
i=1[0, yi] be an axis-parallel box containing the origin and let

x = (x1, . . . , xd) be a point in Id. Then x ∈ B if and only if xi ≤ yi for all 1 ≤ i ≤ d.

In particular, for every x, it suffices to consider the coordinates xi 6= 0.
From now on, we often omit the word axis-parallel whenever we speak about axis-

parallel boxes or (hyper-)rectangles.

The scaffold construction.

Let 1 ≤ i ≤ k. We now define the set of n blue points bi(v) in the i-th plane Si. For a
vertex 1 ≤ v ≤ n, let

bi(v) := (v, n+ 1− v) ∈ Si ⊆ R2k.

Then, let
(Pb)

scaffold
i := {bi(1), . . . , bi(n)} ⊆ Si

denote the set of all blue points in the i-th plane. As we will see later, choosing a rectangle
containing point bi(v) will correspond to choosing vertex v from G. Let

P scaffold
b :=

⊎

1≤i≤k

(Pb)
scaffold
i
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yi

xi

bi(1)

bi(n)

ri(n− 1)

ri(1)

bi(2)

Figure 2.1: The scaffold construction in Si with vertex 2 selected. Observe that any feasible
box B can contain at most one blue point from each (Pb)

scaffold
i .

be the set of all these blue points.
As we do not want any feasible box to contain more than one point from a single Si,

we have to add red points between them that forbid this. To this end, for 1 ≤ v ≤ n− 1,
we define a red point ri(v) := (v + 1/2, n+ 1− (v + 1/2)) and set

(Pr)
scaffold
i := {ri(1), . . . , ri(n− 1)} ⊆ Si.

Finally, we define

P scaffold
r :=

⊎

1≤i≤k

(Pr)
scaffold
i

to be the set of all red scaffolding points. See Figure 2.1 for an example of the scaffold
construction in Si.

Encoding edges.

If we did not add any more points, we would now be able to pick nk different feasible
boxes containing k points, corresponding to the nk ordered tuples of k vertices from G. In
order to forbid certain tuples—namely the ones that contain a point pair corresponding
to vertices which are not connected—we will now add additional red points to encode the
edges.

To this end, we place points inside the product of different Si: for 1 ≤ i < j ≤ k and
vertices 1 ≤ u, v ≤ n, we define the point

rkill
ij (uv) := bi(u) + bj(v) ∈ Sij.
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We then define the set of all killing points in Sij:

(Pr)
E
ij := {rkill

ij (uv) | uv /∈ E}.

Observe that as G simple (i.e., contains no loops), all points of the form rij(uu) are also
added. Finally, we set

PE
r :=

⊎

1≤i 6=j≤k

(Pr)
E
ij

to be the set of all killing points. See Figure 2.2 for an example where uv /∈ E.

yi

xi

bi(1)

bi(n)

ri(n− 1)

ri(1)

yj

xj

bj(1)

bj(n)

rj(n− 1)

rj(1)

bj(v)

bi(u)

rkillij (uv)

Figure 2.2: bi(u) is the projection of rkill
ij (uv) to Si and bj(v) is the projection of rkill

ij (uv) to
Sj. As both points are contained in the dashed rectangles, the resulting box also contains
rkill
ij (uv).

Observation 1 states that whether or not a point is contained in a box depends only on
the respective non-zero coordinates. Thus, for the killing points we get the following main
property:

Observation 2. A point rkill
ij (uv) is contained in a box B (containing the origin) if and

only if both bi(u) and bj(v) are contained in B.

Putting things together

For G = ([n], E) and k > 0 we construct point sets Pr = Pr(G, k), Pb = Pb(G, k) in R2k as
follows:

• Pr := P scaffold
r ∪ PE

r

• Pb := {0} ∪ P scaffold
b
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The size of the point set is O(k2n2) and the coordinates of the points can be encoded by
O(log kn) bits. Clearly, the construction can be performed in time polynomial in both k
and n.

We now come to prove the main lemma of this section.

Lemma 1. G has a k-clique if and only if E(Pr, Pb) = k + 1.

Proof. First, observe that any feasible box B can contain at most k + 1 points, as |B ∩
(Pb)

scaffold
i | ≤ 1, for 1 ≤ i ≤ k. Thus, in order to contain k+ 1 blue points, any feasible box

has to contain the (blue point at the) origin.
“⇒” Let v1, . . . , vk be a clique of size k. We choose a (closed) box B with upper right

corner bi(vi) in Si and lower left corner 0.
B contains exactly one point from each of the Si, and additionally the origin, making

it a total of k + 1 blue points. We show that B is feasible.
First, by definition, B contains no point of P scaffold

r . Further, assume that B contains
a point of PE

r , say rkill
ij (uv) = bi(u) + bj(v) ∈ (Pr)

E
ij. Then, by Observation 2, B contains

both bi(u) and bj(v). But as u and v are connected, rkill
ij (uv) has not been added to Pr.

Thus, B is feasible.
“⇐” Let B be any feasible box containing k+1 blue points. It can contain at most one

point from each Si, and additionally the origin. Thus, such a selection of points corresponds
to a selection of k vertices from G. Further, as the box does not contain any killing point,
it means that these vertices are pairwise connected in G. Thus, they form a k-clique in
G.

Summing up, we have created an instance of k-d-Bichromatic-Rectangle in di-
mension 2k in time polynomial in both n and k with the property that there is a feasible
box with k + 1 points if and only if G has a clique of size k. In our reduction the number
of points in a solution as well as the dimension only depend on the parameter k. As the
k-Clique problem is W[1]-hard, we thus derive the following result:

Theorem 1. The k-d-Bichromatic-Rectangle problem is W [1]-hard .

That still leaves the question for approximation algorithms. As for approximation
schemes, we are able to state a hardness result based on a known relation to parameterized
complexity theory. An Efficient Polynomial-Time Approximation Scheme (EPTAS) is an
algorithm that, given any ε > 0, produces a solution whose value is at least (1 − ε)
times the value of an optimal solution in O(f(1/ε) · nc) time, for some constant c > 0.
As noted in [20, Lemma 11], an integer-valued optimization problem that is W [1]-hard
when parameterized by the size of the solution is unlikely to have an EPTAS. To see this,
consider setting ε = 1/(k + 1) for solution value k; the only (1 − ε)-approximate solution
is the optimum. Since we have shown that the problem is hard with respect to both the
dimension and the size of the solution, the above implies the following:

Corollary 2. The (optimization version of the) k-d-Bichromatic-Rectangle problem
does not admit a (1−ε)-approximation scheme that runs in O(f(1/ε, d) ·nc) time, for c > 0
constant, unless W [1] = FPT .
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In this sense, the algorithm by Aronov and Har-Peled [7] cannot be improved to have
an fpt running time. In Section 4.3, we combine this result with a deeper result from
parameterized complexity theory to strengthen it even further.

2.2 The Red-Blue Discrepancy Problem

We now turn to the problem of computing the red-blue discrepancy, or combinatorial
discrepancy, of a point set in Rd. Here, we want to maximize the difference between red
and blue points inside a box.

With slight modifications, the NP-hardness of the canonical decision problem follows
from the aforementioned hardness result in [41], but we are again aiming for a stronger
statement. To this end, we choose the parameterization by the dimension d.

Definition 18. d-Red-Blue-Discrepancy
Input: A set Pr of red points and a set Pb of blue points in Rd, and δ ∈ N
Parameter: d
Question: Is the discrepancy of the set with respect to axis-parallel boxes at least δ?

Observe that here we chose the weaker parameterization by d only. It is an interesting
question whether our results also hold for the problem parameterized by both, d and δ.

In order to show W[1]-hardness for d-Red-Blue-Discrepancy, we have to overcome
two obstacles that let the previous construction fail:

• The maximum discrepancy might be attained for boxes that have a lot more red than
blue points.

• Even if we can ensure that a high discrepancy is attained for boxes with a lot more
blue than red points, such boxes might still contain some red points.

In order for our construction to work, we thus have to make sure that a certain threshold
can only be achieved by boxes containing only blue points. Fortunately, this can be easily
fixed. To make sure that a high discrepancy is attained for a box with many blue points,
starting from the above construction, we simply place |Pr| additional blue points at the
origin (or, if we do not want to allow multiple points, we place |Pr| points close by).

We can then show the following lemma, similar to Lemma 1.

Lemma 2. G has a k-clique if and only if ḊR (Pr, Pb) = k + |Pr|+ 1 =: δ.

Proof. “⇒” If there is a k-clique in G, we choose the box as in Lemma 1. It contains no
red points, but the |Pr|+1 blue points at the origin and one blue point from each Si. Thus,
it has discrepancy k + |Pr|+ 1, as desired.
“⇐” Consider any box B with discrepancy δ. As there are only |Pr| red points in total,
this box cannot consist of more red points than blue points. Further, by construction, the
discrepancy of the box with respect to each Si is at most one. In order for B to have
discrepancy at least k + |Pr| + 1, it must thus contain all blue points at the origin. Now
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any box of such discrepancy cannot contain any red killing point: the discrepancy would
at most be k + |Pr|+ 1− 1.

This means that among all points chosen in the respective Si, all corresponding vertices
are connected. If we pick any set of points that contains one blue point from each Si, the
corresponding vertices thus form a k-clique.

From this, we derive the main theorem of this section.

Theorem 2. The problem d-Red-Blue-Discrepancy is W[1]-hard.

2.3 General Position

In both constructions, the point sets created lie in degenerate position, in the sense that
many points lie in low dimensional subspaces. In addition to this, many points coincide on
some of the coordinates—an undesirable property when dealing with axis-parallel boxes
as ranges. In order to avoid this, we now indicate how to put the point set in general
position to show that the hardness results also hold for this case. To this end, we show
how to maintain the main properties of the reduction for the case of the Bichromatic-
Rectangle problem; the discrepancy case is then straightforward.

The plan is to modify our construction a little in order to make it more “robust” with
respect to perturbations. Afterwards, we can simply perturb it a little in order to put the
points in general position, while maintaining its combinatorial properties.

Definition 19. A set P of points in Rd is called α-robust, if

min
i
{| pri(x), pri(y)| | x, y ∈ P} ≥ 2α.

In particular, in a set that is α-robust for some α > 0, no coordinates of any to points
coincide.

We say that Q is a β-perturbation of P , if Q is created from P by perturbing each
point by at most β in each direction. The following lemma justifies the name α-robust.

Lemma 3. If P is α-robust and Q is a β-perturbation of P , for β < α, then for any closed
box B for P there is a box B′ for Q that contains exactly the same (perturbed) points.

Proof. Without loss of generality, assume that the endpoint of the box in each coordinate
lies as some point from P . Enlarge B by a value of β in each direction to yield a box
B′. Then, as every point is perturbed by at most β in each direction, for any point p, the
corresponding perturbation is in the new box B′. Further, as the distance between the
endpoint of B and any point not contained in B was at least 2α > 2β in each coordinate,
B′ does not contain any additional points.

In order to use this lemma, we now show how to make our construction α-robust for
a suitable value of α. To this end, let n denote the total number of points, and set
α := 1/(10n2). Now consider a single Si. Let Xi = {xi, . . . , x2n−1} denote the set of all
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2n− 1 (red and blue) points in Si, ordered with respect to the 2i-th coordinate. For j 6= i,
we now set the j-th coordinate of each xl in Si to be (2i(2n− 1) + 2l)α, and denote the
corresponding points by bi(u) and ri(u), respectively.

Further, for the blocking points we now set rkill
ij (uv) := bi(u) + bj(v)− 1/10 ·

(∑2k
l=1 el

)
.

We call this modified set P ′. Analog to Lemma 1, P ′ admits a box containing k + 1
blue and no red points if and only if G has a clique of size k. Further, the set created
this way is α-robust, for α = 1/(10n2), as each pair of points differs by at least 2α in each
coordinate.

Finally, by perturbing each point of P ′ by a value of at most β := α/4 in each direction,
we obtain a point set in general position. Combining Lemma 3 and the fact that P ′ is
α-robust, we thus get the following strengthening of the theorems above:

Theorem 3. Theorems 1 and 2 still hold if the point sets are in general position.
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Chapter 3

Continuous Discrepancy

We now turn to the continuous versions of the problem: computing maximum volume
boxes not containing any points, and computing the Lebesgue discrepancy of a point set.

So far, our instances have been very combinatorial. The measures were only defined by
intersections of the ranges with a (finite) discrete set. To state it very vaguely: as one of
our measures now becomes the volume of the range, we have to make the instances a bit
more geometric.

As for the ranges considered in this section, we will restrict ourselves to the case of
axis-parallel boxes B, and axis-parallel boxes containing the origin A, inside the unit cube
Id = [0, 1]d.

A crucial observation is that we can restrict ourselves to the significant boxes, i.e., all
boxes that are products of open, half-open, or closed intervals and which touch one of the
points on each side. This allows us to only consider finitely many boxes, and it shows that
the problems considered can all be solved in time nO(d).

The proofs follow the ones of the discrete cases in Chapter 2—except that now we
need to formulate everything in the continuous setting. In the upcoming constructions,
the analog of a box containing many blue points is now a box that is “large” in terms of
volume.

As the numbers appearing in this construction have a bit complexity polynomial in the
input size, we can use the standard RAM as our computational model.

3.1 The Largest Empty Anchored Box Problem

First, we deal with the problem where we have to find an axis-parallel box of maximum
volume that has its lower left corner at the origin and contains no points from a given set
P . We will call these boxes anchored boxes, or subintervals, or corners, or simply anchors,
and the set of all anchored boxes inside the unit cube will be denoted as A. In the next
two sections, we will use the term box as shorthand for anchored box, and rectangle for
anchored rectangle, only emphasizing it here and there to remind the reader.

The parameterized version of the decision problem is defined as follows:

29
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Definition 20. d-Largest-Empty-Anchor
Input: A set P of points in Id, and δ ∈ Q
Parameter: d
Question: Is there an anchored box A ∈ A with A ∩ P = ∅ and vol(A) ≥ δ?

The Largest-Empty-Anchor problem was recently shown to be NP-hard by Gnewuch
et al. [53]. Here, besides showing its W[1]-hardness, our construction yields that it is even
W [1]-hard to approximate this problem within a factor of 2poly(|P |).

3.1.1 The Construction

We now come to describe the construction. Again, we reduce from k-Clique. Let G =
([n], E) denote the graph for which we want to decide whether it has a clique of size k. The
main idea is as follows: we again consider R2k as product of k orthogonal two-dimensional
planes, denoted as Si, 1 ≤ i ≤ k. In these, we place points to allow only a certain set
of large rectangles in each Si—namely one for each vertex. Again, the product of the
respective Si is used to place additional blocking points which encode the edge set.

We will proceed as follows: First, we determine where the upper right corners of the n
large rectangles in each plane have to be. From this, we will determine the blocking points
(which are the analog of the red points above) that are needed to encode the edges.

In each plane, there will be n large rectangles to choose from, corresponding to the n
vertices of G. It will only be possible to choose large rectangles from two different planes if
the corresponding vertices are connected in G. Observing that the volume of a box is the
product of the areas of the respective Si, this yields a one-to-one correspondence between
“large” empty boxes and cliques of size k.

Let γ > 1 be a parameter to be specified later. For now, we can just set γ := 2, but
later we will use the freedom we have in choosing this parameter in order to show the other
results. One possibility to determine the upper right corners of the rectangles, each having
area C := 1

γn−1 in one Si, is as follows: for each u ∈ V , we set

ci(u) :=

(
Cγu−1,

1

γu−1

)

and define

Ci(u) := {ci(u) | 1 ≤ u ≤ n}.
Observe that every rectangle in Si whose upper right corner is at ci(v), for some v, has an
area of Cγv−1 · 1

γv−1 = C.

We now place points such that any maximal empty (open) rectangle, i.e., a rectangle
supported by two points, has its upper right corner at one ci(u). This can be realized by
the following set: Define

pi(u) :=

(
Cγu−1,

1

γu

)
∈ Si
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and set
P scaffold
i (u) := {pi(u) | 0 ≤ u ≤ n}.

Finally, set

P scaffold :=
⊎

1≤i≤k

P scaffold
i .

Thus, in each Si, we have n choices for the upper right corner of the rectangles: the
points ci(u), 1 ≤ u ≤ n. If a rectangle has its upper right point somewhere else on (x,C/x)
or above, it contains a point from P scaffold, and any other feasible rectangle has smaller
size.

Consequently, choosing a large rectangle in each of the Si yields an empty box of total
volume Ck, and it again corresponds to a choice of an ordered k-tuple of the vertices. See
Figure 3.1 for an example.

ci(u)

ci(n) = (1, C)

ci(1) = (C, 1)


x, Cx




pi(n)
pi(u)

pi(0)

pi(u− 1)

yi

xi

(1, 1)

(0, 0)

pkilli (u)

Figure 3.1: The plane Si. A rectangle selecting vertex u and the region Fi(u) indicated.

3.1.2 Encoding the Edges

As above, if the vertices corresponding to two different large rectangles in the planes Si
and Si are not connected, we will add a point in the product Sij that forbids these two
rectangles to be chosen at the same time. To this end, we define points

pkill
i (u) :=

(
Cγu−2,

1

γu

)
∈ Si.

These points are themselves not added to the set P , but we use them to define the actual
killing points:

pkill
ij (uv) := pkill

i (u) + pkill
j (v) ∈ Sij.
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We then add all the killing points corresponding to non-edges in the graph:

PE := {pkill
ij (uv) | i 6= j, uv /∈ E}.

Recall that this also includes all points of the form pkill
ij (uu), as there are no loops in

the graph. Finally, we define the set of all points as

P := PE ∪ P scaffold.

The size of P is O(n2k2), and if we set γ := 2 and C := 1/γn−1 = 1/2n−1, all coordinates
have an encoding size polynomial in the size of the input. Clearly, the construction can be
performed in time polynomial in k and n.

We can now prove the correctness of the construction. To this end, let Fi(u) denote
the open region with corners pi(u− 1), ci(u), pi(u), pkill

i (u), as indicated in Figure 3.1.

Lemma 4. Any feasible rectangle in Si that does not intersect any region Fi(u), 1 ≤ u ≤ n,
has size at most C/γ = 1/γn.

Proof. Such a rectangle has its upper right point below the graph (x, C
xγ

) going through

the points pi(u), 1 ≤ u ≤ n. Thus, its area is at most x C
xγ

= C/γ.

We use this to prove the main lemma, the continuous analog of Lemma 1 from the
previous chapter:

Lemma 5. G has a k-clique if and only if there is an empty anchored box of size δ = Ck.
Further, if G does not have a k-clique, the largest empty anchored box has volume at most
Ck/γ.

Proof. “⇒” Let v1, . . . vk be a clique in G. In each Si, 1 ≤ i ≤ k, choose the open
rectangle with upper right corner (Cγvi−1, 1

γvi−1 ). Define the box A to be the product if

these rectangles, which has volume δ = Ck. By definition, it does not contain any point
from one of the Si. Further, because the vertices v1, . . . vk are pairwise connected, no point
pij(vivj) is contained in P , and thus A does not contain any killing point.

“⇐” Assume there is no k-clique. Let A be a box of volume δ. The intersection
with each Si is of area exactly C, for otherwise, A had to contain one of the points from
P scaffold
i (u). Thus, each intersection with an Si corresponds to a vertex in V . But among
k vertices from V , at least two have to be not connected, say u and v. Without loss of
generality, assume that u corresponds to a rectangle defined in Su and v corresponds to a
rectangle defined in Sv. Then A also contains the point pkill

uv (uv) ∈ P , and thus the box
cannot be empty.

In order for a box to not contain any points, we thus have to choose a rectangle in at
least one of the Si whose upper right corner is below (x, C

xγ
). But any such rectangle has

area at most C/γ, and thus the total volume of any empty box is at most Ck/γ.

This finishes the proof of the following theorem.

Theorem 4. The problem d-Largest-Empty-Anchor is W[1]-hard.
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3.1.3 An Inapproximability Result

Clearly, as seen in Lemma 5, by setting γ = 2, we derive that it is already W[1]-hard to get
a 2-approximation for the optimization problem. We will now use the freedom we have in
choosing γ (and C) in order to prove a much stronger result. Recall that Lemma 5 shows
that the fraction between a positive solution and a negative solution is Ck/(Ck/γ) = γ.

We now take advantage of this fact. The largest occurring coordinate, in terms of
bit size, is γn, which has encoding size log γn. This means that the total bit size of the
reduction is O(n log γn2k2).

Consequently, when choosing γ = 2poly(n) (and C accordingly) in our reduction, we
still have a polynomial time reduction. A graph with a k-clique is then transformed to an
instance with an empty anchor of volume Ck, whereas by Lemma 5 in a negative instance,
the largest empty anchor is of volume Ck/γ = Ck/2poly(n). That is, we can exponentially
blow up the gap between a positive and a negative instance—giving us a very strong
inapproximability result, which leads to the following stronger version of Theorem 4.

Theorem 5. For any polynomially growing function f , the problem d-Largest-Empty-
Anchor is W[1]-hard to approximate by a factor of 2f(|P |).

3.2 The Star Discrepancy Problem

After having considered the problem where we were not allowed to put any points into
the box, we now tackle the problem of computing the maximum Lebesgue discrepancy
for the range space of anchored boxes, the star discrepancy. For a point set P , we set
D∗(P ) = D̄A(P ). The decision problem parameterized by the dimension is then defined
as:

Definition 21. d-Star-Discrepancy
Input: A set P of points in Id, and δ ∈ Q
Parameter: d
Question: Is D∗(P ) ≥ δ?

Even though the restriction to anchored boxes seems somewhat artificial, the star dis-
crepancy still is interesting in its own right. Moreover, the star discrepancy and the
discrepancy for boxes are closely related: in any fixed dimension, one is bounded by a
constant multiple of the other, see for example Matoušek [70, Observation 1.4]. Thus, an
algorithm for computing the star discrepancy would give an algorithm for approximating
the discrepancy for boxes.

The Star-Discrepancy problem has been shown to be NP-hard by Gnewuch et
al. [53]. An exact algorithm that runs in time O(n1+d/2) was presented in Dobkin, Edels-
brunner, and Mitchell [37]. Thiémard [93] has given an approximation algorithm that
achieves additive error and runs in fpt time with respect to the error and the dimension.
However, as Gnewuch, Srivastav, and Winzen [53] also noted, by setting the error to the
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same order as the optimum (to achieve a constant factor approximation), the running time
of any algorithm following Thiémards approach becomes nΘ(d).

We show that computing the star discrepancy of a point set inside the unit cube is
W [1]-hard with respect to the dimension.

There are two reasons why the previous reduction does not give us the hardness-result
for this problem right away, similar to the obstacles we encountered in Section 2.2:

• First, the maximum discrepancy can be attained by either a large box with few points
inside or by a small box with many points inside. For example, in our construction
from Section 3.1, large point sets lie in a box with affine dimension d− 1 and thus a
volume of 0.

• Second, even if the maximum is attained for a large box, it might still contain some
points, in which case our construction would fail.

However, we can get rid of both problems by simply choosing the right value for γ, and
thus, Ck, the size of the largest empty box.

For a graph G, let N be the total number of points in our construction from the previous
section. Recall that N ∈ O(k2n2).

Corollary 3. If there is a box A with |N · vol(A)− |A ∩ P || > N − 1, then A is empty
(i.e., A ∩ P = ∅).

Proof. Assume that A contains at least one point.
If it contains less than N points, the discrepancy can be at most N − 1: on the one

hand, the discrepancy is at most the number of points inside the box, which is N − 1. On
the other hand, the volume is at most 1, and thus the discrepancy is at most N − 1.

If it contains all N points, then its volume must be 1, as there are points with xi = 1
and yi = 1 for all 1 ≤ i ≤ k, and thus its discrepancy is 0.

To use this lemma, we need to ensure that large empty boxes in a positive instance
have higher discrepancy than every box containing points, i.e.,

N · Ck = N ·
(

1

γn−1

)k
> N − 1.

Geometrically, with decreasing γ towards 1, we push the points towards the upper right
corner of the unit cube. We thus choose γ so that

1 < γ <

(
N

N − 1

) 1
k(n−1)

.

To make sure that γ requires only polynomially (in k and n) many bits, observe the
following.

Lemma 6. For γ = 1 + 1
t

with t = 2knN , it holds that γk(n−1) < N
N−1

.
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Proof. Write N
N−1

=
∑∞

i=0

(
1
N

)i
. Then

γk(n−1) < γkn =

(
1 +

1

t

)kn
=

kn∑

i=0

(
kn

i

)
1

ti
≤

kn∑

i=0

(kn)i
1

ti
≤

∞∑

i=0

(
kn

t

)i

<

∞∑

i=0

(
1

2N

)i
<
∞∑

i=0

(
1

N

)i
=

N

N − 1
.

We now construct the set P with this value for γ. Observe that, as γ has a bit complexity
polynomial in the input, the respective value C = 1/γn−1 in binary representation is at
most n times as long, and thus is still polynomial in the input. We can then prove the
main lemma.

Lemma 7. G has a clique of size k if and only if D∗(P ) = N · Ck.

Proof. “⇒” If there is a clique of size k, then by Lemma 5 there is an empty box with
volume Ck that does not contain any point. Thus, the discrepancy of that box is N · Ck,
as desired.

“⇐” By Corollary 3, if there is a box A with discrepancy N · Ck > N − 1, it contains
no point from P . By Lemma 5, such a box corresponds to a k-clique in G.

This shows the main theorem of this section.

Theorem 6. The problem d-Star-Discrepancy is W[1]-hard.

3.3 The Largest Empty Box Problem

So far, we always assumed that the boxes be anchored, i.e., contain the origin. In what
follows, we drop this constraint in order to extend our result to the more natural problem
of Largest-Empty-Box and Box-Discrepancy. That means our range space is now
B, the set of all axis-parallel boxes inside the unit cube. We start with the case where we
have to find a box of large volume not containing any points.

Definition 22. d-Largest-Empty-Box
Input: A set P of points in Id, and δ ∈ Q
Parameter: d
Question: Is there a box B ∈ B with B ∩ P = ∅ and vol(B) ≥ δ?

The Largest-Empty-Box problem has been studied extensively in the planar case,
see for example Agarwal and Suri [2] and references therein. When the dimension is part of
the input, the problem has only recently been shown to be NP-hard by Backer and Keil [9],
who also give the fastest exact algorithm, which runs in time O(nd logd−2 n). Also recently,
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Dumitrescu and Jiang [40] gave an O((8edε−2)d ·n logd n)-time (1−ε)-approximation algo-
rithm for this problem. Note that, since (log n)k < n+ f(k) for some f(k), this counts as
fpt time in parameters 1/ε and d, in contrast to our results for Largest-Empty-Anchor.

What makes the previous construction fail is the following: as the box does not have
to contain the origin, now the Si cannot be considered separately any more. This kills our
construction from the previous section: the open box (0, 1)2k does not contain any points
from P , but has volume 1.

The plan is to re-establish this dependence, so that we can use the same reasoning as
above. For this, we will now put the points closer to the center of the d-dimensional unit
cube. This will result in a point set for which similar properties as in Corollary 1 apply.

To this end, we apply a simple trick, which we call lifting : from a graph G, we first
construct the set P as in Section 3.1 with the constant C satisfying Ck = 2/3, and thus
γ = (2/3)1/k(n−1). Then, we define the function lift : R2k → R2k as follows:

lift(x1, . . . , x2k) = (x′1, . . . , x
′
2k) with x′i =

{
xi if xi 6= 0

x′i = 1/2 otherwise.

Now we apply the function lift to all points in the set P to get a set P ′ = lift(P ). For
a lifted point x ∈ P ′, we call the Si that the point was lifted from the corresponding Si.
This gives the following analog of Observation 1:

Lemma 8. Any box B ∈ B with volume at least 2/3 contains a point x ∈ P ′ if and only if
the projection onto the corresponding Si contains the projection of x.

Proof. Recall that the volume of the box is the product of the areas of the corresponding
projections onto the Si. The maximal area of a projection is 1. Thus, as the box has
volume at least 2/3, each of its projections onto any of the Si has an area of at least 2/3.
As any rectangle in some Si that does not contain the point (1/2, 1/2) has area at most
1/2, this point is contained in the projection of B onto Si, for all 1 ≤ j ≤ k.

Further, recall that a point x is contained in B if and only if for all 1 ≤ i ≤ k the
projection of x onto Si is contained in the projection of B onto Si.

If a point x is lifted from Si, all coordinates j 6= i are 1/2. By the previous observation,
a box with volume at least 2/3 thus contains all projections of x onto Sj, for j 6= i. This
means that if the projection of x onto Si is contained in the projection of B onto Si, then
x is contained in B, and vice versa. This finishes the proof.

Further, any box of volume 2/3 without loss of generality has its lower left endpoint
inside [0, 1/2)2k: As all the points of P ′ lie inside [1/2, 1]2k, we can extend any large empty
box until its lower left corner is the origin.

After these modifications we can use the same arguments as in the previous sections.

Lemma 9. G has a clique of size k if and only if there is an empty box B with volume Ck.

Proof. The claim follows from Lemma 5 and Lemma 8.

Theorem 7. The problem d-Largest-Empty-Box is W[1]-hard.
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3.4 The Box Discrepancy Problem

Our efforts now culminate in showing hardness of computing the discrepancy for axis-
parallel boxes B, box discrepancy for short. The decision problem parameterized by the
dimension, derived from Definition 11, is defined as follows:

Definition 23. d-Box-Discrepancy
Input: A set P of points in Id, and δ ∈ Q
Parameter: d
Question: Is D̄B(P ) ≥ δ?

For the box discrepancy, no hardness results were known so far. Here, we will estab-
lish W[1]-hardness with respect to the dimension, which also implies NP-hardness of the
problem, as our reduction is polynomial in both n and k.

In order for our proof to work for this case, we will combine the ideas of the previous
sections. To this end, we start with the construction from Section 3.2. Recall that in this
construction, we shrunk the point set to lie close to the upper right corner of the unit cube,
so that there always will be a huge empty box. To this point set, we now apply the lifting
transform from Section 3.3. This ensures that for any such box, whether or not a point is
contained in the box will only depend on the projection of the box onto the corresponding
Si, as stated by Lemma 8. This completes the construction.

Lemma 10. G has a clique of size k if and only if D̄B(P ) ≥ NCk.

Proof. “⇒” If G has a clique of size k, we can pick a box according to Lemma 9, which is
empty and has volume Ck. Thus, the discrepancy is NCk.

“⇐” By the choice of C, and by the same arguments as in Corollary 3, a box with
discrepancy NCk cannot contain any points from P . By Lemma 9, such a box corresponds
to a k-clique in G.

This shows the main theorem for the d-Box-Discrepancy problem.

Theorem 8. The problem d-Box-Discrepancy is W[1]-hard.

3.5 General Position

Along the lines of Section 2.3, we now show that the constructions can be put in general
position, while maintaining the main properties. To this end, we simply perturb each point
by a random value of at most α in each direction. We have to be careful to not push any
points outside the unit cube, and in this case simply perturb them towards the inside. As
in Section 2.3, for a set of points P , we denote such a set as an α-perturbation of P .

As an analog of Lemma 3, we claim that the size of a largest empty box does not change
too much if α is small.
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Lemma 11. Let P be a set of n points in Id, and let P̃ denote an α-perturbation of P .
Let B be a largest empty box inside Id with respect to P , and let B′ denote the size of a
largest empty box inside Id for P̃ . Then

vol(B′)− 2dα ≤ vol(B) ≤ vol(B′) + 2dα.

Proof. Let B be a largest empty box for P , B := Πd
i=1(xi, yi). Define

B′ := Πd
i=1(xi + α, yi − α).

Clearly, B′ has volume at least vol(B)−2dα. Further, as every point from P was perturbed
by at most α in each direction, and B did not contain any points, B′ also does not contain
any points.

The reverse inequality then follows from interchanging the roles of P and P̃ .

We can now use this lemma to show that the problems considered in Chapter 3 are also
hard for point sets in general position. For each of the reductions, the absolute difference
for the largest empty box between a positive and a negative instance was at least some
value α∗, with a bit complexity polynomially bounded in the size of the input. Thus, for
an instance in 2d dimensions, choosing a random perturbation with 2dα < α∗/2 for each of
the points creates a point set in general position. Further, by Lemma 11, the gap between
a positive and a negative instance instance is still at least α∗ − 2 · 2dα > 0.

From this, we derive the following theorem:

Theorem 9. Theorems 4, 6, 7, and 8 also hold if we require the point sets to be in general
position position.



Chapter 4

Conclusion

Finally, we summarize our results and state the hardness results with respect to several
other range spaces. We also elaborate the connection to a recent result on (relative)
computational lower bounds and state the necessary limitations for our parameterized
hardness proofs, which stem from discrepancy theory itself. As an application, we discuss
the relation to the problem of verification of ε-nets.

4.1 Other Geometric Range Spaces

In the previous sections, we have considered as ranges only axis-parallel boxes, sometimes
required to contain the origin. Similar questions can of course be asked when the ranges are
determined by other (geometric) objects, and, perhaps not surprisingly, many of these will
lead to similar hardness results. To not bore the reader, we will not present all variants of
continuous/combinatorial discrepancy and all possible ranges. As the volume formulas are
rather tedious to elaborate, we concentrate on the discrete cases where the ranges are given
by the set of all half-spaces. We denote the corresponding decision problems parameterized
by the dimension as d-Bichromatic-Halfspace and d-Halfspace-Discrepancy.

Figure 4.1 shows the construction for half-spaces in a single Si. The killing points are
then placed on the segments between two points to be blocked, i.e.,

pkill
ij (uv) =

1

2
(bi(u) + bj(v)) .

Now clearly any half-space that does not contain any red points but at least one blue
point has to contain the origin, as can be seen from Figure 4.1. Further, every half-space
can contain at most one blue point in each Si, and by the definition of the killing points,
two points can only be chosen if the corresponding vertices are connected in the graph.

By following Lemma 1, we can thus derive the following:

Lemma 12. There is a half-space that contains k blue points and no red points if and only
if there is a k-clique in G.

39



40 CHAPTER 4. CONCLUSION

yi

xi

bi(1)

bi(n)
ri(n + 1)

ri(0)

Figure 4.1: The construction for half-spaces in a single Si

To adapt the proof to the case of discrepancy, let Pr denote the set of red points in the
construction. Again, by adding |Pr| points close to the origin, analog to Section 2.2, we
can derive the same result for the combinatorial discrepancy with respect to half-spaces.

Lemma 13. There is a half-space with discrepancy |Pr|+k if and only if there is a k-clique
in G.

This shows that the problems are also hard with respect to half-spaces as ranges.

Theorem 10. The problems d-Bichromatic-Halfspace and d-Halfspace-Discrep-
ancy are W[1]-hard.

It is easily seen that the same construction also works for simplices, as the intersection
of a half-space with the positive orthant defines a simplex.

We are positive that simple adaptations of the construction lead to similar results for
other ranges. In the case of convex sets, this is not worth the effort however: As we will
see in Part III, for this case we are able to show a significant strengthening of the result.

4.2 Why Only One Parameter?

For the Bichromatic-Rectangle problem we have shown that it is W[1]-hard with re-
spect to both the dimension d and the size of the solution k. This, under standard complex-
ity theoretic assumptions, excludes an algorithm with a running time of O (f(d, k)nc), for
constant c. A similar result was obtained for the problem of Maximum-Empty-Anchor.
This raises the question whether we can strengthen the result for the other continuous
problems as well. Can we exclude algorithms with a running time of O (f(d, δ)nc) for
Star-Discrepancy and Box-Discrepancy?

The answer is no, and the reason for this is found in discrepancy theory itself: It is
known that every set of n points in [0, 1]d has box discrepancy at least Ω(log(d−1)/2 n), see
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[70, Chapter 6], and by the aforementioned relation to star discrepancy, this also holds for
the latter. This leads to a trivial fpt algorithm as follows.

Let P , n := |P |, be a set of points and δ > 0. We want to decide whether the red-blue
discrepancy of P is at least δ.

If δ < log n, we can simply accept the answer—by the combinatorial lower bound, any
set of size n has discrepancy at least log n, so our answer is correct. If δ ≥ log n, we solve

the problem brute force, which takes at most nd ≤
(
2δ
)d ∈ O (f(d, δ)n) time.

In any case, the running time is bounded by a function f that depends on δ (and maybe
d), but not on n. Thus, the resulting algorithm indeed runs in fpt time.

This is a phenomenon common to Ramsey-type problems in parameterized complexity,
which has led to the study of so called small kernels for parameterized problems, see
Kratsch [66] for a recent result. We will discover a similar result in Section 11.2: because
of a theorem that guarantees the existence of certain sets, we immediately get a trivial
fixed-parameter tractable algorithm for finding such sets.

4.3 A Slightly Stronger Formulation of the Results

By proving that the problems considered are W[1]-hard with respect to the dimension d, we
have shown that they most likely cannot be solved in time O (f(d)nc) for any computable
function f . However, this does not exclude the possibility of algorithms whose running
time is bounded by, say, O(nlog d).

Thus, we now present a stronger formulation of the results, by combining W[1]-hardness
of a problem with recent results on (relative) computational lower bounds presented by
Chen et al. [28]. In Theorem 5.3 they state that, unless Sat can be solved in time 2o(n),
k-Clique cannot be solved in time f(k)no(k). The former, that Sat on n variables cannot
be solved in time 2o(n), is the Exponential Time Hypothesis (ETH) and is considered highly
plausible in computational complexity.

We can use this in the following way for our problems: as in our reductions, the dimen-
sion is kept linear in the parameter k, an f(d)no(d) algorithm for one of our problems would
admit an f(k)no(k) algorithm for k-clique. This in turn would lead to a 2o(n) algorithm for
Sat, contradicting the ETH.

Thus, we can state the following stronger theorem:

Theorem 11. The problems considered in Chapters 2 and 3 cannot be solved in time
f(d)no(d), where d is the dimension and n is the number of points, unless the Exponential
Time Hypothesis is false.

For the problem of finding the largest monochromatic half-space, Aronov and Har-
Peled [7] give an (1 − ε) approximation that runs in time O(nbd/2c(ε−2 log n)dd/2e). As we
have shown that the problem is W[1]-hard with respect to both the size of the solution
and the dimension (see Sections 2.1 and 4.1), and as both parameters stay linear in the
reduction, this implies that it is not possible to lower the running time significantly by



42 CHAPTER 4. CONCLUSION

lowering the exponent of n to, say,
√
d—if we believe in the ETH, it has to stay linear in

d.

4.4 Implications on Verification of ε-Nets

As mentioned in the introduction, it is known that random samples of size O(d/ε log 1/ε)
are ε-nets with high probability in any fixed dimension. Thus, it would be nice to have an
algorithm that, given a set of points P and a sample S ⊆ P , decides whether S is indeed
an ε-net. That is, we want to solve the following problem.

Definition 24. d-R-Epsilon-Net-Verification
Input: A set P in Rd, a set S ⊆ P , and ε > 0
Parameter: d
Question: Is S an ε-net for P with respect to R?

The relation between d-Bichromatic-Rectangle (see Section 2.1) and ε-net ver-
ification problems is intuitively clear: if there is a large monochromatic set, then the
complementary color class will not form an ε-net for the entire set, and vice versa.

To state the hardness result, recall that for a class of problems C, co-C denotes the
problems whose complements are in C. Now we take as a starting point the construction
from Section 2.1. Let P = P (G, k) = Pr(G, k) ∪ Pb(G, k) be the set of all points and
S := Pr(G, k) be the set of red points. Further, let ε := (k + 1)/|P |. From Lemma 1, we
then read off the following.

Lemma 14. S is not an ε-net for P with respect to boxes if and only if G has a k-clique.

Proof. If G has a k-clique, then there is a set containing k + 1 = ε|P | blue points and no
red point. Thus, S is not an ε-net for P .

On the other hand, if G has no k-clique, then there is no box with k + 1 points which
does not contain any red point. Thus, the set of red points intersects all rectangles that
contain at least k + 1 blue points. This means that S is an ε-net for P .

This shows that the problem is also hard with respect to the dimension.

Theorem 12. The problem d-Box-Epsilon-Net-Verification is co-W[1]-hard.

In order to strengthen this result, we show that the problem is even W[1]-hard for
constant ε. To this end, we now replace the single blue point at the origin by α blue points
close by, for

α = |P | − 2k.

This creates a set P ′ with a total of |P ′| = 2|P | − 2k points. Further, we set ε := 1/2.
Then, analog to Lemma 1, a box with

α + k =
|P | − k
|P ′| |P

′| = 1

2
|P ′| = ε|P ′|
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blue points and no red points corresponds to a k-clique in the input graph G.
This shows that the problem is W[1]-hard with respect to the dimension even for con-

stant ε. In the light of Theorem 11, we can formulate this in a stronger form:

Theorem 13. The problem d-Box-Epsilon-Net-Verification for a set of n points in
Rd cannot be solved in time f(d, 1/ε)ng(1/ε)o(d) for any computable functions f and g, unless
the Exponential Time Hypothesis is false.

In order to strengthen this result even further, it remains is to find a reduction where
both 1/ε as well as the size of the sample are bounded by a function in d only. Apart
from this, the problem of verifying ε-approximations is still open. In order to use our
construction from Section 2.2, we somehow have to manage to show hardness for the
relative combinatorial discrepancy. This means that we have to ensure that there are no
boxes with a lot more red than blue point, and at the moment, we do not see how to do
this.

4.5 Outlook

We have shown that many problems related to computing the discrepancy of point sets in d
dimensions are W[1]-hard for the most common range spaces. By combining our hardness
reductions with deep results on computational lower bounds, our reductions show that all
these problems most likely cannot be solved in time f(d)no(d).

As an application, we have shown that for a set of n points in Rd it is not possible to
check in time f(d, 1/ε)ng(1/ε)o(d) whether a given set is an ε-net with respect to another
set, for an implicitly given set of ranges such as boxes, half-spaces, and simplices.

The main open problem thus is the (in-)approximability of Box-Discrepancy and
Star-Discrepancy. More specifically, given a point set P in Id, can we find a box that
has discrepancy at least α ·OPT in time O(f(d)nc), for some constant α > 0? Also, can we
show that Red-Blue-Discrepancy is W[1]-hard with respect to both parameters, the
dimension d and the discrepancy δ?
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Part II

Ham-Sandwich Cuts and the Power
of d-Sum Reductions
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Chapter 5

Introduction and Motivation

In this part, we investigate the complexity of several decision problems in higher dimensions
with respect to the d-Sum problem. We will see how to “embed” instances of the latter
into Rd+1. Depending on the problem we investigate, solutions to the d-Sum problem will
correspond to certain geometric objects in Rd+1. These include small size Helly sets, small
size Carathéodory sets, linear ham-sandwich cuts, and points of high Tverberg depth.

To this end, we develop a technique similar to Erickson [46] who shows that detecting
affine degeneracies (i.e., d+2 points on a hyperplane in Rd) is d-Sum-hard, and that testing
convex hull simplicity in Rd is bd/2c-Sum-hard. Our technique has the additional advan-
tage of producing highly symmetric point sets, allowing us to prove results not achievable
with the old technique.

5.1 Some Discrete Geometry

Basic problems

Many basic theorems from combinatorial geometry are of the following type: If a set of n
objects in Rd has a certain property, then there is already a subset of size d+1 that has this
property. Two examples of this are Caratheodory’s theorem [18] and Helly’s theorem [58]
(see also Matoušek [68] or Ziegler [97]).

Theorem (Carathéodory’s theorem). Let P be a set of points in Rd with 0 ∈ conv(P ).
Then there is a set Q ⊆ P of size at most d+ 1 with 0 ∈ conv(Q).

We will call a minimal set containing 0 in the convex hull a Carathéodory set. Another
related theorem is the following.

Theorem (Helly’s theorem). Let C be a set of convex objects in Rd such that any d + 1
of them intersect. Then they all intersect in at least one point.

To see the close relation to Carathéodory’s theorem, we can state it as the contraposi-
tive.
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Theorem (Helly’s theorem, alternative formulation). Let C be a set of convex objects in
Rd with empty intersection. Then there is already a set C ′ ⊆ C of size at most d+ 1 with
empty intersection.

For all these theorems, several computational problems come to mind. Computing a
point in the common intersection of convex sets can be done by linear programming, if the
sets are given by linear inequalities, and with the same method, one can decide whether
their common intersection is empty. Further, given a set of n points in Rd that contain the
origin in their convex hull, one can find a set of at most d+ 1 points containing the origin
in their convex hull by Gaussian elimination (cf. Part IV). Both can be done in (weakly)
polynomial time.

The variants that we are considering here are related to the second problem: can we
compute a set of points of minimum cardinality that contains the origin in its convex hull?
And: can we decide whether, for a given set of convex objects in Rd with empty intersection,
there are already d with an empty intersection? It turns out that both problems are
equivalent to computing affine degeneracies of a point set.

Ham-sandwich cuts

A problem of a different spirit is the so called ham-sandwich cut problem for point sets
in Rd. Let h+ and h− denote the positive and negative open half-space defined by a
hyperplane, respectively. Further, for a set of points P , let h+

P denote the points of P that
lie strictly on the positive side of h, and analogously h−P . A hyperplane h is then said to

bisect a set P if |h+
P | ≤

⌊
|P |
2

⌋
and |h−P | ≤

⌊
|P |
2

⌋
, i.e., if it does not contain more than half

of the points in either open half-space. A ham-sandwich cut for d point sets P1, . . . , Pd in
Rd is then a hyperplane h that bisects each of the sets simultaneously. In particular, if the
number of points in each set is odd, the hyperplane has to pass through at least one of the
points from each set.

The ham-sandwich theorem states that such a cut always exists.

Theorem (Ham-sandwich theorem). Let P1, . . . Pd be point sets in Rd. Then there is a
hyperplane that bisects each of the sets simultaneously.

The proof is a simple application of the Borsuk-Ulam theorem (see, e.g., Matoušek [69]).
Computing a ham-sandwich cut efficiently is an important problem and has been stud-
ied extensively (see Edelsbrunner and Waupotitsch [43], Matoušek, Lo, and Steiger [71],
Yu [96]). For general dimension, the fastest known algorithm [71] runs in time roughly
O
(
nd−1

)
.

For well-separated sets, i.e., set systems where each subset of the sets can be separated
from the remaining sets by a hyperplane, better algorithms are known. Based on a result
by Bárány, Hubard, and Jéronimo [10] and Steiger and Zhao [91], Bereg [12] showed that
in this case ham-sandwich cuts can be computed in linear time in any fixed dimension.
This is a big improvement over the general case. However, the method does not generalize
to arbitrary point sets.
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Particularly in the light of recent developments related to the Polynomial Partitioning
Technique, it is an important open problem whether ham-sandwich cuts can be computed
in time polynomial in both the number of points as well as the dimension, see Guth and
Katz [55] and Kaplan, Matoušek, and Sharir [62]. A more modest goal would be to give
an fpt time algorithm for the problem, i.e., to give an algorithm that finds a cut in time
f(d)nc. Of course, here also approximate solutions (apart from the standard approach
using ε-approximations) are of interest.

The ham-sandwich problem is not a decision problem, as, given an instance, we know
that there always exists a solution. However, there are many natural ways to state it as
such. The variant we are going to consider in this part is the following: how hard is it to
decide whether there is a ham-sandwich cut through a given point? Or: how hard is it to
decide whether there is a ham-sandwich cut through d+ 1 given sets in Rd?

Tverberg depth

Yet another unrelated problem that we can tackle with our technique is derived from the
following theorem.

Theorem (Tverberg’s theorem). Any set P ⊆ Rd with n = (r − 1)(d + 1) + 1 points can
be partitioned into r sets P1, . . . , Pr such that

⋂r
i=1 conv(Pi) 6= ∅.

We will not describe this in any more detail, but instead refer the reader to Part IV,
where a more concise introduction to this and related problems is given. Here, the decision
problem we derive from this is, for example, the following: given a point set P and a point
q, can we partition P into r sets such that each one contains q in its convex hull?

5.2 3-Sum and d-Sum

3-Sum is the following problem: Given sets a set of numbers S, do any three of them sum up
to zero? Intuitively, this problem should take Ω(n2) time, and this can be used to show the
suspected lower bound for other problems as well. As Gajentaan and Overmars [50] state
in their seminal paper, many geometric problems for which the fastest known algorithm
runs in time Ω(n2) turn out to be 3-Sum-hard, which justifies this lower bound on the
running time. The reasoning goes as follows: if one can reduce an instance of 3-Sum to a
linear size instance of a problem L in subquadratic time, then a subquadratic algorithm for
L implies a subquadratic algorithm for 3-Sum. Consequently, L should take time Ω(n2) as
well. Showing 3-Sum-hardness for geometric problems is considered a routine task today
and has been applied to many low dimensional problems.

The generalization of the problem is d-Sum, the parameterized version of the NP-
complete Subset-Sum problem:

Definition 25. d-Sum
Input: A set of integers S, and d ∈ N
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Parameter: d
Question: Is there a set S ′ ⊆ S of d numbers such that

∑
s∈S′ s = 0?

As a generalization of 3-Sum, it is believed that this problem should require time
Ω(ndd/2epolylog(n)). Moreover, recent results by Pǎtraşcu and Williams [86] imply that d-
Sum should require nΩ(d) time, if the Exponential Time Hypothesis holds (cf. Section 4.3).
Their paper also shows, without explicitly mentioning it, that the problem d-Sum is W[1]-
hard with respect to d. While this was known before (see Fellows and Koblitz [48]), from
their reduction one can derive a stronger relative lower bound. This remains true if the
numbers are allowed to be chosen more than once in a solution, i.e., if we are allowed to
pick a multi-set of size d of the numbers in S.

Using d-Sum as a base problem for reductions to problems in Rd is a very natural
approach. Surprisingly—apart from Erickson’s work—this technique has not been used to
show W[1]-hardness of other geometric problems in Rd.

5.3 Our Contribution

We will first present our technique for several simple problems (and their duals) from
combinatorial geometry and combinatorial optimization mentioned in the introduction.
These can (and some are) also be shown to be hard by Erickson’s technique [46], but we
still find it instructive to present them here because they will make it easier to understand
the proofs in later chapters. Also, many of them have not been explicitly stated. The
problems we are considering in Chapter 6 are all very similar in spirit. They are related
to affine degeneracy detection, computing minimum size sets containing the origin in the
convex hull, and computing minimal sets of half-spaces having an empty intersection. We
show that all these problems are d-Sum hard in Rd+1.

In Chapter 7, we then use the full strength of our method to investigate the complexity
of certain decision problems related to the ham-sandwich theorem and Tverberg’s theorem.
Among others, we show that deciding whether d + 2 sets in Rd+1 can simultaneously be
bisected by a common hyperplane is d-Sum hard. We then modify the construction to
show similar hardness results for computing the Tverberg depth of a given point, or a
given point set.

As the d-Sum problem is W[1]-hard, all the results will be stated in a parameterized
complexity sense, in that they are W[1]-hard with respect to the dimension, excluding algo-
rithms with a running time of O (f(d)nc). Using the result by Pǎtraşcu and Williams [86],
in the conclusion we are able to strengthen these results to yield even better relative lower
bounds for the problems.



Chapter 6

Basic Problems

In this chapter, we illustrate our reduction technique on the basic examples mentioned in
the introduction. Not until later, in Chapter 7, will we need the full strength of our new
technique.

6.1 The Affine Containment Problem

We start with a problem for which the hardness proof is the most straightforward. This
proof will subsequently be modified to show the main theorems. The following problem
and its different guises are variations of the generic Affine-Degeneracy problem.

A point x ∈ Rd is said to be in the affine hull of {p1, . . . , pn} ⊂ Rd, if there exist
α1, . . . , αn such that

∑
αi = 1 and

∑
αipi = x.

Definition 26. d-Affine-Containment
Input: A set of points P in Rd

Parameter: d
Question: Is the origin contained in the affine hull of any d points?

We will now show how to reduce the d-Sum problem to the (d+ 1)-Affine-Contain-
ment problem by a polynomial time parameterized reduction. To this end, for a given set
S = {s1, . . . , sn}, we will create a point-set in Rd+1 in which d + 1 points span an affine
plane through the origin if and only d of these numbers sum up to 0.

Let ei denote the i-th unit vector. Set

pji :=
1

si
ej + ed+1 =

(
0, . . . ,

1

si
, . . . , 0, 1

)T
∈ Rd+1

and q := −∑d
i=1 ei.

We then define our point set P ⊂ Rd+1 as

P :=
{
pji | 1 ≤ j ≤ d, 1 ≤ i ≤ n

}
∪ {q} .
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The size of the point set is nd + 1, and clearly all coordinates are polynomially bounded
in the input. Further, for this set P , the following lemma holds, which appears in all
subsequent constructions with slight variations, depending on specific characteristics the
of the construction.

Lemma 15. There are d elements that sum up to 0 if and only if there are d+ 1 points in
P ⊂ Rd+1 whose affine hull contains the origin.

Proof. “⇒” Let
∑d

j=1 sij = 0. We choose points zj := pjij , 1 ≤ j ≤ d and zd+1 := q. Let
αj := sij and αd+1 := 1. Then

d+1∑

j=1

αjzj =
d∑

j=1

sijp
j
ij

+ q =
d∑

j=1

ej +

(
d∑

j=1

sij

)
ed+1 −

d∑

j=1

ej = 0

and
d+1∑

j=1

αj =
d∑

j=1

sij + αd+1 = 1.

That means that 0 is in aff
({
p1
i1
, . . . pdid , q

})
= aff ({z1, . . . , zd+1}).

“⇐” Let 0 ∈ aff ({z1, . . . , zd+1}), with
∑d+1

j=1 αjzj = 0 and
∑
αj = 1. As all points

but q lie on the hyperplane xd+1 = 1, one of the points, without loss of generality zd+1, is
q. For a point p, let (p)j := prj(p) denote its j-th coordinate. Because (q)d+1 = 0, and
(z)d+1 = 1 for all z 6= q, by computing the (d+ 1)-st coordinate we get

0 =
d∑

j=1

(αjzj)d+1 =
d∑

j=1

αj(zj)d+1 =
d∑

j=1

αj (6.1)

and thus αd+1 = 1−∑d
j=1 αj = 1.

Further, as
∑d+1

j=1 αjzj = 0, it holds that

d∑

j=1

αjzj = −αd+1q =
d∑

j=1

ej.

Every zj is non-zero for only one other coordinate except the (d+1)-st, and as (q)j = −1
for all j < d + 1, for each j there is at least one point that is nonzero at coordinate j (in
particular, also αj 6= 0). Thus, there are exactly d such points. Without loss of generality
assume that zj is the point that has nonzero j-th coordinate, so (zj)j = 1

sij
for some ij.

This means that αj
1
sij
− 1 = 0, and thus αj = sij ∈ S, which implies (Equation 6.1) that

we have d elements in S summing up to 0, as desired.

This completes the proof of the following theorem.

Theorem 14. The problem d-Affine-Containment is W[1]-hard.
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6.2 The Carathéodory Set Problem

As seen in the introduction, Carathéodory’s theorem states that whenever the origin is
contained in the convex hull of a set P ⊂ Rd, it is already contained in the convex hull of
a subset P ′ ⊆ P ′ of size d+ 1. Thus, when given a set P , we can easily decide whether the
origin is contained in a subset of size d+ 1 by simply testing it for the entire set. But what
if we want to know whether it is already contained in the convex hull of only d points?
This is a much harder harder problem, as we will see now.

To this end, we define the decision problem parameterized by the dimension as follows.

Definition 27. d-Carathéodory
Input: A set of points P in Rd containing the origin in their convex hull
Parameter: d
Question: Is the origin contained in the convex hull of any d points?

This looks very similar to the d-Affine-Containment problem, and indeed our pre-
vious construction almost works. We have to modify it such that all coefficients can be
chosen positive to replace the notion of an affine hull by that of a convex hull.

To this end, we set

pji :=
1

|si|
ej + sign(si)ed+1 ∈ Rd+1

where

sign(x) :=

{
1 x ≥ 0

−1 x < 0.

Let q be defined as above. The set P then consists of all the points pji , 1 ≤ j ≤ d, 1 ≤ i ≤ n
and q.

Lemma 16. There are d elements in S that sum up to 0 if and only if the origin lies in
the convex hull of d+ 1 points of P .

Proof. “⇒” Observe that 0 ∈ conv(P ) if and only if 0 =
∑

p∈P αpp for any αp ≥ 0,∑
αp > 0. Let

∑d
j=1 sij = 0. Setting αj := |sij | > 0, zj := pjij for 1 ≤ j ≤ d, and

αd+1 := 1, zd+1 := q yields

d+1∑

j=1

αjzj =
d∑

j=1

|sij |pjij + q =
d∑

j=1

ej +

(
d∑

j=1

sign(sij)|sij |
)
ed+1 −

d∑

j=1

ej = 0.

“⇐” Let
∑d+1

j=1 αjzj = 0, αj ≥ 0. The point q is one of the points of the convex

combination, as all other points lie in the positive half-space
∑d

j=1 xj > 0. We can assume
zd+1 = q and αd+1 = 1. Further, by the same argument as in Lemma 15, there are at
least d other points for the total sum to become 0. Again, without loss of generality let
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(zj)j 6= 0. As (q)j = −1 for all 1 ≤ j ≤ d, this means that αj
1
|sij |

= 1 for some ij, and thus

αj = |sij |. Further, because of the (d+ 1)-st coordinate, we get

0 =
d∑

j=1

αjsign(sij) =
d∑

j=1

sign(sij)
∣∣sij
∣∣ =

d∑

j=1

sij

and thus we have d elements summing up to 0.

This implies the following theorem.

Theorem 15. The problem d-Carathéodory is W[1]-hard.

6.3 The Helly Set Problem

Starting from the result in the previous section, we now show how to prove hardness for
the problem of computing Helly sets of minimum size.

Definition 28. d-Helly
Input: A set of convex sets C in Rd with an empty intersection
Parameter: d
Question: Do any d sets from C have an empty intersection?

Observe that, by Helly’s theorem, the question is again easy to answer if we ask for
d+ 1 convex sets.

Proving the hardness of this problem is just a standard application of a duality trans-
form; a similar application (which is used to prove Carathéodory’s theorem from Helly’s
theorem) can be found in [44, Chapter 2.3]. For a given set P in Rd, we will construct
a set of convex sets (that are actually half-spaces) such that d of them have an empty
intersection if and only if there are d points in P that contain the origin in their convex
hull.

Consider a set P of points p1, . . . , pn ∈ Rd whose convex hull contains the origin. For
each point p ∈ P , define the half-space

p∗ :=
{
x | pTx ≥ 1

}
.

Define P ∗ to be the set of all these half-spaces corresponding to the points in P . We
show that any Carathéodory set of P (for the origin) corresponds to a Helly set (a set of
half-spaces with empty intersection) of P ∗ of the same size. Since checking if the minimum
Carathéodory set has cardinality at most d is W[1]-hard, it then follows that checking if
the minimum Helly set is of cardinality at most d is also W [1]-hard.

Let Q ⊆ P and let V be a d × |Q| matrix whose columns represent the vectors in Q.

Further, let cone(Q) denote the conic hull of the vectors, i.e., the set
{∑

q∈Q αqq | αq ≥ 0
}

.

A cone is called pointed if it does not contain a line.
We can now show the main lemma of this section, which is a variant of Gordan’s

Theorem, see Dantzig and Thapa [34, Theorem 2.13]:
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Lemma 17. Let Q be a set of points in Rd and let V be a d× |Q| matrix whose columns
represent the vectors in Q. Then 0 ∈ conv(Q) if and only if the system of inequalities
V Tx ≥ 1 is infeasible.

Proof. Observe that that cone(Q) is pointed if and only if V Tx ≤ 0 is a full-dimensional
cone.

“⇒” Suppose that V Tx ≥ 1 is feasible. Then there exists a vector α ∈ Rd such that
V Tα ≤ −1. That is, V Tα < 0 and thus V Tx ≤ 0 is a full-dimensional cone. Therefore,
cone(Q) is pointed. But this means that 0 /∈ conv(Q).

“⇐” Now suppose 0 /∈ conv(Q), then cone(Q) is pointed and therefore V Tx ≤ 0 is a
full-dimensional cone. Thus, there exists α ∈ Rd such that V Tα < 0, and so for a large
enough λ > 0, it holds that V T (−λα) > 1. Hence V Tx ≥ 1 is feasible.

Thus, any set Q ⊆ P of points whose convex hull contains the origin corresponds to a
set Q∗ ⊆ P ∗ of convex sets (inequalities) of the same size that has an empty intersection,
and vice versa. This finishes the proof of the following theorem.

Theorem 16. The problem d-Helly is W[1]-hard.

6.4 The Minimum Infeasible Subsystem Problem

These decision versions of Carathéodory’s and Helly’s theorem have not explicitly been
considered in the literature so far. This is quite surprising, as they are interesting to
people from computational as well as discrete geometry. However, similar problems arise
in the context of linear programming, most notably the following:

Definition 29. d-Min-Irreducible-Infeasible-Subsystem
Input: An infeasible linear program in Rd with n constraints
Parameter: d
Question: Is there a subset of d constraints that is infeasible?

The problem d-Min-IIS has been studied before, mainly because of its connection to the
NP-complete Maximum-Feasible-Subsystem problem, where one is given an infeasible
linear program and one has to find a feasible subsets of constraints of maximum size.
Amaldi and Kann [5] show that d-Min-IIS is NP-hard by a reduction from Dominating-
Set. However, the dimension depends on the size of the graph, so it does not reveal
anything with respect to the parameter d. Further, based on this result, Amaldi, Pfetsch,
and Trotter [6] show that the problem is even hard to approximate by a factor O(2log1−ε n),
where n is the number of constraints. Still, it is now clear how this implies anything about
the parameterized complexity of the problem. However, as the convex sets created in our
hardness proof for d-Helly are even half-spaces, we can derive the analog result regarding
the problem d-Min-IIS.

Corollary 4. The problem d-Min-IIS is W[1]-hard.
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Chapter 7

Advanced Applications

In this section, we explore the full strength of our new technique to show that certain
decision versions of the ham-sandwich problem and of computing the Tverberg depth are
W[1]-hard. To the best of our knowledge, this is the first hardness result regarding ham-
sandwich cuts in higher dimension.

7.1 The Ham-Sandwich Cut Problem

The ham-sandwich problem is not a classical decision problem, as, given an instance, we
know that there always exists a solution. The only decision version for the ham-sandwich
problem in the plane that we are aware of has been studied by Chien and Steiger [30]:
decide whether there is more than one cut. They provide an Ω(n log n) lower bound, and
as a cut in the plane can be computed in linear time, this shows that finding an object can
be easier than deciding whether that object is unique.

Here, we will show that a natural “incremental” approach for computing the ham-
sandwich cut will not work unless W [1] = P : one way to find a ham-sandwich cut in-
crementally could be to take any point, decide whether there is some ham-sandwich cut
through it, and perform a dimension reduction until the hyperplane is determined. This
gives rise to the following decision problem:

Definition 30. d-Ham-Sandwich
Input: Sets of points P1, . . . , Pd and a point z in Rd

Parameter: d
Question: Is there a ham-sandwich cut through z?

Using the construction from Section 6.1, we will now prove that this problem is W[1]-
hard. Definition 30 asks whether there is a cut that goes through a given point z, and via
translation we can assume z to be the origin. We call such a cut a linear ham-sandwich
cut.

We will create d + 1 sets P1, . . . , Pd+1 in Rd+1. The set Pd+1 will consist of the single
point q :=

∑d
j=1 ej. The sets Pj will be the union of two sets Rj and Bj. Rj contains all
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points of the form pji , defined exactly as in Section 6.1, i.e.,

Rj :=
{
pji | 1 ≤ i ≤ n

}

for pji = 1
si
ej + ed+1. If we choose a linear hyperplane through one of these points, the

number of points on each side will (most likely) not be the same. So in addition to these,
for each of these sets we now add n − 1 balancing points Bj to ensure that any linear
hyperplane passing through any of these points has equally many points of Pj on both
sides.

7.1.1 Construction of the Balancing-Set

The idea is to add a point set similar to the mirror image of the original set Rj. This way
any linear hyperplane that has many of the original points on the positive side will contain
few of the mirrored points on the positive side, and vice versa.

By making the total number of points in each set Pj odd, we will ensure that any ham-
sandwich cut must pass through one of the points from Pj. Further, by the construction
of the balancing set, it will not be possible to choose a linear cut through q that also goes
through any of these balancing points.

For this, we will choose the mirror-image of a set of n − 1 points that lie between two
successive points in Rj (recall that in the construction from Section 6.1, all points from Rj

lie on a line). Let S be indexed such that 1/si < 1/sj for i < j.
Then, let εj = 1

2j
and

bji := −
(

1

si − εj

)
ej − ed+1.

This the mirror image of a point slightly to the right of pji , for 1 ≤ i < n; see Figure 7.1.
Let Bj consist of all balancing points of the form bji and set

Pj := Rj ∪Bj

for 1 ≤ j ≤ d. Then the set P =
⋃
Pj is of size d (2n− 1) + 1.

7.1.2 The Main Lemma

Now we come to prove the main lemma, namely that the point set allows a linear ham-
sandwich cut if and only if there are d elements that sum up to 0, based on the following
two lemmas. The first one states that any linear ham-sandwich cut intersects exactly one
point from each set Pj, whereas the second one guarantees that any linear hyperplane that
contains a point from Rj will bisect Pj.

Lemma 18. Any linear ham-sandwich cut intersects exactly one point from each Pj, 1 ≤
j ≤ d+ 1.
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h

Rj

Bj

|h−Rj| = 2 |h+Rj| = 5

|h−Bj| = 5 |h+Bj| = 2

pji

bji

pj1 pjn

bjn−1 bj1

ed+1

ej

Figure 7.1: The “balanced” set Pj

Proof. For Pd+1 = {q} this is clear. We show that for any linear ham-sandwich cut
h = (h1, . . . , hd+1), we have hi 6= 0 for all i: First, if hd+1 were 0, we would have hj = 0 for
all j, because the cut must pass through at least one point from each Pj. Thus, hd+1 6= 0.
Further, as hj(p

j)j = −hd+1(pj)d+1 6= 0 for some pj ∈ Pj, also hj 6= 0 for all j.
Thus, no cut can pass through more than one point of any set Pj: If

hj(p)j + hd+1(p)d+1 = hp = 0 = hp′ = hj(p
′)j + hd+1(p′)d+1

for two points p, p′ ∈ Pj, then p = p′ or hj = 0, a contradiction.

Lemma 19. Any linear hyperplane intersecting a single point from Rj bisects the set Pj.

Proof. Let hpji = 0 and without loss of generality hpjk < 0 for all 1 ≤ k < i. Then also
h(−bjk) < 0 and thus hbjk > 0 for all 1 ≤ k < i. Further, hpjk > 0 for all k > i and hbjk < 0
for k ≥ i. So

|h−Pj
| = |h−Rj

|+ |h−Bj
| = i− 1 + n− i =

⌊ |Pj|
2

⌋
= |h+

Pj
|.

Lemma 20. There are d elements in S that sum up to 0 if and only if there is a linear
ham-sandwich cut.

Proof. “⇒” Let
∑d

j=1 sij = 0. We have to find a linear hyperplane hx = 0 such that

for each set Pj it holds that |h+
Pj
|, |h−Pj

| ≤
⌊
|Pj |

2

⌋
. Choose hj := sij for 1 ≤ j ≤ d and
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hd+1 := −1. Because
∑d

j=1 sij = 0, we have hq =
∑d

j=1 sij = 0 (so the one element set
Pd+1 is bisected). Further, it holds that

hpjij = hj
1

sij
+ hd+1 = 1− 1 = 0.

Because of Lemma 19, this means that all sets are bisected, and thus we have a linear
ham-sandwich cut.

“⇐” Let h be a linear ham-sandwich cut. By Lemma 18, all hj are nonzero, so we can
assume hd+1 = −1. For each j, we have hpj = 0 for exactly one point pj ∈ Pj. This means
that

0 = hpj = hj(p
j)j + hd+1(pj)d+1 = hj(p

j)j − 1(pj)d+1 = hj(p
j)j − 1,

and so either hj = sij or hj = sij − εj for some ij. Because for any ∅ 6= J ⊆ {1, . . . , d}
we have 0 <

∑
j∈J εj < 1 and S is a set of integers, if one (or more) of the hj were of the

latter form, the total sum can never be an integer, and in particular not 0. But this is
required for q to lie on h.

Thus, hj = sij ∈ S for some ij, and as q also lies on the hyperplane, we get

0 = hq =
d∑

j=1

hj =
d∑

j=1

sij ,

i.e., there are d elements in S that sum up to 0.

This shows the following.

Theorem 17. The problem d-Ham-Sandwich is W[1]-hard.

7.1.3 Remarks.

In this construction, the origin (i.e., the point for which we want to solve the decision
version) is not part of any of the sets. However, as we know that a ham-sandwich cut must
pass through at least one point from each set, it would be more natural for this point to
be part of one of the sets as well. This is easily taken care of: set Pd+1 = {0, q/2, q}. Then
any ham-sandwich cut through 0 also has to go through the other two points (otherwise
there would be too many points on either side). Thus it also contains q. On the other
hand, whenever there are no such d elements that sum up to 0, all ham-sandwich cuts are
(truly) affine hyperplanes through q/2. This gives a slightly stronger result:

Corollary 5. The following problem is W[1]-hard with respect to the dimension: Given d
point sets in Rd and a point z ∈ ⋃Pi, is there a ham-sandwich cut through z?

In a different formulation, we can also state the result as follows. For a given family
of d + 1 sets in Rd we are not guaranteed that there is a cut that bisects all the sets
simultaneously. By adding the origin as a single set, the previous shows that deciding
whether there is still such a cut is also a computationally hard question:

Corollary 6. The following problem is W[1]-hard with respect to the dimension: Given
d+ 1 point sets in Rd, is there a hyperplane that bisects all sets?
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7.2 The Tverberg Depth Problem

Finally, we consider two problems related to the computation of the Tverberg depth of a
point set.

Definition 31. Let P be a set of of points in Rd. The Tverberg depth of a point c with
respect to P is the the maximum number of sets that P can be partitioned into such that
each set contains c in its convex hull. The Tverberg depth of a point set P is the highest
number of sets that P can be partitioned into such that the intersection of their convex
hulls is non-empty.

A detailed discussion of complexity theoretic status regarding the computation of points
of high Tverberg depth in high dimension will be given in Part IV.

Computing the Tverberg depth of a given point c ∈ Rd with respect to a point set P is
an NP-hard problem if the dimension is unbounded, as shown by Teng [92]. In this section,
we strengthen the result to show that the problem is even W[1]-hard with respect to the
dimension.

Definition 32. d-Tverberg-Depth
Input: A set P ⊂ Rd of points, a point c ∈ Rd, and r ∈ N
Parameter: d
Question: Is the Tverberg depth of c with respect to P at least r?

That is, we want to decide whether a given set P can be partitioned into r sets, each
of which contains c in its convex hull.

We start with the construction from Section 6.2. Recall that the instances were created
in d̂ := d+ 1 dimensions. We will use the above idea to construct a set of points with the
following property:

• The origin will be contained in the convex hull of many disjoint sets of size d̂+ 1.

• If there are d numbers adding up to 0, then the origin will also be contained in the
convex hull of at least one smaller set.

Let K :=
∑n

i=1 |si|+ 1. We define additional points r and r′ as

r := −
d∑

i=1

ei +Ked+1

and
r′ := −ed+1.

In addition to the points added in the construction of Section 6.2, we now add n−1 points
r and n− 1 points r′ to the set. If we do not want to allow multiple points, we simply add
scalar multiples of each. Thus, the point set now consists of N := dn + 1 + 2(n − 1) =
(d+ 2)n− 1 = (d̂+ 1)n− 1 points. Now the main claim is the following.
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Lemma 21. The origin has Tverberg depth n if and only if the are d numbers that sum
up to 0.

Proof. “⇐” Assume that
∑d

l=1 sil = 0. We choose P1 :=
{
plil | 1 ≤ l ≤ d

}
∪ {q}, and

split the rest of the sets as follows: form an arbitrary partition of the remaining points
such that each set contains exactly one point from each Pj, and add one r and one r′

to each set. This makes a total of n sets. We claim that each set contains the origin
in its convex hull. Indeed, this is true for P1: choosing αl := |sil | and αd+1 := 1 yields∑d

l=1 αlp
l
il

+ αd+1q = 0. For every other set Q =
{
p1
k1
, . . . , pdkd , r, r

′}, choose αl := |skl|,
αr := 1, and αr′ := K +

∑d
l=1 skl > 0. Then

d∑

l=1

αlp
l
kl

+ αrr + αr′r
′ = 0,

and thus, the origin is contained in the convex hull of each of the sets.
“⇒” Let P = P1 ] · · · ]Pn be a partition of P into n parts, each of which contains the

origin on its convex hull.
First, we show that no set of size less than d+1 can contain the origin in its convex hull.

Let us say that a set contains a point, if the point is part of the set, and the corresponding
coefficient is larger than 0.

As all points of the form |si|ej + sign(si)ed+1 lie in the positive half-space
∑d

i=1 xi > 0,
every such set must contain a point r, r′, or q. If, among these, it only contains r′, it
must also contain at least one point of the form |si|ej + sign(si)ed+1 in order for the last
coordinate to become 0. But this means that it has to also contain either r or q, for
otherwise the first d coordinates cannot all be 0. But if it contains r or q, then it also has
to contain d points of the form |si|ej + sign(si)ed+1 in order for the first d coordinates to
become 0.

This means that if the origin has Tverberg depth n, at least one of the sets contains
exactly d + 1 points. By the same reasoning as in Lemma 16, such a set corresponds to d
numbers in S that sum up to 0.

This shows the following theorem.

Theorem 18. The problem d-Tverberg-Depth is W[1]-hard.

Still it might be possible to find a point of highest depth—without having to decide the
depth of a particular point. This leads to the related problem of computing the Tverberg
depth of a point set.

Definition 33. d-Set-Tverberg-Depth
Input: A set P ⊂ Rd of points, and r ∈ N
Parameter: d
Question: Is the Tverberg depth of P at least r?
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We will show that it is W[1]-hard to decide this problem. To this end, we need to make
sure that the point of highest Tverberg depth is the origin—so far, there might be many
points with much higher Tverberg depth in our construction.

To achieve this, we put β copies of our construction into β orthogonal subspaces of
dimension d + 1, creating an set of points in Rβ(d+1). No point apart from 0 can have
a Tverberg depth higher than N = (d + 2)n − 1, which is the total number of points in
a single Rd+1. In any case, by Lemma 21, the origin has depth β(n − 1) in a negative
instance, whereas for a positive instance it will be of depth βn. Choosing β > (d+ 2) thus
ensures that the origin is the point of highest Tverberg depth. Still, the dimension β(d+1)
depends only on d, and thus it stays a parameterized reduction (though the dimension is
squared). This shows the following theorem.

Theorem 19. The problem d-Set-Tverberg-Depth is W[1]-hard.

Observe that our idea also shows how to reduce the depth computation for a set with
respect to a certain point to the depth computation for a set only, though in general we
will need more orthogonal copies.

This concludes the section on computing the Tverberg depth of a point set. We will
come back to this problem in Part IV.
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Chapter 8

Conclusion

We have developed a technique to show that many problems arising from basic theorems
in combinatorial geometry are d-Sum hard in dimension d + 1. These include several
versions of the affine degeneracy problem, as well as problems regarding the computation
of ham-sandwich cuts and the Tverberg depth of a point set.

Combining our reductions with a result of Pǎtraşcu and Williams [86], Theorems 15,
16,17, and 18 immediately give:

Corollary 7. The problems d-Ham-Sandwich, d-Tverberg-Depth, d-Carathéo-
dory, and d-Helly cannot be solved in time no(d) (where n is the size of the input),
unless the Exponential Time Hypothesis (cf. Section 4.3) is false.

Several aspects of our construction are still a bit unsatisfactory. First of all, we would
like to know whether the point sets we create can be put in general position, in particular
for the case of ham-sandwich cuts. That is, does the problem of deciding whether there is
a ham-sandwich cut through a certain point remain W[1]-hard if the points are required to
be in general position? Also, how do the hardness results about the decision problems for
ham-sandwich cuts and Tverberg points exactly relate to the hardness of computing such
a cut? It is an intriguing question to examine this relation more closely—if there is any at
all.
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Part III

Computational Aspects of
Erdős-Szekeres in R3
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Chapter 9

Introduction and Motivation

Whereas the previous problems we considered allow algorithms that run in polynomial
time in every fixed dimension, we now turn to a problem that becomes NP-hard already
in 3 dimensions. As the problem is solvable in polynomial time in the plane, this shows a
strong dichotomy between the planar and the higher dimensional case.

9.1 The Erdős-Szekeres Theorem and Points in Con-

vex Position

Let P be a set of points. A set P ′ ⊆ P is in convex position, if none of the points
p ∈ P ′ is contained in conv(P ′ − {p}). It is said to be in empty convex position, if it is in
convex position, and further does not contain any other point of P in its convex hull. See
Figure 9.1.

The Erdős-Szekeres theorem is one of the major theorems from combinatorial geometry
and one of the earliest results in geometric Ramsey theory. It states that every large enough
set contains a large subset of points in convex position.

Theorem. [Erdős and Szekeres; [45]] For every k there is a number nk such that every
planar set of nk points in general position contains k points in convex position. Moreover,
if n∗k denotes the smallest such number, it holds that

2k−2 + 1 ≤ n∗k ≤
(

2k − 4

k − 2

)
+ 1 ≤ 4k.

Does the theorem remain true if we ask for large point sets in empty convex position?
That this is not the case was shown by Horton [59]: in the plane there are arbitrarily large
sets which do not contain empty 7-gons. Nicolás [81] and Gerken [51] independently gave
a positive answer to the long standing open problem whether or not there is always an
empty 6-gon. See Matoušek [68, Chapter 3] for further details and references.

Both these questions generalize to dimension larger than 2 in the obvious way, and
clearly the numbers n∗k do not increase when the dimension gets larger (proof: project to
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P ′ P ′′

Figure 9.1: P ′ is in convex position, but not in empty convex position. P ′′ is in empty
convex position.

some plane). Determining the exact values for n∗k is still a vivid area of research, also for
higher dimensions, and we refer the reader to the surveys by Bárány and Károlyi [11] or
Morris and Soltan [79] for an overview of the status and (more or less) recent progress on
the subject.

9.2 Previous Results

The corresponding computational problems have also received a lot of attention in the past.
For the planar case, Chvátal and Klincsek [31] give an O(n3) algorithm for the problem
of finding a largest convex set. This algorithm was then used by Avis and Rappaport [8]
for finding the largest empty convex set. Several years later, Dobkin, Edelsbrunner, and
Overmars [36] improved this algorithm to run in time O (γ3(P )), where γ3(P ) is the number
of empty triangles in the set P , which lies between n2 and n3. These algorithm are all based
on dynamic programming and do not generalize to higher dimensions. Another approach
that even enumerates all empty convex sets of size k in polynomial time in both n and k
was given by Mitchell et al. [78], after a series of papers by differing authors.

In higher dimensions, the only computational result appears in [36], where it is shown
that all sets of size r in empty convex position in R3 can be found in time O

(
r!n log3 n

)

per set. As there can be as many as nr of such sets, this is (at best) a small improvement
over the trivial O(nr+1) algorithm. Consequently, the question was raised whether it is
possible to determine the largest set in (empty) convex position R3 in polynomial time.

9.3 Our Contribution

Here, we consider the computational problems of finding a largest convex subset, or a
largest empty convex subset, in three dimension.

Using the reduction technique from Part I, it is an easy exercise to show that both
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problems are NP-hard if the dimension is not fixed, and even W[1]-hard with respect to
the dimension. This means that it is very unlikely to admit an algorithm with running
time O (f(d)nc) for any computable function f and constant c.

Still, this does not exclude the possibility that in every fixed dimension, the problem
can be solved with a running time of, say, O(nd+1). We show that this cannot be the case
(under standard complexity theoretic assumptions). In particular, we will show that both
problems become NP-hard already in R3.

First, in Section 10.1, we show NP-hardness of finding a largest empty convex set.
In Section 10.2, the proof is then adapted to the actual Erdős-Szekeres problem. In the
conclusion, we derive a similar result for testing weak ε-nets and red-blue discrepancy and
make several suggestions for further research on the subject.
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Chapter 10

The Reduction

We now present the reduction to show the hardness of the two decision problems arising
from the aforementioned questions. The reduction uses a lifting transform to the elliptic
paraboloid well known in computational geometry. Still, the only other application of this
transform in an NP-hardness proof that we are aware of is due to Buchin et al. [15] for the
problem of approximating polyhedral objects by spherical caps.

10.1 The Largest Empty Convex Set Problem

First, we will consider the following decision problem.

Definition 34 (Largest-Empty-Convex-Set, LECS). Let P be a set of points in Rd

and k ∈ N. Is there a set Q ⊆ P of k points in empty convex position?

We will show that the problems is NP-hard by a reduction from a slight modification
of the following problem:

Definition 35 (Independent-Set-of-Non-overlapping-Unit-Disks, ISNUD). Let
P be a set of pairwise non-overlapping unit disks in R2 and k ∈ N. Are there k disks such
that no two of them touch?

Here, non-overlapping means that the interiors of the disks are pairwise disjoint. The
intersection graphs of non-intersecting unit disks are also called penny graphs. As shown
by Cerioli et al. [19], the problem ISNUD is NP-hard by a simple reduction from a variant
of the Vertex-Cover problem. However, the reduction has a little flaw, because some
of the centers of the disks created have irrational coordinates.

We overcome this obstacle by perturbing each point a little by at most some small ε in
order to have a rational center, and enlarging the diameter of each disk by 2ε. This way,
we get an instance of unit disks that almost forms a penny graph—some of the disks might
now overlap a little. Moreover, in the original construction, the angle between any two
intersections along a circle is always at least π/2. Thus, by choosing ε appropriately, after
the perturbation and enlargement of the circles, the angle between the two closest points
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of two circles intersecting a common circle is still π/2 ± α∗, for some small α∗ < π/100.
Moreover, the minimum distance between two centers is still at least δ∗ = 2 − 2ε. In
particular, instances that arise this way do not induce any new incidences, and thus there
is an independent set of size k among the perturbed disks if and only if there is a set of k
independent disks in the original instance. Observe that the value of this ε does not depend
on the input, and thus can be chosen as some arbitrarily small constant, say ε = 10−6.

We call instances of unit disks that arise this way quasi non-intersecting. Combining
this with the reduction from [19] then shows the following corollary:

Corollary 8. The following problem is NP-hard: Given a set of quasi non-intersecting
unit disks and k ∈ N, decide whether there are k disks such that no two of them intersect.

We will now first reduce this problem to LECS and afterwards show how to adapt it
to the problem of finding a largest (not necessarily empty) convex set in the next section.

For a given instance D of unit disks in the plane, we will create a set of points in R3.
All these points will lie close to the elliptic paraboloid, in a sense to be made precise later.

For a point x = (x1, x2) ∈ R2, let

lift : (x1, x2) 7→ (x1, x2, x
2
1 + x2

2)

denote the standard lifting transform to the paraboloid. Let Dc denote the n centers of
the disks in D, and let L denote the set of all points x̂ := lift(x), for x ∈ Dc.

We now want to forbid certain pairs of points to lie in empty convex positions, namely
those for which the corresponding disks intersect. Thus, for a pair of intersecting disks
d, d′ and their centers cd, cd′ , we add a blocking point

bdd′ :=
1

2
(lift(cd′) + lift(cd)) .

The set B is then defined as
B := {bdd′ | d ∩ d′ 6= ∅},

and thus lies slightly above the paraboloid. Finally, we set P := L ∪B.
Thus, we have created O(|D|) points, and as the underlying geometric graph is planar,

the size of the reduction is linear in the input size. The main property of the reduction is
captured by the following lemma.

Lemma 22. A blocking point bdd′ is contained in the convex hull of a set Q ⊆ L if and
only if both ĉd and ĉd′ are contained in Q.

Proof. “⇐” by definition
“⇒” We show that there is a plane that contains bdd′ , ĉd, and ĉd′ and has all other

points strictly on the positive side. Here we will make use of the fact that our instance
consists of quasi non-intersecting unit disks—otherwise, the claim would not hold.

Let C be the circle whose center is the projection of bdd′ to the first two coordinates
that passes through cd and cd′ . Because the centers of the disks have a distance of at least
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cd

cd′

pr(bdd′)

(a) Two intersecting disks and the projected
blocking point

cd

cd′

pr(bdd′)

C

α∗

(b) Because all intersections with other disks lie
at the bold arcs, no projected blocking points lies
inside C

Figure 10.1: Finding an empty circle

δ∗ > 3/2, and every point in C is at most at distance
√

2 + 2ε < 3/2 from either cd or
cd′ , this circle does not contain any other points from Dc. Further, because all intersection
points are at least an angle of α∗ apart, the circle does not contain any (projection of) a
blocking point. See Figure 10.1. Now we define h to be the unique plane whose intersection
with the paraboloid projects to the circle C. This plane contains all three points, and
because C does not contain any other points, all other points from P lie strictly above h.
Thus, bdd′ is contained in conv(Q) if and only if bdd′ ∈ conv(Q ∩ h) = conv ({ĉd, ĉd′}), and
the claim follows.

The following states that whether or not a set is in empty convex position will depend
only on which points we choose from L. The set B can always be added without destroying
this property.

Lemma 23. The sets L and B each are in empty convex position. Further, it holds that
conv(L) = conv(L ∪B).

Proof. By construction, all points of L lie on the paraboloid. The points from B can be
separated from each other by the plane defined in the previous proof. As all of them are
convex combinations of points in L, we have conv(B) ⊆ conv(L).

Combining Lemmas 22 and 23, we get the following.
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Corollary 9. A set L′ ∪ B′ ⊆ P is in empty convex position if and only if no point of
B′ ⊆ B is contained in the convex hull of L′ ⊆ L.

Now we are ready to prove the main property of our construction.

Lemma 24. There is an independent set of size k among the unit disks if and only if there
are k + |B| points in empty convex position.

Proof. “⇒” Let I, |I| = k, be an independent set among the set of disks. Let Î ⊆ L denote
the corresponding lifted centers. We claim that S = Î ∪ B is in empty convex position.
Indeed, by Corollary 9, no point of L − Î is in the convex hull of S. Further, by Lemma
22, if some point b ∈ B was in conv(S), this would mean that there are two points in Î
that contained b in their convex hull. Thus, by Lemma 22, the corresponding disks would
touch, and I would not be an independent set. This means that there are k + |B| points
in empty convex position.
“⇐” Now assume that there is no independent set of size k. This means that for any choice
of k disks, two of them touch. Now take any set S of k + |B| points. As there are only
|L|+ |B| points in total, this must contain at least k points from L. Thus, at least two of
them belong to disks that intersect. By Lemma 22, their convex hull contains a point of
B. Thus, S is not in empty convex position.

This shows the following theorem.

Theorem 20. The problem Largest-Empty-Convex-Set is NP-hard in R3.

10.2 The Erdős-Szekeres Problem

We now show how this reduction can be applied to the following decision problem, arising
from the Erdős-Szekeres theorem.

Definition 36 (Erdős-Szekeres). Let P be a set of points in Rd and k ∈ N. Is there a
set Q ⊆ P of k points in convex position?

In order to show NP-hardness of this problem, we use the exact same construction as
in the previous section. We only need an analog of Lemma 24.

Lemma 25. There is an independent set of size k among the unit disks if and only if there
are k + |B| points in convex position.

Proof. “⇒” By Lemma 24, the existence of an independent set of size k corresponds to an
empty convex set of size k + |B|, and an empty convex set is convex.

“⇐” We show that every set of points in convex position can be modified to yield a set
in empty convex position.

Let S be a set of k+ |B| points in convex position with |S∩B| < |B|, and let I = S∩L.
Let DI denote the corresponding set of disks. Observe that, if |S ∩B| < |B|, then |I| > k,
and thus if all disks from DI are independent, we are done.
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Otherwise, we show how to construct a set S ′ in convex position of the same size such
that |S ′ ∩ B| = |S ∩ B| + 1. Let d and d′ be two disks from DI that intersect. The point
bdd′ cannot be part of S, for otherwise S would not be in convex position. If we thus set
S ′ = I − {d̂} ∪ B ∪ {bdd′}, by Corollary 9 the set is still in convex position, and we have
|S ′| = |S| and |S ′ ∩B| = |S ∩B|+ 1.

Thus, after finitely many steps we end up with a set of k+ |B| points in convex position
which contains all points from B. In particular, no point of B is contained in the convex
hull of S ∩L. By Lemma 24, this means that the disks corresponding to the k points from
L do not intersect. Thus, we have an independent set of size k among the disks.

This finishes the proof of the following theorem.

Theorem 21. The problem Erdős-Szekeres is NP-hard in R3.
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Chapter 11

Conclusion

11.1 Testing Weak ε-Nets and Red-Blue Discrepancy

Here, we shortly mention that the hardness proofs also show hardness for two closely related
problems. From Section 1.1, recall that a range space is a pair (X,R), where R ⊆ 2X . If
X is a set of points in Rd and R is the set of all convex sets determined by them, in general
this range space does not allow ε-nets of small size. Thus, the notion of weak ε-nets was
introduced, where the net is not required to consist of points of X, but can instead be
chosen arbitrarily. A canonical decision problem regarding weak ε-nets is as follows:

Definition 37 (Weak-ε-Net-Verification). Let P ⊂ Rd, S ⊂ Rd and ε > 0. Is S a
weak ε-net for P with respect to all convex sets?

Though this problem is not as interesting as the verification of strong ε-nets—simply
due to the lack of a random sampling methods for constructing weak ε-nets—Chazelle
et al. [26] give an algorithm with running time O(n3) for the problem in the plane (in a
slightly different but equivalent formulation). Moreover, they state the question whether
it is solvable in polynomial time in R3.

Recall from Section 1.1 that a closely related concept is that of red-blue discrepancy.
For a set Pr of red and a set Pb of blue points, the discrepancy of a range R is defined as

DR(Pr, Pb) := ||R ∩ Pr| − |R ∩ Pb|| .

The discrepancy of a bicolored set P = Pr ∪ Pb with respect to a set of ranges R is then
defined as D(Pr, Pb) := maxR∈RDR(Pr, Pb). The corresponding decision problem Red-
Blue-Discrepancy asks whether the discrepancy of a given set is at least some given
value k ∈ N.

As in Section 4.4, the relation between large empty convex sets and verification of weak
ε-nets is straightforward: the set of blocking points B determines a (k/n)-net for the set
of n lifted points L if and only if there is no independent set of size k among the disks. A
similar argument holds for Red-Blue-Discrepancy. Our reduction thus also shows the
following:
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Theorem 22. The problem Weak-ε-Net-Verification is co-NP-hard in R3 and Red-
Blue-Discrepancy is NP-hard in R3.

This shows that, whereas (weak) ε-nets for boxes can be verified in nO(d) time in d
dimensions, for the range space of convex sets, this is not possible. Further, it is easily
seen that again this result even holds for constant ε.

11.2 Conclusion and Open Problems

The point set we created is slightly degenerate due to the existence of triples of points on
a line. This is easily taken care of by “pushing” the blocking points yet a little further
inside the paraboloid. We then add a large set of points in convex position high above the
construction, so that they have to be picked in any maximal empty convex set. This way,
the combinatorial properties of the construction are maintained, and the point set is in
general position.

The major open question is to find an approximation algorithm for the problems
Erdős-Szekeres and Largest-Empty-Convex-Set. The obvious approach (project-
ing to R2 and solving the problem there) does not work very well: as pointed out by
Rote [88], it was shown by Chazelle et al. [27] that there are polytopes on n vertices whose
projection in any direction has no empty convex subset larger than Θ(log n/ log log n).
Thus, the question for a more intelligent (probably constant-factor) approximation algo-
rithm remains and seems to be very challenging.

In addition to this, the most interesting question is the following: Is Largest-Empty-
Convex-Set in R3 fixed parameter tractable with respect to the size of the solution? That
is, can we decide whether there are k points in empty convex position in time O (f(k)nc)
for some computable function f and constant c? More generally, given a point set P in
Rd, can we decide whether there is an empty convex set of size k in time O

(
f(k)nO(d)

)
?

Observe that due to the Erdős-Szekeres theorem itself, the problem Erdős-Szekeres
is trivially fixed-parameter tractable: it states that any set of at least 4k points admits a
convex subset of size k. Thus, given a point set P and a k ∈ N, if n := |P | ≤ 4k, we use a
brute force algorithm, i.e., simply try all subsets of size k. This takes time

(
n
k

)
≈ nk ≤ (4k)k.

If n > 4k, we simply answer yes. In any case, the running time is bounded by 4k
2
n, and thus

we have an algorithm with running time O (f(k)n). Still, from a parameterized complexity
point of view, the question for a polynomial size problem kernel is of interest. That is, can
we preprocess the input in polynomial time to yield an instance (P ′, k′) of size bounded
by poly(k) and a parameter k′ ≤ k with the following property: P ′ admits a convex set of
size k′ if and only if P admits a convex sets of size k. Applying the brute-force algorithm
on the kernel would then improve the running time of the fpt algorithm significantly from
O(4k

2
nc) to 4O(k log k)nc

′
.
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Chapter 12

Introduction and Motivation

Finally, we come to describe a positive result for the computational complexity of a higher
dimensional problem. We present a novel lifting approach for approximating high dimen-
sional Tverberg (and center-) points. Our technique is very generic and leads to several
different new algorithms. Simple algorithms are obtained by using our technique sepa-
rately, while we are later able to get stronger results by combining our approach with
other known methods, most notably a recent result by Miller and Sheehy [77].

12.1 Tverberg’s Theorem and Its Relatives

In many applications (such as statistical analysis or finding sparse geometric separators in
meshes) we would like to have a way to generalize the one-dimensional notion of a median
to higher dimensions. A very natural means to accomplish this is the notion of half-space
depth (or Tukey depth) of a point set.

Definition 38. Let P be a set of points in Rd. The half-space depth of a point c ∈ Rd

with respect to P is defined as

min
half-space h,c∈h

|h ∩ P |.

The half-space depth of a point set P is then defined as the half-space depth of a point
with maximum depth.

The following theorem states that every point set admits a point of high half-space
depth (see Danzer et al. [35] and Rado [87]).

Theorem (Centerpoint theorem). Let P be a set of n points in Rd. Then there exists a
point c of half-space depth at least dn/(d+ 1)e.

Another classic fact about convexity, with a close connection to centerpoints that is
not obvious right away, is the following.
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Theorem (Radon’s theorem). For any P ⊆ Rd with d + 2 points there exists a partition
(P1, P2) of P such that conv(P1) ∩ conv(P2) 6= ∅.

Tverberg [94] generalized this theorem for larger point sets.

Theorem (Tverberg’s theorem). Any set P ⊆ Rd with n = (r − 1)(d + 1) + 1 points can
be partitioned into r sets P1, . . . , Pr such that

⋂r
i=1 conv(Pi) 6= ∅.

As mentioned in Section 7.2, in general for any partition P1, . . . , Pr′ of P into r′ sets
and any point c that is contained in the convex hull of each of the sets, we say that c
has Tverberg depth at least r′ with respect to P . Consequently, c is called an approximate
Tverberg point (of depth r′). Tverberg’s theorem thus states that, for any set P in Rd,
there is a point of depth at least b(n− 1)/(d+ 1) + 1c = dn/(d+ 1)e. See Figure 12.1.

c

P1

P3

P2P4

P5

r = 5

Figure 12.1: c is a point of Tverberg depth r = 5.

Clearly, the Tverberg depth is a lower bound on the half-space depth, and as such,
Tverberg’s theorem implies the centerpoint theorem. Consequently, any method of finding
a point of high Tverberg depth at the same time returns a point of high half-space depth.

12.2 Previous Approaches

If we actually would like to compute a centerpoint for a given point set, the situation
becomes more involved.

For lower dimensions, the situation is still well understood. In two dimensions, a
centerpoint can be computed in linear time, see Jadhav and Mukhopadhyay [60]. As in
R2, any centerpoint is also a Tverberg point (for n a multiple of 3), this algorithm also
computes a Tverberg point.

For higher dimensions, Helly’s theorem implies that the set of all centerpoints is given
by the intersection of O(nd) half-spaces (see Edelsbrunner [42]), so we can find a centerpoint
in O(nd) time through linear programming. Chan [22] shows how to improve this running
time to O(nd−1) steps in expectation. He actually solves the harder problem of finding a
point with maximum half-space depth. Moreover, as mentioned by Agarwal, Sharir, and
Welzl [1], by adapting Tverberg’s original proof one is able to find a Tverberg point or n
points in d dimensions in time nO(d2). We will refer to this algorithm as the exact algorithm.
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However, a running time of nΩ(d) is not feasible for large d, so it makes sense to look for
faster approximate solutions. A classic approach uses ε-approximations (cf. Section 1.1):
in order to obtain a point of Tukey depth n(1/(d+ 1)− ε), take a random sample A ⊆ P
of size O((d/ε2) log(d/ε)) and compute a centerpoint for A, using the linear-programming
method. This gives the desired approximation with constant probability, and the resulting
running time after the sampling step is constant. What more could we possibly wish for?
For one, the algorithm is Monte-Carlo: with a certain probability, the reported point fails to
be a centerpoint, and we know of no fast algorithm to check its validity (cf. Section 7.2).
This problem can be solved by constructing the ε-approximation deterministically, see
Chazelle [25], at the expense of a more complicated algorithm. Nonetheless, in either
case the resulting running time, though constant, still grows exponentially with d, an
undesirable feature for large dimensions.

This situation motivated Clarkson et al. [32] to look for more efficient randomized
algorithms for approximate centerpoints. They give a simple probabilistic algorithm that
computes a point of Tukey depth O(n/(d + 1)2) in time O(d2(d log n + log(1/δ))log(d+2)),
where δ is the error probability. They also describe a more sophisticated algorithm that
finds such a point in time polynomial in n, d, and log(1/δ). Both algorithms are based
on a repeated algorithmic application of Radon’s theorem. Unfortunately, there remains a
probability of δ that the result is not correct, and we do not know how to detect a failure
efficiently. This is no surprise: if the dimension is not fixed, a result by Teng [92] shows
that it is co-NP-hard to check whether a given point is indeed a centerpoint.

Thus, more than ten years later, Miller and Sheehy [77] launched a new attack at the
problem. Their goal is to develop a deterministic algorithm for approximating centerpoints
whose running time is subexponential in the dimension. For this, they use a different proof
of the centerpoint theorem that is based on the aforementioned result by Tverberg, and
the observation that any point of Tverberg depth at least n/(d+1) is a center point. Their
main result reads as follows.

Theorem (Miller-Sheehy [77]). Let P be a set of points in Rd. Then in time nO(log d)

one can find a partition of P into r =
⌈

n
2(d+1)2

⌉
sets Q1, . . . , Qr and a point c, such that

c ∈ conv(Qi) for all 1 ≤ i ≤ r.

Hence, c constitutes an approximate centerpoint for P . At the same time, it has the
advantage that also finds an approximate Tverberg partition of P—and as such provides us
with a certificate for the half-space and Tverberg depth of the returned point. The algo-
rithm is deterministic and runs in time nO(log d). While this running time is subexponential
in d, unfortunately the exponent of n still increases with the dimension.

12.3 Our Contribution

In this part, we show that the running time for finding approximate Tverberg partitions
(and hence approximate centerpoints) can be improved. In particular, we show how to
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find a Tverberg partition of size dn/4(d + 1)3e for a set of n points in deterministic time
dO(log d)n. This is linear in n for any fixed dimension, and the dependence on d is only
quasipolynomial.

First, in Section 13.1, we present a simple lifting argument which leads to an easy
Tverberg approximation algorithm. While this does not yet give a good approximation
ratio (though constant for any fixed d), it is a very natural approach to the problem: it
computes a higher dimensional Tverberg point via successive median partitions—just as a
Tverberg point is a higher dimensional generalization of the 1-dimensional median.

By collecting several low-depth points and afterwards applying the brute-force algo-
rithm on small point sets, we then obtain a polynomial approximation factor for any fixed
dimension, still achieving a linear running time in n.

With a more general version of our lifting argument, in Section 13.2 we show how our
technique can be combined with any previous method for computing high depth points.
We then apply this idea to the approach of Miller and Sheehy, thereby improving our
algorithm to yield a running time quasipolynomial in d.

Finally, we compare these results to the Miller-Sheehy algorithm and its extensions and
give a short outlook on future approaches to the problem.



Chapter 13

The Algorithm

In this chapter, we present the different versions of our new algorithm. We start with the
simplest variant, which we will subsequently improve both in terms of running time as
well as approximation factor. From now on we will use the term depth as shorthand for
Tverberg depth. As a model of computation we assume the uniform cost arithmetic model
that carries out elementary arithmetic operations in O(1) time.

13.1 A Simple Fixed-Parameter Algorithm

First, we present a simple algorithm that runs in linear time for any fixed dimension and
computes a point of depth dn/2de. For this, we show how to compute a Tverberg point by
recursion on the dimension. As a byproduct, we obtain a quick proof of a weaker version
of Tverberg’s theorem.

13.1.1 Basic Operations

In order to avoid linear programming, alongside with the partition of the point set, for
each set we will implicitly save a convex combination of the respective point. As all points
considered during our algorithms arise iteratively from by taking convex combinations of
our input points, we implicitly use the following observation in order to maintain this
invariant.

Observation 3. If xi =
∑

p∈Pi
αpp and y =

∑
i βixi are convex combinations, then

∑

i

∑

p∈Pi

βiαpp

is a convex combination of the points in
⋃
Pi for y.

Further, by Carathéodory’s theorem, in order to describe a Tverberg partition of depth
r, we only need r(d+ 1) points from P (cf. Chapter 6). In order for our algorithms to run
in linear time in n, we need the following observation, also used by Miller and Sheehy [77].
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Lemma 26. Let Q be a set of m > d+ 1 points in Rd whose convex hull contains a point
c ∈ Rd, and suppose we know a convex combination of Q for c. Then we can find a set
Q′ ⊂ Q of d+ 1 points that still contains c in its convex hull, together with a corresponding
convex combination, in time O(d3m).

Proof. Miller and Sheehy observe that replacing d+2 by d+1 points can be done in O(d3)
time by finding an affine dependency using Gaussian elimination, see Grötschel, Lovasz,
Shrijver [54, Chapter 1]. As the choice of affine dependencies does not matter, we can thus
take any subset of points of size d + 2 and eliminate one of the affine dependencies and
adapting the convex combination accordingly. Repeating this process, we can replace m
points by d+ 1 points in time (m− (d+ 1))O(d3) ∈ O(d3m).

We denote the process of replacing larger sets by sets of size d + 1 as pruning, and
denote a partition of a d-dimensional point set where each of the sets has size at most d+1
as a pruned partition. This pruning process later enables us to bound the cost of many
operations in terms of the dimension d, instead of the total number of points n.

13.1.2 The Lifting Argument and a Simple Algorithm

Let P be a d-dimensional point set. As a Tverberg point is a higher dimensional version
of the median, a natural way to compute a Tverberg point for P is to first project P
to some lower-dimensional space, then to recursively compute a good Tverberg point for
this projection, and use this point to find a solution in the higher-dimensional space.
Surprisingly, we are not aware of any argument along these lines having appeared in the
literature so far.

In what follows, we will describe how to lift a lower-dimensional Tverberg point into
some higher dimension. Unfortunately, this process will come at the cost of a decreased
depth for the lifted Tverberg point. For clarity of presentation, we first explain the lifting
lemma in its simplest form. In Section 13.2.1, we then state the lemma in its full generality.

Lemma 27. Let P be a set of n points in Rd, and let h be a hyperplane in Rd. Let c′ ∈ h be
a Tverberg point of depth r for the projection of P onto h, with pruned partition P1, . . . , Pr.
Then we can find a Tverberg point c ∈ Rd of depth dr/2e for P and a corresponding Tverberg
partition in time O(n).

Proof. For every point p ∈ P , let pr(p) denote the projection of p onto h, and for every
Q ⊆ P , let pr(Q) be the projections of all the points in Q. Let P1, . . . , Pr ⊆ P such that
pr(P1), . . . , pr(Pr) is a Tverberg partition for pr(P ) with Tverberg point c′. Let ` be the
line orthogonal to h that passes through c′.

Since our assumption implies c′ ∈ conv(pr(Pi)) for i = 1, . . . , r, it follows that ` in-
tersects each conv(Pi) at some point xi ∈ Rd. In particular, as we have a convex com-
bination of the pr(Pi) for c′, i.e., c′ =

∑
p∈Pi

αp pr(p), this intersection point is simply
xi =

∑
p∈Pi

αpp.

Assuming an appropriate numbering, let Q̂i = {x2i−1, x2i}, i = 1, . . . , dr/2e, be a
Tverberg partition of x1, . . . , xr. (If r is odd, one of the sets contains only one point, the
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h

(a) project

c′
h

(b) find partition

c′

`

h

(c) intersect hulls of the sets with orthogonal com-
plement

c

(d) find median of intersections and combine

Figure 13.1: Illustrating the lifting lemma in the plane: we project the point set P to the
line h and find a Tverberg partition and a Tverberg point c′ for the projection. Then,
we construct the line ` through c′ that is perpendicular to h, and we take the intersection
with the lifted convex hulls of the Tverberg partition. We then find the median c and
the corresponding partition for the intersections along `. Finally, we group the points
according to this partition.

median.) Since the points xi lie on the line `, such a Tverberg partition exists and can be
computed in time O(r) by finding the median c, i.e., the element of rank dr/2e, according
to the order along ` (see Cormen et al. [33]).

We claim that c is a Tverberg point for P of depth dr/2e. Indeed, we have

c ∈ conv(Q̂i) = conv({x2i−1, x2i}) ⊆ conv(P2i−1 ∪ P2i),

for 1 ≤ i ≤ dr/2e. Thus, if we set Qi := P2i−1 ∪ P2i, then Q1, . . . , Qdr/2e is a Tverberg
partition for the point c.

Thus, the total time to find c and the Qi is O(n), as claimed. See Figure 13.1 for a
two-dimensional illustration of the lifting argument.

The proof of the next theorem is now a direct consequence of Lemma 27.
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Theorem 23. Let P be a set of n points in Rd. One can compute a Tverberg point of
depth dn/2de for P and the corresponding pruned partition in time dO(1)n.

Proof. If d = 1, we can immediately find a Tverberg point and a corresponding partition
by finding the median c of P [33] and pairing each point to the left of the median with
exactly one point to the right of the median.

If d > 1, we project the points onto the hyperplane defined by xd = 0. This results in
an n-point set P ′ ⊆ Rd−1. By induction, we recursively find a point and a corresponding
pruned partition of depth r′ = dn/2d−1e for P ′. On this set, we then apply Lemma 27.
Thus, we obtain a point c ∈ Rd of depth

⌈
dn/2d−1e/2

⌉
≥ dn/2de and a partition Q̂1, . . . , Q̂r.

Each of the sets consists of at most 2d points, so by Lemma 26, we can prune each of the
sets in time O(d4).

This yields a total running time of Td(n) ≤ Td−1(n) + dO(1)n, which implies the result.

In particular, we obtain a weak version of Tverberg’s theorem with a very elementary
proof.

Corollary 10 (Weak Tverberg theorem). Let P be a set of n points in Rd. Then P can
be partitioned into dn/2de sets P1, . . . , Pdn/2de such that

dn/2de⋂

i=1

conv(Pi) 6= ∅.

13.1.3 An Improved Approximation Factor

In order to improve the approximation factor, we will now use an easy lemma to bootstrap
the Tverberg depth. The idea is that, because of Carathéodory’s theorem, we only need
(d + 1)r points in Rd in order to describe a Tverberg partition of depth r. Thus, if our
algorithm finds a point of depth n/2d, we are still left with n

(
1− (d+ 1)/2d

)
points which

are not used at all. We will now show how to use these points in order to achieve an even
higher Tverberg depth.

Lemma 28. Suppose for any m-point set Q ⊆ Rd we can compute a point of Tverberg
depth dm/ρe and a corresponding pruned Tverberg partition in time q(m, d). Let P ⊆ Rd

with |P | = n, and let c ∈ [2, n/ρ] be a constant. Define the target depth as δ := dn/cρe.
Then we can find α := dn(1−1/c)

δ(d+1)
e disjoint subsets Q1, . . . , Qα of P and a Tverberg point of

depth δ together with a pruned partition Pi in each.

This takes total time

O
((c− 1)ρ

d+ 1
(p(n, d) + q(n, d))

)
,

where p(n, d) is the time for the pruning phase.
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Proof. Let P1 := P . We take an arbitrary subset P ′1 ⊆ P1 with dn/ce points and find a
Tverberg point c1 of depth δ and a corresponding Tverberg partition P ′1 for P ′1. Then we
prune P ′1 to get a Tverberg partition P1. Note that this takes time p(n, d) + q(n, d) and
that Q1 :=

⋃
Z∈P1

Z contains at most δ(d+ 1) points. Set P2 := P1 \Q1 and continue.
Each partition Pi partitions a set Qi ⊆ P such that the Qi are pairwise disjoint. We

can repeat this process until

n− iδ(d+ 1) <
n

c
,

which so solves to

α ≥ i >

⌈
n(1− 1/c)

δ(d+ 1)

⌉
.

Thus, we obtain α points c1, . . . , cα with corresponding Tverberg partitions P1, . . . ,Pα,
each of depth at least dn/cρe, as desired.

For example, by Theorem 23 we can find a point of depth dn/2de and a corresponding
pruned partition in time dO(1)n. Thus, by applying Lemma 28 with c = 2, ρ = 2d, we can
also find dn/(2dn/2d+1e(d + 1))e ≈ 2d/(d + 1) points of depth dn/2d+1e in linear time in
any fixed dimension.

In order to make use of Lemma 28, we will also need a lemma that describes how we
can combine these points in order to increase the total depth. This generalizes a similar
lemma by Miller and Sheehy [77, Lemma 4.1].

Lemma 29. Let P be a set of n points in Rd, and let P =
⊎α
i=1 Pi be a partition of P .

Furthermore, suppose that for each Pi we have a Tverberg point ci ∈ Rd of depth r, together
with a corresponding pruned Tverberg partition Pi. Let C := {ci | 1 ≤ i ≤ α} and c be a
point of depth r′ for C, with corresponding pruned Tverberg partition C. Then c is a point
of depth rr′ for P . Furthermore, we can find a corresponding pruned Tverberg partition in
time dO(1)n.

Proof. For i = 1, . . . , α, write Pi = {Qi1, . . . , Qir}, and write C = {D1, . . . , Dr′}. For
a = 1, . . . , r′, b = 1, . . . , r, we define sets Zab as

Zab :=
⋃

ci∈Da

Qib.

We claim that the set Z := {Zab | a = 1, . . . , r′; b = 1, . . . , r} is a Tverberg partition of
depth rr′ for P with Tverberg point c. Clearly, by definition Z is a partition with the
appropriate number of elements. It only remains to check that c ∈ conv(Zab) for each Zab.
Indeed, we have

c ∈ conv(Da) = conv

( ⋃

ci∈Da

{ci}
)
⊆ conv

( ⋃

ci∈Da

conv (Qib)
)

= conv
( ⋃

ci∈Da

Qib

)
= conv(Zab),

for a = 1 . . . r′, b = 1 . . . r.
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As the partitions Pi and C were pruned, each Zab consists of at most (d + 1)2 points.
Thus, by Lemma 26, each Zab can be pruned in time O(d5). Since certainly |Z| ≤ n, the
lemma follows.

Combining Lemmas 28 and 29, we are now ready to prove a better Tverberg approxi-
mation.

Theorem 24. Let P be a set of n points in Rd. Then one can compute a Tverberg point
of depth dn/2(d + 1)2e and a corresponding partition in time fd(2

d+1) + dO(1)n, where
fd(m) ∈ mO(d2) is the time for computing a Tverberg point of depth dm/(d + 1)e for m
using the exact algorithm.

Proof. If n ≤ 2d+1, we use the exact algorithm. This takes at most fd(2
d+1) time.

Otherwise, we apply Lemma 28 with c = 2 and ρ = 2d to obtain a set C of

|C| =
⌈

n

2dn/2d+1e(d+ 1)

⌉

points for P of depth dn/2d+1e with corresponding pruned partitions in time dO(1)n time.
We then use the exact algorithm to get a Tverberg point for C with depth d|C|/(d + 1)e
with a corresponding partition, in time fd(|C|). Finally, we apply Lemma 29 to obtain
a Tverberg point and corresponding partition in time dO(1)n. Repetitive application of
daedbe ≥ dadbee yields that the resulting depth is

dn/2d+1e · d|C|/(d+ 1)e ≥
⌈⌈ n

2d+1

⌉ n

2dn/2d+1e(d+ 1)2

⌉
=

⌈
n

2(d+ 1)2

⌉
,

and the total running time is fd(2
d) + dO(1)n, as desired.

Alternatively, instead of the exact algorithm, we can use the algorithm by Miller and
Sheehy to find a point among the deep points, while slightly reducing the running time.

Theorem 25. Let P be a set of n points in Rd. Then one can compute a Tverberg point
of depth dn/4(d+ 1)3e and a corresponding partition in time 2O(d log d) + dO(1)n.

13.2 An Improved Running Time

The algorithm in the previous section runs in linear time for any fixed dimension, but
the constants are huge. Thus, finally we show how to speed up our approach through an
improved recursion and obtain an algorithm with running time dO(log d)n, while losing a
depth factor of 1/2(d+ 1).
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13.2.1 A More General Version of the Lifting Argument

We first present a more general version of the lifting argument in Lemma 27. For this we
need some more notation. Let P ⊆ Rd. A k-dimensional flat F ⊆ Rd (often abbreviated
as k-flat) is defined as a k-dimensional affine subspace of Rd (or, equivalently, as the affine
hull of k + 1 affinely independent points in Rd). Generalizing the notion of a Tverberg
point, we call a k-dimensional flat F ⊆ Rd a Tverberg k-flat of depth r for P , if there is a
partition of P into sets P1, . . . , Pr such that conv(Pi) ∩ F 6= ∅ for all i = 1, . . . , r.

Lemma 30. Let P be a set of n points in Rd, and let h ⊆ Rd be a k-flat. Suppose we have
a Tverberg point c ∈ h of depth r for pr(P ) := prh(P ), as well as a corresponding Tverberg
partition. Let h⊥c be the (d − k)-flat orthogonal to h that passes through c. Then h⊥c is a
Tverberg (d− k)-flat for P of depth r, with the same Tverberg partition.

Proof. Let pr(P1), . . . , pr(Pr) be the Tverberg partition for the projection pr(P ). It suffices
to show that conv(Pi) intersects h⊥c for i = 1, . . . , r. Indeed, for Pi = {pi1, . . . , pili} let
c =

∑li
j=1 λj pr(pij) be a convex combination that witnesses c ∈ conv(pr(Pi)). We now

write each pij = pr(pij)+pr⊥(pij), where pr⊥(·) denotes the projection onto the orthogonal
complement h⊥ of h. Then,

li∑

j=1

λjpij =

li∑

j=1

λj pr(pij) +

li∑

j=1

λj pr⊥(pij) ∈ c+ h⊥ = h⊥c ,

as claimed.

First of all, this shows how a good algorithm for any fixed dimension improves the
general case:

Lemma 31. Let δ ≥ 1 be a fixed integer. Suppose we have an algorithm A with the
following property: for every point set Q ⊆ Rδ, the algorithm A constructs a Tverberg
point of depth d|Q|/ρe for Q as well as a corresponding pruned Tverberg partition in time
f(|Q|).

Then, for any n-point set P ⊆ Rd and for any d ≥ δ, we can find a Tverberg point of
depth n/ρdd/δe and a corresponding pruned partition in time dd/δef(n) + dO(1)n.

Proof. We use induction on k := dd/δe to show that such an algorithm exists with running
time k(f(n) + dO(1)n). If k = 1, we can just use algorithm A and there is nothing to show.

Now suppose k > 1. Let h ⊆ Rd be a δ-flat in Rd, and let pr(P ) be the projection
of P onto h. We use algorithm A to find a Tverberg point c of depth dn/ρe for pr(P ) as
well as a corresponding pruned partition pr(P1), . . . , pr(Pdn/ρe). This takes time f(n). By
Lemma 30, the (d− δ)-flat h⊥c is a Tverberg flat of depth dn/ρe for P , with corresponding
pruned partition P1, . . . , Pdn/ρe. For each i, we can thus find a point qi in conv(Pi)∩ h⊥c in
time dO(1).

Now consider the point set Q = {q1, . . . , qdn/ρe} ⊆ h⊥c . The set Q is a (d−δ)-dimensional
point set. Since we have d(d− δ)/δe = k− 1, by induction we can find a Tverberg point c′
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for Q of depth |Q|/ρdd/δe−1 = n/ρdd/δe and a corresponding pruned Tverberg partition Q
in total time (k − 1)(f(n) + dO(1)n). Now, c′ is a Tverberg point of depth n/ρdd/δe for P :
a corresponding Tverberg partition is obtained by replacing each point qi in the partition
Q by the corresponding subset Pi. The resulting partition can be pruned in time dO(1)n.

Thus, the total running time is

(k − 1)(f(n) + dO(1)n) + f(n) + dO(1)n = k(f(n) + dO(1)n),

and since k = O(d), the claim follows.

For example, we can compute a point of depth dn/2(k + 1)2e in k dimensions in time
nO(log k). Thus, we can compute a point of depth ≈ n/2(k + 1)2d/k in time dO(1)nO(log k).

13.2.2 An Improved Algorithm

We will now show how to combine the above techniques for an algorithm with a better
running time. The idea of the new algorithm is as follows: using Lemma 31, we reduce
solving a d-dimensional instance to solving two instances of dimension d/2. This can be
done recursively, but unfortunately, it reduces the depth of the partition. To fix this, we
apply Lemmas 28, 29 and the Miller-Sheehy algorithm to increase the depth again.

Theorem 26. Let P be a set of n points in Rd. Then one can compute a Tverberg point
of depth dn/4(d+ 1)3e and a corresponding pruned partition in time dO(log d)n.

Proof. We prove the theorem by induction on d. As stated before, for d = 1 the claim is
immediate, as in this case the problem reduces to a median computation.

Thus, suppose that d > 1. By induction, for any at most dd/2e-dimensional point set
Q ⊆ Rdd/2e there is an algorithm that returns a Tverberg point of depth d|Q|/4(dd/2e+1)3e
and a corresponding pruned Tverberg partition in time dα log(d/2)n, for some sufficiently
large constant α > 0.

Thus, by Lemma 31 (with δ = dd/2e), there exists an algorithm that can compute a
Tverberg point for P of depth dn/16(dd/2e + 1)6e and a corresponding pruned Tverberg
partition in total time 2dα log(d/2) + dO(1)n.

Now we apply Lemma 28 with c = 2 and ρ = dn/32(dd/2e + 1)6e. The lemma shows
that we can compute d16(dd/2e+1)6/(d+1)e points of depth δ and corresponding (disjoint)
pruned partitions in time dα log(d/2)+O(1)n.

Let C be the set of these Tverberg points. Applying the Miller-Sheehy algorithm, we
can find a Tverberg point for C of depth d|C|/2(d + 1)2e and a corresponding pruned
Tverberg partition in time |C|O(log d). Now, Lemma 29 shows that in additional dO(1)n
time, we obtain a Tverberg point and a corresponding pruned Tverberg partition for P of
size ⌈

n

2 · 16(dd/2e+ 1)6

⌉⌈
16(dd/2e+ 1)6

2(d+ 1)2(d+ 1)

⌉
=

⌈
n

4(d+ 1)3

⌉
,
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as desired.
It remains to analyze the running time. Adding the various terms, we end up with a

time bound of
T (n, d) = dα log(d/2)+O(1)n+ |C|O(log d) + dO(1)n.

Since |C| = dO(1), we get

T (n, d) ≤ dα log(d/2)+O(1)n+ dO(log d)n

≤ dα log d−α/2n+ dβ log dn,

for α large enough and some β > 0, independent of d. Hence, it follows that for large
enough α we have

T (n, d) ≤ dα log dn = dO(log d)n,

as claimed. This completes the proof.

Thus, we can compute a polynomial approximation to a Tverberg point in time pseu-
dopolynomial in d and linear in n.
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Chapter 14

Conclusion

Finally, we compare our approach and its several variations to that of Miller and Sheehy,
and give some ideas for further work on the subject.

14.1 Comparison to Miller-Sheehy

In the table below, we compare our algorithm in more detail to the Miller-Sheehy algorithm
and its extensions. They give a generalization of their approach that shows that by com-
puting higher order Tverberg points of depth r by the brute-force algorithm, the running
time can be improved for small d. This comes with the loss of factor r in the output. No
exact values are given, but as far as we can tell, one can achieve a polynomial O(f(d)n2)
running time for fixed d by setting the parameter r = (d+1), while losing a factor of (d+1)
in the approximation. Further, even though it is not explicitly mentioned in the paper, we
think that it is possible to also bootstrap their own algorithm (for a better running time in
terms of d, while losing another factor of (d+ 1) in the output). Table 14.1 shows a rough
comparison (ceilings omitted) of the different approaches. Again, f(m) = fd(m) := mO(d2)

denotes the running time of the algorithm derived from the original proof of Tverberg’s
theorem (cf. Section 12.2).

Algorithm Running time Depth
Theorem 23 O(n) n/2d

Miller-Sheehy nO(log d) n/2(d+ 1)2

Theorem 24 O
(
f(2d) + dO(1)n

)
n/2(d+ 1)2

Miller-Sheehy generalized (r = d+ 1) O (f(d)n2) ≈ n/2(d+ 1)3

Theorem 25 O
(
2O(d log d) + n

)
n/4(d+ 1)3

Miller-Sheehy bootstrapped dO(log d)n3 ≈ n/2(d+ 1)4

Theorem 26 dO(log d)n n/4(d+ 1)3

We should emphasize that for all dimensions d with 2d ≤ 2(d + 1)2, which solves to
d ≤ 8, our simplest algorithm outperforms every other approximation algorithm in both
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running time and approximation ratio. For example, it gives a 1/2-approximate Tverberg
point in 3 dimensions in linear time.

14.2 Conclusion and Outlook

We have presented a very simple algorithm for finding an approximate Tverberg point,
which runs in linear time for any fixed dimension. Using more sophisticated methods and
combining our methods with known results, we managed to improve the running time to
dO(log d)n, while getting within a factor of 1/4(d+ 1)2 of the guaranteed optimum.

Unfortunately, the resulting running time is still quasipolynomial in d, and we still
do not know whether there exists a polynomial algorithm (in n and d) for finding an
approximate Tverberg point. However, we are hopeful that our techniques constitute a
further step towards a truly polynomial time algorithm and that such an algorithm will
eventually be discovered—maybe even by a more clever combination of our algorithm with
that of Miller and Sheehy.

A common issue with Tverberg (and center-) point algorithms in high dimensions, also
pointed out in [32], is that the coefficient arising during the algorithm might become expo-
nentially large. While this is not a problem in our uniform cost model, for implementations
of the algorithm it seems necessary to bound these. In particular, it would be interesting
to investigate the bit complexity of the intermediate solutions arising during the pruning
process. In order to strengthen our result to work in a weaker model where the numbers
are bounded by a polynomial in the input, it remains to check that the coefficients that
arise in the process of combining points and applying Gaussian eliminations are not too
large. If this is not possible, one might have to perturb the points in the process, thereby
lowering the order of the coefficients.

In addition to this, an alternative algorithmic approach to computing Tverberg points
that one might want to pursue stems from the most beautiful proof of Tverberg’s theorem.
It is due to Sarkaria and can be found in Matousek’s book [68, Chapter 8]. It uses the
colorful Carathéodory theorem:

Theorem (Colorful Carathéodory). Let P = C1 ] · · · ]Cd+1 be sets of points in Rd, such
that for each i, 1 ≤ i ≤ d + 1, it holds that 0 ∈ conv(Ci). Then there is a set C with
0 ∈ conv(C) and |Ci ∩ C| = 1.

Sarkaria’s proof transforms a d-dimensional instance of n points of the Tverberg point
problem to a colorful Carathéodory problem in approximately dn dimensions. The question
now is whether such a colorful simplex can be found in time polynomial in both d and n,
which would lead to a polynomial time algorithm for computing a Tverberg point.

The simplest proof of the colorful Carathéodory theorem leads directly to an algorithm
for finding such a colorful simplex. It works as follows: Take a random colorful simplex. If
the origin is not contained in it, delete the farthest color and take a point of that color that
together with the other points induces a simplex that is closer to the origin. However, it
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is unknown whether this procedure runs in polynomial time for both d and n, and settling
this question would be a big progress on the problem.
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Outlook

In this thesis, we have investigated several problems from discrete geometry in higher
dimensions. While in the plane, many of them are well understood and can be solved
efficiently, we have seen that in higher dimensions, many of them become considerably
harder to solve.

In addition to the open problems stated at the end of the respective parts, we suggest
two different approaches in coping with them here.

First, we strongly encourage people to try to find algorithms that are fpt with respect
to the dimension. Apart from the results mentioned in the introduction and our Tverberg
point approximation, there are very few positive results in this direction. Still, we think
that there is a huge variety of interesting problems waiting to be attacked. In particular,
in all cases where a truly polynomial time algorithm is out of reach due to NP-hardness of
the problem, the search for and algorithm that is fpt with respect to the dimension seems
like a most suitable approach.

In addition to the problems considered in this thesis, one particularly interesting exam-
ple is the well-known problem of deciding whether two sets of n points in Rd are congruent.
The fastest algorithm for this problem is due to Brass and Knauer [13] and runs in time
O(ndn/3e log n). Here, an algorithm that runs in time polynomial in both n and d would
imply a polynomial time algorithm for Graph-Isomorphism. While this problem is most
likely not NP-complete, it would still be a major breakthrough if such an algorithm existed.
However, a more modest approach that solves the problem in time O(f(d)n log n) does not
seem so far fetched. It would run in optimal time in any fixed dimension, but at the same
time it would have no implications on the complexity of Graph-Isomorphism.

Another suitable approach is to show hardness in a different sense for these problem.
Many problems we considered are known to always admit a solution, but still we do not
know how to find them efficiently. Thus, classical complexity theory based on decision
problems cannot completely capture their hardness. In this thesis, we instead looked at
a modifications of the problems in order to make it a (more classical) decision problem.
For example, for the ham-sandwich problem, we instead considered problem of deciding
whether there is a cut through a certain point. However, this does not really settle the
complexity of finding such a cut.

Complexity classes more suitable for such problems were suggested by Papadimitriou [85],
most notably the class PPAD (“Polynomial Parity Arguments on Directed graphs”). A lot
of effort has been put into investigating problems with respect to these classes, and many
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turn out to be PPAD-complete. These include, for example, Borsuk-Ulam theorem and
the like (see [85]) and computing 2-player Nash-equilibria (see [29]). We refer the reader
to Kitali [63] for a longer list. We will not give an introduction into the large area of these
problems here, but instead refer the reader to Papadimitriou [85] and Johnson [61] for
details.

Surprisingly, for geometric problems we are not aware of any results in this direction,
even though there is a wide variety of problems suitable for such an approach. These include
computing ham-sandwich cuts, computing Tverberg points, computing centerpoints, or
finding a set of a certain size in convex position in R3, just to mention a few. In fact, most
theorems from discrete geometry give rise to such a problem. Thus, we think that there
is a lot of potential in investigating these problems with respect to this complexity class,
and this would require a thesis of its own.
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[11] I. Bárány and G. Károlyi. Problems and results around the Erdős-Szekeres convex
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[68] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.



108 BIBLIOGRAPHY
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[79] W. Morris and V. Soltan. The Erdős-Szekeres problem on points in convex position
— a survey. Bulletin of the American Mathematical Society, 37(4):437–458, 2000.

[80] W. Mulzer and D. Werner. Approximating Tverberg points in linear time for any
fixed dimension. In Proceedings of the 28th Symposium on Computational Geometry
(SoCG). ACM, 2012.

[81] C. M. Nicolás. The empty hexagon theorem. Discrete & Computational Geometry,
38(2):389–397, 2007.

[82] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006.

[83] H. Niederreiter. Random number generation and quasi-Monte Carlo methods. Society
for Industrial and Applied Mathematics, 1992.



BIBLIOGRAPHY 109

[84] J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. In Proceedings
of the 27th Symposium on Computational Geometry (SoCG), pages 458–463. ACM,
2011.

[85] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.
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