
 

 

 

Polyglycerol for Half-Life Extension  

and Increased Stability of  

Biopharmaceuticals 

 

 

Inaugural-Dissertation 

to obtain the academic degree 

Doctor rerum naturalium (Dr. rer. nat.) 

 

 

submitted to 

the Department of Biology, Chemistry, Pharmacy 

of Freie Universität Berlin 

 

 

 

 

by 

Michael Tully 

from Haßfurt, Germany 

 

 

Berlin, 2021 

 

 

Polyglycerol for Half-Life Extension 

and Increased Stability of 

Biopharmaceuticals 

Inaugural-Dissertation 

to obtain the academic degree 

Doctor rerum naturalium (Dr. rer. nat.) 

submitted to 

the Department of Biology, Chemistry, Pharmacy 

of Freie Universitat Berlin 

by 

Michael Tully 

from Hafbfurt, Germany 

Berlin, 2021



 

 ii 

The research presented in this thesis was accomplished from September 2017 to April 2021 

under the supervision of Prof. Dr. Rainer Haag at the Institute of Chemistry and  

Biochemistry of the Freie Universität Berlin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1st Reviewer:   Prof. Dr. Daniel Klinger 

   Freie Universität Berlin 

 

 

2nd Reviewer:   Prof. Dr. Rainer Haag 

   Freie Universität Berlin 

 

 

Date of Defense:  25th August 2021 

The research presented in this thesis was accomplished from September 2017 to April 2021 

under the supervision of Prof. Dr. Rainer Haag at the Institute of Chemistry and 

Biochemistry of the Freie Universitat Berlin 

1S' Reviewer: Prof. Dr. Daniel Klinger 

Freie Universitat Berlin 

2 Reviewer: Prof. Dr. Rainer Haag 

Freie Universitat Berlin 

Date of Defense: 25 August 2021 

11



 

 iii 

Statutory Declaration 

 

Hereby I, Michael Tully, declare that I have independently authored the submitted thesis with 

the topic “Polyglycerol for Half-Life Extension and Increased Stability of 

Biopharmaceuticals”. I also confirm that this work as well as parts of this work have not been 

previously published or accepted for the award of any other degree or diploma in any university 

or other tertiary institution in my name. 

 

Berlin,  

 
                                                 . 
Michael Tully 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statutory Declaration 

Hereby I, Michael Tully, declare that I have independently authored the submitted thesis with 

the topic “Polyglycerol for Half-Life Extension and Increased Stability of 

Biopharmaceuticals”’. | also confirm that this work as well as parts of this work have not been 

previously published or accepted for the award of any other degree or diploma in any university 

or other tertiary institution in my name. 

Berlin, 

  

Michael Tully 

11



 

 iv 

Acknowledgements 

First of all, I would like to thank Prof. Dr. Rainer Haag for giving me the opportunity to 

conduct my doctoral studies in his group and for always giving me the freedom to turn my 

research plans and ideas into reality. I really enjoyed getting insights into the field of polymers 

and being part of your large and international group. Thanks for supporting me scientifically 

and financially during the last years. Moreover, I would like to acknowledge Prof. Dr. Daniel 

Klinger for his support and being the first supervisor of this thesis. 

Kai Licha is greatly thanked for his continuous support and guidance during my thesis, no 

matter if it was chemistry related or organization within the Next-PEG project. Thank you for 

always being open to my ideas. Michael Schirner is thanked for his support in pharmacological 

questions regarding the animal studies. I acknowledge Christoph Weise for his support and 

discussions on mass spectrometry and for always being open to my ideas and suggestions.  

I would like to thank Isabelle Heing-Becker aka Ernie aka Ulf aka Frau Papenbecker for 

the lovely time in our old lab 16.17, coffee and pandemic-lunch breaks, laughters and endless 

Stromberg-jokes. This really helped me to make it through the harder times of this PhD.  

I would like to acknowledge Mathias Dimde for his continuous interest, guidance, and great 

support during my PhD-time, not only regarding chemistry topics. Eike Ziegler and Wiebke 

Fischer are thanked for all the support with bureaucracy, manuscript submissions and 

organization of my PhD-project. 

Thank you to all the people from the biolab, especially Katharina Achazi, Stefanie 

Wedepohl, Johanna Scholz and Elisa Quaas for the very nice time, laughs, interesting 

discussions, and general nice atmosphere there. Thanks to all the technicians of the AG Haag, 

namely Anja Stöshel, Daniel Kutifa, Cathleen Hudziak, Marleen Selent, and Katharina 

Goltsche, for their help in technical issues, ordering or analytical measurements. 

I also want to thank all people involved in the lunch group (too many to name all of them) 

for the daily mensa trips, laughs and interesting conversations: things I really miss during the 

current homeoffice and pandemic times. Marcus Lindner, Christin Treiber, Ernesto Osorio 

Blanco and Carlo Fasting are thanked for the sometimes chaotic but very nice time during 

teaching of veterinary and biology students.  

I would like to thank all AG Haag members for the lovely time in and outside university, 

group trips, group events, BBQs, beer-gatherings etc. etc., in particular thanks to Matthias 

Wallert, Isabelle Heing-Becker, Felix Reisbeck, Mathias Dimde, Magda Ferraro, Era 

Kapourani, Leonhard Urner, Johann Moschner, Maikel Kulka, Paria Pouyan, Daniel Braatz, 

Acknowledgements 

First of all, | would like to thank Prof. Dr. Rainer Haag for giving me the opportunity to 

conduct my doctoral studies in his group and for always giving me the freedom to turn my 

research plans and ideas into reality. I really enjoyed getting insights into the field of polymers 

and being part of your large and international group. Thanks for supporting me scientifically 

and financially during the last years. Moreover, I would like to acknowledge Prof. Dr. Daniel 

Klinger for his support and being the first supervisor of this thesis. 

Kai Licha 1s greatly thanked for his continuous support and guidance during my thesis, no 

matter if it was chemistry related or organization within the Next-PEG project. Thank you for 

always being open to my ideas. Michael Schirner 1s thanked for his support 1n pharmacological 

questions regarding the animal studies. I acknowledge Christoph Weise for his support and 

discussions on mass spectrometry and for always being open to my ideas and suggestions. 

I would like to thank Isabelle Heing-Becker aka Ernie aka Ulf aka Frau Papenbecker for 

the lovely time in our old lab 16.17, coffee and pandemic-lunch breaks, laughters and endless 

Stromberg-jokes. This really helped me to make it through the harder times of this PhD. 

I would like to acknowledge Mathias Dimde for his continuous interest, guidance, and great 

support during my PhD-time, not only regarding chemistry topics. Eike Ziegler and Wiebke 

Fischer are thanked for all the support with bureaucracy, manuscript submissions and 

organization of my PhD-project. 

Thank you to all the people from the biolab, especially Katharina Achazi, Stefanie 

Wedepohl, Johanna Scholz and Elisa Quaas for the very nice time, laughs, interesting 

discussions, and general nice atmosphere there. Thanks to all the technicians of the AG Haag, 

namely Anja Stéshel, Daniel Kutifa, Cathleen Hudziak, Marleen Selent, and Katharina 

Goltsche, for their help in technical issues, ordering or analytical measurements. 

I also want to thank all people involved in the lunch group (too many to name all of them) 

for the daily mensa trips, laughs and interesting conversations: things I really miss during the 

current homeoffice and pandemic times. Marcus Lindner, Christin Treiber, Ernesto Osorio 

Blanco and Carlo Fasting are thanked for the sometimes chaotic but very nice time during 

teaching of veterinary and biology students. 

I would like to thank all AG Haag members for the lovely time in and outside university, 

eroup trips, group events, BBQs, beer-gatherings etc. etc., in particular thanks to Matthias 

Wallert, Isabelle Heing-Becker, Felix Reisbeck, Mathias Dimde, Magda Ferraro, Era 

Kapourani, Leonhard Urner, Johann Moschner, Maikel Kulka, Paria Pouyan, Daniel Braatz, 

1V



 

 v 

Sebastian Schötz…. Further thanks go to my friends outside university for their support during 

my doctoral thesis: Felix, Philipp, Anna, Wolfgang, Cathi, Johannes, Anthony and Nils. 

I have to thank my family, my parents and my two sisters: Thank you for your patience and 

continuous support during my studies and PhD time and for always believing in me. Without 

you this would have never been possible. Finally, I want to thank my Maria: for your continuous 

love, never ending support and for always being by my side.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sebastian Schétz.... Further thanks go to my friends outside university for their support during 

my doctoral thesis: Felix, Philipp, Anna, Wolfgang, Cathi, Johannes, Anthony and Nils. 

I have to thank my family, my parents and my two sisters: Thank you for your patience and 

continuous support during my studies and PhD time and for always believing in me. Without 

you this would have never been possible. Finally, I want to thank my Maria: for your continuous 

love, never ending support and for always being by my side.



 

 vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Für meine Familie 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flir meine Familie 

vl



 

 vii 

Table of Contents 

1 Introduction .......................................................................................................................................................... 1 

2 Theoretical Background ...................................................................................................................................... 4 

2.1 Concept of Half-Life Extension through PEGylation .................................................................................... 4 
2.1.1 Half-Life Extension of Biopharmaceuticals ........................................................................................... 4 
2.1.2 Properties of PEG and its Impact on Biopharmaceuticals in vivo ......................................................... 5 
2.1.3 PEGylation Chemistry ........................................................................................................................... 8 

2.1.3.1 First Generation PEGylation .................................................................................................... 9 
2.1.3.2 Second Generation PEGylation ................................................................................................ 9 

2.1.4 Limitations and Drawbacks of PEG ..................................................................................................... 13 
2.1.4.1 Quality of PEGs, Impurities and Stability Issues .................................................................... 13 
2.1.4.2 Anti-PEG Antibodies and Immunogenicity ............................................................................. 14 
2.1.4.3 Reduced Affinity and Activity of Biomolecules ....................................................................... 16 
2.1.4.4 Effect on Protein Stability and Viscosity ................................................................................ 17 

2.2 Analytical Techniques for the Characterization of PEG-Protein Conjugates .............................................. 17 
2.2.1 Sodium-dodecylsulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) ....................................... 17 
2.2.2 Size-exclusion Chromatography (SEC) ............................................................................................... 18 
2.2.3 Dynamic Light Scattering (DLS) ......................................................................................................... 18 
2.2.4 Enzyme-linked Immunosorbent Assay (ELISA) ................................................................................. 18 

2.3 Alternative Macromolecules for Half-Life Extension ................................................................................. 20 
2.3.1 Non-degradable synthetic Polymers .................................................................................................... 20 

2.3.1.1 Polyglycerol (PG) ................................................................................................................... 20 
2.3.1.2 Poly(2-oxazoline) (POx) ......................................................................................................... 23 
2.3.1.3 Poly(N-vinylpyrrolidone) (PVP) ............................................................................................. 25 
2.3.1.4 Poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA) ......................................................... 25 

2.3.2 Degradable synthetic Polymers ............................................................................................................ 26 
2.3.2.1 Polyzwitterions (PZIs/Polybetaines) ....................................................................................... 26 
2.3.2.2 Polypeptides (PPs) .................................................................................................................. 29 
2.3.2.3 Poly[oligo(ethylene glycol) methyl methacrylate] (POEGMA) ............................................. 30 
2.3.2.4 Polyphosphoesters (PPEs) ...................................................................................................... 31 

2.3.3 Degradable natural Polymers: Polysaccharides ................................................................................... 32 
2.3.3.1 Hydroxyethylstarch (HES) ...................................................................................................... 32 
2.3.3.2 Polysialic Acid (PSA) .............................................................................................................. 33 

2.3.4 Recombinant Half-Life Extension Strategies ....................................................................................... 35 
2.3.4.1 Albumin- and Fc-fusion Proteins ............................................................................................ 35 
2.3.4.2 XTENylation ............................................................................................................................ 36 
2.3.4.3 PASylation ............................................................................................................................... 37 

3 Scientific goals .................................................................................................................................................... 39 

4 Publications and Manuscripts .......................................................................................................................... 41 

4.1 Polyglycerol for Half-Life Extension of Proteins–Alternative to PEGylation? .......................................... 41 

4.2 Prolonged Activity of Exenatide: Detailed Comparison of Site-specific linear Polyglycerol- and 

Poly(ethylene glycol)-Conjugates ...................................................................................................................... 84 

4.3 Linear Polyglycerol for N-terminal-selective Modification of  Interleukin-4 ........................................... 103 

5 Conclusion and Outlook .................................................................................................................................. 136 

6 Zusammenfassung ........................................................................................................................................... 139 

7 References ......................................................................................................................................................... 142 

List of Abbreviations .......................................................................................................................................... 162 

List of Publications, Manuscripts and Conference Contributions ................................................................. 164 

Curriculum vitae .................................................................................................................................................. 166 

Table of Contents 

  

  

  

  

  

  

  

  

  

1 TMtrOodUCtiON...............ccccccccccscccccccscccccccccccccccccccccccccccccccccscccscccccccscscccccccccscscscscscscscscscscscscscscscscscscscscscsososcsoscsesoscseses 1 

2 Theoretical Background. ...............ccccccccssssssscccccsssssssccccssssssscscccsesssssccccsesssssscccsesssssscccsesesssseccsessesssssccssseessssccseeeees 4 

2.1 Concept of Half-Life Extension through PEGy1ation....... ce ceesccccccceessecceceeceesseececeeeueeecceessuaeeeeceeeaaaneses 4 

2.1.1 Half-Life Extension of Biopharmaceuticals............ccceccccccccssssssecceccceessecceccceesecececeseesseecceeseuaeeeeceeeeuaeeses 4 

2.1.2 Properties of PEG and its Impact on Biopharmaceuticals 171 VIVO .......ccccccccssssececcccceescecccecaneeeccceeeaaesses 5 

2.1.3 PEGylation Chemistry 0.0... eecccccccssssseecccccceesseccccecaesneecccecaueneeecceessaesecceeeesuesececesesuenseeceseseuaeeeeceeeuaaenses 8 

2.1.3.1 First Generation PEGYVLAtione.ccccccccccccccccc cece eee cece cece eee e eee k eee eee EEE Eee EEE UGH E EEE EEE ddan b EEE EEE ada 9 

2.1.3.2 Second Generation PEGYLAtion .......ccccccccc cece cece ccc cece cece eee e eee e een EE eee e EEUU nee Eee EEE adnan eee EEE aaa 9 

2.1.4 Limitations and Drawbacks Of PEG... cccccccccccsssesssssesseeeeccceeceesauaeesssseseeseeceeeesseaaaaeesssseeseeeeeeeeeeas 13 

2.1.4.1 Quality of PEGs, Impurities and Stability [SSUCS..........c.ccccccccccc ccc c ee ee cece cece tees cece ee teen eeeeeeeeeanees 13 

2.1.4.2 Anti-PEG Antibodies ANA TMMUNOGCNICIV......cccccc cece cece kkk cece eee e eee e eee ee ee EEE Edda aE EE EEE 14 

2.1.4.3 Reduced Affinity and Activity of Biomolecules ........cccccccccccccccccc cece ee ee cece cece eee eeeeee sate eeeeeeeeeanies 16 

2.1.4.4 Effect on Protein Stability ANA ViSCOSIEY .....cccccccccc cece cece ccc c ccc cece eee ek eee e eee E EE EEE EEE EEE aE E EEE 17 

2.2 Analytical Techniques for the Characterization of PEG-Protein Conjugates.............ccccccccsssssseeceeeceeeeeeeeeees 17 

2.2.1 Sodium-dodecylsulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 2.0... eeecccccccceeeeeeeeeeeees 17 

2.2.2 Size-exclusion Chromatography (SEC) ..........ccccccccccccssesssssseseeeeccceeeeesauaeeesssseeseeeceeeesesaaeaeesseeeeeeeeeeeeees 18 

2.2.3 Dynamic Light Scattering (DLS)... ecccccccccccccessseeeccceeeeceessseeececesessaeesseeececeesaaeassseseceeesesaaaanssees 18 

2.2.4 Enzyme-linked Immunosorbent Assay (ELISA) ....... cece ccccssssesecccceceeeeeesseeeccceceeeaeaseeeecceeeeseuaneneess 18 

2.3 Alternative Macromolecules for Half-Life Extension .............cccccccccccsssssssececcceceeeessseeccceesseaeeseseeceessssaeaeeeees 20 

2.3.1 Non-degradable synthetic Polymer 20.0.0... eccccccccsssssecccccceesssceccceceusececccesaueeeccecsauaaeeeceeesaaeneeceeeseaageees 20 

PAP OD i af 0) 49424 4 6X1 0) 0 ak © 9 re 20 

2.3.1.2 Poly(2-OxAZOLINE) (POX) .occccccccccc cece cece cece cece eee e EEE EEE E EE EEE EEE EEE EEE E EEG H EEE E EEE Addn EEE EEE eda 23 

2.3.1.3 Poly(N-vinylpyrrolidone) (PVP) .occcccccccccccccccccccccccc eee e ieee eee e cece eee EEE EEE EEE EEE EE EEE EEE E dad EEE EEE 25 

2.3.1.4 Poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA) .......ccccccccccccecccccc eee teeececcce eee eeeeeeeeeenees 25 

2.3.2 Degradable synthetic PolyMers........... ccc cessscccccceesssecccccceesececccecsueeeececeseueeecceeseueneeeceeesuaeeseceeeseaegnees 26 

2.3.2.1 Polyzwitterions (PZI8/POLVDetaine) ...cccccccccccccccc cece eee e cece eee e eee e eee knee eee aE e eee EEUU nee ee beatae 26 

2.3.2.2 Polypeptides (PPS) .....ccccccccccccccccc cece cence cece cence kee ee E EE EEE EEE EE ELEC EEUU DELLE EEE EGU EE EEE E GGG E EEE EEE eda 29 

2.3.2.3 Poly[oligo(ethylene glycol) methyl methacrylate] (POEGMA) ........cccccccccccccccccce et teeeeeeee eens 30 

2.3.2.4 Polyphosphoesters (PPES) .....ccccccccccccccc cece cece eee eee ee eee eee EEE EEE EDEL EEE EEUU EEE EEE EEG d a EEE EEE eda 31 

2.3.3 Degradable natural Polymers: Polysaccharides ..............ccccesescccccccsssseeccceceeeseeccecceeeeecccccseaeeeceesseaeneees 32 

2.3.3.1 Hydroxyethylstarch (HES) .....ccccccccccc cece cece cece cece eek e eee e een eee EEE EEE EEE EE EEUU EEE EEE EE Gdn ee EE Eee dans 32 

2.3.3.2 Polysialic ACIA (PSA) ..cccccccccccccccccc cece eee cece cee eee keke eee EEE EEE EE EEE E EEUU EEE EE EEE EGTA EE EEE Edda EE EE Ete dans 33 

2.3.4 Recombinant Half-Life Extension Strate gies......... cc ecccccccccsssseccccccceessecccceceeeeeecceeeeeeesececeseeensecceeeeqees 35 

2.3.4.1 Albumin- and FC-fUSION PLOteins ......cccccccccccc cece ccc cece kee e eee eee EEE E EGE E EEE EEUU nee EEE eet an 35 

Pee a, YA AY) (211 0) | eee 36 

PAA Pe Be Oe USS) (0110) | cece 37 

3 Sclentific GOALS ............ccccccssssssssccccsssssscccccsssssssscccssssssssccesesesssssccssesssssccsseeesssssccceseesssssccsseeessssccsseeeessescsosesssssceoees 39 

4 Publications and Manuscripts .............ccccccsssssssccccssssssscscccssssssssccccsssssssscccscssssscccssssssssccsssessssssccsseeessssccsssesesseees 41 

4.1 Polyglycerol for Half-Life Extension of Proteins—Alternative to PEGylation? .......... cc ccccccccsseseseeeeeeeeees 4] 

4.2 Prolonged Activity of Exenatide: Detailed Comparison of Site-specific linear Polyglycerol- and 

Poly(ethylene glycol)-Conjugates...........cccccccsssssscccccccessseccccceeessecccccseeeseeccceeseueeeeccsesaueeecccssueeeeeccesseuaaseceeessanenees 84 

4.3 Linear Polyglycerol for N-terminal-selective Modification of Interleukin-4 ......... ce eeccccceceeseeeeeeeeeees 103 

S CONCIUSION ANA OUtIOOK................sssssssccccssssssscccccssssssccccessssssscccssessssssccsseessssscccseeesssseccsssesssssccssseesssssscssseeesses 136 

6 ZUSAMMENAASSUNG ..........cccssscccccsscccccsssccccssscccccsssccccesssscccessssccensssccessssceessscccesssscessssceeescssceeessscceescescsescscseessss 139 

T RefCLENCES.........ccccecccccccscccccccccscccscccccccccccccscccscccccccccccccscccscccscccccccccscccscscscccccscccscccscccscccccscccccccccccccccccscccccccccsccccoes 142 

List Of ADDreviatlions .............cccccsssccsssssccccssssscccsssccccsssscccnsssccccesssccceesssccessssceesssscccescscccaescsccenssscesescscseesssceesesceees 162 

List of Publications, Manuscripts and Conference Contributions. ...............cccccssssssssscsssssssssssesssssssssssssseesees 164 

CUTPTICULUM VILE ..rssccccccrssssssccccccccssssccccccccsssscccccscessssscccceceesssccesesesssescceseeessssecesaeeesseeccesenessesccsoeseessseccesseeessescsoseeees 166   

Vil



 

 1 

1 Introduction 

The development of recombinant DNA technology in the late 1970s has been a milestone 

in medical research, as it enabled tailor-made synthesis and expression of therapeutic 

biomolecules, like antibodies, proteins, and peptides. The unique properties of these molecules 

resulted in one of the fastest growing markets in the pharmaceutical industry, with by today  

more than 200 protein- and peptide-based drugs approved by regulatory authorities, covering a 

wide range of human diseases.1 The first generation of these drugs was designed to mimic (as 

replacement therapy) or inhibit (e.g., by monoclonal antibodies) the function of native proteins, 

but have also recently been structurally modified to create new moieties for better control of 

receptor binding and other attributes.2  

Despite their high specificity, biopharmaceuticals bear some downsides, namely a poor 

physicochemical and pharmacokinetic profile. They often display low thermal stability, limited 

solubility and a propensity to aggregate, which create challenges regarding their manufacturing, 

formulation and shelf-life. In contrast to small molecule drugs, which can mostly be applied as 

oral dosage forms (tablets, granules, capsules), the oral bioavailability of biopharmaceuticals is 

typically very low and demands high-frequent injections via the subcutaneous or intravenous 

route, thereby impeding patient compliance and increasing the risk of side effects.3 

Biomolecules with molecular weights below the renal cutoff (50–70 kDa) undergo fast 

elimination from the bloodstream via the kidneys and therefore often display a circulation half-

life being only in the range of minutes to hours.1,4 Additionally, biopharmaceuticals are prone 

to proteolysis and, as often of non-human origin, bear immunogenic potential, which further 

impairs blood circulation time.4  

To address these drawbacks and to create more stable molecules with an enhanced 

pharmacokinetic profile, several approaches have been pursued, including the design of new 

protein scaffolds5 (DARPins, anticallins, affibodies, adnectins), encapsulation of proteins into 

nanogels6 or micelles7 or covalent modification with synthetic and natural polymers. Among 

the latter, the most prominent example is poly(ethylene glycol) (PEG), as it reached the market 

with by today ³14 PEGylated protein drugs (Table 1) and several more in clinical trials. 

PEGylation is defined as the covalent attachment of one or multiple PEG-chains to an active 

pharmaceutical ingredient (API), in this case proteins, and was first described by Abuchowski 

and Davies in 1977, who successfully improved the circulation time and immunogenicity of 

bovine liver catalase and bovine serum albumin by the attachment of PEG.8,9 Following these 

initial attempts led to the approval of the first PEGylated protein AdagenÒ in 1990.10 Several 

other PEGylated proteins followed and gained market authorization thereafter.  

1 Introduction 

The development of recombinant DNA technology 1n the late 1970s has been a milestone 
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biomolecules, like antibodies, proteins, and peptides. The unique properties of these molecules 
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impairs blood circulation time.* 

To address these drawbacks and to create more stable molecules with an enhanced 

pharmacokinetic profile, several approaches have been pursued, including the design of new 
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 Table 1. Regulatory approved PEGylated Biopharmaceuticals. (based on data from ref. 11, 12)   

Trade name API Indication Approval Company 

a,cAdagenâ PEG-adenosine deaminase, 
Pegademase 

Severe combined 
immunodeficiency 

disease (SCID) 

1990 Enzon 

Oncasparâ PEG-asparaginase, 

Pegaspargase 

Acute lymphoblastic 

leukemia 

1994 Enzon 

PegIntronâ PEG-Interferon a-2b Hepatitis B and C 2000 Schering-

Plough/ 

Enzon 

Pegasysâ PEG-Interferon a-2a Hepatitis B and C 2001 Hoffmann-

La Roche 

Neulastaâ PEG-Granulocyte colony 

stimulating factor, 

Pegfilgrastim 

Neutropenia 2002 Amgen 

Somavertâ PEG-Human growth hormone 

receptor antagonist 

Pegvisomant 

Acromegaly 2003 Pfizer 

Macugenâ PEG-anti-VEGF aptamer, 

Pegabtanib 

Age-related macula 

degeneration 

2004 Pfizer 

Mirceraâ PEG-Erythropoietin beta Anemia associated 

with chronic kidney 

disease 

2007 Hoffman-La 

Roche 

Cimziaâ PEG-Certolizumab Rheumatoid arthritis, 

Crohn's disease, 

Axial 
spondyloarthritis and 

psoriatic arthritis 

2008 Nektar/UCB 

Pharma 

bKrystexxaâ PEG-Uricase, Pegloticase Gout 2010 Savient 
b,cOmontysâ PEG-Erythropoietin-mimetic 

peptide, Peginesatide 

Anemia associated 

with chronic kidney 

disease 

2012 Affymax/ 

Takeda 

Plegridyâ PEG-Interferon beta-1a Relapsing forms of 

multiple sclerosis 

2014 Biogen 

Adynoviâ/Adynovateâ  PEG-recombinant Factor VIII 

Antihemophilic Factor 

Hemophilia A 2015 Baxalta 

Refixiaâ/Rebinynâ PEG-recombinant Factor IX 

Antihemophilic Factor 

Hemophilia B 2017 Novo 

Nordisk 
aRevcoviTM Elapegademase Severe combined 

immunodeficiency 

disease (SCID) 

2018 Leadient 
Biosciences 

aAsparlasTM Calaspargase pegol Acute lymphoblastic 

leukemia 

2018 Servier 

PalynzigTM PEG-Phenylalanine ammonia-

lyase, Pegvaliase-pqpz 

Phenyl-ketonuria 2018 Biomarin 

Jiviâ PEG recombinant Factor VIII 

antihemophilic factor 

Hemophilia A 2018 Bayer 

aUS-approved only. b,cWithdrawn from marketing in bEU or cUS. 

 

Generally, PEG is regarded as an inert and safe excipient and is approved by the Food and 

Drug Administration (FDA) and European Medicine Agency (EMA) for the use in foods, 

cosmetics and pharmaceuticals. Within recent years, however, PEG’s image as non-

immunogenic macromolecule has been challenged by numerous reports on anti-PEG antibodies 

in clinic, that diminished the initial benefits of PEGylation, in some cases even leading to a 

Table 1. Regulatory approved PEGylated Biopharmaceuticals. (based on data from ref. 11, 12) 
  

  
Trade name API Indication Approval Company 

a A dagen® PEG-adenosine deaminase, Severe combined 1990 Enzon 
Pegademase immunodeficiency 

disease (SCID) 

Oncaspar® PEG-asparaginase, Acute lymphoblastic 1994 Enzon 
Pegaspargase leukemia 

PegIntron® PEG-Interferon o-2b Hepatitis B and C 2000 Schering- 
Plough/ 

Enzon 

Pegasys® PEG-Interferon a-2a Hepatitis B and C 2001 Hoffmann- 
La Roche 

Neulasta® PEG-Granulocyte colony Neutropenia 2002 Amgen 

stimulating factor, 

Pegfilgrastim 

Somavert® PEG-Human growth hormone Acromegaly 2003 Pfizer 

receptor antagonist 

Pegvisomant 

Macugen® PEG-anti- VEGF aptamer, Age-related macula 2004 Pfizer 
Pegabtanib degeneration 

Mircera® PEG-Erythropoietin beta Anemia associated 2007 Hoffman-La 

with chronic kidney Roche 

disease 

Cimzia® PEG-Certolizumab Rheumatoid arthritis, 2008 Nektar/UCB 
Crohn's disease, Pharma 

Axial 

spondyloarthritis and 

psoriatic arthritis 

*Krystexxa® PEG-Uricase, Pegloticase Gout 2010 Savient 
><Qmontys® PEG-Erythropoietin-mimetic Anemia associated 2012 Affymax/ 

peptide, Peginesatide with chronic kidney Takeda 

disease 

Plegridy® PEG-Interferon beta-la Relapsing forms of 2014 Biogen 
multiple sclerosis 

Adynovi®/Adynovate® | PEG-recombinant Factor VIIT Hemophilia A 2015 Baxalta 
Antihemophilic Factor 

Refixia®/Rebinyn® PEG-recombinant Factor IX Hemophilia B 2017 Novo 
Antihemophilic Factor Nordisk 

*Revcovi'™ Elapegademase Severe combined 2018 Leadient 
immunodeficiency Biosciences 

disease (SCID) 

2A sparlas'!™ Calaspargase pegol Acute lymphoblastic 2018 Servier 
leukemia 

Palynzig'™ PEG-Phenylalanine ammonia- Phenyl-ketonuria 2018 Biomarin 
lyase, Pegvaliase-pqpz 

Jivi® PEG recombinant Factor VUI = Hemophilia A 2018 Bayer 
antihemophilic factor 
  

4US-approved only. °*Withdrawn from marketing in °EU or SUS. 

Generally, PEG 1s regarded as an inert and safe excipient and 1s approved by the Food and 

Drug Administration (FDA) and European Medicine Agency (EMA) for the use in foods, 

cosmetics and pharmaceuticals. Within recent years, however, PEG’s image as non- 

immunogenic macromolecule has been challenged by numerous reports on anti-PEG antibodies 

in clinic, that diminished the initial benefits of PEGylation, in some cases even leading to a
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neutralized therapeutic effect. Therefore, many alternative polymers for half-life extension of 

biopharmaceuticals are currently investigated.  

In this work, polyglycerol (PG) is evaluated as alternative polymer to PEG on different 

therapeutic proteins and peptides, with the aim of disclosing differences in hydrodynamic size, 

stability, and activity between PGylated and PEGylated biopharmaceuticals, followed by an in 

vivo comparison on half-life extension and prolonged therapeutic activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

neutralized therapeutic effect. Therefore, many alternative polymers for half-life extension of 

biopharmaceuticals are currently investigated. 

In this work, polyglycerol (PG) is evaluated as alternative polymer to PEG on different 

therapeutic proteins and peptides, with the aim of disclosing differences in hydrodynamic size, 

stability, and activity between PGylated and PEGylated biopharmaceuticals, followed by an in 

vivo comparison on half-life extension and prolonged therapeutic activity.
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2 Theoretical Background 

2.1 Concept of Half-Life Extension through PEGylation 

2.1.1 Half-Life Extension of Biopharmaceuticals 

Half-life extension is one of the key technologies to generate sufficient blood levels of 

therapeutic proteins and peptides with a molecular mass below 50 kDa, including enzymes, 

coagulation factors, cytokines, growth factors and hormones.1 Upon subcutaneous injection, 

those molecules usually move through the extracellular matrix (ECM) of the hypodermis by 

diffusion and convection entering systemic circulation via lymphatic or blood capillaries. 

  

 

Figure 1. Overview of different half-life extension strategies for therapeutic proteins (adapted 
with permission from ref. [1]).  Protein structures are from protein data base (PDB-entry: 1ilr, 
1ao6). 
 

Intravenous application circumvents this pathway, as the therapeutic proteins are directly 

exposed to the blood stream followed by distribution into the respective tissues. Elimination 

typically occurs by renal filtration and proteolytic degradation in plasma or, after pinocytosis-

mediated cell-uptake, in lysosomes. Of these, kidney elimination displays the largest 

dependance on the mass of therapeutic proteins.13     

2 Theoretical Background 

2.1 Concept of Half-Life Extension through PEGylation 

2.1.1 Half-Life Extension of Biopharmaceuticals 

Half-life extension is one of the key technologies to generate sufficient blood levels of 

therapeutic proteins and peptides with a molecular mass below 50 kDa, including enzymes, 

coagulation factors, cytokines, growth factors and hormones.' Upon subcutaneous injection, 

those molecules usually move through the extracellular matrix (ECM) of the hypodermis by 

diffusion and convection entering systemic circulation via lymphatic or blood capillaries. 
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Figure 1. Overview of different half-life extension strategies for therapeutic proteins (adapted 

with permission from ref. [1]). Protein structures are from protein data base (PDB-entry: lulr, 
lao6). 

Intravenous application circumvents this pathway, as the therapeutic proteins are directly 

exposed to the blood stream followed by distribution into the respective tissues. Elimination 

typically occurs by renal filtration and proteolytic degradation in plasma or, after pinocytosis- 

mediated cell-uptake, in lysosomes. Of these, kidney elimination displays the largest 

dependance on the mass of therapeutic proteins. !°
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The general approach to reach half-life extension of biopharmaceuticals is to focus on an 

increase of the hydrodynamic volume to reduce renal clearance (Figure 1). Therefore, the 

therapeutic biomolecule of interest is covalently attached to synthetic polymers or 

recombinantly expressed as a fusion protein resulting in longer blood circulation. The latter 

approach additionally leverages the neonatal Fc receptor (FcRn)-mediated recycling 

mechanism, where proteins fused to an albumin-molecule or the Fc-part of an IgG antibody are 

able to escape from endosomal degradation and can subsequently be released again into the 

blood stream.14 Increase of negative charge (repulsion at negatively charged glomerular 

basement membrane) or replacement of degradation-prone amino acid residues can be pursued 

as well for half-life extension. Often several of these approaches are combined to exploit 

synergistic effects.15  

 

2.1.2 Properties of PEG and its Impact on Biopharmaceuticals in vivo 

Poly(ethylene glycol) (PEG), also called poly(ethylene oxide) (PEO), is a non-ionic 

macromolecule consisting of a polyether backbone and two functional end groups, which can 

be further modified (Figure 2). It is typically synthesized by anionic ring opening 

polymerization, initiated by the nucleophilic attack of a hydroxide ion on the monomer ethylene 

oxide (Mw = 44 g/mol), resulting in a bifunctional PEG-diol.16 For protein modification, 

monofunctional methoxy-PEG (mPEG) is typically used to avoid cross-linking being 

synthesized by the same method but with a methoxide ion as initiator. The residual end group 

can be further modified and serves as functional moiety for covalent linkage to the respective 

biomolecule. PEGs employed for the modification of therapeutic proteins usually display a low 

dispersity (< 1.1)16 and are used in linear or branched architectures,17 with molecular weights 

between 2–40 kDa.11  

Due to its high biocompatibility and low toxicity, PEG is generally regarded as safe and 

turned into one of the most frequent used excipients in drug delivery and pharmaceutical 

formulations. Also termed as macrogols, PEGs are listed in all main pharmacopoeias (United 

States, European and Japanese Pharmacopoeia) and are approved for the use in oral, topical and 

intravenous formulations. Depending on the molecular weight, PEGs can serve as stabilizers in 

liquid formulations, as binders and plasticizers in solid dosage forms or as base in creams and 

ointments.18 Furthermore, PEG-based surfactants are applied for the stabilization of protein 

pharmaceuticals against aggregation and surface adsorption (Polysorbate: Tweenâ-20, 

Tweenâ-80) or as block-copolymer (Poloxamer 407, 188, PluronicÒ) in the production of 

pharmaceuticals and cosmetics (Figure 2).19  

The general approach to reach half-life extension of biopharmaceuticals is to focus on an 

increase of the hydrodynamic volume to reduce renal clearance (Figure 1). Therefore, the 

therapeutic biomolecule of interest 1s covalently attached to synthetic polymers or 

recombinantly expressed as a fusion protein resulting in longer blood circulation. The latter 

approach additionally leverages the neonatal Fc receptor (FcRn)-mediated recycling 

mechanism, where proteins fused to an albumin-molecule or the Fc-part of an IgG antibody are 

able to escape from endosomal degradation and can subsequently be released again into the 

blood stream.'* Increase of negative charge (repulsion at negatively charged glomerular 

basement membrane) or replacement of degradation-prone amino acid residues can be pursued 

as well for half-life extension. Often several of these approaches are combined to exploit 

synergistic effects.!> 

2.1.2 Properties of PEG and its Impact on Biopharmaceuticals in vivo 

Poly(ethylene glycol) (PEG), also called poly(ethylene oxide) (PEO), is a non-ionic 

macromolecule consisting of a polyether backbone and two functional end groups, which can 

be further modified (Figure 2). It is typically synthesized by anionic ring opening 

polymerization, initiated by the nucleophilic attack of a hydroxide ion on the monomer ethylene 

oxide (Mw = 44 g/mol), resulting in a bifunctional PEG-diol.'® For protein modification, 

monofunctional methoxy-PEG (mPEG) 1s typically used to avoid cross-linking being 

synthesized by the same method but with a methoxide ion as initiator. The residual end group 

can be further modified and serves as functional moiety for covalent linkage to the respective 

biomolecule. PEGs employed for the modification of therapeutic proteins usually display a low 

dispersity (< 1.1)'° and are used in linear or branched architectures,'’ with molecular weights 

between 2—40 kDa.!! 

Due to its high biocompatibility and low toxicity, PEG is generally regarded as safe and 

turned into one of the most frequent used excipients in drug delivery and pharmaceutical 

formulations. Also termed as macrogols, PEGs are listed in all main pharmacopoeias (United 

States, European and Japanese Pharmacopoeia) and are approved for the use in oral, topical and 

intravenous formulations. Depending on the molecular weight, PEGs can serve as stabilizers in 

liquid formulations, as binders and plasticizers in solid dosage forms or as base in creams and 

ointments.!® Furthermore, PEG-based surfactants are applied for the stabilization of protein 

pharmaceuticals against aggregation and surface adsorption (Polysorbate: Tween®-20, 

Tween®-80) or as block-copolymer (Poloxamer 407, 188, Pluronic®) in the production of 

pharmaceuticals and cosmetics (Figure 2).'”
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Figure 2. Structural overview of water-associated PEG and some of its employed forms in 
industry.  
 

Covalent conjugation of PEG to liposomes or other nanocarriers leads to PEG’s well-

known stealth effect, which prevents interaction with plasma proteins and macrophages, 

thereby enhancing circulation time, biocompatibility and targeting of drugs.18,20 Furthermore, 

PEG shows amphiphilic properties and is soluble in water and many organic solvents, therefore 

enhancing the solubility of many poorly soluble compounds.21 Two structural components are 

responsible for this ambivalent behavior: ethylene groups represent the hydrophobic moiety, 

whereas the oxygen groups of PEG reflect hydrophilic properties (Figure 2). The presence of 

oxygen atoms is also responsible for the formation of a highly stable hydration layer around 

PEG, that usually consists of two to three water molecules per monomer unit, and results in a 

highly flexible polymer chain.22 The oxygen spacing of the PEG backbone thereby nearly 

matches the hydrogen bonding of water and plays an important role in water solubility, as 

PEG’s two “chemical neighbors”, poly(methylene glycol) and poly(propylene glycol) are 

insoluble in water.22  

Large PEGs up to a molecular weight of 50 kDa are pre-dominantly cleared without 

structural change in vivo by the urine, whereas at higher molecular weights, non-specific cell 

uptake, metabolism in the liver and clearance via feces also play a role.23–25 The glomerular 

filtration barrier is considered to allow the passage of molecules smaller than 50–70 kDa in 

weight and 3–5 nm in size.26 Although glomerular permeability is often related only to the 

molecular weight of a hydrophilic macromolecule, one should bear in mind that other 

parameters like charge, shape and size play a significant role as well.4 For example, in the case 

of 30 kDa PEG with a diameter of about 8 nm, its high flexibility still enables filtration, despite 

its size being larger than the kidney pore size.27  
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Figure 2. Structural overview of water-associated PEG and some of its employed forms in 

industry. 

Covalent conjugation of PEG to liposomes or other nanocarriers leads to PEG’s well- 

known stealth effect, which prevents interaction with plasma proteins and macrophages, 

thereby enhancing circulation time, biocompatibility and targeting of drugs.'*?° Furthermore, 

PEG shows amphiphilic properties and is soluble in water and many organic solvents, therefore 

enhancing the solubility of many poorly soluble compounds.”! Two structural components are 

responsible for this ambivalent behavior: ethylene groups represent the hydrophobic moiety, 

whereas the oxygen groups of PEG reflect hydrophilic properties (Figure 2). The presence of 

oxygen atoms is also responsible for the formation of a highly stable hydration layer around 

PEG, that usually consists of two to three water molecules per monomer unit, and results in a 

highly flexible polymer chain.’ The oxygen spacing of the PEG backbone thereby nearly 

matches the hydrogen bonding of water and plays an important role in water solubility, as 

PEG’s two “chemical neighbors”, poly(methylene glycol) and poly(propylene glycol) are 

insoluble in water.”7 

Large PEGs up to a molecular weight of 50 kDa are pre-dominantly cleared without 

structural change in vivo by the urine, whereas at higher molecular weights, non-specific cell 

uptake, metabolism in the liver and clearance via feces also play a role.**~> The glomerular 

filtration barrier 1s considered to allow the passage of molecules smaller than 50—70 kDa in 

weight and 3—5 nm in size.*° Although glomerular permeability is often related only to the 

molecular weight of a hydrophilic macromolecule, one should bear in mind that other 

parameters like charge, shape and size play a significant role as well.* For example, in the case 

of 30 kDa PEG with a diameter of about 8 nm, its high flexibility still enables filtration, despite 

its size being larger than the kidney pore size.*’
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Figure 3. Impact of PEGylation on biopharmaceuticals.28 
 

Upon conjugation to biopharmaceuticals, PEG drastically increases the hydrodynamic size 

and thereby reduces the glomerular filtration rate in the kidneys leading to an extended 

circulation time, a prolonged therapeutic effect, and a reduced dosing frequency (Figure 3).28 

One of the most prominent examples of that effect is probably the PEGylated form of 

Interferon-a2a (IFN-a2a, PEGASYSÒ). PEG-IFN displays only 7 % of initial bioactivity in 

vitro but led to a 50-fold extension of circulation half-life compared to the unmodified protein 

and therefore resulted in an extended therapeutic activity as well.29 This phenomenon can be 

observed also for other PEGylated proteins like G-CSF30 or TNF-a.31 

Another major benefit introduced by PEGylation is its ability to alterate the immunogenic 

properties of proteins.28 Due to their often non-human origin, many biopharmaceuticals are 

highly immunogenic and impede therapeutic usage. PEG is known to sterically shield 

immunogenic epitopes of proteins and to thereby prevent activation of macrophages, dendritic 

or other antigen-presenting cells of the immune system (Figure 3). The result is a protein-

conjugate with better “acceptance” of the body, as immune response is diminished. This effect 

can be exemplarily observed in the case of PEGylated uricase. Humans and higher primates 

lack the enzyme uricase which is essential in reducing uric acid levels, especially in the disease 

state of gout. As uricase is of non-human origin it displays high immunogenicity, which was 

avoided and reduced upon PEGylation.32 Additionally, PEGylation enhances proteolytic 

stability by its steric shielding effect on proteins towards metabolic enzymes thereby further 

extending overall half-life.28  

The physical stability of proteins can be positively affected by PEGylation. Conformational 

and colloidal stability are the two main thermodynamic factors that impact physical stability of 

proteins in solution. Conformational stability is characterized by the protein’s free energy of 

unfolding (DGunfold) and correlates with its melting temperature Tm.33,34 In most cases, 
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Figure 3. Impact of PEGylation on biopharmaceuticals.”° 

Upon conjugation to biopharmaceuticals, PEG drastically increases the hydrodynamic size 

and thereby reduces the glomerular filtration rate in the kidneys leading to an extended 

circulation time, a prolonged therapeutic effect, and a reduced dosing frequency (Figure 3).”° 

One of the most prominent examples of that effect 1s probably the PEGylated form of 

Interferon-a2a (IFN-a2a, PEGASYS®). PEG-IFN displays only 7 % of initial bioactivity in 

vitro but led to a 50-fold extension of circulation half-life compared to the unmodified protein 

and therefore resulted in an extended therapeutic activity as well.”? This phenomenon can be 

observed also for other PEGylated proteins like G-CSF°° or TNF-a.?! 

Another major benefit introduced by PEGylation 1s its ability to alterate the immunogenic 

properties of proteins.** Due to their often non-human origin, many biopharmaceuticals are 

highly immunogenic and impede therapeutic usage. PEG is known to sterically shield 

immunogenic epitopes of proteins and to thereby prevent activation of macrophages, dendritic 

or other antigen-presenting cells of the immune system (Figure 3). The result is a protein- 

conjugate with better “acceptance” of the body, as immune response 1s diminished. This effect 

can be exemplarily observed in the case of PEGylated uricase. Humans and higher primates 

lack the enzyme uricase which is essential in reducing uric acid levels, especially in the disease 

state of gout. As uricase 1s of non-human origin it displays high immunogenicity, which was 

avoided and reduced upon PEGylation.°* Additionally, PEGylation enhances proteolytic 

stability by its steric shielding effect on proteins towards metabolic enzymes thereby further 

extending overall half-life.** 

The physical stability of proteins can be positively affected by PEGylation. Conformational 

and colloidal stability are the two main thermodynamic factors that impact physical stability of 

proteins in solution. Conformational stability 1s characterized by the protein’s free energy of 

unfolding (AGunfoia) and correlates with its melting temperature Tm.°°°* In most cases, 
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PEGylation increases the thermodynamic stability of proteins in solution.35–38 Furthermore, 

PEGylation can improve colloidal stability through reduced protein-protein interactions, 

reduced aggregation and increased solubility39,40 which prolongs the shelf-life and facilitates 

the storage of biopharmaceuticals. 

 

2.1.3 PEGylation Chemistry 

The covalent attachment of PEG to proteins can be achieved in a random- or site-selective 

manner using linear or branched PEGs, typically in the molecular weight range of 2–40 kDa. 

An overview of coupling chemistries of approved PEGylated biopharmaceuticals can be found 

in Table 2.  

 

Table 2. Overview of coupling chemistries of approved PEGylated biopharmaceuticals. 

PEGylated Drug 

[Mw in kDa] 

PEG-Mw  

[No. of PEG/ Protein] 

PEG-Architecture/ 

PEG-Linker 

Modification Site 

[Resulting Linker Structure] 

Pegademase  

(Adagenâ) [96–126] 

5 kDa [11–17] linear/mPEG-SS e-amino groups of lysine residues 

[amide] 

Pegaspargase  

(Oncasparâ) [483–548] 

5 kDa [69–82] linear/mPEG-SS e-amino groups of lysine residues 

[amide] 

PEG-Interferon a-2b 

(PegIntronâ) [31] 

12 kDa [1] linear/mPEG-SC mixture of several isomers: his7,34, 

several lys, cys1, ser163, tyr129 

[amide] 

PEG-Interferon a-2a 

(Pegasysâ) [60] 

40 kDa [1] branched via lysine 

moiety/mPEG-NHS 
e-amino groups of lysine residues 

[amide] 

Pegfilgrastim  

(Neulastaâ) [39] 

20 kDa [1] linear/mPEG-

propionaldehyde 
N-terminal a-amino group        

[sec. amine] 

Pegvisomant 

(Somavertâ) [42–52] 

5 kDa [4–6] linear/mPEG-NHS e-amino groups of lysine residues 

[amide] 

Pegabtanib  

(Macugenâ) [50] 

40 kDa [1] branched via lysine 

moiety/mPEG-NHS 

amine at the 5´end 

[amide] 

PEG-EPO beta  

(Mirceraâ) [60] 

30 kDa [1] linear/mPEG-NHS e-amino groups of lysine residues 

[amide] 

PEG-Certolizumab 

(Cimziaâ) [91] 

40 kDa [1] branched via 

lysine/mPEG-mal 

cysteine residue 

[thioether] 

Pegloticase  

(Krystexxaâ) [~545] 

10 kDa [40.8 on avg.] linear/mPEG-pNPC e-amino groups of lysine residues 

[amide] 

Peginesatide  

(Omontysâ) [45] 

40 kDa [1] branched via lysine 

moiety/mPEG-NHS 

sec. amine on linker between the 

peptide-dimer [amide] 

PEG-Interferon beta-1a 

(Plegridyâ) [44] 

20 kDa [1] linear/mPEG-O2-

propionaldehyde 
N-terminal a-amino group        

[sec. amine] 

PEG-Factor VIII 

(Adynovateâ) [330] 

20 kDa [2 on avg.] branched via glycerol 

moiety/mPEG-NHS 
e-amino groups of lysine residues 

on B domain [amide] 

PEG-Factor IX 

(Refixiaâ/Rebinynâ)  

[98] 

40 kDa [1] linear/PEG-

conjugation by 

enzyme 

N-linked glycans 

[-] 

35-38 PEGylation increases the thermodynamic stability of proteins in solution. Furthermore, 

PEGylation can improve colloidal stability through reduced protein-protein interactions, 

39,40 reduced aggregation and increased solubility which prolongs the shelf-life and facilitates 

the storage of biopharmaceuticals. 

2.1.3 PEGylation Chemistry 

The covalent attachment of PEG to proteins can be achieved in a random- or site-selective 

manner using linear or branched PEGs, typically in the molecular weight range of 2—40 kDa. 

An overview of coupling chemistries of approved PEGylated biopharmaceuticals can be found 

in Table 2. 

Table 2. Overview of coupling chemistries of approved PEGylated biopharmaceuticals. 
  

  

PEGylated Drug PEG-Mw PEG-Architecture/ Modification Site 

[Mw in kDa] [No. of PEG/ Protein] PEG-Linker [Resulting Linker Structure] 

Pegademase 5 kDa [11-17] linear/mPEG-SS €-amino groups of lysine residues 

(Adagen®) [96-126] [amide] 

Pegaspargase 5 kDa [69-82] linear/mPEG-SS €-amino groups of lysine residues 

(Oncaspar®) [483-548] 

PEG-Interferon a-2b 

(PegIntron®) [31] 

PEG-Interferon a-2a 

(Pegasys®) [60] 

Pegfilgrastim 

(Neulasta®) [39] 

Pegvisomant 

(Somavert®) [42-52] 

Pegabtanib 

(Macugen®) [50] 

PEG-EPO beta 

(Mircera®) [60] 

PEG-Certolizumab 

(Cimzia®) [91] 

Pegloticase 

(Krystexxa®) [~545] 

Peginesatide 

(Omontys®) [45] 

PEG-Interferon beta-la 

(Plegridy®) [44] 

PEG-Factor VIII 

(Adynovate®) [330] 

PEG-Factor IX 

(Refixia®/Rebinyn®) 

[98 | 

12 kDa [1] 

40 kDa [1] 

20 kDa [1] 

5 kDa [4-6] 

40 kDa [1] 

30 kDa [1] 

40 kDa [1] 

10 kDa [40.8 on avg. | 

40 kDa [1] 

20 kDa [1] 

20 kDa [2 on avg. | 

40 kDa [1] 

linear/mPEG-SC 

branched via lysine 

moiety/mPEG-NHS 

linear/mPEG- 

propionaldehyde 

linear/mPEG-NHS 

branched via lysine 

moiety/mPEG-NHS 

linear/mPEG-NHS 

branched via 

lysine/mPEG-mal 

linear/mPEG-pNPC 

branched via lysine 

moiety/mPEG-NHS 

linear/mPEG-O2- 

propionaldehyde 

branched via glycerol 

moiety/mPEG-NHS 

linear/PEG- 

conjugation by 

enzyme 

[amide] 

mixture of several isomers: his’**, 

several lys, cys', ser!®, tyr!” 
[amide] 

€-amino groups of lysine residues 

[amide] 

N-terminal a-amino group 

[sec. amine] 

€-amino groups of lysine residues 

[amide] 

amine at the 5’end 

[amide] 

€-amino groups of lysine residues 

[amide] 

cysteine residue 

[thioether] 

€-amino groups of lysine residues 

[amide] 

sec. amine on linker between the 

peptide-dimer [amide] 

N-terminal a-amino group 

[sec. amine] 

€-amino groups of lysine residues 

on B domain [amide] 

N-linked glycans 

[- |
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Elapegademase  

(RevcoviTM) [115] 

5.6 kDa [13] linear/mPEG-SC e-amino groups of lysine residues 

[amide] 

Calaspargase pegol 

(AsparlasTM) [~313]  

5 kDa [31–39] linear/mPEG-SC e-amino groups of lysine residues 

[amide] 

Pegvaliase-pqpz 

(PalynzigTM) [~1,000] 

20 kDa [32–36] linear/mPEG-NHS e-amino groups of lysine residues 

[amide] 

PEG Factor VIII  

(Jiviâ) [234] 

60 kDa [1] branched /mPEG-

maleimide 

genetically engineered cysteine 

(K1804C) in A3 domain [thioether] 

Data adapted from ref. 11, 12, 41, 42, 43 or public available sources (EU: European public assessment reports and 

Summary of Product Characteristics). For further references, see text. Mw: molecular weight; avg: average. 

 

2.1.3.1 First Generation PEGylation 

First generation PEGs are mainly used for random PEGylation by targeting amine groups 

of lysine residues utilizing linear PEGs with a molecular weight < 12 kDa.16 Lysine residues 

are one of the most abundant amino acids found in proteins therefore enabling an easy approach 

with high yields. Drawbacks include a drastic decrease of bioactivity, unstable linkages and 

challenges in purification and analysis of these conjugates which impede batch-to-batch 

reproducibility or subsequent approval of the respective PEGylated protein.44  

The activated PEG typically carries an electrophilic group that can be attacked by 

nucleophilic amine groups. The most widely used first generation PEGs belong to the group of 

carbonates (Figure 4: 3a-3d and 4),45 which form a carbamate/urethane linkage upon reaction 

with a lysine. Out of these, PEG-succinimidyl carbonate (PEG-SC, 3a)46 and PEG-p-

nitrophenyl carbonate (PEG-pNPC, 3c) were employed in the synthesis of several approved 

PEGylated proteins. Furthermore, PEG-succinimidyl succinate (PEG-SS, 5a)47 can be used 

which is, however, highly prone to hydrolysis at neutral pH due to its ester bond.48 Unstable 

linkers can be a problem, as they can serve as a new hapten on the protein surface thereby 

enhancing immunogenicity, which has been demonstrated already for PEG-asparaginase.49 

PEG-dichlorotriazine (1) or PEG-tresylate (2) result in a stable, secondary amine linkage but 

are rarely used anymore due to toxicity or unspecific conjugation leading to a mixture of 

products.28  

 

2.1.3.2 Second Generation PEGylation  

Second generation PEGs consist of higher molecular weight (> 12 kDa) and are methoxy-

capped on one end (mPEG). They display a higher linker stability, higher coupling selectivity 

and are employed in linear and branched architectures. Branched, y-shaped PEG reagents can  

Elapegademase 5.6 kDa [13] linear/mPEG-SC 

(Revcovi'™) [115] 

Calaspargase pegol 
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2.1.3.1 First Generation PEGylation 

First generation PEGs are mainly used for random PEGylation by targeting amine groups 

of lysine residues utilizing linear PEGs with a molecular weight < 12 kDa.'° Lysine residues 

are one of the most abundant amino acids found in proteins therefore enabling an easy approach 

with high yields. Drawbacks include a drastic decrease of bioactivity, unstable linkages and 

challenges in purification and analysis of these conjugates which impede batch-to-batch 

reproducibility or subsequent approval of the respective PEGylated protein.** 

The activated PEG typically carries an electrophilic group that can be attacked by 

nucleophilic amine groups. The most widely used first generation PEGs belong to the group of 

carbonates (Figure 4: 3a-3d and 4),*° which form a carbamate/urethane linkage upon reaction 

with a lysine. Out of these, PEG-succinimidyl carbonate (PEG-SC, 3a)*° and PEG-p- 

nitropheny! carbonate (PEG-pNPC, 3c) were employed in the synthesis of several approved 

PEGylated proteins. Furthermore, PEG-succinimidyl succinate (PEG-SS, 5a)*’ can be used 

which is, however, highly prone to hydrolysis at neutral pH due to its ester bond.*® Unstable 

linkers can be a problem, as they can serve as a new hapten on the protein surface thereby 

enhancing immunogenicity, which has been demonstrated already for PEG-asparaginase.*’ 

PEG-dichlorotriazine (1) or PEG-tresylate (2) result in a stable, secondary amine linkage but 

are rarely used anymore due to toxicity or unspecific conjugation leading to a mixture of 

products.”® 

2.1.3.2 Second Generation PEGylation 

Second generation PEGs consist of higher molecular weight (> 12 kDa) and are methoxy- 

capped on one end (mPEG). They display a higher linker stability, higher coupling selectivity 

and are employed in linear and branched architectures. Branched, y-shaped PEG reagents can
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Figure 4. Overview of chemistries for amine PEGylation. Protein structure: PDB-entry 1ilr. 
 

be generated, e.g., based on a lysine core and are more effective in reducing antigenicity, 

immunogenicity, and proteolysis than their linear analogs.50  The following section provides an 

overview of second-generation PEG-chemistry. 

 

Second Generation PEGs for Amine Modification 

A more selective targeting of amine groups can be achieved using mPEG-N-hydroxy 

succinimide (Figure 4, mPEG-NHS, 5b) or mPEG-propionaldehyde (Figure 4, mPEG-CHO, 

6). Methoxy-PEG-NHS is an improved variant to the initially used carbonate and succinate 

PEGs, leading to a more stable amide bond.51 Control of reactivity and modification site can be 

achieved through adjustment of the spacer between the PEG backbone and the NHS-moiety,52 

where propionic- and butanoic-spacers are typically used. Half of all approved PEGylated 

products contain mPEG-NHS-based coupling chemistry (Table 2). 

Another more selective approach is the employment of mPEG-propionaldehyde for 

conjugation to the N-terminal a-amino group. In this so-called reductive amination approach 

the electrophilic aldehyde group of mPEG is attacked by an amine residue to form an imine 

Amine PEGylation 

r O O 

‘ PEG . Caan PEG 7 HN— 8. O ve ; 

Secondary amine O 

rf 4 -NH, H yy 8 
2 O-S— Y N. aR PEG H 

DAS 

O Secondary amine 5b O 

> H 

O —— 6 

  
/ 6 

PEG” 4 -nn, H 
O Ho O Na Carbamate/Urethane “ NT ——— ZT AB, 

Cl mPEG O NacNBH; MPEG | 
3d <} | 

O Cl Secondary amine 

O 
/ 4 Cl 

PEG 

4 o-n 
Oo = 

/ 0 PEG 

Figure 4. Overview of chemistries for amine PEGylation. Protein structure: PDB-entry lilr. 
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where propionic- and butanoic-spacers are typically used. Half of all approved PEGylated 

products contain mPEG-NHS-based coupling chemistry (Table 2). 
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conjugation to the N-terminal a-amino group. In this so-called reductive amination approach 

the electrophilic aldehyde group of mPEG 1s attacked by an amine residue to form an imine 
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bond, which is in situ reduced by a mild reducing agent like NaCNBH3 (Figure 5). The result 

is a stable secondary amine linkage. In contrast to amide formation, this coupling strategy 

retains the charge properties of the native protein.53 The control of attachment site can be 

achieved through pH adjustment, as the pka values between the N-terminal a-amino group (» 

6–9) and the lysine e-amino groups (» 10.5) differ therefore resulting in lower reactivity of the 

latter at acidic pH.54,55 This technique has been employed for the approved drugs PEGfilgrastim 

(NeulastaÒ)56 and PEG-IFN beta-1a (PlegridyÒ).57  

 

Figure 5. N-terminal ligation of a protein via reductive amination. The relative selectivity is 
achieved at acidic pH through differences in pka-values between e-amino side chain groups 
(lysine) and the N-terminal a-amino group. Protein structure: PDB-entry 1ilr. 
 

Second Generation PEGs for Thiol-Modification 

Thiol groups at cysteines are one of the most attractive target residues for site-specific 

PEGylation, as cysteines are rarely present in proteins. PEGs used for this purpose include  

mPEG-maleimide (Figure 6, mPEG-mal, 7a), mPEG-vinylsulfone (mPEG-VS, 7b), mPEG- 

 

  

Figure 6. Overview of chemistries for thiol PEGylation (left) and site-specific PEGylation 
(right). uAA: unnatural amino acid. 
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iodoacetamide (mPEG-IA, 7c) and PEG-orthopyridyldisulfide (mPEG-OPSS, 8). mPEG-mal 

(7a) is the most used reagent for thiol-modification and results in formation of a stable thioether 

linkage at slightly acidic pH. mPEG-IA and mPEG-VS are less reactive and specific and display 

coupling to lysine-residues as well (mPEG-VS). MPEG-OPSS can be employed to yield 

a stable disulfide linker, which is cleavable in a reductive environment.16 Unfortunately, due to 

its hydrophobicity, many cysteines are buried inside the protein structure and are therefore not 

accessible for polymer conjugation. Cysteines can also be introduced to the protein by genetical 

engineering. However, care must be taken in its downstream processing and handling to prevent 

dimer formation via disulfide bridges. Several proteins and peptides have already been 

successfully PEGylated by thiol-maleimide coupling58–60 with certolizumab Pegol (CimziaÒ) 

and PEG-Factor VIII (JiviÒ) being approved.61 

 

Site-specific PEGylation by Azide-Alkine Cycloaddition 

To enable absolute site-specificity and control of the polymer attachment site, unnatural 

amino acids (uAA) can be incorporated into a protein sequence, which carry functional groups 

that are only able to react with the corresponding “pair” on the polymer side. A major advantage 

of this strategy is that the conjugation site can be exceeded without drastically impairing the 

protein’s bioactivity. A way to achieve this is by employing Cu(I)-catalyzed (CuAAC, Figure 

6, 9c) or strain-promoted azide-alkyne cycloaddition (SpAAC, 9a, 9b). PEGylation of azide-

modified human growth hormone (hGH) has already been demonstrated via SpAAC,62 whereas 

Tamshen et al. followed a vice versa approach (Figure 7), where hGH was expressed as a 

propargyl-tyrosine variant and linked to PEG-azide under Cu-catalysis.63 Other biomolecules 

have been PEGylated with 

a similar strategy64,65 

demonstrating the great 

versatility of this 

approach. However, site-

specific coupling is not 

always feasible or leads to 

low yields, which makes 

this technology so far 

limited to the lab-scale.44 

 

 

 
Figure 7. Site-specific PEGylation of human growth hormone 
via CuAAC. Reprinted with permission from ref. [63]. 
Copyright 2020, American Chemical Society. 
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Site-specific enzymatic PEGylation  

For enzymatic PEGylation, the protein molecule is modified with a specific genetically 

encoded tag, that is recognized from the respective enzyme. The latter then catalyzes ligation 

of the PEG-substrate that carries a certain biorthogonal functional group.66 The enzyme sortase 

uses an amino acid sequence (LPXTG) on the protein as recognition motif subsequently 

reacting with a polyglycine-terminated molecule67 and has already been successfully applied 

for PEGylation of IFN-a2a and G-CSF.68 Another enzyme for PEGylation is transglutaminase 

(TGase), that catalyzes an acyl transfer reaction between the g-carboxamide group of glutamine 

residues and the primary amine groups of proteins or synthetic polymers.43 Different variants 

of TGase exist, which impact reaction selectivity towards different glutamine residues69 

therefore demanding the appropriate enzyme form for site-specific PEGylation. Other enzymes 

include formylglycine generating enzyme, farnesyltransferase and sialyltransferase for 

glycoPEGylation.43 The first approved PEG-protein generated by enzymatic PEGylation is 

RebinynÒ/RefixiaÒ, a PEGylated recombinant blood coagulation factor IX. 

 

2.1.4 Limitations and Drawbacks of PEG 

2.1.4.1 Quality of PEGs, Impurities and Stability Issues 

Despite its broad use, PEG also bears some disadvantages that may be problematic for its 

use in medical applications. PEGs are characterized by a certain polydispersity (Mw/Mn) which 

ranges from 1.01 (PEGs < 5 kDa) to 1.1 (PEGs > 50 kDa).16,70 Despite approaches towards 

monodispersed PEG, dispersity must still be seen as a critical quality attribute for process 

control of manufacturing PEG-protein conjugates, as batch-to-batch variability may occur. 

Another important aspect regards impurities and potentially toxic moieties involved during 

the synthesis of PEG. The gaseous monomer ethylene oxide employed for PEG-polymerization 

is toxic. Furthermore, a prominent impurity formed during synthesis is 1,4-dioxane, the cyclic 

dimer of ethylene oxide, which is classified as “possibly carcinogenic in humans” by the 

International Agency for Research on Cancer (IARC).20 Additionally, mPEG, that is mainly 

used in the approved PEGylated biopharmaceuticals, contains up to 15 % of diol PEG which 

results from trace amounts of water during synthesis.16 This could lead to cross linking of the 

respective conjugates and therefore demands purification of the PEG-reagent prior to protein 

conjugation. PEG also needs to be activated for protein functionalization which may create 

impurities that impact conjugate synthesis and stability within the final product.71 Using a 

suitable initiator and/or termination reagent during polymerization circumvents this, however, 

demanding the validation of a new synthetic process. 

Site-specific enzymatic PEGylation 

For enzymatic PEGylation, the protein molecule is modified with a specific genetically 

encoded tag, that is recognized from the respective enzyme. The latter then catalyzes ligation 

of the PEG-substrate that carries a certain biorthogonal functional group.°° The enzyme sortase 
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Despite its broad use, PEG also bears some disadvantages that may be problematic for its 

use in medical applications. PEGs are characterized by a certain polydispersity (Mw/Mn) which 

ranges from 1.01 (PEGs < 5 kDa) to 1.1 (PEGs > 50 kDa).'*’° Despite approaches towards 
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control of manufacturing PEG-protein conjugates, as batch-to-batch variability may occur. 

Another important aspect regards impurities and potentially toxic moieties involved during 

the synthesis of PEG. The gaseous monomer ethylene oxide employed for PEG-polymerization 

is toxic. Furthermore, a prominent impurity formed during synthesis 1s 1,4-dioxane, the cyclic 

dimer of ethylene oxide, which is classified as “possibly carcinogenic in humans” by the 

International Agency for Research on Cancer (IARC).”” Additionally, mPEG, that is mainly 

used in the approved PEGylated biopharmaceuticals, contains up to 15 % of diol PEG which 

results from trace amounts of water during synthesis.'© This could lead to cross linking of the 

respective conjugates and therefore demands purification of the PEG-reagent prior to protein 

conjugation. PEG also needs to be activated for protein functionalization which may create 

impurities that impact conjugate synthesis and stability within the final product.’' Using a 

suitable initiator and/or termination reagent during polymerization circumvents this, however, 

demanding the validation of a new synthetic process. 

13



 

 14 

Moreover, by-products formed during storage need to be considered, as they can alter 

properties of the protein drug. Due to its ether linkages, PEG is susceptible to form peroxides 

upon high-temperature treatment or light exposure leading to chain scission and increased 

polydispersity.72 This is not only limited to PEG, but has also been reported for ethylene glycol-

based surfactants like polysorbate, which is often used in commercial protein formulations.73 

PEGs are therefore recommended to be stored light-protected, under an inert atmosphere 

(argon, nitrogen) and at lower temperatures (below –15 °C).72 Impurities related to PEG need 

to be avoided and continuously monitored by a variety of analytical techniques to ensure a 

reproducible PEGylation process, high product quality and safety for the patient.74 

In in vivo surroundings, PEG shows relatively high stability which is not always desired 

especially when it comes to metabolism and elimination. Once the PEG portion is cleaved from 

the protein drug, it follows fast elimination via the kidney/urine (< 30 kDa) or non-specific 

uptake into cells via pinocytosis for larger PEGs.25 Due to the non-biodegradability and the lack 

of mammalian etherase, PEG might persist in cell vacuoles for up to 2 months, which was 

assumed for PEGylated TNF.75 Furthermore PEG-induced vacuolation has been reported for 

several organs of different animal species with no clinical manifestations or relevant toxicities 

so far being observed, even in the case of larger vacuoles.76,77 However, these reports demand 

an even more critical evaluation regarding the safety of a PEGylated protein drug. 

 

2.1.4.2 Anti-PEG Antibodies and Immunogenicity 

Generally, PEG is seen as a non-toxic, non-immunogenic and biocompatible polymer. 

However, the recent two decades have unraveled some findings about PEG that were thought 

to be negligible. Already in the 1980s, Richter, et al. reported the prevalence of antibodies (Abs) 

against PEG in healthy individuals (0.2 %, 1984),78 which continuously increased within the 

last decades to 27 % (Armstrong, et al., 2003)79 and 72 % (Yang, et al., 2016)80 (Figure 8). It 

is speculated that the continuous exposure to PEG and PEG-based surfactants in daily  

 

 

 

 

 

 

Figure 8. Evolution of anti-PEG antibodies among the healthy population.78–80  
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household and cosmetic products could lead to the formation of Abs, but the mechanism behind 

is not yet fully understood.81 Those antibodies are not necessarily linked to a neutralizing effect 

in PEGylated therapies,49 but could play a role in some cases of hypersensitivity reactions 

(HSR) upon treatment with PEGylated drugs.82 IgE-mediated83 and non-IgE-mediated 

(pseudoallergic)84 HSRs against PEG-containing products have been observed in a few number 

of cases. Rare anaphylactic reactions reported for the new SARS-CoV-2 mRNA vaccine by 

BioNTech-Pfizer might be attributed to the 2 kDa PEG-moieties located on the surface of their 

lipid nanoparticle formulation, which led to the general recommendation to exclude patients 

with a history of immediate-type hypersensitivity against PEG or PEG-similar excipients (e.g., 

Polysorbate 80) from vaccination, until further information is available.85 

Anti-PEG Antibodies (Abs) have also been reported for PEGylated proteins in clinic and 

were associated with a loss of therapeutic efficacy,86 for example in the case of Pegloticase 

(PEG-Uricase).87,88 Rapid drug clearance of PEG-asparaginase was correlated with the 

formation of anti-PEG Abs49,89 where the PEG-protein linker might affect the immune response. 

For example, bulky aromatic or heterocyclic groups can promote antibody formation against 

PEG.90 Furthermore, different linker structures can result in a different antibody response, as 

demonstrated for PEG-asparaginase.49,91 An accelerated blood clearance (ABC) phenomenon 

induced by anti-PEG Abs has further been widely reported for repeated injections of PEGylated 

nanoparticles (for detailed reviews see ref. 92 and 93) and was also described for PEGylated 

ovalbumin, where the IgM-subtype was a major contributor for ABC.94 Interestingly, anti-PEG 

Abs induced by PEGylated liposomes did not lead to ABC of PEGylated ovalbumin, but vice 

versa, suggesting a high specificity for IgM anti-PEG Abs.  

Typically, 3–6 oxyethylene groups of PEG are needed to bind to its anti-PEG antibody.95,96 

Studies on antibody specificity in rabbits revealed an impact of end-group hydrophobicity on 

the immunogenicity of PEG, following the order of tert-butoxy-PEG (t-PEG) > mPEG > OH-

PEG. Larger end group hydrophobicity led to the formation of an additional antibody 

population which displayed relatively higher selectivity to the PEG end group than to its 

backbone. In the case of OH-PEG, only anti-PEG Abs against PEG-backbone were 

observed.97,98 

The mechanism behind anti-PEG Abs formation is still not fully understood. In general, 

one must distinguish between PEGylated nanoparticles, that usually carry a higher PEG density 

on their surface, and PEGylated proteins, where ~2/3 of the approved drugs bear only one or 

two PEG chains per protein. Ishida et al. suggested a T-cell independent (TI) mechanism for 

anti-PEG IgM antibody formation of PEGylated liposomes. Thereby, the PEG-coated 

household and cosmetic products could lead to the formation of Abs, but the mechanism behind 

is not yet fully understood.*! Those antibodies are not necessarily linked to a neutralizing effect 

in PEGylated therapies,*? but could play a role in some cases of hypersensitivity reactions 

(HSR) upon treatment with PEGylated drugs.** IgE-mediated®? and non-IgE-mediated 

(pseudoallergic)** HSRs against PEG-containing products have been observed in a few number 

of cases. Rare anaphylactic reactions reported for the new SARS-CoV-2 mRNA vaccine by 

BioNTech-Pfizer might be attributed to the 2 kDa PEG-moieties located on the surface of their 

lipid nanoparticle formulation, which led to the general recommendation to exclude patients 

with a history of immediate-type hypersensitivity against PEG or PEG-simuilar excipients (e.g., 

Polysorbate 80) from vaccination, until further information is available.*° 

Anti-PEG Antibodies (Abs) have also been reported for PEGylated proteins 1n clinic and 

were associated with a loss of therapeutic efficacy,*° for example in the case of Pegloticase 

(PEG-Uricase).°’** Rapid drug clearance of PEG-asparaginase was correlated with the 

formation of anti-PEG Abs*”*’ where the PEG-protein linker might affect the immune response. 

For example, bulky aromatic or heterocyclic groups can promote antibody formation against 

PEG.”° Furthermore, different linker structures can result in a different antibody response, as 

demonstrated for PEG-asparaginase.*””! An accelerated blood clearance (ABC) phenomenon 

induced by anti-PEG Abs has further been widely reported for repeated injections of PEGylated 

nanoparticles (for detailed reviews see ref. 92 and 93) and was also described for PEGylated 

ovalbumin, where the IgM-subtype was a major contributor for ABC.”* Interestingly, anti-PEG 

Abs induced by PEGylated liposomes did not lead to ABC of PEGylated ovalbumin, but vice 

versa, suggesting a high specificity for IgM anti-PEG Abs. 

Typically, 3-6 oxyethylene groups of PEG are needed to bind to its anti-PEG antibody.” 

Studies on antibody specificity in rabbits revealed an impact of end-group hydrophobicity on 

the immunogenicity of PEG, following the order of tert-butoxy-PEG (t-PEG) > mPEG > OH- 

PEG. Larger end group hydrophobicity led to the formation of an additional antibody 

population which displayed relatively higher selectivity to the PEG end group than to its 

backbone. In the case of OH-PEG, only anti-PEG Abs against PEG-backbone were 

observed.?”?® 

The mechanism behind anti-PEG Abs formation 1s still not fully understood. In general, 

one must distinguish between PEGylated nanoparticles, that usually carry a higher PEG density 

on their surface, and PEGylated proteins, where ~2/3 of the approved drugs bear only one or 

two PEG chains per protein. Ishida et al. suggested a T-cell independent (TI) mechanism for 
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liposomes act as a T-cell independent type 2 (TI-2) antigen, that usually correlates with the 

presence of repetitive structures like polysaccharides,99 and is recognized by marginal zone B-

cells in the spleen that lead to formation of anti-PEG IgM antibodies.100 A similar mechanism 

has been supported for PEGylated proteins by Kloos et al., who suggest that the ethylene oxide 

repeating units of PEG could serve as TI-2 antigen for IgM-induction.49 Other findings by Mima 

et al. propose a distinct mechanism of antibody formation between PEGylated proteins (in their 

case PEGylated ovalbumin) and PEGylated liposomes by employing the hapten-carrier system. 

They argue that PEG serves as a hapten that only elicitates immune response upon conjugation 

to a carrier in a T-cell dependent (ovalbumin as carrier) or T-cell independent (liposome as 

carrier) manner.94 

Further studies need to be done to elucidate the mechanisms behind anti-PEG antibody 

formation and its clinical relevance. To avoid vanishing of the initial benefits introduced by 

PEGylation, routine screening on pre-existing anti-PEG Abs could be employed to survey 

clearance and therapeutic efficacy and might also be a helpful tool in deciding for non-

PEGylated alternative therapies.89 Other studies suggest the pre-treatment with free PEG to 

prevent neutralization by anti-PEG antibodies.101  

 

2.1.4.3 Reduced Affinity and Activity of Biomolecules 

Upon PEG-conjugation, many proteins and peptides display a reduced receptor affinity and 

bioactivity in vitro. The decrease in activity upon PEGylation correlates with 1) an increase in 

PEG molecular weight, 2) a higher number of attached PEGs, 3) randomly attached PEGs, 4) 

linear PEG architecture (compared to branched). Steric hindrance plays the main role in this 

mechanism, as PEG behaves like a highly flexible coil which shields active protein sites from 

interaction with their receptor.70 However, a reduction in receptor affinity can be balanced by a 

prolonged circulation time, which leads to an overall extension of therapeutic activity. For 

example, PEGylated IFN-a2a displays only an in vitro activity of 5–10 % but a significantly 

extended antitumor effect in vivo, compared to the unmodified protein.29   

Better control of activity can be gained by a site-specific PEGylation approach supported 

by computational studies to unravel protein sites located further away from the active binding 

pocket. Tamshen and co-workers found superior activity of site-specific mono-PEGylates of 

human growth hormone (hGH) compared to the commercial random- and multi-PEGylated 

PEGvisomant.63 Similar results were obtained from Basu et al. for mono-PEGylated IFNb-1b.39 

Furthermore, PEG architecture plays a role in bioactivity, where branched PEGs seem to 
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perform better than their linear analogs.50 The type and number of PEG-molecules used for 

modification should therefore be considered when designing a PEGylated biopharmaceutical. 

  

2.1.4.4 Effect on Protein Stability and Viscosity 

PEGylation of proteins can lead to a decrease in thermodynamic stability. For example, 

Plesner et al. have found an ~2 °C lower Tm for PEGylated bovine serum albumin (BSA), 

compared to the unmodified protein. Interestingly, the length of PEG had no significant effect 

on Tm-values of PEGylated BSA.102 Similarly, a decrease in melting stability has been found 

for PEGylated lysozyme103 and myoglobin.104 Additionally, PEG bears a high solution viscosity 

due to chain entanglement at high concentrations, which increases in a molecular weight-

dependent manner.105 This can impede certain manufacturing processes as well as limit its 

applicability for the injection of high-concentrated protein-formulations. 

 

2.2 Analytical Techniques for the Characterization of PEG-Protein 

Conjugates 

2.2.1 Sodium-dodecylsulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE is a relatively easy technique to monitor the reaction process and the purity of 

PEG-protein conjugates. The principle relies on the mass-based separation of denatured protein 

molecules in an electric field, with the negatively charged surfactant SDS surrounding the 

protein moieties enabling their migration towards the anode. A typical SDS-gel consists of a 

stacking gel (loading and up-concentration of the samples) and a subsequent separation gel. The 

latter separates the samples solely depending on their molecular weight and is stained thereafter 

by Coomassie or silver staining to visualize the protein bands. In the case of PEGylated 

proteins, the PEG-portion can also be stained by a protocol involving barium iodide.106  

Care must be taken in the interpretation of the molecular weight when employing a protein 

standard molecular weight ladder. The mobility of PEG-conjugates in the gel is always slightly 

diminished, which is possibly due to interference between SDS and the PEG-part of the 

conjugate thereby slowing down the migration in the gel.106,107 Furthermore, the dispersity of 

polymers sometimes creates smeared bands, which might impede distinguishing different 

species on the gel.  
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2.2.2 Size-exclusion Chromatography (SEC) 

Size-exclusion chromatography is employed to determine purity and molecular weight of 

macromolecular species in solution. Separation in SEC is based on the hydrodynamic size of a 

macromolecule and its distinct permeation/diffusion through the pores of a stationary phase 

(dextran- or polystyrene-based) being monitored by refractive index- or UV-detection.108 Large 

molecules are excluded more from the pores therefore eluting earlier than smaller moieties, 

which allows the determination of the distribution coefficient Kav (= (VR–V0)/ (Vc–V0)), where 

VR, V0, and Vc represent elution volume of the analyte, void volume, and the total column bed 

volume, respectively. The Kav of reference standards can be plotted against their molecular 

weights to create a calibration curve, where the molecular weight of the unknown analyte is 

determined.109 Upon PEG-conjugation, a drastic increase in hydrodynamic size is usually 

observed shifting the elution in SEC to earlier time points. However, the molecular weight 

cannot be directly derived from a pure protein or PEG calibration curve, as PEGylated proteins 

behave as “hybrid” forms.109 In this case, SEC needs to be coupled to other detectors, (multi-

angle light scattering (MALS), MS-detector) to determine the absolute molecular weight. 

Furthermore, SEC can be employed to determine and predict the hydrodynamic radii of 

PEGylated proteins, where a column-specific, universal calibration curve is used.109,110 

 

2.2.3 Dynamic Light Scattering (DLS) 

Dynamic light scattering is a possible technique to determine the hydrodynamic size of 

PEGylated proteins. It measures the intensity fluctuations of scattered monochromatic light, 

which are caused by the size-based diffusion of particles in solution (Brownian motion) over a 

certain time.111 The diffusion depends on solution temperature (T), solution viscosity (h) and 

the size of the macromolecular particles (Rh), with larger molecules diffusing more slowly 

therefore displaying less fluctuations. Digital correlation of the intensity fluctuations in regard 

to time (ns-µs) allows the determination of the translational diffusion coefficient Dt, which can 

be further used to calculate the hydrodynamic radius Rh following the Stokes-Einstein equation:  
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2.2.4 Enzyme-linked Immunosorbent Assay (ELISA) 

ELISA is a method to quantify and detect a specific substance, often an antigen, in a 

complex sample. The antigen of interest 1s typically coated either directly or by employing a 
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specific capture antibody on a microplate at basic pH.112 An enzyme-labeled, primary detection 

antibody is added and forms an antigen-antibody complex which leads to enzyme-mediated 

colour formation upon addition of a substrate and can be detected in a microplate reader (direct 

ELISA, Figure 9A). The enzyme can also be attached to a secondary detection antibody, that  

 

Figure 9. Overview of different ELISA methods. 

 

binds to the Fc-part of the primary antibody to increase specificity (indirect ELISA, Figure 9B). 

More complex samples are analyzed by a “sandwich ELISA”, where the antigen is captured by 

an immobilized antibody and subsequently detected by addition of the primary antibody and 

the enzyme-labeled secondary antibody (Figure 9C).112 Another approach employs competitive 

binding of an immobilized antigen and the same antigen in an analytical sample, where colour 

formation is suppressed when the free antigen is present (competitive ELISA, Figure 9D). A 

modified version of the latter was used to detect the cross-reactivity of anti-PEG-antibodies 

towards other synthetic macromolecules.113 

ELISA is an important tool to detect anti-PEG antibodies and to determine the 

immunogenicity of PEGylated proteins, even though the lack of reference sera and standardized 

assay procedures still impede data assessment.114 Furthermore, the in vivo half-life of a 

PEGylated protein is typically determined by ELISA through quantification of the remaining 

analyte in blood samples from different time points. 
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binds to the Fc-part of the primary antibody to increase specificity (indirect ELISA, Figure 9B). 

More complex samples are analyzed by a “sandwich ELISA”, where the antigen 1s captured by 

an immobilized antibody and subsequently detected by addition of the primary antibody and 

the enzyme-labeled secondary antibody (Figure 9C).''* Another approach employs competitive 

binding of an immobilized antigen and the same antigen in an analytical sample, where colour 

formation is suppressed when the free antigen is present (competitive ELISA, Figure 9D). A 

modified version of the latter was used to detect the cross-reactivity of anti-PEG-antibodies 

towards other synthetic macromolecules.'!” 

ELISA is an important tool to detect anti-PEG antibodies and to determine the 

immunogenicity of PEGylated proteins, even though the lack of reference sera and standardized 

assay procedures still impede data assessment.''* Furthermore, the in vivo half-life of a 

PEGylated protein is typically determined by ELISA through quantification of the remaining 

analyte in blood samples from different time points. 
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2.3 Alternative Macromolecules for Half-Life Extension 

The following chapter provides an overview of PEG-alternative macromolecules for the 

half-life extension of biopharmaceuticals. 

 

Figure 10. Overview of synthetic PEG-alternative macromolecules for half-life extension 
discussed in this thesis. 
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2.3.1 Non-degradable synthetic Polymers 

2.3.1.1 Polyglycerol (PG) 

Synthesis of end-functional linear Polyglycerol (LPG) 

Linear Polyglycerol (also named polyglycidol) is a water-soluble and highly hydrophilic 

polymer, consisting of a polyether backbone with methyl hydroxy groups on the side chain. It 
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can be generated in various architectures, such as linear, hyperbranched (HPG) or dendronized 

brush-type (denPG), to name just a few (Figure 11B).115,116 LPG is typically synthesized in a 

three-step process, that involves (1) protection of the glycidol monomer with ethyl vinyl ether 

to yield ethoxyethyl glycidyl ether (EEGE), (2) anionic ring opening polymerization (AROP) 

and (3) acidic deprotection (Figure 11A). It is important to protect the monomer hydroxyl 

groups prior to polymerization to avoid proton transition and gain better control over 

polymerization.115  Various glycidol derivatives have already been exploited as monomers for 

polymerization that allow the introduction of different backbone-functionalities or  

-architectures.116,117 However, due to the facile acidic deprotection under mild conditions, 

EEGE is mostly used. 

 

Figure 11. A) Synthetic scheme for linear polyglycerol (LPG). B) Different architectures of 
PG for potential conjugation to biopharmaceuticals. The size and molecular flexibility decrease 
with more rigid, branched polymer structures. 
 

A major advantage is that glycidyl ethers are liquid and therefore easier to handle than the 

gaseous, toxic ethylene oxide (EO), which is employed as monomer in the synthesis of PEG.117 

Alkali metal alkoxides or ammonium salts typically serve as initiators and are often combined 

with activators like triisobutyl aluminum (i-Bu3Al). The latter increases the reactivity of the 

monomer towards nucleophiles and simultaneously reduces the basicity of the growing chain 

end thereby preventing transfer reactions of protons adjacent to the oxirane ring, which usually 

limit the final molecular weight to around 30 kDa.117  

To enable a more controlled polymer conjugation toward therapeutic proteins, end-

functional polymers are desired that enable further modification with linkers or direct coupling 

to the respective biomolecule. Gervais et al. employed tetraoctylammonium bromide as initiator 

to synthesize end-functionalized LPG-Br with molecular weights (Mn) up to 85 kDa and 

dispersities (Mw/Mn) below 1.3. Higher molecular weights were thereby achieved by increasing 
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A major advantage 1s that glycidyl ethers are liquid and therefore easier to handle than the 

gaseous, toxic ethylene oxide (EO), which is employed as monomer in the synthesis of PEG.'"’ 

Alkali metal alkoxides or ammonium salts typically serve as initiators and are often combined 

with activators like triisobutyl aluminum (i-Bu3Al). The latter increases the reactivity of the 

monomer towards nucleophiles and simultaneously reduces the basicity of the growing chain 

end thereby preventing transfer reactions of protons adjacent to the oxirane ring, which usually 

limit the final molecular weight to around 30 kDa.!"’ 

To enable a more controlled polymer conjugation toward therapeutic proteins, end- 

functional polymers are desired that enable further modification with linkers or direct coupling 

to the respective biomolecule. Gervais et al. employed tetraoctylammonium bromide as initiator 

to synthesize end-functionalized LPG-Br with molecular weights (Mn) up to 85 kDa and 

dispersities (Myw/Mn) below 1.3. Higher molecular weights were thereby achieved by increasing 
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the [i-Bu3Al]/[initiator] ratio up to 5.118,119 The same authors also reported tetrabutylammonium 

azide as initiator to directly enable mono-functional LPG-N3,119,120 which can be additionally 

modified or directly used for bioconjugation. Further reduction of LPG-N3 yields LPG-NH2 to 

allow the introduction of functional moieties (e.g., aldehyde-linker) for site-directed protein 

modification. Alternative mono-LPGs have been described in literature including LPG-

NH2,121,122 -SH,122,123 -propargyl124 or -vinylsulfonate.125     

 

Biocompatibility, Conformation and Applications on Protein Delivery  

Polyglycerol can be generally considered as a biocompatible and non-toxic polymer. It is 

approved as non-ionic surfactant (oligoglycerol-monoesters of fatty acids) by regulatory 

authorities to be used as pharma and food additive since several decades.126  Early studies by 

the Brooks group examined the blood compatibility of polyglycerol (Mw ~6 kDa) with linear 

or hyperbranched architectures. They found no significant effects on blood coagulation and 

complement activation up to concentrations of 44 mg/mL and 20 mg/mL, respectively. 

Furthermore, no significant increase in blood viscosity or aggregation of red blood cells was 

observed,127 which was similarly confirmed for hyperbranched polyglycerols (HPG) of very 

high molecular weights (Mn: 540 kDa, 871 kDa).128 Another interesting study of the 

Kizhakkedathu group compared LPG, HPG and PEG of similar molecular weights (Mw: 100–

120 kDa) regarding their biocompatibility in vitro and circulation time in vivo.129 No significant 

impact on complement activation, blood coagulation parameters or red blood cell (RBC) 

aggregation was found for LPG and HPG (max. tested concentration: 10 mg/mL)  

 

 

Figure 12. Optical micrograph analysis of red blood cells after incubation with polymers for  
1 h at 37 °C, compared to control. Final polymer concentrations: 1 or 10 mg/mL. A) LPG-100, 
B) HPG-100. C) PEG-100. D) Buffer control. Reprinted from ref. [129]. Copyright 2012, with 
permission from Elsevier. 
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(Figure 12A/B). In contrast, PEG led to platelet and complement activation, cell death and 

severe aggregation of RBCs at 10 mg/ml (Figure 12C). Furthermore, it displayed a much higher 

intrinsic viscosity than LPG or HPG, which is of disadvantage in applying highly concentrated 

drug formulations.129 Despite its small hydrodynamic size, the blood circulation time of LPG in 

mice was considerably longer than that of other linear polymers, including PEG, suggesting a 

promising potential for LPG as tool for half-life extension of therapeutic proteins. The authors 

attributed this to the more compact and less flexible conformation of LPG exhibiting a very 

small frictional ratio (a parameter that defines shape of polymers), which resulted in lower 

glomerular permeability but longer vascular residence time.129  

A major problem reported for PEG conjugated to proteins or nanocarriers is the formation 

of antibodies, that vanish the initial benefits of PEGylation through a phenomenon termed as 

accelerated blood clearance (ABC). PEGylated liposomes exhibit ABC, that, however, strongly 

depends on dosing regimen, PEG-density and other factors.93 PG bears protein-resistant 

properties with a similar stealth effect to PEG.126,130,131 Studies by Abu Lila et al. showed the 

prevention of ABC on liposomes132  and lipoplexes133 when replacing the PEG-moiety with 

LPG which could be beneficial also to prevent the formation of anti-polymer antibodies for 

PEGylated proteins.  

LPG has been conjugated so far to model proteins like bovine serume albumin (BSA) and 

lysozyme121. Additionally, a grafting-from approach employed BSA to synthesize linear PG-

conjugates with controlled branching on its backbone.134 Furthermore, PG-based nanogels 

(NG) were successfully applied in the field of protein delivery.135–137 Steinhilber et al. 

synthesized dendritic polyglycerol (dPG)-based nanogels for highly efficient encapsulation of 

asparaginase, that still showed full activity and structural integrity upon release.135 Another 

study by Witting et al. described the synthesis of thermoresponsive PNIPAM-dPG nanogels for 

intraepidermal delivery of asparaginase, which was first encapsulated and successfully 

delivered in barrier deficient skin upon release at ≥ 35 °C.137 This further demonstrates the great 

versatility of PG-based systems as a tool for delivery of biopharmaceuticals. 

 

2.3.1.2 Poly(2-oxazoline) (POx) 

Polyoxazolines (POx) have been shown to be a promising polymer class for the use in 

medical applications and drug delivery systems.138–140 They are synthesized by cationic ring 

opening polymerization (CROP) employing an electrophilic initiator, like alkyl-tosylate or  

-triflate, which is added to the respective 2-oxazoline monomers in a dry organic solvent and  

 under inert atmosphere (Figure 13).141,142 The polymerization is terminated by adding a 
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drug formulations.'”? Despite its small hydrodynamic size, the blood circulation time of LPG in 

mice was considerably longer than that of other linear polymers, including PEG, suggesting a 

promising potential for LPG as tool for half-life extension of therapeutic proteins. The authors 

attributed this to the more compact and less flexible conformation of LPG exhibiting a very 

small frictional ratio (a parameter that defines shape of polymers), which resulted in lower 

glomerular permeability but longer vascular residence time.!” 

A major problem reported for PEG conjugated to proteins or nanocarriers 1s the formation 

of antibodies, that vanish the initial benefits of PEGylation through a phenomenon termed as 

accelerated blood clearance (ABC). PEGylated liposomes exhibit ABC, that, however, strongly 

depends on dosing regimen, PEG-density and other factors.”> PG bears protein-resistant 

properties with a similar stealth effect to PEG.!7°!%"-!°! Studies by Abu Lila et al. showed the 

°2 and lipoplexes!*’ when replacing the PEG-moiety with prevention of ABC on liposomes! 

LPG which could be beneficial also to prevent the formation of anti-polymer antibodies for 

PEGylated proteins. 

LPG has been conjugated so far to model proteins like bovine serume albumin (BSA) and 

lysozyme!*'. Additionally, a grafting-from approach employed BSA to synthesize linear PG- 

conjugates with controlled branching on its backbone.'’* Furthermore, PG-based nanogels 

(NG) were successfully applied in the field of protein delivery.!*?-'’’ Steinhilber ef al. 

synthesized dendritic polyglycerol (dPG)-based nanogels for highly efficient encapsulation of 

asparaginase, that still showed full activity and structural integrity upon release.'*? Another 

study by Witting et al. described the synthesis of thermoresponsive PNIPAM-dPG nanogels for 

intraepidermal delivery of asparaginase, which was first encapsulated and successfully 

delivered in barrier deficient skin upon release at > 35 °C.'°’ This further demonstrates the great 

versatility of PG-based systems as a tool for delivery of biopharmaceuticals. 

2.3.1.2 Poly(2-oxazoline) (POx) 

Polyoxazolines (POx) have been shown to be a promising polymer class for the use in 

medical applications and drug delivery systems.'°**"'*9 They are synthesized by cationic ring 

opening polymerization (CROP) employing an electrophilic initiator, like alkyl-tosylate or 

-triflate, which 1s added to the respective 2-oxazoline monomers in a dry organic solvent and 

under inert atmosphere (Figure 13).'*'!4* The polymerization is terminated by adding a 
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nucleophile, such as OH-, -NH-, -S- or -COO-.143 To shorten the reaction time a microwave-

assisted synthesis of POx has been developed recently.144 POx allows the introduction of side-

chain functionalities to control solubility, thermal properties or targeting. Due to their similar 

  

 

Figure 13. Synthetic scheme for cationic ring opening polymerization of poly(2-oxazolines). 
 

chemical composition and the presence of a peptide bond per repeating unit, POx can also be 

regarded as pseudo-polypeptides.145 For protein conjugation, 2-methyl-(PMeOx) and 2-ethyl-

2-oxazolines (PEtOx) are mainly employed and described here in more detail. 

PMeOx and PEtOx show a good hemocompatibility and cytotoxicity profile  

in vitro,146–148  with no significant accumulation in organs up to 30 kDa.149,150 POx did not 

induce antibody-formation in rabbits151 and prolonged the blood circulation of liposomes upon 

grafting, thereby suggesting a similar stealth behavior than PEG.152,153 With increasing chain 

length, differences in amphiphilicity can be observed where PMeOx displays a hydrophilicity 

similar to PEG, whereas PEtOx shows more hydrophobic character.143 The hydrodynamic sizes 

of PMeOx and PEtOx in aqueous solution are similar, but slightly smaller compared to PEG, 

therefore suggesting a smaller extent of solvation for POx.143,154 Nevertheless, Gubarev et al. 

found a flexible, PEG-like conformation and rigidity for PEtOx in buffer.155 

Polyoxazolines have already been successfully conjugated to proteins like G-CSF,156 

EPO157 or others158 by employing random or site-selective (N-terminal, enzymatic) conjugation 

chemistry. Lühmann et al. employed bioorthogonal CuAAC to synthesize site-specific 

conjugates of interleukin-4 with PMeOx of 4 kDa.65 Conjugation yields were higher than with 

the respective PEG of same molecular weight. The thermal stability upon conjugation was 

improved while the bioactivity of IL-4 in vitro was retained.  

During the synthesis of POx, various side reactions can occur that result in high molecular 

weight impurities of up to 10 % with dispersities (Đ) of >1.3, that are sometimes difficult to 

remove  and can impede scale-up and reproducibility.143 Under oxidative stress conditions, POx 

nucleophile, such as OH’, -NH’, -S° or -COO-.'* To shorten the reaction time a microwave- 

assisted synthesis of POx has been developed recently.'** POx allows the introduction of side- 
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Figure 13. Synthetic scheme for cationic ring opening polymerization of poly(2-oxazolines). 

chemical composition and the presence of a peptide bond per repeating unit, POx can also be 

regarded as pseudo-polypeptides.'*° For protein conjugation, 2-methyl-(PMeOx) and 2-ethyl- 

2-oxazolines (PEtOx) are mainly employed and described here in more detail. 

PMeOx and PEtOx show a good hemocompatibility and cytotoxicity profile 

146-148 in vitro, with no significant accumulation in organs up to 30 kDa.'*?:!°° POx did not 

induce antibody-formation in rabbits!?! and prolonged the blood circulation of liposomes upon 

grafting, thereby suggesting a similar stealth behavior than PEG.!°*:'°? With increasing chain 

length, differences in amphiphilicity can be observed where PMeOx displays a hydrophilicity 

similar to PEG, whereas PEtOx shows more hydrophobic character.'** The hydrodynamic sizes 

of PMeOx and PEtOx in aqueous solution are similar, but slightly smaller compared to PEG, 

therefore suggesting a smaller extent of solvation for POx.'**:!°* Nevertheless, Gubarev ef al. 

found a flexible, PEG-like conformation and rigidity for PEtOx in buffer.'» 

Polyoxazolines have already been successfully conjugated to proteins like G-CSF,!>° 

EPO!°’ or others!°® by employing random or site-selective (N-terminal, enzymatic) conjugation 

chemistry. Liihmann ef al. employed bioorthogonal CuAAC to synthesize site-specific 

conjugates of interleukin-4 with PMeOx of 4 kDa.®° Conjugation yields were higher than with 

the respective PEG of same molecular weight. The thermal stability upon conjugation was 

improved while the bioactivity of IL-4 in vitro was retained. 

During the synthesis of POx, various side reactions can occur that result in high molecular 

weight impurities of up to 10 % with dispersities (D) of >1.3, that are sometimes difficult to 

remove and can impede scale-up and reproducibility.'*? Under oxidative stress conditions, POx 

24



 

 25 

is less stable than other linear polymers like PEG or PVP.159,160 Additionally, the amphiphilicity 

and comparably low cloud point in salt solutions could lead to higher aggregation, especially 

in the case of PEtOx, that could hamper further protein conjugation and decrease coupling 

yields.161 PEtOx displays slightly worse stealth characteristics compared to PEG, as 

demonstrated for the immunocamouflage of polymer-grafted blood cells.162 Additionally, 

accelerated blood clearance was found for POxylated liposomes upon repeated administration, 

which was correlated with the formation of anti-POx IgM antibodies.163 Furthermore, 

Luxenhofer et al. found complement activation for PMeOx and and PEtOx block copolymers 

that were, even though moderate, still significant above negative control.164  

 

2.3.1.3 Poly(N-vinylpyrrolidone) (PVP) 

Poly(N-vinylpyrrolidone) (PVP) is a regulatory approved polymer, that is widely used as 

pharmaceutical excipient, e.g., as solubility enhancer, stabilizer, binder, disintegrant or coating 

in tablet formulation.165 Its applicability for biomedical applications was strongly limited as its 

synthesis followed the conventional free radical polymerization mechanism which hampered 

the production of end-functional polymers with low polydispersity.166 Recently PVP has been 

successfully synthesized from its monomer N-vinylpyrrolidone by reversible addition-

fragmentation chain transfer (RAFT) polymerization to enable lower dispersity and functional 

thiol- or aldehyde-endgroups, that were successfully conjugated to model proteins.167,168 Earlier 

studies reported the conjugation of PVP (5 and 6 kDa) to amine groups of the therapeutic protein 

TNF-a by employing NHS-based chemistry. The resulting conjugates displayed longer half-

life169 than PEG-analogs of same molecular weight and had an increased antitumor potency in 

mice.170 However, the molecular weights used in these studies were quite low and therefore still 

leave room for optimization of PVP in the field of half-life extension of biomolecules. 

 

2.3.1.4 Poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA) 

Poly(N-(2-hydroxypropyl) methacrylamide (PHPMA) is a neutral, hydrophilic and 

biocompatible polymer. It has been investigated intensively as drug delivery vehicle for 

anticancer drugs, site specific drug delivery in tumor and gastrointestinal compartments and as 

scaffold for hydrogels. Similar to PVP, free-radical polymerization as synthesis pathway 

limited the applicability of PHPMA for protein conjugation until a RAFT-based polymerization 

method was developed by the McCormick group.171 Following that approach, Davies and co-

workers synthesized PHPMA (3.5 and 6.6 kDa) with a terminal thiazolidine-2-thione group 

which was used for conjugation of lysozyme.172 The same group also developed a thiol-reactive 
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studies reported the conjugation of PVP (5 and 6 kDa) to amine groups of the therapeutic protein 

TNF-a by employing NHS-based chemistry. The resulting conjugates displayed longer half- 

life'®’ than PEG-analogs of same molecular weight and had an increased antitumor potency in 

mice.'’° However, the molecular weights used in these studies were quite low and therefore still 

leave room for optimization of PVP in the field of half-life extension of biomolecules. 

2.3.1.4 Poly(V-(2-hydroxypropyl) methacrylamide) (PHPMA) 

Poly(V-(2-hydroxypropyl) methacrylamide (PHPMA) is a neutral, hydrophilic and 

biocompatible polymer. It has been investigated intensively as drug delivery vehicle for 

anticancer drugs, site specific drug delivery in tumor and gastrointestinal compartments and as 

scaffold for hydrogels. Similar to PVP, free-radical polymerization as synthesis pathway 

limited the applicability of PHPMA for protein conjugation until a RAFT-based polymerization 

method was developed by the McCormick group.'’! Following that approach, Davies and co- 

workers synthesized PHPMA (3.5 and 6.6 kDa) with a terminal thiazolidine-2-thione group 

which was used for conjugation of lysozyme.'’* The same group also developed a thiol-reactive 
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branched PHPMA (~20 and 30 kDa), which was successfully conjugated to the free cysteine of 

BSA.173 Recently, the conjugation of NHS-activated PHPMA (5.5 kDa) to asparaginase was 

reported. PHPMA led to a strong disruption of asparaginase’s secondary structure, however, 

increased its stability against freeze-thaw stress for up to six cycles.174 

 

2.3.2 Degradable synthetic Polymers 

Degradable synthetic polymers for conjugation to therapeutic proteins include the classes 

of polyzwitterions (PZIs/polybetaines), polypeptides (PGA, PSar), PEG-derived methacrylates 

(POEGMA) and polyphosphoesters (PPEs). They are all biodegradable to a certain extent and 

therefore avoid accumulation in organs, a problem often observed for PEG. Remaining PEG-

linker fragments on the protein were shown to serve as haptens acting as a trigger for an 

immunologic reaction against the protein part. Therefore, the haptenic character of such 

hydrolyzed polymer-components should always be considered. 

 

2.3.2.1 Polyzwitterions (PZIs/Polybetaines) 

Polyzwitterions (PZIs), also named polybetaines, are a special class of polyampholytes that 

contain both a positively and a negatively charged moiety on the same monomer leading to an 

overall neutrally charged macromolecule. The backbone usually consists of poly(meth)acrylic 

acid linked to the charged linker chain via an amide or ester bond. Quarternized ammonium 

groups represent the cationic element whereas the anionic moiety stems from sulfonate-, 

carboxy- or phosphate-groups leading to various subclasses, that are polysulfobetaines (pSB), 

polycarboxybetaines (pCB) or polyphosphobetaines (pPB), among others.175 Polybetaines are 

mostly generated by controlled radical polymerization (ATRP or RAFT) on either zwitterionic 

monomers or uncharged monomers followed by zwitterionic functionalization of the resulting 

polymer.175 PZIs are considered as highly hydrophilic, biocompatible materials and display 

strong anti-fouling properties outperforming PEG in regard to non-specific protein adsorption 

from blood plasma and serum.176,177 This effect is mostly attributed to a strong hydration layer 

formed by the polymer. However, in contrast to other hydrophilic macromolecules, that achieve 

hydration through hydrogen bonding,176 PZIs display even stronger hydration and water 

binding via electrostatic interactions.178–180  Their conformation in aqueous solution is highly 

dependent on pH, ionic strength and salt type and can be described by the so-called 

“antipolyelectrolyte effect” which leads to a chain expansion and an increase in viscosity upon 

addition of low molecular weight electrolytes.175,181 This effect, and the strong intramolecular 

branched PHPMA (~20 and 30 kDa), which was successfully conjugated to the free cysteine of 

BSA.!'” Recently, the conjugation of NHS-activated PHPMA (5.5 kDa) to asparaginase was 

reported. PHPMA led to a strong disruption of asparaginase’s secondary structure, however, 

increased its stability against freeze-thaw stress for up to six cycles.'” 
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therefore avoid accumulation in organs, a problem often observed for PEG. Remaining PEG- 

linker fragments on the protein were shown to serve as haptens acting as a trigger for an 

immunologic reaction against the protein part. Therefore, the haptenic character of such 

hydrolyzed polymer-components should always be considered. 

2.3.2.1 Polyzwitterions (PZIs/Polybetaines) 

Polyzwitterions (PZIs), also named polybetaines, are a special class of polyampholytes that 

contain both a positively and a negatively charged moiety on the same monomer leading to an 

overall neutrally charged macromolecule. The backbone usually consists of poly(meth)acrylic 

acid linked to the charged linker chain via an amide or ester bond. Quarternized ammonium 

eroups represent the cationic element whereas the anionic moiety stems from sulfonate-, 

carboxy- or phosphate-groups leading to various subclasses, that are polysulfobetaines (pSB), 

polycarboxybetaines (pCB) or polyphosphobetaines (pPB), among others.'’ Polybetaines are 

mostly generated by controlled radical polymerization (ATRP or RAFT) on either zwitterionic 

monomers or uncharged monomers followed by zwitterionic functionalization of the resulting 

polymer.'!’? PZIs are considered as highly hydrophilic, biocompatible materials and display 

strong anti-fouling properties outperforming PEG in regard to non-specific protein adsorption 

from blood plasma and serum.'’°!’’ This effect is mostly attributed to a strong hydration layer 

formed by the polymer. However, in contrast to other hydrophilic macromolecules, that achieve 

hydration through hydrogen bonding,'’° PZIs display even stronger hydration and water 

binding via electrostatic interactions.'’°'*° Their conformation in aqueous solution is highly 

dependent on pH, ionic strength and salt type and can be described by the so-called 

“antipolyelectrolyte effect” which leads to a chain expansion and an increase 1n viscosity upon 

addition of low molecular weight electrolytes.'’>:'®! This effect, and the strong intramolecular 
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interactions of PZIs, both result in a high solution density, compact structure and smaller 

hydrodynamic size than PEG of same molecular weight.182  

Besides pPB, which has been successfully conjugated as methacryloyl-derivative (PMPC) 

to IFN-a183,184 and exenatide,185 one of the most widely used PZI-subclasses for protein 

conjugation is polycarboxybetaine (pCB). pCB consists of a quarternary amine group and a 

negatively charged carboxylate with varying distance possible between the charged groups. 

(Figure 13D). NHS-based coupling chemistry is mainly employed and has already been 

exploited for several proteins.182–189  Interesting features of pCB have been unraveled, regarding 

the often-observed diminished bioactivity of PEGylated proteins. Keefe and Jiang synthesized 

5 kDa PEG conjugates of a-chymotrypsin and compared them with pCB analogs of similar 

molecular weight or size.182  They found an unaltered or even increased enzyme-substrate 

affinity for pCB-chymotrypsin of PEG-similar weight or size, respectively. To explain  

 

Figure 14. Proposed model for the involvement of PEG or zwitterionic polymers in the 
receptor-interaction of therapeutic proteins. Adapted by permission from Springer Nature, 
Nature Chemistry, ref. [182], Copyright 2011. 
 

this phenomenon, the authors proposed a model where PEG with its amphiphilic character 

competitively reduces hydrophobic interactions between the substrate and its enzyme binding-

site, while simultaneously imposing steric hindrance, leading to an overall diminished activity 

(Figure 14B). pCB on the other hand displays super-hydrophilic character and a strong 

hydration drawing water molecules away from the hydrophobic protein binding-sites thereby 

allowing unhindered interaction between the enzyme and its substrate (Figure 14C). 
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hydrodynamic size than PEG of same molecular weight.!* 
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receptor-interaction of therapeutic proteins. Adapted by permission from Springer Nature, 
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this phenomenon, the authors proposed a model where PEG with its amphiphilic character 

competitively reduces hydrophobic interactions between the substrate and its enzyme binding- 

site, while simultaneously imposing steric hindrance, leading to an overall diminished activity 

(Figure 14B). pCB on the other hand displays super-hydrophilic character and a strong 

hydration drawing water molecules away from the hydrophobic protein binding-sites thereby 

allowing unhindered interaction between the enzyme and its substrate (Figure 14C). 
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Furthermore, the authors correlate this feature to pCB’s monomer structure, a derivative of 

glycine betaine, reflecting properties of the two most protein stabilizing ions ammonium (soft 

cation) and acetate (hard anion) in the Hofmeister series (Figure 14E). Further evidence for 

PEG interacting with hydrophobic protein surfaces can be found in a molecular dynamics 

simulation study, where solutions of oligoethylene glycol (OEG) reduced the solvent accessible 

surface area of hydrophobic protein domains by 1/3, whereas carboxybetaine-solutions only 

showed a decrease of 1/10.190  

Another study about pCB- and PEG-IFN-a2a conjugates confirmed the compact structure 

of pCB also after protein conjugation, as double the molecular weight of pCB was needed to 

reach the same molecular size of a PEG-conjugate.189  pCB20k-IFN displayed 4.4-fold higher 

antiproliferative bioactivity compared to its PEG-conjugate of same molecular weight (62.1 % 

of IFN-activity vs. 14.2 %), which was similarly found for the 10 kDa conjugates. Again, the 

authors speculate that steric hindrance and non-specific hydrophobic interactions between PEG 

and the IFN-binding domain, respectively, IFN-receptor, decrease bioactivity, which was 

mitigated in the case of pCB-conjugates. Notably, the circulation time of pCB20k-IFN in rats 

was comparable to PEG40k-IFN, despite half of the molecular weight. Furthermore, PEG-IFN 

conjugates showed accelerated blood clearance due to IFN- and polymer-specific antibodies, 

whereas PCB-conjugates displayed negligible antibody formation, confirming earlier results 

for pCB-modified nanoparticles191 and conjugates of uricase.187  

Similar results on immunogenicity between PEG and pCB of 5, 10 and 20 kDa were found 

when conjugated to a series of proteins with varying immunogenicity by thiol-maleimide 

coupling (Figure 15A).192 SPR and ELISA-techniques were employed to analyze the formation 

of anti-polymer antibodies after repeated injection in mice. The authors found an increasing 

amount of PEG-specific IgM and IgG antibodies which could be linearly correlated with the 

 

Figure 15. A) Immunogenicity index of various proteins used for conjugation to PEG or pCB. 
B) Correlation of protein immunogenicity index and anti-polymer antibody formation after four 
weekly subcutaneous injections of PEG- or pCB-conjugates in C57BL6 mice. Reprinted from 
ref. [192]. Copyright 2018, with permission from Wiley-VCH Verlag GmbH & Co. KGaA, 
Weinheim. 
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reach the same molecular size of a PEG-conjugate.'®’ pCBoox-IFN displayed 4.4-fold higher 

antiproliferative bioactivity compared to its PEG-conjugate of same molecular weight (62.1 % 

of IFN-activity vs. 14.2 %), which was similarly found for the 10 kDa conjugates. Again, the 

authors speculate that steric hindrance and non-specific hydrophobic interactions between PEG 

and the IFN-binding domain, respectively, IFN-receptor, decrease bioactivity, which was 

mitigated in the case of pCB-conjugates. Notably, the circulation time of pCBzox-IFN in rats 

was comparable to PEGaox-IFN, despite half of the molecular weight. Furthermore, PEG-IFN 
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Similar results on immunogenicity between PEG and pCB of 5, 10 and 20 kDa were found 

when conjugated to a series of proteins with varying immunogenicity by thiol-maleimide 

coupling (Figure 15A).'’* SPR and ELISA-techniques were employed to analyze the formation 

of anti-polymer antibodies after repeated injection in mice. The authors found an increasing 
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immunogenicity of the protein moiety thereby confirming the haptenic character of PEG 

(Figure 15B). In contrast, minimal immunogenicity was found in the case of pCB-conjugates.  

 

2.3.2.2 Polypeptides (PPs) 

Polypeptides (PPs) are synthetic macromolecules comprising of natural amino acids as 

non-toxic building blocks. They are generated by polymerization of highly reactive N-carboxy-

anhydrides as monomers and are considered as biodegradable.145 Poly-g-glutamic acid (g-PGA) 

is one of the most widely used PPs being approved by the FDA for cosmetic applications and 

has also been exploited in various architectures for the conjugation to biomolecules.193–195 An 

interesting study by Lu and co-workers focused on the conformation of PGA within a conjugate 

of the therapeutic protein IFN.196 20 kDa brush-type PGA bearing three ethylene glycol (EG) 

units on its backbone was fused to the N-terminus of IFN and compared with a PEGylated IFN-

analog of same molecular weight. The authors used PGA with either unstructured (DL-PGA) or 

helical (L-PGA) conformation to examine the impact of polymer conformation on the properties 

of the resulting conjugate (Figure 16). The rigid, helical L-PGA-IFN conjugate displayed a 

higher binding affinity and antiproliferative activity in vitro than IFN attached to 

the two unstructured 

polymers PEG or DL-

PGA. Furthermore, L-

PGA-IFN showed 

significantly slower 

tumor growth in vivo, 

no accelerated blood 

clearance upon re-

peated administration 

and almost no detect-

able anti-polymer 

antibodies in rats, 

which was in contrast 

to PEG-IFN and DL-PGA-IFN. Similar results were found for polymer conjugates of human 

growth hormone in the same study indicating the relevance of polymer conformation in 

conjugates of biotherapeutics.196  

Another polymer within this class is the non-ionic and hydrophilic macromolecule 

polysarcosine (PSar) (also called poly(N-methylglycine)), a polypeptoid based on the 

 
Figure 16. Synthesis of IFN-conjugates with either helical or 

unstructured PGA-polypeptides. Adapted with permission from ref. 

[196]. Further permissions related to the adapted material must be 

directed to the ACS. 
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helical (L-PGA) conformation to examine the impact of polymer conformation on the properties 

of the resulting conjugate (Figure 16). The rigid, helical ZL-PGA-IFN conjugate displayed a 

higher binding affinity and antiproliferative activity in vitro than IFN attached to 
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which was in contrast 

to PEG-IFN and DL-PGA-IFN. Similar results were found for polymer conjugates of human 

erowth hormone in the same study indicating the relevance of polymer conformation in 

conjugates of biotherapeutics.!”° 

Another polymer within this class 1s the non-ionic and hydrophilic macromolecule 

polysarcosine (PSar) (also called poly(V-methylglycine)), a polypeptoid based on the 
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endogenous but non-proteinogenic amino acid sarcosine. Due to its large hydrodynamic 

volume, PSar displays anti-fouling properties and is considered as a stealth polymer197,198  with 

a slightly lower flexibility than PEG.199,200 In a recent study by the company BioNTech, PSar 

has been proposed as PEG-alternative surface modification on lipid nanoparticles for mRNA-

delivery, a technology platform that is already in use for the application of the new Sars-Cov2 

vaccine by the same company.201 In contrast to PEG, PSar-modified liposomes were shown to 

evade accelerated blood clearance and exhibited lower antibody-formation upon repeated 

administration with, however, a higher tendency to accumulate in the liver.202 Lu and co-

workers were the first ones to report the successful conjugation of PSar to a therapeutic protein 

and found higher in vitro activity and slower tumor growth in vivo for a site-specific N-terminal 

PSar-IFN, with the terminal half-life being comparable to PEG-IFN.197 Furthermore, PSar-IFN 

displayed significantly lower anti-IFN antibody formation than its PEGylated analog upon 

repeated administration in mice and a higher tumor accumulation with less exposure to the liver.  

 

2.3.2.3 Poly[oligo(ethylene glycol) methyl methacrylate] (POEGMA) 

Several approaches focused on the generation of PEG-derivatives with labile functional 

groups (e.g., disulfide203 or ester204 groups) that allow hydrolysis of PEG into lower molecular 

weight fragments therefore making it, in principle, biodegradable. Among these, one of the 

most prominent examples is the PEG-based, comb-like polymer poly[oligo(ethylene glycol) 

methyl methacrylate] (POEGMA), which gained more and more attraction since the report of 

its controlled synthesis in the 1990s.205 POEGMA consists of a methacrylate backbone 

decorated with side-chain ethylene glycol (EG) monomers of up to nine units. The sidechain 

EGs are connected by an ester linkage that allows hydrolysis and enzymatic breakdown. Studies 

on ATRP-mediated grafting of POEGMA from a large variety of biomolecules have been 

mainly conducted by the Chilkoti group.206–213 Conjugates of salmon calcitonin214 and 

lysozyme215 were produced by direct conjugation of the pre-synthesized polymer.  

POEGMA bears a hydrophobic backbone and amphiphilic ethylene glycol side-chains, 

whose length can be tuned to alter hydrophilicity and hydration state of the polymer.205 This 

so-called “bottlebrush” structure shows excellent protein- and cell-resistant properties, because 

of the high density of oligoethylene glycol (OEG) moieties.216 POEGMA displays a compact 

and rather rigid conformation in solution, with a smaller hydrodynamic size than a PEG 

molecule of same molecular weight.211 All these offer interesting features in regard to 

bioactivity and shielding of immunogenic epitopes on proteins, two key factors in extending 

therapeutic activity of biomolecules. For example, Hu et al. reported higher in vitro bioactivity, 
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similar half-life and a longer anti-tumor effect in vivo for a site-specific C-terminal IFN-

POEGMA66k conjugate, compared to PEGASYS (random PEGylation with a branched mono-

PEG40k). POEGMA was thereby grafted from IFN, which was previously functionalized with 

the initiator for polymerization by employing Sortase A (Figure 17). Despite of IFN-

POEGMA66k bearing a larger molecular weight, it showed higher bioactivity than PEGASYS, 

which could most likely be attributed to the difference in conjugation site but also suggests an 

impact of polymer conformation.213 

 

 

Figure 17. Grafting-from approach of POEGMA on initiator-modified IFN via ATRP. Adapted 
from ref. [213]. Copyright 2016, with permission from Elsevier. 
 

This structural effect is even more pronounced for the shielding of immunogenic epitopes 

on biomolecules. Qi et al. synthesized exendine-POEGMA conjugates with varying polymer 

side chain length bearing either three or nine EG units.212 Analysis of anti-PEG-positive patient 

plasma samples revealed a significant reduction of anti-PEG antigenicity for EG9 exendine-

POEGMA, compared to the two approved PEGylated proteins KrystexxaÒ and AdagenÒ. When 

further reducing the side chain length to three EG units, the anti-PEG antigenicity was virtually 

eliminated without compromising the extended half-life of exenatide. Studies on POEGMA 

grafted on planar surfaces revealed an optimum of two EG units for minimizing anti-PEG 

antigenicity and non-specific adsorption.216 Following these results, the side chain 

hydrophilicity of the polymer seems to play a major role in anti-PEG antigenicity of POEGMA-

conjugates. 

 

2.3.2.4 Polyphosphoesters (PPEs)  

Polyphosphoesters (PPEs) are a relatively young polymer class applied to the field of 

bioconjugation. They carry a biodegradable phosphoester group in their backbone,217,218 display 

low toxicity and high biocompatibility, with analog structural features to the naturally occurring 

teichoic acids and nucleic acids.219 –221 PPEs can be generated by organo-catalyzed anionic ring 
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opening polymerization of cyclic phosphate monomers and are typically employed as 

poly(ethyl ethylene phosphate) (PEEP) or poly(methyl ethylene phosphonate) (PMeEP) for 

conjugation to proteins.218 PPEs exhibit a stealth effect, that is similar to PEG.222 Several 

fundamental studies on solvation and relaxation dynamics of PPE conjugated to different model 

proteins have been reported over the last few years expanding the knowledge about the solution 

properties of those materials.223–227 Bioconjugates of PEEPs (2–33 kDa) were so far reported 

for BSA and catalase, where the in vitro bioactivity of the latter decreased upon polymer 

modification but was in similar range to its PEGylated analogs.228 Similar results were obtained 

for PMeEP-uricase-conjugates which, however, displayed a smaller hydrodynamic volume in 

SEC than PEG-uricase. Following the authors’ explanation, this originates from the difference 

in chain length of PEG and PMeEP, as the molecular weight of their repeating units differ 

approximately by a factor of three therefore leading to smaller hydrodynamic sizes.229 Other 

studies examined the thermal stability of PPE-myoglobin(Mb)-conjugates in regard to polymer 

length, grafting density230 and polymer hydrophilicity.104 PPE-variants with larger 

hydrophilicity displayed better thermal stabilization and protease resistance than their 

hydrophobic analogs highlighting the importance of polymer hydrophilicity for the thermal 

stabilization of proteins. 

 

2.3.3 Degradable natural Polymers: Polysaccharides  

2.3.3.1 Hydroxyethylstarch (HES) 

Hydroxyethylstarch (HES) is a highly biocompatible, modified natural polymer 

structurally derived from amylopectin. It is predominantly produced from maize starch, whose 

high molecular weight amylopectin molecules are transformed into smaller fragments by acid 

hydrolysis and mechanical stress followed by 

modification with hydroxyethyl-groups, which 

allow tuning of the pharmacokinetic properties 

and water-binding capacity. The final step 

includes ultrafiltration to control the molecular 

weight and dispersity of HES.231  

HES is available in molecular weights 

from 70–670 kDa and is widely used as a 

plasma volume substitute with high water-

solubility and low viscosity.232,233 Cleavage 

and degradation in blood takes place by the enzyme a-amylase but can be successfully reduced 

 
Figure 18. Structure of HES.232 The 

oxidation site at the reducing end is marked 

in blue. 
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through a higher content of hydroxyethyl groups. To enable mono-functional HES, the reducing 

end (Figure 18, marked in blue) can be oxidized resulting in an aldonic acid (oxHES), which 

can further be transformed into its lactone by extensive drying. Subsequent activation by NHS-

esters enabled conjugates of serum albumin or oligonucleotides.234,235 Other strategies involved 

bifunctional linkers to introduce maleimide-, aldehyde- and amine-groups.236 Next generation-

HES employs modification of its non-oxidized reducing end with 1-amino-3,3-

diethoxypropane by reductive amination. Acidic deprotection under selective conditions yields 

HES-propionaldehyde for site-selective modification of N-terminal a-amino groups on 

proteins.231,237 

Erythropoietin (EPO) and IFNa-2b have already been successfully HESylated on their N-

terminii, where HES-IFNa-2b displayed higher in vitro bioactivity than PEGasys, possibly 

attributed to the different polymer attachment sites of the two conjugates.231  Pharmacokinetic 

studies following a single subcutaneous injection in rabbits unraveled faster absorption and 

longer half-life in the case of HESylated IFNa-2b, compared to PEGasys.231 Furthermore, 

freeze-drying of an N-terminally HESylated IFNa-2b resulted in better storage stability at 

elevated temperatures than its PEGylated analog.238 Liebner et al. reported lower viscosity, 

higher storage stability and better receptor-binding in vitro for N-terminally HESylated 

anakinra compared to its PEGylated analog.239 Furthermore, the terminal half-life of HES-

anakinra was extended about 6-fold compared to the unmodified protein.240 

Despite HES being evaluated on several biopharmaceuticals already showing potential for 

half-life extension, its naturally large dispersity might still be a problem from a regulatory 

perspective. Additionally, safety concerns need to be addressed, where some types of HES are 

possibly connected to impaired renal function, tissue storage, anaphylactic reactions and 

mortality.241–243 

  

2.3.3.2 Polysialic Acid (PSA) 

Polysialic acid (PSA) is a naturally occurring, linear and polydisperse macromolecule 

consisting of N-acetylneuraminic acid (sialic 

acid) moieties connected by a-glycosidic 

linkages. It naturally occurs in capsules of 

several gram-negative bacteria like Neisseria 

meningitidis serogroup B and C and 

Escherichia coli strains, where it mainly serves 

as a shield to evade the host immune response.244 The diverse isotypes found in bacteria strains 
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display distinct differences in their in vivo circulation time, which depends, for example, on the 

degree of phospholipid acylation or the type of glycosidic linkage.245  

PSA is described as nonimmunogenic and safe. Furthermore, it is negatively charged (and 

therefore highly hydrophilic), stable at physiological pH, but biodegradable due to digestion 

through cellular neuraminidases.246 It displays similar hydration-properties to PEG leading to a 

5–10-fold increase in hydrodynamic volume of a protein and can additionally diminish renal 

clearance through electrostatic repulsion at the negatively charged glomerular membrane, 

leading to an extended circulation half-life.247 Furthermore, IgM antibody formation and 

subsequent accelerated blood clearance has not been observed in the case of PSAylated 

liposomes, further highlighting its stealth properties.248 Tissue-permeability can be improved 

by PSAylation, where, e.g., a PSAylated antibody fragment displayed an up to 30-fold 

improved tumor uptake, compared to its unmodified analog.249,250 PSA seemed to have a drastic 

influence on the hydrodynamic size of the ab-fragment, as the conjugates eluted in the void 

volume of SEC, which, however, might also be attributed to the high negative charge of PSA.252  

PSA derived from E. coli K1 strain (also called colominic acid) consists of a-(2->8) linked 

sialic acid groups and is mainly used for the conjugation to protein therapeutics, as it bears a 

single vicinal diol to be mildly oxidized by NaIO4 at its non-reducing end (Figure 19, C7 and 

C8 bearing the vicinal diol are marked in blue).251 The resulting aldehyde can be further 

modified with linkers or directly used for protein coupling by reductive amination. The latter 

has already been exploited to several proteins,252–255 with erythropoietin and deoxyribonuclease 

I256 being also evaluated in clinical trials. The technology of PSAylation (PolyXenÔ) has been 

commercialized by the company Lipoxen PLC (now Xenetic Biosciences). 

Besides classical chemical ligation strategies, polysialic acid has also been exploited for 

recombinant257  or enzymatic258 protein modification. Another recent study describes the 

polysialylation on glycan 

chains of human 

coagulation factor VIII 

(FVIII) which was 

conducted by the company 

Baxalta.246 In this 

sophisticated approach, a 

20 kDa oxPSA was linked 

to several oxidized carbo-hydrate moieties on N-glycans of FVIII resulting in stable oxime-

linkages, with 6–11 mol PSA per mol of FVIII conjugated (Figure 20, BAX 826). Extensive 
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VIII. Adapted from ref. [246], Copyright 2020, with 
permission from Elsevier. 
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characterization was followed by pharmacokinetic in vivo evaluation where BAX 826 was 

found to exhibit prolonged circulation time in hemophilia A mice, wild-type rats and 

cynomolgus monkeys, compared to the unmodified protein.259 A phase 1 clinical study in 

humans further demonstra-ted the capability of BAX 826 to extend the mean residence time by 

factor 1.5, compared to FVIII alone, while maintaining high tolerability and safety.260 

 

2.3.4 Recombinant Half-Life Extension Strategies 

Recombinant strategies for half-life extension include the technologies of albumin-/Fc-

fusion proteins, XTENylation and PASylation. These approaches allow expression of the full 

conjugate via biotechnological engineering resulting in a monodisperse construct with 

favorable properties. All mentioned technologies are already present on the market (albumin-

/Fc-fusion, AlbufuseÒ) and/or involved in several clinical trials (XTENylation, PASylation). 

 

2.3.4.1 Albumin- and Fc-fusion Proteins 

Albumin and IgG antibodies are ubiquitously present molecules in humans and exhibit long 

circulation times, both with a half-life of around 3 weeks.261–263 The longevity of those two 

molecules can be explained by their high affinity to the neonatal Fc receptor (FcRn), which is 

widely expressed in several cell types throughout the body and prevents ligands from 

intracellular degradation through a pH-dependent recycling process (Figure 21). Following

   

  

Figure 21. FcRn-mediated recycling mechanism of albumin- and Fc-fusion proteins. 
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uptake into cells by fluid-phase pinocytosis, albumin and IgG form complexes with endosomal 

FcRn at acidic pH and get released again into the blood stream upon exposure to the neutral pH 

of the extracellular space.264–268 This process can be exploited for half-life extension by 

genetically fusing either human serum albumin or the N-terminus of the Fc-part of an IgG 

antibody to a therapeutic protein or peptide of interest (mostly on its C-terminus).269 Several 

fusion products have already employed this concept and are under clinical development, with 

by today thirteen approved Fc-fusion proteins269 and one albumin-fusion construct268,270 on the 

market. Other strategies focus on the non-covalent association of proteins and peptides 

equipped with an albumin-binding domain (e.g., C-14 or C-16 fatty acids) to target endogenous 

albumin for half-life extension. This strategy has also proven to be successful, with marketed 

products including insulin and GLP-1.268 

Despite their extremely long half-life, the production of Fc-fusion proteins is cost-intense 

and demands extensive characterization of the respective glycosylation pattern,269 that, in turn, 

is important in regard to circulation half-life.271 Their complex structure requires a large battery 

of analytical methods to ensure safety and stability while excluding aggregation, charge 

variation or immunogenicity of the antibody-fusion protein.269  Furthermore, albumin- and Fc-

fusion proteins do not allow the fine-tuning of half-life, which might be problematic with drugs 

bearing a small therapeutic window. Nevertheless, they have been proven to be a quite useful 

tool for half-life extension as demonstrated by several products on the market. 

 

2.3.4.2 XTENylation 

XTEN describes a class of negatively charged, unstructured polypeptides consisting of 

random sequences of the six hydrophilic amino acids alanine, glutamic acid, glycine, proline, 

serine and threonine. In contrast to IgG- or albumin-fusion proteins, XTEN polypeptides can 

be expressed in bacterial cell lines (typically E.coli) and are mostly encoded together with the 

target gene of the protein of interest yielding a homogenous, monodisperse product after 

expression and purification. This methodology allows high yields and absolute site-specificity 

of XTEN-attachment without the need of cost-intense purification, as compared to PEGylation, 

where typically the removal of multi-PEGylated species and free PEG is necessary.272  The 

parental XTEN-molecule, first described in 2009, consisted of 864 residues (XTEN864,  

79 kDa) and was followed by the development of shorter XTEN polypeptides in recent years. 
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bearing a small therapeutic window. Nevertheless, they have been proven to be a quite useful 

tool for half-life extension as demonstrated by several products on the market. 
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XTEN describes a class of negatively charged, unstructured polypeptides consisting of 
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fine-tuned by varying the length of the XTEN sequence. The technology of XTEN has been 

commercialized by the company Amunix Pharmaceuticals Inc. (USA), with several therapeutic 

biomolecules in clinical trials.276,277 

Fusion of XTEN is predominantly exploited to the N- and C-termini of therapeutic 

biomolecules but can in principle be implemented at any position of the sequence which allows 

even multiple XTENylation of complex molecules like blood factor VIII.272 XTEN is thermally 

stable, biodegradable and considered as non-immunogenic, as it lacks any hydrophobic 

residues, that could trigger aggregation or immune response. Elimination of a radiolabeled 

XTEN864 was primarily observed via the kidneys and no accumulation in organs was found in 

mice and rats.272 Despite of all those unique advantages, the recombinant fusion of XTEN 

protein polymers excludes post-translational modification or other payloads like nucleic acids. 

Therefore, amine- or thiol-moieties can be encoded to the XTEN-sequence which allow further 

chemical ligation with linkers or peptides.272,278,279  

 

2.3.4.3 PASylation 

PAS is an unstructured, hydrophilic, neutral polypeptide consisting of random sequences 

of the amino acids proline (P), alanine (A) and serine (S), that can be genetically fused to the  

   

Figure 22. Concept of PASylation. A) Model structure of a C-terminally PASylated Fab 
fragment. The Fab-fragment is coloured in red, with the antigen-binding site in black. B) 
Comparison of chemical structures of PEG and PAS (side chains abbreviated as R). C) 
Nucleotide and encoded amino acid sequences of the building blocks for different PAS gene 
cassettes. D) Schematic representation of expression cassettes on the plasmids used for PAS-
generation. The PAS can be directly expressed together with the respective protein, as shown 
for the two lowest expression cassettes bearing IFN (lower left) or hGH (lower right).  Reprinted 
from ref. [280]. 
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Figure 22. Concept of PASylation. A) Model structure of a C-terminally PASylated Fab 
fragment. The Fab-fragment is coloured in red, with the antigen-binding site in black. B) 

Comparison of chemical structures of PEG and PAS (side chains abbreviated as R). C) 
Nucleotide and encoded amino acid sequences of the building blocks for different PAS gene 

cassettes. D) Schematic representation of expression cassettes on the plasmids used for PAS- 
generation. The PAS can be directly expressed together with the respective protein, as shown 

for the two lowest expression cassettes bearing IFN (lower left) or hGH (lower right). Reprinted 

from ref. [280]. 
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protein drug of interest followed by direct expression in bacterial (or mammalian) cell lines 

(Figure 22). The resulting homogenous, monodisperse product displays a large hydrodynamic 

volume, long circulation time and extended therapeutic activity.280 Depending on the PAS- 

length attached (100–1000 residues possible) the half-life can typically be extended 10–100 

fold.293 PASylation technology is commercialized by the company XL-protein GmbH 

(Freising, Germany) and has already been applied to more than 10 biologicals of therapeutic 

interest, including antibody fragments, proteins, peptides and nanocarriers.280–295  PAS can also 

be equipped with functional groups for chemical conjugation to target proteins, typically 

established by genetical engineering of the PAS-sequence (e.g., cysteine, N-terminal serine, 

etc.), which also allows branched architectures.293   

PAS polypeptides are biodegradable but stable in plasma and are described as non-

immunogenic, as they lack any hydrophobic epitopes (like XTEN) typically involved in 

aggregation or a potential immune response. The proline-, alanine- and serine-moieties of PAS 

show no intramolecular interactions besides solvent molecules resulting in a fully solvated 

peptide backbone with high solubility and a native disorder.293 This random-chain behavior is 

similar to PEG, however, resulting in a slightly larger hydrodynamic volume for PAS, which 

displays a more elongated shape in solution. Furthermore, PAS shows higher hydrophilicity 

and lower viscosity compared to PEG of similar molecular weight. Interestingly, serine plays 

only a minor role for the hydrophilicity and biophysical properties of PAS, as serine-free 

sequences displayed the same biophysical behavior.288 In contrast, a decrease in proline content 

resulted in a more compact and less random structure of PAS. Increasing the proline portion in 

the polypeptide promotes an elongation and therefore larger hydrodynamic volume of the 

polymer chain.280,288 

Interestingly, the receptor binding affinity of biologicals decreased only slightly upon 

PASylation and was almost unaffected by PAS-length, suggesting a minor role of 

hydrodynamic volume and steric repulsion in the receptor binding of PASylated molecules.280 

This is in contrast to XTEN, which bears negative charge due to its glutamate residues therefore 

promoting repulsion between a protein drug and its receptor. Simultaneously, receptor-

mediated clearance can be hampered, as demonstrated for XTEN-hGH.280,294 The negative 

charge has also been proposed to affect tissue distribution of XTENylated and PASylated 

biopharmaceuticals, with, however, no significant differences observed so far.291  
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PASylation and was almost unaffected by PAS-length, suggesting a minor role of 
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3 Scientific goals 

The employment of PEGylation to increase the circulation half-life of biopharmaceuticals 

has clearly been a revolution in the field of protein drug delivery, with more than ten PEGylated 

products on the market. The technology not only improved patient compliance and safety but 

also expanded treatment options to highly immunogenic, non-human proteins like uricase. 

However, the loss of bioactivity upon conjugation and the formation of antibodies are two major 

shortcomings of PEG, which led to a large body of macromolecules explored as alternatives for 

the purpose of half-life extension of biopharmaceuticals. This work aimed to establish linear 

polyglycerol, a highly hydrophilic and biocompatible polymer, as an alternative polymer 

platform to PEG for the conjugation to therapeutic biomolecules. Several model proteins were 

selected for this approach with the goal to reveal the impact of polymer length and type (LPG 

or PEG) on the performance of the respective protein-conjugates in different in vitro and in vivo 

settings.  

 

Figure 23. Schematic representation of the three projects covered in this thesis (protein 

structures from PDB-entries 1ilr, 1jrj, 2b8u). 
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The conjugation of polymers to a biopharmaceutical demands a highly selective and well-

controlled ligation-process to adjust number and location of the attached polymer chains and to 

avoid a loss in bioactivity. Therefore, we aimed to synthesize site-selectively modified protein-

conjugates with a 1:1 protein-polymer ratio by employing mono-functional LPGs of various 

molecular weights. Instead of model proteins like lysozyme or BSA, we selected the 

therapeutically active biomolecules anakinra, interleukin-4 and exenatide to address alterations 

of their biological activity after polymer modification. PEG-conjugates of the respective 

proteins were synthesized as reference in a similar manner (Figure 23A). 

To ensure a valid comparison between LPG and the benchmark PEG in further 

characterization studies, the molecular weights of the conjugates needed to be similar. Besides 

molecular weight, the hydrodynamic size of a therapeutic protein-PEG conjugate is one of the 

key parameters for its renal elimination and circulation half-life. LPG alone was found to have 

a smaller, more compact, and less flexible structure in solution, compared to the highly 

expanded PEG.129 Additionally, the stability of biopharmaceuticals often suffers from 

aggregation at elevated temperatures and proteolytic degradation, a process which can be 

prevented by the conjugation of PEG. Therefore, a second goal of this work was to conduct an 

extensive biophysical characterization of LPG-and PEG-conjugates to reveal differences in 

their molecular weight, size and stability (Figure 23B). 

The final goal of this thesis was to determine whether LPG is capable to extend the half-

life and therapeutic efficacy of biopharmaceuticals to a similar extent than PEG. Therefore 

LPG-conjugates of various biomolecules were biologically evaluated in different in vitro and 

in vivo settings to gain insights on their bioactivity and pharmacokinetic behavior (Figure 23C).  
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of their biological activity after polymer modification. PEG-conjugates of the respective 

proteins were synthesized as reference 1n a similar manner (Figure 23A). 

To ensure a valid comparison between LPG and the benchmark PEG in further 

characterization studies, the molecular weights of the conjugates needed to be similar. Besides 

molecular weight, the hydrodynamic size of a therapeutic protein-PEG conjugate 1s one of the 
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prevented by the conjugation of PEG. Therefore, a second goal of this work was to conduct an 
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their molecular weight, size and stability (Figure 23B). 
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4 Publications and Manuscripts 

4.1 Polyglycerol for Half-Life Extension of Proteins–Alternative to 

PEGylation? 

 

Michael Tully,* Mathias Dimde, Christoph Weise, Paria Pouyan, Kai Licha, Michael 

Schirner, Rainer Haag* Biomacromolecules, 2021, 22, 1406–1416. 

https://doi.org/10.1021/acs.biomac.0c01627 
 

 

Figure 24. Reproduced with permission from ref. [296].  Copyright 2021, American 

Chemical Society. 

 

I functionalized linear polyglycerol-amine of various molecular weights with the respective 

aldehyde-linker. Furthermore, I synthesized and purified all protein conjugates and conducted 

their characterization via SDS-PAGE, dynamic light scattering (DLS), size-exclusion multi 

angle light scattering (SEC-MALS), circular dichroism (CD), enzyme-stability assay and 

surface-plasmon-resonance (SPR). Moreover, I wrote the manuscript and planned the in vivo 

experiments including evaluation of the final data. Mathias Dimde synthesized and purified 

hyperbranched polyglycerol-aldehyde and was a great support in all kinds of chemical 

questions. Christoph Weise conducted the MALDI-TOF experiments. Paria Pouyan 

synthesized linear polyglycerol-amine of different molecular weights. Michael Schirner was 

involved in planning and consulting of the in vivo experiments. Kai Licha and Rainer Haag 

contributed to questions regarding conjugate synthesis, aquired funding and supervised this 

project.
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Figure 24. Reproduced with permission from ref. [296]. Copyright 2021, American 

Chemical Society. 

I functionalized linear polyglycerol-amine of various molecular weights with the respective 

aldehyde-linker. Furthermore, I synthesized and purified all protein conjugates and conducted 

their characterization via SDS-PAGE, dynamic light scattering (DLS), size-exclusion multi 

angle light scattering (SEC-MALS), circular dichroism (CD), enzyme-stability assay and 

surface-plasmon-resonance (SPR). Moreover, I wrote the manuscript and planned the in vivo 

experiments including evaluation of the final data. Mathias Dimde synthesized and purified 

hyperbranched polyglycerol-aldehyde and was a great support in all kinds of chemical 

questions. Christoph Weise conducted the MALDI-TOF experiments. Paria Pouyan 

synthesized linear polyglycerol-amine of different molecular weights. Michael Schirner was 

involved in planning and consulting of the in vivo experiments. Kai Licha and Rainer Haag 

contributed to questions regarding conjugate synthesis, aquired funding and supervised this 

project. 
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4.2 Prolonged Activity of Exenatide: Detailed Comparison of Site-specific 

linear Polyglycerol- and Poly(ethylene glycol)-Conjugates 

 

Michael Tully, Stefanie Wedepohl, Daniel Kutifa, Christoph Weise, Kai Licha, Michael 

Schirner, Rainer Haag* European Journal of Pharmaceutics and Biopharmaceutics, 2021, 

164, 105–113. 

 

https://doi.org/10.1016/j.ejpb.2021.04.019 
 

 

Figure 25. Reproduced with permission from ref. [297]. Copyright 2021, Elsevier. 

 

I synthesized and purified all LPG- and PEG-exenatide conjugates, conducted their 

characterization via SDS-PAGE, dynamic light scattering (DLS), size-exclusion 

chromatography (SEC) and circular dichroism (CD) and wrote the manuscript. Moreover, I 

initiated and guided the conduction of in vivo experiments at Pharmacelsus GmbH, including 

evaluation of the final data. Stefanie Wedepohl performed the cAMP-bioactivity assay and 

greatly supported in all kinds of biological questions. Daniel Kutifa was synthesizing linear 

polyglycerol-azide of different molecular weights. Christoph Weise conducted the MALDI-

TOF experiments. Michael Schirner consulted in the in vivo experiments. Kai Licha and Rainer 

Haag contributed to questions regarding chemistry, aquired funding and supervised this project. 
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Figure 25. Reproduced with permission from ref. [297]. Copyright 2021, Elsevier. 

I synthesized and purified all LPG- and PEG-exenatide conjugates, conducted their 

characterization via SDS-PAGE, dynamic light scattering (DLS), size-exclusion 

chromatography (SEC) and circular dichroism (CD) and wrote the manuscript. Moreover, I 

initiated and guided the conduction of in vivo experiments at Pharmacelsus GmbH, including 

evaluation of the final data. Stefanie Wedepohl performed the cAMP-bioactivity assay and 

greatly supported in all kinds of biological questions. Daniel Kutifa was synthesizing linear 

polyglycerol-azide of different molecular weights. Christoph Weise conducted the MALDI- 

TOF experiments. Michael Schirner consulted in the in vivo experiments. Kai Licha and Rainer 

Haag contributed to questions regarding chemistry, aquired funding and supervised this project. 
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4.3 Linear Polyglycerol for N-terminal-selective Modification of  

Interleukin-4 

 

Michael Tully,‡  Niklas Hauptstein,‡  Kai Licha, Lorenz Meinel, Tessa Lühmann, Rainer 

Haag,* 2021, submitted, Journal of Pharmaceutical Sciences 

(‡ These authors contributed equally.) 

 
Figure 26. Overview of N-terminal coupling strategy for Interleukin-4 conjugates. 

 

I synthesized and purified all LPG- and PEG-Interleukin-4 conjugates and conducted their 

characterization via SDS-PAGE, dynamic light scattering (DLS), size-exclusion 

chromatography-multi angle light scattering (SEC-MALS), circular dichroism (CD) and 

microscale thermophoresis (MST). Niklas Hauptstein expressed and purified wt-IL-4, 

conducted SDS-PAGE analysis, the bioactivity assay of the conjugates, HPLC-analysis and a 

plasma stability assay. Furthermore, he initiated and prepared samples for the MALDI-TOF 

experiments. I wrote the manuscript together with Niklas Hauptstein. Kai Licha was giving 

chemical support on the conjugation process. Lorenz Meinel, Tessa Lühmann and Rainer Haag 

developed the project idea, aquired funding and supervised this project. 
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Figure 26. Overview of N-terminal coupling strategy for Interleukin-4 conjugates. 

I synthesized and purified all LPG- and PEG-Interleukin-4 conjugates and conducted their 

characterization via SDS-PAGE, dynamic light scattering (DLS), size-exclusion 

chromatography-multi angle light scattering (SEC-MALS), circular dichroism (CD) and 

microscale thermophoresis (MST). Niklas Hauptstein expressed and purified wt-IL-4, 

conducted SDS-PAGE analysis, the bioactivity assay of the conjugates, HPLC-analysis and a 

plasma stability assay. Furthermore, he initiated and prepared samples for the MALDI-TOF 

experiments. I wrote the manuscript together with Niklas Hauptstein. Kai Licha was giving 

chemical support on the conjugation process. Lorenz Meinel, Tessa Ltihmann and Rainer Haag 

developed the project idea, aquired funding and supervised this project. 
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ABSTRACT 

Polymer conjugation to biologics is of key interest to the pharmaceutical industry for the development of 

potent and long acting biotherapeutics, with poly(ethylene glycol) (PEG) being the gold standard. Within 

the last years, unwanted PEG-related side effects (immunological reactions, antibody formation) arose, 

therefore creating several attempts to establish alternative polymers with similar potential to PEG. In this 

article, we synthesized N-terminal bioconjugates of the potential therapeutic human wild-type interleukin-4 

(hIL-4 WT) with linear polyglycerol (LPG) of 10 and 40 kDa and compared it with its PEG analogs of same 

nominal weights. Polyglycerol is a highly hydrophilic polymer with good biocompatibility and therefore 

represents an alternative polymer to PEG. 

Both polymer types resulted in similar conjugation yields, comparable hydrodynamic sizes and an unaltered 

secondary structure of the protein after modification. LPG- and PEG-bioconjugates remained stable in 

human plasma, whereas binding to human serum albumin (HSA) decreased after polymer modification. 

Furthermore, only minor differences in bioactivity were observed between LPG- and PEG-bioconjugates of 

Same nominal weights. The presented findings are promising for future pharmacokinetic evaluation of hIiL- 

4-polymer bioconjugates. 

INTRODUCTION 

The clinical use of small, but potent biologics with molecular masses up to 50 kDa is still vastly 

expandable. Due to their small size, most of these drugs display a limited blood circulation time, therefore 

leading to fast elimination, which makes high frequent dosing necessary.':2 To eliminate this problem, 

several techniques are available ranging from encapsulation of proteins into micelles’, or nanogels* to 

covalent modification, with poly(ethylene glycol) (PEG) representing the most prominent polymer in that 

field.S PEG is an amphiphilic polymer that equips biologics with desirable properties including a diminished 

renal excretion through size expansion as well as a stealth behavior, that leads to reduced opsonization 

and clearance through the immune system.® Drawbacks of PEG include a reduced bioactivity after 

105



 

 106 

  

conjugation’ and its tendency to accumulate in the body, due to its non-degradability.© Within recent years 

the formation of anti-PEG antibodies was reported? which led to an accelerated blood clearance (ABC) in 

some cases thereby impairing PEG’s initial benefits.2.1° Rare anaphylactic reactions observed for the new 

SARS-CoV-2 mRNA vaccine by BioNTech-Pfizer might be attributed to the PEG-moiety located on the lipid 

nanoparticle for vaccine delivery.'1 However, it is not clear yet how serious these PEG-related issues really 

are, especially in the clinical field. PEG is still regarded as a safe excipient and is the preferred 

macromolecule for half-life extension and drug delivery, with other polymers being studied as well. 12:18 

Polyglycerol (PG) is a highly hydrophilic polymer showing excellent biocompatibility’4-171® and further 

displays stealth properties, that are similar to PEG.'9-21 Its half-life is longer than PEG of similar molecular 

weight, '4 which led us to the idea of employing linear polyglycerol (LPG) as a polymer for bioconjugation to 

extend the blood circulation time of biopharmaceuticals. We chose Interleukin-4 (IL-4) as a model protein, 

a potent cytokine bearing highly anti-inflammatory attributes through polarization of macrophages into the 

beneficial M2 type.22.23 IL-4 has several potential applications to target chronic inflammations in wounds, 

arthritic joints and similar affected tissues.2°:24 For site-selective conjugation, we decorated IL-4’s N- 

terminus with LPG-variants of 10 or 40 kDa waa reductive alkylation approach, which has already been 

used previously for other proteins.2° The LPG-conjugates were then systematically compared to PEG- 

analogs of same nominal weights and characterized mainly regarding their hydrodynamic size and 

structural changes followed by evaluation of their bioactivity and behavior towards human plasma 

components in vitro. 

EXPERIMENTAL SECTION 

Materials 

10 kDa methoxy-PEG-hexylaldehyde (mPEG-aldehyde) was from Rapp Polymers (Tubingen, Germany). 

40 kDa MPEG-amine-HCl was from JenKem Technology (Texas, USA). Highly purified water from a MilliQ®- 

system was used for all biological experiments. Buffers were degassed and filtered through 0.22 ym 

regenerated cellulose (RC) filter (Sartorius, Gottingen, Germany) before use. All other chemicals and 
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solvents were obtained from Sigma Aldrich (Steinheim, Germany) and used without further purification, 

unless otherwise noted. 

Synthesis of LPG-10-, LPG-40- and mPEG-40-aldehyde 

A detailed description of the synthesis part can be found in the Supporting Information. 

Expression, purification and characterization of wild-type Interleukin-4 

Human Interleukin-4 (hIL-4 WT) was expressed as described before.?426 In brief hIL-4 WT was cloned 

into the pET21a-vector between the Ndel and BamHI restriction site, bearing an ampicillin resistance. 

Expression took place in E. co/iBL21(DE3) Star bacteria (Thermo Fisher scientific) in Terrific Broth Medium 

at 37 °C. The bacteria were induced at an ODeoo0 of 0.6 with 1 mM IPTG and incubated for 5—6 h. Afterwards, 

bacteria were harvested by centrifugation at 4 °C and 5000 x g for 20 min, resuspended in lysis buffer (50 

mM TrisHCI pH 8.0, 50 mM NaCl, 1 mM EDTA) and sonicated. The pellet was then washed twice with lysis 

buffer containing 1 % Triton X-100, followed by a lysis buffer wash, centrifuged and subsequently unfolded 

in lysis buffer containing 5 M guanidinium hydrochloride, 2 mM reduced glutathione and 0.2 mM oxidized 

glutathione. Refolding was performed as described in literature.?” The refolded protein was dialyzed against 

PBS overnight. On the next day its pH was adjusted to 5 with ACOH, followed by purification on an AKTA 

pure 25 FPLC system (GE Healthcare, Freiburg, Germany) employing ion exchange chromatography (IEX) 

using a HilTrap Q XL 5 mL column (Cytiva Europe GmbH, Freiburg, Germany) (Buffer A: 25 mM NaOAc, 

pH 5.0, Buffer B: 25 mM NaOAc pH 5.0 + 2 M NaCl) with a linear gradient from 0-40 % B in 12 CV, with 

hiIL-4 WT eluting at 30 % B. hIL-4 WT containing fractions were pooled, dialyzed against buffer A and 

applied to an additional IEX purification step (Same buffers as above) using a YMC Biopro IEX smart sep 

S20 1 mL column (YMC Europe GmbH, Dinslaken, Germany) with a gradient from 12-60 % B. Collected 

hiL-4 WT fractions were evaluated on purity by SDS-PAGE and subsequently pooled followed by 

determination of hIL-4 WT concentration by standard BCA assay (Pierce BCA Assay Kit, Thermo Fisher 

scientific) following the manufacturer's instructions. 
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Synthesis and purification of PG- and PEG-Interleukin-4 bioconjugates 

Linear polyglycerol or polyethylene glycol, all mono-functionalized with a single aldehyde group, were 

conjugated to hIL-4’s N-terminus via reductive amination at pH 5, as described previously.78 In short, 600 

Lg of protein were diluted into 1 mL pre-chilled 0.1 MNaOAc pH 5 ina 2 mL glass vial followed by addition 

of three-fold molar excess of activated polymer in the same buffer. After gentle mixing, the reaction was 

initiated by adding freshly prepared NaCNBHs solution (0.5 M) as reducing agent to a final concentration of 

20 mM. The reaction mixture was shaken on a bioshaker (Quantifoil instruments, Jena, Germany) for 16 h 

at 4 °C. The batch was then diluted 10-fold in 25 mM NaOAc pH 5 and subsequently loaded on an AKTA 

pure 25 FPLC system equipped with two HilTrap SP FF 1 mL columns (both GE Healthcare, Freiburg, 

Germany) connected in series (flow rate 1 ml/min), where 25 mM NaOAc pH 5 served as eluent A. To 

isolate the monoconjugates from free polymer, unreacted protein and multi-PEGylated/PGylated species, 

first a washing step with 5 % eluent B (B = eluent A + 2 M NaCl) for five column volumes (CV) was conducted 

followed by a linear gradient from 10-50 % B for 16 CV to elute multi- and mono-PEGylated/PGylated 

proteins. The fractions with mono-conjugated product were collected, pooled and rebuffered against 

phosphate-buffered saline (PBS) pH 7.4 (137 mM NaCl, 2.7 mM KCI, 10 mM NazsHPOs, 1.8 mM KH2PQOz,) 

in Amicon Ultra 2 centrifugal filter units (MWCO 3 kDa, Sigma Aldrich, Steinheim, Germany). Concentration 

was determined by Nanodrop 2000c (Thermo Fisher, Dreieich, Germany) at 280 nm with an extinction 

coefficient of 8860 M1 cm-1.24 Samples were then aliquoted, snap frozen in liquid Ne and stored at -80 °C 

until further use. 

Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

©ODS-PAGE analysis was performed under standard denaturing Laemmli-conditions with acrylamide 

concentrations of 5-12 % in the separation gel. Purified fractions were analyzed on gradient gels with a 

concentration of 5-12 %. Gels were run at 200 V and analyzed via ImageLab software 5.2.1. Standard 

coomassie staining was used to visualize the protein bands.?9 

Size-exclusion multi-angle light scattering (SEC-MALS) 
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For molecular weight determination, size-exclusion chromatography coupled to multi-angle light- 

scattering (SEC-MALS) was performed on a Hitachi L-2130 HPLC system that was equipped with a UV- 

Vis absorption detector (Hitachi L-2400), a DAWN 8+ MALS detector, and an Optilab refractive index 

detector (both Wyatt Technology, Dernbach, Germany). For size exclusion, a Superdex 200 Increase 

10/300 GL column (GE Healthcare, Uppsala, Sweden) was used with the mobile phase consisting of PBS 

pH 7.4 operated at a flow rate of 0.5 mL/min. 50 pg of bioconjugate (based on protein weight) were injected 

in each run. Data analysis was followed by the software Astra 6.0 (Wyatt Technology, Dernbach, Germany). 

Protein conjugate analysis was performed by the Wyatt protein-conjugate application, which was 

embedded in the Astra software. UV extinction coefficient for hIL-4 WT was 8860 M cm, for dn/dc 

(differential refractive index) of hIL-4 WT, a typical value of 0.185 mL/g was used. dn/dc for PEG and LPG 

were measured at 25 °C on a SEC-3010 RI detector (WGE Dr. Bures GmbH, Dallgow, Germany) which 

was Calibrated against potassium chloride and determined as 0.143 mL/g (PEG) and 0.142 mL/g (LPG). 

Reversed Phase (RP)-HPLC analysis 

RP-HPLC analysis was performed on an Agilent 1260 Infinity II system, equipped with a VWD detector. 

The wavelength was set to 214 nm and column oven temperature to 30 °C. 5 yg of each sample were 

applied to a ZORBAX 300SB-CN column (4.6 x 150 mm, particle size = 5 ym) (Agilent, Santa Clara, CA, 

USA) with an autoinjector. For elution of hIL-4 WT or its bioconjugates, a linear gradient of 5-60 % was 

used over 30 min at a flow rate of 1 mL/min (eluent A: Water + 0.1 % TFA, eluent B: Acetonitrile + 0.1 % 

TFA). 

Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) 

The samples were desalted using ZipTipC18-tips (Pierce C18 Tips, Thermo Fisher Scientific) following 

the manufacturer's instructions. Matrix-assisted laser desorption ionization (MALDI-MS) spectra were 

acquired in the linear positive mode using an ultraflextreme mass spectrometer (Bruker Daltonics, Bremen), 

equipped with a 355 nm smartbeam-II™ laser. Mass spectra were calibrated with bovine serum albumin. 

Sinapinic acid was used as a matrix. 
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Dynamic Light Scattering (DLS) 

For determination of the hydrodynamic size of hIL-4 WT and its bioconjugates, dynamic light scattering 

was performed on a Malvern Zetasizer ZS (Malvern Panalytical, Herrenberg, Germany). All measurements 

were done at 25 °C in PBS pH 7.4 (c = 0.4 mg/mL) and samples were centrifuged at 10,000 g for 5 min 

prior to measurements. The hydrodynamic radius is expressed as volume value, as displayed in the 

Zetasizer software version 7.13. 

Far-UV Circular Dichroism (CD) 

CD spectra were recorded on a Jasco J810 (Bruker Instruments, Massachusetts, USA) from 190-250 

nm at 20 °C to monitor changes in the far-UV region of hIL-4 WT after polymer modification. Measurements 

were done in 0.1 M phosphate buffer pH 7.2 at a concentration of 0.10—0.11 mg/mL using a bandwidth of 

2 nm and a1 cm-path-length cuvette. Each spectrum was baseline corrected using a blank spectrum of 

buffer. 

HEK Blue IL-4/IL-13 Cells in vitro secreting alkaline phosphatase (SEAP) assay 

The cell culture assay was performed according to the manufacturer's instructions. The used cells (HEK- 

Blue™ IL-4/1L-13 Cells), colorimetric reagents and antibiotics were bought from Invivogen (Toulouse, 

France). 

Plasma stability in human serum 

For plasma stability, human AB+ plasma from healthy men was used (Sigma Aldrich, Germany, P9523). 

Plasma was thawed on ice only once for aliquotation and thawed once again on ice when used. The plasma 

was incubated in an Eppendorf thermoshaker at 37 °C, 600 rpm. hIL-4 WT or its bioconjugates were spiked 

into the plasma at a final concentration of 1 ng/mL, small aliquots were taken at predetermined time points 

and frozen in liquid nitrogen until further characterization. For quantification of hIL-4 WT or its bioconjugates 

an IL-4 Human ProQuantum Immunoassay Kit (Thermo fisher scientific, A35587) was used according to 
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the manufacturer’s instructions with an ABI Prism 7900 HT Real time PCR machine using the standard 

temperature ramp protocol and micro Amp'™ 96-well qPCR plates (Applied Biosystems, Germany, 

N8010560). 

Microscale-thermophoresis (MST) for determination of HSA-binding 

Microscale thermophoresis experiments were carried out on a Monolith NT.115 instrument (Nano Temper 

technologies GmbH, Munchen, Germany) using red _ laser with LED _ settings’ of 

40 % and low MST power. HSA was fluorescently labeled with Alexa Fluor™ 647 NHS dye (Thermo Fisher 

scientific, Massachusetts, USA) prior to measurements using the standard protocol provided by the 

manufacturer. To minimize alterations in binding due to a high degree of labeling, we used a neutral pH for 

labeling to favor modification at the protein's N-terminus rather than its lysine-residues.°° After purification, 

the degree of HSA-labeling was determined as 0.33 according to the manufacturer's instructions. Without 

the use of surfactant, HSA was sticking to the capillaries during measurement causing fluctuations in 

fluorescence, that was also present when using premium type capillaries (NanoTemper technologies 

GmbH). Therefore, we selected PBS pH 7.4 including 0.05 % Tween®20 as buffer system for our 

measurements. Concentration of HSA was set to 50 nM whereas the hIL-4 WT samples were added ina 

concentration range between 0.4—10,250 nM. Samples were centrifuged at 13,000 g for 5 min directly 

before measurements and subsequently loaded into normal Monolith NT.115 capillaries. All samples were 

prepared and measured in triplicates, with 2-6 runs per measurement. 

RESULTS AND DISCUSSION 

Expression of hiL-4 WT and synthesis of its mono-PG and -PEG bioconjugates 

LPG-mono-aldehyde as well as mPEG-40-aldehyde were synthesized as described previously (for 

polymer characteristics see table S1).81 To exclude a variety in linker structure, the same moiety consisting 

of a hexyl-spacer between polymer backbone and reactive group was used (Scheme 1). hIL-4 WT was 

expressed in E. coli using a simple expression protocol yielding sufficient amounts, as demonstrated in 

Figure 1 (Lane 2: appearance of protein band at 15 kDa). The N-terminus of hIL-4 WT is not engaged into 
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Figure 1. SDS-PAGE of IL-4 WT and its purified bioconjugates. (1) IL-4 WT uninduced (2) IL-4 WT induced 

for 6 h (3) IL-4 WT, (4) IL-4-NH-10-PEG, (5) IL-4-NH-10-LPG, (6) IL-4-NH-40-PEG (7) IL-4-NH-40-LPG. 

112



 

 113 

any molecular interactions regarding hIL-4 WT tertiary structure or during receptor binding with IL-4 receptor 

a (IL-4Ra) in its Type | and Il receptor binding complex (Figure 2) therefore representing a suitable 

attachment site for polymer modification. Targeting the N-terminus for selective bioconjugation bears some 

advantages, as it is usually solvent exposed thereby enabling direct use of the wild-type protein. Its N- 

terminal a-amino group shows a pk,-value ~ 6—9 and therefore displays higher reactivity at acidic pH than 

lysine s-amino groups (pkg = 10.5).90:32 

  
Figure 2. (A) hiL-4 WT engaged in its receptor binding complex(es) Type | and Il (PDB: 2b8u, 3bpl and 

3bpn are superimposed). hiIL-4 WT is displayed in black to white (N to C terminus) with its N-terminal 

residue highlighted in green. Side chain residues engaged into receptor binding are displayed in the color 

of the receptor. IL-4Ra is displayed in red. IL-4Ryc is displayed in petrol (Type |). IL-13Ra1 is displayed in 

orange (Type Il). LPG is displayed as a stick model and was attached artificially to the N-terminal histidine 

for demonstration purposes of its positioning. (B) Polar contacts in the N-terminal environment during Type 

| and II receptor binding. 

On the SDS-gel, a shift to higher molecular weight can be observed after polymer conjugation, with the 

mono-conjugated product being the preferred one under acidic conditions (Figure 1). The diminished gel- 
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migration of the bioconjugates (compared to M,-marker) is possibly due to polymer specific interactions 

with SDS and has already been described for PEG.*3:34 hIL-4 WT LPG bioconjugates showed even shorter 

migration confirming earlier findings for N-terminally modified anakinra,*' and suggests a reduced 

interaction with SDS for LPG-bioconjugates. Due to reactions with hIL-4’s side chain lysine-NH»2 groups, 

multiple bands occurred on the gel reflecting di- or multi-PEGylated/PGylated species (Figure 51), with the 

mono-product being the preferred one under acidic conditions. The mono-conjugated hiL-4 WT was 

isolated by ion exchange chromatography, where unmodified hIL-4 WT as well as multi-conjugated hiL-4 

WT varied in their elution profile due to a different extent of charge shielding of the protein surfaces. (Figure 

52). Overall yields of mono-hiL-4 WT after purification were around 32 % (LPG) and 42 % (PEG) in the 

case of the 10 kDa polymers and expectedly decreased for the larger 40 kDa chains (12 % and 32 %, 

respectively). 

Characterization of hIL-4 WT bioconjugates by MALDI-TOF MS, SEC-MALS and RP-HPLC 

MALDI MS spectra of hIL-4 WT and its 10 kDa bioconjugates showed molecular weights close to their 

theoretical values (= 25 kDa, Figure 3B/C) and further confirmed good comparability between LPG- and 

PEG-variants of the protein. 
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Figure 3. MALDI-TOF analysis of (A) hIL-4 WT (expected Mass +1Ht: 15095.40) (B) hIL-4-NH-10-LPG (C) 

hIL-4-NH-10-PEG. 

Enzymatic in-gel digestion of hIL-4 WT and hIL-4-NH-10-PEG was employed to proof the N-terminal 

conjugation of the polymers. The resulting peptide digests contained different fragments including one N- 

Il 
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terminal peptide bearing the 10 kDa PEG-moiety that was only found in the bioconjugate. We therefore 

assumed the N-terminus being the main polymer attachment site on the protein (Figure S4). 

Further analysis by SEC-MALS confirmed the good comparability between masses of hIL-4-NH-10-LPG 

and -PEG, respectively. For the 40 kDa-bioconjugates, a mass close to its theoretical value (= 55 kDa) was 

obtained for hIL-4-NH-40-PEG, whereas a slightly larger molecular weight was determined for the 40 kDa 

LPG-analog, most likely due to its larger dispersity being also observed in SDS-PAGE (Table 1, Figure 1). 

Table 1. Molecular weight (M,) of hIL-4 WT and its bioconjugates 

determined by SEC-MALS and MALDI-TOF-MS 
  

  

SEC-MALS 6» MALDI-TOF-MS 
[kDa] [kDa] 

hIL-4 WT 15.6 1.00 15.097 

hIL-4-NH-10-LPG 29.8 1.06 29.417 

hIL-4-NH-10-PEG 30.9 1.01 26.003 

hIL-4-NH-40-LPG 72.9 1.08 n.d. 

hIL-4-NH-40-PEG 59.9 1.01 n.d. 
  

n.d.: not determined, DB: dispersity 
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Figure 4. (A) SEC-traces and (B) RP-HPLC analysis of hIL-4 WT and its bioconjugates. 
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In SEC, hIL-4 WT was retained longest on the column (retention time (r.t.) 35.80 min), as it displayed the 

smallest hydrodynamic size of all analyzed compounds (Figure 4A). Upon polymer conjugation, elution was 

shifted to earlier time points, where the LPG-variants of hIL-4 WT eluted a bit later than their PEG-analogs 

being substantiated by LPG’s slightly more compact structure" (r.t. 27.11 min (10-LPG) vs. 25.00 min (10- 

PEG) and 18.79 min (40-LPG) vs. 18.18 min (40-PEG)). We observed this phenomenon previously as well 

for another N-terminally modified protein, displaying a similar SEC-profile of LPG- and PEG-conjugates.*! 

The hydrophobic elution behavior of IL-4 WT and its bioconjugates was examined by RP-HPLC analysis 

using a CN column, which shows stronger separation according to protein hydrophobicity than common 

C18 columns. As demonstrated from the elution profile in reference to hIL-4 WT (r.t. 26.31 min), LPG and 

PEG significantly impact the protein’s overall hydrophilicity (Figure 4B). Conjugation of PEG to hIL-4 WT 

decreased its hydrophilicity and led to stronger retention on the column, which was quite similar for 10 kDa 

(r.t. 27.13 min) and 40 kDa PEG (r.t. 26.95 min). The slightly earlier elution of the 40 kDa PEG bioconjugate 

might be attributed to its larger sterical shielding against interaction with the column matrix. Due to the 

combination of its hydrophilic oxygen atoms and hydrophobic ethylene units, PEG displays amphiphilic 

properties. The stronger retention on reversed-phase columns has been shown previously for other 

PEGylated biomolecules which confirms our findings from HPLC analysis.°5-37 In contrast, 10 kDa LPG (r.t. 

29.23 min) distinctly increased the hydrophilicity, therefore displaying earlier elution. This effect was even 

more pronounced in the case of 40 kDa LPG (r.t. 23.66 min), confirming a chain-length dependent effect 

for LPG. 

Determination of secondary structure and hydrodynamic size 

To exclude perturbance of hIL-4’s secondary structure after polymer modification, circular dichroism was 

employed for structural characterization. hlL-4 WT shows a strong alpha helical motif, displaying three 

extrema at 193, 208 and 222 nm.24 After polymer conjugation, no significant changes in the overall alpha- 

helical structure of hIL-4 WT were observed. (Figure 5A). There was no evidence of random-coil or beta- 

sheet formation present therefore supporting structural retainment of the bioconjugates, independent of 

polymer type or length. 
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Figure 5. (A) CD-spectra of hIL-4 WT and its bioconjugates at 20 °C (n = 3). Data from hIL-4 WT were 

published already.24 (B) Hydrodynamic radius of hIL-4 WT and its bioconjugates in PBS pH 7.4 (n= 38, *n 

= 2). 

Hydrodynamic size of hiIL-4 bioconjugates 

Dynamic light scattering was employed to determine the hydrodynamic size of the bioconjugates. 

hiL-4 WT showed a radius of 1.6 nm at pH 7.4, which was close to earlier reported values obtained from 

similar molecular weight proteins (Figure 5B).°° Conjugation of a single polymer led to a distinct increase in 

size, that was even more pronounced in the case of the 40 kDa bioconjugates thereby confirming a chain- 

length dependent volume expansion. PEG’s known ability to form stable hydration layers consisting of 

around three water molecules per monomer unit®9 impacts the overall hydrodynamic volume of protein 

conjugates, possibly attributed similar for LPG. Furthermore, the highly flexible PEG chain of a 

mono-bioconjugate usually shows random-coil structure adjacent to the protein (dumbbell-model),4° leading 

to a larger overall size. 

Despite its higher abundance of OH-groups in polymer backbone, differences between 10 kDa LPG- and 

PEG-conjugates were not substantial, with the LPG-10-variant being slightly more compact, which confirms 

our findings from SEC. The hIL-4-NH-40-LPG bioconjugate was slightly larger than its PEG-analog, which 

be attributed to a salt effect in DLS, whereas SEC confirmed comparable hydrodynamic sizes between the 

LPG- and PEG-40-bioconjugate. Previous studies by various methods showed, that high molecular weight 
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LPG alone (100 kDa) displayed a distinct smaller size than its PEG-analog of same nominal weight (7.4— 

7.6 nm difference in radius).14 However, in our case we did not observe such a clear difference between 

the LPG- and PEG-bioconjugates within the molecular weight range used in this study. We speculate this 

distinct compactness might only be pronounced for the free polymer bearing larger chain lengths and 

therefore higher molecular weights. 

In vitro activity of hIL-4 bioconjugates 

To assess the impact of polymer conjugation on hIL-4's in vitro activity, we tested our bioconjugates in a 

HEK 2983 cell line expressing IL-4-Ra and IL-13Ra1. Binding of hIL-4 WT to IL-4-Ra Is recognized by IL- 

13Ra1 resulting in a dimerization of the receptor, which triggers a tyrosine kinase (Tyk2, JAK1)-mediated 

translocation of STAT6 into the nucleus.*1 The latter promotes expression of secreted embryonic alkaline 

phosphatase (SEAP), which can be finally determined in a colorimetric assay. 
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Figure 6. SEAP assay of HEK Blue IL-4/IL-13 cells after 20 h of stimulation with hIL-4-WT and its 

bioconjugates. Data points represent mean with SD (n = 3). 

hIL-4 WT binds to its IL-4Ra-subunit in the pM range,*? which was confirmed by an EC50-range of 1.7-— 

2.1 pM in our assay (Figure 6, Table 2). Upon polymer conjugation, the biological activity of hIL-4 WT 

diminished, with hIL-4-NH-10-LPG and hiL-4-NH-10-PEG displaying an approximately three-fold reduced 
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bioactivity. Further extension of the polymer chain resulted in an almost twelve-fold decrease of receptor 

activation. (EC50: 20.0—24.2 pM and 20.8—25.9 pM for hIL-4-NH-40-LPG and -40-PEG, respectively). The 

loss in bioactivity thereby scaled proportionally to the increase in polymer molecular weight, as each 

additional 10 kDa polymer-unit resulted in an approximately three-fold reduction of in vitro activity of hIL-4 

WT (Table 2). Despite their different hydrophilicity profile, LPG- and PEG-bioconjugates of same nominal 

weights displayed comparable biological activities, which is in line with other LPG- and PEG-bioconjugates 

reported.3!:43 Therefore, we assume the rationale behind diminished biological potency originates from 

Steric hindrance caused by larger hydrodynamic sizes rather than from variations in the bioconjugates 

hydrophilicity. 

In another study by Luhmann et al., 4 kDa poly(2-methyloxazoline) (PMeOx) was employed for the site- 

specific modification of hIL-4 followed by characterization of its in vitro activity with a similar SEAP-assay 

as applied here.22 The SEAP-expression level of PMeOx-IL-4 was close to unmodified IL-4 but diminished 

about factor 1.2-1.4, which is in line with the results obtained for our LPG- and PEG-hIL-4 WT 

bioconjugates. PMeOx displays comparable hydrophilicity to PEG, but a slightly smaller hydrodynamic size, 

which might be beneficial in maintaining the biological activity of proteins.44:45 Coupling of PMeOx occurred 

at an alkyne-functionalized lysine at position #K42, which is in close proximity to IL-4’s N-terminus therefore 

allowing a certain comparability with the bioconjugates investigated here. However, the molecular weight 

of the polymers is different (4 kDa vs. 10 and 40 kDa, respectively) which impedes a direct contrasting of 

the in vitro activity of the respective bioconjugates. 

Plasma stability and HSA-binding of hIL-4 WT and its bioconjugates 

To reveal potential benefits through polymer conjugation impacting the plasma stability of hIL-4 WT, we 

incubated the free protein or its bioconjugates for 24 h in human plasma and collected samples at 

predetermined timepoints. No significant decrease in hIL-4 WT content in plasma was observed for up to 

24 h therefore demonstrating good stability in vitro (Figure 7A). Conjugation of LPG or PEG of different 

molecular weights to hIL-4 WT had no significant impact on its plasma stability, as all bioconjugates 

remained stable for up to 24 h, which confirms previous data for PEGylated murine IL-4.24 
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Table 2. Important biological parameters of hIL-4 WT and 
its bioconjugates. EC50 and Kp values are given as 95% 
confidence intervals. 
  

EC50 [pM] Kp to HSA [nM] 
  

hIL-4 WT 1.7-2.1 19.5-65.3 

hiL-4-NH-10-LPG 0.8-6.7 281.1-347.2 

hIL-4-NH-10-PEG 9.1-5.8 93.7-255. 1 

hiL-4-NH-40-LPG 20.0-24.2 126.1-286.6 

hIL-4-NH-40-PEG 20.8-25.9 298.9-332.0 
  

Besides stability, we further investigated binding of hIL-4 WT and its bioconjugates to the most abundant 

plasma protein human serum albumin (HSA). In pharmaceutical development, plasma protein binding is of 

high interest, as its extent usually impacts bioavailability and -distripution of drugs. HSA is often used as a 

target to increase blood circulation time by incorporating alobumin-binding motifs on the target protein, 4647 

or direct fusion to an albumin molecule.48 Figure 7B shows the binding curves for hIL-4 WT and its LPG- 

and PEG-bioconjugates, where free hIL-4 WT displayed relatively strong binding in the nM-range (kp = 42.4 

nM). Upon polymer conjugation, the affinity to HSA decreased with ascending polymer length in the case 

of hIL-4 WT PEG-conjugates (kp = 159.4 nM and 315.5 nM for hiL-4-NH-10-PEG and -40-PEG, 

respectively), which we mostly attribute to steric hindrance and the stealth effect of PEG.49 Furthermore, 

PEG might prevent hydrophobic interactions between hIL-4 WT and HSA due to its amphiphilic nature.5° 

52 The LPG-variants of hIL-4 WT on the other hand showed an inverse behavior regarding HSA-affinity, 

with the larger hIL-4-NH-40-LPG displaying superior affinity to HSA (kp = 206.3 nM) compared to its 10- 

kDa analog (kp = 314.1 nM). We assume that the distinct higher hydrophilicity of the hIL-4-NH-40-LPG 

bioconjugate might promote HSA-binding to hIL-4 WT, even though differences are only modest. Despite 

their overall HSA binding diminished in comparison to hIL-4 WT, this minor effect will be likely negligible for 

the circulation half-life of hIL-4 WT LPG bioconjugates. hIL-4 WT alone shows a serum half-life of only 19 

min in humans,°? which can already be extended six-fold in mice through the addition of a 10 kDa PEG 

moiety24 and resulted in similar HSA binding properties as hIL-4-NH-40-LPG (Figure 7B). Therefore, an 
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extended circulation time of LPG-hIL-4 WT bioconjugates will be mostly accounted to an increase in 

hydrodynamic size rather than to their binding to HSA. 
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Figure 7. (A) ELISA quantification of hlIL-4 WT and its bioconjugates after incubation in human plasma for 

24 h. (B) Binding analysis of hIL-4 WT and its bioconjugates with fluorescently labeled HSA upon 

thermophoresis. Each data point represents mean with SD (n = 3). 

CONCLUSION 

In this article, we demonstrate site-selective N-terminal ligation of human interleukin-4 WT with the two 

distinct polymer types, linear polyglycerol and poly(ethylene glycol). N-terminal conjugation was achieved 

through a reductive alkylation approach at acidic pH yielding the respective mono-conjugates of hIL-4 WT, 

which were subsequently contrasted in terms of molecular size, in vitro stability, bioactivity and HSA-binding 

properties. LPG- and PEG-hIL-4 WT of same nominal weights showed comparable molecular masses and 

hydrodynamic sizes. The alpha-helical structure of hIL-4 WT was retained after polymer modification, 

whereas the bioactivity decreased in a molecular weight dependent manner, where LPG- and PEG-hIL-4 

WT of same nominal weights behaved similar. All bioconjugates as well as the free protein showed no 

degradation for up to 24 h in human plasma therefore indicating good in vitro stability. Finally, affinity to the 

plasma protein HSA was determined, where binding of hIL-4 WT generally diminished after polymer 

conjugation. 
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To our knowledge, this is the first study describing the N-terminal polymer modification of hIL-4 WT. We 

believe the data presented here could serve as a fundamental to unravel differences in the pharmacokinetic 

and pharmacodynamic in vivo profile of PEGylated and PGylated forms of hIL-4 WT. From an in vitro 

perspective, N-terminal LPG-hIL-4 WT bioconjugates showed equivalent biological performance to their 

PEG-analogs therefore highlighting the good potential of LPG as an alternative polymer platform to improve 

the pharmacokinetics of small biologics. 
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EXPERIMENTAL 

Dialysis tubes, molecular weight cut-off (MWCO) 1 kDa, were from Carl Roth (Karlsruhe, Germany). 40 

kDa LPG-Nsz was purified additionally by Tangential Flow Filtration (RC-membrane, MWCO 10 kDa). Gel- 

permeation chromatography (GPC) of the LPG-Nz3 polymers was performed on an Agilent HPLC system 

containing an IsoPump (G1310A), a refractive index detector (G1362A) and a manual injection unit 

(G1328B) (Agilent 1100 Series, PSS, Mainz, Germany). 0.1 M NaNOs was used as mobile phase on 

three Suprema size exclusion columns (calibrated against pullulan (842—708,000 Da)) connected in 

series to determine molecular weight distribution of the LPGs (Table $1). 

Synthesis of LPG-10, LPG-40 and PEG-40-aldehyde 

The synthesis of LPG- and PEG-aldehyde follows a previous protocol’ and is described here in short. 

LPG-N3 was synthesized starting from the monomer ethoxy ethyl glycidyl ether (EEGE)2 through anionic 

ring-opening polymerization according to Richter, et a/.2 In short, tetraoctylammonium bromide as initiator 

was added to a dried Schlenk flask under inert atmosphere, melted under vacuum and dissolved in dry 

toluene after cooling to room temperature. Subsequently, EEGE was added while cooling to 4 °C with an 

ice bath and the polymerization was initiated by fast addition of the catalyst triisobutylaluminium via 

syringe. After 16 h at room temperature, the reaction was quenched with ethanol and further purified by 

several cycles consisting of freezing and subsequent centrifugation, followed by final dialysis against 

acetone. The obtained product LPEEGE-Br was then deprotected over night in 3 % HCl (conc.), azidated 

and subsequently reduced with Tris(2-carboxyethyl)phosphine-hydrochloride (TCEP-HCIl) to yield the 

respective LPG mono amine. In a final step, LPG-amine was modified with the short linker 6,6- 

dimethoxyhexanoic acid (synthesized from 2-Hydroxycyclohexanone dimer, as described previously*°) in 

DMF in the presence of N,N,N’,N’-Tetramethyl-O-(N-succinimidyl)uronium hexafluorophosphate (HSTU) 

and N,N-Diisopropylamine. After 72 h, the reaction mixture was dialyzed against water (three days) 
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followed by acidic deprotection (3 % HCl conc.) and lyophilization to yield the aldehyde-bearing polymer 

as slightly yellow solid. 

synthesis of mPEG-40-aldehyde followed the same protocol as described above, starting from the 

commercially available mPEG-40-NH2-HCI. 

Endoproteinase GluC in-gel digest 

In gel digest of IL-4-PEG 10 kDa was performed as described before with GluC (Promega) in 100 mM 

ammonium bicarbonate buffer instead of Elastase.® After 5% TFA extraction following overnight digest 

MALDI-MS was performed as described in the experimental section. GluC was chosen over Trypsin to 

yield a longer amino acid chain rest, as Il-4 contains a lysine at position 2, leaving only a 2 AA residue. 
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Table $1. Molecular weight characteristics and level of aldehyde content of the different polymers used in 

this study. (See also ref [1]) 

  

  

polymer sample Mn Mw D end group conversion to 

[g/mol] [g/mol] protected aldehyde [9%] 

10-LPG-N3 12222 14620 1.20 66 

40-LPG-Ngz 49377 64421 1.30 61 

10-mPEG-CHO - 1115382 1.05 >95¢ 

40-mPEG-NH2-HCl - 42266 1.03 13 

  

The number in the polymer sample describes the nominal molecular weight in kDa. The 

properties of PEG were used as supplied by the manufacturer's data sheet. The 

calculation of the number of protected aldehyde-functionalized polymer chains is 

described previously.' D = dispersity. 2M,p-value. PMALDI-TOF. cValue for unprotected 

aldehvde, as supplied by manufacturer. 

131 

S4



 

 132 

  

1 2 3 (kDa) 4 (kDa) 5 (kDa) 

| g | 8 
wor 4 
55 of 

|| 4 1s sad 35 

a 25 

25 | 
45 15 

15 
10 = 

oa» ~ 4 

Figure S1. SDS-PAGE of coupling reactions of IL-4 WT _ with its different polymers. 

(1) IL-4 WT, (2) IL-4-NH-10-LPG, (3) IL-4-NH-10-PEG, (4) IL-4-NH-40-LPG, (5) IL-4-NH-40-PEG. 

> WW
 

~~ IL4-10-LPG ——— IL4-10-PEG ---- Conc. B —— IL4-40-LPG ———IL4-40 PEG ---- Conc. B 

       

    

  

        

      

60- 60 60- - 60 

504 50 90- ts - 150 

a ] 2 — 40- - 40 Oo 

— 4U- 40 — | Oo 
> = <x 5 

. 30- - © 

é 30 woz = es 
: . 30 3 © 20- -20 8 

= : S = mono- . - S 
20- a mono- - 200 10- conjugate free -10 mw 

Pe conjugates Se tees x 

a 7 0- -0 = 10- . free - 10 | mono- , 
| IL-4 WT ; -10 conjugate 10 

0 ' - 0 

20 25 30 35 40 25 30 35 40 
Time [min] Time [min] 

Figure S2. FPLC cation exchange chromatogram of purification of (A) IL-4-NH-10 kDa and 

(B) IL-4-NH-40 kDa conjugates. 

S5 

132



 

 133 

Di
ff
er
en
ti
al
 
re
fr
ac
ti
ve
 
i
n
d
e
x
 

OQ 
Di

ff
er

en
ti

al
 
re
fr
ac
ti
ve
 
i
n
d
e
x
 

= 
Di

ff
er

en
ti

al
 
re
fr
ac
ti
ve
 
i
n
d
e
x
 

- 8x10 

; 7x10 

: 6x10* 

: 5x10 

: 4x10* 

- 3x104 

[j
ou
w/
6]
 
yy
bi
am
 
se

jn
oa

j0
 

+ 2x104 

- 4x104 

        
Time [min] 

- 5x104 

- 4x104 

- 3x10 

- 2x10° 

jo
w/
6]
 
}y

Bi
em

 
se
jn
oa
jo
; 

- 4
 
—
 

o
 rs

 [       a ee 

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 

Time [min] 

- 9x104 

- 8x104 

- 7x104 

lh, - 6x10" 

- 5x104 

Bi
am

 
se

jn
oa

jo
w;

w 

- 4x104 

- 3x104 

wi
/6

] 
34
 

- 2x104 2 

  - 4x104       oo 
16 18 20 22 24 26 28 30 32 34 36 38 

Time [min] 

wm 
Di
ff
er
en
ti
al
 
re
fr
ac
ti
ve
 
i
n
d
e
x
 

S 
Di
ff
er
en
ti
al
 
re

fr
ac

ti
ve

 
i
n
d
e
x
 

- 8x104 

; 7x10* 

: 6x10* 

: 5x10* 

; 4x10 

- 3x10 

- 1x104 

[j
ou
u/
6]
 
yy

uB
Ia

m 
se

jn
oa

jo
w;

 

      pp pr ppp rp pp ef 0 
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 

Time [min] 

1x10° 

1x10° 

1x10° 

9x104 

8x10‘ 

=~
 

=
 

—
k
 So 

M 
Je

]N
da

|O
W 

6x10‘ 

5x104 

4x104 

3x104 

19
 

[}
ow
w/
6]
 
34
6 

2x10* 

141x104 

    I toto ot 

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 

Time [min] 
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5 Conclusion and Outlook 

In this thesis, the overall goal was to establish linear polyglycerol as PEG-alternative 

polymer platform for the half-life extension of therapeutic proteins and peptides. The aim was 

to design polymer-protein conjugates with a 1:1 ratio of polymer to biomolecule by employing 

mono-functional LPG and site-selective coupling chemistries. Furthermore, this work aimed to 

reveal differences between LPG- and PEG-bioconjugates in regard to their hydrodynamic size, 

bioactivity, and stability in vitro and their extended half-life and therapeutic efficacy in vivo. 

In the first project, a site-selective N-terminal conjugation strategy was developed which 

enabled modification of the therapeutic protein anakinra by employing LPG-aldehyde of 5, 10, 

20 and 40 kDa. PEG-conjugates of the same protein were synthesized as reference. The 

molecular weights of the isolated mono-conjugates were systematically analyzed by multi-

angle light scattering and mass spectrometry and confirmed close values for LPG- and PEG-

conjugates of same nominal weight, with dispersities below 1.1.  

The hydrodynamic size of the bioconjugates increased with ascending polymer length, 

where the LPG-conjugates displayed slightly smaller values than their PEG-analogs. This 

finding confirms the general picture of LPG as a more compact polymer than PEG, even though 

differences were not as large as found for the free polymers.129 Studies on enzymatic and 

thermal degradation revealed a somewhat better performance for the more hydrophilic LPG-

conjugates, which aids in designing more stable protein-conjugates in the future. Additionally, 

binding affinity to IL-1 receptor 1 decreased about factor 3–7 upon polymer conjugation, with 

no significant differences between LPG- and PEG-conjugates observed. Finally, a 

pharmacokinetic study of a selected Anakinra-40-LPG conjugate revealed a similar 

performance and terminal half-life than its PEGylated analog of same molecular weight. 

The second project focused on the site-specific C-terminal conjugation of the propargyl-

modified diabetes therapeutic exenatide. LPG-N3 of 10, 20 and 40 kDa was employed to 

synthesize conjugates by Cu-catalyzed click-chemistry. PEG-conjugates of similar molecular 

weights again served as reference. The secondary structure of exenatide was not altered by 

polymer conjugation, whereas its hydrodynamic size increased with ascending polymer length. 

The values were higher than expected, as exenatide is known to exhibit oligomerization in 

solution, which was not prevented by conjugation of LPG or PEG. Exenatide-LPG-conjugates 

displayed smaller sizes and a more compact structure than their PEG-analogs of same molecular 

weight. Furthermore, thermal denaturation studies showed a slightly larger retainment of 

exenatide’s a-helical structure upon PEG-conjugation, which was independent of the length of 

the polymer. Determination of the in vitro bioactivity of the conjugates by GLP-1 receptor-
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mediated cAMP-response revealed no significant differences between LPG- and PEG-

exenatide of same molecular weight. Despite the bioactivity diminished after conjugation, 

maximum receptor response was still enabled at slightly higher concentrations. The main goal 

of this project was the evaluation of LPG-conjugates in a therapeutic disease model. A single 

injection of a selected exenatide-40-LPG conjugate in diabetic mice led to a significant blood 

glucose reduction for up to 72 h. This extended therapeutic activity was comparable to its 

exenatide-40-PEG analog, but 9-fold longer than native exenatide (8 h). 

The third project aimed to focus on the plasma characterization of LPG-and PEG-

conjugates. The same coupling strategy as in project 1 was employed to generate N-terminal 

bioconjugates of interleukin-4. Comparable masses and hydrodynamic sizes between LPG- and 

PEG-IL-4 of same nominal weights were confirmed by SEC-MALS, MALDI-TOF and DLS, 

respectively. HPLC analysis revealed the large impact of LPG on the overall hydrophilicity of 

the conjugate, which increased with ascending polymer length. In contrast, PEG-conjugation 

resulted in a more hydrophobic character of IL-4. Polymer modification diminished the 

bioactivity of IL-4 in a proportional manner, where each 10 kDa polymer unit attached resulted 

approximately in a three-fold reduction of potency compared to the unmodified protein. The 

hydrophilicity had no substantial impact on the bioactivity in vitro, as LPG- and PEG-modified 

IL-4 displayed similar activation of the respective receptor. All conjugates remained stable in 

human plasma for up to 24 h and displayed diminished binding to human serum albumin (HSA), 

with no significant impact of polymer type or length observed. 

 

To conclude, this thesis has demonstrated comparable in vitro and in vivo performances of 

LPG- and PEG-conjugates of various therapeutic proteins and thereby verified polyglycerol’s 

great potential as an alternative to PEG for half-life extension. The impact of LPG on the 

bioactivity, terminal half-life and in vivo efficacy of selected biopharmaceuticals was similar to 

PEG. Differences were observed in thermal and proteolytic stability, overall hydrophilicity, and 

hydrodynamic size of the conjugates.  

In the future, questions regarding the immunogenicity and antigenicity of LPG need to be 

answered. Several setups employing ELISA or SPR already exist that enable the detection of 

anti-polymer specific antibodies in serum from healthy animals that received weekly doses of 

a specific PEGylated protein.11,298 Other studies evaluated polymers of different chemical 

structures on their cross-reactivity towards anti-PEG antibodies.113 This could be useful to 

determine the antigenicity of LPG outruling concerns about its reactivity towards pre-existing 
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anti-PEG antibodies in the healthy population, which might impede the therapeutic efficacy of 

PGylated proteins.  

Another aspect covers the lyophilization of biopharmaceuticals. Due to its high content of 

hydroxy groups, LPG (free or conjugated) could serve as a stabilization tool during freeze-

drying of therapeutic proteins. So far, high concentrations of sugars (trehalose, sucrose) are 

used to replace the water hydration shell upon drying.299 Conjugation of LPG might serve as a 

similar tool and could potentially maintain protein structure, stability and bioactivity after 

drying without the need of complex formulation studies. 
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6 Zusammenfassung 

Ziel dieser Arbeit war es, Polyglycerol als PEG-alternative Polymer-Plattform zur 

Halbwertszeitverlängerung von therapeutischen Proteinen und Peptiden zu etablieren. Der 

Fokus lag dabei auf Polymer-Protein Konjugaten mit definiertem Verhältnis von einer 

Polymerkette pro Protein, was durch die Anwendung von monofunktionalem LPG und 

ortsspezifischer Konjugationschemie erreicht werden sollte. Weiterhin sollten Unterschiede 

zwischen LPG- und PEG-Biokonjugaten bezüglich deren hydrodynamischer Größe, 

Bioaktivität und Stabilität in vitro sowie ihrer verlängerten Halbwertszeit und therapeutischen 

Effektivität in vivo untersucht werden. 

Im ersten Projekt dieser Arbeit wurde eine ortsspezifische, N-terminale 

Konjugationsstrategie entwickelt, bei der LPG-Aldehyd mit Molekulargewichten von 5, 10, 20 

und 40 kDa an das therapeutische Protein Anakinra konjugiert wurde. PEG-Konjugate des 

gleichen Proteins wurden als Vergleichsmaterial hergestellt. Die Molekulargewichte der 

gereinigten Mono-Konjugate wurden systematisch mittels multi-angle light scattering und 

Massenspektrometrie untersucht, wobei ähnliche Werte für LPG- und PEG-Konjugate 

gleichen, nominellen Molekulargewichts erhalten wurden. Die Dispersität lag hierbei bei unter 

1,1.  

Die hydrodynamische Größe der Biokonjugate nahm mit steigender Polymerlänge zu, 

wobei die LPG-Konjugate ein etwas kleineres Volumen als ihre jeweiligen PEG-analoga 

zeigten. Die Ergebnisse unterstützen hierbei das Bild von LPG als etwas kompakterem 

Polymer, verglichen mit PEG, obwohl die Unterschiede bei den Konjugaten nicht so deutlich 

waren wie bei den freien Polymeren in Lösung.129 Studien zum enzymatischen und thermischen 

Abbau zeigten eine höhere Stabilität der hydrophilen LPG-Konjugate, was hilfreich beim 

zukünftigen Design von stabileren Proteinkonjugaten sein könnte. Zusätzlich wurde die 

Affinität der Konjugate an den IL-1 Rezeptor 1 untersucht, wobei die Bindung um Faktor 3–7 

abnahm und die LPG- und PEG-Konjugate ähnliches Verhalten zeigten. Schließlich bestätigte 

eine pharmakokinetische Studie eines ausgewählten Anakinra-40-LPG Konjugats eine 

vergleichbare Zirkulationsdauer zum jeweiligen PEG-Analogon. 

Im zweiten Projekt lag der Fokus auf der ortsspezifschen, C-terminalen Konjugation des 

Diabetestherapeutikums Exenatid. LPG-Azid (10, 20 und 40 kDa) wurde mittels Kupfer-

katalysierter „Klick“-Chemie an das Propargyl-modifizierte Peptid angebracht, wobei PEG-

Konjugate gleichen Molekulargewichts erneut als Vergleichsmaterial dienten. Die 

Sekundärstruktur von Exenatid wurde durch die Polymerkonjugation nicht beeinflusst, 

wohingegen die hydrodynamische Größe mit aufsteigender Polymerkettenlänge zunahm. Die 
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erhaltenen Werte waren hierbei größer als erwartet, da Exenatid zur Bildung von Oligomeren 

in Lösung neigt, was durch Konjugation von LPG oder PEG nicht unterbunden werden konnte. 

Die hydrodynamischen Durchmesser der LPG-Exenatid-Konjugate waren kleiner als die der 

PEG-Konjugate gleichen Molekulargewichts. Die a-helikale Sekundärstruktur von Exenatid 

konnte bei Erhitzen besser durch PEG stabilisiert werden als durch LPG, wobei die Länge der 

Polymerkette keine große Rolle spielte. Eine Aktivierung des GLP-1 Rezeptors wurde für LPG-

Exenatid in ähnlichem Maße erreicht wie für PEG-Exenatid gleichen Molekulargewichts. 

Hierbei wurden jedoch höhere Konzentrationen der größeren Konjugate benötigt, um die 

gleiche, maximale Rezeptorantwort von unmodifiziertem Exenatid zu generieren. Schließlich 

konnte gezeigt werden, dass ein ausgewähltes LPG-Exenatid-Konjugat die Blutglukose in 

diabetischen Mäusen ähnlich stark und lange reduzieren kann wie ein PEG-Konjugat gleichen 

Molekulargewichts (bis zu 72 Stunden). 

Im dritten Projekt wurde der Fokus auf die Charakterisierung von LPG- und PEG-

Konjugaten gegenüber Plasmabestandteilen gelegt. Hierfür wurde die etablierte 

Kupplungsstrategie aus dem ersten Projekt angewandt, um N-terminale Konjugate des Proteins 

Interleukin-4 (IL-4) zu erhalten. LPG- und PEG-IL-4 gleichen, nominellen Molekulargewichts 

zeigten vergleichbare Massen und hydrodynamische Größen. HPLC-Analysen bestätigten den 

großen Einfluss von LPG auf die generelle Hydrophilie des Konjugats, die mit steigender LPG-

Kettenlänge zunahm. Im Gegensatz dazu führte die Konjugation von PEG zu einem eher 

hydrophoben IL-4-Konstrukt. Die Bioaktivität wurde durch Polymerkonjugation reduziert, 

wobei das Anbringen einer 10 kDa Polymereinheit zu einer ungefähr 3-fachen Abnahme der in 

vitro Wirksamkeit führte. Große Unterschiede zwischen LPG- und PEG-IL-4 konnten hierbei 

nicht festgestellt werden. Alle Konjugate waren stabil in Humanplasma (bis 24 Stunden) und 

zeigten verminderte Affinität zum Plasmaprotein Human Serum Albumin (HSA).   

 

Zusammenfassend konnte in dieser Arbeit dargestellt werden, dass LPG- und PEG-

Konjugate verschiedener therapeutischer Proteine ein ähnliches in vitro und in vivo Verhalten 

zeigen, was das große Potential von Polyglycerol als PEG-Alternative zur 

Halbwertszeitverlängerung unterstreicht. Der Einfluss von LPG auf Bioaktivität, terminale 

Halbwertszeit und in vivo Wirksamkeit von ausgewählten Biopharmazeutika war ähnlich wie 

der von PEG. Unterschiede konnten in den Bereichen thermischer und proteolytischer 

Stabilität, genereller Hydrophilie und hydrodynamischer Größe festgestellt werden.  

Um die Anwendbarkeit von Polyglycerol als PEG-Alternative weiter zu verfestigen, sollten 
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PEG-Konjugate gleichen Molekulargewichts. Die a-helikale Sekundarstruktur von Exenatid 

konnte bei Erhitzen besser durch PEG stabilisiert werden als durch LPG, wobei die Lange der 

Polymerkette keine groBe Rolle spielte. Eine Aktivierung des GLP-1 Rezeptors wurde ftir LPG- 

Exenatid in ahnlichem Mafse erreicht wie ftir PEG-Exenatid gleichen Molekulargewichts. 

Hierbe1 wurden jedoch héhere Konzentrationen der gréBeren Konjugate bendtigt, um die 

gleiche, maximale Rezeptorantwort von unmodifiziertem Exenatid zu generieren. SchlieBlich 

konnte gezeigt werden, dass ein ausgewdhltes LPG-Exenatid-Konjugat die Blutglukose in 

diabetischen Mausen dhnlich stark und lange reduzieren kann wie ein PEG-Konyjugat gleichen 

Molekulargewichts (bis zu 72 Stunden). 

Im dritten Projekt wurde der Fokus auf die Charakterisierung von LPG- und PEG- 

Konjugaten gegentiber Plasmabestandteilen gelegt. MHuerftir wurde die etablierte 

Kupplungsstrategie aus dem ersten Projekt angewandt, um N-terminale Konjugate des Proteins 

Interleukin-4 (IL-4) zu erhalten. LPG- und PEG-IL-4 gleichen, nominellen Molekulargewichts 

zeigten vergleichbare Massen und hydrodynamische Gréfen. HPLC-Analysen bestatigten den 

eroBen Einfluss von LPG auf die generelle Hydrophilie des Konjugats, die mit steigender LPG- 

Kettenlange zunahm. Im Gegensatz dazu fitihrte die Konjugation von PEG zu einem eher 

hydrophoben IL-4-Konstrukt. Die Bioaktivitét wurde durch Polymerkonjugation reduziert, 

wobei das Anbringen einer 10 kDa Polymereinheit zu einer ungefahr 3-fachen Abnahme der in 

vitro Wirksamkeit fthrte. Grobe Unterschiede zwischen LPG- und PEG-IL-4 konnten hierbe1 

nicht festgestellt werden. Alle Konjugate waren stabil in Humanplasma (bis 24 Stunden) und 

zeigten verminderte Affinitét zum Plasmaprotein Human Serum Albumin (HSA). 

Zusammentassend konnte in dieser Arbeit dargestellt werden, dass LPG- und PEG- 

Konyugate verschiedener therapeutischer Proteine ein 4hnliches in vitro und in vivo Verhalten 

zeigen, was das grobe Potential von Polyglycerol als PEG-Alternative zur 

Halbwertszeitverlangerung unterstreicht. Der Einfluss von LPG auf Bioaktivitét, terminale 

Halbwertszeit und in vivo Wirksamkeit von ausgewahlten Biopharmazeutika war ahnlich wie 

der von PEG. Unterschiede konnten in den Bereichen thermischer und proteolytischer 

Stabilitat, genereller Hydrophilie und hydrodynamischer Grée festgestellt werden. 

Um die Anwendbarkeit von Polyglycerol als PEG-Alternative weiter zu verfestigen, sollten 

in Zukunft Fragen zu dessen Immunogenitaét und Antigenizitét beantwortet werden. Mehrere 
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Möglichkeiten zur Detektion von anti-Polymer-spezifischen Antikörpern im Serum mittels 

ELISA oder SPR wurden bereits beschrieben.11,298 Zeitlich begrenzte, wöchentliche Injektionen 

eines bestimmten PG-Konjugats im gesunden Versuchstier würden hierbei eingesetzt, um die 

entsprechenden Polymer-Antikörper zu erzeugen. Andere Studien befassen sich mit der Kreuz-

Reaktivität verschiedener Polymertypen gegenüber anti-PEG Antikörpern.113 Dies könnte 

hilfreich sein, um Bedenken gegenüber der Reaktivität von LPG auf bereits bestehende anti-

PEG Antikörper in der gesunden Bevölkerung auszuräumen, die eine Anwendbarkeit von 

PGylierten Proteinen limitieren würde. 

Ein anderer Aspekt betrifft die Gefriertrocknung (Lyophilisation) von Biopharmazeutika. 

Durch den hohen Gehalt an Hydroxygruppen könnte LPG (frei oder konjugiert) die Struktur 

von therapeutischen Proteinen während des Gefriertrocknungsprozesses stabilisieren. Bisher 

werden hierfür hohe Konzentrationen von Zuckern (Trehalose, Sucrose) eingesetzt, die die 

Hydrathülle des Wassers nach Trocknung ersetzen.299 Konjugation von LPG könnte einen 

ähnlichen Effekt bewirken und somit die Durchführung komplexer Formulierungsstudien zur 

Proteinstabilität bei Lyophilisation vereinfachen. 
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PEG Antik6rper in der gesunden Bevélkerung auszuraéumen, die eine Anwendbarkeit von 

PGylierten Proteinen limitieren wiirde. 
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von therapeutischen Proteinen wahrend des Gefriertrocknungsprozesses stabilisieren. Bisher 

werden hierftir hohe Konzentrationen von Zuckern (Trehalose, Sucrose) eingesetzt, die die 
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