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Abstract
We investigate, both analytically and numerically, the quantum dynamics of a planar (2D) rigid
rotor subject to suddenly switched-on or switched-off concurrent orienting and aligning
interactions. We find that the time-evolution of the post-switch populations as well as of the
expectation values of orientation and alignment reflects the spectral properties and the
eigensurface topology of the planar pendulum eigenproblem established in our earlier work
(2014 Front. Phys. 2 37, 2017 Eur. Phys. J. D 71 149). This finding opens the possibility to examine
the topological properties of the eigensurfaces experimentally as well as provides the means to
make use of these properties for controlling the rotor dynamics in the laboratory.

1. Introduction

Quantum systems driven by external electromagnetic fields have been the subject of countless studies that
laid the foundations for our understanding of quantum dynamics and of quantum control [1, 2].
Interactions with fields that vary on a time scale much shorter than the characteristic time of a quantum
system have been of particular interest as these may lead to analytic results exacted by invoking the sudden
approximation [3].

The quantum pendulum, i.e., a rotating dipole, permanent or induced, subject to an external electric
field is a prototypical field-driven quantum system whose various incarnations were key to understanding a
wide range of problems, ranging from orientation and alignment of molecules by electromagnetic fields
[2, 4–16] to internal rotation and molecular torsion [17–21] to cold atoms in optical lattices [22–28] to
quantum chaos and Anderson localization [29–38]. So far, the majority of experimental and theoretical
studies involving the quantum pendulum have been restricted to the purely orienting (proportional to the
cosine of the polar angle between the permanent dipole and the external electric field) or aligning
(proportional to the cosine squared of the polar angle between the induced dipole and the external electric
field) interactions, see, e.g., references [6, 8, 9, 14, 33, 39–42]. Much less attention was paid to the combined
orienting and aligning interaction, even though it leads to novel phenomena that cannot be brought forth
or explained by either of the two interactions alone, see references [7, 12, 16, 19, 20, 43–49].

Herein, we investigate the quantum dynamics of a planar (2D) rotor driven by such combined
interactions. In particular, we examine combined interactions whose temporal dependence entails a slow
(adiabatic) switch-on and a rapid (non-adiabatic) switch-off—or vice versa—of the fields that create these
interactions [10, 39, 50–55]. Such sudden switch-on or switch-off that is effected over a time much shorter
than the rotor’s rotational period results in a broad rotational wavepacket (for a rapid switch-off) or a
wavepacket consisting of a large number of pendular states (for a rapid switch-on).

By means of both analytic and numerical methods (split-operator FFT method via WavePacket software
package [56–58]), we were able to carry out the population analysis of the resulting wavepackets as well as
of the time-evolution of the observables such as orientation and alignment cosines and the kinetic energy of
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the planar rotor. Our analysis revealed that these observables mirror the intersections—avoided and
genuine—of the eigenenergy surfaces spanned by the orienting and aligning parameters whose loci are
characterized by an integer termed the topological index.

Interestingly, the time-independent Schrödinger equation (TISE) for a rotor subject to the combined
interactions belongs to the class of conditionally quasi-exact solvable (C-QES) problems, unlike the purely
aligning or orienting interaction. In our previous work, we established that the condition under which the
analytic solutions obtain is intimately connected with the topological index [16, 46, 48, 59, 60]. We make
use of the analytic solutions to derive aspects of the driven rotor’s dynamics analytically.

This paper is organized as follows: in section 2, we introduce the general Hamiltonian of a linear 2D
rotor subject to combined orienting and aligning interactions and discuss its spectral properties. In
sections 3.1 and 3.2, we examine the quantum dynamics due to rapidly switched-on and switched-off
combined interactions, respectively. We evaluate both analytically and numerically the post-switch
populations and perform a detailed analysis of the time-evolution of the expectation values of the
orientation and alignment cosines. In section 4, we provide a summary of the chief results and touch upon
possible applications.

2. Model Hamiltonian

The Hamiltonian of a planar (2D) rigid rotor with angular momentum J = −i d
dθ and moment of inertia I

driven by a time-dependent potential Ṽ(θ, t) assumes the general form

H̃(t) = BJ2 + Ṽ(θ, t), (1)

where θ ∈ [0, 2π] and B = �
2/2I is the rotational constant. Dividing the time t by �/B results in a

dimensionless time τ ≡ Bt/�, whereby the rotational period tr = 2π�/B becomes τ r = 2π. Moreover,
dividing Hamiltonian (1) through the rotational constant results in a dimensionless Hamiltonian

H(τ) ≡ H̃(τ)/B = J2 + V(θ, τ). (2)

Herein, we consider the dimensionless interaction potential V(θ, τ) ≡ Ṽ(θ, τ)/B that drives the rotor to be
comprised of a combined interaction

V(θ, τ) = −η(τ) cos θ − ζ(τ)cos2 θ, (3)

with η(τ ) and ζ(τ) dimensionless parameters characterizing, respectively, the strengths of the orienting,
cos θ, and aligning, cos2θ, interactions. The corresponding time-dependent Schrödinger equation (TDSE)
for the wavefunction ψ(θ, τ ) then takes the form

i
∂

∂τ
ψ(θ, τ) =

[
− d2

dθ2
− η(τ) cos θ − ζ(τ)cos2 θ

]
ψ(θ, τ). (4)

The combined orienting and aligning potential (3) is a 2π-periodic function whose shape can be
controlled by tuning the orienting and aligning parameters η(τ ) and ζ(τ). This shape can be varied from a
single-well (|η(τ)| > 2|ζ(τ)|) to an asymmetric double-well (|η(τ)| < 2|ζ(τ)|) over the interval θ ∈ [0,π].
Herein, we only investigate the asymmetric double-well regime (ζ > 0) that pertains to rotors representing
linear molecules [61]; only in this regime does the system exhibit genuine and avoided crossings as well as
C-QES, as explained in [19, 60, 62]. The choice of the sign of η is arbitrary since it is equivalent to a shift of
the potential by π in θ. Hence without a loss of generality, we assume η � 0, in which case V(θ) has a local
minimum at θ = 0 and a global minimum at θ = π.

The stationary counterpart of TDSE (4) obtains for time-independent or slow-varying interaction
parameters η(τ) and ζ(τ ), [

− d2

dθ2
− η cos θ − ζ cos2 θ

]
φn(θ) = εnφn(θ), (5)

with eigenfunctions φn(θ) and dimensionless eigenenergies εn (expressed in terms of the rotational constant
B). ‘Slow’ (or adiabatic) corresponds to τ � τ r, in which case we write η(τ ) → η and ζ(τ) → ζ.

For η = ζ = 0, the TISE (5) becomes that of a free planar rotor (or, equivalently, a particle on a ring)
with eigenvalues εJ = J2 and eigenfunctions eiJθ/

√
2π, where the angular momentum quantum number, J, is

an integer, J ∈ {0,±1,±2, . . .}, for a periodic boundary condition on the interval θ ∈ [0, 2π]. The
free-rotor states have a definite parity, given by (−1)J, with the parity transformation defined as θ �→ −θ.

In what follows, we investigate a particular time dependence of the combined orienting and aligning
interaction (3), namely a sudden switch-off or switch-on, where ‘sudden’ corresponds to τ 	 τ r. In our
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Figure 1. The combined orienting and aligning potential V(θ) with 11 lowest analytic (five lower dotted lines) and numerical
(dashed lines) eigenenergies and corresponding eigenfunctions with symmetries A1 (purple) and A2 (cyan) for η = −25 and
ζ = 25. The numerical results have been obtained using the WavePacket software package [56–58].

treatment, we make use of the stationary solutions of TISE (5) for constant values of the orienting and
aligning parameters η and ζ . The corresponding eigenproblem has been investigated in detail numerically
[46] as well as via supersymmetry and sl(2)-algebraic approach [16, 48, 60]. In the next two subsections, we
summarize the main results.

2.1. Symmetry properties of the eigenstates
The TISE (5) can be mapped onto the Whittaker–Hill differential equation, which is a special case of the
Hill equation [62]. The Whittaker–Hill equation has four sets of linearly independent solutions, each set
corresponding to an irreducible representation of the planar pendulum’s C2v point group [48]. Two sets
(labelled A1 and A2) satisfy the periodic boundary condition on the interval θ ∈ [0, 2π] and two sets
(labelled B1 and B2) satisfy the antiperiodic boundary condition on the said interval. Henceforth, we only
consider the A1 and A2 sets of solutions that satisfy the periodic boundary condition [48, 60],

φ(A1)
n (θ) =

(
N(A1)

n

)−1/2
e
√
ζ cos θ

∞∑
�=0

vn,� cos2� θ

2
,

φ(A2)
n (θ) =

(
N(A2)

n

)−1/2
e
√
ζ cos θ sin θ

∞∑
�=0

ṽn,� cos2� θ

2
. (6)

Their normalization factors N(A1)
n and N(A2)

n are given by equation (A.6) of appendix A. The constants
vn,� and ṽn,� are components of the eigenvectors of the matrix representations of Hamiltonian (2) associated
with the A1 or A2 symmetries. Note that even though the general form given by equation (6) applies to both
analytic and numerical solutions of the Whittaker–Hill equation, for the analytic cases the summation is
over a finite number of terms related to the ratio of parameters η and ζ (see below and for further details
see reference [48]). Figure 1 displays the eigenfunctions obtained from equation (6) and the corresponding
energy levels for η = −25 and ζ = 25. It is worth noting that while the states below the barrier resemble
qualitatively those of a harmonic oscillator, the states above the barrier approach those of a free rotor, with
degenerate pairs of states with even (A1) and odd (A2) parity with respect to θ = π.

Note that the integer n in TISE (5) indicates the numbering according to the energetic order and labels a
state irrespective of its symmetry. For the sake of notational simplicity, we drop the label Γ ∈ {A1, A2}
unless a state’s symmetry needs to be considered explicitly.

2.2. Eigenenergies and their topology
Figure 2 shows the dependence of the eigenvalues εn on the orienting interaction parameter η for a fixed
value of the aligning parameter ζ = 25. All states bound by the double-well potential (|η(τ)| < 2ζ(τ))
occur as doublets split by tunnelling through the potential’s equatorial barrier, located at
θ = arccos[−η/(2ζ)], and each doublet has a particular symmetry, either A1 or A2. At η = 0, the
double-well potential is symmetric and the tunnelling splitting is solely due to the aligning interaction. As
can be seen in figure 2, the splitting becomes ever more apparent as n increases, see the deepest-bound
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Figure 2. Eigenenergies of the nine lowest pendular states with symmetries A1 and A2 for ζ = 25. The combined orienting and
aligning potential V(θ) is an asymmetric double-well with a local minimum (upper black dashed line) and a global minimum
(lower black dashed line), and a maximum (black dotted curve). The upper abscissa shows the topological index κ. The inset
shows the labelling of the states as used in (5). The eigenenergies shown have been calculated using the WavePacket software
package [56–58].

doublet comprised of the 0A1 & 1A1 states and the barely-bound doublet 4A1 & 5A1 . The parity of the states
created by the aligning interaction alone is (−1)n, i.e., the same as that of the free-rotor states with which
they adiabatically correlate, see reference [5]. At |η| > 0, the double well-potential becomes asymmetric and
the tunnelling splitting increases linearly with increasing |η|, whereby the eigenenergy of the lower member
of a given tunnelling doublet decreases (high-field seeker) and that of the upper member increases
(low-field seeker). As a result, the eigenenergy of the upper member of a lower tunnelling doublet is bound
to intersect the eigenenergy of the lower member of a higher tunnelling doublet. However, only
eigenenergies of states of different symmetry, i.e., A1 and A2, may undergo genuine intersections, i.e.,
become degenerate at the intersection point. This is consistent with the coexistence theorem for the
Whittaker–Hill equation [62]. In contrast, the eigenenergies of states of the same symmetry, i.e., either A1

and A1 or A2 and A2, may only exhibit avoided crossings [63]. The resulting pattern of eigenenergies as a
function of η at a fixed ζ is shown in the main panel of figure 2. We note that the parity of the pendular
states created either by the orienting interaction alone or by the combined orienting and aligning
interaction is indefinite (mixed). This is indeed the reason why these states can exhibit orientation (i.e., have
a non-vanishing orientation cosine).

Remarkably, the loci of the intersections, whether genuine or avoided, have a simple analytic form

|η| = κ
√
ζ , (7)

where κ = 1, 2, 3, . . . is termed the topological index [46]. Its values are shown on the upper abscissa of
figure 2. Odd values of the topological index pertain to genuine crossings and even ones to avoided
crossings. Furthermore, the state label n, see also the inset of figure 2, gives the number of intersections that
a state with that label partakes in.

As shown in our previous work [16, 48], the integer values of the topological index represent a
condition under which the planar pendulum eigenproblem becomes analytically solvable (C-QES) and, at
the same time, provides the number of analytic solutions. The pendular eigenfunctions given by
equation (6) with the upper limit of the summation determined by (κ− 1)/2 for A1 symmetry and
(κ− 3)/2 for A2 symmetry are analytic.

The change of the symmetry of a state at a genuine intersection results in dramatic changes in the
localization of its wavefunction. This has been illustrated in figure 3 for pendular states with n = 3 and
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Figure 3. Potential V(θ) (black curve) and the corresponding wavefunctions φ3 (orange curve) and φ4 (green curve) for ζ = 25
and (a)η = −4.5 ≡ κ = 0.9, (b)η = −5 ≡ κ = 1, and (c)η = −5.5 ≡ κ = 1.1. Reprinted, with permission, from reference
[60].

Figure 4. Potential V(θ) (black curve) and the corresponding wavefunctions φ2 (green curve) and φ3 (orange curve) for ζ = 25
and (a)η = −9.5 ≡ κ = 1.9, (b)η = −10 ≡ κ = 2, and (c)η = −10.5 ≡ κ = 2.1. Reprinted, with permission, from reference
[60].

n = 4 corresponding to three specific ratios of η and ζ . However, such changes also arise at the avoided
crossings, although the symmetry of the states involved remains the same. This is because the localization of
the eigenfunctions around θ = 0 and θ = π interchanges at the avoided crossing due to the increase in the
global minimum and a decrease in the local minimum of the potential V(θ). The change in the localization
of the wavefunction in the vicinity of an avoided crossing is illustrated in figure 4. As shown below, either
type of relocalization of the wavefunction at a crossing plays out in the dynamics of the driven rotor.

We note that the pointed gaps and the concomitant abrupt changes in the localization of the
wavefunctions at the intersections as illustrated in figure 4 are characteristic of energy levels well-below the
maximum of the potential (but still above the local minimum). For barely-bound levels (close to the
potential’s maximum), the gaps of the eigenenergies at the crossings become rather blunt and their
wavefunctions vary more gradually.

Finally, we emphasize what may have been obvious all along, namely that for a purely orienting or
purely aligning interaction, avoided or genuine crossings do not arise.

3. Results and discussion

3.1. Quantum dynamics driven by a rapidly switched-off combined interaction
Let us now consider the dynamics of the planar pendulum that arises upon a sudden switch-off of the
concurrent orienting and aligning interactions. This case would be brought about by adiabatically
switching-on the combined interaction and then switching it off during a time interval
τ on − τ off ≡ Δτ 	 τ r. Panel (a) of figure 5 illustrates this sequence. By integrating TDSE (4) over the
duration of the switch-off Δτ , we obtain

ψ(θ, τon) − ψ(θ, τoff) = −i

∫ τoff

τon

H(τ)ψ(θ, τ)dτ. (8)
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Figure 5. Schematic illustrating the temporal evolution for (a) a sudden switch-off and (b) a sudden switch-on. Also shown are
the pre-switch wavefunctions as well as the post-switch basis functions along with the post-switch expansion coefficients. See
text.

Since the integrand on the right-hand side of equation (8) is finite, the integral is of the order of the
switching duration Δτ → 0, in which case equation (8) gives ψ(θ, τon) = ψ(θ, τoff ). Assuming that before
the switch-off the system was in a pendular state n = n0, we have ψ(θ, τoff) = φ(Γ)

n0
(θ) with Γ ∈ {A1, A2}.

Hence the problem reduces to expanding the pendular wavefunction in terms of the free rotor
wavefunctions. This expansion yields the post-switch wavefunction

ψ(Γ)(θ, τ) =
1√
2π

+∞∑
J=−∞

CΓ,n0
J e−iJ2 τ eiJθ, (9)

where

CΓ,n0
J =

1√
2π

∫ 2π

0
dθ e−iJθ φ(Γ)

n0
(θ), (10)

with φ(Γ)
n0

defined by equation (6). We note that during its field-free propagation, the resulting wavepacket,
ψ(θ, τ > τ off ), maintains the symmetry Γ of the pre-switch pendular state φ(Γ)

n0
. Therefore, for initial

pendular states φ(A1)
n0

or φ(A2)
n0

, equation (9) consists of terms with CA1,n0
J or CA2,n0

J coefficients, except at the

genuine crossings, where ψ(θ, τ ) includes a mixed distribution of rotational states with both CA1,n0
J and

CA2,n0
J .

The analytic expressions for the coefficients CΓ,n0
J along with a summary of the procedure used in

reference [60] to evaluate them are given in appendix B, equations (B.3) and (B.5). These expressions
furnish the rotational wavepackets in closed form (the CΓ,n0

J coefficients for n0 = 0 were found to converge
to zero for J � 50).

We note that even though equations (B.3) and (B.5) have been obtained analytically by virtue of the
analytic form of the pendular eigenfunctions, equation (6), i.e., for states with n < κ where κ is an odd
integer (C-QES condition), equations (9) and (B.1) are applicable to numerical calculations as well.

3.1.1. Population analysis
The populations, |CΓ,n0

J |2, of the rotational states that make up the wavepacket of equation (9) for different
initial pendular states ψ(θ, τoff) = φ(Γ)

n0
(θ) are shown in figure 6 as functions of η for ζ = 25. Only states

with J � 0 are displayed as |CΓ,n0
J |2 are symmetric with respect to J = 0.

Equation (10) provides a key to explaining the populations of the free-rotor states produced by the
sudden switch-off: the J-populations are given by the overlap of the free rotor and pendular wavefunctions
and thereby connected to the symmetries Γ. Thus in the vicinity of η = −5 (i.e., of a genuine crossing at
κ = 1), the populations |CΓ,n0

J |2 in panels (b) and (c) of figure 6 for the initial states n0 = 1 and n0 = 2
(cf figure 2) are seen to exhibit sudden drops and rises due to the corresponding symmetry swaps, A1 ↔ A2.
Such sudden population changes are absent for the ground state n0 = 0, see panel (a), as it always pertains
to the A1 symmetry.

In the vicinity of η = −10 (i.e., of an avoided crossing at κ = 2), the localization of the pendular states
undergoes dramatic changes due to the variation of the potential that affects the overlaps with the rotational
wavefunctions and thus the field-free rotational populations, see panel (c) of figure 6. However, for states
above the maximum of the potential V(θ) (i.e., for hindered-rotor states instead of pendular states) the
wavepackets are no longer localized and the sudden changes of the free-rotor populations are absent [60].
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Figure 6. Populations of rotational states, |CΓ,n0
J |2, as a function of η at a fixed ζ = 25 after a sudden switch-off of the combined

orienting and aligning interaction. Panels (a), (b), and (c) correspond to initial pendular states n0 = 0, 1, 2, respectively. The
upper abscissas show the values of the topological index κ. Adapted, with permission, from reference [60].

We note that for initial states with symmetry A2, the rotational state J = 0 is not populated, i.e., the
corresponding |CA2,n0

0 |2 vanishes identically, see, e.g., panel (b) for η < −5.

3.1.2. Evolution of the expectation values
Given the populations of the post-switch free-rotor states, as established in the previous subsection, we now
examine the temporal behaviour of the rotational kinetic energy, orientation, and alignment subsequent to
the sudden turn-off of the combined orienting and aligning interactions.

First we note that the post-switch (dimensionless) kinetic energy of the system

〈
J2
〉
=
∑

J

J2
∣∣∣CΓ,n0

J

∣∣∣2, (11)

remains constant—a conclusion we could have anticipated based on energy/angular momentum
conservation; however, it also checks out computationally. We note that by tuning the interaction
parameters η and ζ prior to the switch-off, we can preordain the kinetic energy of the system in the
post-switch, field-free regime, see reference [60].

In order to examine the post-switch evolution of the orientation and alignment characterized,
respectively, by the time-dependent expectation values 〈cos θ〉 (τ) and

〈
cos2 θ

〉
(τ), we evaluate integrals of

the form 〈ψ(θ, τ)|cosγθ|ψ(θ, τ )〉 with γ ∈ {1, 2}. Introducing ΔJ ≡ J′ − J and making use of equation (9),
the integral for γ = 1 is non-vanishing only if |ΔJ| = 1, yielding [60]

〈cos θ〉 (τ) =
+∞∑

J=−∞

1

2

{
e−i(2J+1)τ

(
CΓ,n0

J+1

)∗
CΓ,n0

J + ei(2J−1)τ
(

CΓ,n0
J−1

)∗
CΓ,n0

J

}
, (12)

with Γ ∈ {A1, A2}. For γ = 2, the integral vanishes unless |ΔJ| = 0, 2, yielding

〈
cos2 θ

〉
(τ) =

+∞∑
J=−∞

1

4

{
e−4i(J+1)τ

(
CΓ,n0

J+2

)∗
CΓ,n0

J + e4i(J−1)τ
(

CΓ,n0
J−2

)∗
CΓ,n0

J

}

+
1

2

+∞∑
J=−∞

∣∣∣CΓ,n0
J

∣∣∣2. (13)

A typical post-switch field-free evolution of the orientation, 〈cos θ〉 (τ), is shown in figure 7 for the
initial pendular state n0 = 3 (the behaviour of other initial pendular states will be addressed at the end of
this subsection).

Due to the time-dependent phases in equation (12), 〈cos θ〉 (τ) is periodic and found to undergo
revivals at the rotational period τ r = 2π [60],

〈cos θ〉 (τ + 2π) = 〈cos θ〉 (τ), (14)

as well as recur with an opposite sign at half of the rotational period, i.e., τ = π,

〈cos θ〉 (τ + π) = −〈cos θ〉 (τ). (15)

7
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Figure 7. Field-free evolution of the orientation cosine, 〈cos θ〉 (τ ), for an initial pendular state n0 = 3 due to (a) ζ = 25 and
η = −4.5,−5.5; (b) ζ = 25 and η = −9.5,−10.5; and (c) ζ = 25 and η ∈ [−40, 0]. Adapted, with permission, from reference
[60].

Irrespective of the parameters η and ζ , the extrema of the orientation cosine (positive or negative) are
located at τ = τ off (defining τ = 0 in figure 7) and at full and half revival times. Moreover, 〈cos θ〉 vanishes
at one quarter and three-quarters of τ r.

From the time-dependence of equation (13), one can show that the alignment recurs after every quarter
of the rotational period, 〈

cos2 θ
〉 (

τ +
π

2

)
=
〈

cos2 θ
〉

(τ). (16)

Let us now discuss the effects of genuine and avoided crossings on the time-evolution of orientation.
This is exemplified in panel (c) of figure 7 which displays the projection onto the τ –η plane of 〈cos θ〉 for
ζ = 25 and initial pendular state n0 = 3. Especially notable is the behaviour at the loci of the avoided and
genuine crossings: in the vicinity of the values of the parameters η and ζ that give rise to κ = 1, 2, 3, the
temporal behaviour of the post-switch orientation cosine undergoes a significant variation. This is shown in
more detail in panels (a) and (b) of figure 7, which are ‘zoom-ins’ of panel (c) near the genuine and avoided
crossings located at η = −5 (κ = 1) and η = −10 (κ = 2), respectively.

The behaviour around the genuine crossings at η = −5 (κ = 1) and η = −15 (κ = 3) is a direct
consequence of the symmetry swapping, mentioned in section 3.1.1, of the initial pendular states before the
turn-off of the combined interaction that alters the coefficients CΓ,3

J appearing in equation (12). As shown
in figure 2, for either κ < 1 or κ > 3, φ3(θ) is of A2 symmetry, whereas for 1 < κ < 3, φ3(θ) is of A1

symmetry.
A similar trend is observed around the loci of the avoided crossing at η = −10 (κ = 2). As mentioned

previously, although the wavefunction φ3(θ) maintains its symmetry (Γ = A1 for 1 < κ < 3), its
localization changes dramatically, cf figure 4. The concomitant variation of the CΓ,3

J coefficients (around
κ = 2) causes the differences in the initial orientation (at τ off ) as well as in the time-dependence of 〈cos θ〉.

We note that the temporal dependence of alignment closely follows that of orientation.
Since the value of n0 gives the number of genuine and avoided crossings of the state φn0 (θ) (see figure 2),

it also indicates the number of abrupt changes of the time-dependence of the expectation values, as
exemplified for n0 = 3 in panel (c) of equation (12).

We note that the differences in the temporal behaviour of expectation values corresponding to levels
above the maximum of the potential (i.e., of those that approach the free-rotor limit) are much less
significant than of those just described, cf reference [60].

Given that the directional effects discussed above do not occur for either a purely orienting or a purely
aligning interaction, we conclude that the combined interaction is sui generis, offering additional means to
control the post-switch directionality of the system.

3.2. Quantum dynamics driven by a rapidly switched-on combined interaction
We now examine the quantum dynamics of the planar pendulum that arises upon a sudden switch-on of
the concurrent orienting and aligning interactions. This case would be brought about by a sudden
switch-on of the combined interaction over a time interval τ on − τ off ≡ Δτ 	 τ r followed by its adiabatic
switch-off (or its continued presence). Panel (b) of figure 5 illustrates this sequence.

8
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Figure 8. Populations, |CJ0
Γ,n|2, of pendular states as functions of η at constant ζ = 25 after a sudden switch-on of the orienting

and aligning interactions. Panels (a) and (b) correspond, respectively, to initial rotational states J0 = 0 and J0 = 1. The upper
abscissas show the values of the topological index κ. Adopted, with permission, from reference [60].

By an argument similar to the one used in the case of the suddenly switched-off interaction, see
section 3.1, ψ(θ, τoff ) = ψ(θ, τ on). Given that before the switch-on of the interaction, the system was freely
rotating, we choose as the initial state one of the rotational eigenstates, i.e., ψ(θ, τoff) = eiJ0θ/

√
2π, with J0

the initial rotational quantum number. The post-switch wavefunction, i.e., for τ > τon, is then a wavepacket
composed of pendular states

ψ(θ, τ) =
∞∑

n=0

CJ0
Γ,n e−iεnτ φ(Γ)

n (θ), (17)

where

CJ0
Γ,n =

1√
2π

∫ 2π

0
dθ eiJ0θ φ(Γ)

n (θ). (18)

In equation (17), Γ ∈ {A1, A2} and εn and φ(Γ)
n are eigenvalues and eigenfunctions of TISE (5), i.e.,

pendular states. Note that the symmetry label Γ is absent in ψ(θ, τ), as the wavepacket it represents is a
mixed superposition of pendular states with symmetries A1 and A2. The expansion coefficients CJ0

Γ,n are
given by equations (B.7) and (B.8) in appendix B, whence it follows that for all initial rotational states J0,
the CJ0

A1,n coefficients are real and the CJ0
A2,n coefficients purely imaginary. Moreover, for J0 = 0,

equation (B.8) gives C0
A2,n = 0.

We note that even though CJ0
A1,n and CJ0

A2,n are analytically obtainable only for the algebraic pendular
states, i.e., for n < κ, the general forms of the coefficients given by equations (B.7) and (B.8) and their
properties mentioned above remain in place for any n state, regardless of whether it is analytically
obtainable or not.

3.2.1. Population analysis
We examine two examples of the post-switch populations, |CJ0

Γ,n|2, as functions of η at fixed ζ = 25 that
arise from two different initial rotational states, namely J0 = 0 and J0 = 1, see figure 8. The observed rapid
variation and sudden flips of the populations at the loci of the avoided and genuine crossings are again
related to the overlap integral of the pendular and free-rotor wavefunctions, given here by equation (18).

Let us first consider the population-flips that occur for pairs of n and n + 1 states at
η = −5,−15,−25,−35, i.e., at genuine crossings arising at odd integer κ, cf figure 8. For η and ζ that give
rise to κ < 1, the pendular states n = 1 and n = 2 pertain to the Γ ≡ A1 and Γ ≡ A2 symmetry,
respectively. However, for η and ζ that correspond to κ > 1, the states n = 1 and n = 2 have symmetries A2

and A1, respectively. This symmetry swap, A1 ↔ A2, between the two states results in an interchange of their
angular localization and, consequently, of their overlap integrals with the free rotor states and thus of the
corresponding populations |CJ0

Γ,n|2.
In the vicinity of η and ζ values that give rise to even integer κ, i.e., η = −10,−20,−30 for ζ = 25 and

hence to avoided crossings, cf figure 8, some populations exhibit extrema and others abrupt changes.
Although both types of behaviour are a direct consequence of the variation of the pendular eigenfunctions
and their overlap with the free rotor wavefunctions, a general explanation applicable to all n and J0 states is
elusive. Therefore, in contrast to the behaviour at the genuine crossings, the populations at the avoided
crossings have to be treated individually for each state via equation (B.6).

9
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We note that the extrema are more pronounced for n states whose energies are well below the maximum
of the pendular potential and gradually fade away as the pendular eigenvalues come close to the potential’s
maximum. As expected from equation (B.8), for J0 = 0, none of the pendular states of the Γ ≡ A2

symmetry are populated, cf panel (a) of figure 8. Moreover, for higher initial rotational states (e.g., J0 > 6
for the parameters considered in figure 8), only n states whose eigenenergies lie above the potential barrier
are populated. Since the wavefunctions φn of these states resemble those of a free rotor, the sharp variations
of the populations are absent for initial rotor states with J0 ≈ n.

3.2.2. Evolution of the expectation values
The temporal dependence, 〈S〉 (τ) ≡ 〈ψ(τ)|S|ψ(τ)〉, of an observable S, such as the directional cosines or
the kinetic energy, after rapidly switching on the combined interaction is obtained by substituting from
equation (17),

〈S〉 (τ) =
∑
n,n′

(
CJ0
Γ,n

)∗
CJ0

Γ
′
,n′

ei(εn−ε
n
′ )τ
〈
φ(Γ)

n |S|φ(Γ
′
)

n′

〉

=
∑

n

|CJ0
Γ,n|2

〈
φ(Γ)

n |S|φ(Γ)
n

〉
+ 2 Re

⎡
⎣∑

n>n′

(
CJ0
Γ,n

)∗
CJ0

Γ
′
,n′

ei(εn−εn′ )τ
〈
φ(Γ)

n |S|φ(Γ
′
)

n
′

〉⎤⎦ (19)

with Γ′ ∈ {A1, A2} and Γ ∈ {A1, A2}. By making use of the properties of the coefficients CJ0
Γ,n, we obtain for

S ≡ cos θ

〈cos θ〉 (τ) =
∑

n

|CJ0
Γ,n|2〈cos θ〉n + 2

⎡
⎣ ∑

n>n′∈Q1

CJ0
A1,nCJ0

A1,n′
cos
[
(εn − εn′ )τ

]
〈cos θ〉(A1)

nn
′

−
∑

n>n′ ∈Q2

CJ0
A2,nCJ0

A2,n′
cos
[
(εn − εn′ )τ

]
〈cos θ〉(A2)

nn
′

⎤
⎦

= 〈cos θ〉p + 〈cos θ〉c(τ). (20)

The selection rules, equation (A.1), made it possible to break up the summation in the second term of
equation (19) into two terms, one comprising a sum over the quantum numbers n ∈ Q1 associated with the
A1 symmetry and the other consisting of n ∈ Q2 associated with symmetry A2. The subscripts p and c
indicate the time-independent ‘population’ and time-dependent ‘coherence’ terms, respectively. We note
that the former terms have n = n′ whereas the latter ones have n �= n′; only the ‘coherence’ terms are
time-dependent. For the sake of simplicity, we did not break the time-independent part 〈cos θ〉p into terms
with different symmetries.

We note that equation (20) includes both numerical and analytic pendular states, although the latter are
only available (with substitution from equation (A.4)) if κ is an odd integer.

The effect of the time-independent term 〈cos θ〉p as a function of η for a fixed ζ = 25 is illustrated in
panel (a) of figure 9 for J0 = 1 (black curve). Based on the population analysis of section 3.2.1 together with
the properties of 〈cos θ〉n derived from equation (C.1), shown by the color-coded curves in panel (a) of
figure 9, we would expect significant variation of the products 〈cos θ〉n|C

J0
Γ,n|2 and, consequently, of 〈cos θ〉p

around the loci of avoided crossings. However, such fluctuations are absent in the vicinity of genuine
crossings where the population as well as the orientation flips between states with different n sum up and
cancel each other, see figure 8. Hence, while 〈cos θ〉p changes smoothly and rather monotonously in the
vicinity of the loci of genuine crossings at η = −15,−25 in figure 9, it exhibits significant minima (larger
negative orientation) around the loci of avoided crossings; these are apparent at η = −10,−20,−30. By
increasing |η| the potential becomes a single-well and the minima of the orientation cosine disappear.

The coherence term, 〈cos θ〉c(τ), in equation (20) consists of two Fourier sums over terms with
frequencies Δεnn′ ≡ εn − εn′ . Since Δεnn′ is the energy difference between pendular eigenvalues associated
with the same symmetry Γ, genuine crossings do not contribute to the coherence term. As a result, there is
no significant dependence of 〈cos θ〉c(τ) on the values of the interaction parameters η and ζ that are related
by an odd integer κ. In contrast, at the avoided crossings, i.e., for η and ζ that make κ an even integer, the
coherence term in equation (20) comprises frequencies much lower than those that come about at
non-integer or odd-integer κ values. This results in a longer fundamental period in τ and, consequently,
significantly slower oscillations of 〈cos θ〉 (τ) along the loci of avoided crossings.

10
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Figure 9. (a) Time-independent expectation value 〈cos θ〉p (black curve) for ζ = 25 and initial state J0 = 1, plotted together

with the products 〈cos θ〉n|C
J0=1
Γ,n |2 shown for each state n by the color-coded curves, cf figure 2. (b) Expectation value 〈cos θ〉 (τ )

for ζ = 25, −η ∈ [9, 34], and initial J0 = 1, projected onto the η–τ plane. The interval −η ∈ [0, 9] is omitted for the sake of a
better resolution. Adapted, with permission, from reference [60].

All these unique features are captured in panel (b) of figure 9, which shows the projection of 〈cos θ〉 (τ)
onto the η–τ plane for ζ = 25, −η ∈ [9, 34], and initial J0 = 1. The centroids of the fluctuations of the
orientation cosine around the loci of the avoided crossings at η = −10,−20,−30 match accurately the
behaviour of 〈cos θ〉p(τ) and 〈cos θ〉c(τ) outlined above. One can discern the slow but large-amplitude
oscillations in τ along the loci for particular η values. For smaller values of η, the period of oscillation
exceeds the rotational period of the rotor, τ r = 2π, and is not captured on a time scale comparable with τ r.
For instance, for η = −10, the period is ≈ 32π.

We note that
〈

cos2 θ
〉

(τ) and
〈

J2
〉

(τ) could be obtained in the same fashion. For the latter, a simple
result follows from energy/angular momentum conservation,〈

J2
〉

(τon) = J2
0 , (21)

with J0 the rotational quantum number of the initial field-free rotor state. From the Hamiltonian (2), we
obtain a closed-form expression for the post-pulse energy,

〈H(τon)〉 =
〈

J2
〉

(τon) − η 〈cos θ〉 (τon) − ζ
〈

cos2 θ
〉

(τon) = J2
0 −

1

2
ζ, (22)

where we made use of the identities 〈cos θ〉 = 0 and
〈

cos2 θ
〉
= 1

2 that apply to any field-free rotor state J0.
Thus upon subjecting the planar rotor to a sudden combined interaction, its energy drops by 1

2ζ.
Finally, we explore the effects of the crossings on the driven-rotor dynamics by evaluating the time

average of the orientation cosine in the entire η–ζ plane,

〈cos θ〉[0,τ̃ ] =

∫ τ̃

0
〈cos θ〉 (τ)dτ

= τ̃〈cos θ〉p + 2
∑

n>n′∈Q1

CJ0
A1,nCJ0

A1,n′
〈cos θ〉(A1)

nn
′

sin[(εn − εn′ )τ̃]

(εn − εn
′ )

− 2
∑

n>n′∈Q2

CJ0
A2,nCJ0

A2,n′
〈cos θ〉(A2)

nn′
sin[(εn − εn′ )τ̃]

(εn − εn′ )
(23)

The time-averaging serves as a smoothing procedure [60] and for τ̃ = 4π leads to the projection of the
time-averaged orientation cosine shown in figure 10. The qualitative behaviour of the time average is found
to be independent of τ̃ .

When applied to the alignment cosine or the kinetic energy, the time-averaging procedure leads to
similar results as those shown in figure 10 (for more details, see reference [60]). Thus, as manifested by the
time-evolution of the expectation values 〈cos θ〉 (τ),

〈
cos2 θ

〉
(τ), and

〈
J2
〉

(τ), the genuine crossings
(dotted curves corresponding to odd values of κ in figure 10) do not affect the dynamics, whereas avoided
crossings (dashed curves corresponding to even values of κ in figure 10) play havoc with it. This outcome of
our analysis may become the basis for observing the crossings experimentally.
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Figure 10. Projection of the time-averaged orientation cosine, 〈cos θ〉[0,4π] onto the η–ζ plane corresponding to a sudden
switch-on of the concurrent orienting and aligning interaction. The initial free-rotor state was J0 = 1. The black curves are
labelled by the values of the topological index κ, whereby the dotted ones pertain to odd integer κ (marking genuine crossings)
and the dashed black curves to even integer κ (marking avoided crossings). The white line shows the loci of −η = 2

√
ζ , which

separates the regimes of single- and double-well potentials. Adapted, with permission, from reference [60].

We note that the behaviour captured by figure 10 is characteristic of interactions with a double-well
potential and fades away at η–ζ parameters corresponding to a single-well regime as seen to the left of the
white line in figure 10.

4. Conclusions and prospects

In our combined analytic and computational study we explored the quantum dynamics of a planar rotor
subject to suddenly-switched concurrent orienting and aligning interactions. This study established that
observables such as the orientation cosine reflect the topology of the system’s eigensurfaces and can, in fact,
be used to map them out experimentally. Conversely, as the eigensurface topology affects the dynamics, its
knowledge must be incorporated in schemes devised to control the rotor/pendulum system.

The eigensurface topology reflects the system’s symmetry properties, which transpire in particular via
the genuine or avoided crossings and the angular localization or relocalization of the wavepackets created by
the sudden switch-on or switch-off of the combined interaction. Given that the crossings only arise for the
combined interaction, the dynamics revealed herein is sui generis, with no counterpart in the dynamics due
to either the orienting or aligning interaction alone.

Of particular interest are the significant differences in the field-free orientation and alignment of the
rotor upon a sudden switch-off of the combined interaction that come about in the vicinity of both genuine
and avoided crossings. For the suddenly switched-on interaction, these effects only arise in the vicinity of
avoided crossings but are found to cancel out at the genuine crossings.

Finally, our study paves the way for understanding the full-fledged quantum dynamics of a driven 3D
rotor. It is also relevant to the isomorphic problem of manipulating atomic translation in optical traps and
lattices, the subject of our ongoing work.
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discussions. Support by the Deutsche Forschungsgemeinschaft (DFG) through Grants SCHM 1202/3-1 and
FR 3319/3-1 as well as DAAD’s STIBET Degree Completion Grant from the Technische Universität Berlin
are gratefully acknowledged.

Data availability statement

The data that support the findings of this study are all included in it.

12



New J. Phys. 23 (2021) 063040 M Mirahmadi et al

Appendix A. Evaluation of trigonometric integrals containing φ(Γ)
n

The vanishing transition integrals (selection rules) for orientation and alignment cosines in the basis of
pendular states follow from equation (6):〈

φ(A1)
n | cos θ|φ(A2)

n
′

〉
=
〈
φ(A2)

n | cos θ|φ(A1)

n
′

〉
= 0,〈

φ(A1)
n |cos2 θ|φ(A2)

n′

〉
=
〈
φ(A2)

n |cos2 θ|φ(A1)

n′

〉
= 0. (A.1)

The non-vanishing transition integrals 〈cos θ〉(Γ)

nn′
≡
〈
φ(Γ)

n | cos θ|φ(Γ)

n′

〉
and 〈cos2 θ〉(Γ)

nn′
≡
〈
φ(Γ)

n |cos2 θ|φ(Γ)

n′

〉
are given below.

In order to obtain the expectation values of the orientation and alignment cosines, we need to evaluate
the integrals of the following form (note that φ(Γ)

n s are real functions)∫ 2π

0
dθ e2

√
ζ cos θ f (θ)cos2L θ

2
, (A.2)

with L := �+ �′ and f(θ) being one of the functions cos θ or cos2θ. As an example, we calculate integral
(A.2) for the case of f(θ) = cos θ. By making use of the trigonometric relation cos2L(θ/2) = 1/(22L)((

2L
L

)
+
∑L−1

m=02
(

2L
m

)
cos[(L − m)θ]

)
[64] and the product relation of two cosine functions, we obtain

∫ 2π

0
dθ e2

√
ζ cos θ cos θ cos2L θ

2
=

1

22L

{(
2L

L

)∫ 2π

0
dθ e2

√
ζ cos θ cos θ

+ 2
L−1∑
m=0

(
2L

m

)∫ 2π

0
dθ e2

√
ζ cos θ cos θ cos[(L − m)θ]

}

=
2π

22L

{(
2L

L

)
I1(2
√
ζ)

+

L−1∑
m=0

(
2L

m

)[
IL−m−1(2

√
ζ) + IL−m+1(2

√
ζ)
]}

, (A.3)

where Iρ is the modified Bessel function of the first kind of the ρth order (for integer ρ) and
(

b
a

)
is the

binomial coefficient. Hence we have [60]

〈cos θ〉(A1)

nn′
=
∑
�,�

′

g(A1)

nn
′
��

′

22L

((
2L

L

)
I1(2
√
ζ) +

L−1∑
m=0

(
2L

m

)[
IL−m−1(2

√
ζ) + IL−m+1(2

√
ζ)
])

〈cos θ〉(A2)

nn
′ =

∑
�,�′

g(A2)

nn′ ��′

22L+2

1√
ζ

((
2L

L

)
2I2(2

√
ζ) +

L−1∑
m=0

(
2L

m

)[
(L − m + 2)IL−m+2(2

√
ζ)

− (L − m − 2)IL−m−2(2
√
ζ)
])

, (A.4)

where g(A1)

nn
′
��

′ = 2πvn,�vn′ ,�′/
√

N(A1)
n N(A1)

n
′ and g(A2)

nn
′
��

′ = 2πṽn,�ṽn′ ,�′ /
√

N(A2)
n N(A2)

n
′ . Similarly, for the

alignment cosine (f(θ) = cos2θ) we can write

〈
cos2 θ

〉(A1)

nn′ =
∑
�,�

′

g(A1)

nn
′
��

′

22L+1

((
2L

L

)[
I0(2
√
ζ) + I2(2

√
ζ)
]
+

L−1∑
m=0

(
2L

m

)[
2IL−m(2

√
ζ)

+ IL−m+2(2
√
ζ) + IL−m−2(2

√
ζ)
])

,

〈
cos2 θ

〉(A2)

nn′ =
∑
�,�′

g(A2)

nn′ ��′

22L+3

((
2L

L

)[
I0(2
√
ζ) − I4(2

√
ζ)
]
+

L−1∑
m=0

(
2L

m

)[
2IL−m(2

√
ζ)

+ IL−m+4(2
√
ζ) − IL−m−4(2

√
ζ)
])

. (A.5)

13



New J. Phys. 23 (2021) 063040 M Mirahmadi et al

In a similar manner, the normalization factors N(A1)
n and N(A2)

n in equation (6) are obtained by
substituting 1 and sin θ for f(θ) in equation (A.2), respectively, as

N(A1)
n = 2π

∑
�,�′

1

22L
vn,�vn,�′

((
2L

L

)
I0(2
√
ζ) + 2

L−1∑
m=0

(
2L

m

)
IL−m(2

√
ζ)

)
,

N(A2)
n = 2π

∑
�,�′

1

22L+1
ṽn,�ṽn,�′

((
2L

L

)
I1(2
√
ζ)/
√
ζ +

L−1∑
m=0

(
2L

m

)[
2IL−m(2

√
ζ)

− IL−m−2(2
√
ζ) − IL−m+2(2

√
ζ)
])

. (A.6)

Appendix B. Evaluation of the expansion coefficients in the post-switch wavepackets

B.1. The case of rapidly switched-off fields
The coefficients CΓ,n0

J in equation (9) can be obtained through the standard expansion theorem as [60]

CΓ,n0
J =

1√
2π

∫ 2π

0
dθ e−iJθ φ(Γ)

n0
(θ). (B.1)

Upon substituting for φ(A1)
n0 from equation (6) into equation (B.1), the coefficients for Γ ≡ A1 can be

calculated via integrals of the form∫ 2π

0
dθ e

√
ζ cos θ cos(Jθ) cos2� θ

2
=

∫ 2π

0
dθ e

√
ζ cos θ cos(Jθ) cos2� θ

2

=
2π

22�

[
�−1∑

m=0

(
2�

m

)(
IJ+�−m(

√
ζ) + IJ−�+m(

√
ζ)
)

+

(
2�

�

)
IJ (
√
ζ)

]
, (B.2)

where the imaginary part of the integral, i sin(Jθ), vanishes due to symmetry and where we again made use

of the trigonometric relation cos2�(θ/2) = 1/(22�)
((

2�
�

)
+
∑�−1

m=02
(

2�
m

)
cos[(�− m)θ]

)
and the definition

of Iρ, i.e., the modified Bessel function of the first kind and ρth order [64]. Therefore, the coefficients CA1,n0
J

in equation (9) can be written as follows

CA1,n0
J =

√
2π

N(A1)
n0

∞∑
�=0

vn0,�

22�

[
�−1∑

m=0

(
2�

m

)(
IJ+�−m(

√
ζ) + IJ−�+m(

√
ζ)
)

+

(
2�

�

)
IJ(
√
ζ)

]
. (B.3)

The coefficients associated with a pendular state pertaining to the A2 symmetry obtains from integrals of
the form ∫ 2π

0
dθ e−iJθe

√
ζ cos θ sin θ cos2� θ

2
= −i

∫ 2π

0
dθ e

√
ζ cos θ sin(Jθ) sin θ cos2� θ

2
, (B.4)

where the real part of the integral vanishes by symmetry. Using the relation for the product of two sine
functions and following a procedure similar to that used in deriving equation (B.2) we obtain

CA2,n0
J = i

√
2π

N(A2)
n0

∞∑
�=0

ṽn0,�

22�+1

[
�−1∑

m=0

(
2�

m

)(
IJ+1+�−m(

√
ζ) + IJ+1−�+m(

√
ζ)

− IJ−1+�−m(
√
ζ) − IJ−1−�+m(

√
ζ)
)
+

(
2�

�

)(
IJ+1(

√
ζ) − IJ−1(

√
ζ)
)]

. (B.5)

From the properties of the modified Bessel function in equations (B.3) and (B.5), we obtain CA1,n0
−J = CA1,n0

J

and CA2,n0
−J = −CA2,n0

J . Thus CA2,n0
0 is always zero, whereas CA1,n0

0 is not [60]. Another key difference between

the coefficients associated with symmetries A1 and A2 is that CA1,n0
J are real and CA2,n0

J are purely imaginary.
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B.2. The case of rapidly switched-on fields
By making use of orthonormality of pendular states, it is possible to derive the coefficients CJ0

Γ,n in
equation (17) via integral (note that φn = φ∗

n)

CJ0
Γ,n =

1√
2π

∫ 2π

0
dθ eiJ0θ φ(Γ)

n (θ). (B.6)

Like for the rapidly switched-off fields, we find

CJ0
A1,n =

√
2π

N(A1)
n

∞∑
�=0

vn,�

22�

[
�−1∑
m=0

(
2�

m

)(
IJ0+�−m(

√
ζ) + IJ0−�+m(

√
ζ)
)
+

(
2�

�

)
IJ0 (
√
ζ)

]
, (B.7)

and

CJ0
A2,n = i

√
2π

N(A2)
n

∞∑
�=0

ṽn,�

22�+1

[
�−1∑

m=0

(
2�

m

)(
IJ0−1+�−m(

√
ζ) + IJ0−1−�+m(

√
ζ)

− IJ0+1+�−m(
√
ζ) − IJ0+1−�+m(

√
ζ)
)
+

(
2�

�

)(
IJ0−1(

√
ζ) − IJ0+1(

√
ζ)
)]

, (B.8)

for the pendular states with Γ ≡ A1 and Γ ≡ A2, respectively.

Appendix C. Variation of the expectation values via the Hellmann–Feynman theorem

Of particular importance is the behaviour of the expectation values 〈cos θ〉n ≡
〈
φ(Γ)

n | cos θ|φ(Γ)
n

〉
and

〈cos2 θ〉n ≡
〈
φ(Γ)

n |cos2 θ|φ(Γ)
n

〉
near the loci of the crossings. In tackling the variations of the directional

cosines, we make use of the Hellmann–Feynman theorem, 〈φn |∂λH(λ)|φn〉 = ∂λεn, whence we obtain
[60],

〈cos θ〉n = −∂εn

∂η
,

〈
cos2 θ

〉
n
= −∂εn

∂ζ
. (C.1)

Thus the Hellmann–Feynman theorem, equation (C.1), suggests that significant variation of the orientation
and alignment cosines will take place at the loci of the crossings, see reference [60] for further details.

Similarly significant changes of the expectation value of the kinetic energy
〈

J2
〉

n
(in units of the

rotational constant B) are to be expected at the crossings, given that for a fixed pair of η and ζ and a
quantum state φ(Γ)

n , 〈
J2
〉

n
= εn + η〈cos θ〉n + ζ

〈
cos2 θ

〉
n
. (C.2)
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