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Abstract
We reduce the dynamics of an ensemble of mean-coupled Stuart–Landau oscillators close to the
synchronized solution. In particular, we map the system onto the center manifold of the
Benjamin–Feir instability, the bifurcation destabilizing the synchronized oscillation. Using
symmetry arguments, we describe the structure of the dynamics on this center manifold up to
cubic order, and derive expressions for its parameters. This allows us to investigate phenomena
described by the Stuart–Landau ensemble, such as clustering and cluster singularities, in the
lower-dimensional center manifold, providing further insights into the symmetry-broken
dynamics of coupled oscillators. We show that cluster singularities in the Stuart–Landau ensemble
correspond to vanishing quadratic terms in the center manifold dynamics. In addition, they act as
organizing centers for the saddle-node bifurcations creating unbalanced cluster states as well for
the transverse bifurcations altering the cluster stability. Furthermore, we show that bistability of
different solutions with the same cluster-size distribution can only occur when either cluster
contains at least 1/3 of the oscillators, independent of the system parameters.

1. Introduction

Long-range interactions play a crucial role in various dynamical phenomena observed in nature. In a swarm

of flashing fireflies, they may act as a synchronizing force, causing the swarm to flash in unison. Analo-

gously, in an audience clapping, the acoustic sound of the clapping can be recognized by each individual,

leading to clapping in unison. In these cases, long-range interactions lead to the synchronization of individual

units [1].

On the other hand, long-range interactions may also lead to a split up of the individuals into two or more

groups, also called dynamical clustering. In electrochemistry, a stirred electrolyte or a common resistance may

induce long-range coupling, leading to spatial clustering on the electrode [2–8]. In biology, this may explain

the formation of different genotypes in an otherwise homogeneous environment [9, 10].

The individual units which experience this long-range or global coupling may be oscillatory, as in the case

of flashing fireflies or in a clapping audience, or, as in the case of sympatric speciation, stationary genotypes.

Here, we focus on the former case of oscillatory units with long-range interactions.

Clustering in oscillatory systems with long-range interactions has been subject to theoretical investigation

for many years [11–15]. See also reference [16] for a recent review on globally coupled oscillators. In particular

when the long-range interactions are weak compared to the intrinsic dynamics of the oscillator, it suffices to

describe the phase evolution of each unit, and the analysis greatly simplifies [17–19]. If, however, the influence

of the coupling is strong, as in the case considered here, such a reduction is no longer feasible and the amplitude

dynamics must be considered. Our work aims to add to the theoretical understanding of clustering in this case

of strong coupling.
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From the view-point of symmetry, if the coupling between N identical oscillators is global (i.e. all-to-all),
then the governing equations are equivariant under the symmetric group SN. This means that the evolution
equations f commute with elements σ from the symmetry group,

f (σx) = σf (x) ∀σ ∈ SN . (1)

In addition, this implies that the system has a trivial solution which is invariant under SN, that is, in which all
oscillators are synchronized. Cluster states composed of two clusters, also called two-cluster states, can then be
viewed as states with the reduced symmetry SN1 × SN2 , with N1 and N2 being the number of oscillators in each
cluster. Using the equivariant branching lemma, it can then be shown that these two-cluster states bifurcate
off the trivial solution [9, 20]. The bifurcation at which the synchronized motion becomes unstable and the
two-cluster branches (also called primary branches) emerge is commonly referred to as the Benjamin–Feir
instability [21, 22].

The intrinsic dimensionality of each oscillatory unit may range from d = 2 for FitzHugh–Nagumo [23] and
Van der Pol oscillators [24], via d = 3 for the Oregonator [25] to d = 4 for the original Hodgkin–Huxley model
[26], and even higher for more detailed physical models [27]. A system composed of N of these oscillators thus
lives in a d · N-dimensional phase space, making its full investigation unfeasible even for small d and N. One
can, however, circumvent this problem of increasingly large dimensions by restricting the dynamics to the
center manifold of certain bifurcations. In particular, it is known that the center space of the Benjamin–Feir
instability is N − 1 dimensional [20, 28], and thus a reduction to the center manifold at this bifurcation allows
for reducing the dimension of the problem to N − 1 and thus by a factor of ≈ d. As we show below, such
a reduction lets us reveal invariant sets and bifurcation curves analytically—a difficult task in the original
d · N-dimensional space.

In this work, we focus on a particular example of a globally coupled system, in which the network is com-
posed of oscillating units called Stuart–Landau oscillators, each represented by a complex variable Wk ∈ C.
As opposed to phase oscillators, each Stuart–Landau oscillator has two degrees of freedom, i.e. an amplitude
and a phase. With a linear global coupling, the dynamics are then given by

Ẇk = Wk − (1 + iγ) |Wk|2Wk + (βr + iβi)
(
〈W〉 − Wk

)
, (2)

with the complex coupling constant βr + iβi and the real parameter γ, also called the shear [29]. 〈·〉 indi-
cates the ensemble mean and Ẇ = dW/dt. Bold face W indicates a vector containing the ensemble values
[W1, W2, . . . , WN]. For βr + iβi = 0 the ensemble is decoupled, and each Stuart–Landau oscillator oscillates
with unit amplitude and angular velocity −γ. For βr + iβi �= 0, however, a plethora of different dynamical
states can be observed. These states include fully synchronized oscillations, in which all oscillators maintain an
amplitude equal to one and have a mutual phase difference of zero [30], cluster states, in which the ensemble
splits up into two or more sets of synchrony [14, 31, 32], and a variety of quasi-periodic and chaotic dynamics
[12, 33].

2-cluster states can be born and destroyed at saddle-node bifurcations if the number of oscillators in each
cluster is different, that is, when they are unbalanced [13]. Balanced solutions with N1 = N2 emerge from
the synchronized solution at the Benjamin–Feir instability. For N = 16 oscillators and γ = 2, the saddle-
node bifurcations for different unbalanced cluster distributions N1 �= N2 and the Benjamin–Feir instability are
depicted in figure 1, as a function of the coupling parameters βr and βi. Here, all the two-cluster solutions exist
locally in parameter space below their respective saddle-node bifurcation curve, that is for smallerβr values. Up
to the Benjamin–Feir instability they coexist with the stable synchronized solution. Descending from large βr

values, notice that the most-unbalanced cluster state with N1 : N2 = 1 : 15 is created first. The more balanced
cluster states are born subsequently, depending on their distribution, until eventually the balanced cluster state
N1 : N2 = 8 : 8 is born at the Benjamin–Feir instability. At βr = −(1 −

√
3γ)/2, βi = (−γ −

√
3)/2, there

exists a codimension-two point where the saddle-node bifurcations of all cluster distributions coincide. This
point is called a cluster singularity [32]. Note that the qualitative picture in figure 1 does not change when
increasing the total number of oscillators N. For large numbers N →∞ we expect a bow-tie-shaped band of
saddle-node bifurcation curves, ranging from the saddle-node bifurcation of the most unbalanced cluster state
to the Benjamin–Feir instability. As argued in reference [32], the cluster singularity can thus be viewed as an
organizing center. By projecting the dynamics close to the Benjamin–Feir instability onto its center manifold,
we aim to obtain further insights into the properties of this organizing center, and to elucidate the clustering
behavior near it.

The remainder of this article is organized as follows: in section 2, we pass to a corotating frame and intro-
duce the average amplitude R, the deviations from the average amplitude rk, the deviations from the mean
phase ϕk. Using this corotating system, we discuss how one can describe the dynamics in the center manifold,
see section 3. In section 4, we derive the parameters for the dynamics of xk. Detailed calculations are provided
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Figure 1. The Benjamin–Feir instability involving the 8 : 8 cluster (dark blue) and the different saddle-node curves creating the
unbalanced cluster solutions, N1 �= N2, in the βi , βr plane with γ = 2 and N = 16. Each curve belongs to a particular cluster
distribution N1 : N2, and is obtained with numerical continuation using AUTO-07P [34, 35]. Note the position of the cluster
singularity at βr = −(1 −

√
3γ)/2 ≈ 1.23, βi = (−γ −

√
3)/2 ≈ −1.87 as indicated.

Table 1. Abbreviations.

〈xm〉 = 1/N
∑N

j=1 xm
j x̃m

k = xm
k − 〈xm〉

〈ex〉 = 1/N
∑N

j=1 exj ẽxk = exk − 〈ex〉

in appendix C, for convenience. Based on the parameters in the center manifold, we study the bifurcations of
two-cluster states and the role of the cluster singularity in the center manifold, in section 5. We conclude with
a detailed discussion of our results and an outlook on future work. For a detailed mathematical analysis of the
dynamics of two-cluster states in the center manifold, see the companion paper [36].

2. Variable transformation into corotating frame

Notice that equation (2) is invariant under a rotation in the complex plane Wk → Wk exp (iφ). This invariance
can be eliminated by choosing variables in a corotating frame, thus effectively reducing the dimensions of the
system from 2N to 2N − 1.

In particular, we express the complex variables Wk in log-polar coordinates Wk = exp(Rk + iΦk). Then
equation (2) turns into

Ṙ = 1 − e2R〈e2r〉+ Re
(
(βr + iβi)

(
〈ez〉〈e−z〉 − 1

))
(3a)

ṙk = −e2Rẽ2rk + Re
(

(βr + iβi)
(
〈ez〉ẽ−zk

))
(3b)

ϕ̇k = −γ e2Rẽ2rk + Im
(

(βr + iβi)
(
〈ez〉ẽ−zk

))
, (3c)

with k = 1, . . . , N − 1, the abbreviations shown in table 1 and the new coordinates summarized in table 2
(see appendix A for a derivation). Hereby, ·̃ symbolizes the deviation from the ensemble mean 〈·〉, and R
and Φ are the ensemble mean logarithmic amplitude and phase, respectively. The logarithmic amplitude and
phase deviation of each oscillator from their averages are rk and ϕk. Notice that through this construction,
the averages of these deviations vanish. Furthermore, bold face of a variable, e.g. x, symbolizes the set of the
respective ensemble variables {x1, x2, . . . , xN}.
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Table 2. Coordinate transformations.

R = 〈R〉 rk = R̃k ⇒ 〈r〉 = 0

Φ = 〈Φ〉 ϕk = Φ̃k ⇒ 〈ϕ〉 = 0
zk = rk + iϕk ⇒ 〈z〉 = 0

To simplify notation, rk + iϕk is abbreviated by the complex variable zk. The transformation into
equations (3a) to (3c) has the advantage that the resulting equations are independent of the mean phase Φ. A
change of Φ corresponds to a uniform phase shift of the whole ensemble in the complex plane, which in turn
means that periodic orbits in the Stuart–Landau ensemble, equation (2), correspond to stationary solutions
in the transformed system, equations (3a) to (3c). Thus, we can ignore the mean phase Φ in our subsequent
analysis.

Synchronized oscillations correspond to R = 0, rk = 0, Φ = −γt and ϕk = 0. The stability of this equi-
librium can be investigated using the eigenspectrum of the Jacobian evaluated at this point. Due to the
SN-symmetry of the solution and the SN-equivariance of the governing equations, the Jacobian becomes
block-diagonal, and thus has a degenerate eigenvalue spectrum [15, 21], see appendix B:

• There is one singleton eigenvalue λ1 = −2 < 0, corresponding to an eigendirection affecting all oscilla-
tors identically. That is, this direction �v1 shifts the amplitude of the synchronized motion but does not
alter its symmetry.

• There is the eigenvalue λ+ = −1 − βr +
√

1 − β2
i − 2βiγ = : − 1 − βr + d which becomes zero at the

Benjamin–Feir instability and is of geometric multiplicity N − 1. The corresponding directions corre-
spond to two-cluster states, with each direction corresponding to one cluster distribution N1 : N2. Up to
conjugacy, we arrange here the units such that the first N1 oscillators correspond to the same cluster. All
two-clusters with the same distribution but different assignments of the oscillators then belong to the
same conjugacy class.

• Finally, there is the eigenvalue λ− = −1 − βr − d which is negative close to the synchronized solution,
which has a geometric multiplicity of N − 1 and whose eigendirections also have SN1 × SN2 -symmetry.

Here, d =
√

1 − β2
i − 2βiγ abbreviates the root of the discriminant where we assume 1 − β2

i −
2βiγ > 0, i.e. real λ±. Notice that the Benjamin–Feir instability λ+ = 0, alias βr = d − 1, i.e. the dark blue
curve in figure 1, is of codimension one.

3. Center manifold reduction

In the following, we calculate an expansion to third order of the dynamics in the (N − 1)-dimensional center
manifold which corresponds to the Benjamin–Feir instability at λ+ = 0 = −1 − βr + d. In order to do so, it
is useful to introduce the coordinates

xk =
−rk +

d+1
γ′ ϕk

2d
(4)

yk =
rk +

d−1
γ′ ϕk

2d
(5)

such that

rk = (1 − d) xk + (1 + d) yk (6)

ϕk = γ ′xk + γ ′yk. (7)

Here we use the notations γ ′ = 2γ + β i and d as defined above. See appendix B for a derivation. The variables
xk describe the dynamics in the (N − 1)-dimensional center manifold tangent to yk = 0∀k, while yk together
with R describe the dynamics in the stable manifold tangent to xk = 0 ∀k.

Note that the center-manifold must be SN-invariant. In addition, the global restrictions 〈r〉 = 〈ϕ〉 = 0 and
thus 〈x〉 = 〈y〉 = 0 must hold. Therefore, the general form of the center manifold up to quadratic order must
follow

yk = yk (x) = ax̃2
k +O

(
x3

k

)
(8)

R = R (x) = b〈x2〉+O
(
x3

k

)
, (9)
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with the coefficients a = a (βi, γ) and b = b (βi, γ). Here, we use the tangency of our coordinates R and yk, that

is, d
dxk

R
∣∣∣

x=0
= 0 and d

dxk
yk

∣∣∣
x=0

= 0. Since the Benjamin–Feir instability βr = d − 1 is of codimension one,

the three-dimensional parameter space (βr,βi, γ) becomes two-dimensional. The parameters in the center
manifold thus only depend on β i and γ. By SN-equivariance, the reduced dynamics ẋk in the center manifold,
up to cubic order, must be of the form

ẋk = λ+xk + Ax̃2
k + Bx̃3

k + C〈x2〉xk +O
(
x4

k

)
, (10)

see also references [10, 20], with the parameters A = A (βi, γ) and B = B (βi, γ) and C = C (βi, γ).

4. Derivation of the parameters a, b, A, B and C

In this section, we discuss the approach to calculate the coefficients a, b, A, B and C for the dynamics in the
center manifold. See appendix C for complete details.

First, we determine b. In particular we observe that

Ṙ =

(
d

dxk
R

)
ẋ = 2b〈xẋ〉+O

(
x5

k

)
= 2bλ+〈x2〉+O

(
x3

k

)
holds. Since λ+ = 0 at the bifurcation, Ṙ up to second order in xk must vanish. Therefore, expressing
zk = rk + iϕk and rk, ϕk in terms of xk in equation (3a), we can compute b by comparing the coefficients
of the 〈x2〉: the terms in front of 〈x2〉 must thereby vanish. This allows us to estimate b = b (βi, γ) as

b =
1 − d

2

(
γ ′2 + d2 + 4d − 5

)
(11)

with γ′ and d as defined above.
Analogously, we can calculate a using equations (3a) and (3b) up to second order in xk and employing

ẏk =

(
d

dxk
yk

)
ẋk = O

(
x3

k

)
.

This means we can use 2dẏk = ṙk + (d − 1)/γ ′ϕ̇k, substitute the zk with xk in equations (3a) and (3b) and keep

terms up to O
(
x2

k

)
. Comparing the coefficients in front of x̃2

k then results in

a =
(1 − d)

(
γ ′2 + (1 − d)2) (3

(
d2 − 1

)
+ γ ′2)

8d2γ ′2 . (12)

Finally, we can calculate A, B and C using

2dẋk = −ṙk +
d + 1

γ ′ ϕ̇k

= λ+xk + Ax̃2
k + Bx̃3

k + C〈x2〉xk.

Taking equations (3b) and (3c) and the coefficients a and b obtained above, we can evaluate this equality up
to cubic order, yielding the coefficients

A =
(d − 1)

(
γ ′2 + (1 + d)2) (γ ′2 − 3(d − 1)2)

4γ ′2d
(13)

B = − (d − 1)2
(
γ ′2 + (d − 1)2

) (
γ ′2 + (d + 1)2

) (
γ ′2 − 2γ ′d + 3

(
d2 − 1

)) (
γ ′2 + 2γ ′d + 3

(
d2 − 1

))
16γ ′4d3

(14)

C =
(d − 1)2

16d3γ ′4

(
γ ′8 − 4γ ′6 (2d3 − 7d2 + 1

)
− 2γ ′4 (8d5 + d4 − 56d3 + 22d2 + 1

)

− 4γ ′2 (2d7 + 5d6 − 4d5 − 13d4 + 2d3 + 11d2 − 3
)
+ 9

(
d2 − 1

)4
)
. (15)
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Figure 2. The Benjamin–Feir instability (blue, λ+ = 0) and the different saddle-node curves creating the unbalanced cluster
solutions in the A, λ+ plane. The dashed curves belong to particular cluster distributions N1 : N2 obtained by projecting the
curves from the Stuart–Landau ensemble shown in figure 1 using the expressions for λ+(βr,βi , γ) = −1 − βr + d, and
A(βr,βi , γ), cf equation (13). The solid curves λsn indicate the saddle-node bifurcations of the unbalanced cluster states obtained
analytically in the center manifold, see equation (16). Note that close to the cluster singularity, where analytical expansions work
best, numerical continuation fails due to the concentration of solutions in phase space.

Together with λ+, the expressions for A, B and C fully specify the dynamics in the center manifold
based on the original parameters γ, βr and β i. By rescaling time and xk in equation (10), the number of
independent parameters can be reduced to two, see reference [36]. For simplicity, we use the unscaled equation
as in equation (10) here.

5. Clustering and cluster singularities in the center manifold

As shown in figure 1 for N = 16 oscillators, we observe a range of saddle-node bifurcations creating the dif-
ferent two-cluster states. The expressions for λ+, A, B and C above determine the corresponding parameter
values in the center manifold. The respective λ+ and A values for the numerical curves shown in figure 1 are
depicted in figure 2 as dashed curves. Notice that the Benjamin–Feir curve corresponds to the line λ+ = 0. Fur-
thermore, we can derive the saddle-node curves creating unbalanced two-cluster states in the center manifold
analytically, see appendix D. In particular,

λsn =
A2(1 − α)2

4 (B (1 − α+ α2) + Cα)
(16)

for unbalanced cluster solutions, with α = N1/N2. The respective analytical curves for N = 16 are shown as
solid curves in figure 2. Notice the close correspondence between the mapped bifurcation curves from the full
system and the bifurcation curves determined in the center manifold. For less balanced solutions, the saddle-
node curves obtained from the Stuart–Landau ensemble depart more strongly from the saddle-node curves
calculated analytically in the center manifold. We expect this to be due to the cubic truncation of the flow in
the center manifold, thus limiting its accuracy away from the Benjamin–Feir curve.

Note that to obtain the curves in figure 2, we fix γ = 2 and vary βi, βr. We then use the expressions for
A(βi,βr), B(βi,βr) and C(βi,βr) to get the parameters in the center manifold. Thus the parameters A, B and C
lie on a two-dimensional manifold. For the curves shown in figure 2, we furthermore use equation (16), yield-
ing one-dimensional curves. The curves are, however, not exactly parabolas, since B and C vary in addition to A,
which is not shown in figure 2. For all subsequent figures, we use the values of C = −1 and B = −2/(2

√
3 − 3)

at the cluster singularity for γ = 2, which can be obtained analytically. See reference [36] p 36 for a derivation.

6



J.Phys.Complex. 2 (2021) 025005 (20pp) F P Kemeth et al

Figure 3. The bifurcation curves λ+,1 (μ1 = 0, dotted orange) and λ+,2 (μ2 = 0, dash-dotted orange) for the 4 : 12 cluster state
in the A, λ+ plane and the parameters B = −2/(2

√
3 − 3), C = −1. The saddle-node curve creating the 4 : 12 cluster is shown as

a solid orange curve. The Benjamin–Feir line is shown in blue, with the λ+,1 = λ+,2 curve for the balanced 8 : 8 cluster state
depicted as a dotted blue curve. The 4 : 12 cluster is stable in the two regions between the respective λ+,1 = 0 and λ+,2 = 0 curve.
The balanced cluster state is stable above the dotted blue curve.

Furthermore, from figure 2 we observe that A = 0, in addition to λ+ = 0, at the cluster singularity. This
means that this codimension-two point is distinguished by vanishing quadratic dynamics in the center man-
ifold, cf equation (10). In addition, it serves as an organizing center for the saddle-node bifurcations of the
unbalanced cluster states: at the saddle-node bifurcation, we have in the center manifold for a cluster state

x∗1 = − A (1 − α)

2 (B (1 − α+ α2) + Cα)
,

with B < 0 and C < 0 for the range of βi, βr considered here (not shown), see appendix D. This means that
for negative A values, the saddle-node curves occur at positive x1, for positive A values at negative x1, and for
A = 0, at the cluster singularity, all saddle-node bifurcations occur at the synchronized solution xk = 0. This
behavior can indeed be observed in the Stuart–Landau ensemble, see figure 6 of reference [32].

The unbalanced cluster states do, in general, not emerge as stable states from the saddle-node bifurca-
tions. Rather, one of the two branches created at the saddle-node bifurcation is subsequently stabilized through
transverse bifurcations involving three-cluster solutions with symmetry SN1 × SN2 × SN3 , also called secondary
branches [10]. For a more detailed discussion on secondary branches, see also references [28, 37].

In order to explain this in more detail, we follow reference [37] section 4. Note that each N1:N2 two-
cluster solution is invariant under the action of the group SN1 × SN2 . From this, it follows that one can block-
diagonalise the Jacobian at the two-cluster solutions SN1 × SN2 . In doing so, one can calculate the (N1 − 1)-
degenerate eigenvalue μ1 describing the intrinsic stability of cluster Ξ1, that is its stability against transverse
perturbations. Note, however, that a cluster of size 1 cannot be broken up. Following reference [10] p 23 and
using isotypic decomposition, the eigenvalue μ1 can be expressed as

μ1 = J11|Ξ1
− J12|Ξ1

.

Here, Jij

∣∣
Ξ1

denotes ∂fi/∂xj, with the respective xi and xj in cluster Ξ1 and fi being the right-hand side of
equation (10). Without loss of generality, we assume in the following that Ξ1 is the cluster with the smaller
number of oscillators, that is, N1 � N2 or α � 1. Evaluating the Jacobian, one obtains that the eigenvalue μ1

changes sign at

λ+,1 =
(1 − 2α) B − αC

(α− 2)2B2
A2. (17)

7
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Figure 4. The theoretical bifurcation curves λ+,1 (μ1 = 0, dotted) and λ+,2 (μ2 = 0, dash-dotted) for the different cluster size
distributions in the A, λ+ plane and the parameters B = −2/(2

√
3 − 3), C = −1. The saddle-node curves creating the

unbalanced cluster solutions are represented as solid curves, which correspond to the shaded curves in figure 2 with the same
color coding. The Benjamin–Feir line is shown in blue. The unbalanced cluster states are stable above the respective dotted curve
and below the dash-dotted curve, except for the 1 : 15 cluster, which is stable already at the saddle-node bifurcation. For the 2 : 14
cluster, the dotted and solid curves do not coincide but lie very close in parameter space.

Analogously, the transverse stability of cluster Ξ2 is described by

μ2 = J11|Ξ2
− J12|Ξ2

,

which changes sign at

λ+,2 =
(α− 2) B − C

(4α2 − 4α+ 1) B2
αA2. (18)

Hereby,μ2 describes the intrinsic stability of clusterΞ2. Furthermore notice that for the balanced cluster,α = 1
and therefore λ+,1 = λ+,2. Since both clusters contain an equal number of units, their respective intrinsic
stabilities change simultaneously.

In figure 3, λsn, λ+,1 and λ+,2 are shown as solid, dotted and dash-dotted orange curves, respectively, for
the 4 : 12 two-cluster state. The Benjamin–Feir instability, where the balanced cluster state is born, is drawn
as a solid blue line at λ+ = 0, and the transverse bifurcation curve λ+,1 = λ+,2, where the balanced cluster
state is stabilized, is drawn as a dotted blue curve. See figure 4 for the respective curves for a range of cluster
distributions.

Figure 3 can be interpreted as follows: coming from negative λ+ values, the unbalanced 4 : 12 cluster state
is born at λsn(4 : 12) (solid orange). However, this two-cluster state is unstable for the parameter values con-
sidered here: the cluster Ξ1 with 4 units is intrinsically unstable with μ1 > 0 and μ2 < 0. At the dotted orange
curve, μ1 changes sign, rendering the 4 : 12 cluster state stable. Subsequently, at the dash-dotted orange curve,
μ2 changes sign, leaving the cluster Ξ2 with 12 units intrinsically unstable and thus the 4 : 12 cluster unstable.

The qualitatively same behavior can be observed for any cluster distribution α < 1/2, except for the most
unbalanced state (1 : 15). There, cluster Ξ1 cannot be intrinsically unstable, since it contains only one unit.
This means that this cluster solution is born stable in its saddle-node bifurcation, and becomes unstable
only at λ2 when μ2 = 0. See also the bottom right plot in figure 4. In particular, λsn = A2/4B for α = 0,
see equation (16), coincides with λ+,1 = A2/4B for α = 0, cf equation (17). Furthermore, it is worth noting
that the stable patches in parameter space overlap for different cluster distributions. This means that there is a
multistability of different two-cluster states.

8
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Figure 5. The bifurcation curves λsn (blue), λ+,1 (orange) and λ+,2 (green) for the different cluster-size distributions in the λ+,
N1/N plane with A = −0.2 and the parameters B = −2/(2

√
3 − 3) and C = −1. The Benjamin–Feir instability is indicated by

the black solid line. The dashed magenta line indicates the location where λ+,2 diverges. The positions of the 4 : 12 and 7 : 9
cluster states are marked by the dotted vertical gray lines, see also figure 6 for the respective solution curves.

Notice that these results are in close correspondence with the behavior observed in the full Stuart–Landau
ensemble, compare, for example, figure 3 with figures 4(b) and 5(b) in reference [32].

λsn and λ+,1 are continuous functions of α. For N →∞, this means that there are continuous bands of
bifurcation curves: going from λsn(α = 0) = A2/4B to λsn(α = 1) = 0, there is band of saddle-node bifurca-
tions creating the unbalanced cluster solutions. This band becomes infinitesimally thin at the cluster singular-
ity A = 0, giving it a bow-tie like shape. From λ+,1(α = 0) = A2/4B to λ+,1(α = 1) = (−B − C)A2/B2, the
transverse bifurcations of the smaller cluster stretch from the saddle-node curve of the most unbalanced cluster
state to the transverse bifurcations of the balanced cluster state where λ+,1 is maximal, again yielding a bow-tie
like shape in the A, λ+ plane. Since λ+,2 has a pole at α = 1/2, the interpretation is a bit more involved. First,
for the balanced cluster state α = 1:

λ+,2(α = 1) = (−B − C)A2/B2 = λ+,1(α = 1),

and thus λ+,2 and λ+,1 coincide. For the most unbalanced solution α = 0: λ+,2(α = 0) = 0. This means the
larger cluster of the most unbalanced solution becomes unstable exactly when the balanced solution is born,
that is, at the Benjamin–Feir instability λ+ = 0. For intermediate α values, however, the λ+,2 curve becomes
steeper and infinitely steep atα = 1/2, with the tip reaching to the cluster singularity. This can also be observed
in figure 4, where the parabola becomes thinner when going from the 6 : 10 to the 5 : 11 cluster states, and
subsequently broadens again until the 1 : 15 cluster. Altogether, the λ+,2 curves fill out the half plane λ+ � 0
except the line A = 0.

These three bow-tie like regions of λsn, λ+,1 and λ+,2 become infinitesimally thin and thus singular only at
the cluster singularity λ+ = 0, A = 0.

The bifurcation scenario can be better visualized by plotting λsn, λ+,1 and λ+,2 as a function of the cluster
size N1/N, see figure 5. It depicts the λ+ values of the saddle-node bifurcations creating the two-cluster states
(λsn, blue) and of the two transverse bifurcations (equations (17) and (18)) altering the stability of the two-
clusters, with λ+,1 in green and λ+,2 in orange.

When increasingλ+ coming from negative values, all cluster states with N1/N �= 1/2 are born in the saddle-
node bifurcation λsn. Note that in fact two solutions for each N1/N are created this way. In figure 5, one can
observe that for the most unbalanced state N1/N → 0, the transverse bifurcation stabilizing the smaller cluster
λ+,1 occurs immediately after the saddle-node bifurcation creating that cluster. This bifurcation alters the
stability of one of the two solutions born in the saddle-node bifurcation, and in particular renders the smaller

9
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Figure 6. The variable x1 of the 4 : 12 cluster solution (top) and the 7 : 9 cluster solution (bottom) as a function of the bifurcation
parameter λ+ with A = −0.2, and the parameters B = −2/(2

√
3 − 3) and C = −1. Solid curves indicate that the solution is

stable for the respective range of parameters, dashed curves represent unstable solutions. The points mark the λsn (blue), the λ+,1

(orange) and the λ+,2 (green) bifurcations. The synchronized solution xi = 0 ∀i is indicated by the black horizontal line. See also
figure 5 for the locations of the 4 : 12 and 7 : 9 cluster in the λ+, N1/N plane.

of the two clusters in that solution stable to transverse perturbations. For the parameter regime considered
here (A = −0.2, B = −2/(2

√
3 − 3) and C = −1), this solution is in fact stabilized at this bifurcation, that is

for λ+ > λ+,1.
For N1/N < 1/3, the respective two-cluster solution remains stable until λ+,2, where the larger cluster

becomes unstable, thus rendering the whole solution unstable. This can, for example, be observed for the
4 : 12 cluster-size distribution, see figure 6 (top). There, the variable of one cluster, x1, is plotted as a function
of the bifurcation parameter λ+. The blue dot on the left marks the saddle-node bifurcation wherein the two
4 : 12 solutions are created. Initially, both solutions are unstable. Atλ+,1 (orange dot), one of them is stabilized,
and at λ+,2 (green dot), it is subsequently destabilized.

For N1/N > 1/3, the scenario is different. There the solution that got stabilized at λ+,1 remains stable for
all λ+ > λ+,1. The bifurcation λ+,2 instead occurs at the second cluster solution created at the saddle-node
bifurcation. This is illustrated more clearly in figure 6 (bottom) for the 7 : 9 cluster solution. One of the two
solutions becomes stable at λ+,1, marked by an orange dot and as discussed above. Since N1/N = 7/16 > 1/3,
this solution remains stable for all λ+ > λ+,1. The second solution (upper curve in the bottom part of figure 6)
first passes the synchronized solution at the Benjamin–Feir bifurcation λ+ = 0 and finally becomes stabilized
at λ+,2, marked by a green dot. λ+,2 diverges at the pole N1/N = 1/3, separating the two scenarios shown in
figure 6. There the bifurcation switches from the solution with negative x1 (which, for λ+ →∞, diverges to
−∞) to the solution with positive x1 (which, for λ+ →∞, diverges to +∞).

Notice how for the cluster distribution N1/N = 7/16 the two two-cluster solutions are bistable for
λ+ > λ+,2. That is, there exist two stable two-cluster solutions with different x1 but the same cluster size ratio
7 : 9 that are both stable. This, in fact, has also been observed in the Stuart–Landau ensemble, see for example
figure 6 in reference [32]. Note that the singularity of λ+,2 at N1/N = 1/3 (α = 1/2) is independent of the
parameters A, B and C, see equation (18). This means that bistable solutions created as described above can in
general only exist for N1/N > 1/3.

6. Conclusion and outlook

In this paper, we showed how one can map a system of globally coupled Stuart–Landau oscillators onto
the (N − 1)-dimensional center manifold at the Benjamin–Feir instability. Thereby, we observed that the
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bifurcation curves at which two-cluster solutions are born closely resemble their counterparts in the origi-
nal oscillatory system. This allowed us to investigate a codimension-two point called cluster singularity, from
which all these bifurcation curves emanate. In the center manifold, we saw that this point corresponds to a
vanishing coefficient A = 0 in front of the quadratic term of the equations of motion. Due to the reduced
dynamics in this manifold, we were able to obtain stability boundaries for two-cluster states analytically. This
allows for the more detailed investigation of the bow-tie-shaped cascade of transverse bifurcations that govern
the stability of these two-cluster states, highlighting the role of the cluster singularity as an organizing center.
The observed behavior is hereby independent of the oscillatory nature of each Stuart–Landau oscillator, but
a result of the SN-equivariance of the full system. These findings may thus facilitate our understanding of this
codimension-two point, and of clustering in general, even beyond oscillatory ensembles.

Through this reduction to the center manifold, we could calculate the bifurcation curves creating the cluster
solutions (λsn) and altering their stability (λ+,1 and λ+,2) analytically. This allowed us to investigate when
stable two-cluster solutions exist more systematically, and in particular revealed when different solutions with
the same cluster-size distribution are bistable (cf figure 6). The relative cluster size N1/N = 1/3 seems to be a
general lower limit for such a bistable behavior. The bifurcation scenario of how states with different cluster size
ratios N1/N are created is thereby different from the Eckhaus instability [38] in reaction–diffusion systems.
There, solutions of different wavelengths are created through supercritical pitchfork bifurcations at the trivial
solution and subsequently stabilized through a sequence of subcritical pitchfork bifurcations involving mixed-
mode states. In our case, the different two-cluster states are created in saddle-node bifurcations and stabilized
at λ+,1 at a single equivariant bifurcation point involving three-cluster states. However, the detailed interaction
between two- and three-cluster states still remains an open topic for future research.

Note that the cubic truncation of the flow in the center manifold has a gradient structure [36]. This means
that we can assign an abstract potential to each of the cluster distributions for a particular set of parameters
λ+, A, B and C. Is there a particular cluster distribution with a minimal potential value? What is its role in the
dynamics between these cluster distributions? The companion paper [36] addresses some of these dynamical
questions.

Here, we fixed the parameter γ = 2 in the full Stuart–Landau system, and varied the coupling parame-
ters βr, βi. This restricts our analysis to a small region in parameter space. It is important to mention that
for different parameter regimes, a qualitatively different behavior close to the cluster singularity might be
observed [36].

As discussed in section 2, the Stuart–Landau ensemble permits the transformation into a corotating frame.
This turns limit-cycle dynamics into fixed-point dynamics and thus greatly facilitates the reduction onto
the center manifold. For more general oscillatory ensembles, such as systems composed of van der Pol or
Hogdkin–Huxley type units, the transformation to a corotating frame may be more cumbersome or not
even possible. If the coupling between such units is of a global nature, we expect, however, that the nesting
of bifurcation curves creating different cluster distributions, cf figure 2, can also be observed in these systems.

This directly links to the fact that we focused on oscillatory dynamics in this article. An exciting fur-
ther question is the possibility of equivalent dynamics, such as clustering and cluster singularities, in systems
composed of bistable or excitable units.
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Appendix A. Variable transformation

Using log-polar coordinates Wk = exp (Rk + iΦk), equation (2) turns into

(
Ṙk + iΦ̇k

)
eRk+iΦk = eRk+iΦk − (1 + iγ) e2Rk eRk+iΦk + (βr + iβi)

(
〈eR+iΦ〉 − eRk+iΦk

)
.
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Dividing by Wk this becomes

Ṙk + iΦ̇k = 1 − (1 + iγ) e2Rk + (βr + iβi)
(
〈eR+iΦ〉e−Rk−iΦk − 1

)
.

We average over k and separate real and imaginary parts. The mean amplitude R and the mean phase Φ then
satisfy

Ṙ = 1 − 〈e2R〉+ Re
(
(βr + iβi)

(
〈eR+iΦ〉〈e−R−iΦ〉 − 1

))
Φ̇ = −γ〈e2R〉+ Im

(
(βr + iβi)

(
〈eR+iΦ〉〈e−R−iΦ〉 − 1

))
.

Substituting the variables listed in table 2, one obtains 〈 exp (2R)〉 = 〈exp (2r + 2R)〉 = exp (2R) 〈exp (2r)〉,
and 〈exp (R + iΦ)〉 = 〈exp (r + R + iϕ+ iΦ)〉 = exp (R + iΦ) 〈exp z〉. Therefore

Ṙ = 1 − e2R〈e2r〉+ Re
(
(βr + iβi)

(
〈ez〉〈e−z〉 − 1

))
Φ̇ = −γe2R〈e2r〉+ Im

(
(βr + iβi)

(
〈ez〉〈e−z〉 − 1

))
.

For the deviations rk = Rk − R and ϕk = Φk − Φ one may write

ṙk = Ṙk − Ṙ

= 1 − e2Re2rk + Re
(
(βr + iβi)

(
〈ez〉e−zk − 1

))
− Ṙ

= −e2Rẽ2rk + Re
(

(βr + iβi)
(
〈ez〉ẽ−zk

))
ϕ̇k = Φ̇k − Φ̇

= −γe2Re2rk + Im
(
(βr + iβi)

(
〈ez〉e−zk − 1

))
− Φ̇

= −γe2Rẽ2rk + Im
(

(βr + iβi)
(
〈ez〉ẽ−zk

))
with the notations as defined in table 1. The equations for Ṙ, ṙk and ϕ̇k then constitute the corotating system
equations (3a) to (3c).

Appendix B. Linearization

Linearizing the dynamics of the transformed system, equations (3a) to (3c), at the equilibrium R = 0, rk =

ϕk = 0, zk = 0, and using the fact that 〈r〉 = 0, 〈z〉 = 0, see table 2, one gets⎛
⎝ Ṙ

ṙk

ϕ̇k

⎞
⎠ =

⎛
⎝ −2R

−2rk − Re (kzk)
−2γrk − Im (kzk)

⎞
⎠

=

⎛
⎝ −2R

− (2 + βr) rk + βiϕk

− (2γ + βi) rk − βrϕk

⎞
⎠

=

⎛
⎝−2 0 0

0 −2 − βr βi

0 −2γ − βi −βr

⎞
⎠ ·

⎛
⎝ R

rk

ϕk

⎞
⎠ = J ·

⎛
⎝ R

rk

ϕk

⎞
⎠ .

The Jacobian thus has the eigenvalues

• Eigenvalue λ1 = −2 with eigenvector �v1 =
(

1,�0,�0
)

.

and two eigenvalues of geometric multiplicity N − 1 given by the eigendecomposition

eig

(
−2 − βr βi

−2γ − βi −βr

)
,

which gives

• The eigenvalue λ+ = −1 − βr +
√

1 − β2
i − 2βiγ = −1 − βr + d.

• And the eigenvalue λ− = −1 − βr −
√

1 − β2
i − 2βiγ = −1 − βr − d.
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Here, we assume 1 − β2
i − 2βiγ > 0, that is real λ±. For an analysis of the case 1 − β2

i − 2βiγ < 0, see
reference [39]. The eigenvectors corresponding to these two eigenvalues can be obtained using

((
−2 − βr βi

−2γ − βi −βr

)
− λ±1(N−1)×(N−1)

)
�v± = �0.

For λ+, one thus obtains

(
−1 − d βi

−2γ − βi 1 − d

)
�v+ =

(
−1 − d βi

−2γ − βi 1 − d

)(
rk

ϕk

)
=

(
(−1 − d) rk + βiϕk

(−2γ − βi) rk + (1 − d)ϕk

)
= 0.

Choosing

ϕk = (1 + d)/βirk, (A.1)

we get (
(−1 − d) rk + (1 + d) rk

(−2γ − βi) rk +
(
1 − d2

)
/βirk

)
=

(
− (1 + d) rk + (1 + d) rk

− (2γ + βi) rk + (2γ + βi) rk

)
= �0,

thus solving the equality above. The constraint equation (A.1), together with 〈r〉 = 〈ϕ〉 = 0, defines an (N −
1)-dimensional subspace of R2N−1.

For λ−, one thus obtains

(
−1 + d βi

−2γ − βi 1 + d

)
�v+ =

(
−1 + d βi

−2γ − βi 1 + d

)(
rk

ϕk

)
=

(
(−1 + d) rk βiϕk

(−2γ − βi) rk (1 + d)ϕk

)
.

Choosing

ϕk = (1 − d)/βirk, (A.2)

solves the conditions above. In particular,(
(−1 + d) rk + (1 − d) rk

(−2γ − βi) rk +
(
1 − d2

)
/βirk

)
=

(
− (1 − d) rk + (1 − d) rk

− (2γ + βi) rk + (2γ + βi) rk

)
= �0.

The constraint equation (A.2), together with 〈r〉 = 〈ϕ〉 = 0 define an (N − 1)-dimensional subspace ofR2N−1.
Now, one can define the eigencoordinates xk describing the dynamics in the space defined by the constraint
equation (A.1), the center space of the bifurcation, and eigencoordinates yk, describing the dynamics in the
space defined by the constraint equation (A.2). These two sets of variables, together with R, can then be used
to describe the full system.

Appendix C. Parameter derivation

In this section of the appendix, we derive expressions for the parameters a, b, A, B and C as a function of the
parameters γ, βr and β i from the Stuart–Landau ensemble. Hereby, we will use the condition that R and the

yk are tangential, that is, d
dxk

R
∣∣∣

x=0
= 0 and d

dxk
yk

∣∣∣
x=0

= 0.

C.1. a and b
In order to calculate a and b, it is useful to write out the following expressions

zk = rk + iϕk

= (1 − d) xk + (1 + d) yk + i
(
γ ′xk + γ ′yk

)
=

(
1 − d + iγ ′) xk + a

(
1 + d + iγ ′) x̃2

k +O
(
x3

k

)
z2

k = (rk + iϕk)2

=
(
(1 − d) xk + (1 + d) yk + i

(
γ ′xk + γ ′yk

))2

=
((

1 − d + iγ ′) xk +
(
1 + d + iγ ′) yk

)2

=
(
1 − d + iγ ′)2

x2
k + 2a

(
1 − d + iγ ′) (1 + d + iγ ′) xkx̃2

k +O
(
x4

k

)
z3

k = (rk + iϕk)3
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=
((

1 − d + iγ ′) xk +
(
1 + d + iγ ′) yk

)3

=
(
1 − d + iγ ′)3

x3
k +O

(
x4

k

)
,

where we used equation (8) for yk and the notation γ′ = 2γ + βi. Similarly, we expand the following parts and
keep terms up to cubic order:

ezk = 1 + zk +
z2

k

2
+

z3
k

6
+O

(
x4

k

)
e−zk = 1 − zk +

z2
k

2
− z3

k

6
+O

(
x4

k

)
〈ez〉 = 〈1 + z +

z2

2
+

z3

6
+O

(
x4

k

)
〉

= 1 +
1

2
〈z2〉+ 1

6
〈z3〉+O

(
x4

k

)
ẽ−zk = e−zk − 〈e−z〉

= 1 − zk +
z2

k

2
− z3

k

6
− 1 − 1

2
〈z2〉+ 1

6
〈z3〉+O

(
x4

k

)
= −zk +

1

2
z̃2

k −
1

6
z̃3

k +O
(

x4
k

)

〈ez〉〈e−z〉 =
(

1 +
1

2
〈z2〉+ 1

6
〈z3〉

)(
1 +

1

2
〈z2〉 − 1

6
〈z3〉

)
+O

(
x4

k

)
= 1 +

1

2
〈z2〉+ 1

6
〈z3〉+ 1

2
〈z2〉 − 1

6
〈z3〉+O

(
x4

k

)
= 1 + 〈z2〉+O

(
x4

k

)
〈ez〉ẽ−zk =

(
1 +

1

2
〈z2〉+ 1

6
〈z3〉

)(
−zk +

1

2
z̃2

k −
1

6
z̃3

k

)
+O

(
x4

k

)

=

(
1 +

1

2
〈z2〉

)(
−zk +

1

2
z̃2

k −
1

6
z̃3

k

)
+O

(
x4

k

)
= −zk +

1

2
z̃2

k −
1

6
z̃3

k −
1

2
zk〈z2〉+O

(
x4

k

)
.

With the expression for R, see equation (9), we can furthermore write

e2R = 1 + 2R +O
(
x4

k

)
= 1 + 2b〈x2〉+O

(
x4

k

)
e2rk = 1 + 2rk + 2r2

k +
4

3
r3

k +O
(
x4

k

)
〈e2r〉 = 1 + 2〈r2〉+ 4

3
〈r3〉+O

(
x4

k

)
ẽ2rk = e2rk − 〈e2r〉

= 2rk + 2r̃2
k +

4

3
r̃3

k +O
(
x4

k

)
e2R〈e2r〉 =

(
1 + 2b〈x2〉

)(
1 + 2〈r2〉+ 4

3
〈r3〉

)
+O

(
x4

k

)
= 1 + 2〈r2〉+ 2b〈x2〉+ 4

3
〈r3〉+O

(
x4

k

)
e2Rẽ2rk =

(
1 + 2b〈x2〉

)(
2rk + 2r̃2

k +
4

3
r̃3

k

)
+O

(
x4

k

)
= 2rk + 2brk〈x2〉+ 2r̃2

k +
4

3
r̃3

k +O
(
x4

k

)
.
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Using these approximations, we can write for the dynamics of R up to second order in xk

Ṙ = 1 − e2R〈e2r〉+ Re
(
(βr + iβi)

(
〈ez〉〈e−z〉 − 1

))
= 1 −

(
1 + 2〈r2〉+ 2b〈x2〉

)
+ Re

(
(βr + iβi)

(
1 + 〈z2〉 − 1

))
= −2〈r2〉 − 2b〈x2〉+ Re

(
(βr + iβi) 〈z2〉

)
= −2(1 − d)2〈x2〉 − 2b〈x2〉+ Re

(
(βr + iβi)

(
1 − d + iγ ′)2

)
〈x2〉

= −2(1 − d)2〈x2〉 − 2b〈x2〉+
(
βr

(
(1 − d)2 − γ ′2)− 2βi

(
γ ′ (1 − d)

))
〈x2〉

= −2β2
r 〈x2〉 − 2b〈x2〉+

(
βr

(
β2

r − γ ′2)− 2
(
β2

r + 2βr

)
βr

)
〈x2〉

= −
(
2β2

r − βr

(
β2

r − γ ′2)+ 2
(
β2

r + 2βr

)
βr − 2b

)
〈x2〉

= −
(
6β2

r + β3
r + βrγ

′2 + 2b
)
〈x2〉.

Now, we use the tangential property of R. In particular, we can write

Ṙ =

(
d

dxk
R

)
ẋ = 2b〈xẋ〉+O

(
x5

k

)
= 2bλ+〈x2〉+O

(
x3

k

)
.

At λ+ = 0, Ṙ up to second order must vanish. This allows us to calculate b by comparing the terms in front of
〈x2〉 in Ṙ, yielding

⇒ b = −βr

2

(
γ ′2 + 6βr + β2

r

)
=

1 − d

2

(
γ ′2 + d2 + 4d − 5

)
.

We can derive the expression for a in a similar way. Here, we write out the dynamics of yk up to second order.
This yields

2dẏk = ṙk +
d − 1

γ ′ ϕ̇k

= −
(

1 + (d − 1)
γ

γ ′

)
e2Rẽ2rk + Re

((
1 − i

d − 1

γ ′

)
(βr + iβi)

(
〈ez〉ẽ−zk

))

= −
(

1 + (d − 1)
γ

γ ′

)(
2rk + 2r̃2

k

)
+ Re

((
1 − i

d − 1

γ ′

)
(βr + iβi)

(
−zk +

1

2
z̃2

k

))

= −
(

1 + (d − 1)
γ

γ ′

)(
2rk + 2r̃2

k

)
+ Re

((
1 − i

d − 1

γ ′

)
(βr + iβi)

(
−rk − iϕk +

1

2
z̃2

k

))
.

The term of the coupling constant and its parameters in front can be summarized by(
1 − i

βr

γ ′

)
(βr + iβi) = βr +

βiβr

γ ′ − i

(
β2

r

γ ′ − βi

)

= βr −
β3

r + 2β2
r

γ ′2 − i

(
β2

r

γ ′ +
β2

r + 2βr

γ ′

)

βr
γ

γ ′ = βr
γ ′ − βi

2γ ′

=
βr

2
+

β3
r + 2β2

r

2γ ′2 .

This simplifies the expression for ẏk to

2dẏk = −
(

2 + βr +
β3

r + 2β2
r

γ ′2

)(
rk + r̃2

k

)

+ Re

((
βr −

β3
r + 2β2

r

γ ′2 − i

(
β2

r

γ ′ +
β2

r + 2βr

γ ′

))(
−rk − iϕk +

1

2
z̃2

k

))

= −
(

2 + βr +
β3

r + 2β2
r

γ ′2

)(
rk + r̃2

k

)
+ Re
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×
((

βr −
β3

r + 2β2
r

γ ′2 − i

(
β2

r

γ ′ +
β2

r + 2βr

γ ′

))(
−rk − iϕk +

1

2

(
(1 − d)2 − γ ′2) x̃2

k + i (1 − d) γ ′x̃2
k

))

= −
(

2 + βr +
β3

r + 2β2
r

γ ′2

)(
rk + r̃2

k

)

+

(
βr −

β3
r + 2β2

r

γ ′2

)(
−rk +

1

2

(
(1 − d)2 − γ ′2) x̃2

k

)
−
(
β2

r

γ ′ +
β2

r + 2βr

γ ′

)(
ϕk − (1 − d) γ ′x̃2

k

)

= −2 (βr + 1) rk −
(

2 + βr +
β3

r + 2β2
r

γ ′2

)
r̃2

k

+
1

2

(
βr −

β3
r + 2β2

r

γ ′2

)(
β2

r − γ ′2) x̃2
k − 2

(
β2

r + βr

) (
xk + yk

)
− 2

(
β2

r + βr

)
βrx̃2

k

= −2 (βr + 1)
(
−βrxk + (βr + 2) yk

)
−
(

2 + βr +
β3

r + 2β2
r

γ ′2

)
β2

r x̃2
k

+
1

2

(
βr −

β3
r + 2β2

r

γ ′2

)(
β2

r − γ ′2) x̃2
k − 2

(
β2

r + βr

) (
xk + yk

)
− 2

(
β2

r + βr

)
βrx̃2

k

= −4(βr + 1)2yk −
(

2 + βr +
β3

r + 2β2
r

γ ′2

)
β2

r x̃2
k

+
1

2

(
βr −

β3
r + 2β2

r

γ ′2

)(
β2

r − γ ′2) x̃2
k − 2

(
β2

r + βr

)
βrx̃2

k

= −4(βr + 1)2yk −
(

4 + 3βr +
β3

r + 2β2
r

γ ′2

)
β2

r x̃2
k

+
1

2

(
βr −

β3
r + 2β2

r

γ ′2

)(
β2

r − γ ′2) x̃2
k

= −4(βr + 1)2yk −
(

4 +
5

2
βr +

3β3
r + 6β2

r

2γ ′2

)
β2

r x̃2
k −

1

2

(
βrγ

′2 − β3
r − 2β2

r

)
x̃2

k

= −4(βr + 1)2ax̃2
k −

(
3 + 2βr +

3β3
r + 6β2

r

2γ ′2

)
β2

r x̃2
k −

1

2
βrγ

′2x̃2
k

= −4(βr + 1)2ax̃2
k −

βr

2γ ′2
(
γ ′4 + 6βrγ

′2 + 4β2
r γ

′2 + 3β4
r + 6β3

r

)
x̃2

k

= −4(βr + 1)2ax̃2
k −

βr

2γ ′2
(
γ ′2 + β2

r

) (
3βr (βr + 2) + γ ′2) x̃2

k.

Similar to R, the yk are tangential to the center manifold. This translates into the fact that

ẏk =

(
d

dxk
yk

)
ẋk

vanishes up to second order in xk. Therefore, comparing the terms in front of the x̃2
k above yields

a = −βr

(
γ ′2 + β2

r

) (
3βr (βr + 2) + γ ′2)

8(βr + 1)2γ ′2

=
(1 − d)

(
γ ′2 + (1 − d)2) (3

(
d2 − 1

)
+ γ ′2)

8d2γ ′2 .

C.2. A, B and C
Finally, the coefficients A, B and C for the dynamics in the center manifold, cf equation (10), can be obtained
by expanding the dynamics of xk,

2dẋk = −
(
−1 + (d + 1)

γ

γ ′

)
e2Rẽ2rk + Re

((
−1 − i

d + 1

γ ′

)
k
(
〈ez〉ẽ−zk

))
, (C.2)
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in powers of xk: the terms in front of x̃2
k , x̃3

k and xk〈x2〉 correspond to the coefficients A, B and C, respectively.
In order to do so, we approximate several terms as follows:

〈ez〉ẽ−zk = −zk +
1

2
z̃2

k −
1

6
z̃3

k −
1

2
zk〈z2〉+O

(
x4

k

)
zk =

(
1 − d + iγ ′) xk + a

(
1 + d + iγ ′) x̃2

k +O
(
x3

k

)
z2

k =
(
1 − d + iγ ′)2

x2
k + 2a

(
1 − d + iγ ′) (1 + d + iγ ′) xkx̃2

k +O
(
x4

k

)
z̃2

k = z2
k − 〈z2〉

=
(
1 − d + iγ ′)2

x̃2
k + 2a

(
1 − d + iγ ′) (1 + d + iγ ′) (xkx̃2

k − 〈x x̃2〉
)
+O

(
x4

k

)
xkx̃2

k − 〈x x̃2〉 = x3
k − xk〈x2〉 − 〈x3〉+ 〈x〈x2〉〉

= x̃3
k − xk〈x2〉

z̃2
k =

(
1 − d + iγ ′)2

x̃2
k + 2a

(
1 − d + iγ ′) (1 + d + iγ ′) (x̃3

k − xk〈x2〉
)
+O

(
x4

k

)
z3

k =
(
1 − d + iγ ′)3

x3
k +O

(
x4

k

)
z̃3

k =
(
1 − d + iγ ′)3

x̃3
k +O

(
x4

k

)
zk〈z2〉 =

((
1 − d + iγ ′) xk + a

(
1 + d + iγ ′) x̃2

k

)
· 〈
(
1 − d + iγ ′)2

x2 + 2a
(
1 − d + iγ ′) (1 + d + iγ ′) x x̃2〉+O

(
x4

k

)
=

((
1 − d + iγ ′) xk + a

(
1 + d + iγ ′) x̃2

k

)
〈
(

1 − d + iγ ′)2
x2〉+O

(
x4

k

)
=

(
1 − d + iγ ′)3

xk〈x2〉+O
(
x4

k

)
.

Using these terms, we can write

〈ez〉ẽ−zk = −zk +
1

2
z̃2

k −
1

6
z̃3

k −
1

2
zk〈z2〉+O

(
x4

k

)
= −

(
1 − d + iγ ′) xk − a

(
1 + d + iγ ′) x̃2

k

+
1

2

(
1 − d + iγ ′)2

x̃2
k + a

(
1 − d + iγ ′) (1 + d + iγ ′) (x̃3

k − xk〈x2〉
)

− 1

6

(
1 − d + iγ ′)3

x̃3
k

− 1

2

(
1 − d + iγ ′)3

xk〈x2〉

= −
(
1 − d + iγ ′) xk

+

(
1

2

(
1 − d + iγ ′)2 − a

(
1 + d + iγ ′)) x̃2

k

+

(
a
(
1 − d + iγ ′) (1 + d + iγ ′)− 1

6

(
1 − d + iγ ′)3

)
x̃3

k

+

(
−1

2

(
1 − d + iγ ′)3 − a

(
1 − d + iγ ′) (1 + d + iγ ′)) xk〈x2〉

e2Rẽ2rk =
(
1 + 2b〈x2〉

)(
2rk + 2r̃2

k +
4

3
r̃3

k

)
+O

(
x4

k

)
= 2rk + 4brk〈x2〉+ 2r̃2

k +
4

3
r̃3

k +O
(
x4

k

)
rk = (1 − d) xk + (1 + d) yk

= (1 − d) xk + (1 + d) ax̃2
k
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r2
k = (1 − d)2x2

k + 2a (1 − d) (1 + d) xkx̃2
k +O

(
x4

k

)
r3

k = (1 − d)3x3
k +O

(
x4

k

)
r̃2

k = r2
k − 〈r2〉

= (1 − d)2x̃2
k + 2a (1 − d) (1 + d)

(
x̃3

k − xk〈x2〉
)

r̃3
k = (1 − d)3x̃3

k +O
(
x4

k

)

e2Rẽ2rk = 2rk + 4brk〈x2〉+ 2r̃2
k +

4

3
r̃3

k +O
(
x4

k

)
= 2 (1 − d) xk + 2a (1 + d) x̃2

k

+ 4b (1 − d) xk〈x2〉

+ 2(1 − d)2x̃2
k + 4a (1 − d) (1 + d)

(
x̃3

k − xk〈x2〉
)

+
4

3
(1 − d)3x̃3

k +O
(
x4

k

)
= 2 (1 − d) xk

+
(
2a (1 + d) + 2(1 − d)2

)
x̃2

k

+

(
4a (1 − d) (1 + d) +

4

3
(1 − d)3

)
x̃3

k

+ (4b (1 − d) − 4a (1 − d) (1 + d)) xk〈x2〉.

We can now insert the different orders of xk from e2Rẽ2rk and 〈ez〉ẽ−zk in equation (C.2) (here, we use sympy
[40] to solve for the coefficients), yielding

2dẋk =
(d − 1)

(
γ ′2 + (1 + d)2

) (
γ ′2 − 3(d − 1)2

)
2γ ′2 x̃2

k

− (d − 1)2 (γ ′2 + (d − 1)2) (γ ′2 + (d + 1)2) (γ ′2 − 2γ ′d + 3
(
d2 − 1

)) (
γ ′2 + 2γ ′d + 3

(
d2 − 1

))
8γ ′4d2

x̃3
k

+
(1 − d)2

8d2

(
γ ′4 − 4γ ′2 (2d3 − 7d2 + 1

)
− 2

(
8d5 + d4 − 56d3 + 22 d2 + 1

)
− 4

γ ′2
(
2d7 + 5d6 − 4d5 − 13d4 + 2d3 + 11d2 − 3

)

+
9

γ ′4
(
d2 − 1

)4
)

xk〈x2〉.

Reading off the coefficients then gives the parameters

A =
(d − 1)

(
γ ′2 + (1 + d)2

) (
γ ′2 − 3(d − 1)2

)
4γ ′2d

B = − (d − 1)2
(
γ ′2 + (d − 1)2

) (
γ ′2 + (d + 1)2

) (
γ ′2 − 2γ ′d + 3

(
d2 − 1

)) (
γ ′2 + 2γ ′d + 3

(
d2 − 1

))
16γ ′4d3

C =
(d − 1)2

16d3γ ′4

(
γ ′8 − 4γ ′6 (2d3 − 7d2 + 1

)
− 2γ ′4 (8d5 + d4 − 56d3 + 22d2 + 1

)

− 4γ ′2 (2d7 + 5d6 − 4d5 − 13d4 + 2d3 + 11d2 − 3
)
+ 9

(
d2 − 1

)4
)
.
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Appendix D. Two-cluster states in the center manifold

For two-cluster states, we can take N = N1 + N2 and write

ẋk = λ+xk + Ax̃2
k + Bx̃3

k + C〈x2〉xk +O
(
x4

k

)
= λ+xk + A

(
x2

k −
1

N

(
N1x2

1 + N2x2
2

))
+ B

(
x3

k −
1

N

(
N1x3

1 + N2x3
2

))
+

C

N

(
N1x2

1 + N2x2
2

)
xk

with the constraint k ∈ {1, 2} and N1x1 + N2x2 = 0, that is, x2 = −(N1/N2)x1. Note that ẋk must vanish at
the two-cluster equilibria. The two-cluster therefore satisfies

0 = λ+x1 + A

(
x2

1 −
1

N

(
N1x2

1 +
N2

1

N2
x2

1

))
+ B

(
x3

1 −
1

N

(
N1x3

1 −
N3

1

N2
2

x3
1

))
+

C

N

(
N1x2

1 +
N2

1

N2
x2

1

)
x1

= λ+x1 + A

(
x2

1 −
N1

N2
x2

1

)
+ B

(
x3

1 −
N1 (N2 − N1)

N2
2

x3
1

)
+

CN1

N2
x3

1

= λ+x1 + A
N2 − N1

N2
x2

1 + B
N2

2 − N1 (N2 − N1)

N2
2

x3
1 +

CN1

N2
x3

1,

and writing α = N1/N2,

0 = λ+x1 + A (1 − α) x2
1 +

(
B
(
1 − α+ α2

)
+ Cα

)
x3

1.

This equation has the solutions x1 = 0, x2 = 0 and

x±1 =
1

2 (B (1 − α+ α2) + Cα)

(
−A (1 − α) ±

√
A2(1 − α)2 − 4λ+ (B (1 − α+ α2) + Cα)

)

x±2 = −(N1/N2)x±1 .

The saddle-node curves creating the two-cluster solutions are thus parameterized by the vanishing discrimi-
nant

0 = A2(1 − α)2 − 4λ+

(
B
(
1 − α+ α2

)
+ Cα

)
⇒ λ+ = λsn =

A2(1 − α)2

4 (B (1 − α+ α2) + Cα)

for unbalanced cluster solutions, that is, α �= 1 or N1 �= N2. Thus, at the saddle-node bifurcation

x±1 = x∗1 = − A (1 − α)

2 (B (1 − α+ α2) + Cα)
.
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