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Abstract 

 
Model systems of the alkane skeletal isomerisation catalyst sulfated zirconia were 
successfully produced via a range of different preparation techniques. The model systems 
were investigated with various techniques, including thermal desorption, photoelectron, 
X-ray absorption and IR spectroscopies. Electrically and thermally conducting thin films 
of sulfated zirconia were prepared on oxidised silicon wafers, in order to allow the 
application of surface science techniques. Thermal treatment of the films was optimised 
to chemically mimic the powder process, resulting in films possessing the essential 
features (including tetragonal phase, nanocrystallinity and sulfur content of ~3 atomic %) 
of active powder catalysts. 
Two distinctly different chemisorption sites were detected on the sulfated zirconia thin 
films by both ammonia and n-butane adsorption studies. Strongly chemisorbed ammonia 
reacts with certain sulfate species leading to the evolution of SO2 above 473 K. Low 
temperature (300-100 K) n-butane adsorption-desorption equilibrium isobaric 
measurements showed adsorption to be promoted over the sulfated zirconia thin films, as 
compared with oxidised silicon wafers. Strong and weak n-butane chemisorption, 
releasing heats of between 59-40 and 47-34 kJ/mol, corresponds to 5 and 25% of a 
monolayer coverage, respectively. The total amount of chemisorbed n-butane coincides 
very well with the estimated number of surface sulfate groups. An increase in adsorption 
heat was observed between coverages of ~5-8% of a monolayer, indicating adsorbate-
adsorbate interactions. A bimolecular isomerisation mechanism is thus considered 
plausible under such coverages. Physisorption on the films generates heats of ~28 kJ/mol, 
for coverages from 30% up to a complete monolayer. Multilayer adsorption results in the 
formation of an electrically insulating adsorbate structure.  
Carbonaceous deposits were detected on the films after exposure to n-butane under 
reactive conditions (≥ 481 K), thus proving the films have reactive centres. Analysis has 
shown the deposits to contain unsaturated hydrocarbons, which have a π* resonance 
typical of butenes; furthermore, sulfate groups are reduced during exposure, thus proving 
the oxidative dehydrogenating ability of sulfated zirconia. The deposits are also shown to 
be oxygenated, thus are consistent with the stabilised form of the reactive carbocation 
intermediates. 
Powder sulfated zirconia catalysts were prepared from sulfating agents containing one 
and two pregrouped sulfur atoms, via a variety of different methods using various sulfur 
loadings, to test whether disulfate groups are responsible for the catalytic activity of the 
material. Sulfated zirconias synthesised from two pregrouped sulfur atoms were however 
found to be less active. Nevertheless, the presence of disulfate groups was found to be a 
prerequisite for catalytic activity and for materials prepared using the same sulfation 
method the more active were shown to have higher disulfate concentrations. 
It is thus proposed that the more strongly chemisorbing sites, which react with ammonia, 
correspond to a minority disulfate species. These disulfate sites may oxidatively 
dehydrogenate n-butane, initiating the formation of catalytically active isomerisation 
centres. The chemical environment of these disulfate groups is envisioned to strongly 
influence the catalytic reactivity of the active sites they generate. 
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Zusammenfassung 

 
Um sulfatiertes Zirconiumdioxid, das als Katalysator für die Skelettisomerisierung von 
Alkanen dient, besser untersuchen zu können, wurden mittels verschiedener 
Präparationstechniken erfolgreich Modellsysteme hergestellt. Diese wurden u.a. mit 
thermischer Desorptions-, Photoelektronen-, Röntgenabsorptions- und IR-Spektroskopie 
analysiert. Dünne elektrisch und thermisch leitfähige Schichten aus sulfatiertem 
Zirconiumdioxid wurden auf Siliziumscheiben aufgebracht, um 
Oberflächencharakterisierungsmethoden anwenden zu können. Die thermische 
Behandlung der Filme wurde so optimiert, daß sie weitgehend der Pulverpräparation 
entspricht. Dabei entstehen Schichten, die die wesentlichen Merkmale von aktiven 
Pulverkatalysatoren aufweisen (nanokristalline tetragonale Phase, ~ 3 Atom% S). 
Durch Adsorptionsversuche mit Ammoniak und n-Butan wurden zwei sich deutlich 
unterscheidende Bindungsstellen für chemisorbierte Spezies auf den dünnen Filmen 
entdeckt. Stark chemisorbiertes Ammoniak reagiert mit bestimmten Sulfatspezies, und 
oberhalb von 473 K wird SO2 gebildet. Tieftemperaturisobarenmessungen (300-100 K) 
zeigen stärkere Adsorption von n-Butan an dünnen sulfatierten Zirconiumdioxidfilmen 
als am Siliziumträger. Starke Chemisorption mit einer Adsorptionswärme von 57- 40 kJ/ 
mol bzw. schwache Chemisorption mit 47- 34 kJ/ mol erfolgt bis zu einem 
Bedeckungsgrad von 5 bzw. 25% einer Monolage. Die Gesamtmenge des 
chemisorbierten n-Butans entspricht der geschätzten Anzahl von 
Oberflächensulfatgruppen. Die Adsorptionswärme steigt bei Bedeckungsgraden von ~5- 
8%, was auf Adsorbat-Adsorbat-Wechselwirkungen hindeutet. Ein bimolekularer 
Isomerisierungsmechanismus erscheint für derartige Bedeckungsgrade plausibel. Für 
Bedeckungsgrade von 30% bis zu einer Monolage liefert die Physisorption 
Adsorptionswärmen von 25 kJ/ mol. Multischichtenadsorption führt zur Bildung einer 
elektrisch isolierenden Adsorbatstruktur. 
Kohlenstoffhaltige Ablagerungen nach Kontakt mit n-Butan unter Reaktionsbedingungen 
(≥ 481 K) beweisen, dass die Filme über reaktive Zentren verfügen. Ungesättigte 
Kohlenwasserstoffe mit einer π*-Resonanz typisch für Butene sowie die Reduktion von 
von Oberflächensulfatgruppen belegen die Fähigkeit von sulfatiertem Zirconiumdioxid 
zur oxidativen Dehydrierung. Sauerstoff-Kohlenstoff-Bindungen sind ein Hinweis auf die 
Stabilisierung von reaktiven Carbokationenintermediaten durch die 
Katalysatoroberfläche. 
Pulverförmiges sulfatiertes Zirconiumdioxid mit unterschiedlichen 
Schwefelkonzentrationen wurde nach drei Verfahren präpariert. Hierzu wurden 
Reagenzien mit ein oder zwei Schwefelatomen verwendet, um zu testen ob die als aktive 
Zentren vermuteten Disulfatgruppen gezielt hergestellt werden können. Materialien, die 
aus Vorstufen mit zwei Schwefelatomen hergestellt wurden, waren weniger aktiv. Das 
Vorhandensein von Disulfatgruppen ist Voraussetzung für katalytische Aktivität. 
Katalysatoren, welche nach der gleichen Synthesemethode hergestellt wurden, weisen 
höhere Aktivität bei höherer Disulfatkonzentration auf. 
Stärker chemisorbierende Bindungszentren stellen eine Minderheit der 
Oberflächendisulfatgruppen dar. Diese können n-Butan oxidativ dehydrieren, und es 
bilden sich katalytisch aktive Intermediate. Die chemische Umgebung der 
Disulfatgruppen hat starken Einfluss auf ihre Reaktivität. 
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1. Introduction 

1.1 Catalytic Isomerisation of Alkanes 

Hydrocarbon isomerisation is widely applied industrially for the production of both fuels 

and petrochemicals.1 Skeletal isomerisation of straight chain alkanes increases their 

octane number and hence, also, their commercial value. Octane ratings are indicative of 

the antiknock quality of a given fuel or component. The tightened regulation of petrol 

over the past two decades, especially the elimination of tetraethyl lead as well as 

legislation restricting both benzene and sulfur content, has resulted in the increased 

importance of branched light alkanes for the production of clean-burning, high 

performance fuels. 

Alkane isomerisation is an equilibrium limited reaction, with the more highly branched 

isomers generally favoured at lower temperatures. The thermodynamic equilibrium 

position for the butane skeletal isomers is shown in Figure 1-1.2 

Traditionally alkane isomerisation was catalysed by strong liquid acids; HF/SbF5, 

RSO3H/SbF5, CF3SO3H and HSO3F are all active homogeneous isomerisation catalysts.3 

Homogeneous catalysts, however, suffer the following disadvantages: the corrosive 

nature of the catalysts gives rise to acidic and salty waste waters which cause handling 

and disposal problems, it can be difficult to separate the catalyst from the product and 

homogeneous processes often use stoichiometric amounts of catalysts as they are not as 

selective;4 thus they are not desirable for large scale chemical processes. 

The need for environmentally friendly production within the chemical industry is 

universally acknowledged, thus the use of heterogeneous catalysts (which have the 

potential to be recycled and avoid the aforementioned disadvantages) are an attractive 

alternative.5,6 

Chlorided alumina based catalysts currently have the highest isomerisation activity and 

yield available.7,8 However, they need a constant organic chloride co-feed, they cannot be 

regenerated and are sensitive to contaminants such as water, carbon oxides and 

oxygenates. Zeolitic isomerisation catalysts are able to be regenerated and relatively 

contaminant tolerant. Although, zeolitic catalysts are only active at much higher 

temperatures than chlorided alumina catalysts, thus the maximum conversion is limited 

by the unfavourable equilibrium position.  Yields are also  lower for the zeolitic  catalysts  
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than the chlorided alumina catalysts as 

they are less selective. The development 

of sulfated zirconia based catalysts, such 

as the Par-IsomTM process from UOP,9 

offer a promising alternative to the 

aforementioned catalysts (see Figure 1-

2a). Sulfated zirconia based catalysts are 

active at lower temperatures than zeolitic 

catalysts (thus under more favourable 

equilibrium conditions); they are also 

water tolerant, can be regenerated and do 

not require a chlorided co-feed or caustic 

scrubbing unlike the chlorided alumina 

catalyst. In 2002 UOP had licensed 8 

Par-IsomTM units worldwide utilizing 

sulfated zirconia based catalysts.10 The 

latest commercial isomerisation catalyst 

from UOP, the PI-242TM, has a 

performance near to that of the standard industrial chlorided-alumina based process but 

with the aforementioned advantages of a sulfated zirconia based process.9 The relative 

stability of the PI-242TM thus makes initial start up costs for operating a plant much lower 

than if a chlorided-alumina based process was used. The PI-242TM is thus economically 

viable industrially as low cost isomerisation catalysts (see Figure 1-2b). 

 

1.2 Sulfated Zirconia 

The first reported discovery of sulfated zirconia (SZ) was in 1962 by Holm and Bailey,11 

who found platinum doped sulfated zirconia to be an active isomerisation catalyst. 

However, it was not until Hino and Arata reported in 1979 and 1980 the isomerisation of 

n-butane at room temperature using sulfated zirconia that an interest by the wider 

scientific community was initiated.12,13 Hino and Arata described sulfated zirconia to be 

(a) 

n-butane isobutane

acid catalysts

CH2CH3

CH3CH2
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Figure 1-1: (a) Chemical equation for the
conversion of n-butane to isobutane over acid
catalysts. (b) Equilibrium position for n-
butane/isobutane isomers as a function of
temperature (temperature dependence of the
reaction enthalpy was neglected).2 
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superacidic (more acidic than 100% H2SO4) based on its ability to isomerise n-butane at 

low temperatures and acidity measurements using Hammett indicators. 

Sulfated zirconia can be considered as zirconium dioxide (zirconia) doped with sulfate. 

Various optimum sulfur contents have been reported, including: 170 μg/m2 (3 S 

atoms/nm),14 1-2 weight (wt.)% S,15 or 2.6 wt.% S.16 Zirconia occurs in three main 

polymorphs: monoclinic, tetragonal and cubic. The room temperature stable monoclinic 

phase transforms into the tetragonal phase at 1443 K, which transforms into the cubic 

(a) 

 
(b) 

 
Figure 1-2 (a) Relative product octane comparison (RONC) to a zeolitic catalyst vs.
temperature, based on pilot plant testing using a feed typical of commercial operating
conditions. (b) Equipment erection cost (EEC) for a new plant vs. product relative octane 
number (RON). Hydrocarbon once through (O/T) and recycle design using a de-
isohexanizer column (DIH) compared.9 
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phase at 2643 K.17 The metastable tetragonal and cubic phases can be stabilised at room 

temperature by the addition of various dopants (including sulfate)18 and also crystallite 

size effects (by < 30 nm sized crystals).19-202122 Cubic and tetragonal sulfated zirconias 

are active isomerisation catalysts, whereas monoclinic sulfated zirconia has been reported 

to be inactive,23 or 4-5 times less active than tetragonal zirconia.24 For mixed monoclinic-

tetragonal phase materials the isomerisation conversion has been shown to be 

proportional to the fraction of the tetragonal phase, thus indicating the activity of the 

monoclinic phase to be insignificant by comparison.25,26 However, the zirconia phase is 

not the only prerequisite for an active catalyst, many other factors are involved.27 

1.2.1 Preparation 

There are many different methods to prepare sulfated zirconia, the majority of these 

routes can be generalised as follows:28 (1) Precipitation via hydrolysis of zirconium salt 

solutions followed by sulfation. Typical salts used are ZrOCl2 or ZrO(NO3)2 and possible 

sulfation agents include H2SO4, (NH4)2SO4 and (NH4)2S2O8 (2) Sol-gel synthesis from 

organometallic zirconium compounds. Sulfuric acid can be used both as the sulfating 

agent and to initiate the gelation. (3) Thermal decomposition of zirconium sulfate. 

Besides these main preparation routes, various uncommon methods have been reported 

and reviewed by Afanasiev et al..29 Sulfated zirconium hydroxides are also commercially 

available from suppliers such as MEL chemicals30 and Sigma-Aldrich.31 

Normally sulfation is followed by calcination to produce a crystalline oxide. Initially it 

was believed that only sulfation prior to calcination results in highly active catalytic 

materials;12 however, recently sulfation of crystalline zirconia has been shown to produce 

active materials.26 The preparation route is extremely important in the determination of 

physical properties of the produced sulfated zirconia, such as its surface area; which is 

inherently related to catalytic activity.16,32 

Doping of sulfated zirconia with various main group metals (such as Al33 and Ga34) and 

transition metals (such as Pt,35 Mn and Fe36) has been shown to promote the 

isomerisation activity of the catalyst. How these materials participate in the alkane 

isomerisation is a subject of much debate and hence they are considered beyond the scope 

of this thesis. 
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1.2.2 Acidic properties 

Sulfated zirconia catalysts were initially believed to be superacidic due to their ability to 

isomerise n-butane even at room temperature (which is normally only possible by liquid 

superacids) and acidity measurements using Hammett indicators.12,13 There are, however, 

a number of drawbacks regarding the indicator technique including the assumptions that 

equilibrium is achieved, the active site is an isolated acid and the end point has been 

detected.  

Direct correlations between the catalytic activities of sulfated zirconia and its acidity are 

not consistent across the literature.37 The techniques used to evaluate the acidity of 

sulfated zirconia often suffer from experimental problems, such as reaction rather than 

desorption during temperature programmed methods. More recent investigations have 

revealed the acidity of sulfated zirconia not to be stronger than that of sulfuric acid using 

NMR38, UV-Vis39 and IR spectroscopies40 or theoretical calculations.41  

Investigations into the type of sites have been made using numerous probes including 

pyridine and carbon monoxide; although to date no consistent theories have emerged to 

link the catalytic activity of sulfated zirconia to either its Brønsted or Lewis acidic sites. 

Characterisation of solid acid-base catalysts remains a challenge as the determination of 

acid sites depends on the choice of appropriate probe molecules. 

1.2.3 Sulfate structure 

It has been shown that only the presence of sulfur in the oxidation state +6 results in 

active metal oxide isomerisation catalysts.42-434445 Normally it is assumed that the sulfate 

is located at the surface of the zirconia crystals, there is however no proof that this 

applies to all of the sulfur present.46  

Numerous sulfate structures have been published, the majority of which are proposed 

with the presence of strong Brønsted or Lewis acid sites in mind.46 Structural models 

have been published with the sulfate connecting to zirconia via three oxygen bridges 

(tridentate),47,48 two oxygen bridges (bidentate) either chelating to one49-5051 or bridging 

two Zr cations52-5354 (Figure 1-3) and even via one oxygen bridge (monodentate) 

corresponding to adsorbed SO3.55 At high coverage the detection of tetradentate disulfate 

(pyrosulfate, S2O7
2-)56 species has also been reported.47,57 Unless sulfated zirconia is 

completely dehydrated, hydrated sulfate states will be present;40 hydroxyl groups may be 
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attached to either S or Zr,40,58-5960 or bridging S and Zr.32,61 From the large number of 

models proposed it can be assumed that there is no single sulfate structure but a number 

of different coexisting interchangeable species, which depend on various conditions such 

as the coverage, degree of hydration, pretreatment and measurement atmosphere. 

Recent experimental and theoretical findings62,63 have shown that active catalysts possess 

an IR band at ~1404 cm-1, which is ascribed to the S=O bond stretching vibrations in 

disulfate or adsorbed SO3 molecules. 

1.2.4 Catalytic properties 

Prior to reaction, sulfated zirconia must be activated in order to remove excess water 

from the material. The catalyst should not, however, be completely dehydrated. 

Decreasing the water content has been shown to result in a decrease in Brønsted acidity 

and an increase in Lewis acidity.64 Various optimal activation temperatures have been 

reported including: 523-573 K,64 573 K,65 590 K,66 673 K,67,65 723 K,68 and 923 K.69 The 

range of temperatures may be due to the differing materials; however, other conditions 

such as the gas atmosphere, holding time, flow and heating rates may have an influence. 

The catalytic performance of sulfated zirconia for the isomerisation of alkanes has 

typically one of two different profiles depending on the conditions: (a) an induction 

period followed by a slow deactivation or, usually at higher initial conversions, (b) a 

shorter induction period, followed by a rapid initial deactivation, then a slow 

deactivation. During the initiation period active sites are formed on the catalyst, hence the 

activated catalyst can be considered as a "precatalyst" which transforms into the active 

species only upon exposure to the reactant. This indicates the importance of investigating 

 

Figure 1-3: Proposed dehydrated sulfate structures. 
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the interaction between sulfated zirconia and the reactant. A number of causes of the 

deactivation have been proposed: (i) coke formation,15,66,70-717273747576777879808182 which 

other authors have dismissed,83 (ii) reduction of sulfate83 and sulfur loss as H2S,77 (iii) 

reduction of Zr4+,71 (iv) tetragonal to monoclinic zirconia phase transformation75,84 and 

(v) poisoning by water.73 

1.2.5 Isomerisation mechanism 

The isomerisation of alkanes on anion modified oxides such as sulfated zirconia is 

believed to proceed via carbocation-like reactive intermediates;85 but the formation of 

such surface species is a subject of much debate (Figure 1-4). It was initially suggested 

that protolytic activation of a C-H bond via formation of a carbonium ion with a 

pentacoordinated C, which releases H2 to form a carbenium ion.86 This mechanism is in 

direct analogy to the isomersation of alkanes using liquid superacids, it has thus been 

criticised as experimental and theoretical studies have shown sulfated zirconia not to act 

as a superacid (see section 1.2.3). Activation via direct hydride abstraction by Lewis acid 

sites has also been proposed,87,88 although no conclusive evidence has been produced to 

corroborate such a mechanism. Tabora and Davis89 proposed that alkene impurities in the 

hydrocarbon feed could yield carbenium ions via protonation on Brønsted acid sites. Yet 

the presence of catalytic activity using an alkene free feed (although initially a much 

lower activity is observed) implies that in situ generation of alkenes, via oxidation of the 

alkane by sulfate groups, is possible.90,91  

Recently, during the course of this work, evidence supporting the oxidative 

dehydrogenation mechanism has been published. Li et al.63 reported detecting the three 

products of the oxidative dehydrogenation mechanism either during or after reaction. 

Butene was detected after n-butane temperature programmed reaction spectroscopy; the 

reduction of sulfate was shown by thermally desorbing the various sulfur species from 

the spent catalyst followed by ion chromatography; and the formation of water was 

proven using in situ IR spectroscopy.  

Two pathways have been proposed for the skeletal isomerisation of the carbocationic 

intermediate: a monomolecular (intramolecular) and a bimolecular (intermolecular) 

mechanism. The monomolecular route proceeds via the formation of a cyclopropane 

complex, which for n-butane would mean the generation of a potentially highly unstable 
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primary carbenium ion, although such a species could be stabilised on the surface in the 

form of an alkoxide. The bimolecular mechanism proceeds via the formation of a C8 

carbocation followed by β scission. 13C labelling and kinetic studies have produced 

evidence supporting both mechanisms.92-939495 Proposals of the mechanism changing 

based on conversion, temperature and time on stream have also been reported.96,97 

 

1.3 Application of Surface Science Techniques to Oxide Catalysts 

The precise nature of the active isomerisation sites on sulfated zirconia is still a subject of 

debate. There has been a huge advance in the development of surface sensitive techniques 

over the past several decades. However, the application of these techniques to "real" 

powder oxide catalysts, such as sulfated zirconia, is often not possible or limited; as their 

porous structures give rise to diffusion limitations and their electrically and thermally 

insulating nature can cause charge accumulation and temperature gradients. In order to 

overcome these problems it is possible to use model systems.  

Thin single crystalline films grown on conducting substrates have been successfully 

employed leading to a greater understanding of oxide systems on an atomic level.98,99 The 

drawback of these systems are due to their oversimplification, for example the lack of 

 

Figure 1-4: Proposed reaction mechanisms. 
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defects and support interaction, extrapolating to "real" powder catalysts has had limited 

success. Alternatively, particles supported on flat model supports have also been 

investigated.100,101 By depositing a thin oxide or carbon film on an inert conducting 

substrate serious charging accumulation can be avoided, even if the film is an insulator. 

The catalytic material can thus be deposited on this support. Such systems are inherently 

more complex than the flat continuous single crystalline films. 

Various methods exist for depositing oxide films or particles on flat substrates, including: 

evaporation of metals followed by oxidation, chemical vapor deposition (vacuum dosing 

of volatile organometallic precursors), wet chemical impregnation (such as spin or dip 

coating of organometallics) or microfabrication via lithography. The resulting model 

systems allow the application of surface spectroscopies. 

1.3.1 Sulfated zirconia thin solid films 

The specific chemical and physical properties of zirconia films have been extensively 

studied due to their promising technological applications; for example as wave guides 

when deposited on glass substrates,102 thermal barrier coatings103 and protective coatings 

from abrasion, wear and wet corrosion.104 Numerous different methods for the synthesis 

of zirconia films have been published, therefore only zirconia films incorporating sulfate 

are commented on below. 

Anodic oxide films have been prepared electrochemically on zirconium rods in sulfate 

containing electrolytes by various groups.105-106107108109110111112113114 Zirconium, unlike 

most metals, is known to incorporate anions from solutions during anodic 

oxidation.107,115-116117 Rogers et al.107 showed the sulfur content of anodic zirconia films 

to vary linearly from approximately 5 to 35x1020 atoms/cm3 with increasing the ionic 

current density. Meisterjahn et al.108 reported a linear film growth of 2.6 nm/V (up to 

9 V) on an initial oxide thickness of 4-6 nm. Pauporte and Finne114 were able to grow 

dense 300-340 nm anodic zirconia films. 

De Guire and co-workers118-119120 developed a method to prepare sulfated zirconia films 

by chemical deposition of zirconium sulfate from an aqueous acid stabilised medium on 

sulfonic acid terminated self-assembled monolayers (SAMs) attached to oxidised silicon 

wafers. Surface morphology studies of such zirconia films found in addition to the film, 

particles of 200 nm and larger embedded in the film.121,122 Further development to 
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prevention of homogenous deposition, by lowering of the film deposition temperature, 

resulted in smooth, non-porous, continuous sulfated zirconia thin films.123,124 

transmission electron microscopy (TEM) investigations have shown annealing the films 

to produce tetragonal sulfated zirconia.125-126127 More details regarding the preparation 

and thermal treatment of these films are given in Chapter 2. Investigations of the stability 

of the sulfated zirconia precursor solution have been performed,128 as well as on the 

forces between the SAMs and zirconia particles in solution.129 Mechanical properties of 

sulfated zirconia films prepared from similar aqueous depositions on SAM covered 

substrates have also been studied.130-131132  

Rizzato et al.133 prepared sulfated zirconia films on borosilicate glass surfaces by sol-gel 

dip coating. Layer thickness was shown to increase with increasing withdrawal speed 

(from ~25 to 100 nm) and decreases with thermal treatment. At temperatures below 623 

K the films were shown to have a pore free structure, which consists of an inner layer of 

Zr18O4(OH)36(SO4)9(Cl)6 and a thin (~2 nm) superficial layer of 

Zr18O4(OH)38.8(SO4)12.6·33H2O. 

Lin et al.134 reported the direct liquid phase deposition of sulfated zirconia films on 

silicon wafers via the hydrolysis of zirconium sulfate with varying concentrations of 

ammonium peroxydisulfate (persulfate, S2O8
2-).56 The ammonium peroxydisulfate 

suppressed the zirconium precipitation and improved the film growth via heterogeneous 

nucleation on the silicon. Film thicknesses of up to 200 nm were obtained. Thermal 

treatment of the films at 873 K resulted in the formation of the tetragonal phase.  

Meinel et al.135 prepared single-crystalline cubic sulfated zirconia films by reactive 

deposited of Zr onto Pt(111) in an O2 atmosphere, followed by exposure to a SO3 

atmosphere. During sulfation a (√3 x √3)R30° structure develops, which is stable to 

700 K. 

 

1.4 Objectives and Strategy 

The main aim of this thesis is to investigate the isomerisation sites on sulfated zirconia by 

the application of surface science techniques, which is made possible by the use of a 

model thin film system. Fischer and co-workers123,124 described the preparation of 

nanocrystalline thin films that are potentially suitable models for powder sulfated 
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zirconia catalysts. The thinness of such films permits thermal and electrical conductivity, 

the homogenous flat surface of the films prevents diffusion and simplifies the system, 

while their nanocrystalline nature permits the chemical complexity and existence of 

defects to yield catalytically relevant activity; hence films of this type can be considered 

to act as a bridge between the materials gap in catalysis, which exists between "real" 

powder catalysts and "ideal" single crystalline materials.  

The main goals of the thin film investigations in this thesis are to:  

 (i) Produce model sulfated zirconia thin films based on the process described by 

 Fischer and co-workers.123,124  

 (ii) Investigate the role of the thermal treatment of the films.  

 (iii) Characterise the (acidic) surface sites via adsorption of probe molecules. 

 (iv) Validate the model system via proof of its catalytic reactivity. 

During the course of this work, reports proposing the active calcined sulfate structure to 

be that of disulfate were published.62,63 Active catalysts were shown to develop an IR 

band at ~1404 cm-1, which theoretical studies have shown can only arise from disulfate or 

adsorbed SO3 molecules. Thus as a complementary study to the thin films investigations 

in this thesis, the rational design of a disulfated zirconia powder catalyst has been 

attempted. The goals of this sub-project are to: 

 (i) Synthesise sulfated zirconia powders from sulfating agents containing two 

 pregrouped sulfur atoms and an analogous mono-sulfur precursor.  

 (ii) Compare their catalytic activities. 

 (iii) Attempt to relate any catalytic differences observed to the proposed 

 disulfate IR band at ~1404 cm-1. 

The two strategies of this thesis are designed to test recent proposals of the scientific 

community and increase the understanding with regards to the surface chemistry of 

sulfated zirconia catalysts. In order to improve our fundamental knowledge of how 

sulfated zirconia catalysts work only un-promoted catalysts and the simplest skeletal 

isomerisation test reaction (n-butane to isobutane) have been investigated. 
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2. Synthesis and Thermal Treatment of Sulfated Zirconia Thin Films 

2.1 Introduction 

2.1.1 Biomimetic synthesis of oxide thin films 

The production of oxide thin films by the so-called biomimetic processing was pioneered 

by the work of Bunker and co-workers.136 The main principle of such a preparation is to 

use a self-assembled monolayer (SAM) to mediate film deposition from an aqueous 

medium at low temperatures; thus mimicking biological growth of ceramics. Immersion 

of a SAM covered substrate into a deposition medium, consisting of a dissolved metal 

salt, results in the formation of a film consisting of an oxide or a potential oxide precursor 

(such as a hydroxide, sulfate or carbonate depending on the anions present). Two 

different mechanisms for film deposition are discussed in the literature:137,138 (i) cluster 

growth of particles in the liquid phase (homogeneous) followed by adsorption on the 

SAM and coagulation to form a film and (ii) ion by ion, via successive adsorption of 

anions and cations on the substrate (heterogeneous nucleation). Deposition conditions can 

dictate which deposition mechanism is observed. The two mechanisms may also occur 

simultaneously.137 Successful biomimetic syntheses promote heterogeneous nucleation 

and suppress homogeneous nucleation.136 

2.1.2 Self-assembled monolayers 

SAMs are molecular assemblies that are spontaneously formed on an appropriate 

substrate when immersed into a solution of active surfactant in an organic solvent.139,140 

Various reviews have reported on their synthesis, structure and properties.141-142143 There 

are a number of different ways of preparing SAMs, these include: organosilicates on 

hydroxlyated surfaces (e.g. SiO2 on Si); alkanethiols on gold, silver and copper; dialkyl 

sulfides on gold; dialkyl disulfides on gold; alcohols and amines on platinum; and 

carboxylic acids on aluminum oxide and silver.144 

SAMs can be considered to consist of three parts: a head group, an alkyl body -(CH2)- 

and a tail group. The head group binds to the substrate via chemisorption. This is an 

exothermic process (typically in the order of 10s kJ/mol) and results in the apparent 

pinning of the SAM to a specific site on the substrate. Although, as a result of the strong 

molecular interaction with the substrate the head groups try to occupy every available 

binding site on the surface, during this process they push together molecules that are 
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already adsorbed. In the case of trichorosilyl head groups cross linking also occurs, 

increasing the stability of the SAM. 

The close packing of the alkyl chains gives rise to short range van der Waals forces 

(typically up to 40 kJ/mol). A minimum chain length of ~9 carbon atoms is necessary to 

stabilise the formation of a SAM. Chain lengths above ~20 carbon atoms result in 

solubility problems. The highest degree of ordering and stability has been reported for 

surfactant molecules with carbon chain length of 16 atoms. In the case of trichlorosilyl 

head groups, the chemisorption, cross linking and van der Waals forces can result in the 

SAM being stable to prolonged exposure in pHs ranging from strongly acidic to mildly 

basic, at temperatures up to 313 K. 

The tail or surface group of the SAM can be chosen from a number of species, including: 

sulfonate, thioacetate, hydroxyl and methyl. Sulfonate tail groups are very effective in 

initiating and sustaining the formation of oxide thin films when immersed in an 

appropriate precursor solution. However, sulfonate tail groups cannot be used in 

combination with trichloromethyl head groups, as they both have similar propensities to 

react with substrate hydroxyl groups. It is however possible to transform the tail group in 

situ after deposition of the SAM for the generation of specific reactive tail groups, for 

example the oxidation of thioacetate to sulfonate. 

2.1.3 Aqueous zirconium sulfate solutions 

The solution chemistry of zirconium sulfate is complex because sulfate not only strongly 

complexes with zirconium145,146 but is a potential bridging ligand and promotes 

polymerization.147,148 Anion149-150151 mixed hydroxo sulfato complexes,148 also of 

polynuclear type, are formed in sulfate solutions. Zirconium sulfate solutions are unstable 

with regards to hydrolysis and precipitation. Heating promotes hydrolysis and hence 

precipitation. The large number of possible sulfates, particularly basic sulfates, of various 

constitutions that are precipitated from zirconium sulfate solutions suggest that many 

complexes of different constitutions may exist in solution. The chemistry of zirconium 

sulfate solutions may be ruled by complicated equilibria. The time frame for changes in 

these solutions indicates the equilibration is slow. Hauser152 observed precipitation in 

0.5 M zirconium sulfate solutions only after 2 weeks at 312.5 K. Matijević147 delayed the 

onset of precipitation of 0.2 mM zirconium sulfate solutions by 10 h, 2 or 4 days using 1, 
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2 or 4 mM nitric acid solutions, respectively. Cölfen et al.128 showed that for solutions 

containing low zirconium sulfate concentrations (2 or 4 mM) and high acid 

concentrations (0.4 or 0.6 M HCl) switching between relatively moderate temperatures of 

323 to 343 K results in a change from long-term metastable (more than 96 hours) to 

rapidly precipitating (30 minutes) conditions. 

2.1.4 SAM mediated sulfated zirconia thin film growth 

De Guire and co-workers118119-120 showed that zirconium containing films could be grown 

on oxidized silicon wafers via SAM mediated aqueous deposition. They demonstrated 

that SAMs formed from the following precursors promoted film growth: 

trichlorosilylhexadecane thioacetate, hexadecyl trichlorosilane and octadecyl 

trichlorosilane. The SAMs formed from trichlorosilylhexadecane thioacetate and 

hexadecyl trichlorosilane needed to be converted to sulfonate terminated SAMs via 

exposure to gaseous SO3 or immersion in a saturated aqueous solution of 

KHSO5·KHSO4·K2SO4, respectively. In the absence of a SAM no film growth was 

observed, as shown by XPS measurements. The films were grown from aqueous 

solutions of either 4 mM zirconium sulfate in 0.4 M HCl or 10 mM zirconium sulfate in 

0.6 M HCl, at 343 K, during single depositions between 0.5 and 24 hours or four 

successive 1 hour immersions in freshly prepared solutions. After approximately 30 

minutes at 373 K a visible cloudiness was observed in the deposition medium, indicating 

bulk (homogeneous) precipitation. Cross section TEM measurements revealed, prior to 

bulk precipitation films of only 3 nm thickness could be grown; following bulk 

deposition films could be grown up to a maximum of 40 or 125 nm, during one 

immersion, in 4 or 10 mM zirconium sulfate solutions, respectively. The successive 1 

hour immersions in freshly prepared deposition medium produced a film of 180 nm. 

Films grown on the sulfate free SAM (formed from octadecyl trichlorosilane) were 

shown to contain sulfate by XPS measurements. The films grown on sulfonate terminated 

SAMs were found to be adherent to the substrate using a tape peel test, this was not the 

case for those grown on the SAM formed from octadecyl trichlorosilane. Atomic force 

microscopy (AFM) and scanning electron microscopy (SEM) topography studies121,122 

found that in addition to film formation, particles of typically 0.5-1 μm in diameter (SEM 

and AFM) and 30-50 nm in depth (AFM) are embedded in the films. 
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Fischer and co-workers123,124 found by lowering the film deposition temperature from 

343 K to 323 K that the presence of particles in the film could be avoided; thus resulting 

in smooth, non-porous, continuous sulfated zirconia thin films. Roddatis et al.126,127 

showed by cross sectional TEM measurements the growth rate of the films deposited 

between 2-96 hours to be constant, at ~1 nm/h. The deposited films were also shown, by 

high resolution (HR)TEM, to be initially amorphous; however, electron beam irradiation 

was shown to induce the formation of 5-10 nm tetragonal crystals.  

Wang et al.130,131 have also prepared films from 0.4 mM zirconium sulfate on sulfonated 

SAM of 3-mercaptopropyl trimethoxysilane at both 343 and 323 K in 0.4 M HCl. After 6 

hours deposition at 343 K a film of 68 nm with ~300 nm quadratic-looking features was 

observed. At 323 K, however, much smoother films were produced, the film growth rate 

was shown to be ~1 nm/h between 20-100 hours. 

More recently Zhang et al.132 prepared films from 0.01 M zirconium sulfate solutions 

containing 0.4-0.1 M HCl at temperatures of 343-363 K for 0.5-24 hours, on a SAM 

formed from diethylphosphatoethyltriethoxysilane and hydrolysed in HCl. In addition 

films were also formed hydrothermally in an acid digestion bomb at 408 K for 24 hours, 

during which the pressure was about 5 atm.  

2.1.5 Thermal treatment of heterogeneously deposited sulfated zirconia thin films 

Fischer and co-workers123,124 also investigated the effects of thermal treatment in either 

argon or synthetic air at 773 K on heterogeneously deposited films. AFM and SEM 

investigations show the films surfaces to be smooth and free from cracks after treatment 

in both atmospheres. 

Roddatis et al,126,127 studied, using HRTEM, heterogeneously deposited films thermally 

treated at various temperatures in argon. Fourier transform analysis of selected areas of 

the HRTEM images showed that below 798 K the structure does not change from the 

amorphous state, whereas at 823 K crystallisation of the zirconia to the tetragonal state 

occurs and above 873 K a small amount of monoclinic zirconia is seen. HRTEM images 

show that the 823 K treatment produces a continuous polycrystalline zirconia film, 

thinner than the as-deposited film by 60–70%, with 10–50 nm grain sizes. 
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2.1.6 Aims 

To allow the application of surface science techniques to sulfated zirconia, thin films as 

described by A. Fischer123,124 will be produced. The chemical and physical properties of 

the films will be studied in order to ensure that the films are a suitable chemical model 

system for sulfated zirconia, conducting and non-porous. If the film synthesis is not 

successful, further efforts will be made to modify the system and its synthesis. 

Thermal treatment of the films produced will be investigated in both an inert and an 

oxidising atmosphere with equivalent temperature programs; in order to study both the 

chemical and physical effects of the SAM decomposition and film crystallization. 

In order to further bridge the materials gap with "real" powder catalysts of varying 

compositions, synthesis of an analogous powder catalyst was attempted. The analogous 

powder was produced from the same precursor material as the thin films, thus mimicking 

their preparation; however a higher deposition temperature was used in order to allow 

precipitation of the powder. 

 

2.2 Experimental 

2.2.1 Film synthesis 

2.2.1.1 Substrate preparation 

Single crystal silicon (100) 1 cm2 wafers were used as the substrate, either p-type, 10 

mOhm.cm, 750 μm thick polished on both sides or n-type, 4.2 Ohm.cm, 1.3 mm thick 

with a groove drilled into the side for thermocouple placement, polished on one side. The 

silicon wafers were cleaned using laboratory tissues and solvents (sequentially 

chloroform, acetone, ethanol and water). Millipore® filtered water was used for all 

preparation steps. The silicon wafers were then treated in Standard Clean 1 (SC1)153: 1 

part 27% ammonia, 1 part 30% hydrogen peroxide to 5 parts water at 343 K for 40 

minutes, followed by Standard Clean 2 (SC2)153: 1 part 32% hydrochloric acid, 1 part 

30% hydrogen peroxide to 5 parts water also at 343 K for 40 minutes. Oxidation of the 

wafers was performed in “piranha” solution (3 parts 30% hydrogen peroxide to 5 parts 

conc. sulfuric acid) at 353 K for 50 minutes. On removal the wafers were rinsed with 

water and dried in an argon stream. 
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2.2.1.2 Self assembled monolayer deposition and functionalisation 

To deposit the SAM, the wafers were immersed in a solution of 50 μl of 1-thioacetato-

16-(trichlorosilyl)hexadecane in 5 ml of bicyclohexyl for 5 h under an argon atmosphere 

using a glove bag. The hydrophobic terminal thioacetate group of the SAM was then 

oxidized in a saturated aqueous solution of KHSO5·KHSO4·K2SO4 for 5 hours. 

2.2.1.3 Deposition of the sulfated zirconia precursor film 

After oxidation the wafers were rinsed with water and transferred immediately into the 

deposition medium, an aqueous solution of 4 mM zirconium (IV) sulfate tetrahydrate in 

0.4 M hydrochloric acid. The temperature of the deposition medium was ramped slowly 

(~1 K/min) to 323 K, in individual deposition tubes using a water bath. Films were 

deposited over time periods of 24-96 h in order to prepare films of various thicknesses to 

suit the different characterisation techniques employed; thinner films to maximise the 

conductivity of the samples and thicker to minimise substrate contributions. On removal 

from the deposition medium the films were rinsed with water and blown dry using argon.  

2.2.1.4 Thermal treatment of the thin films 

Thermal treatment of the films was performed in an inert atmosphere (pyrolysis), either 

argon or nitrogen (to avoid potential heat damage to the film from combustion of the 

SAM) or in air (calcination, to mimic the powder preparation). The films were heated to 

823 K in 125 ml/min of the chosen atmosphere for 2 h, ramping the temperature up and 

down at 5 K/min.  

2.2.2 Synthesis of an analogous sulfated zirconia powder 

2.2.2.1 Precipitation of the powder 

Analogous aqueous solutions to those used to deposit the sulfated zirconia precursor 

films, of 4 mM zirconium (IV) sulfate tetrahydrate in 0.4 M hydrochloric acid, were 

heated to 343 K in order to initiate bulk precipitation. After either 76 or 96 h at 343 K the 

precipitate was filtered, rinsed with water and dried in air. 

2.2.2.2 Thermal treatment of the precipitate 

Batches of the precipitated powder were heated to 823 K for 2 h in 125 ml/min of 

nitrogen or in 125 ml/min of synthetic air to the following temperatures: 873, 898, 923, 

948, 973 and 998 K for 3 h. In all cases the oven temperature was ramped up and down at 

5 K/min. 
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2.2.3 Characterisation techniques 

2.2.3.1 XPS 

The surface chemical composition of the films was investigated by X-ray photoelectron 

spectroscopy (XPS) using the Mg Kα excitation (hν = 1256.3 eV) with a pass energy of 

30 eV. A Shirley background was subtracted and binding energies were corrected to 

Zr 3d5/2 = 182.2 eV of ZrO2.154 Atomic sensitivity factors for Zr 3d, O 1s, and S 2s were 

taken from reference 155. 

2.2.3.2 SEM 

Topographical imaging of the films was performed using a Hitachi S-4100 scanning 

electron microscope (SEM) with a Thermo Noran System SIX energy dispersive X-ray 

detector (EDX). The SEM was operated at 5 kV using a working distance of 9 mm for 

imaging and 15 mm for EDX measurements. 

2.2.3.3 TEM 

Cross section high resolution transmission electron microscopy (HRTEM) was performed 

on 24 and 48 h deposited calcined films. The samples were prepared by first cutting the 

wafers and gluing them together, film surface to film surface, then mechanically 

polishing and dimpling them down to 5-10 μm, followed by ion milling with a Gatan 

precision ion polishing system operated at 3.5 kV using Ar+ ions. In order to minimise 

heating of the samples a single unfocused ion beam was used and the samples were 

rotated. 

Analysis was performed using a Philips CM200 electron microscope with a field 

emission gun operated at 200 kV, additionally featuring a Tridiem Gatan imaging filter 

and a Genesis 4000 energy-dispersive X-ray spectrometer. The microscope has a 

maximum resolution of 0.18 nm. Fast Fourier transformation was employed to analyse 

the structure of small areas or individual grains. 

2.2.3.4 XRD 

The X-ray diffraction (XRD) measurements were performed using a STOE STADI P 

transmission diffractometer equipped with a primary focusing Ge monochromator (Cu 

Kα1 radiation) and a position sensitive detector. The powders were mounted between two 

layers of X-ray amorphous polyacetate (Mylar) foil, using a small amount of X-ray 
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amorphous grease to hold the powder in place. The foils were clamped into a ring shaped 

holder which rotates during the measurement. 

Fittings of the diffractograms were performed with the program Topas v.3.0 (Bruker 

AXS), using the Rietveld method, to give a monoclinic to tetragonal ratio. The 

calculations of the theoretical peak intensities for monoclinic and tetragonal zirconia 

were based on ICSD156 entries 89426 and 97004, respectively. 

 

2.3 Results 

2.3.1 As deposited films 

XPS measurements of the as deposited films (Figure 2-1) show signals arising from 

zirconium, oxygen, sulfur, carbon and silicon. Signals from the silicon substrate decrease 

with increasing deposition time. Two maxima of the Si 2p were detected, one at Si 2p3/2 = 

99.7 eV consistent with Si(100) and the other at Si 2p(3/2+1/2) = 103.7 eV, in accordance 

with oxidised silicon.154 Signals arising from the zirconia film were shifted towards 

higher binding energies because of charging, an offset of around 2.2 eV was observed. 

Thus the maximum of the S 2p (S 2p3/2+1/2) signal was detected at 168.4 eV, indicating a 

sulfur oxidation state of +6. The O 1s signal is composed of at least two peaks, the lower 

binding energy peak at around 529.4 eV relates to oxide anions and the higher binding 

energy peak at ca. 531.1 eV corresponds to sulfate and hydroxide species. Assuming the 

charging correction is also valid for the carbon signal, the C 1s peak has a maximum at 

~284.0 eV, which is similar to the reported value of "chain" carbon157 as would be 

expected from the SAM. 

SEM images (not shown) reveal the surface of the as deposited films to be continuous, 

mainly smooth and homogeneous. However, spherically shaped particles of up to 1-2 μm 

are observed on the film surface. EDX analyses reveal these particles to consist of 

zirconium, oxygen and sulfur. 

2.3.2 Thermal treatment of films 

XP spectra of the films after the different thermal treatments show the loss of sulfur, as is 

apparent from both the S 2p and S 2s (Figures 2-1a and b) regions as well as from the 

O 1s signal (Figure 2-1c). The higher binding energy component of the O 1s signal 

(relating to hydroxyl and sulfate groups) is reduced after both thermal treatments, but 
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more significantly for the treatment in argon. After thermal treatment of the films in 

argon no sulfur is detectable in the S 2p or S 2s regions. Thermal treatment of the films in  
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Figure 2-1: XP Spectra of the (a) Zr 3d, S 2p, Si 2s and Si 2p (b) S 2s (c) O 1s and (d) C 1s 
regions of sulfated zirconia thin films (i) as deposited and after thermal treatment at 823 K 
in (ii) argon and (iii) synthetic air. 

Table 2-1: Elemental compositions calculated from XPS data of as deposited and thermally
treated sulfated zirconia films deposited over 48 h. Samples compared to a typical active 
tetragonal powder sulfated zirconia sample.162 n.d. = not detected. 

Atomic % Zr O S 
As deposited 18.6 73.5 7.9 
Argon 823 K 30.0 70.0 n.d. 
Air 823 K 25.8 71.1 3.2 
Calcined powder 27 68 5 
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synthetic air retards the loss of sulfur and thus elemental compositions of the films are 

comparable to a typical active powder catalyst (Table 2-1). In addition to the loss of 

sulfur, the C 1s signal is reduced and shifts to 284.6 eV, consistent with the 

decomposition of the SAM and the main source of carbon being either atmospheric 

contamination (adventitious) or SAM decomposition products. The silicon substrate 

(a) 

20 μm
 

(b) 

500 nm
 

(c) 

20 μm
 

(d) 

500 nm
 

Figure 2-2: SEM images of sulfated zirconia thin films after thermal treatment at 823 K in 
(a&b) argon and (c&d) synthetic air. 

Table 2-2: Elemental compositions of sulfated zirconia thin films and particles on the films 
after differing thermal treatments, as measured by EDX. 
Atomic %   Zr O S 
Argon 823 K overview 13.0 87.0 n.d. 
  particles 15.7 80.0 4.3 
Air 823 K overview 14.4 79.9 5.7 
  particles 14.7 80.2 5.1 
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peaks are more prominent after thermal treatment, indicating a decrease in layer 

thickness. Estimation of the thickness of the air-treated films from the intensity of the 

Si 2p signal (using an electron mean free path taken from reference 158) yields values of 

2–12 nm, increasing linearly with deposition time (see Figure 2-4). 

SEM images (Figure 2-2) show the films after the thermal treatments to remain smooth, 

homogeneous and crack free. The particles on top of the films remain unchanged; no 

differences in average size of the particles or in the quality of the film surrounding the 

particles are noticed after the differing treatments or from comparisons with the as 

deposited films. EDX analysis of the films overall elemental composition (Table 2-2), 

results in similar values to those calculated from XPS measurements; no sulfur was 

detected in the argon-treated film and slightly lower sulfur content compared to the as 

deposited film for the air-treated film. Focusing of the incident electron beam for EDX 

analysis on the particles shows that their compositions differ from that film for the argon-

treated sample, in that they contain sulfur. The particles on the air-treated films, however, 

have similar compositions to the films. Elemental compositions of the overall surface and 

particles of the air-treated films by EDX analysis are comparable to a typical powder 

catalyst. 

(a)  

5 nm
 

(b)  

5 nm  

Figure 2-3: HRTEM cross section images (and Fourier transforms of selected areas inset) of 
calcined sulfated zirconia thin films after (a) 24 h and (b) 48 h depositions. 
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 Cross sectional HRTEM images 

of air-treated films deposited over 

24 and 48 hours are shown in 

Figure 2-3. TEM analyses reveal 

both films to be continuous, with 

average thicknesses of 2.5 (24 h 

deposition) and 5.5 nm (48 h 

deposition). The film thickness of 

the 24 h deposited film varies from 

1 to 5 nm. The 48 h film is, 

however, of relatively 

homogeneous thicknesses (within 1 nm). HRTEM images show the 24 h film to be 

mainly amorphous with some crystals in the thicker areas of the film; crystals of between 

1-10 nm parallel to the film are detected. The 48 h film is shown to be fully crystalline 

with crystals from 5 up to 30 nm detected. Fourier transform analyses of selected areas of 

the HRTEM images reveal the structures of the crystalline layers from both films to be 

consistent with the tetragonal phase. Minor amounts of the cubic phase cannot be 

excluded; however, no monoclinic phase was present in the areas of film examined.  

2.3.3 Analogous sulfated zirconia 

powder 

X-ray diffractograms for the films' 

starting material (zirconium sulfate), 

the precipitate from the deposition 

medium at 343 K and after various 

thermal treatments are shown in 

Figure 2-5. Comparing the 

diffractogram of the commercial 

zirconium sulfate to that of the 

precipitate it is clear to see the two 

samples have the same crystalline 

phase. Heating the precipitate, to 
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823 K for 2 hours in 

nitrogen, results in the 

formation of an XRD 

amorphous material. 

Increasing the temperature 

(873-973 K), holding time 

(to 3 hours) and changing 

the gas to synthetic air (typical conditions for calcining sulfated zirconia powders),28 

results in the formation of predominantly tetragonal powder. However, a fraction of 

monoclinic phase is always present (see Table 2-3). The sample treated at 898 K has the 

lowest fraction of monoclinic phase. Treatment of the precipitate at 998 K results in a 

mainly monoclinic phase powder. 

 

2.4 Discussion 

The appearance of particles on the films in the SEM measurements indicated that 

homogeneous nucleation is occurring in the deposition medium, despite using conditions 

identical to methods reported to result only in heterogeneous nucleation.123,124,131 Various 

parameters were investigated (results not shown) in order to avoid homogeneous 

nucleation including: the order in which the deposition medium is prepared and diluted; 

reducing the deposition temperature to 313 K; increasing the acid concentration to 0.5 

and 0.6 M; decreasing the zirconium sulfate concentration to 2 mM; filtering, 

centrifugation and ultra-sonification of the deposition medium prior to immersion of the 

wafers; purchasing new raw materials of different production batches; changing the water 

purification method from doubly distilled to Millipore deionised; utilizing a water or oil 

bath to heat the deposition medium; heating the deposition medium at various rates. None 

of these measures completely prevented formation of particles. The following method 

parameters were changed from the original method used123,124 to produce the films 

reported on here: cleaning of the silicon wafers in acid (SC1) and basic (SC2) solutions 

were extended to 1 hour and using Millipore water for all preparation steps in order to 

reduce contamination; oxidation of the silicon wafer in piranha solution was extended to 

1 hour in order to ensure that a complete, thick, homogeneous layer of silicon oxide is 

Table 2-3: Phase compositions of the deposition medium 
precipitate after thermal treatment in synthetic air at 
various temperatures. 

Temperature / K % Tetragonal % Monoclinic 
898 85 15 
923 80 20 
948 78 22 
973 69 31 
998 24 76 
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formed; heating of the deposition medium was performed at a constant rate of 1 K/min in 

order to reduce homogeneous nucleation and hence the occurrence of particles on the 

films. 

Homogeneous nucleation not only results in the formation of particles on the film 

surface, but in the formation of thinner films per deposition time as compared to those 

reported from heterogeneously nucleated growth only; as indicated from XPS substrate 

peaks and TEM images. This effect can be explained by the precipitation of particles via 

homogeneous nucleation reducing the concentration of zirconium sulfate in solution, thus 

the rate of heterogeneous nucleation is decreased. The thickness of the calcined films is 

shown to increase linearly with time and particles were observed on the films regardless 

of deposition time, thus indicating that the homogeneous precipitation occurs during the 

initial stages of film deposition. 

Topographical studies showed the majority of the films surface to be free of particles and 

smooth. No influence of the particles was detected using XPS (differential charging not 

observed, as compared with previously published results).123,124 The elemental 

composition of the both the films and particles adhering to the films, after thermal 

treatment in synthetic air, were shown to be equivalent and similar to an active powder 

sample. Therefore, despite the presence of particles adhering to their surfaces, the 

produced films are considered a suitable model for surface science studies. 

Thermal treatment of the films in an inert gas (argon) results in loss of sulfur whereas in 

air the majority of sulfate is retained, which is explainable by its decomposition pathway 

into SO2 (g) + ½ O2 (g).159 Therefore, films thermally treated in air were used for further 

investigations. Structural studies of the air-treated films show that very thin films do not 

crystallise. In order to form a fully crystalline material films of approximately 5 nm 

thickness are required. In subsequent chapters of this thesis calcined films deposited over 

48 h were used when possible; however initial experiments were performed without the 

knowledge that films from shorter deposition times resulted in films of generally 

amorphous character. Given that the thinner films still have some tetragonal areas 

experiments performed on these samples are not regarded as meaningless, although the 

interpretation of such experiments must consider the low tetragonal fraction of the films. 
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Thermal treatment of analogous powders precipitated from the deposition medium at 

343 K did not result in the formation of a fully tetragonal material, despite using various 

temperatures and conditions typical for calcining sulfated zirconia powders. Bulk 

precipitation of the deposition medium at 343 K does not change the crystalline phase 

from that of the orthorhombic zirconium sulfate tetrahydrate starting material.160 

Deposition of the thin films on the other hand results in the formation of an amorphous 

phase (as evident from results not shown and previous studies).126,127 Thus the deposition 

mechanism, homogeneous versus heterogeneous, affects the crystalline phase formed. In 

addition the tetragonal phase is stabilised by the formation of small crystals (< 30 nm 

sized crystals),192021-22 which are formed on the 48 h deposited thin films after thermal 

treatment. The 48 h films were thus found to have tetragonal crystals equivalent in size to 

those of active sulfated zirconia powders.23 However, the tendency of very thin films not 

to form the tetragonal phase may also be explained by the surface energy stabilisation of 

the amorphous zirconia.161 

The bulk precipitation from the deposition medium is judged not to result in a realistic 

link between the sulfated zirconia thin films and powdered sulfated zirconias (given the 

different crystalline phases present). Therefore the produced thin films have been 

compared to tetragonal sulfated zirconia powders prepared by calcining either material 

prepared using a standard precipitation technique162 (as used for XPS comparisons in this 

chapter) or a commercially available (from MelCat) sulfated zirconium hydroxide 

material. 

 

2.5 Conclusions 

Thin films containing zirconium, oxygen and sulfur were successfully synthesised using a 

biomimetic route outlined in the literature. Homogeneous nucleation of the deposition 

medium was suppressed but not completely avoided, resulting in particles on the films 

surface. The presence of such particles is adjudged not to interfere with surface science 

studies of the films. 

Thermal treatment of the films was optimised in air to form a tetragonal film of 

continuous thickness with a comparable composition to a typical active powder catalyst. 

The deposition mechanism and the dimensions of the formed films appear to play crucial 
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roles in formation of the tetragonal phase. Homogeneous deposition results in a powder 

material that is XRD amorphous after thermal treatment at low temperatures or a mixture 

of tetragonal and monoclinic after high temperature treatment. If the films are too thin the 

layer will not crystallise. 



3. Thermal Desorption Spectroscopic Studies on Sulfated Zirconia Thin Films 

 28

3. Thermal Desorption Spectroscopic Studies on Sulfated Zirconia Thin Films 

3.1 Introduction 

3.1.1 Temperature programmed desorption from sulfated zirconia powders 

Numerous temperature programmed desorption investigations have been carried out on 

sulfated zirconia using various probe molecules, including: pyridine,163-164165166167168169170 

2,6-dimethylpyridine,165 

ammonia,165,168,171172173174175176177178179180181182183184185186187188189190191192193194195-196 

benzene164,172,197-198199 and substituted derivatives,197,199 isopropylamine,199,200 n-

butylamine,201 acetonitrile,202 carbon dioxide,179 nitrogen monoxide,188,203 n-butane,27,63 

1-butene,204 argon205 and hydrogen.206 The majority of desorption studies use basic probe 

molecules (such as pyridine and ammonia) to determine the strength (either relative or 

absolute) and total number of acidic sites. However, studies have shown the thermal 

treatment of sulfated zirconia after exposure to such bases to result not just in desorption 

of the probe molecule but, also, its decomposition.164,166,167,171 Furthermore, pyridine 

adsorption has been shown to reduce the sulfate stability.164,166,167 Thus sulfated zirconia 

reacts with such bases and hence a qualitative measure of the acidic strength is not 

possible. Some papers argue that the sites on which the probe molecule is decomposed 

must be strong acids and quantification of the total number of acidic sites is still possible 

from evaluation of the amount of desorbing probe and its decomposition products.171,179 

However, with unspecific analytical methods of detection (such as thermal conductivity 

detectors) it is not possible to differentiate between the probe molecule plus its 

decomposition products and the decomposition of sulfated zirconia. 

Investigations have been performed using weak bases (such as benzene, substituted 

benzenes, acetonitrile and amines) in order to avoid decomposition, because of their 

weaker interaction. Such probes only interact with the strongest adsorption sites. In many 

cases, however, decomposition products (typically including CO2 and SO2) have, also, 

been observed.164,198-199200201202 Sulfated zirconia has been shown to interact even with 

argon (up to ~170 K).205 Furthermore, the probe molecules used may adsorb on zirconia 

itself.165,177,178,186,188,189,192,207-208209210211 

Thermal desorption investigations after exposing sulfated zirconia to 1-butene at 323 K, 

monitored by GC-MS, have shown the probe molecule to oligomerize on the surface.204 
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Recent studies exposing an active sulfated zirconia isomerisation catalysts to n-butane at 

323 K followed by temperature programmed desorption detect higher MS signals for the 

desorption of butene than butane.27,63 Whereas for a relatively inactive sulfated zirconia 

material, butane and butene desorption were not detected. The generation of catalytic 

sites on the active material was thus ascribed to its dehydrogenation functionality. 

3.1.2 Temperature dependent desorption from sulfated zirconia thin films 

The adsorption of ammonia on nanocrystalline sulfated zirconia thin films has been 

previously investigated using XPS.123 XP spectra of the N 1s signal after exposure to 

10000 L of ammonia at room temperature show two peaks at 402.1 and 400.0 eV. Heating 

to 473 K results in a significant decrease of the higher binding energy peak while the 

lower binding energy species remains relatively unaffected, indicating a weakly and a 

strongly bound adsorbate species. 

3.1.3 Motivation 

Temperature programmed desorption has been applied to the sulfated zirconia thin films 

in order to take advantage of their non-porous nature and thermal conductivity. These 

properties should improve the detection resolution of the desorbing species and hence, 

also, the quantification of the number and strength of different adsorption sites. The 

interaction of both the reactant (n-butane) and a basic probe (ammonia) have been studied 

to allow identification of both catalytically relevant and acidic sites. 

 

3.2 Experimental 

3.2.1 Apparatus 

Thermal desorption spectroscopy was performed on samples mounted on a sapphire 

holder and heated via electron bombardment.212 The samples were secured to the sapphire 

holder and grounded via a stainless steel clip, which also held a K type thermocouple in 

contact with the surface of the sample. Activation and thermal desorption spectroscopy 

were performed in a chamber with a base pressure in the order of 10-9 hPa, in which a 

differentially pumped mass spectrometer was placed within 1 mm of the sample surface. 

The recorded mass to charge ratios (m/z) are shown in Table 3.1. Exposure to the probe 

molecules was performed in a separate preparation chamber, at room temperature, and 

then the samples were transferred into the main chamber under vacuum. 
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3.2.2 n-Butane thermal desorption spectroscopy 

n-Butane thermal desorption spectroscopy was performed on a calcined 24 hour 

deposited sulfated zirconia film. Activation of the film was performed under vacuum at 

814 K with a heating rate of 18 K/min. The activated film was exposure to 5 hPa and 

5x10-2 hPa n-butane for 15 minutes and 12.9 hPa for 1 hour, each followed by desorption 

using an 18 K/min ramp, and 5.2 hPa for 15 minutes followed by desorption using a 36 

K/min ramp. For comparison an oxidised silicon wafer activated under vacuum at 723 K 

with a heating ramp of 18 K/min was used. The wafer was exposed to 6.6 hPa n-butane 

for 15 minutes and 4.9 hPa for 1 hour, both followed by desorption using an 18 K/min 

ramp. 

3.2.3 Ammonia thermal desorption spectroscopy 

Ammonia thermal desorption spectroscopy was performed also on a calcined 24 h 

deposited sulfated zirconia film. The film was activated at 723 K under vacuum with a 

Table 3-1: Recorded mass fragments and potential parent molecules, relative abundances 
taken from reference 213. 

m/z 
ratio 

Possible 
fragments 

Possible parent molecules (relative abundance) 

2 H2
+, He+  

12 C+ n-butane (0.1), isobutane (0.1) 
14 CH2

+, N+, CO++ ammonia (2), n-butane (1), isobutane (1)  
15 CH3

+, NH+ ammonia (8), isobutane (7), n-butane (6), 1-butene (2) 
16 O+, NH2

+, CH4
+  ammonia (80), water (0.9), isobutane (0.2), n-butane (0.1), 

1-butene (0.1) 
17 NH3

+, OH+ ammonia (100), water (21) 
18 H2O+ water (100), ammonia (0.4)  
26 C2H2

+ 1-butene (8), n-butane (6), isobutane (2) 
27 C2H3

+ n-butane (39), isobutane (28), 1-butene (25) 
28 N2

+, CO+, C2H4
+  n-butane (32), 1-butene (27), isobutane (3) 

29 C2H5
+  n-butane (43), 1-butene (13), isobutane (6)  

32 O2
+, S+  

39 C3H3
+ 1-butene (34), isobutane (17), n-butane (14) 

41 C3H5
+ 1-butene (100), isobutane (38), n-butane (29) 

42 C3H6
+ isobutane (32), n-butane (12), 1-butene (3) 

43 C3H7
+ n-butane (100), isobutane (100), 1-butene (0.1) 

56 C4H8
+ 1-butene (39), n-butane (1), isobutane (0.4)  

58 C4H10
+ n-butane (12), isobutane (3), 1-butene (0.1) 

60 SiO2
+  

64 SO2
+  

80 SO3
+  
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heating rate of 18 K/min. After activation a background signal due to heating of the 

sample without prior adsorption was performed using also an 18 K/min ramp. The film 

was exposed to 49 hPa ammonia for 30 minutes and 520 hPa ammonia for 1 hour, each 

followed by thermal desorption at 18 K/min. 

 

3.3 Results 

3.3.1 n-Butane thermal desorption spectroscopy 

Desorption spectra displaying the most abundant hydrocarbon fragment C3H7
+ (m/z =43) 

after n-butane exposures are shown in Figures 3-1 and 3-2. Figure 3-1 indicates that there 

is an increased amount of hydrocarbon desorbing from the sulfated zirconia thin film in 

comparison to the oxidised silicon wafer. Desorption profiles from the sulfated zirconia 

film and the oxidised wafer are fairly similar in shape, a broad peak is detected from 323 

K to 623 K centred around 423 K. There does, however, appear to be a minimum in the 

sulfated zirconia desorption profiles, at ~440 K after 15 minutes exposure or ~425 K after 

1 hour exposure to n-butane, indicating the desorption from at least two different types of 

adsorption sites. 
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Figure 3-1: n-Butane desorption 
(hydrocarbon fragment m/z 43 shown) from 
an oxidised silicon wafer (circles) and a 
sulfated zirconia thin film (squares) after n-
butane exposure at room temperature for 15 
minutes (hollow) or 1 hour (filled). Blank 
sulfated zirconia thin film measurement, 
without n-butane exposure, also shown 
(triangles). 
 

Figure 3-2: n-Butane desorption 
(hydrocarbon fragment m/z 43 shown) from 
a sulfated zirconia thin film after exposure 
to 5x10-2 hPa (diamonds) and 5 hPa n-
butane using a heating rate of 18 K/min 
(squares) or 36 K/min (circles), exposures 
for 15 minutes at room temperature. Blank 
sulfated zirconia thin film measurement, 
without n-butane exposure, also shown 
(triangles). 
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The amount of hydrocarbon desorbing from the sulfated zirconia film is greater after the 

1 hour exposure than the 15 minutes exposure. The reverse is true for the oxidised silicon 

wafer. However, the desorbed amount correlates with slight increases in n-butane 

pressure during dosing, from 4.9 to 6.6 hPa for the oxidised silicon wafer and 5 to 12.9 

hPa for the sulfated zirconia thin film. The dependence of dosing pressure on the 

desorbed amount can be more clearly seen in Figure 3-2, decreasing the exposure 

pressure from 5 hPa to 5x10-2 hPa results in a significant signal decrease and the peak 

shifts to lower temperatures. Increasing the heating rate (from 18 K/min to 36 K/min) 

results in desorption being additionally observed at slightly higher temperatures (Figure 

3-2).  

Ratios of fragments m/z 41:43, as 

determined by integrating the 

desorption signals between room 

temperature and 673 K using linear 

backgrounds, are displayed in Table 3-

2. The higher ratio seen for the initial 

measurement performed on the 

sulfated zirconia thin film (after 

dosing at 5 hPa n-butane for 15 minutes) can be interpreted as a relative increase in the 

desorption of unsaturated hydrocarbons. The consecutive measurement (after dosing at 

12.9 hPa n-butane for 1 hour) and all measurements thereafter (not shown) on the 

sulfated zirconia thin film do not show ratios that differ significantly from those obtained 

during desorption measurements using the oxidised silicon wafer. 

3.3.2 Ammonia thermal desorption spectroscopy 

Figure 3-3a, shows the desorption of ammonia (as indicated by the MS fragment NH) 

from a sulfated zirconia thin film. No significant desorption peaks are observed from the 

“blank” non-exposed surface. For the 49 hPa, 15 minutes exposure a broad peak from 

373 to 423 K and a sharp peak centred at ca. 637 K are detected. Increasing the exposure 

pressure and time to 520 hPa and 1 hour results in considerable broadening of the high 

temperature peak, so much so that it appears as a continuous increase in desorption from 

ca. 353 K until ca. 710 K. There is still an additional peak around 413 K, although its 

Table 3-2: Fragmentation ratios for thermal 
desorption of n-butane from a Si wafer and SZ 
thin film, compared to n-butane and 1-butene 
ratios taken from reference 213. 

 41:43 
SZ film 5 hPa 15 min 0.66 
SZ film 12.9 hPa 1 h 0.50 

Si wafer 6.6 hPa 15 min 0.44 
Si wafer 4.9 hPa 1 h 0.57 

n-butane (NIST) 0.29 
1-butene (NIST) 1000 
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relative intensity is reduced because of the continuous increase in signal intensity from 

the main desorption feature. Analogous spectra are observed for each of the different 

exposures for hydrocarbon desorption fragments such as m/z = 43 (Figure 3-3b) and m/z 

= 28 and 40. Sulfate fragments (for example m/z = 64 from SO2) are, however, only 

detected concomitantly with the high temperature peak for the 49 hPa, 15 minute, 

exposure and only at temperatures above 473 K for the 520 hPa, 1 hour, exposure. Such 

fragments are seen from the non-exposed film only at temperatures above 723 K. 

 

3.4 Discussion 

Adsorption of n-butane on both the sulfated zirconia thin films and oxidised silicon 

wafers is clearly seen by the MS detection of hydrocarbon fragments during the thermal 

desorption of the probe molecule. The apparent increase in the amount of adsorbed 

species on the sulfated zirconia thin film compared to the oxidised silicon wafer indicates 
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Figure 3-3: Logarithmic MS thermal 
desorption plots of (a) the NH fragment of 
ammonia (m/z = 15) (b) hydrocarbon 
fragment (m/z = 43) and (c) sulfate 
decomposition fragment SO2 (m/z = 64) from 
a sulfated zirconia thin film after exposure 
to no ammonia (triangles), 49 hPa ammonia 
for 30 minutes (squares) and 520 hPa 
ammonia for 1 hour (circles), at room 
temperature. 
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the presence of more adsorption sites; however, this may be due to an increase in surface 

roughness and hence also surface area. Desorption profiles from the sulfated zirconia thin 

film indicate the presence of at least two different adsorption sites. The temperature range 

over which desorption is seen from both the sulfated zirconia thin films and oxidised 

silicon wafers is similar, thus indicating an equivalent strength of interaction with the 

adsorbate. 

From the increased m/z 41:43 ratio seen after the initial dosing of the sulfated zirconia 

thin film, as compared with measurements from the oxidised silicon wafers, it can be 

inferred that the sulfated zirconia thin films possess sites capable of dehydrogenation. 

This ratio may be lower than previously reported for temperature programmed desorption 

from active sulfated zirconia powders27,63 due to the low fraction of tetragonal phase 

within the very thin (24 hour deposited) sulfated zirconia films used. Lower ratios seen 

for all subsequent measurements suggest these sites have been deactivated. Higher m/z 

43:41 ratios are seen for all measurements as compared with the NIST n-butane ratio. 

This is possibly caused by the adsorption of trace impurities or the relative sensitivity of 

the MS used. 

The shift to lower desorption temperatures and hence weaker adsorption sites with 

decreasing exposure pressure of n-butane is counter to the idea that the stronger 

adsorption sites are populated first – thus at higher exposure pressures desorption may be 

limited by diffusion (either thermal or gaseous) or incorrect due to a high background 

desorption. Increasing the heating rate leads to a broader desorption peak width, which 

also insinuates diffusion to be a limitation. Thus thermal desorption spectroscopy may not 

be the best technique to investigate the adsorption of n-butane on the sulfated zirconia 

thin films. Although, the detected desorption of hydrocarbons at relatively low 

temperatures from the sulfated zirconia thin films, after n-butane exposure, indicates a 

weak adsorption and thus is in good agreement with the small heats of adsorption (~45–

60 kJ/mol) obtained for butanes on powder sulfated zirconia in calorimetric and temporal 

analysis of products (TAP) experiments.27 

Ammonia desorption profiles obtained from the nanocrystalline sulfated zirconia films 

are in agreement with the findings of previous thermal desorption XPS studies123 and are 

similar to those previously reported for active sulfated zirconia powder catalysts.174 The 
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source of hydrocarbon fragmentation signals during thermal desorption is unclear. It 

could be that they are from ammonia reacting with adsorbates on the chamber walls, or 

the sample itself (i.e. adsorbed surface carbon or carbon remaining from the 

decomposition of the SAM), or a co-adsorbing impurity (although this is unlikely given 

the quality and increased adsorption strength of the ammonia). The reduction in sulfate 

stability is consistent with earlier reports of sulfated oxides (including sulfated zirconia) 

more readily undergoing decomposition upon exposure to basic probe molecules at 

elevated temperatures.37 

 
3.5 Conclusions 

The ammonia and n-butane adsorption experiments conducted on the nanocrystalline 

films detect two distinctly different types of sites. The stronger binding site has been 

shown to react with ammonia at high temperatures rather than release the basic probe, 

which is consistent with the literature.37 Desorption of n-butane resulted in a broad peak 

at relatively low temperatures, which is also typical for powder sulfated zirconia samples. 

Fragmentation ratios indicating the formation of alkenes over the sulfate zirconia thin 

film were detected for the initial measurement. Thus the thin films have active sites 

capable of dehydrogenation, as has recently been shown for powdered sulfated zirconia. 

The application of thermal desorption spectroscopy to the sulfated zirconia thin films 

was, however, unable to yield any additional information above currently published 

reports. This is possibly due to the system limitations, resulting in relatively high 

background signals as compared with the amount desorbing from the small surface area 

of the sample. The adsorption properties of the nanocrystalline thin films could be shown 

to be equivalent to those of active powder sulfated zirconia catalysts. 
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4. Isobaric Measurements on Sulfated Zirconia Thin Films 

4.1 Introduction 

4.1.1 Determination of heats of adsorption 

The quantitative determination of thermodynamic and kinetic parameters from adsorption 

and desorption studies, including heats of adsorption, are necessary for the understanding 

of adsorbate-adsorbent interactions. Such parameters are required for the development of 

adsorption models and therefore, also, the modelling of surface processes in 

heterogeneous catalysis.214 

Heats of adsorption can be determined directly from calorimetric experiments {for 

example microcalorimetry or differential scanning calorimetry (DSC)}; however, 

measurements on flat surfaces are limited to very few systems because of the specific 

sample preparation prerequisites.215 Irreversible adsorption processes and adsorbate-

adsorbent reactions can be studied via calorimetry. Transient experiments on powders, 

such as temporal analysis of products, can also give data on both kinetic parameters and 

heats of adsorption. Modelling of diffusion parameters is however required. 

Thermal desorption spectroscopy (TDS) [as discussed in Chapter 3] is widely used to 

determine thermodynamic and kinetic parameters of the adsorption of gases on flat 

surfaces. From TDS measurements the different types and number of adsorption sites can 

be evaluated. TDS, also, allows the activation energy for desorption (Ed) to be calculated. 

Only when adsorption is not an activated process does Ed equal the heat of adsorption. 

The determination of the reaction order and frequency factor for desorption are in 

principle possible as well, but very good TDS data is required. A further disadvantage of 

TDS is that adsorption must be performed at relatively low temperatures so that 

desorption does not occur. Adsorbate diffusion may therefore be kinetically limited, 

hence different states may not be sequentially occupied and thus equilibrium not 

achieved. Heating can therefore result not only in desorption but also the equilibration of 

states. 

In order to overcome the problems associated with TDS measurements, adsorption-

desorption (A-D) equilibrium methods, such as isotherms (constant temperature) or 

isobars (constant pressure), can be used.216 Coverage-dependant isosteric (constant 

coverage) heats of adsorption can be deduced from the relative position of sets of 
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isotherms at different temperatures or isobars at different pressures using the Clausius-

Clapeyron equation.217 

As the Clausius-Clapeyron equation is deduced from thermodynamics, it is independent 

of the kinetics of adsorption and desorption. An equivalent equation can be derived from 

kinetic descriptions of adsorption and desorption using the Arrhenius law. The kinetic 

derivation is independent of the strength of interaction and is even valid for different gas 

and sample temperatures.218  

In principle it is also possible to determine kinetic data from the shape of the isotherms or 

isobars, such as the reaction order for desorption and adsorption, the Kisliuk factor 

(which relates the dependence of the relative sticking probability on coverage) and the 

frequency factor for desorption.216 

There are a number of prerequisites for the application of A-D equilibrium 

measurements, these include:  

• Kinetics must be fast enough to establish equilibrium (i.e. the activation energy 

for adsorption must not be too high). 

• The adsorbate must not decompose irreversibly on the surface. 

• Adsorption must be reversible (the heat of adsorption must not be so high that 

equilibrium is strongly on the side of adsorption for the range of pressures and 

temperatures studied). 

The equilibrium position is generally not a severe restriction when studying catalytic 

systems, as the relevant adsorbates are often not very strongly bound otherwise they 

would block the active sites. 

4.1.2 Isobaric photoelectron spectroscopy measurements 

Surface sensitive spectroscopic methods, such as photoelectron spectroscopy, can be used 

to measure adsorbate coverage under A-D equilibrium conditions. Evaluation of the 

spectroscopic data can therefore lead to information relating to how the adsorbate binds 

to the adsorbent, as well allowing the generation of isobars or isotherms. 

UPS measurements under A-D equilibrium have been used to investigate a variety of 

systems. The Henzler group determined heats of adsorption of water on NaCl(100)219 and 

KCl(100)220. Ranke and co-workers identified differing adsorption sites and heats of 

adsorption for ammonia on Ge(001), (113) and (111) surfaces;216,221 and for water, 
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ethylbenzene and styrene on FeO(111), Fe3O4(111) and Pt(111) surfaces.216,222-223224 In the 

case of water, ethylbenzene or styrene adsorbed on FeO(111), Fe3O4(111) and Pt(111), 

isobar fittings have yielded reaction orders for desorption and adsorption, Kisliuk factors 

and frequency factors for desorption. XP spectra, measured also under adsorption-

desorption equilibrium, have been used to support the assignments of the various 

adsorbate states and coverage determinations for water on FeO(111) and Fe3O4(111) 

surfaces. Isosteric heats of adsorption determined for water on FeO(111) and Fe3O4(111) 

are similar in value to heats of desorption deduced from TDS measurements on the same 

system. 

4.1.3 Heats of adsorption of n-butane on sulfated zirconia 

González et al.225 measured n-butane heats of adsorption on two sulfated zirconia powder 

catalysts, which differed in catalytic activity by an order of magnitude, via 

microcalorimetry. They found that for both catalysts investigated initial n-butane doses 

(of 2-4 μmol/g) released heats of ~57 kJ/mol. The heats of adsorption on both catalysts 

linearly decrease with sequential n-butane doses, reaching a value of ~38 kJ/mol after an 

adsorption of 35 μmol/g. These heats of adsorption clearly differ from the heat of 

condensation of n-butane (22 kJ/mol).226 The authors concluded that the difference in 

catalytic activity of the samples studied does not arise from an unusually strong affinity 

for the reactant molecule. 

Li et al.27 also investigated two sulfated zirconia powder catalysts; one active for n-

butane isomerisation at 373 K, the other was inactive at this temperature and only 

reached a similar performance at 473 K. Differential n-butane heats of adsorption of 

approximately 50 kJ/mol were measured on both catalysts, for n-butane coverages of ca. 

5 μmol/g. The heats of adsorption decreased to about 45 kJ/mol at a coverage of 30 

μmol/g. At coverages < 5 μmol/g considerable variations in the differential heats of 

adsorption were observed, possibly indicating reaction on a minority of sites. The authors 

therefore concluded that the number of sites capable of dehydrogenation (their proposed 

reaction initiation pathway) must be less than 5 μmol/g. 

TAP studies227 on the sulfated zirconia samples described by Li et al.27 indicate the 

adsorption of n-butane to be reversible on both samples. Heats of adsorption calculated 

from van't Hoff plots yielded values of 53 and 52 kJ/mol for the relatively active and 



4. Isobaric Measurements on Sulfated Zirconia Thin Films 
 

 39

inactive materials, respectively. These values are in good agreement with calorimetric 

data on the same samples. 

In a separate study, Li et al.228 investigated by DSC sulfated zirconia prepared under 

different conditions from the aforementioned samples. Similar n-butane heats of 

adsorption, starting at approximately 60 kJ/mol (at low coverage) declining to 40 kJ/mol 

at 60 μmol/g, were obtained. 

4.1.4 Aims 

Given the difficulties in the application of TDS to the sulfated zirconia thin films 

(presented in Chapter 3), the interaction of n-butane with the films under A-D equilibrium 

was investigated using photoelectron spectroscopy. The application of low pressures and 

temperatures is ideally suited to study the adsorption of n-butane as sulfated zirconia is 

known to be catalytically active even at room temperature.12 

The aims of performing isobaric studies on the sulfated zirconia thin films are to identify 

the various adsorption sites on the films and quantitatively describe how the isosteric 

adsorption heats of n-butane (the reactant) vary with coverage. 

 

4.2  Experimental 

4.2.1 Set-up 

Samples were mounted for experiments on a sapphire sample holder using a stainless 

steel clip. The sample temperature was measured via a K-type thermocouple inserted into 

the side of the sample, as shown in Figure 4-1a. Validation of the thermocouple reading 

was performed using a silicon wafer and a pyrometer (silicon emissivity = 0.7);229 

differences in temperature readings from the thermocouple and pyrometer during heating 

of the silicon wafer were considered negligible (see Figure 4-1b and c). For the XPS 

isobaric measurements the samples were grounded through the clip, but for the UPS 

isobaric measurements they were grounded via the thermocouple to ensure good sample-

thermocouple contact. The sample temperature was controlled by liquid N2 cooling and 

resistive heating (for isobaric measurements) or electron bombardment (for in situ 

activation), in a similar setup to the one described in reference 212. The base pressure in 

the chamber was 2x10-10 hPa or lower. Atmospheric pressure activations were performed 

in an adjacent chamber with a flow directed across the sample and heating via a lamp 
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positioned in front of the sample. 

4.2.2  XPS isobaric measurements 

Interaction of both a calcined sulfated 

zirconia thin film and an oxidised silicon 

wafer with n-butane were studied using Al 

Kα excitation (hν = 1486.7 eV) XPS, with 

a pass energy of 50 eV. Scans of the Zr 3d, 

O 1s and C 1s regions were performed for 

experiments conducted on the sulfated 

thin films and the Si 2p, O 1s and C 1s 

regions for experiments on the oxidised 

silicon wafers. For each of the regions a 

step size of 0.05 eV and a dwell time of 

0.1 second were used. Single scans were 

performed on all regions except the C 1s 

region. Initial measurements were 

performed with 2 scans for the C 1s 

region. Detailed measurements were 

performed with 4 or 5 scans of the C 1s 

region for the oxidised silicon wafer or 

sulfated zirconia thin film experiments, 

respectively. 

Binding energies of the sulfated zirconia 

thin films were corrected to Zr 3d5/2 = 

182.2 eV of ZrO2,154
 and the binding 

energies of the oxidised silicon wafers 

were corrected using the elemental silicon 

component Si 2p = 99.7 eV of Si (100),154 to account for temperature induced shifts. 

Shirley backgrounds were subtracted from all peaks apart from the C 1s, for which a 

linear background was used. 
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Figure 4-1: (a) Diagram of sample mounting, 
(b) pyrometer measurement of temperature 
gradient across sample at high temperature 
and (c) validation of thermocouple reading 
using a pyrometer. 
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4.2.2.1 Initial XPS isobaric measurements 

Initial measurements were performed on a sulfated zirconia film and an oxidised silicon 

wafer, both activated at 623 K in UHV with a temperature ramp of 20 K/min. Spectra of 

the UHV activated samples were recorded in A-D equilibrium, from room temperature to 

100 K and back to room temperature, at n-butane pressures of 2.2x10-8 hPa and 2.2x10-7 

hPa sequentially. Due to condensation of butane on the colder parts of the sample holder 

during the long exposure times at low temperatures, pressures of up to 10-5 hPa were 

observed while initially increasing the sample temperature. The electron analyser was 

switched off during these periods, typically between 100 and 140 K. 

In order to determine the signal intensity of an "infinitely" thick carbon layer the sulfated 

zirconia thin film was also exposed to 1x10-6 hPa n-butane at 100 K until the signals 

originating from the sulfated zirconia film (Zr 3d, O 1s and S 2p) were no longer 

detectable. 

A blind isobar experiment without X-ray irradiation was also performed on the oxidised 

silicon wafer, to investigate the effects of irradiation. The wafer was exposed to 2.2x10-7 

hPa n-butane from room temperature to 100 K. XPS of the O 1s, C 1s and Si 2p regions 

were recorded prior to and immediately after the adsorption experiment at room 

temperature. 

4.2.2.2 Detailed XPS isobaric measurements 

Detailed isobaric measurements were performed on a reactivated oxidised silicon wafer 

and a new sulfated zirconia thin film, while decreasing the temperature. Activation of the 

sulfated zirconia thin film was performed at atmospheric pressure in a flow of 40 ml/min 

synthetic air at 573 K for 30 minutes (temperature ramp ~20 K/min). The air-activated 

sample was exposed to 2.2x10-8 hPa n-butane at temperatures from 200 K to 100 K. At 

120 K the temperature was held constant for 40 minutes. The oxidised silicon wafer was 

reactivated at 623 K in 1x10-7 hPa O2 for 1 hour, using a temperature ramp of ~20 K/min. 

The oxidised Si wafer was then exposed to 2.2x10-8 hPa n-butane while cooling from 200 

K to 120 K. 

4.2.2.3 Coverage determination from XPS isobaric measurements 

C 1s Difference spectra, corresponding to the adsorbate signal, were obtained by 

subtracting the "clean" surface spectrum under UHV prior to n-butane exposure from the 
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spectra taken in A-D equilibrium. The area of the difference signal could be converted 

into a coverage dependant value using the Lambert-Beer absorption law {when coverage 

(θ) is defined as the number of adsorbed molecules divided by the total number of 

adsorption sites on the adsorbent}, as indicated in the below equation: 

 ads

e 0,ads

d Iθ ln 1
l I

⎛ ⎞∝ = − −⎜ ⎟
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Where d is the adsorbate thickness (averaged over the whole surface), le is the electron 

escape depth, Iads is the adsorbate intensity and I0,ads is the intensity of an infinitely thick 

adsorbate layer. Hence, d/le is proportional to the adsorbate coverage. The escape depth is 

given by le = λe cos α, where λe is the electron mean free path and α the mean escape 

angle normal to the surface (for the system used the analyser is at 0°, therefore le = λe). λe 

depends strongly on the kinetic energy of the electrons and, albeit to a lesser degree, on 

the material the electrons are passing through. Reported values of λe (for various kinetic 

energies and materials) 154 can be used to estimate the adsorbate thickness, although wide 

error margins are to be expected due to the uncertainty in λe and the calculated values 

only have real meaning for full layer coverages. Calculated values are therefore quoted as 

equivalent adsorbate thicknesses. 

4.2.3  UPS isobaric measurements 

He ΙΙ (hν = 40.8 eV) ultraviolet photoelectron spectroscopy (UPS) was also used to study 

the interaction of n-butane with air-treated sulfated zirconia thin films and oxidised 

silicon wafers. Measurements were performed with a pass energy of 15 eV and a -5 V 

sample bias. 

Secondary electron curves and He ΙΙ satellite-induced emissions have not been subtracted 

from the UP spectra presented. Both binding energy and vacuum level (Evac) aligned x-

axis scales are given for all UP spectra (which differ by the work function of the 

spectrometer, 4.6 eV). Sample charging has not been evaluated. 

4.2.3.1 Initial UPS isobaric measurements 

Initial measurements were performed on an oxidised silicon wafer. Spectra were 

measured in A-D equilibrium at 1x10-6 hPa while decreasing the temperature from room 

temperature to 105 K, followed by holding the temperature constant at 105 K for 1 hour. 

In a subsequent experiment, the oxidised silicon wafer was cooled to 108 K and XP 
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spectra of the surface were taken. The sample was then exposed to 1x10-6 hPa n-butane 

and the change in signal followed by UPS. After 20 minutes XP spectra of the surface 

were taken. The XPS measurements were performed with a low resolution to minimise 

beam damage. 

4.2.3.2 Detailed UPS isobaric measurements 

Detailed measurements were performed on new samples activated at 573 K under 

atmospheric pressure in a flow of 40 ml/min synthetic air for 30 minutes, using 

temperature ramps of ~20 K/min. Spectra were measured in A-D equilibrium under 

constant n-butane pressures of 1x10-8, 1x10-7 and 1x10-6 hPa at temperatures from room 

temperature to ~110 K, sequentially. After each isobar the sample was moved out of the 

UV beam, the n-butane leak valve was closed and the sample was heated resistively up to 

room temperature. Before and after the sets of UPS isobars, XPS measurements of 

samples were performed in UHV. 

After the set of UPS isobars the sulfated zirconia thin film was reactivated under the 

same conditions as for the original activation. The film was then exposed to 1x10-6 hPa at 

temperatures down to 100 K while turned out of the irradiating beam (a non-irradiated 

isobar). UP and XP spectra were recorded in UHV at room temperature prior to and after 

performing the non-irradiated isobar. The sulfated zirconia thin film was then reactivated 

again and exposed to 1x10-6 hPa n-butane for 3 hours at room temperature with He II UV 

irradiation. UP spectra were recorded after each hour and XP spectra of the sample were 

measured in UHV before and after the 3 hours n-butane exposure. 

4.2.3.3 Coverage determination from UPS isobaric measurements 

Difference spectra of the oxidised silicon wafer and sulfated zirconia thin film in A-D 

equilibrium have been analysed as outlined in reference 216. The clean spectrum 

obtained prior to performing the isobar was subtracted from the spectra taken under n-

butane A-D equilibrium conditions, after applying an attenuation factor to the clean 

spectrum and shifting the energy scale of the spectra acquired under n-butane A-D 

equilibrium. The alignment shift and attenuation factor are applied such that there is not 

an increase in the difference spectra between binding energies of ~2.5-4 eV (where no 

spectral contributions from the adsorbate are expected). Misalignment of the spectra can 

result in the introduction of artificial structures, such artefacts are minimised by repetition 
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using differing alignment shifts and attenuation factors. 

The attenuation of the clean spectrum can be converted into a coverage related value 

using the Lambert-Beer absorption law, using the following equation: 

 sub

e 0,sub

d Iθ ln
l I

⎛ ⎞∝ = − ⎜ ⎟
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Where Isub is the substrate (adsorbent) intensity and I0,sub is the substrate intensity prior to 

adsorption. Thus, (Isub/I0,sub) is the attenuation factor used to form the difference spectra. 

The carbon layer thickness was estimated in a similar way for the XPS measurements of 

the silicon wafer after exposure to 1x10-6 hPa n-butane for 20 minutes at 108 K, using the 

attenuation of the Si 2p peak. 

 

4.3 Results 

4.3.1 Initial XPS isobaric measurements 

C 1s XP difference spectra of the sulfated zirconia thin film under 10-7 hPa n-butane are 

shown in Figure 4-2a. An increase in the C 1s signal intensity is seen upon decreasing the 

temperature below ~140 K, concomitantly the substrate peaks (O 1s and Zr 3d) decrease 

in intensity, due to the adsorption of n-butane. Increasing the sample temperature from 

100 K back to room temperature and evacuation results in a decrease of the C 1s signal; 

however, a significant fraction of the signal remains (approximately 35% of the signal at 

100 K). The C 1s binding energy of the adsorbed species changes with increasing 

coverage from an initial value of ~284.3 eV at 136 K to ~284.8 eV at 100 K. Increasing 

the sample temperature shifts the C 1s signal to lower binding energies, after evacuation a 

peak at ~284.0 eV remains. No significant changes are observed in the Zr 3d and O 1s 

peaks beside a decrease in intensity with the increasing C 1s signal. 

Repeating this experiment with an oxidised silicon wafer also results in the adsorption of 

n-butane at low temperatures and the formation of a carbonaceous species that remains 

after evacuation. A similar trend in shifts of the adsorbed species’ C 1s signal is observed 

upon increasing coverage, increasing temperature and evacuation. 

The initial isobars on both the sulfated zirconia thin film and oxidised silicon wafer 

performed under 10-8 hPa n-butane also show the formation of carbonaceous deposits 

which remain after evacuation. The total adsorbate coverage on the samples during the 
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10-8 hPa isobars is much lower than for the 10-7 hPa isobars (by roughly a factor of 2), as 

is the fraction that is irreversibly adsorbed (~10%). 

No differences (given the large experimental errors of the initial measurements) were 

observed between the sulfated zirconia film and the oxidised silicon wafer regarding the 

adsorption of n-butane or the formation of carbonaceous residues.  

Performing a "blank" isobaric experiment on the oxidised silicon wafer, without 

irradiating during n-butane exposure, results in no significant changes in the carbon 

signal. The carbon deposits that are not removed after evacuation are thus attributed to 

decomposition of the adsorbate by irradiation and are hereafter referred to as beam 

damage residues. The amount of beam damage residue formed is found to be proportional 

to the adsorbate coverage. 

4.3.2 Detailed XPS isobaric measurements 

Isobars derived from detailed XPS measurements are shown in Figure 4-2b. 

Measurements of the air-activated sulfated zirconia film at a constant temperature during 

adsorption do not show a significant increase in adsorbate coverage with time (in 

comparison to changes with temperature), thus the fraction of adsorbate coverage that is 

beam damaged during the measurement is considered negligible. Adsorption on the 

sulfated zirconia thin film under 10-7 hPa n-butane is initially detected at ~150 K and 

significantly increases below 120 K. The adsorbate coverage on a sulfated zirconia thin 

film is clearly higher than for the oxidised silicon wafer under the same conditions 
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Figure 4-2: (a) "Clean" (as introduced) subtracted C 1s XP spectra of a sulfated zirconia 
thin film under A-D equilibrium of 2.2x10-7 hPa n-butane measured while decreasing 
temperature from room temperature to 100 K (solid lines) and after increasing temperature
to room temperature and evacuation (dashed line). (b) 2.2x10-8 hPa n-Butane isobars on a 
sulfated zirconia thin film and oxidised silicon wafer. 
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between 150-120 K. 

4.3.3 Initial UPS isobaric measurements 

UP spectra of an oxidised silicon wafer under UHV (clean) and in 1x10-6 hPa n-butane 

are shown in Figure 4-3a. As the temperature is decreased all signals shift to higher 

binding energies, which may be caused by band bending230 at the silicon-oxide interface, 

photovoltaic effects231,232 and possibly also changes in charging from the oxide overlayer. 

In the presence of an adsorbate, shifts are also possible as a result of changes in the work 

function.216 Upon cooling, the shape of the spectra changed indicating adsorption of n-

butane. A decrease in overall signal intensity during adsorption is observed, clearly from 

the adsorbate having a lower photoelectron cross section than the adsorbent. At low 

temperatures (below 110 K) the overall signal significantly reduces in intensity with time. 

XPS measurements (taken with low resolution in order to minimise beam damage) of the 

oxidised silicon wafer at 108 K in UHV and after exposure to 1x10-6 hPa for 20 minutes 

show the deposition of carbon species with binding energies up to 10 eV higher than the 

initial carbon signal (Figure 4-3b). C 1s binding energies of above 292 eV are only 

possible from carbon bonded to fluorine,154 which is not present (as shown by XPS); 

therefore, the thick adsorbate is obviously strongly charging due to the insulating nature 

of its adsorption state. It is shifted so far towards higher binding energies in the UP 
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Figure 4-3:(a) UP Spectra of an oxidised silicon wafer as introduced (clean) at room
temperature under UHV and under 1x10-6 hPa n-butane A-D equilibrium conditions from 
room temperature to 105 K, time exposed to n-butane given in minutes. (b) C 1s XP Spectra 
of "clean" oxidised silicon wafer at 108 K under UHV and after 30 minutes exposure to
1x10-6 hPa n-butane. 
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spectra that it disappears from the measured range. Only a minority contribution of 

uncharged adsorbate is still observed. 

4.3.4 Detailed UPS isobaric 

measurements 

UP spectra of the samples taken 

before and after each of the isobars 

in UHV show the build up of 

deposits that are not removed by 

evacuation (Figure 4-4), which 

increase with increasing pressure 

of the isobaric measurement (up to 

d/le ≈0.05). Such deposits are 

present for both experiments 

performed on the oxidised silicon 

wafer and the sulfated zirconia thin 

film. These deposits detected by 

UPS are, however, below the XPS 

limits of detection. 

Regeneration of the sulfated zirconia thin film after the set of three isobars results in the 

removal of the majority of species remaining after evacuation. Exposing the regenerated 

sulfated zirconia to 1x10-6 hPa n-butane at 100 K without irradiation or for 3 hours at 

room temperature irradiating with He II radiation does not result in the valence band 

changing in shape. Therefore, the deposited species remaining after the isobaric 

measurements are beam damage residues and UV irradiation of the sample does not 

induce adsorption. 

To limit the effect of the beam damage residues, the spectrum obtained (in UHV) 

immediately prior to each isobar is subtracted from the spectra obtained in A-D 

equilibrium to produce the difference spectra. Difference spectra (from both systems 

studied) generated for measurements performed under n-butane A-D equilibrium show 

the development of spectral features that resemble those of gaseous n-butane233 but are 

significantly broadened. Adsorption is observed at relatively higher temperatures than 
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Difference spectra indicating the "irreversible"
adsorption formed after the 10-8 and 10-7 hPa n-
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during the XPS measurements, probably because of to the increased surface sensitivity of  

UPS. 

The sulfated zirconia difference spectra from the 10-6 hPa n-butane isobar are shown in 

Figure 4-5b and c, similar spectral changes are observed for the difference spectra 

obtained from the 10-8 and 10-7 hPa n-butane isobars. At low coverages (d/le < 0.3, 

labelled region α) the difference spectra are significantly perturbed (compared with the 

gas phase spectrum), indicating a strong interaction. Above a certain coverage (0.3 < d/le 

< ~1, labelled region β) the development of features that resemble the gaseous spectrum 

of n-butane233 becomes apparent, suggesting a low level of perturbation and hence a weak 

interaction. At high coverages (d/le > ~1, labelled region γ) the overall intensity of the 

spectra decreases, due to charging as indicated by XPS measurements. Isobars generated 
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Figure 4-5: UP spectra of a sulfated zirconia 
thin film during A-D equilibrium at 1x10-7

hPa n-butane: (a) raw data with "clean" 
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adsorbate difference spectra and reference 
He I gas phase n-butane spectrum233 and (c) 
"clean" subtracted adsorbate difference 
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from the attenuation of the adsorbent indicate the α region can be further split into two 

different states, labelled α' for low coverages (d/le < 0.05) and α for higher coverages 

(0.05 < d/le < 0.3) in Figures 4-5c and 4-6b. 
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Figure 4-6: Isobars derived form A-D equilibrium UPS measurements on a sulfated 
zirconia thin film, (a) complete isobars and (b) initial coverages only. 
Heats of adsorption (Figure 4-7) calculated from the isobars decrease initially from 69-

41 kJ/mol with increasing coverage during the α' region; they then increase to ~47 kJ/mol 

and decrease again to 34 kJ/mol with increasing coverage in the α region; values of 

~28 kJ/mol independent of coverage are obtained in the β region. 
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4.3.5 n-Butane adsorption and 

sulfate surface site densities 

XPS measurements show the Zr:S 

atomic ratio (based on the Zr 3d 

and S 2p peak areas and reported 

relative sensitivity factors155) of 

the activated sulfated zirconia thin 

film to be 5.4. Thus assuming a 

homogeneous distribution of S and 

Zr within the thin film over the 

XPS measurement depth, a sulfate 

surface area of 31 Å²178 and a 

zirconia surface 2 x 2 unit cell of 

6.425 x 7.284 Å,62 the sulfate 

groups are shown to cover ~33% 

of the surface, which is equivalent 

to a surface site density of ~1.1x1018 S atoms/m². 

Based on an n-butane cross sectional area of 33.2 Å², as determined for a monolayer 

coverage of n-butane on MgO,234 a monolayer of n-butane thus corresponds to a total of 

3.0x1018 molecules/m². Therefore, the 5 and 25% monolayer coverage adsorption regions 

α' and α equate to n-butane surface densities of approximately 1.5x1017 and 7.5 x1017 

molecules/m² respectively, or a total of 0.9x1018 molecules/m². 

 

4.4  Discussion 

Organic materials are known to be sensitive to beam damage due to their insulating 

nature and relatively weak bonds.235 Beam damage of organic materials is believed to be 

caused by low energy (secondary) electrons,236 which are formed by the inelastic 

scattering of photoelectrons in a cascading effect. 

From isobaric XPS measurements it was found that a small fraction of the total adsorbate 

coverage undergoes beam damage, resulting in the formation of residues that remain after 

evacuation. However, experiments performed on fresh samples during decreasing 
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temperature show the effect of beam damage during the measurement to be negligible. 

The adsorption of n-butane could thus be shown to be promoted on the sulfated zirconia 

thin film compared to an oxidised silicon wafer. 

To deduce isosteric heats of adsorption, multiple isobars at different pressures would need 

to be performed on the same surface; this could be done in principle by only studying the 

initial stages of adsorption or reactivating the sample after each isobar. If just the very 

low coverages were to be studied (which can be considered the catalytically relevant 

chemisorption states), the amount of beam damage could be considered insignificant. 

However, in practice, differentiating between the interesting adsorbate coverages and 

levels at which beam damage becomes significant during an experiment is very difficult. 

Reactivating of the samples after each isobar to remove the beam damage residues may 

also result in changing surface chemistry (for example the OH coverage). In order to 

perform multiple isobars on the same surfaces UPS was used instead of XPS to avoid 

beam damage. As the excitation energy of He ΙΙ UV radiation is much lower than for Al 

Kα X-ray radiation (48.8 eV vs. 1486.7 eV), significantly less low energy secondary 

electrons are expected from the cascading of inelastically scattered photoelectrons. 

Measuring the adsorbate coverage during n-butane A-D equilibrium using UPS 

drastically reduces the amount of beam damage residue compared to XPS (to below the 

XPS detection limit). However, beam damage residues are still seen by UPS. In order to 

reduce adsorbate irradiation (and hence limit beam damage effects) UPS isobars were 

performed only while decreasing the sample temperature, the sample was turned out of 

the beam while the temperature was increased and subsequent isobars were performed at 

higher pressures. 

The UP spectra of the beam damage residues (Figure 4-4) are similar to graphitic 

species.223 The high signal intensity of such species and low attenuation factor of the 

clean spectrum indicate that the residues probably form 3-dimensional islands. As the 

reported heats of adsorption of n-butane on graphitic materials (32.6-33.9 kJ/mol)237-238239 

are much lower than for sulfated zirconia and the shape of the difference spectra 

generated do not change with increasing pressure of the isobaric measurements (and 

hence also amount of beam damage residues), it is therefore assumed that at low 

coverages (during chemisorption) adsorption occurs on the sulfated zirconia film and not 
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on the beam damage residues. Saturation coverages of the different adsorption sites, as 

indicated by changes in the UP spectra and isobar gradients, are not influenced by the 

increase of the beam damage residues for subsequent measurements. The reduction in 

surface area of the sulfated zirconia film by beam damage residues is thus considered 

negligible. 

The development of an adsorbate state that 

charges at higher coverages is believed to be 

due to either the formation of multilayers or a 

change in adsorption geometry (Figure 4-8). 

XPS measurements of the n-butane exposed 

oxidised silicon wafer, after the UPS signal is 

significantly reduced, reveal the adsorbate 

coverage to be in excess of a typical monolayer 

(when a monolayer is defined as the complete 

occupancy by the adsorbate of all adsorbent adsorption sites). Thus a multi-layered 

adsorbate structure must exist. However, the change in the shape of the spectra as well as 

their reduction in intensity at very low temperatures indicates that the adsorption 

geometry of the initial adsorption states may change as well. The charging adsorbate state 

was not seen during XPS isobaric measurements, thus it may have been decomposed by 

X-ray irradiation. As the charging state is only observed at high coverages (i.e. during 

multilayer adsorption) it is not considered relevant to catalytically active sites and hence 

has not been further investigated. The detailed UPS A-D equilibrium measurements were 

therefore discontinued when a significant decrease in signal intensity was observed. 

Difference spectra generated from UPS measurements on the sulfated zirconia thin film 

indicate that at lower coverages the adsorbate interacts more strongly with the adsorbent, 

this is clear from the shape of the valence band relative to the n-butane gaseous spectrum 

and the higher valence band binding energies. Three of the four adsorbed n-butane C 2s 

orbitals are observed (between binding energies of 13-20 eV), the fourth orbital is 

assumed to be hidden by the secondary electron curve; only one C 2s orbital (ionization 

energy = 19 eV) of the gas phase n-butane is visible due to the lower excitation energy 

used (He I = 21.2 eV as opposed to He II = 40.8 eV). The gas phase n-butane spectrum is 

Figure 4-8: Proposed adsorbate 
charging model. 

and /
or
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shifted by -0.4 eV, with respect to the vacuum level aligned scale of the adsorbate spectra, 

due to the relaxation effect (although, as the sulfated zirconia thin film and hence also the 

adsorbate may be charging, the absolute relaxation shift could be larger than the value 

given here). 

The mean free path of the photoelectrons during the UPS measurements is approximately 

0.5 nm,158 which is similar to the thickness of a complete n-butane monolayer coverage 

reported on various surfaces {0.41 nm on MgO (100)234 and Ag (111)240}. The saturation 

of the β state, which occurs at d/le ≈ 1, is therefore attributed to the completion of a 

monolayer coverage. The surface of the sulfated zirconia thin film can therefore be 

described as approximately 5% region α', 25% region α and 70% region β. Considering 

the heats of adsorption and spectral features the adsorption states α', α and β are 

attributed to strong chemisorption, weak chemisorption and physisorption, respectively. 

The region γ is attributed to multilayer adsorption, it is not necessarily condensation as 

such a state has been reported to occur only after 2.5 monolayers on multiwalled carbon 

nanotubes (which have lower heats of adsorption than sulfated zirconia).241 

Initial n-butane heats of adsorption obtained on the sulfated zirconia thin film of 

~59 kJ/mol are in good agreement with previously reported results on sulfated zirconia 

powders (50-60 kJ/mol),27,225,227,228 as is the general trend of the heats to decrease with 

increasing coverage. An increase in the heats of adsorption with increasing n-butane 

coverage, as seen in the α region on the sulfated zirconia thin films, has also been 

observed on some powder sulfated zirconia materials242 (as shown in Figure 4-7). Such 

an increase may be due to adsorbate-adsorbate interactions. The presence of adsorbate-

adsorbate interactions would indicate the alkane molecules are situated next to one 

another. The skeletal isomerisation process proceeding via a bimolecular mechanism is 

thus plausible under such surface coverages. 

Aligning the amount of n-butane dosed onto the sulfated zirconia powder with the 

coverage of the sulfated zirconia film in Figure 4-7, assuming a cross sectional area of 

33.2 Å² per butane molecule {as measured on MgO(100)},234 reveals the onset of 

increase in adsorption heats to occur at approximately the same loadings on both 

materials. The heats of adsorption during the α region for the sulfated zirconia thin film 

are slightly lower than for the presented powder material (~47 kJ/mol versus 52-54 
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kJ/mol), however they are within the range of reported values on powders at higher 

coverages (45 kJ/mol27 for 0.20 μmol/m², 38 kJ/mol225 for 0.36 μmol/m² and 40 kJ/mol228 

for 0.55 μmol/m²). 

The calculated sulfur surface site density assumes a homogeneous distribution of sulfur 

and zirconium throughout the XPS measurement depth of the sulfated zirconia thin film. 

It is, however, often assumed that the sulfate groups are situated on the surface of 

zirconia crystals. The sulfate surface density was also estimated assuming a sulfate layer 

on top of a zirconia film, taking into account the attenuation of the zirconium signal.243 

Such a model results in the calculated thickness of the sulfate layer being in excess of a 

monolayer coverage, which is not considered viable given the preparation route of the 

zirconia thin films and the fact that polymeric sulfates (higher than disulfates) were not 

observed by theoretical studies.62 

Previously reported IR studies indicate the adsorption of n-butane to occur on hydroxyl 

groups on sulfated zirconia.244 Furthermore, XPS investigations on the interaction of 

sulfated zirconia thin films with n-butane under reactive conditions (see Chapter 5) show 

the attenuation of the zirconium signal to be greater than sulfur upon carbon deposition. 

However, given the similar coverages and densities of the chemisorbed n-butane (α' and 

α) and sulfate surface sites, chemisorption of n-butane is therefore proposed to occur not 

on the surface sulfate species but in close proximity to them. As the surface areas (and 

hence structures) of both sulfate and n-butane molecules are assumed (based on literature 

values) the correlations between the activated sulfate and total chemisorbed butane 

surface coverages or densities are surprisingly good. 

 

4.5  Conclusions 

The adsorption of n-butane on sulfated zirconia thin films and oxidised silicon wafers 

under A-D equilibrium conditions has been detected by XPS and UPS. The conducting 

nature of the thin films used is essential in order to investigate the interaction with n-

butane under A-D equilibrium conditions by UPS. 

Irradiation of adsorbed n-butane during XPS and UPS measurements results in the 

formation of beam damage residues (although to a much lesser degree using UPS). The 

application of specific experimental conditions showed that beam damage could be 
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considered negligible for single XPS isobars or multiple UPS isobar measurements. XPS 

isobaric measurements have thus shown the sulfated zirconia thin films to promote the 

adsorption of n-butane as compared to an oxidised silicon wafer. 

UPS isobaric measurements showed the chemisorption of n-butane on the sulfated 

zirconia thin films occurs via the sequential filling of two different sites; with coverages 

of 0-0.05 and 0.05-0.3; and heats of adsorption from 59-40 and 47-34 kJ/mol, 

respectively. The chemisorption of n-butane is proposed to occur in the close proximity 

of surface sulfate groups on sulfated zirconia. Physisorption on the films results in heats 

of ~28 kJ/mol for coverages between 0.3 up to a monolayer saturation. Multilayer 

adsorption results in the formation of an insulating adsorbate structure. n-Butane adsorbs 

reversibly on the sulfated zirconia thin film under the conditions studied. 

The detection of adsorbate-adsorbate interactions during the weak chemisorption region 

indicates the alkane molecules are adsorbed in close proximity to one another. Alkane 

isomerisation proceeding via a bimolecular mechanism is thus considered viable under 

such coverages. 
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5. Interaction of n-Butane with Sulfated Zirconia Thin Films under Reaction 

 Conditions 

5.1 Introduction 

5.1.1 XPS of sulfated zirconia 

The application of photoelectron spectroscopy to study sulfated zirconia powders is 

hindered due to the insulating nature of the oxide. Electrostatic charging results in the 

binding energy scale needing to be corrected by typically 3.5 to 7 eV.83 The necessity to 

calibrate the energy scale can cause some uncertainty in the exact binding energies and 

thus has lead in some cases to the discussion of relative shifts.245 Various binding energies 

have been reported for the Zr 3d5/2 peak of ZrO2, from 182.0 to 182.8 eV.154,246-247248249 

5.1.2 XPS of deactivated sulfated zirconia 

Studies on deactivated sulfated zirconia samples by XPS have shown the appearance of a 

very minor amount of S4+ (at ~166-167 eV).83 These findings are consistent with an 

earlier report from the same group of the presence of S4+ in deactivated platinum 

containing sulfated zirconia.250 In both reports no S2- was detected, this has been 

confirmed by the sulfidation of Pt containing sulfated zirconia, which results in the 

appearance of an additional peak at ~162.5 eV.251 

5.1.3 XPS on zirconia thin films 

In a recent study Chang and Doong252 reported the effects of different temperatures and 

atmospheres (air or nitrogen) during thermal treatment of zirconia films on their chemical 

composition and crystalline properties, determined by XPS and XRD respectively. Fitting 

of the O 1s spectra revealed two components, one at 529.9 eV and the other at 531.5 eV 

that are ascribed to Zr-O and Zr-OH respectively. The Zr 3d is fitted using a separation of 

1.08 eV between the different zirconium oxidation states taken from reference 248, into 

Zr4+, Zr3+, Zr2+ and even Zr+. From comparing the phase transformation temperatures 

deduced from the XRD data with the XPS results it was concluded that the reduction of 

Zr4+ to lower oxidation states and the generation of oxygen vacancies play crucial roles in 

stabilizing the formation of the meta-stable tetragonal phase. It must be noted however 

that reduced fractions of Zr4+ were only detected in the "bulk" measurements of the films, 

after the original surface had been removed by argon bombardment. The application of 

argon bombardment is, however, known to potentially chemically alter samples.243 
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5.1.4 XPS on sulfated zirconia thin films 

Jentoft et al.123 presented XP spectra for a sulfated zirconia thin film as deposited, after 

calcination (in an adjacent preparation chamber) and after He sputtering. Charging 

corrections (using Zr 3d5/2 = 182.2 eV)154 of only 2.0 eV (as deposited) and 1.7 eV 

(calcined) were applied, which are significantly less than for sulfated zirconia powders. 

Calcination was shown to remove almost all of the carbon (the main C 1s component at 

284.5 eV). The O 1s peak is shown to consist of at least two components, one at 530 eV 

assigned to O2- of ZrO2 and one at 531.5 eV, the latter of which is significantly reduced 

relative to the other and shifts slightly to higher binding energies after calcination and 

almost disappears after sputtering. The S 2p maximum is shown to shift after calcination 

from 168.4 eV to 169.0 eV, which is consistent with the presence of S6+. After sputtering 

the S 2p signal shifts to 161.2 eV, which is consistent with S2-. The disappearance of the 

oxygen species and the high binding energy oxygen species strongly suggest that the O 1s 

peak at 531.8 eV belongs to the sulfate species. 

5.1.5 Motivation 

In order to increase the resolution of the XP spectra, and in particular of the sulfur 

species, high resolution XPS has been applied to a sulfated zirconia thin film using a 

synchrotron light source. The use of a specialised, differentially pumped, set up allowing 

in situ XPS studies at relatively high pressures (up to ~0.5 hPa) has also been 

employed.253 In situ investigations on sulfated zirconia are essential, given the reacted 

catalysts are known to undergo chemical changes upon exposure to air.254 The effects of 

activating the sample in oxygen and exposing the sample to n-butane under reactive 

conditions have thus been studied by in situ XPS to evaluate any changes that may be due 

to the formation and removal of catalytically active sites. Carbon K edge near edge X-ray 

absorption fine structure spectroscopy (NEXAFS) was also performed in order to 

determine the nature of any carbonaceous deposits formed on the film's surface. 

 

5.2 Experimental 

The experiment was performed using the undulator beam line U49-2/PGM2 at the Berlin 

synchrotron facility (BESSY, Berliner Elektronenspeicherring-Gesellschaft für 

Synchrotronstrahlung), details of the setup are described in reference 253. The sample, a 
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calcined sulfated zirconia thin film deposited over 48 hours on a 1.3 mm n-type silicon 

wafer with a groove drilled into the side for the thermocouple placement, was mounted 

on a sapphire holder. A schematic of the conducted experiment is shown in Figure 5-1. 

Activation was performed in 0.5 hPa oxygen, the sample was heated at 10 K/min to 

673 K for 25 minutes and flashed at 698 K. The sample temperature was then lowered to 

548 K and held for approximately 165 minutes, following which the chamber was 

evacuated to 10-7 hPa for approximately 20 minutes in order to remove all gaseous 

oxygen and then filled with 0.5 hPa n-butane. The sample was exposed to 0.5 hPa n-

butane at 548 K for 70 minutes, during which the irradiated spot position on the sample 

was changed, then the temperature was ramped at 10 K/min to 598 K and held for 

30 minutes. After n-butane exposure the chamber was evacuated to 10-7 hPa for 

45 minutes and the irradiated spot position was changed again. To increase the level of 

carbon deposition the sample was then cooled and removed from the main chamber to an 

ex situ reactor and exposed to 100 hPa n-butane during heating from 323 K to 481 K at 

10 K/min. After evacuation and transfer back into the main chamber, post exposure 

measurements were performed at 323 K under 10-7 hPa. 

XP spectra of the Zr 3d, O 1s, S 2p, S 2s, C 1s, Si 2p, Si 2s regions and overview survey 
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Figure 5-1: Schematic of the experiment performed at the BESSY synchrotron facility. 
nBu = n-butane. 
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scans were performed on the sulfated zirconia film (i) as introduced, measured in 0.5 hPa 

oxygen at room temperature, (ii) after activation, measured in 0.5 hPa oxygen at 548 K 

and (iii) after being exposed to 100 hPa n-butane, measured under vacuum at 323 K. The 

S 2p and C 1s regions were also scanned during activation in 0.5 hPa oxygen from room 

temperature to 698 K. Spectra of the C 1s and Zr 3d regions were recorded prior to and 

after exposure to 0.5 hPa n-butane, under vacuum at 548 and 598 K respectively and the 

C 1s region was recorded during exposure to 0.5 hPa n-butane at 548 and 598 K. 

NEXAFS of the C K edge was performed prior to n-butane exposure on the activated 

surface and after exposure to 0.5 hPa and 100 hPa n-butane under vacuum. 

The survey scan, O 1s, C 1s, Zr 3d, S 2p, Si 2s, and Si 2p XP spectra were recorded using 

photon energies of 720, 720, 470, 380, 350, 350 and 300 eV respectively; apart from 

during activation when the S 2p region was collected using a photon energy of 470 eV. 

The photon energies were selected to increase the surface sensitivity of the emitted 

photoelectrons being measured.258 All XP spectra were collected with a pass energy of 10 

eV. For each of the different photon energies used the Zr 3d peak was also recorded in 

order to correct the binding energy scale. 

Casa XPS was used to analyse the XPS data. Shirley backgrounds were used for the 

analysis of the Zr 3d and O 1s peaks and linear backgrounds for all other peaks, due to 

the shape of the secondary electron curve. Binding energies were corrected using 

Zr 3d5/2 = 182.2 eV of ZrO2.154 In all displayed figures the ring current (RI) has been 

normalized to 250 mA. Relative elemental signal intensities (given as percentages) were 

calculated for the film and carbonaceous overlayer components after ring current, photon 

flux and photon energy specific cross section255 normalization using the Zr 3d, S 2p, O 1s 

and C 1s peaks. The thickness of the deposited carbonaceous layer was estimated from 

the attenuation of the sulfated zirconia film signal intensities assuming a two layer model, 

as outlined in reference 243, and a photoelectron escape depth of 1.2 nm, as calculated 

for through an organic overlayer from reference 158. In order to estimate the thickness 

the signal intensities were normalised using the ring current and the background signal on 

the high binding energy side of the peak, to correct for differences in the mean free paths 

of the emitted photoelectrons through the different gas phases. 

All reported fits were performed with a Gauss to Lorentz ratio of 0.1 and software 
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determined full widths at half maximums (FWHMs). Attempts to fit the C 1s spectra with 

two asymmetric peaks (using fixed degrees of asymmetry) were unsuccessful; therefore, 

three symmetric components were used. The S 2p spectra were fitted using the theoretical 

area ratio of 2p3/2 to 2p1/2 of 2:1, the spectra after subsequent exposures were fitted using 

fixed values for the difference in binding energies (1.2 eV) and the FWHMs ratio (1:1) of 

the two sub levels as calculated from the as introduced spectrum. 

Carbon K edge NEXAFS were collected at 190 eV with a pass energy of 50 eV and the 

photon energy scale was calibrated by aligning the C 1s π* (C=C) transition of graphite 

to 285.4 eV.256 Analysis of the spectra was performed as outlined in reference 257. 

Normalisation was performed using a clean silver surface (recorded at 453 K in 0.5 hPa 

helium after pretreatment at 773 K in 0.5 hPa helium) and the spectrum of the activated 

surface was subtracted from the spectra measured after exposure to n-butane. 

 Throughout the experiment the gas phase was analysed by mass spectrometry (MS) via 

leak valves (from both chambers) which were set to give a maximum operational 

pressure of 1x10-6 hPa for the MS. m/z Ratios recorded by the MS are given in Chapter 3 

in Table 3-1. In order to correct for a blank MS signal n-butane was introduced into the 

main chamber at 0.5 hPa without the sample being present. 

 

5.3 Results 

5.3.1 As introduced 

Spectra in Figures 5-2 and 5-3 

show the sulfated zirconia thin 

film on introduction ("as 

introduced") to contain 

zirconium, sulfur, and oxygen, as 

expected, as well as silicon from 

the substrate and carbon from 

either atmospheric contamination 

or residual decomposition 

products from the SAM. Relative 

elemental   signal   intensities  for  
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Figure 5-2: C 1s spectra (i) after introduction, at room 
temperature in 0.5 hPa O2; after activation up to 698 K 
in O2, (ii) measured at 548 K in 0.5 hPa O2  and (iii) 
under UHV; (iv) after exposure to 0.5 hPa n-butane up 
to 598 K, measured under UHV at 598 K; followed by 
(v) exposure to 100 hPa n-butane up to 481 K, 
measured under UHV at 323 K. 
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the main components of the sulfated zirconia thin film and carbon are given in Table 5-1. 

Zirconium and sulfur were detected in oxidation states +4 and +6 respectively. The O 1s 

peak consists of two major species, one at higher binding energy (~532 eV), which is 

attributed to sulfate species and hydroxyl groups, and a lower binding energy species 
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Figure 5-3: (a) S 2p and Si 2s, (b) O 1s, (c) P 2p and Si 2p and (d) Zr 3d XP spectra of the 
sulfated zirconia thin film (i) as introduced measured in 0.5 hPa O2 at room temperature, 
(ii) after activation measured in 0.5 hPa O2 at 548 K and (iii) after n-butane exposure to 0.5 
hPa up to 598 K followed by 100 hPa up to 481 K, measured under vacuum at 323 K. 

Table 5-1: Relative elemental signal intensities from the sulfated zirconia thin film and 
carbonaceous deposits (i) as introduced at 299 K, (ii) after activation at 548 K both 
measured in 0.5 hPa O2 and (iii) after subsequent exposure to n-butane at 0.5 hPa up to 548 
K and 100 hPa up to 498 K, measured under UHV. Zr3d, O1s, S2p and C1s peaks used to 
perform calculations. Silicon and phosphorus contributions are excluded. 
Conditions Zr % O % S % C % 
(i) As introduced 18.0 66.3 4.4 11.2 
(ii) Activated 22.3 74.8 1.2 1.7 
(iii) After exposures 9.2 30.4 0.6 59.8 
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(~530 eV) from oxide anions. Silicon is detected predominantly in the +4 oxidation state 

from the silica layer, however a very low amount of elemental silicon is visible. 

Plasmons258 from the Si 2s peak were detected from 161-163 eV and ca. 166 eV. The 

higher binding energy Si 2s plasmon overlaps with the S 2p peak; however, its effect on 

the quantification and fitting of the sulfur peak is considered to be negligible. The C 1s 

peak shown consists of two peaks. The lower binding energies peak can be fitted (not 

shown) using a minimum of two components, the main species is at 284.8 eV and the 

higher binding energy shoulder at 286.5 eV, these are ascribed to aliphatic polymers and 

singly bound oxygenated carbon species. The higher binding energy peak at 288.8 eV is 

ascribed to more highly oxidised carbon (possibly acetal or carbonyl species). 

5.3.2 Activation 

During activation the C 1s peak area increased with increasing temperature from room 

temperature to 572 K, concurrently the S 2p peak area decreased. Above 572 K the C 1s 

peak area decreased with increasing temperature and the S 2p peak increased. At 673 K 

the C 1s peak area is seen to decrease gradually and the S 2p peak area to remain roughly 

constant. Increasing the temperature to 698 K to remove the remaining carbon species 

results in the decrease of both C 1s and S 2p peak areas, hence the temperature was 

reduced to 673 K again. 

Spectra recorded before and after activation, see Figures 5-2 and 5-3, show the decrease 

of the C 1s and S 2p peaks after activation. After activation the substrate silicon peaks 

(Si 2s and Si 2p as well as their plasmons) are more prominent as a result of the loss of 

both carbon and sulfur. The relative intensity of the high binding energy oxygen species 

decreases after activation which is consistent with concomitant decrease of the sulfur 

content and possibly also partly due to a loss of hydroxyl groups. In addition phosphorus 

contamination (P 2p = 133.3 eV) is seen. 

Evacuation of the chamber results in an increase in C 1s signal; this is clearly not just 

because of the improvement in electron transmission from the removal of the gas phase 

as the signal increases by a number of orders of magnitudes and the peak shape changes 

to include a lower binding energy species. The observed deposits are probably due to the 

adsorption of residual carbonaceous species from the chamber. 
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5.3.3 In situ XPS 

During exposure of the sample to 

0.5 hPa n-butane at 548 K, 

formation of a surface carbon 

species was observed, which 

increased with exposure time. It 

could be shown that the adsorbed 

carbon signal in non-irradiated 

areas was lower by changing the 

spot position (Figure 5-4), 

indicating that the carbon 

deposition was partly beam 

induced. Increasing the 

temperature to 598 K caused an 

increase in the amount of carbon deposited on the film; however, by changing the 

irradiated area again it could be shown that a significant proportion of the deposition seen 

was still due to beam influence. 

5.3.4 Ex situ XPS 

In order to avoid beam influenced deposition, C 1s XPS was performed under 10-7 hPa 

vacuum on areas that were not irradiated during n-butane exposure. After subsequent 

treatments of 0.5 hPa n-butane at 548 K and 100 hPa n-butane at maximally 481 K, stable 

carbon deposits (which do not change with time) were observed (see Figure 5-2). These 

carbon deposits, as well as those formed in UHV after activation, can be fitted using at 

least three components (Figure 5-5). The main peak consists of at least two components; 

a lower binding energy species at ca. 283.9-284.2 eV corresponding to chain-like carbon 

with a shoulder at higher binding energies assigned to aliphatic polymers (ca. 285.0-

285.2 eV) and the minor peak at ca. 288.3-288.7 eV relates to oxygenated species (Table 

5-2). From the broad FWHMs and relative shifts of these three components it can be 

inferred that they are not individual species but rather comprise of a variety of species in 

slightly differing environments. The relative intensity ratio of the three components is 

similar after both activation, as measured in UHV, and exposure to 0.5 hPa n-butane; 
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Figure 5-4: In situ C 1s XPS in 0.5 hPa n-butane at 
548 K, irradiated spot changed from position A (solid
lines) to position B (dashed lines). Spectra shown for
position A after (i) 8 and (ii) 47 minutes irradiation 
and for position B after (iii) 1 and (iv) 25 minutes
irradiation.
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however, the chain-like species 

increases significantly after 

exposure to 100 hPa n-butane.  

From the comparison of all of the 

spectra taken in oxygen after 

activation with those measured 

under UHV after exposure to n-

butane (Figure 5-3) the 

improvement in electron 

transmission through vacuum can 

be seen; as in spite of the increase 

in carbon coverage after exposure, 

which should cause all other peaks 

to decrease, all signals increase in intensity. The relative elemental signal intensities 

given in Table 5-1, however, show the increase in the carbon coverage and decrease in 

film components. From the attenuation of Zr 3d, O 1s or S 2p signals from the sulfate 

zirconia thin film the thickness of the deposited carbonaceous overlayer is estimated to be 

either 0.6, 0.5 or 0.4 nm, respectively. 

After the consecutive n-butane exposures, reduction of sulfate can be seen by the 

appearance of a shoulder at lower binding energies of the S 2p peak, which is ascribed to 

S4+, and an additional broad peak situated between 160-165 eV, from sulfur in lower 

oxidation states (Figure 5-3a). Fitting the S 2p region shows the presence of at least four 

different species, the maxima of the 3/2 sub level for which are situated at 169.0 eV for 
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Figure 5-5: Fits of C 1s spectra (i) after activation,
measured at 458 K; after subsequent exposure to (ii) 
0.5 hPa n-butane up to 598 K, measured at 598 K,
then (iii) 100 hPa n-butane up to 481 K, measured at
323 K, all measurements performed under UHV. 

Table 5-2: Fits of C1s spectra after (i) activation, measured at 458 K and after subsequent 
exposure to (ii) 0.5 hPa n-butane up to 598 K, measured at 598 K and (iii) 100 hPa n-butane 
up to 481 K, measured at 323 K. All measurements performed under UHV. 

Conditions Chain-like Aliphatic polymers Oxygenated 
 BE 

/ eV 
% FWHM 

/ eV 
BE 
/ eV 

% FWHM 
/ eV 

BE 
/ eV 

% FWHM 
/ eV 

(i) Activated 283.9 61.8 1.5 285.1 30.5 2.2 288.5 7.7 2.2 
(ii) 0.5 hPa 
exposed 

284.0 61.8 1.4 285.0 30.4 2.2 288.7 8.8 2.0 

(iii) 100 hPa 
exposed 

284.2 81.5 1.4 285.2 15.0 2.3 288.3 3.5 2.4 
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S6+, 167.2 eV for S4+ and two 

additional reduced states at 163.1 

and 161.4 eV (Figure 5-6 and 

Table 5-3). The zirconium to sulfur 

ratio (based on the relative 

elemental intensities of the Zr 3d 

and S 2p peaks) therefore 

decreases from 18.5 as measured 

after activation to 15.0 after the 

consecutive n-butane exposures. 

In the Si 2s and Si 2p regions 

(Figure 5-3a and c) there are no 

major changes to the Si4+ or 

elemental silicon peaks after exposure to n-butane, apart from their further attenuation by 

the carbonaceous deposits, thus their plasmons are no longer visible in the 2p region and 

therefore considered to be negligible in the 2s region. The ratio of the O 1s higher binding 

energy component (~532 eV) to the lower binding energy component (~530 eV) 

increases slightly after the n-butane exposure (Figure 5-3b). The Zr 3d and P 2p peaks all 

do not alter 

significantly after 

exposure. Closer 

inspection of the low 

binding energy 

tailing of the Zr 3d 

peak reveals no 

differences that may prove the presence of a Zr3+ species. 

5.3.5 NEXAFS 

Auger electron yield NEXAFS analysis of the C K edge, performed also under 10-7 hPa 

vacuum after the aforementioned subsequent n-butane exposures (Figure 5-7), show the 

development of a feature at ~285.0 eV. The transition only becomes clearly visible after 

the higher pressure n-butane exposure. This transition is not consistent with absorbance 
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Figure 5-6: Fit of S 2p spectra, taken after 
subsequent 0.5 hPa n-butane up to 598 K and 100 
hPa n-butane up to 481 K exposures, measured at 
323 K under UHV. 

Table 5-3: Fitting of S 2p spectra after subsequent n-butane 
exposures at 0.5 hPa up to 598 K and 100 hPa up to 481 K, 
measurement performed under UHV at 323 K. Binding energies of 
S 2p3/2 peak given. 
Species BE / eV % FWHM / eV 
S6+ 169.0 63.8 1.2 
S4+ 167.1 9.2 1.3 
S0 or S2- 163.1 9.3 1.2 
S2-  161.4 17.7 1.9 
Total reduced fraction - 36.2 - 
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features arising form either the 

reactant, n-butane, or the 

isomerisation product, isobutane 

(Table 5-4).259 The observed 

transition is however characteristic 

of π* resonances from unsaturated 

sp or sp2 carbon bonds and is 

consistent with unsaturated 

hydrocarbon species such as 

butenes260 and also amorphous 

carbon.261 

5.3.6 Mass Spectrometry 

No increase in MS signals 

indicating the evaporation of sulfur 

containing compounds were 

observed during 

activation. The detection 

of isobutane during n-

butane exposure, via the 

relative MS fragmentation 

intensities, did not 

produce values above a 

blind experiment (in 

which n-butane was 

introduced into the empty chamber). 

 

5.4 Discussion 

The XPS peak positions and elements present are properties of the as introduced films 

which are similar to those previously reported for sulfated zirconia thin films.123 Minor 

differences such as peak shapes can be explained by the increased surface sensitivity 

from the selected photon energies used. 
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Figure 5-7: C K edge NEXAFS spectra for the 
sulfated zirconia thin film after subsequent 
treatments of 0.5 hPa n-butane up to 578 K and 100 
hPa n-butane up to 481 K, measured in vacuum at 
578 K and 323 K respectively, the graphite standard 
used for correction of the energy scale and EELS 
reference spectra taken from reference 262. 

Table 5-4: Main absorption bands for the 100 hPa n-butane 
exposed SZ film, graphite standard and literature electron
energy loss spectroscopy (EELS) references from 262. 

Material Main transition Technique 
Exposed SZ film 285.0 eV NEXAFS 

Graphite 285.4 eV NEXAFS 
Propane 287.0 eV EELS 
n-Butane 287.1 eV EELS 
n-Pentane 287.0 eV EELS 
Isobutane 287.0 eV EELS 
1-Butene 284.9 eV EELS 
2-Butene 285.0 eV EELS 
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During activation the initial decrease in sulfur is consistent with an increase in the carbon 

coverage. However, at higher temperatures the loss of sulfur is not understood. The film 

was previously calcined in synthetic air at 823 K and TDS experiments (see Chapter 3) 

have shown that under vacuum the films are stable up to 723 K, thus within the 

temperature and pressure ranges of this experiment. 

The occurrence of beam influenced deposition during in situ n-butane XPS was not 

unexpected given that beam damage has previously been observed for isobaric studies 

using a conventional XPS source (see Chapter 4) and reports in the literature of organic 

molecules decomposing under irradiation.263 

Formation of stable carbon deposits on the surface after n-butane exposures proves that 

the film contains reactive centres. Evaluation of the carbonaceous species via fitting the 

C 1s spectra results in at least three major components, as fitting using two asymmetrical 

peaks of fixed asymmetry was not possible for all of the carbon spectra. The use of three 

symmetric peaks is however an oversimplification of the system as the C 1s peak is 

generally known to be asymmetric towards higher binding energies.235 Furthermore, the 

broad FWHMs of the three components and their shifting positions with coverage imply 

the presence of additional minor components. The assignment of such minor components 

based from the data presented here is however ambiguous. In comparison with 

literature,157 the three main different environments identified have been ascribed to chain-

like carbon (~240.0 eV), aliphatic polymers (~285.3 eV) and oxygenates (~288.5 eV). 

The chain-like carbon has been described as short hydrocarbon molecules possibly 

hydrogen deficient, such as butane and butene. Aliphatic polymers are proposed to be 

formed via the oligomerisation of alkenes on the surface. Separating of the hydrocarbons 

into saturated and unsaturated species from the presented XPS data is not possible as such 

components are reported to differ by only 0.3 eV.235 The dehydrogenation of the 

hydrocarbon species, as indicated by the development of an unsaturated species by 

NEXAFS, is not responsible for the binding energy shifts to higher values with increasing 

coverage as alkenes are reported to have lower binding energies than alkanes.235 

Formation of oxygenated species have been reported to stabilise the catalytically active 

carbenium ions.85,228 Various carbon-oxygen functional groups may be present as 

predicted from the oxidation pathway of butane on oxide surfaces,264 including alkoxide 
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(285.5-286.6 eV),265-266267268269270271272 acetal and carbonyl (288.0-289.2 eV)246 species. 

Additionally, graphitic-like "coke" precursors (284.4-284.6 eV)157,246 may also exist on 

the surface. The presence of minor amounts of graphitic-like and alkoxide species could 

be responsible for the shift of the assigned chain-like and aliphatic polymer species to 

higher binding energies after exposure to 100 hPa n-butane. Alternatively, the shift of 

these hydrocarbon species to higher binding energies may be caused by the formation of 

multilayers, as the estimated thickness of the deposited carbon layer is of the order of an 

n-butane monolayer as determined by isobaric UPS measurements in Chapter 4 and 

literature values.234,240 Multilayer adsorption of butadiene has been reported to result in a 

shift of the C 1s binding energy from 284.0 to ~285.0 eV, which is attributed to the 

weaker interaction with the surface.273 

From the greater attenuation of zirconium as compared with sulfur after the accumulation 

of stable reaction deposits, as indicated by the lower calculated carbonaceous layer 

thickness using the S 2p versus Zr 3d signals and the decrease in zirconium to sulfur ratio 

after exposures, it can be inferred that the carbonaceous layer is not homogeneous and the 

deposits are situated preferentially on top of the zirconia rather than the sulfur species. 

The decreased relative intensity of the O 1s lower binding energy component from oxide 

anions, in comparison the higher binding energy component from sulfate and hydroxyl 

species, is consistent with this hypothesis. Such findings are also in agreement with the 

reported interaction of n-butane with single crystalline films of sulfated zirconia.162 

The appearance of plasmons from the Si 2s region may affect the quantification and 

position of the S 2p for the activated sample, however such effects are considered 

negligible for the as introduced sample because of the low level of silicon seen. Fitting of 

the as introduced S 2p sub levels results in a binding energy separation (1.2 eV) which is 

similar to reported literature values of 1.19,274 1.2275 and 1.3276 eV. After the consecutive 

n-butane exposures reduction of the sulfate is observed. These reduced sulfur species are 

observed in the same region as the silicon 2s plasmons were, however the plasmons are 

judged not to interfere with the evaluation of the sulfur species due to the relative 

reduction in the silicon signals with increasing carbon coverage and also the absence of 

plasmons from the Si 2p region. 
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The detection of S4+ on sulfated zirconia after n-butane exposure is consistent with 

previous XPS studies on powder sulfated zirconia.83 Components at lower binding 

energies than S4+ can be ascribed to sulfur in lower oxidation states. The peak at 163.1 

may be from S0 (elemental sulfur) or S2-, whereas the peak at 161.4 eV may be ascribed 

unambiguously to S2-.154,277 The position of the sulfide peak at 161.4 eV is consistent with 

the sulfide formed after argon sputtering of sulfated zirconia thin films,123 however the 

broad HWFM of this peak in comparison to the other components indicates this may be a 

combination of different species. To the author's knowledge the formation of sulfides on 

the surface of sulfated zirconia after n-butane exposure has not previously been detected 

in XPS studies, but hydrogen disulfide has been reported to evolve from sulfated zirconia 

during n-butane isomerisation at 523 K as determined by gas chromatography mass 

spectrometry72 and to be present on the surface of sulfated zirconia after exposure to n-

butane at 573 K as indicated by DRIFTS.244,278 

It is known from the literature that various sulfur complexes are liable to beam 

damage.279-280281282283 No evidence of beam effects (changes with irradiation time) were 

observed for the sulfate species during these measurements. The influence of the beam on 

additional sulfur species (with oxidation states < +6) formed after butane exposure was 

however not investigated. Reduction of the sulfate after exposure to n-butane can 

therefore be assumed to not be effected by irradiation, whereas subsequent beam induced 

reactions of the reduced products cannot be excluded. It is thus possible to quantify the 

overall reduced fraction of sulfate, but further time-dependent studies would be required 

in order to verify that none of the sulfur species produced after n-butane exposure are 

artefacts formed by the measurement technique. 

Oxidation of the carbonaceous deposits as indicated by the development of a peak at 

~288.5 eV is consistent with the reduction of the sulfate species. In the literature, sulfate 

reduction is facilitated by the formation of water, as detected by IR spectroscopy.63,284 

The formation of water on the sulfated zirconia thin films was not detected by XPS, as 

indicated by the absence of an O 1s peak at ~533.1 eV.285 However, under the 

measurement conditions used any water formed would be expected to desorb from the 

surface. Water was not detected by MS during the measurements, although this may be 

because of a lack of sensitivity. 
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Formation of an unsaturated species after n-butane exposures, as detected by NEXAFS, 

proves the films have sites capable of dehydrogenation. The absence of any discrete C-

H* and σ* resonances, thus rendering them indistinguishable from the edge jump, is 

believed to be caused by the presence of multiple species differing only slightly in nature. 

However, the distinct π* resonance seen is believed to be either the butene intermediate 

from the oxidative dehydrogenation initiation pathway or possibly a side product from 

this initiation step.63,90 This unsaturated species may also be the allylic species reported to 

be formed on sulfated zirconia powders, as determined by UV-vis spectroscopy.15,74,286  

 

5.5 Conclusions 

The development of carbonaceous surface deposits proves the films contain reactive 

centres. The ability of the catalyst to dehydrogenate n-butane proves that an oxidative 

dehydrogenation pathway is possible and thus is in good agreement with the formation of 

an alkene being the initiation step of the isomerisation mechanism.63,90 This is further 

confirmed by the concurrent reduction of sulfate. The detection of oxygenated carbon 

species is consistent with a stabilised carbocation being the catalytically active site. 
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6. Design and Construction of a Thin Film Reactor 

6.1 Introduction 

6.1.1 Reactors for the catalytic testing of model thin films and supported particles 

on flat substrates and single crystals 

Catalytic model thin films and supported particles on flat substrates and single crystals 

have surface areas in the order of square centimetres only, thus making the detection and 

analysis of reaction products over them at high pressures (>10-2 hPa) and temperatures 

very difficult. For model catalysts with high turnover frequencies (~1 s-1), catalytic 

activities can be measured in batch reactors (volume ~ 500 cm3) and analysed via gas 

chromatography. In the case of low turnovers, reactors with volumes of a few millilitres 

can be used; however, "a robust design of a reactor with very low volume is still to be 

accomplished".287 

Campbell288 has reviewed the reactors available for the catalytic testing of well defined 

surfaces and Gunter et al.287 have described some possible reactors for the testing of 

model catalytic films and supported particles on flat substrates. Important parameters 

discussed in the aforementioned reviews regarding the design features of such reactors 

are summarised below. 

When determining surface structure-reactivity relationships on well defined surfaces, 

minimal exposure of the catalysts to undesired vapours during and between high pressure 

kinetic testing and surface analysis is essential. Proven designs for such studies generally 

consist of a high pressure cell attached to a vacuum chamber through a transfer arm or a 

retractable reactor that encloses the sample.289 To minimise potential surface 

contamination it is important that the sample is transferred to vacuum in as rapid and 

clean way as is possible. The reactor (and transfer device) should therefore be constructed 

from low-surface-area, non porous and bakeable materials. If, however, the sample can 

be exposed to air prior to and after reaction then much simpler designs are possible; for 

example, Kuipers et al.290 used a glass reactor suspended in an oven. 

Normally only the sample is heated during reaction in order to prevent side reactions or 

degassing of contaminants from the walls of the reactor. Metallic samples are generally 

heated via resistive heating. For oxide catalysts resistive heating is not possible, unless 

the oxide is deposited on a metal. If the oxide completely covers the metal resistive 
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heating with a low background can be achieved, such as in reference 291. For oxides 

deposited on one side of a metal support the catalytic activity of the metal must be 

negligible, as in reference 292. Oxide samples may also be heated directly via, for 

example, an infrared spotlight.293 Alternatively, the entire reactor can be heated provided 

all background reactions are insignificant. 

A very important design consideration is the volume of the reactor. In order to determine 

accurate kinetics the reactant(s) and product(s) must be well mixed and at observable 

concentrations. Typical gas diffusivity at atmospheric pressure and room temperature is 

in the order of 0.1 cm²/s, thus the average diffusion length during 100 s is only 

approximately 3 cm. Due to convection currents the actual mixing in a batch reactor will 

be considerably faster than this but it should not be expected that remote parts (further 

than ~5 cm) from the sample are efficiently mixed during time periods of less than 100 s. 

Therefore the reactor should be of a compact design, such as in reference 294, or include 

a recirculation device, as in reference 295. To avoid potential contamination and wall 

reactions the compact reactor design is favoured by several groups.288,294,296 

As previously stated, model thin films and supported particles on flat substrates and 

single crystals have very low surface areas (~1 cm²). Assuming a typical reaction rate of 

10-2 molecules/site/s and that the whole surface is active (a gross overestimation for 

model oxide catalysts), the overall amount of product formed in 100 s is very small: 

 Product = (10-2 molecules/site/s)(1015 sites/cm²)(1 cm²)(100 s) = 1015 molecules 

If the reactor is at 100 kPa and has a volume of 1 litre this corresponds to only ~40 ppb 

product. Given that GC detection limits are of the order of 0.1-1 ppm, constructing a 

reactor with a small volume is thus very advantageous (if not necessary). However, a 

compromise must be made between reducing the reactor volume and maintaining enough 

volume to take aliquots for analysis. In some cases the reactor is operated in a continuous 

flow mode297 but this suffers from the same disadvantages as a large-volume reactor. 

Another factor that favours having a small volume reactor is possible impurity 

contamination from reactant gases, at 100 kPa 0.1 ppm trace impurities are a potential 

source of approximately one full monolayer coverage for every ⅓ litre reactor volume. 

Aliquots of the reaction gas for analysis can be taken from the reactor manually by using 

a syringe and septum port or automatically by a built-in valve system. More complex 
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methods, such as rapidly compressing the reactor aliquot into the GC sampling loop prior 

to injection using a reservoir of carrier gas298 or using cold fingers to trap condensable 

products, can be used to increase product detection sensitivity. 

6.1.2 Aims 

To validate the sulfated zirconia thin films as model catalysts their catalytic activity must 

be measured and related to powder sulfated zirconia catalysts. To measure the catalytic 

activity of the sulfated zirconia thin films, a custom reactor needs to the constructed, 

which meets the following prerequisites: 

• Low volume. 

• Flow mode operational for activation, up to 573 K.64,65 

• Batch mode operational for reaction, up to 505 kPa and 373 K. 

• Testing of a single sulfated zirconia thin film. 

• Sampling of reaction gases must be possible during reaction. 

• GC analysis. 

To produce a measurable conversion over the sulfated zirconia thin films in as short a 

time as possible the reactor should have a small volume. Given the low conversion 

expected, a batch reactor should be constructed to increase reactant-catalyst contact 

times. Testing a single sulfated zirconia thin film will allow ex situ characterisation of the 

measured film and hence activity-structure relationships to be investigated. Over 

pressurising of the reactor will increase the reaction rate (as the reaction order is known 

to be between 1.3-1.4 with respect to n-butane concentration)94 and allow multiple 

samples of the reaction gas to be taken. 

Estimations based on a sulfated zirconia thin film with a 1 cm² surface area, in a 10 ml 

reactor filled to 25 kPa n-butane at 373 K, show the limit of detection (LOD) and limit of 

quantification (LOQ) to be reached only after 2 and 6 hours batch operation, respectively. 

Where the LOD is equivalent to three times, and the LOQ to ten times, the standard 

deviation of the inherent (blank) isobutane impurity to n-butane ratio of the reactant gas, 

as measured by automated GC injections. Calculations were performed assuming a 

sulfated zirconia reactivity of 0.57 μmol/m²/h at 5 kPa n-butane286 and an n-butane 

reaction order of 1.4.94 
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6.2 Experimental 

6.2.1 Reactor design 

The constructed reactor consists of 

two flanges, a sampling port and 

inlet and outlet lines (as shown in 

Figure 6-1). The sample is placed 

between two 69.85 mm stainless 

steel flanges in an indented bed 

directly under the sampling port. A 

silver plated copper gasket (inner 

diameter 36.855 mm) is used to 

seal the flanges. In the flange 

under the wafer two 315 W heating 

cartridges are inserted in holes 

drilled into the flange. The 

temperature of the cartridges is 

controlled by a K-type 

thermocouple which is inserted 

into a hole drilled into the flange 

(~1 mm directly under the sample). 

Sampling of the gas phase is possible by syringe using the sampling port welded into the 

centre of the flange directly above the sample. Inside the sampling port, a 5 mm 

bleed/temperature optimised GC inlet septum is secured between two 6.35 mm silver 

plated stainless steel gaskets in a VCR® connection. The sampling port is separated from 

the reactor by a short tube and heat sinks are attached to it to keep the septum cool during 

activation. 

Inlet and outlet lines are welded into the flange above the sample on either side of the 

sampling port. Initial experiments were performed using VCR® connected ball valves to 

seal the inlet and outlet lines during batch mode operation, giving the reactor a volume of 

5.1 ml. Changing to high-purity high-pressure diaphragm-sealed VCR® connected valves 

increased the reactor volume to 7.5 ml. 
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Figure 6-1: (a) Photograph and (b) cross section 
diagram of the constructed thin film reactor. 
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6.2.2 Test measurements 

Test measurements were performed on 2.0 mg of calcined MelCat sulfated zirconia 

powder (to validate the reactor), oxidised silicon wafers (to act as "blind" measurements) 

and calcined sulfated zirconia films deposited over various time periods. Preparation 

details for the sulfated zirconia powder sample used are given in Chapter 7 section 7.2.2. 

Samples were activated at 573 K in a flow of 40 ml/min synthetic air for 30 minutes 

using a ramp of 10 K/min. Following the activation, the reactor was flushed at 373 K 

with 40 ml/min helium or nitrogen for 20 minutes to remove oxygen. The reactor was 

then filled with the reactant gas (5% n-butane in helium or nitrogen) by either flushing 

the reactor for 2-5 minutes at 40 ml/min with the reactant gas or evacuating the chamber 

to 10-3 hPa, followed by pressurising the reactor to 505 kPa with the reactant gas (n-

butane partial pressure = 25 kPa) and then closing the inlet and outlet valves. 

Multiple samples (2 or 3) of 0.1 ml reaction gas were taken by syringe after a given time 

period and analysed by GC. Repeated sampling from the same reaction after a different 

number of days are indicated as subsequent measurements. However, all results presented 

for reactions of the thin films are from measurements taken on the day on which the 

septum was initially punctured. 

After each test reaction the flange and sampling port gaskets, as well as the septum, were 

replaced in order to prevent leaks. 

 

6.3 Results 

Calculations using the results of manually injected blanks taken immediately after filling 

the actual reactor, without a sample, to 505 kPa with 5% n-butane in an inert gas, show 

the LOD and LOQ to be achievable after 4 and 13 hours, respectively. These estimations 

still assume a reaction rate and order taken from the literature.94,286 This corresponds to 

conversions of 0.003 and 0.009% to reach the LOD and LOQ. 

The conversions in Figure 6-2 of isobutane to n-butane were calculated using the relative 

change in isobutane to n-butane signals for individual injections, to avoid errors from 

differences in injected volumes, using the following equation: 
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Where [iBusample] and [nBusample] are the concentrations of isobutane and n-butane 

detected after a set reaction time, respectively. [iBublank] and [nBublank] correspond to the 

original isobutane impurity and n-butane concentrations. 

Figure 6-2 shows that the 

conversion of n-butane to 

isobutane increases with reaction 

time over the oxidised silicon 

wafers, the powder sulfated 

zirconia and the sulfated zirconia 

thin films. The sulfated zirconia 

powder produces a significantly 

higher conversion than the 

oxidised silicon wafers or sulfated 

zirconia thin films. Differences 

between the oxidised silicon wafers and the sulfated zirconia thin films are within the 

errors of the measurements and there does not appear to be a trend. Converting the 

conversions of the sulfated zirconia powder into rates results in values of 1.16 μmol/g/m² 

after 112 hours and 0.73 μmol/g/m² after 285 hours. The calculation of such rates 

assumes that the total concentration of butane (isobutane and n-butane) after the 

measurement time is equal to the concentration at the start of the reaction as no side 

products (with carbon chain lengths of 2-6) were detected in significant amounts. 

In Table 6-1 the change in n-butane concentration, calculated from the GC signal area 

relative to the initial blank measurement, is given for the reactions performed. There is a 

clear decrease of n-butane concentration with reaction time, which is greater than the 

possible error arising from performing manual injections and the loss from conversion to 

isobutane or side reactions. Helium leak testing of the reactor septum port, inlet and 

outlet lines was unable to detect any leaks above 10-9 hPa/l/s. Measuring the reactor 
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Figure 6-2: Percentage conversion of n-butane to 
isobutane in a batch reactor at 373 K, filled to 400 
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pressure via an attached pressure gauge (reactor and pressure gauge combined volume = 

29.5 ml) showed, after activation and pressurising the reactor to 430 kPa at 373 K for 10 

days, the pressure to decrease by approximately 100 kPa. If the decrease in n-butane 

signal is taken into account, the conversions detected over the powder sulfated zirconia 

correspond to rates of only 0.42 μmol/g/m² after 112 hours (at 9 kPa n-butane) and  

0.10 μmol/g/m² after 285 hours (at 3.5 kPa n-butane). 

 

6.4 Discussion 

A prototype reactor (not shown here) was constructed by adapting an in-house flow 

reactor designed to measure the conversion of ethylbenzene to styrene over well defined 

epitaxial iron-oxide layers.212 This reactor consisted of a resistively heated stainless steel 

cup placed above the sample and was sealed using a gold gasket and a single central 

screw. The septum was housed in a simple screw cap port with a hole drilled in the 

middle. A number of flaws were found with such a design. The septa used were found to 

disintegrate at temperatures above 473 K and leak. These problems were solved by 

elongating the sampling port and adding heat sinks (to keep the septa below 373 K during 

activation) and changing the sampling port to a VCR® connection inside which the 

septum is placed between two stainless steel gaskets. The gold seal was also found to leak 

over extended time periods (hours). Therefore, the gasket, reactor housing and heating 

source were changed to those described in the experimental section of this chapter. The 

redesigned reactor (presented in this chapter) was initially found to be stable to 

pressurisation over several weeks. 

The rate of isomerisation over the sulfated zirconia powder appears to decrease with 

reaction time. Calculated isomerisation rates of the sulfated zirconia powder are lower 

than expected, as compared with steady state rates from flow reactor measurements 

presented in Chapter 7 section 7.3.2 and published results,286 taking into account the n-

Table 6-1: Percentage decrease in n-butane concentration over the testing period. (2) 
Indicates subsequent measurements. 

After: % Decrease in n-butane 
concentration 5 days 12 days 20 days 
Oxidised Si wafers 48 80(2) 92 
SZ powder 64 86(2) - 
SZ thin films 64 - 86 
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butane reaction order.94 At the low conversions measured, the reaction profile would be 

expected to increase linearly with time. The low activity of the powder and decrease in 

reaction rate with time are probably due to both the decrease in partial pressure of n-

butane from the leak and deactivation of the catalyst (which may be enhanced by back 

diffusion of oxygen through the leak). 

The cause of the "blind" oxidised silicon wafer tests showing a conversion is unclear. It is 

apparent from the decrease in the n-butane concentration and pressure measurements of 

the reactor (after undergoing the activation program) that the reactor has developed a 

leak. Attempts to locate and prevent the leak by replacing the inlet and outlet valves, 

tightening the flange gasket while flushing the reactor with an inert gas (between 

activation and reaction) and inserting aluminium foil between the septum and inside 

gasket in the sampling port were all unsuccessful. The source of the leak is probably the 

flange gasket, as it will undergo thermal expansion during activation then contraction 

when the temperature is lower for reaction. In addition, it is not designed to be over 

pressurised. However, as both product and reactant should leak from the reactor, a leak 

should not lead to a positive conversion for a "blind" experiment. If the blind conversion 

is from contamination (for example from the powder experiment) then its activity should 

also decrease with increasing reaction time, however the conversion appears to increase 

linearly with reaction time. Thus the "blind" conversion is believed to be due to either an 

inherent reactor flaw or the oxidised silicon wafer being active. If the "blind" activity is 

caused by an inherent reactor flaw then it would have to be deducted from the sulfated 

zirconia powder conversion, thus the rate detected over the powder would be even lower.  

Given that the sulfated zirconia thin films have a total surface area ~300 times smaller 

than the powdered material measured and hence their conversions would be expected to 

differ by the same order of magnitude, such conversions would be impossible to detect 

with the constructed setup. The lower than expected powder activity, "blind" silicon 

oxide activity, detected leak and high deviation of the manual injections together mean 

that the constructed reactor was not able to measure the catalytic activity of the sulfated 

zirconia thin films. 

In order to measure the catalytic activity of the films a completely new reactor would 

have to be designed and constructed. Such a reactor would need to have no leaks and 
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improved detection and quantification limits. To ensure the reactor does not leak the seal 

would have to be isolated from the heating source. This could possibly be achieved by 

using a localised heating source directly under the sample, for example by inserting a 

button heater inside the reactor although the reactor volume would probably have to be 

increased. Alternatively, the reactor could be welded shut and the sample cut out after 

each reaction, the reactor volume would therefore change slightly for each measurement. 

The septa could also be isolated from the reactor via a valve which would only be opened 

when a sample is being taken. However, the large error bars from taking manual 

injections would need to be reduced in order to detect the very low conversion expected 

from the sulfated zirconia thin films. Replacing the sampling port with a GC sampling 

valve would enable direct automated injections of the reactant gas onto the GC and allow 

the sampled gas to be replaced with reactant gas thus keeping the overall pressure of the 

system constant. The implementation of such changes is not a simple task and therefore 

was not possible during the time restrictions of this thesis. 

Sulfated zirconia has been reported to have a turnover frequency of 10-4 s-1 and site 

density of 5x10-6 mol/g (≈3x1012 sites/cm²),228,299 as compared to typical well defined 

model catalysts which have turnovers of the order of 10-2 s-1 and site densities of up to 

1015 sites/cm².288 Thus the difficulties encountered in measuring the activity of the 

sulfated zirconia thin films are attributed not only to trying to measure a conversion over 

such a small amount of material but also the extremely low intrinsic activity of sulfated 

zirconia. Despite the orders of magnitude difference in yields expected over the sulfated 

thin films, as compared to previously measured model systems, further opportunities to 

improve the reactor design were highlighted within this chapter, which may prove 

successful in the future. 

 

6.5 Conclusions 

A batch reactor to measure the conversion of n-butane to isobutane over the sulfated 

zirconia thin films was designed and constructed. Measurements with a small amount of 

sulfated zirconia powder showed the conversion of n-butane to isobutane albeit with rates 

lower than expected. Catalytic measurements of the sulfated zirconia thin films, however, 

failed because of technical problems with the constructed reactor and the low intrinsic 
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activity of the material. The reactor was shown to leak and have a "blind" reactivity as 

measured over an oxidised silicon wafer; in addition high error bars were observed. 

Therefore, in order to realise the measuring of the catalytic activity of the films, it would 

be necessary to design and construct a new reactor. Proposed suggestions for a new 

reactor include isolating the sealing from the heating source or welding the reactor to 

avoid leaks and building a GC sampling valve into the reactor, to improve detection and 

quantification limits. 
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7. Rational Design of Powder Sulfated Zirconia Catalysts 

7.1 Introduction 

7.1.1 Disulfated zirconia 

The presence of a disulfate (pyrosulfate, S2O7
2-)56 species on zirconia was initially 

proposed by Bensitel et al.47 after they observed an IR band at 1403 cm-1at high sulfate 

coverages, which disappeared on exposure to water. Morterra et al.,48,300,301 also, assigned 

the formation of an IR band at ~1406 cm-1, seen at sulfate coverages over half a 

monolayer, to polynuclear sulfates, probably disulfates. Experiments indicated these 

disulfates to be located on the regular patches of low index crystal planes (top 

terminations of the scale-like particles) of zirconia. Increasing the sulfate loading (thus 

favouring the presence of disulfate species) was shown to increase the number of 

Brønsted acid sites, while lowering the number of Lewis acid sites but enhancing their 

strength. These acidic sites were found to be liable to hydrolysis. 

Escalona Platero et al.302 also ascribed an IR band at 1398 cm-1, from sulfated zirconia 

produced by the thermolysis of zirconium sulfate, to disulfate species. They found the 

disulfate groups disappeared at coverages below about 10% of a monolayer. High 

temperature treatment was shown to remove the disulfate groups, trace amounts of 

molecular water and strong Brønsted acid sites. 

Xia et al.303 compared sulfated zirconia materials prepared using either ammonium 

peroxydisulfate (persulfate, S2O8
2-)56 or sulfuric acid. The peroxydisulfated material was 

shown to be more active for the isomerisation of n-butane at 308 K, which the authors 

claim is due to it having more "superacid" sites rather than having stronger sites. 

However, IR bands for the sulfuric acid prepared material are reported to show a strong 

absorption band in the 1380-1390 cm-1 region, whereas the peroxydisulfated material 

showed a band at 1398 cm-1, which the authors postulated are due to disulfate species, in 

agreement with references 47 and 48. 

Marus et al.304 also prepared sulfated zirconia catalysts using either ammonium 

peroxydisulfate or sulfuric acid. In contrast to the study by Xia et al.,303 the maximum n-

butane isomerisation activity of the peroxydisulfated catalysts was found to be lower than 

that of the sulfuric acid prepared catalysts. However, the authors showed for catalysts 

prepared from both sulfating agents the amount of carbon required to completely 
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deactivate them was equivalent to one carbon atom per two active sulfate atoms, using a 

TGA/FTIR technique. Thus despite the lower activity of the peroxydisulfated catalysts 

the authors still suggest the active sites to be composed of two sulfate atoms, such as 

disulfate. They propose the active sites may be formed from either two vicinal sulfate 

groups or two pregrouped sulfur atoms on certain zirconia sites. 

Density-functional theory (DFT) and statistical thermodynamics calculations were used 

by Hofmann and Sauer62 to investigate the adsorption of H2O and H2SO4 (or SO3) on 

tetragonal zirconia (101). The authors showed that monosulfates and disulfates may occur 

on the surface of zirconia, but no higher condensated sulfates were observed. Simulated 

surface phase diagrams depend strongly on temperature and H2O and H2SO4 (or SO3) 

partial pressures. The calculations indicated that vibrational bands in the region of 1420-

1400 cm-1 are from disulfate species and those at 1400 cm-1 are from adsorbed SO3 

species. They thus predicted, in agreement with experimental IR literature,302,57 the 

transformation of water rich sulfate structures into disulfates during calcination (at 873 

K), which at higher temperatures (1073 K) undergo transformation to adsorbed SO3. 

Li et al.63 proposed the disulfate (or SO3) species, seen by IR at 1404 cm-1, to be liable in 

the presence of n-butane to an initiation reaction that creates the catalytic active centres 

on sulfated zirconia. This is said to occur via the stoichiometric oxidative 

dehydrogenation of butane by disulfate or SO3 groups to produce butene (present mostly 

as alkoxide groups), water and SO2. They report the detection of all three oxidative 

dehydrogenation reaction products by thermal desorption and in situ IR spectroscopy. 

The butene surface concentration is stated to determine both the catalytic activity and 

deactivation (via formation of oligomers) of sulfated zirconia. They also showed the IR 

band at 1404 cm-1 shifted to lower wavenumbers (1398 cm-1, with a shoulder at 1378 cm-1) 

with time on stream (consistent with the reduction of disulfate or SO3) and, by DFT, 

favourable reaction energies for the oxidation of butane to butene particularly over sulfate 

loadings of two S atoms per (1 x 2) surface cell. 

Further work by Li et al.26 showed that washing sulfated zirconia samples with water 

decreased their catalytic activity and shifted the maximum of the band seen at 1404 cm-1 

to lower wavenumbers (~1391 cm-1). It is thus proposed that the catalytic activity of the 

materials is proportional to their concentration of labile chemisorbed SO3,
 most likely in 
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the form of disulfate. Klose et al.284 assigned all IR bands seen between 4000-1000 cm-1 

on sulfated zirconia, based on reference 62, concluding that disulfate groups are the main 

sulfur species. Several other groups have reported the possible presence of disulfate 

species194,305,306 on sulfated zirconia. 

7.1.2 Preparation of sulfated zirconia from precursors containing two sulfur atoms 

Afanasiev et al.307 synthesised sulfated zirconia from zirconium oxychloride, potassium 

disulfate and a KNO3-NaNO3 eutectic in a molten nitrate bath. The reaction mixture was 

pretreated in nitrogen at 423 K followed by heating to 773 K for 2 hours. However, no 

disulfate IR bands, near 1400 cm-1, were detected in the synthesised material. 

Xia et al.303 prepared peroxydisulfated and sulfated zirconias using ammonium 

peroxydisulfate and sulfuric acid sulfating agents. Zirconium hydroxide was immersed in 

0.5 mol/l of the sulfate precursors for 30 minutes; followed by filtration, drying overnight 

at 383 K and calcination at 923 K. The peroxydisulfated material was found to have a 

lower surface area (58.2 versus 113.0 m²/g) and sulfur content (1.99 versus 3.3 wt.% 

SO3) compared to the sulfated material. The lower surface area is reported to be probably 

caused by immersing the amorphous zirconia in an aqueous ammonium salt solution. For 

the isomerisation of n-butane at 308 K, higher conversions were detected over the 

peroxydisulfated material (45.4 versus 37.1% after 20 hours). The reaction was, also, 

performed at 523 K, resulting in the peroxydisulfated material initially having the lower 

activity of the two materials (25.6 versus 27.3%, after 2 minutes) but to be more stable 

with respect to time on stream (20.4 versus 17.5%, after 360 minutes). After 6 hours the 

coke content of the peroxydisulfated material was found to be lower (1.14 versus 1.25 

wt.%), thus explaining the deactivation of the sulfuric acid prepared material. 

Marcus et al.,304 also, prepared peroxydisulfated and sulfated zirconia catalysts from 

ammonium peroxydisulfate and sulfuric acid. Zirconia was immersed in various 

normalities of either ammonium peroxydisulfate (0.3-0.6 N) or sulfuric acid (0.2-0.6 N) 

for 15 minutes. The resulting product was decanted, dried overnight at 383 K, then 

calcined at 873 K in oxygen for 1 hour. The materials were tested for the isomerisation of 

n-butane at 473 K and their activities are given as a conversion after 15 minutes on 

stream, as it is reported they all have equivalent deactivation constants. Of the 

peroxydisulfate materials the 0.4 N prepared was shown to have the maximum 
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conversion (13.6%), whereas for the sulfated materials the 0.5 N prepared was shown to 

have the maximum conversion (18.77%). The sulfur contents and surface areas of the 

most active samples from the different precursors were found to be very similar (3.32 

versus 3.43% and 160 versus 149 m²/g, for the peroxydisulfated and sulfated materials, 

respectively). 

Dias et al.308 prepared peroxydisulfated and sulfated zirconia catalysts with and without 

an MCM-41 support using ammonium peroxydisulfate and ammonium sulfate. The 

"conventional" materials were prepared by immersing the zirconia precursor in 0.5 M 

solutions of the sulfating agents for 30 minutes, followed by filtration, drying at 383 K 

for 24 hours, then calcination at 923 K for 3 hours in air. Whereas, the supported 

materials were prepared by first impregnating MCM-41 with aqueous ZrOCl2.8H2O, via 

incipient wetness. Sulfation was also performed via incipient wetness, followed by drying 

(at 393 K for 1 hour or 383 K for 24 hours) then calcination at 823 K for 3 hours in air. 

The conventional peroxydisulfated and sulfated materials had similar surface areas (85 

versus 90 m²/g) and sulfur contents (0.33 versus 0.37 mmol/g). Whereas, the supported 

peroxydisulfated material had a lower surface area (382 versus 426 m²/g) but higher 

sulfur content (1.2 versus 0.9 mmol/g) than the supported sulfated material. Catalytic 

testing of the materials for the conversion of xylose to furfural showed the conventional 

materials to have similar activities (rates of 7.4 versus 7.7 mmol/g/h after 30 minutes and 

conversions of 80 versus 86% after 4 hours, for the peroxydisulfated and sulfated 

materials were measured, respectively). The supported peroxydisulfated material was 

shown to be initially more active (14.1 versus 8.9 mmol/g/h after 30 minutes), but similar 

high conversions (95 and 94%) were detected after 4 hours. 

Lavrenov et al.309 reported that the type of sulfating agent is believed to be of no 

importance. They state that similar results were obtained using sulfuric acid, ammonium 

sulfate, ammonium peroxydisulfate or gaseous mixtures of either sulfur dioxide or 

hydrogen disulfide and oxygen. Results are only given for materials prepared from 

ammonium sulfate though, as it is "the least reactive and neutral reagent" and hence 

allows greater control over the sulfation procedure and improves reproducibility. 

Mishra et al.68,179,310 sulfated dried zirconium hydroxide with ammonium peroxydisulfate 

via the wetness impregnation technique. Calcination of the material was performed at 873 
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K for 3 h. The resulting material was found to be active for the isomerisation of n-butane 

at temperatures as low as 308 K under atmospheric pressure. 

7.1.3 Motivation 

It has been proposed that disulfate groups form the catalytically active sites on sulfated 

zirconia.63 Thus it is envisioned the sulfation of zirconia using sulfating agents containing 

two sulfur atoms would enhance the formation of these disulfate groups and, thus, also 

the activity of the material produced. Various groups have prepared sulfated zirconia 

from sulfating agents containing one and two sulfur atoms with varying results, with 

regards to whether or not using two pregrouped sulfur atoms enhances activity.303,304,308 A 

comprehensive study is thus proposed to investigate the effect of using sulfating agents 

with two pregrouped sulfur atoms. The aim of this study is thus to prepare sulfated 

zirconia from both sulfating agents with two pregrouped sulfur atoms {ammonium 

peroxydisulfate and ammonium thiosulfate (S2O3
2-)} and an equivalent mono-sulfur 

reagent (ammonium sulfate), over a range of sulfate loadings (2, 4.5 and 9 wt.% SO3), 

using different sulfate impregnation techniques (incipient wetness and immersion 

followed by either filtration or evaporation). The effect of the aforementioned sulfation 

parameters on both the activity of the produced materials for the isomerisation of n-

butane to isobutane and the formation of an IR band at ~1400 cm-1 will be investigated. 

 

7.2 Experimental 

7.2.1 Synthesis of powder sulfated zirconias 

Zirconium hydroxide (MEL chemicals, XZO 632/03, batch 95/256/01) was dried at 383 

K for 21 hours prior to sulfation. Dried 13 g zirconium hydroxide batches were sulfated 

using ammonium peroxydisulfate, ammonium thiosulfate or ammonium sulfate, via three 

different impregnation techniques (numbered below). Sulfate loadings, given as weight 

(wt.) % SO3, were calculated based on the weight of the dried zirconium hydroxide. 

Doubly distilled water has been used for all syntheses. All sulfate solutions were prepared 

immediately prior to their use. 

(1) Impregnation via incipient wetness was performed to produce 2, 4.5 and 9 wt.% SO3 

sulfated zirconia. The dried zirconium hydroxide batches were ground while drop wise 

adding the relevant sulfating agent dissolved in 5.2 ml of water over 20 minutes. The 
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samples were then dried in a desiccator for at least 24 hours prior to calcination. Samples 

produced in this way are referred to as incipient wetness prepared. 

(2) Zirconium hydroxide batches were immersed in 195 ml aqueous solutions containing 

0.1 and 0.22 M of ammonium peroxydisulfate for 15 minutes to produce 2 and 4.5 wt.% 

SO3 loadings respectively (molarities were derived by linearly extrapolating results from 

reference 304). Batches were also immersed in ammonium sulfate and ammonium 

thiosulfate aqueous solutions with equivalent sulfur concentrations to those used for 

ammonium peroxydisulfate. The solid material was then vacuum filtered, dried at 383 K 

for 21 h and stored in a desiccator prior to calcination. The resulting samples are referred 

to as immersion prepared. 

(3) Samples loaded with 2 and 4.5 wt.% SO3 were prepared by immersing zirconium 

hydroxide batches in the various sulfating agents dissolved in 50 ml of water followed by 

rotary evaporation of excess water. The samples were then dried at 383 K for 21 h and 

stored in a desiccator prior to calcination. Samples produced in this way are referred to as 

evaporation prepared. 

The samples produced from the ammonium peroxydisulfate, ammonium thiosulfate or 

ammonium sulfate are hereafter denoted xPSZy, xTSZy or xSZy, respectively; where x 

corresponds to the SO3 wt.% loading and y indicates the impregnation technique (iw = 

incipient wetness, im = immersion and ev = evaporation prepared). 

7.2.2 Calcination of sulfated zirconia powders 

Calcination of the synthesised materials was performed in a 8.4 ml quartz boat, as 

described in reference 311. The boat is designed so that a thermocouple is located in the 

middle of the bed. The samples were heated to 823 K for 3 hours, using a temperature 

ramp and maximum cooling rate of 3 K/min. The oven temperature was recorded by a 

thermocouple placed between the calcination tube and oven wall. In all experiments a 

flow of 200 ml/min synthetic air was used, except for sample 4.5PSZim which was 

performed in static air. For comparison, the zirconium hydroxide used and a commercial 

sulfated zirconia precursor material (MEL Chemicals, XZO 682/01, batch 92/184/01, 5-6 

wt.% SO3) were, also, calcined, after being dried at 383 K for 21 hours. Hereafter, the 

commercial sulfated zirconia and zirconium hydroxide materials are denoted SZcom and 

Zcom, respectively. 
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7.2.3 Catalytic testing 

Most of the calcined materials were tested for the isomerisation of n-butane to isobutane 

in a plug flow reactor. Reactions were performed using 1 g of material, apart from SZcom 

for which 500 mg was used. The catalysts were activated at 573 K for 30 minutes in 

48 ml/min of synthetic air, followed by flushing at 373 K for 20 minutes in 48 ml/min of 

helium. The temperature was ramped at 15 K/min. Isomerisation was performed at 383 K 

with a feed of 80 ml/min 5 vol.% (or 1 vol.% for SZcom) n-butane in helium. Online 

analysis was performed using a Micro-GC (Varian, 4900) with a CP-Sil 5 CB column 

and thermal conductivity detector. 

7.2.4 TG-DSC-MS 

Thermogravimetry (TG) and differential scanning calorimetry (DSC) simultaneous 

analyses were performed on selected samples using a STA 499 C instrument (Netzsch) 

with online MS (Pfeiffer, QMS 200). Samples 4.5PSiw and 9PSiw (both not calcined) were 

heated to 1373 K at 3 K/min in 21% oxygen in helium. Selected calcined materials (see 

Table 7-2) were heated in argon to 1373 K, held at this temperature for 30 minutes then 

cooled to 473 K, using heating and cooling rates of 10 K/min. 

7.2.5 BET surface area 

Surface areas of selected calcined samples (see Table 7-2) were measured by nitrogen 

adsorption according to the method of Brunauer, Emmett and Teller (BET). The samples 

were outgassed, prior to measurements, in vacuo at 523 K for 3 hours. The BET surface 

areas were calculated from multipoint analyses, additionally the pore size distributions 

were determined according to the Barrett, Joyner and Halenda (BJH) method. 

7.2.6 XRD 

X-ray diffractograms of calcined samples 2PSZiw, 4.5PSZiw and 9SZiw were recorded 

using a Bruker AXS D8 advance diffractometer in reflection (Bragg-Brentano) geometry 

with Cu Kα radiation, a secondary graphite monochromator and scintillation detector.  

Fittings of the diffractograms were performed using the Topas v.3.0 program. Monoclinic 

and tetragonal zirconia fractions were derived directly from Rietveld fits of ICSD 

156entries 89426 and 97004, respectively. The fraction of XRD amorphous phase was 

estimated by fitting a model consisting of 7 broad Gaussian peaks. The model was 

derived from the XRD pattern of a commercial sulfate doped zirconium hydroxide 
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sample (MEL Chemicals, XZO 1249/01, produced 15.5.06, ~7 wt.% SO3), after being 

dried for 21 hours at 383 K. Relative intensities and peak positions of the model were 

fixed but peak widths and total intensity were varied for the fitting of mixed precursor 

and crystalline samples. 

7.2.7 XPS 

X-ray photoelectron spectra of calcined samples 4.5TSZim and 4.5SZim were taken with a 

Leybold LHS 12 MCD instrument248 using Mg Kα excitation. Detailed scans of the 

Zr 3d, O 1s, S 2p and N 1s regions were recorded for each sample, the C 1s region was 

also recorded for 4.5TSZiw. Binding energies were corrected to Zr 3d5/2 = 182.2 eV of 

ZrO2,154 to account for electrostatic charging. Shirley backgrounds were subtracted from 

the Zr 3d and O 1s peaks and linear backgrounds were used for the S 2p and C 1s peaks. 

7.2.8 DRIFTS 

Diffuse reflectance infra-red Fourier transform spectroscopy (DRIFTS) was performed 

using a Bruker IFS 66 FTIR spectrometer (1-2 cm-1 resolution) equipped with an in situ 

cell (Graseby Specac, Environmental Chamber) with a chemically resistant ZnSe 

window, a diffuse-reflectance attachment (Graseby Specac, "The Selector") and a 

D315M MCT detector. The samples were placed in a gold cup, which is situated on a 

heatable platform. Selected calcined materials were activated in situ at 573 K for 30 

minutes in 48 ml/min of 20.5% oxygen in nitrogen, followed by cooling to 373 K, the 

temperature was ramped up and down at 15 K/min. The cell was then flushed at 373 K 

with 48 ml/min nitrogen for at least 20 minutes prior to measuring under the same 

conditions. Spectra were background corrected using a KBr reference measured in 

nitrogen. 

Positions of overlapping bands, appearing as shoulders, have been determined using the 

second derivative.312 For quantitative relevant band intensities the spectra were converted 

using the Kubelka-Munk (KM) function, after normalising the reflectance spectra at 4800 

cm-1 to 0.9 (to account for any differences in bed height). 
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7.3 Results 

7.3.1 Calcination of catalysts 

Comparative measurements of bed and oven temperatures during calcinations of 

materials loaded with 4.5 wt.% SO3 are presented in Figure 7-1. For all samples the bed 

temperature was shown to lag behind the oven temperature between 423 and 573 K (oven 

temperature), indicating an endothermic process is occurring. This is due to the removal 

of water. At higher temperatures, between ca. 703 to 798 K, for the 2 and 4.5 wt.% SO3 

samples an exothermic process occurs causing the bed temperature to increase by up to 

100 K above the oven temperature. This rapid overheating of the sample is seen at higher 

temperatures for the 4.5 wt.% SO3 loaded materials (as compared to 2 wt.% SO3 loaded 

materials prepared using the same technique and sulfating agent), but is not observed for 

the 9 wt.% SO3 loaded materials. For each of the different sulfation techniques used 

trends are observed for the 2 and 4.5 wt.% SO3 loaded materials with regards to the oven 

temperature at which the maximum bed overshoot temperature is reached. However, the 

trends differ for the different sulfation techniques, for incipient wetness: PSZiw > SZiw > 

TSZiw, for immersion: TSZim > SZim > PSZim and for evaporation TSZev > PSZev > SZev. 

There do not appear to be any trends in the maximum bed overshoot temperature. 

7.3.2 Catalytic testing 

Maximum n-butane isomerisation activities and after 12 hours are given for tested 

materials in Table 7-1 and selected reaction profiles are shown in Figure 7-2. None of the 

2 wt.% SO3 loaded materials were found to be catalytically active. For each of the 

sulfating techniques used the 4.5SZ loaded materials were found to be the most active. 

The 4.5PSZ materials, prepared by a given sulfation technique, were generally found to 

be more active than the 4.5TSZ materials, apart from the inactive 4.5PSZim sample which 

was calcined in static air. For the 4.5SZ materials the immersion technique produced the 

most active material and the evaporation technique the least active. The immersion 

technique, also, produced the most active 4.5TSZ material; however, the incipient 

wetness technique produced the least active. For the 4.5PSZ materials the incipient 

wetness prepared sample was found to be more active then the material prepared by 

evaporation. 
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Figure 7-1: Calcination glow curves for (a) 2 
wt.% (b) 4.5 wt.% and (c) 9 wt.% SO3 loadings 
of various sulfating agents on zirconia, 
including Zcom (a) and SZcom (b). Dashed lines 
indicate maximum oven temperature. 

Figure 7-2: Isomerisation of n-butane to isobutane 
over sulfated zirconia catalysts synthesized via (a) 
incipient wetness, (b) immersion (including 
commercially prepared material, SZcom) and (c) 
evaporation techniques. 
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Table 7-1: Calcination oven temperatures at "glow" maximum and catalytic activities for the 
isomerisation of 5 kPa n-butane at 383 K, except (i) which was measured in 1 kPa n-butane. (ii) 
Calcined in static air, n.d. = not detected and - = not measured. 

Catalyst Glow maximum Catalysis 
 oven temperature Maximum rate Rate after 12 h 
 K μmol/g/h Time / h μmol/g/h 

SZcom 791 71.8(i) 0:49 48.5(i) 
Zcom 697 n.d. - n.d. 

2PSZiw 745 - - - 
2SZiw 729 n.d. - n.d. 
2TSiw 716 n.d. - n.d. 

4.5PSZiw 791 20.5 2:03 18.4 
4.5SZiw 780 23.7 4:50 22.3 

4.5TSZiw 779 2.2 2:00 2.2 
9SZiw n.d. 1.4 2:45 1.4 

2PSZim 714 n.d. - n.d. 
2SZim 750 n.d. - n.d. 

2TSZim 754 n.d. - n.d. 
4.5PSZim

(ii) 724 n.d. - n.d. 
4.5SZim 780 44.1 0:18 32.5 

4.5TSZim 786 8.2 0:35 7.1 
2PSZev 742 - - - 
2SZev 719 - - - 

2TSZev 747 - - - 
4.5PSZev 777 8.0 1:35 6.6 
4.5SZev 758 9.3 1:37 7.5 

4.5TSZev 787 6.4 3:20 6.0 
 

SZcom was shown to be more active than the synthesised samples, despite using a lower 

feed concentration. The pure zirconia material, Zcom, was found to be inactive. 

7.3.3 TGA-DSC-MS 

TG and DSC plots for samples 4.5PSZiw and 9PSZiw, prior to calcination, are shown in 

Figure 7-3a. The measurements were performed under conditions (gas atmosphere and 

temperature ramp) selected to mimic the heating ramp of the calcination procedure. A 

mass loss of ~14% from both materials is seen upon heating to 823 K (the calcination 

temperature). Above ~873 K a second mass loss is observed, the degree of this mass loss 

differs for the samples. This second mass loss corresponds to a further loss of 3.4% for 

4.5PSZiw and 7.8% for 9PSZiw. The DSC signal indicates that the sample 4.5PSZiw 

undergoes an exothermic process from 600 K onwards with a peak at 798 K, this is in 

good agreement with the temperature overshoot seen during the calcination of this 
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material at 791 K (oven temperature). The exothermic process appears to be delayed for 

the 9PSZiw sample; a broad peak is seen at 893 K concurrent with the second mass loss. 

 In Figure 7-3b TG, DSC and MS data are shown for the calcined sample 4.5PSZiw.The 

calcined sample, also, appears to lose mass in two different steps, one between room 

temperature and ~923 K and the second from ~923 K to ~1273 K. For both the samples 

before and after calcination the evolution of water is detected during the first mass loss 

(as indicated from m/e 18 and 17 MS signals, from H2O+ and OH+). Concomitant 

detection of oxygen (MS signals m/z 32 and 16, from O2
+ and O+) during this mass loss is 

believed to be an artefact, from the decomposition of water in the MS.244 During the 

second mass loss, for both the materials measured prior to and after calcination, sulfate 

fragments (MS signals m/z 64 and 48, from SO2
+ and SO+) and oxygen are detected. 

According to Srinivasan et al.159 sulfate decomposes by the following pathway: 

SO3 → SO2 + ½O2. Based on the second mass loss being due to such a reaction SO3 wt.% 

contents for measured calcined materials are presented in Table 7-2. The calculated 

SO3 wt.% contents all agree well with the loadings of the materials. 

7.3.4 BET surface area 

Similar surface areas of ~160 m²/g were measured from the 4.5 wt.% SO3 samples (see 

Table 7-2). The materials were also shown to have similar pore size distributions, with 

modal values of ~25 Å and maximum pores of ~40 Å. 

 7.3.5 XRD 

 X-ray diffractograms and calculated phase compositions for the selected 2, 4.5 and 9 

wt.% SO3 materials measured are presented in Figure 7-4. The 2 wt.% SO3 material 
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Figure 7-3: TG and DSC analysis of (a) 4.5PSZiw (thin lines) and 9PSZiw (thick lines) prior 
to calcination and (b) 4.5 PSZiw after calcination, including selected MS m/z ratios. 
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(2PSZiw) is shown to consist of a mixture of monoclinic and tetragonal phases. Whereas 

the 4.5 wt.% SO3 material (4.5PSZiw) is predominantly the tetragonal phase, with only a 

small fraction of the monoclinic phase. However, the 9 wt.% SO3 material (9SZiw) has a 

large fraction of XRD amorphous material, the crystalline material present is consistent 

with the tetragonal phase. 

7.3.6 XPS 

XP Spectra of the Zr 3d and S 2p regions for calcined samples 4.5SZim and 4.5TSZim are 

shown in Figure 7-5. The peaks are skewed towards lower binding energies because of 

differential charging of the samples, as confirmed in the O 1s region. Charging 

corrections of ~5 eV have been applied to the spectra of both samples. The S 2p peaks of 

the two samples are similar; they are centred at ~169 eV, indicating the sulfur present has 

an oxidation state of +6. No nitrogen was detected in either sample. The 4.5TSZim sample 

was shown to have a low concentration of carbon, ~2.5 atomic %. The 4.5SZim sample 

Table 7-2: BET surface areas and sulfate contents, calculated from TG and XPS
experiments, of samples measured. 

Sample Surface Area TG measurements: XPS measurements: 
 m²/g wt.% SO3 

hydrated 
wt.% SO3 
dehydrated 

atomic% S wt.% SO3 

2PSZiw - 2.3 2.4 - - 
4.5PSZiw 160.2 4.9 5.0 - - 
4.5SZiw 165.6 - - - - 

4.5TSZiw 161.7 - - - - 
4.5SZim 161.0 5.2 5.3 3.6 7.6 

4.5TSZim 155.1 4.5 4.6 4.1 8.9 
4.5PSZev 163.1 4.4 4.5 - - 
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Figure 7-4: X-ray diffractograms of calcined 
2PSZiw, 4.5PSZiw and 9SZiw. 

Figure 7-5: Zr3d and S2p XP spectra of 
calcined samples 4.5SZim (thick) and 
4.5TSZim (thin lines). 
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also has a low carbon concentration (below the detection limit of the survey scans). 

Sulfate concentrations for the two samples are comparable (as shown in Table 7-2). 

7.3.7 DRIFTS 

DRIFT spectra of measured activated samples show similar features to those previously 

reported for sulfated zirconia.284 Spectra of the S=O stretching region of incipient 

wetness prepared samples and band positions for all measured samples are given in 

Figure 7-6a and Table 7-3. The S=O stretching region shows three main bands, the 

predominant band is centred at 1369-1387 cm-1 (or 1356-1360 cm-1 for the 2 wt.% SO3 

loaded samples). An overlapping band is seen as a shoulder at slightly higher 
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Figure 7-6: DRIFT Spectra of (a) ν(S=O) region of sulfated samples prepared via incipient 
wetness, (b) overtone of main ν(S=O) bands and (c) peak fitting of the overtone for 4.5 wt.
% SO3 sulfated zirconia samples prepared by incipient wetness. (d) Area of disulfate
overtone band versus isomerisation activities for 4.5 and 2 wt.% SO3 loaded samples 
measured. 
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wavenumbers (1398-1400 cm-1 or 1383-1385 cm-1 for the 2 wt.% SO3 loaded samples). A 

weaker band is seen at lower wavenumbers, at 1292-1300 cm-1 for all 4.5 wt.% SO3 

loaded samples. For the 9 wt.% SO3 sample measured this band is weaker still and at 

slightly higher wavenumbers (1304 cm-1). Samples loaded with 2 wt.% SO3 show a very 

weak band at 1279 cm-1. 

Quantification of the S=O stretching bands seen between 1279-1400 cm-1 is not possible, 

even after normalisation and conversion using the Kubelka-Munk function, because of 

the strong intensity of these bands and uncertainties arising from the background. 

However, overtones of the two stronger S=O stretching bands are seen between ~2680-

Table 7-3: ν(S=O) DRIFTS band positions (in cm-1) of measured sulfated zirconia samples 
and assignments based on references 62 and 313. Note: sh = shoulder, w = weak and vw = 
very weak bands. 

Sample [S2O7
2-,2H+] 

or [SO3] 
[HSO4

-,SO4
-, 3H+,2H2O] 

or [SO4
2-,2H+] 

[SO4
2-, 

2H+,3H2O] 
[HSO4

-,SO4
-, 

3H+,2H2O] 
2PSZiw - 1385 sh 1360 - 1279 vw 
2SZiw - 1383 sh 1356 - 1279 vw 

4.5PSZiw 1400 sh 1377 - 1298 - 
4.5SZiw 1400 sh 1375 - 1298 - 

4.5TSZiw 1400 sh 1377 - 1296 - 
4.5SZim 1400 sh 1375 - 1300 - 

4.5TSZim 1400 sh 1377 - 1296 - 
4.5PSZev 1398 sh 1387 - 1300 - 
4.5SZev 1398 sh 1369 - 1292 - 

4.5TSZev 1400 sh 1373 - 1284 - 
9SZiw 1398 sh 1373 - 1304 w - 

Table 7-4: Fits of the DRIFTS main ν(S=O) overtone, after Kulbelka-Munk function 
conversion, for all 4.5 wt.% SO3 loaded samples measured, assignments based on references
62 and 284. 

Sample [S2O7
2-,2H+] or [SO3] [HSO4

-,SO4
-, 3H+,2H2O] or [SO4

2-,2H+] 
 Position 

/ cm-1 
Area 
/ cm-1 

Position 
/ cm-1 

Area 
/ cm-1 

Position 
/ cm-1 

Area 
/ cm-1 

4.5PSZiw 2756 0.069 2737 0.308 - - 
4.5SZiw 2755 0.081 2736 0.349 - - 

4.5TSZiw 2751 0.065 2732 0.337 - - 
4.5SZim 2754 0.085 2733 0.352 - - 

4.5TSZim 2752 0.064 2732 0.307 - - 
4.5PSZev 2753 0.106 2730 0.623 2693 0.022 
4.5SZev 2754 0.108 2735 0.464 - - 

4.5TSZev 2755 0.101 2740 0.485 - - 
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2780 cm-1 (see Figure 7-6b), the relative intensities of which can be compared. Fits of 

these overtone bands were performed (Figure 7-6c) using a linear background and 

constraining the full width half maximum (FWHM) of the higher wavenumber 

component to between 17-20 cm-1. Two components were used to fit the spectra of all 

samples except 4.5PSZev for which three components were used due to the increased 

width of the overtone (~20 cm-1 towards lower wavenumbers) indicating the presence of 

another overlapping band. The positions and areas of the fitted components for all 4.5 

wt.% SO3 loaded samples measured are given in Table 7-4. Bandwidths varied between 

17.0-18.3 cm-1 for the band at ~2754 cm-1 and 35-39 cm-1 for the band at ~2735 cm-1, the 

additional component of 4.5PSZev has a bandwidth of 28 cm-1. Materials prepared using 

the evaporation technique were found to have the largest areas of all components. 

Incipient wetness and immersion prepared materials were found to have similar areas (for 

materials loaded with the same sulfating agent). For all techniques the 4.5SZ materials 

had the largest higher wavenumber component and the 4.5TSZ materials the smallest. 

 

7.4 Discussion 

The presence of an exothermic "glow" process during the calcination of sulfated zirconia 

has previously been ascribed to a reduction in surface area and complete crystallisation of 

the material.314315316317-318 Increasing the sulfur content has been reported to shift the 

"glow" to higher temperatures,319 as shown here by calcination curves for the 2-4.5 wt.% 

SO3 materials. High loadings of sulfur (9 wt.% SO3) increase the temperature required to 

completely crystallise the material to above the calcination temperature used, as shown 

by TGA-DSC, hence no "glow" is observed during calcination and XRD reveals the 

calcined material (9SZiw) to be predominantly XRD amorphous. In order to fully 

crystallise the materials with high sulfur loadings the calcination temperature should be 

increased. TGA/DSC/MS plots, however, show the "glow" to coincide with the loss of 

sulfate. The samples with high sulfur loadings are therefore considered not to be stable 

with respect to forming a fully crystalline material under the conditions used. Materials 

loaded with 9 wt.% SO3 were therefore only prepared via incipient wetness and just one 

sample was catalytically tested. The material 9SZiw was found to have a low catalytic 

activity, which is attributed to its low fraction of tetragonal phase. 
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Low sulfur loadings (2 wt.% SO3) result not only in the "glow" being at a lower oven 

temperature (compared to 4.5 wt.% SO3 loaded materials) but, also, the fraction of 

tetragonal phase is significantly reduced (by the formation of the monoclinic phase), as 

shown by XRD. The metastable tetragonal phase of zirconia is known to be stabilised by 

the presence of sulfate, if, however, the sulfur loading is very low then the stable 

monoclinic phase is, also, formed.18 The tetragonal phase has been shown to be a 

necessary but not sufficient requirement to form a highly active catalytic material.27 

Nevertheless, materials with low sulfur contents were still prepared, from the different 

sulfating agents, to test if the minimum sulfur content required to produce an active 

material is due to the absence of disulfates caused by the isolation of mono-sulfate 

species. All materials prepared with a loading of 2 wt.% SO3 were, however, found to be 

inactive for the isomerisation of n-butane. 

The oven temperature at which the "glow" occurs for samples loaded with the same 

sulfur content (either 2 or 4.5 wt.% SO3) would be expected to depend on the sulfate 

precursor used, given that the sulfate structures have different thermal stabilities. 

However, the order in which the glow exotherms occur for the different sulfating agents 

varies depending on the sulfation technique used. A possible explanation is that the sulfur 

content or the degree of hydration of the materials (prior to calcination) may change 

slightly for the materials loaded with different sulfating agents depending on the sulfation 

technique used. The catalytic activities of the 4.5 wt.% SO3 loaded materials do not seem 

to correlate with the "glow" trends observed. 

Sample 4.5PSZim was found to be the only inactive 4.5 wt.% SO3 loaded material, this is 

believed to be due the different calcination conditions used for this sample. Comparisons 

with this sample are therefore not considered meaningful, thus the sample was excluded 

from further characterisation and will not be discussed hereafter. 

Sulfate contents (determined as wt.% SO3) of selected calcined samples as derived from 

TGA/MS results show similar values to the loaded amounts. Slight differences in sulfate 

content do not show any consistent trend with catalytic activity. Higher sulfate contents 

from XPS results than from TGA/MS calculations indicate the sulfate surface 

concentration to be enhanced compared to the bulk. Given that only slight variations in 

sulfur contents and surface areas of the samples measured were observed, the differing 
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activities of the materials are not believed to result from different concentrations of sulfur 

at the surface. 

XP spectra of the calcined ammonium thiosulfate loaded sample measured (4.5TSZim) 

show the sulfur on the material to be completely oxidised to S6+. The generally lower 

activities of the ammonium thiosulfate loaded materials, as compared with the 

ammonium sulfate loaded, cannot therefore be due to the oxidation state of sulfur. This is 

to the author's knowledge the first report of active sulfated zirconia isomerisation 

catalysts being prepared from ammonium thiosulfate. 

DRIFTS measurements show that only samples possessing at band at ~1400-1398cm-1 

are catalytically active. The presence of such a band is ascribed to disulfate groups, given 

the results of reference 62 and the preparation conditions used. Integrating the overtone 

of this band284 for active samples, after peak fitting to remove contributions from 

overlapping band(s), shows no direct correlation between band intensity and catalytic 

activity (Figure 7-6d). Materials prepared from precursors with two sulfur atoms, also, do 

not have a more intense disulfate overtone band. Given the relative high stability of both 

peroxydisulfate and thiosulfate salts in aqueous solutions320,321 the pregrouped sulfur 

atoms are therefore assumed to dissociate either upon adsorption or during calcination.  

The materials prepared via the evaporation technique have the most intense overtone 

bands, possibly due to them having higher surface sulfate concentrations. During the 

evaporation technique the sulfate is forced to precipitate on the surface of zirconium 

hydroxide, whereas using the incipient wetness or immersion techniques sulfate 

deposition within the pores of zirconium hydroxide is more likely to occur via capillary 

forces or diffusion, respectively. If materials prepared using the same sulfating technique 

are compared a correlation (although not linear) is observed between the disulfate 

overtone band area and the catalytic activity of the materials. The same trends in both 

disulfate band area and catalytic activity are seen for each of the sulfating techniques 

used. 

The presence of disulfate groups on sulfated zirconia are therefore considered a 

prerequisite for forming an active isomerisation material; however, other factors such as 

the sulfation technique are considered more influential on the catalytic activity than the 

concentration of the disulfate groups. These more "influential" factors may be directly 
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linked to the formation of "defect" sites which dictate the activity of adjacent catalytic 

sites. 

 

7.5 Conclusions 

Powdered sulfated zirconia materials were successfully synthesised from three different 

sulfating agents (ammonium sulfate, peroxydisulfate and thiosulfate), each added via 

three different impregnation techniques (incipient wetness, immersion and evaporation). 

Preparing sulfated zirconia from sulfating agents containing two sulfur atoms did not 

increase the catalytic activity of the material. DRIFTS showed the formation of disulfate 

groups also not to be promoted by use of precursors containing two pregrouped sulfur 

atoms. The concentration of the disulfate band was shown not to correlate directly with 

the catalytic activity of the materials produced. However, only materials with a disulfate 

band were found to be active and for materials prepared in a similar way, higher disulfate 

concentrations result in more active materials. The formation of disulfate groups is 

therefore a prerequisite for catalytic activity. It is proposed that the catalytic sites are 

generated from these disulfate species but that their isomerisation activities depend on 

their environment rather than their total concentration. 
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8. Conclusions 

The aim of this thesis was to investigate the surface chemistry of sulfated zirconia in 

order to reveal information about its active isomerisation sites. To study the surface 

chemistry of sulfated zirconia various model systems have been prepared to allow the 

application of surface science techniques and to test the theory that disulfate groups62,63 

are responsible for the generation of active sites on the catalyst. 

 

8.1 Synthesis of Model Systems 

Sulfated zirconia model systems were successfully produced via a range of different 

preparation techniques. Thin films of sulfated zirconia were prepared on oxidised silicon 

wafers, via the use of a self-assembled monolayer to promote heterogeneous deposition 

from an acid stabilised aqueous solution of zirconium sulfate. Developments were made 

to the thin film synthesis to reduce contamination and homogeneous deposition, 

characterisation (following the changes) showed any such abnormalities in the films to be 

negligible. 

Thermal treatment of the films was optimised to chemically mimic the powder process 

using an oxygen-containing atmosphere. The film thickness and heterogeneous 

deposition mechanism were shown to be critical factors for formation of the tetragonal 

phase. Surface stabilisation of the amorphous phase is proposed to prevent very thin (<5 

nm) films from undergoing crystallisation. Homogeneous precipitation of an analogous 

powder, from an equivalent deposition medium, was found to form a mixture of 

tetragonal and monoclinic phases after thermal treatment under the conditions studied. 

The development of a mixed phase oxide after the investigated thermal treatments is 

proposed to occur as a result of re-crystallisation of orthorhombic zirconium sulfate 

during homogeneous precipitation as opposed to the amorphous thin films which are 

formed during heterogeneous deposition. Thermally treated thin films were found to have 

the essential features (including equivalent sulfur content, crystalline phase and acidic 

properties) of active powder catalysts,162 thus validating them as a model system. The use 

of sulfated zirconia thin films improved the application of various surface science 

techniques to the material, as compared with results from powder studies. 
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Sulfating agents containing one (ammonium sulfate) and two sulfur atoms (ammonium 

peroxydisulfate and thiosulfate) were used to produce sulfated zirconia powders via 

various impregnation techniques (incipient wetness, immersion and evaporation). 

Experimental determinations of the overall sulfur content of the materials after thermal 

treatment agreed well with the calculated loadings, however sulfur was found to be 

enriched at the surface. Sulfur was detected only in the +6 oxidation state after thermal 

treatment, thus indicating the complete oxidation of the thiosulfate loaded material. The 

level of sulfur loading was shown to dictate the crystalline phase of the material; too high 

(9 wt.% SO3) and the materials did not fully crystallise, too low (2 wt.% SO3) and the 

more stable monoclinic phase was also formed in significant amounts. The thermally 

treated 4.5 wt.% SO3 loaded material was shown to consist of predominantly the 

tetragonal phase. 

 

8.2 Sulfated Zirconia Surface Sites 

Two distinctly different chemisorption sites were detected on sulfated zirconia by both 

ammonia and n-butane adsorption studies. Ammonia adsorption on the sulfated zirconia 

thin films followed by thermal desorption resulted in the evolution of ammonia in two 

stages. A broad peak at relatively low temperatures indicating weakly bound molecules 

and a second peak at higher temperatures with concurrent loss of sulfate were observed. 

The basic probe molecule therefore not only adsorbs but also reacts with certain sites on 

the sulfated zirconia thin films, these two types of interactions arise from different 

surface sites.  

Low temperature XPS measurements showed n-butane adsorption to be promoted over 

the sulfated zirconia thin films, as compared with the oxidised silicon wafers used as 

substrates. However the adsorbed reactant molecule, n-butane, was found to be liable to 

beam damage during exposure to n-butane. In order to measure multiple adsorption-

desorption equilibrium isobars, with a single sample, at different pressures the effects of 

beam damage were reduced to a negligible level by the use of a low energy excitation 

source (UV radiation) and conducting the experiments in a manner to minimise adsorbate 

irradiation. UPS isobars could thus be measured on the sulfated zirconia thin films. This 

technique has previously never been applied to such a complex system as sulfated 
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zirconia and is only possible due to the conducting nature of the model thin films. The 

application of this technique allowed not only the generation of information regarding the 

strength of interaction (heats of adsorption) but also provided spectroscopic data (UP 

spectra) showing how the interaction changes with coverage. 

Adsorption of n-butane equivalent to 5 and 25% of a monolayer coverage on the sulfated 

zirconia thin films, releasing heats of between 59-40 and 47-34 kJ/mol, is ascribed to 

strong and weak chemisorption respectively. The deduced heats of adsorptions are in 

good agreement with values obtained from powder sulfated zirconias.27,225,227 An increase 

in adsorption heat was observed between coverages of ~5-8% of a monolayer, this is 

believed to be due to adsorbate-adsorbate interactions. Physisorption on the films 

generates heats of ~28 kJ/mol, for coverages between 30% up to a complete monolayer. 

Multilayer adsorption results in the formation of an insulating adsorbate structure. n-

Butane adsorption is reversible under the conditions studied. 

Sulfated zirconia powders, loaded with 4.5 wt.% SO3, have sulfate S=O stretching bands 

that can be ascribed to mono-sulfate and disulfate groups. Materials with low sulfate 

loadings (2 wt.% SO3) only show the presence of mono-sulfate bands. The highly loaded 

sulfate (9 wt.% SO3) material measured showed intense sulfate stretching bands, but the 

disulfate band was relatively weak. For the 4.5 wt.% SO3 loaded materials, those 

prepared via the evaporation technique were shown to have the most intense disulfate 

bands. For each of the different preparation techniques used the materials prepared from 

ammonium sulfate were found to have the most intense disulfate bands and those 

prepared from ammonium thiosulfate the weakest. Thus the use of sulfating agents 

containing two sulfur atoms does not promote the formation of disulfate spices, possibly 

due to their dissociation on adsorption or during calcination. The disulfate band was 

found to be much weaker than the mono-sulfate ascribed band for all samples studied.  

Given the adsorption studies on the sulfated zirconia thin films and the DRIFTS analysis 

of the selectively synthesised powders it is proposed that the more strongly chemisorbing 

sites, which reacted with ammonia and have 59-40 kJ/mol n-butane heats of adsorption, 

correspond to a minority, disulfate species. Hence the weaker, more dominant 

chemisorption sites are ascribed to mono-sulfate species. The formation of the disulfate 

groups depends on various preparation factors, such as the sulfate loading, the synthesis 
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method and the sulfate precursor. The range of n-butane heats of adsorption and width of 

ammonia thermal desorption peaks for both the disulfate and mono-sulfate species are 

attributed to there being a distribution of similar adsorption sites. It is thus envisioned the 

chemical environment of the disulfate and mono-sulfate species play a key role in their 

adsorption properties. 

 

8.3 Reactivity of Sulfated Zirconia 

Beam influenced deposition was observed during n-butane in situ studies on the surface 

of the sulfated zirconia thin films under reactive conditions. Carbon deposits were, 

however, found to be stable to irradiation after removal of the gas phase. The formation 

of carbonaceous surface deposits, after ex situ exposure to n-butane under reactive 

conditions, proves the films contain reactive centres. The application of a synchrotron 

light source enabled the high resolution analysis of the chemical states of the surface 

deposits and the sulfated zirconia thin films. Evaluation of these stable carbon deposits by 

XPS revealed the existence of at least three different chemical environments; which are 

ascribed to "chain" like carbon (such as small hydrocarbons), aliphatic polymers and 

oxygenated carbon. Further analysis by NEXAFS reveals the presence of unsaturated 

hydrocarbons, which are consistent with butenes. The dehydrogenating ability of the 

sulfated zirconia thin films was also confirmed by the increased detection of alkene 

fragments, as compared to oxidised silicon wafers, during TDS after exposure to n-butane 

at room temperature. During reactive exposure to n-butane sulfate groups were shown to 

be reduced. 

The formation of unsaturated hydrocarbon surface species and sulfate reduction, under 

reaction conditions, are attributes that support oxidative dehydrogenation (Figure 8-1) 

being the isomerisation initiation mechanism.63,90 The detection of oxygenated species is 

also consistent with a stabilised carbocation being the catalytically active site. Aliphatic 

polymers detected are proposed to be formed via the oligomerisation of alkenes on the 

surface. 
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Detection of adsorbate-adsorbate interactions at higher chemisorption coverages (above 

5% of a monolayer) indicate the alkane molecules are positioned next to one another. The 

skeletal isomerisation proceeding via a bimolecular mechanism is thus plausible under 

such surface coverages. 

Catalytic testing of the synthesised powder sulfated zirconias for the isomerisation of n-

butane showed the use of precursors containing two sulfur atoms not to increase the 

catalytic activity of the material. Only materials that possess vibrational bands indicating 

the presence of disulfate groups were, however, found to be active. The relative disulfate 

concentrations, as determined from the fitted disulfate overtone band area, did not 

directly correlate with the catalytic activity of the samples. For materials prepared using 

the same sulfation technique the same trends in activity and disulfate band area were 

observed (ammonium sulfate > ammonium peroxydisulfate > ammonium thiosulfate 

prepared). 

The presence of disulfate groups is therefore considered a prerequisite for catalytic 

activity. It is proposed that the reactivity of the active sites, generated by the oxidative 

dehydrogenation of the reactant alkane by these disulfate groups, is not just dependent on 

their concentration but also on more influential factors such as their chemical 

environment. The existence of adjacent defects is postulated as one factor that may affect 

the chemical reactivity of the active groups. From adsorption studies on the sulfated 

zirconia thin films it is believed the disulfate groups exist in a variety of slightly differing 

chemical environments. The formation of disulfate groups and the surface chemistry of 

zirconia are thus highly dependent on the synthesis conditions. 
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Figure 8-1: Proposed sulfated zirconia isomerisation mechanism, via oxidative 
dehydrogenation initiation. Evidence for highlighted chemical species detected. 
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8.4 Contributions of Model Systems to the Scientific Understanding of Sulfated 

 Zirconia Isomerisation Catalysts 

The use of a model thin film system has allowed the materials gap which exists within 

catalysis research to be bridged. Thin films of sulfated zirconia have enabled surface 

science techniques to be applied while not compromising the chemical complexity of the 

catalyst.  

Equilibrium adsorption-desorption investigations under isobaric conditions on the thin 

films, using UPS, which would not have been possible on powder materials, have yielded 

concurrent heats of adsorption and spectroscopic data. Such measurements, producing 

heats similar to those acquired from powder catalysts,27,225,227,228 have enabled the 

different types of adsorption to be identified and quantified. This level of interpretation 

has not been possible from previously published data of adsorption heats on sulfated 

zirconia powders catalysts. 

Studying the films under reactive conditions has shown the development of carbonaceous 

deposits on their surface, thus proving the films have reactive centres and validating them 

as model systems. Detailed analysis of the deposited species and film's surface has 

revealed the following chemical information: 

 (i) The deposited species is unsaturated, with a π* resonance typical of butene, 

 thus proving the dehydrogenation ability of sulfated zirconia. 

 (ii) Concurrent reduction of sulfate, indicating the unsaturated deposits are formed 

 by oxidative dehydrogenation. 

 (iii) Formation of oxygenated carbonaceous groups, which are consistent with the 

 stabilisation of the proposed carbocation intermediate. 

The identification of such groups have been greatly aided by the use of the thin films to 

allow high resolution XPS to be performed and the utilisation of a specialised design 

setup enabling the films to be investigated under well-defined conditions. These findings 

prove oxidative dehydrogenation is responsible for the generation of alkenes on the 

surface of sulfated zirconia, thus they strongly concur with the initiation of the 

isomerisation pathway proceeding by this mechanism (Figure 8-1).63,90 The presence of 

butene and sulfate reduction over sulfated zirconia are consistent with earlier reports from 

powder sulfated zirconia catalyst studies; including the detection of butene by 
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temperature programmed reaction spectroscopy;63 allylic species by UV-vis 

spectroscopy,15,74,286 olefinic species by DRIFTS,278 sulfide by thermal desorption 

followed by ion chromatography63 and XPS;83 and hydrogen disulfate by online gas 

chromatography mass spectrometry72 and DRIFTS.278 This is however to the authors 

knowledge the first time both butene and sulfate reduction have been detected on the 

surface of sulfated zirconia after exposure at such relatively moderate conditions. 

From the synthesis and investigation of powder sulfated zirconia catalysts it has been 

found, as previously proposed,62,63 that disulfate groups are necessary for the formation of 

catalytically active sites on sulfated zirconia. However, no direct correlation between the 

concentration of such species and catalytic activity was observed, thus implying that 

further variable(s) need to be identified to fully understand the catalytic behaviour of 

sulfated zirconia. One such variable proposed is the presence of defect sites. The use of 

defect sensitive techniques, such as electron paramagnetic resonance spectroscopy, to 

study sulfated zirconia is currently ongoing within the department of Inorganic Chemistry 

at the Fritz Haber Institute and through external collaborations. It is believed that such 

studies, along with the identification of disulfate groups and their concentrations on 

sulfated zirconia as presented in this thesis, may yield information regarding parameters 

governing the skeletal alkane isomerisation activity of reactive sites on the catalyst 

generated by oxidative dehydrogenation. 

The model systems investigated in this thesis have thus lead not only to an improved 

understanding of the surface sites on sulfated zirconia catalysts, but also of the initiation 

and reaction alkane isomerisation mechanisms. 
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