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Abstract
We discuss the length L⃗c,n of the longest directed cycle in

the sparse random digraph Dn,p, p = c∕n, c constant. We

show that for large c there exists a function f⃗ (c) such that

L⃗c,n∕n → f⃗ (c) a.s. The function f⃗ (c) = 1 −
∑∞

k=1pk(c)e−kc

where pk is a polynomial in c. We are only able to explic-

itly give the values p1, p2, although we could in principle

compute any pk.
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1 INTRODUCTION

In this article, we consider the length L⃗c,n of the longest cycle in the random digraph Dn,p, p = c∕n
where we will assume that c is a sufficiently large constant. Here Dn,p is the random subgraph of the

complete digraph K⃗n obtained by including each of the n(n−1) edges independently with probability p.

Most of the literature on long cycles has been concerned with the length Lc,n of the longest cycle in

the random graph Gn,p. It was shown by Frieze [9] that w.h.p. Lc,n ≥ (1 − (c + 1 + 𝜀c)e−c)n where

𝜀c → 0 as c → ∞. Using the elegant coupling argument of McDiarmid [14], we see that this implies

that w.h.p. L⃗c,n ≥ (1 − (c + 1 + 𝜀c)e−c)n. This was improved by Krivelevich, Lubetzky, and Sudakov

[13] who showed that w.h.p. L⃗c,n ≥ (1 − (2 + 𝜀c)e−c)n. Recently, Anastos and Frieze [1] have shown

that if c is sufficiently large then w.h.p. Lc,n ≈ f (c)n as n → ∞, for some function f (c).1
In this article, we use the ideas of [1] and show that w.h.p. L⃗c,n ≈ f⃗ (c)n and compute the first few

terms of f⃗ (c) = 1 −
∑∞

k=1pk(c)e−kc where pk(c) is a polynomial in c for k ≥ 1. That is, we prove a

1Here we say An ≈ Bn if An∕Bn → 1 as n → ∞.
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scaling limit for L⃗c,n. The important point here is that we establish high probability errors that tend to

zero with n, regardless of c.

Let K1 denote the giant strong component of Dn,p, as discovered by Karp [12]. We consider a

process that builds a large Hamiltonian subgraph of K1. Our aim is to construct (something close)

to a copy of the random graph D5−in,5−out as a large subgraph of K1. In the random graph Dk−in,k−out

each v ∈ [n] independently chooses k in-neighbors and k out-neighbors to make a digraph with ≈ 2kn
random edges. It has been shown by Cooper and Frieze [5,6] that Dk−in,k−out is Hamiltonian w.h.p.

provided that k ≥ 2. Taking k = 5 as opposed to k = 2 will greatly simplify the discussion. In order

to do this, we will construct Dn,p as the union of two independent copies Dre𝑑,Dblue of Dn,q where

1−p = (1 − q)2 so that q = c
2n
+O(n−2). One copy will have red edges and the other copy will have blue

edges. A red edge (v,w) will be associated with the vertex v and a blue edge (v,w) will be associated

with the vertex w. In this way, the vertex v will be incident to a random number of red out-edges and to

a random number of blue in-edges. These edge sets will be independent by construction. We say in the

following that w is a blue in-neighbor of v if (w, v) is an edge of Dblue and that w is a red out-neighbor

of v if (v,w) is an edge of Dre𝑑 .

We construct a sequence of sets S0 = ∅, S1, S2, … , SL ⊆ K1 as follows: suppose now that we have

constructed S𝓁 , 𝓁 ≥ 0. We construct S𝓁+1 from S𝓁 via one of two cases:

Construction of SL

Case a: If there is a vertex v ∈ S𝓁 that has at most four blue in-neighbors outside S𝓁 then we add

the blue in-neighbors of v outside S𝓁 to S𝓁 to make S𝓁+1. Similarly, if there is a vertex v ∈ S𝓁 that has

at most four red out-neighbors outside S𝓁 then we add the red out-neighbors of v outside S𝓁 to S𝓁 to

make S𝓁+1.

Case b: If there is a vertex v ∈ K1∖S𝓁 that has at most four blue in-neighbors in K1∖S𝓁 then we

add v and the blue in-neighbors of v to S𝓁 to make S𝓁+1. Similarly, if there is a vertex v ∈ K1∖S𝓁 that

has at most four red out-neighbors in K1∖S𝓁 then we then we add v and the red out-neighbors of v to

S𝓁 to make S𝓁+1.

SL is the set we end up with when there are no more vertices to add. We note that SL is well defined

and does not depend on the order of adding vertices. Indeed, suppose we have two distinct outcomes

O1 = v1, v2, … , vr and O2 = w1,w2, … ,ws. Assume without loss of generality that there exists i
which is the smallest index such that wi ∉ O1. Then, X = {w1,w2, … ,wi−1} ⊆ O1 = {v1, v2, … , vr}.

If wi invoked Case a or Case b then wi has at most four blue in-neighbors or at most four red

out-neighbors in K1∖X hence in K1∖O1 ⊆ K1∖X. This contradicts the fact that wi ∉ O1. Otherwise

wi was added to X because there exists a vertex u ∈ X such that wi is a blue in-neighbor (or a red

out-neighbor, respectively) of u and u has at most four blue in-neighbors (red out-neighbors resp.) in

K1∖X. Thus u ∈ O1 has at most four blue in-neighbors (red out-neighbors resp.) in K1∖X ⊆ K1∖X.

Once again, this contradicts the fact that wi ∉ O1.

We will argue below in Section 1.1 that w.h.p. the graph ΓL underlying the digraph DL induced

by SL is a forest plus a few small components (the graph underlying a digraph is obtained by ignoring

orientation). Each tree in ΓL will w.h.p. have at most log n vertices and w.h.p. ΓL will have o(n) vertices

lying on non-tree components. From now on, when we refer to trees, they are either trees of ΓL or

digraphs whose underlying graphs are trees of ΓL.

Notation 1. Let ⃗ denote the set of trees in ΓL. Each tree T of ΓL will appear as a digraph T⃗ in

DL when we take account of orientation. For T⃗ ∈ ⃗ , let ⃗T be the set of vertex disjoint packings of

properly oriented paths in T⃗ where we allow only paths whose start vertex has blue in-neighbors in

K1∖V(T⃗) and whose end vertex has red out-neighbors in K1∖V(T⃗). Here we allow paths of length 0, so

that a single vertex with neighbors in K1∖V(T⃗) counts as a path. For P ∈ ⃗T , let n(T⃗ ,P) be the number
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of vertices in T⃗ that are not covered by P. Let 𝜙(T⃗) = minP∈⃗T
n(T⃗ ,P) and ⃗(T⃗) ∈ ⃗ denote a set of

paths that leaves 𝜙(T⃗) vertices of T⃗ uncovered, that is, satisfies n(T⃗ , ⃗(T⃗)) = 𝜙(T⃗).
We will prove

Theorem 1.1. Let p = c∕n where c > 1 is a sufficiently large constant. Then w.h.p.

L⃗c,n ≈ |V(K1)| −∑
T⃗∈⃗

𝜙(T⃗). (1)

The RHS of (1), modulo the o(n) vertices that are spanned by non-tree components in ΓL, is clearly

an upper bound on the largest directed cycle in K1. Any cycle must omit at least 𝜙(T⃗) vertices from

each T⃗ ∈ ⃗ . On the other hand, as we show below, w.h.p. there is cycle H that spans V∗ = (K1∖SL) ∪⋃
T∈ V((T)). The length of H is equal to the RHS of (1).

The size of K1 is well known. Let x be the unique solution of xe−x = ce−c in (0, 1). Then w.h.p.

(see, e.g., [10, Theorem 13.2]),

|K1| ≈ (1 − x
c

)2

n. (2)

Equation (4.5) of Erdős and Rényi [8] tells us that

x =
∞∑

k=1

kk−1

k!
(ce−c)k = ce−c + c2e−2c + O(c3e−3c). (3)

We will argue below that w.h.p., as c grows, that∑
T⃗∈⃗

𝜙(T⃗) = (c2e−2c + O(c3e−3c))n. (4)

The term c2e−2cn arises from vertices of out-degree one sharing a common out-neighbor or vertices

of in-degree one sharing a common in-neighbor.

We therefore have the following improvement to the estimate in [13].

Corollary 1.2. W.h.p., as c grows,

L⃗c,n ≈
(
1 − 2e−c − (c2 + 2c − 1)e−2c − O(c3e−3c)

)
n. (5)

Note the term 2e−c −e−2c accounts for vertices of in- or out-degree 0. In principle, we can compute

more terms than what is given in (5). We claim next that there exists some function f⃗ (c) such that the

sum in (1) is concentrated around f⃗ (c)n. In other words, the sum in (1) has the form ≈ f⃗ (c)n w.h.p.

Theorem 1.3.

(a) There exists a function f⃗ (c) such that for any fixed 𝜖 > 0, there exists n𝜀 such that for
n ≥ n𝜀, |||||E[L⃗c,n]

n
− f⃗ (c)

||||| ≤ 𝜖. (6)
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(b)

L⃗c,n

n
→ f⃗ (c) a.s.

We will show that taking c ≥ 200 in Theorems 1.1 and 1.3 suffices.

We will prove Theorem 1.3 in Section 3. We are grateful to a reviewer for pointing out that L⃗c,n∕n →
f (c) in Lr, r ≥ 1 because L⃗c,n∕n is an a.s. bounded random variable.

1.1 Structure of DL

We first bound the size of SL. We need the following lemma on the density of small sets.

Lemma 1.4. W.h.p., every set S ⊆ [n] of size at most n0 = n∕100c3 contains less than 3|S|∕2 edges
in Dn,p.

Proof. The expected number of sets invalidating the claim can be bounded by

n0∑
s=3

(n
s

)( s(s − 1)
3s∕2

)( c
n

)3s∕2

≤

n0∑
s=3

(
ne
s

⋅
(

2se
3

)3∕2

⋅
( c

n

)3∕2
)s

=
n0∑

s=3

(
e5∕2(2c)3∕2s1∕2

33∕2n1∕2

)s

= o(1).

▪

Now consider the construction of SL. Let A ⊆ K1 be the set of the vertices with blue in-degree less

than D = 30 or red out-degree less than D in K1. Let S′
0 = (A∪Nb(A) ∪Nr(A)) ∩ SL ⊆ SL, where Nb(A)

is the set of blue in-neighbors of vertices in A and Nr(A) is the set of red out-neighbors of vertices in A.

If we start with S0 = S′
0 and run the process for constructing ΓL then we will produce the same SL as

if we had started with S0 = ∅. This is because, as we have shown, the order of adding vertices does

not matter. Now w.h.p. there are at most nD = 2cDe−c

D!
n vertices of blue in-degree at most D or red

out-degree at most D (see, e.g., Theorem 3.3 of [10] that deals with the same question as it relates to

degrees in Gn,p).

Now suppose that the process runs for another k rounds. Then Sk contains at least kD edges and at

most DnD + 5k vertices. This is because round k adds at most five new vertices to Sk and the k vertices

that take the role of v have either (i) blue in-degree at least D with all blue in-neighbors in Sk or (ii)

red out-degree at least D with all red out-neighbors in Sk. If k reaches 2nD then

e(Sk)|Sk| ≥
2DnD

(D + 10)nD
= 3

2
.

So, by Lemma 1.4, we can assert that w.h.p. the process runs for less than 2nD rounds and,

|V(ΓL)| ≤ (D + 10)nD = (D + 10)2cDe−c

D!
n ≤ 2(D + 10)

(ec
D

)D
ne−c ≤ ne−c∕2. (7)

The last inequality holds for c ≥ 200 and D = 30.

We note the following properties of SL. Let

V1 = K1∖SL and V2 = {v ∈ SL ∶ v has at least one blue in-neighbor and at least one red

out-neighbor in V1}.
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Then,

G1 Each vertex v ∈ SL∖V2 has no blue in-neighbors or no red out-neighbors in V1.

G2 Each v ∈ V1 ∪V2 has at least five blue in-neighbors and five red out-neighbors in V1.

Now consider a component K of ΓL. Let C0 = C0(K) = {v1, v2, … , vL} denote the set of vertices

in K that are v in some step in the construction of DL, indexed by the round in which they are added.

Since a vertex may invoke some step in the construction of DL at most twice we have,

|C0(K)| ≥ L∕2. (8)

At the same time, at each step the set |K∖C0(K)| may grow by at most 4 and so

|K∖C0(K)| ≤ 4L ≤ 8|C0(K)|. (9)

Hence |C0(K)| ≥ |K|
9

. (10)

We next show that w.h.p., only a small component K can satisfy (10). K will have at least |K|∕9

vertices for which either there are no blue in-neighbors outside K or no red out-neighbors outside

of K. It will also contain a spanning tree in the graph underlying Dn,p. So, the expected number of

components of size k ≤ ne−c∕2 that satisfy this condition is at most

(n
k

)
kk−2
( c

n

)k−1
(

k
k∕9

)
×
(

2
(

1 − c
2n

)(n−k)
)k∕9

≤

(ne
k

)k
kk−2
( c

n

)k−1

210k∕9e−ck∕20

≤
n

ck2

(
210∕9ce1−c∕20

)k = o(n−2), (11)

if c ≥ 200 and k ≥ log n.

So, we can assume that all components are of size at most log n. Then the expected number of

vertices on components that are not trees is bounded by

log n∑
k=2

(n
k

)
kk+1
( c

n

)k
(

k
k∕9

)
×
(

2
(

1 − c
2n

)(n−k)
)k∕9

≤

log n∑
k=2

(ne
k

)k
kk+1
( c

n

)k
210k∕9e−ck∕20

≤

log n∑
k=2

k
(
210∕9ce1−c∕20

)k = O(1).

The Markov inequality implies that w.h.p. such components span at most log n = o(n) vertices.

2 PROOF OF THEOREM 1.1

For T⃗ ∈ ⃗ , let X⃗T be the set obtained by contracting each path P⃗ of ⃗(T⃗) to a vertex vP⃗ with blue

in-neighbors in V1 equal to the blue in-neighbors in V1 of the start vertex of P⃗ and red out-neighbors in

V1 equal to the red out-neighbors in V1 of the end vertex of P⃗. Note that the colors of the internal edges

of a path P⃗ do not play a role here. Let X⃗
∗
=
⋃

T⃗∈⃗ X⃗T . By construction, the digraph induced by V1

contains a copy of D5-in,5-out with N = |V1| vertices. Indeed, the blue edges contributing the 5-in edges
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and the red edges contributing the 5-out edges. For each v ∈ V1, the blue in-neighbors form a random

set of size at least five, independent of the other vertices in V1. Similarly for the red out-neighbors.

We let D∗ be the digraph with vertex set V∗
1 = V1 ∪ X⃗

∗
and a copy of D5-in,5-out on V1 and for each

x ∈ X⃗
∗

five red edges joining x to V1 and five blue edges from V1 to x.

Our next task is to prove that the random digraph D∗ defined in the previous section contains a

Hamilton cycle. Let H denote such a cycle through V∗
1 . We obtain a Hamilton cycle of V∗ (defined

following Theorem 1.1) by uncontracting each path P⃗ of ⃗(T⃗). This will complete the proof of

Theorem 1.1. Our proof of the existence of H will be very similar to the proof in Cooper and

Frieze [7]. It does not really offer any new technical insights and so we have placed the proof into

Appendix A.

3 PROOF OF THEOREM 1.3

For T⃗ ∈ ⃗ , we let v0(T⃗) denote the set of vertices in T⃗ that do not have neighbors outside T⃗ . For

v ∈ K1, we let 𝜙(v) = 𝜙(T⃗)∕|v0(T⃗)| if v ∈ 𝜐0(T) for some T⃗ ∈ ⃗ and 𝜙(v) = 0 otherwise. Thus∑
T∈⃗

𝜙(T⃗) =
∑
v∈K1

𝜙(v).

Hence (1) can be rewritten as,

L⃗c,n ≈ |K1| −∑
v∈K1

𝜙(v). (12)

Let k1 = k1(𝜖, c) be the smallest positive integer such that

∞∑
k=k1−1

(e9211ce−c∕5)k < 𝜖

3
.

Note that for 𝜀 ≤ 1∕2 and c ≥ 200, we have

k1 ≤
30

c
log

1

𝜀
(13)

as

∞∑
k=k1−1

(e9211ce−c∕5)k ≤ 2((e9211c)5∕ce−1)−6 log 𝜀 ≤ 2((e9211200)5∕200e−1)−6 log 𝜀 <
𝜖

3
.

To begin let K⃗5,5 denote the complete bipartite digraph with ten vertices, five in each part of the

partition. The arcs inside K⃗5,5 are consider to have both colors, red and blue. For v ∈ K1, let Dv be

the digraph consisting of the vertices of D = Dn,p = Dblue ∪ Dre𝑑 that are within distance k1 from v,

where for every vertex u in the k1 neighborhood of v we introduce a new copy of K⃗5,5 and join u to

each vertex of the same one part of the bipartition of its K⃗5,5 by a blue in-arc and a red out-arc from u.

Distance here is graph distance in the undirected graph underlying D. We consider the algorithm for the

construction of ΓL on Gv, the graph underlying Dv. Let K1,v,ΓL,v,V1,v, SL,v, 𝜐0,v(T⃗) be the corresponding

sets/quantities.
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For a tree T⃗ ∈ SL,v, let f⃗ (T⃗) be equal to |T⃗| minus the maximum number of vertices that can be

covered by a set of vertex disjoint paths with endpoints in V2,v (we allow paths of length 0). For v ∈ K1,

if v belongs to some tree T⃗ ∈ SL,v set f⃗ (v) = f⃗ (T⃗)∕𝜐0,v(T⃗), otherwise set f⃗ (v) = 0.

For v ∈ K1, let t(v) = 1 if v ∈ V1 or if v ∈ SL and in ΓL, v lies in a component with at most

k1 − 2 vertices in ΓL. Set t(v) = 0 otherwise. Observe that if t(v) = 1 then 𝜙(v) = f⃗ (v). Otherwise|𝜙(v) − f⃗ (v)| ≤ 1.

By repeating the arguments used to prove (11) and (10), it follows that if t(v) = 0 then v lies on a

subgraph spanned by some set of vertices K of size at most log n. In addition at least (|K|−1)∕9 vertices

in K∖{v} either do not have blue in-neighbors or red out-neighbors outside K. Thus the expected

number of vertices v satisfying t(v) = 0 is bounded by

log n∑
k=k1−1

9k∑
j=k

(
n
j

)( j
k

)
jj−2(2p)j−1 ×

(
2
(

1 − p
2

)(n−j)
)k

≤ 2n
log2n∑

k=k1−1

9k
( e

9k

)9k
29k(9k)9k−2(2c)k−12ke−ck∕5

≤ 2n
∞∑

k=k1−1

(e9211ce−c∕5)k < 𝜖n
3
.

A vertex v ∈ [n] is good if the ith level of its breadth first search (BFS) neighborhood has size

at most 3(2c)ik1∕𝜖 for every i ≤ k1 and it is bad otherwise. Here the BFS is done on the graph underly-

ing D. Because the expected size of the ith neighborhood is ≈ (2c)i we have by the Markov inequality

that v is bad with probability at most (1 + o(1))𝜀∕3 ≤ 𝜀∕2 and so the expected number of bad vertices

is bounded by 𝜀n∕2. Thus

E

(||||||
∑
v∈V

𝜙(v) −
∑

v is good

f⃗ (v)
||||||
)

≤ E

(|||||
∑
v∈V

𝜙(v) −
∑
v∈V

f⃗ (v)
|||||
)

+ E

(|||||
∑

v is bad

f⃗ (v)
|||||
)

≤ E

(||||||
∑

v∶t(v)=0

|𝜙(v) − f⃗ (v)
||||||
)

+ E

( ∑
v is bad

1

)

≤ E

( ∑
v∶t(v)=0

1

)
+ 𝜖n

2

≤
𝜖n
3

+ 𝜖n
2

< 𝜖n.

Let 𝜀 be the set of BFS neighborhoods that are good, that is, whose ith levels are of size at most

3(2c)ik1∕𝜖 for every i ≤ k1. Every element of𝜀 corresponds to a pair (H, oH)where H is a digraph and

o is a distinguished vertex of H, that is considered to be the root. Also for v ∈ K1 let D(Nk1
(v)) be the

subdigraph induced by the k1th neighborhood of v. For (H, oH) ∈ 𝜀, let int(H) be the set of vertices

incident to the first k1 − 1 neighborhoods of oH and let Aut(H, oH) be the number of automorphisms

of H that fix oH . Note that each good vertex v is associated with a pair (H, oH) ∈ 𝜀 from which we

can compute f⃗ (v), since f⃗ (v) = f⃗ (oH). Thus, if now

M = |E(K1)|, N = |K1|,
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E

( ∑
v is good

f⃗ (v)|||M,N

)
=
∑

v

∑
k≥1

∑
(H,oH )∈𝜀

(D(Nk1
(v)),v)=(H,oH )|V(H)|=k

𝜌H,oH f⃗ (oH)

= o(n) +
∑

v

∑
k≥1

∑
(H,oH )∈𝜀

H is a tree
(D(Nk1

(v)),v)=(H,oH )|V(H)|=k

𝜌H,oH f⃗ (oH), (14)

where 𝜌H,oH is the probability (D(Nk1
(v)), v) = (H, oH) in K1. We show in Section 3.1 that

𝜌H,oH ≈ 1

Aut(H, oH)

(N
M

)k−1

𝜆2k−2 e2k𝜆

f1(𝜆)2k , (15)

where f1 is defined in (18) and 𝜆 satisfies (19).

Finally observe that with the exception of the o(n) term, all the terms in (14) are independent of n.

We let

f⃗ 𝜀(c) =
∑
k≥1

∑
(H,oH )∈𝜀

H is a tree|V(H)|=k

f⃗ (oH)
Aut(H, oH)

(N
M

)k−1

𝜆2k−2 e2k𝜆

f1(𝜆)2k . (16)

Then for a fixed c, we see that f⃗ 𝜀(c) is monotone increasing as 𝜀 → 0. This is simply because 𝜀

grows. Furthermore, f⃗ 𝜀(c) ≤ 1 and so the limit f⃗ (c) = lim𝜀→0 f𝜀(c) exists. Let S𝜀,n be the number of

vertices in Dn,p (i) whose first k1 neighborhoods are good and so total at most 4(2c)k1 k1∕𝜀−1 vertices,

and (ii) span a cycle in the underlying graph. The o(n) term in (14) is bounded by S𝜀,n. Hence, with

s = 4(2c)k1 k1∕𝜀, the o(n) term is bounded by

s∑
i=1

i
(n

i

)
ii−2
( i

2

)
(2p)i ≤

s∑
i=1

i
(en

i

)i
ii(2p)i ≤ 2s(2ec)s ≤ log

1

𝜀
× elog

1

𝜀 ≤
1

𝜀2
,

which depends only on 𝜀.

This verifies part (a) of Theorem 1.3. For part (b), we prove, (see (30)),

Lemma 3.1.
P(|L⃗c,n − E(L⃗c,n)| ≥ 𝜀n + n3∕4) = O(n−2).

Proof. To prove this, we show that if 𝜈(H) is the number of copies of H in K1 then H ∈ 𝜀 implies

that

P(|𝜈(H) − E(𝜈(H))| ≥ n3∕5) = O(n−3). (17)

The inequality follows from a version of Azuma’s inequality (see (30)), and the lemma follows from

taking a union bound over

exp

{
O
(

ck1(𝜖,c)k1(𝜖, c)
𝜖

)}
= exp

⎧⎪⎨⎪⎩O
⎛⎜⎜⎝

c
30

c
log

1

𝜀
30

c
log

1

𝜀

𝜀

⎞⎟⎟⎠
⎫⎪⎬⎪⎭

= exp

⎧⎪⎨⎪⎩O
⎛⎜⎜⎝
(1∕𝜀)

30

c
log c

log
1

𝜀

𝜀

⎞⎟⎟⎠
⎫⎪⎬⎪⎭ = exp

{
O((1∕𝜀)3)

}
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graphs H. Note also that the o(n) term in (14) is bounded by S𝜀,n and the probability that this exceeds

n1∕2 is certainly at most the RHS of (17). We will give details of our use of the Azuma inequality in

Section 3.1. ▪

Part (b) of Theorem 1.3 follows by letting 𝜀 → 0 and from the Borel–Cantelli lemma.

3.1 A model of K1

K1 induces a random digraph with minimum in-degree and out-degree at least one. K1 is distributed

as a random strongly connected digraph with N vertices and M edges. This follows from the fact that

each such digraph has the same number of extensions to a digraph with n vertices and m edges where

K1 is the unique giant strongly connected component. Most vertices of K1 will have in-degree and

out-degree close to c, since c is large. It follows from Theorem 3 of Cooper and Frieze [7] that a random

digraph with this degree sequence has a probability of being strongly connected that is asymptotic to

e−𝛽 where 𝛽 = 𝛽(c) → 0 as c → ∞. It follows from this that we can model the digraph induced by K1

as a random digraph with N vertices and M edges. The probability of any event will be inflated by at

most (1 + o(1))e𝛽 by conditioning on strong connectivity. We denote this model by D±1
N,M .

3.1.1 Random sequence model

This is essentially a repeat of Section 3.1.1 of [1]. The differences are minor, but we feel we need to

include the argument. We must now take some time to explain the model we use for D±1
N,M . We use a

variation on the pseudo-graph model of Bollobás and Frieze [3] and Chvátal [4]. Given a sequence

x = (x1, x2, … , x2M) ∈ [n]2M of 2M integers between 1 and N, we can define a (multi)-digraph Dx =
Dx(N,M) with vertex set [N] and edge set {(x2i−1, x2i) ∶ 1 ≤ i ≤ M}. The in-degree 𝑑x,−(v) of v ∈ [N]
and the out-degree 𝑑x,+(v) of v ∈ [N] are given by

𝑑x,−(v) = | {j ∈ [M] ∶ x2j = v
} | and 𝑑x,+(v) = | {j ∈ [M] ∶ x2j−1 = v

} |.
If x is chosen randomly from [N]2M then Dx is close in distribution to DN,M . Indeed, conditional on

being simple, Dx is distributed as DN,M . To see this, note that if Dx is simple then it has vertex set [N]
and M edges. Also, there are M! distinct equally likely values of x which yield the same digraph.

Our situation is complicated by there being a lower bound of one on the minimum in-degree and

out-degree. So we let

[N]2M
𝛿±≥1 = {x ∈ [N]2M ∶ 𝑑x,±(j) ≥ 1 for j ∈ [N]}.

Let Dx be the multi-graph Dx for x chosen uniformly from [N]2M
𝛿±≥1. It is clear then that conditional on

being simple, Dx has the same distribution as D±1
N,M . It is important therefore to estimate the probability

that this graph is simple. For this and other reasons, we need to have an understanding of the degree

sequence 𝑑x when x is drawn uniformly from [N]2M
𝛿±≥1. Let

f1(𝜆) = e𝜆 − 1. (18)

Lemma 3.2. Let x be chosen randomly from [N]2M
𝛿±≥1. Let Yj,Zj, j = 1, 2, … ,N be independent

copies of a truncated Poisson random variable  , where

P( = t) = 𝜆t

t!f1(𝜆)
, t ≥ 1.
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Here 𝜆 satisfies
𝜆e𝜆
f1(𝜆)

= M
N
. (19)

Then {𝑑x,−(j)}j∈[N] is distributed as {Yj}j∈[N] conditional on Y =
∑

j∈[n] Yj = M and {𝑑x,+(j)}j∈[N]
is distributed as {Zj}j∈[N] conditional on Z =

∑
j∈[n] Zj = M.

Proof. This can be derived as in Lemma 4 of [2]. ▪

We note that w.h.p.

N ≥ n(1 − 2e−c∕2) and M ∈ (1 ± 𝜀1)cN, (20)

where 𝜀1 = c−1∕3. The bound on N follows from (2) and (7) and the bound on M follows from the fact

that in Gn,p,

P (∃S ∶ |S| = N, e(S) ∉ (1 ± 𝜀1)N(N − 1)p) ≤ 2
( n

N

)
exp

{
−
𝜀2

1N(N − 1)p
3

}
= o(1).

It follows from (19) and (20) and the fact that e𝜆∕f1(𝜆) → 1 as c → ∞ that for large c,

𝜆 = c (1 + O(e−c)) . (21)

We note that the variance 𝜎2 of  is given by

𝜎2 = 𝜆(𝜆 + 1)e𝜆f1(𝜆) − 𝜆2e2𝜆

f 2
1 (𝜆)

.

Furthermore,

P

( N∑
j=1

Yj = M

)
= 1

𝜎
√

2𝜋N
(1 + O(N−1𝜎−2)) an𝑑 (22)

P

( N∑
j=2

Yj = M − 𝑑

)
= 1

𝜎
√

2𝜋N

(
1 + O((𝑑2 + 1)N−1𝜎−2)

)
. (23)

This is an example of a local central limit theorem. See, for example, (5) of [2]. It follows by

repeated application of (22) and (23) that if k = O(1) and 𝑑2
1 + … + 𝑑2

k = o(N) then

P

(
Yi = 𝑑i, i = 1, 2, … , k

|||||
N∑

j=1

Yj = M

)
≈

k∏
i=1

𝜆𝑑i

𝑑i!f1(𝜆)
. (24)

Let 𝜈x,−(s) denote the number of vertices of in-degree s in Dx and let 𝜈x,+(s) denote the number of

vertices of out-degree s in Dx.

Lemma 3.3. Suppose that log N = O((N𝜆)1∕2). Let x be chosen randomly from [N]2M
𝛿≥2. Then as in

equation (7) of [2], we have that with probability 1 − o(N−10),

||||𝜈x,±(j) −
N𝜆j

j!f1(𝜆)
|||| ≤
(

1 +
(

N𝜆j

j!f1(𝜆)

)1∕2
)

log2N, 1 ≤ j ≤ log N, (25)
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𝜈x(j) = 0, j ≥ log N. (26)

We can now show that Dx, x ∈ [N]2M
𝛿±≥1 is a good model for D±1

N,M . For this, we only need to show

now that

P(Dx is simple) = Ω(1). (27)

Again, this follows as in [2].

Given a tree H with k vertices of in-degrees y1, y2, … , yk and out-degrees z1, z2, … , zk and a fixed

vertex v we see that if 𝜌H is the probability that D(Nk1
(v)) = H in Dx then we have

𝜌H ≈
( N

k − 1

) (k − 1)!
Aut(H, oH)

∞∑
D−,D+=k−1∑

𝑑−
1
≥y1 ,… ,𝑑−

k ≥yk
𝑑−

1
+…+𝑑−

k =D−

𝑑+
1
≥z1 ,… ,𝑑+

k ≥zk
𝑑+

1
+…+𝑑+

k =D+

k∏
i=1

𝜆𝑑
−
i +𝑑

+
i

𝑑−
i !𝑑+

i !f1(𝜆)2
( M

k − 1

)
(k − 1)!

k∏
i=1

𝑑−
i !𝑑+

i !
(𝑑−

i − yi)!(𝑑+
i − zi)!

1

M2k−2
(28)

≈
(N

M

)k−1 𝜆2k−2

Aut(H, oH)f1(𝜆)2k

∑
𝑑−

1
+…+𝑑−

k =D−

𝑑+
1
+…+𝑑+

k =D+

k∏
i=1

𝜆𝑑
−
i +𝑑

+
i −yi−zi

(𝑑−
i − yi)!(𝑑+

1 − zi)!

=
(N

M

)k−1 𝜆2k−2

Aut(H, oH)f1(𝜆)2k

( ∞∑
D=k−1

(k𝜆)D−(k−1)

(D − (k − 1))!

)2

≈ 1

Aut(H, oH)

(N
M

)k−1

𝜆2k−2 e2k𝜆

f1(𝜆)2k . (29)

Explanation for (28): We use (24) to obtain the probability that the in-degrees and out-degrees of

[k] are 𝑑−
1 , 𝑑

+
1 , … , 𝑑−

k , 𝑑
+
k . This accounts for the term

∏k
i=1

𝜆
𝑑−i +𝑑+i

𝑑−
i !𝑑

+
i !f1(𝜆)2

. Implicit here is that 𝑑−
i , 𝑑

+
i =

O(log n), from (26). The contributions to the sum of D−,D+ ≥ k log n can therefore be shown to be

negligible. We use the fact that k is small to argue that w.h.p. H is induced. We choose the vertices,

other than v in
(

N
k−1

)
ways and then

(k−1)!
Aut(H,oH )

counts the number of copies of H in Kk. We then choose

the place in the sequence to put these edges in
(

M
k−1

)
(k − 1)! ways. Finally, note that the probability

the yi occurrences of the ith vertex are as claimed is asymptotically equal to
𝑑−

i (𝑑
−
i −1)… (𝑑−

i −yi+1)
Mzi

and this

explains the factor
∏k

i=1

𝑑−
i !𝑑

+
i !

(𝑑−
i −yi)!(𝑑+

i −zi)!
1

M2k−2
.

Explanation for (29): We use the identity

∑
𝑑1,… ,𝑑k

𝑑1+…+𝑑k=D

D!
𝑑1! … 𝑑k!

= kD.

It only remains to verify (17). It follows from the above that E(𝜈(H)|M,N) = Ω(N). We first condition

on a degree sequence x satisfying (25). Then we condition on no element log n times or more in x.
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The latter occurs with probability

O
(

n1∕2e−𝜆 𝜆
log n

log n!

)
= O

(
n1∕2e−𝜆

(
e𝜆

log n

)log n
)

= O(n−3).

Interchanging two elements in a permutation can only change 𝜈(H) by (log n)k1 = no(1). We can

therefore apply Azuma’s inequality to show that

P(|𝜈(H) − E(𝜈(H))| ≥ n3∕5) = O(e−Ω(n1∕5−o(1))) + O(n−3) = O(n−3). (30)

(Specifically, we can use Lemma 11 of Frieze and Pittel [11] or Section 3.2 of McDiarmid [15].) This

verifies (17).
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APPENDIX A: PROOF THAT D∗ IS HAMILTONIAN W.H.P.

The proof can be broken into three parts: suppose that |V∗
1 | = N = N1 + N2 where

N1 = |V1| ≥ N(1 − e−c∕2).

(a) Find a collection Π1 of O(log N) vertex disjoint directed cycles that cover V∗
1 .

(b) Transform Π1 into a collection Π2 of vertex disjoint cycles such that each cycle is of length at

least N0 =
⌈

200N
log N

⌉
.

(c) Break up Π2 and reassemble it as a Hamilton cycle.

A.1 Constructing Π1

Each vertex of D∗ is associated with five blue and five red edges. We randomly select three of each

color and make them light and the rest heavy. We let D3 be the digraph spanned by the light edges.

We now consider the bipartite graph H with bipartition made up of two copies A,B of V∗
1 and an edge

{v,w} iff (v,w) is a light edge. We show that w.h.p. H contains a perfect matching. In the context of

D∗, this gives us the collection of vertex disjoint directed cycles that cover V∗
1 . We refer to this as a

permutation digraph. We will argue that w.h.p. the number of cycles in the collection is O(log N). The

probability that H has no perfect matching can be bounded by

2

N∕2∑
k=4

k∑
k1=0

k∑
k2=0

(
N1

k1

)(
N1

k2

)(
N2

k − k1

)(
N2

k − k2

)(
k2

N1

)3k(
1 − k1

N1

)3(N−k)

(A1)

≤ 2

N∕2e2∑
k=4

k∑
k1=0

k∑
k2=0

(N
k

)(N
k

)( k
N1

)3k

+ 2

N∕2∑
N∕2e2

k∑
k1=0

k∑
k2=0

(N
k

)(N
k

)( k
N1

)3k

e−1.5k×k1∕k

≤ 2

N∕2e2∑
k=4

k2
(eN

k

)2k( k
N1

)3k

+ 2

N∕2∑
N∕2e2

k2
(eN

k

)2k( k
N1

)3k

e−1.5k×0.9

≤ 2

N∕2e2∑
k=4

k2

(
k

(1 − e−c∕2)N

)k

+ 2

N∕2∑
k=N∕2e2

k2

(
e0.65k

(1 − e−c∕2)N

)k

= o(1).

Explanation for (A1): We employ Hall’s theorem. We choose a set S ⊆ A of size k ≤ N∕2 and

a set T ⊆ B also of size k. (No need to make |T| = k − 1 here.) We let k1 = |S ∩ V1| and k2 =|T ∩ V1|. The number of ways of choosing these sets is given by the product of binomial coefficients.

We then estimate the probability that T ⊇ N(S). Each vertex in S ∩A has probability at most
(

k2

N1

)3

of

choosing all of its neighbors in V1∩T , explaining the factor
(

k2

N1

)3k
. Each vertex in B∖T has probability(

1 − k1

N1

)3

of not choosing any neighbors in V1 ∩ S, explaining the term
(

1 − k1

N1

)3(N−k)
. In the third

line of the above calculations, we used the fact that if k ≥ N∕2e2 then k1 ≥ k − e−c∕2n ≥ k − e−c∕2N∕
(1 − e−c∕2) ≥ 0.9k.

This deals with k ≤ N∕2 and if k > N∕2 then B∖T and A∖S can take the place of S,T , respectively.

We now consider the number of cycles in cycle cover induced by a matching in H. Suppose

we write M = {(m(i), i) ∶ i ∈ B} for some permutation m of A. Further let A = A1 ∪ AX where

A1 =
{

a1, a2, … , aN1

}
corresponds to V1 and AX corresponds to X⃗

∗
. We assume an analogous decom-

position for B. Given a permutation m, we let BX(m) = {b ∈ B ∶ m(b) ∈ AX} ⊆ B1. The set inclusion
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follows from the fact that vertices in AX only have neighbors in B1. Suppose now that we assume after

relabeling that that A,B are disjoint copies of [N1] and that BX(m),AX are disjoint copies of [N2]. Thus

m induces a permutation of [N2] and a permutation of [N2+1,N]. We claim that conditional on this that

m induces uniform random permutations on these two sets. Suppose now that m1,m2 are two permu-

tations that satisfy mi([N2]) = [N2] for i = 1, 2. For a permutation 𝜋 of A that satisfies 𝜋([N2])) = [N2]
and graph H we let 𝜋(H) be obtained from H by replacing edge {i, j} by {𝜋(i), j}. We note that H and

𝜋(H) have the same distribution. But then where 𝜋(a) = m2(m−1
1 (a)) for a ∈ A we have

P(m(H) = m1) = P(m(𝜋(H)) = m2) = P(m(H) = m2), (A2)

justifying our uniformity claim.

Now a uniform random permutation on a set of size M has O(log M) cycles w.h.p. It follows that

w.h.p. the number of cycles induced by the matching constructed in H has O(log N) cycles as claimed

previously.

A.2 Constructing Π2

We now show how to boost the minimum cycle size to at least N0. We partition the cycles of the

permutation digraph Π1 into sets SMALL and LARGE, containing cycles C of length |C| < N0 and|C| ≥ N0, respectively. We define a near permutation digraph (NPD) to be a digraph obtained from a

permutation digraph by removing one edge. Thus an NPD Γ consists of a path P(Γ) plus a permutation

digraph PD(Γ) which covers [N]∖V(P(Γ)).
We now give an informal description of a process which removes a small cycle C from a current

permutation digraph Π. We start by choosing an (arbitrary) edge (v0, u0) of C and delete it to obtain

an NPD Γ0 with P0 = P(Γ0) ∈ (u0, v0), where (x, y) denotes the set of paths from x to y in D. The

aim of the process is to produce a large set  of NPD’s such that for each Γ ∈  , (i) P(Γ) has a least

N0 edges and (ii) the small cycles of PD(Γ) are a subset of the small cycles of Π. We will show that

whp the endpoints of one of the P(Γ)’s can be joined by an edge to create a permutation digraph with

(at least) one less small cycle.

We have so far used six of the edges available at each vertex of D∗, namely those in D3. We now

let D4 denote the 1-in, 1-out digraph associated with an unused fourth in- and out-edge associated

with each vertex of D∗. Each vertex v ∈ V∗ will be associated with a random in-neighbor in4(v) and a

random out-neighbor out4(v).
The basic step in an Out-Phase of this process is to take an NPD Γ with P(Γ) ∈ (u0, v) and to

examine the edges of D4 leaving v, that is, edges going out from the end of the path. Let w be the termi-

nal vertex of such an edge and assume that Γ contains an edge (x,w). Then Γ′ = Γ ∪ {(v,w)}∖{(x,w)}
is also an NPD. Γ′ is acceptable if (i) P(Γ′) contains at least N0 edges and (ii) any new cycle created

(i.e., in Γ′ and not Γ) also has at least N0 edges.

If Γ contains no edge (x,w) then w = u0. We accept the edge if P has at least N0 edges. This would

(prematurely) end an iteration, by closing a cycle, although it is unlikely to occur.

We do not want to look at very many edges of D4 in this construction and we build a tree T0

of NPD’s in a natural breadth-first fashion where each non-leaf vertex Γ ∈ T0 gives rise to NPD

children Γ′ as described above. The construction of T0 ends when we first have 𝜈 =
⌈√

N log N
⌉

leaves. The construction of T0 constitutes an Out-Phase of our procedure to eliminate small cycles.

Having constructed T0 we need to do a further In-Phase, which is similar to a set of Out-Phases.

Then w.h.p. we close at least one of the paths P(Γ) to a cycle of length at least N0. If |C| ≥ 4 and

this process fails then we try again with a different independent edge of C in place of (u0, v0).
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We now increase the formality of our description. We start Phase 2 with a permutation digraph Π0

and a general iteration of Phase 2 starts with a permutation digraph Π whose small cycles are a subset

of those in Π0. Iterations continue until there are no more small cycles. At the start of an iteration

we choose some small cycle C of Π. There then follows an Out-Phase in which we construct a tree

T0 = T0(Π,C) of NPD’s as follows: the root of T0 is Γ0 which is obtained by deleting an edge (v0, u0)
of C.

We grow T0 to a depth at most ⌈1.5 log n⌉. The set of nodes at depth t is denoted by t.

Let Γ ∈ t and P = P(Γ) ∈ (u0, v). A potential child Γ′ of Γ, at depth t + 1 is defined as follows.

Let w be the terminal vertex of an edge directed from v in D4.

Case 1. w is a vertex of a cycle C′ ∈ PD(Γ) with edge (x,w) ∈ C′. Let Γ′ = Γ ∪ {(v,w)}∖{(x,w)}.

Case 2. w is a vertex of P(Γ). Either w = u0, or (x,w) is an edge of P. In the former case, Γ∪{(v,w)}
is a permutation digraph Π′ and in the latter case we let Γ′ = Γ ∪ {(v,w)}∖{(x,w)}.

In fact, we only admit to t+1 those Γ′ which satisfy the following conditions. We define a set W of

used vertices. Initially, all vertices are unused, that is, W = ∅. Whenever we examine an edge (v,w),
we add both v and w to W. So if v ∉ W then out4(v) is still unconditioned and in4(v) is a random

member of a set U ⊇ V∗∖W. We do not allow |W| to exceed N3∕4.

C(i) The new cycle formed (Case 2 only) must have at least N0 vertices, and the path formed

(both cases) must either be empty or have at least N0 vertices. When the path formed is

empty we close the iteration and if necessary start the next with Π′.

C(ii) x,w ∉ W .

An edge (v,w) which satisfies the above conditions is described as acceptable.

We let St be the set of endpoints of paths in t that are not u0. If some NPD ∈ t is the union

of cycles then we are done with the given iteration. Thus we may assume otherwise and therefore|t| = |St|.
We also let S1

t = St ∩ V1 and St
2 = St∖St

1.

Lemma A.1. Let C ∈ SMALL. Then, where 𝜈 =
⌈√

N log N
⌉

,

P(∃t <
⌈
log1.9 𝜈 + 1000 log log N

⌉
such that |St| ∈ [𝜈, 3𝜈]) = 1 − O((log log N)3∕ log N).

Proof. We assume we stop an iteration, in mid-phase if necessary, when |St| ∈ [𝜈, 3𝜈]. Let us

consider a generic construction in the growth of T0. Thus suppose we are extending from Γ and P(Γ) ∈
(u0, v).

We consider St+1 to be constructed in the following manner: we first examine out4(v), v ∈ St in the

order that these vertices were placed in St to see if they produce acceptable edges. We then add in those

vertices x ∉ W which arise from (x,w) with v = in4(w) ∈ St,w ∉ W, (to avoid conditioning problems).

Let Z(v) be the indicator random variable for (v, out4(v)) being unacceptable and let Zt =∑
v∈St

Z(v). If Z(v) = 1 then either (i) out4(v) lies on P(Γ) and is too close to an endpoint; this has

probability bounded above by 2N0∕|V1| ≤ 401∕ log N, or (ii) the corresponding vertex x is in W;

this has probability bounded above by N3∕4∕|V1| ≤ 2N−1∕4, or (iii) out4(v) lies on a small cycle.

Now in a random permutation the expected number of vertices on cycles of length at most N0 is pre-

cisely N0 ([12]). Thus, by the Markov inequality, w.h.p. Γ0 contains at most N1 log log N1∕(2 log N1)+
N2 log log N2∕(2 log N2) vertices on small cycles. Condition on this event. Then P(Z(v) = 1) ≤

2 log log N∕ log N regardless of the history of the process and so Zt is stochastically dominated by

B(|St|, 2 log log N∕ log N).
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Next let X(v) denote the number of vertices w in V∗∖W such that in4(w) = v, x ∉ W where (v,w) is

acceptable and (x,w) ∈ Γ (if there is no such x then the iteration can end early.) Let Xt =
∑

v∈St
X(v).

Now assuming |W| ≤ N3∕4 we see that there are N′ = N1 − O(N log log N∕ log N) vertices w which

would produce an acceptable edge provided v = in4(w) ∈ S1
t . For these vertices, in4(w) is a random

choice from a set which contains S1
t and so Xt stochastically dominates B(N′, |S1

t |∕N).
Summing 1 − Z(v) + X(v) over v ∈ St might seem to overestimate |St+1|. In principle, we should

subtract off the number Yt of vertices of St+1 that are counted more than once in this sum. But these

arise in two ways. First, there are the pairs v1, v2 ∈ St with out4(v1) = out4(v2). Suppose we examine

v1 before v2. Then when we examine v2 we find that out4(v2) ∈ W and so we do not get a contribution

to St+1. Second, there is the possibility of their being v1, v2 ∈ St and w such that w = out4(v1) and

v2 = in4(w). But in this case w will only be counted once as w ∈ W when it is time for in4(w) to be

examined. We can then write |St+1| = |St| − Zt + Xt.

Now let t0 = ⌈1000 log log N⌉, t1 = 10t0, t2 =
⌈
log1.9 𝜈 + 1000 log log N

⌉
,

s0 = ⌈1000 log log N⌉ and s1 = ⌈1000 log N⌉.
(a) P(∃t ≤ t0 ∶ |St| ≤ s0 and Zt > 0) = O((log log N)3∕ log N).
(b) P(| ∪t≤t0 S1

t | < 0.99| ∪t≤t0 St|||St| ≤ s0 for t ≤ t0) = O((log log N)3∕ log N).
(c) P(

∑t0
t=1Xt ≤ s0|St ≠ ∅ and |St| ≤ s0 for t ≤ t0) = O((log log N)3∕ log N).

(d) P(∃t ≤ t1 ∶ |S1
t+1| < 0.99|St+1||St ≥ 500 log log n) = O(1∕ log N).

(e) P(∃t ≤ t1 ∶ 500 log log N ≤ |St| ≤ s1 and Zt > Xt∕100) = O(1∕ log N).
(f) P(∃t ≤ t1 ∶ Xt < |St|∕2| |St| ≥ 500 log log N) = O(1∕ log N).
(g) P(∃t ≤ t1 ∶ |St| ≤ s1 and Xt ≥ 2s1) = O(N−2).
(h) P(∃t1 ≤ t ≤ t2 ∶ |S1

t+1| < 0.99|St+1||St ≥ s1) = O(N−2).
(i) P(∃t ≤ t2 ∶ |St| ≥ s1 and |Xt − Zt − |St|| ≥ |St|∕10) = O(N−2).

Explanations: We use the following standard inequalities for the tails of the binomial distribution:

P(|B(n, p) − np| ≥ 𝜖np) ≤ 2e−𝜖2np∕3, 0 ≤ 𝜖 ≤ 1, (A3)

P(B(n, p) ≥ anp) ≤ (e∕a)anp. (A4)

We let x, x ∈ {a, b, … , i} be the low probability events described in (a)–(i) above.

(a) P(Zt > 0| |St| ≤ 500 log log N) = O((log log N)2∕ log N) by the Markov inequality.

(b) Conditioned on a we have that | ∪t≤t0 St| ≥ t0 and Zt = 0 for t ≤ t0. Let v1, v2, … be the order

in which the vertices in ∪t≤t0 St are examined. At step i with w = out4(vi) we updated

Γ′ = Γ ∪ {(vi,w)}∖{(x,w)} and added x to ∪t≤t0 St. x belongs to V1 with probability

(1 + o(1))|N1|∕N > 0.999. The rest follows from (A3).

(c) Conditioned on a ∩ b we have that | ∪t≤t0 S1
t | ≥ 0.99t0. Thus

∑t0
t=1Xt dominates

B(0.99t0N′, 1∕N).
(d) Similar to (b).

(e) Condition on |St| = s ≥ 500 log log N and 𝑑 . Then Zt > Xt∕100 implies either that (i)

Xt ≤ s∕10 ≤ 0.99|S1
t |∕10 or (ii) Zt > 10s. Both of these events have probability O(1∕(log N)3).

(f) Immediate from (A3).

(g) Immediate from (A3) and (A4).

(h) Similar to (b).

(i) Similar to (c).
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Assume the occurrence of
⋂

x x. Then a ∩ c implies that |St| reaches size at least 500 log log N
before t reaches t0 + 1. Once this happens, e ∩ f implies that |St| then grows geometrically with t up

to time t1 at a rate of at least 1.49. Together with g this proves that at some stage between 1 and t1,|St| reaches a size in the range [s0, 3s0].  f then implies that |St| increases at a rate 𝜆 ∈ [1.9, 2.1] from

then on. The lemma follows. ▪

The total number of vertices added to W in this way throughout the whole of Phase 2 is

O(𝜈|SMALL|) = o(N3∕4). (As we see later, we try this process once for C ∈ SMALL, |C| ≤ 3 and once

or twice for C ∈ SMALL, |C| ≥ 4.)

Let t∗ denote the value of t when we stop the growth of T0. At this stage we have leaves Γi, for

i = 1, … , 𝜈, each with a path of length at least N0 (unless we have already successfully made a cycle).

We now execute an In-Phase. This involves the construction of trees Ti, i = 1, 2, … 𝜈. Assume that

P(Γi) ∈ (u0, vi). We start withΓi and build Ti in a similar way to T0 except that here all paths generated

end with vi. This is done as follows: if a current NPD Γ has P(Γ) ∈ (u, vi) then we consider adding

an edge (w, u) ∈ D4 and deleting an edge (w, x) ∈ Γ. Thus our trees are grown by considering edges

directed into the start vertex of each P(Γ) rather than directed out of the end vertex. Some technical

changes are necessary however.

We consider the construction of our 𝜈 trees in two stages. First of all we grow the trees only enforc-

ing condition C(ii) of success and thus allow the formation of small cycles and paths. We try to grow

them to depth t2. The growth of the 𝜈 trees can naturally be considered to occur simultaneously. Let

Li,𝓁 denote the set of start vertices of the paths associated with the nodes at depth 𝓁 of the ith tree,

i = 1, 2 … , 𝜈,𝓁 = 0, 1, … , t2. Thus Li,0 = {u0} for all i. We prove inductively that Li,𝓁 = L1,𝓁 for all

i,𝓁. In fact if Li,𝓁 = L1,𝓁 then the acceptable D4 edges have the same set of initial vertices and since

all of the deleted edges are D3-edges (enforced by C(ii)) we have Li,𝓁+1 = L1,𝓁+1.

The probability that we succeed in constructing trees T1,T2, … ,T𝜈 is, by the analysis of Lemma 3,

1 − O((log log N)3∕ log N). Note that the number of nodes in each tree is O(2.1t2+1) = O(N .74… ).
We now consider the fact that in some of the trees some of the leaves may have been constructed

in violation of C(i). We imagine that we prune the trees T1,T2, … ,T𝜈 by disallowing any node that

was constructed in violation of C(i). Let a tree be BAD if after pruning it has less than 𝜈 leaves and

GOOD otherwise. Now an individual pruned tree has been constructed in the same manner as the tree

T0 obtained in the Out-Phase. (We have chosen t2 to obtain 𝜈 leaves even at the slowest growth rate of

1.9 per node.) Thus

P(T1 is BAD) = O
(
(log log N)3

log N

)
,

E(number of BAD trees) = O
(
𝜈(log log N)3

log N

)
,

and

P(∃ ≥ 𝜈∕2 BAD trees) = O
(
(log log N)3

log N

)
.

Thus

P(∃ < 𝜈∕2 GOOD trees after pruning)
≤ P(failure to construct T1,T2, … ,T𝜈) + P(∃ ≥ 𝜈∕2 BAD trees)

= O
(
(log log N)3

log N

)
.
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Thus with probability 1-O((log log N)3∕ log N) we end up with 𝜈∕2 sets of 𝜈 paths, each of length

at least 100n∕ log N where the ith set of paths all terminate in vi. From these paths keep only those

whose other endpoint u lies in V1. Then, similarly to the proof of property (h) in Lemma A.1, w.h.p.

from each set we keep at least 0.99𝜈 paths. The in4(vi) are still unconditioned and hence

P(no D4 edge closes one of these paths) ≤
(

1 − 0.99𝜈

n

)𝜈∕2

= O(N−1∕2).

Consequently, the probability that we fail to eliminate a particular small cycle C after breaking an

edge is O((log log N)3∕ log N). If |C| ≥ 4 then we try once or twice using independent edges of C and

so the probability we fail to eliminate a given small cycle C is certainly O(((log log N)3∕ log N)2) for|C| ≥ 4 (remember that we calculated all probabilities conditional on previous outcomes and assuming|W| ≤ N3∕4).

Now the number of cycles of length 1, 2, or 3 in D3 is asymptotically Poisson with mean O(1) and

so there are fewer than log log N w.h.p. Hence, since whp |C| = O(log N),

Lemma A.2. The probability that Phase 2 fails to produce a permutation digraph with minimal
cycle length at least N0 is o(1).

At this stage, we have shown that D∗ almost always contains a permutation digraph Π2 in which

the minimum cycle length is at least N0. We shall refer to Π2 as the Phase 2 permutation digraph.

A.3 Reassembly

Let D5 be the 1-in,1-out digraph left unused by the construction in the previous two sections. We

will use the edges of D5 to break-up and reassemble the cycles of Π2 into a Hamilton cycle. Let

C1,C2, … ,Ck be the cycles of Π2, and let ci = |Ci ∩ V1|, c1 ≤ c2 ≤ · · · ≤ ck. Note that X⃗
∗

is an

independent set of D∗ and so at least half the vertices of each Ci are in V1. If k = 1 we can skip this

phase, otherwise let a = N
log N

. For each Ci, we consider selecting a set of mi = 2⌊ ci
a
⌋ + 1 vertices

v ∈ Ci ∩ V1, and deleting the edge (v, u) in Π∗. Let m =
∑k

i=1mi and relabel (temporarily) the broken

edges as (vi, ui), i ∈ [m] as follows: in cycle Ci identify the lowest numbered vertex xi which loses a

cycle edge directed out of it. Put v1 = x1 and then go round C1 defining v2, v3, … , vm1
in order. Then

let vm1+1 = x2 and so on. We thus have m path sections Pj ∈ (u𝜙(j), vj) in Π2 for some permutation 𝜙.

We see that 𝜙 is an even permutation as all the cycles of 𝜙 are of odd length.

It is our intention to rejoin these path sections of Π2 to make a Hamilton cycle using Db, if we can.

Suppose we can. This defines a permutation 𝜌 where 𝜌(i) = j if Pi is joined to Pj by (vi, u𝜙(j)), where

𝜌 ∈ Hm the set of cyclic permutations on [m]. We will use the second moment method to show that a

suitable 𝜌 exists w.h.p. A technical problem forces a restriction on our choices for 𝜌. This will produce

a variance reduction in a second moment calculation.

Given 𝜌 define 𝜆 = 𝜙𝜌. In our analysis we will restrict our attention to 𝜌 ∈ R𝜙 = {𝜌 ∈ Hm ∶
𝜙𝜌 ∈ Hm}. If 𝜌 ∈ R𝜙 then we have not only constructed a Hamilton cycle in Π2 ∪ D5, but also in the

auxiliary digraph Λ, whose edges are (i, 𝜆(i)).

Lemma A.3. (m − 2)! ≤ |R𝜙| ≤ (m − 1)!

Proof. We grow a path 1, 𝜆(1), 𝜆2(1), … , 𝜆r(1) … in Λ, maintaining feasibility in the way we join

the path sections of Π2 at the same time.
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We note that the edge (i, 𝜆(i)) of Λ corresponds in D5 to the edge (vi, u𝜙𝜌(i)). In choosing 𝜆(1), we

must avoid not only 1 but also 𝜙(1) since 𝜆(1) = 1 implies 𝜌(1) = 1. Thus there are m − 2 choices for

𝜆(1) since 𝜙(1) ≠ 1 from the definition of m1.

In general, having chosen 𝜆(1), 𝜆2(1), … , 𝜆r(1), 1 ≤ r ≤ m − 3 our choice for 𝜆r+1(1) is restricted

to be different from these choices and also 1 and 𝓁 where u𝓁 is the initial vertex of the path terminating

at v𝜆r(1) made by joining path sections of Π2. Thus there are either m − (r + 1) or m − (r + 2) choices

for 𝜆r+1(1) depending on whether or not 𝓁 = 1.

Hence, when r = m − 3, there may be only one choice for 𝜆m−2(1), the vertex h say. After adding

this edge, let the remaining isolated vertex of Λ be w. We now need to show that we can complete 𝜆,

𝜌 so that 𝜆, 𝜌 ∈ Hm.

Which vertices are missing edges in Λ at this stage? Vertices 1,w are missing in-edges, and h,w
out-edges. Hence, the path sections of Π2 are joined so that either

u1 → vh, uw → vw or u1 → vw, uw → vh.

The first case can be (uniquely) feasibly completed in both Λ and Π2 by setting 𝜆(h) = w, 𝜆(w) = 1.

Completing the second case to a cycle in Π2 means that

𝜆 = (1, 𝜆(1), … , 𝜆m−2(1))(w) (A5)

and thus 𝜆 ∉ Hm. We show this case cannot arise.

𝜆 = 𝜙𝜌 and 𝜙 is even implies that 𝜆 and 𝜌 have the same parity. On the other hand, 𝜌 ∈ Hm has a

different parity to 𝜆 in (A5) which is a contradiction.

Thus there is a (unique) completion of the path in Λ. ▪

Let H stand for the union of the permutation digraph Π2 and D5. We finish our proof by proving

Lemma A.4. P(H does not contain a Hamilton cycle) = o(1).

Proof. Let X be the number of Hamilton cycles in H obtainable by deleting edges as above, rear-

ranging the path sections generated by 𝜙 according to those 𝜌 ∈ R𝜙 and if possible reconnecting all

the sections using edges of D5. We will use the inequality

P(X > 0) ≥ E(X)2
E(X2)

. (A6)

Probabilities in (A6) are thus with respect to the space of D5 choices.

Now the definition of the mi yields that

2N
a

− k ≤ m ≤
2N
a

+ k

and so

(1.99) log N ≤ m ≤ (2.01) log N.

Also

k ≤
log N
200

, mi ≥ 199, and
ci
mi

≥
a

2.01
, 1 ≤ i ≤ k.
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Let Ω denote the set of possible cycle rearrangements. 𝜔 ∈ Ω is a success if D5 contains the edges

needed for the associated Hamilton cycle. Let bi be the number of deleted edges (vi, ui) with ui ∉ V1

and b =
∑k

i=1bi. Observe that if ui ∈ V1 then (vi, ui) ∈ E(D5)∖E(D4) with probability 1 −
(
1 − 1

N1

)2

while if uj ∉ V1 then (vi, uj) ∈ E(D5)∖E(D4) with probability
1

N1

.

For a fixed 𝛼 > 0, we have

ne−c∕2 ≥ N − N1 ≥ b ≥
∑

j∶bj≥𝛼|Cj|bj ≥ 𝛼
∑

j∶bj≥𝛼|Cj||Cj|.
Putting 𝛼 = 10−3 we see that at most 1000ne−c∕2 ≤ e−c∕3N vertices lie on a cycle Ci with more than

0.001|Ci| vertices that do not lie in V1. Therefore b is stochastically dominated by (1+ o(1))(e−c∕3m+
Bin((1 − e−c∕3)m, 10−3). Hence P(b > 0.01m) = o(1). Thus,

E(X) =
∑
𝜔∈Ω

P(𝜔 is a success)

=
∑
𝜔∈Ω

(
1 −
(

1 − 1

N1

)2
)m−b(𝜔)(

1

N1

)b(𝜔)

≥ (1 − o(1))
(

2

N1

)m

2−0.01m ⋅ P(b ≤ 0.01m)(m − 2)!
k∏

i=1

(
ci
mi

)
≥

1 − o(1)
m
√

m

(
2m
eN1

)m k∏
i=1

((
cie1−1∕12mi

m1+(1∕2mi)
i

)mi
(

1 − 2m2
i ∕ci√

2𝜋

))
2−0.01m

≥
(1 − o(1))(2𝜋)−m∕398e−k∕12

m
√

m

(
2m
eN1

)m k∏
i=1

(
cie

(1.02)mi

)mi

2−0.01m

≥
(1 − o(1))(2𝜋)−m∕398

n1∕1200m
√

m

(
2m
eN1

)m( ea
2.01 × 1.02

)m
2−0.01m

≥
(1 − o(1))(2𝜋)−m∕398

N1∕1200

1 m
√

m

(
3.98

2.0502

)m
2−0.01m

≥ N1.3
1 . (A7)

Let A,A′ be two sets of selected edges which have been deleted in Π2 and whose path sections have

been rearranged into Hamilton cycles according to 𝜌, 𝜌′, respectively. Let B,B′ be the corresponding

sets of edges which have been added to make the Hamilton cycles. What is the interaction between

these two Hamilton cycles?

Let s = |A ∩ A′| and t = |B ∩ B′|. Now t ≤ s since if (v, u) ∈ B ∩ B′ then there must be a

unique (ṽ, u) ∈ A ∩ A′ which is the unique Π2-edge into u. We claim that t = s implies t = s = m
and (A, 𝜌) = (A′, 𝜌′). (This is why we have restricted our attention to 𝜌 ∈ R𝜙.) Suppose then that

t = s and (vi, ui) ∈ A ∩ A′. Now the edge (vi, u𝜆(i)) ∈ B and since t = s this edge must also be in

B′. But this implies that (v𝜆(i), u𝜆(i)) ∈ A′ and hence in A ∩ A′. Repeating the argument we see that

(v𝜆k(i), u𝜆k(i)) ∈ A ∩ A′ for all k ≥ 0. But 𝜆 is cyclic and so our claim follows.

We adopt the following notation. Let < s, t > denote |A ∩ A′| = s and |B ∩ B′| = t. So

E(X2) ≤ E(X) + (1 + o(1))
∑
A∈Ω

(
2

N1

)m ∑
A′∈Ω

B′∩B=∅

(
2

N1

)m
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+ (1 + o(1))
∑
A∈Ω

(
2

N1

)m m∑
s=2

s−1∑
t=1

∑
A′∈Ω
<s,t>

(
2

N1

)m−t

= E(X) + E1 + E2 say. (A8)

Clearly

E1 ≤ (1 + o(1))E(X)2. (A9)

For given 𝜌, how many 𝜌′ satisfy the condition < s, t >? Previously |R𝜙| ≥ (m − 2)! and now given

< s, t >, |R𝜙(s, t)| ≤ (m − t − 1)!, (consider fixing t edges of Λ′).

Thus

E2 ≤ E(X)2
m∑

s=2

s−1∑
t=1

( s
t

) ⎡⎢⎢⎣
∑

𝜎1+…+𝜎k=s

k∏
i=1

(
mi
𝜎i

)(
ci−mi
mi−𝜎i

)
(

ci
mi

) ⎤⎥⎥⎦ (m − t − 1)!
(m − 2)!

(N1

2

)t
.

For the above expression observe that given A ∩ A′ there are
(

s
t

)
choices for B ∩ B′. Thereafter given

A and 𝜎i there are
(

mi
𝜎i

)
ways to choose A ∩ A′ ∩ Ci and

(
ci−mi
mi−𝜎i

)
ways to choose the rest of B′

i ∩ Ci.

Now (
ci−mi
mi−𝜎i

)
(

ci
mi

) ≤

(
ci

mi−𝜎i

)
(

ci
mi

)
≤ (1 + o(1))

(
mi
ci

)𝜎i

exp

{
−𝜎i(𝜎i − 1)

2mi

}
≤ (1 + o(1))

(
2.01

a

)𝜎i
exp

{
−𝜎i(𝜎i − 1)

2mi

}
,

where the o(1) term is O((log N)3∕N). Also

k∑
i=1

𝜎2
i

2mi
≥

s2

2m
for 𝜎1 + · · · + 𝜎k = s,

k∑
i=1

𝜎i
2mi

≤
k
2
,

and ∑
𝜎1+…+𝜎k=s

k∏
i=1

(
mi
𝜎i

)
=
(m

s

)
.

Hence

E2

E(X)2
≤ (1 + o(1))ek∕2

m∑
s=2

s−1∑
t=1

( s
t

)
exp

{
− s2

2m

}(
2.01

a

)s (m
s

) (m − t − 1)!
(m − 2)!

(N1

2

)t
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≤ (1 + o(1))N .005

m∑
s=2

s−1∑
t=1

( s
t

)
exp

{
− s2

2m

}(
2.01

a

)s ms−(t−1)

(s − 1)!

(N1

2

)t

= (1 + o(1))N .005

m∑
s=2

(
2.01

a

)s ms

s!
exp

{
− s2

2m

}
m

s−1∑
t=1

( s
t

)(N1

2m

)t

≤ (1 + o(1))
(

2m3

N .99

) m∑
s=2

(
(2.01)N1 exp{−s∕2m}

2a

)s
1

s!

= o(1). (A10)

To verify that the RHS of (A10) is o(1), we can split the summation into

S1 =
⌊m∕4⌋∑

s=2

(
(2.01)N1 exp{−s∕2m}

2a

)s
1

s!

and

S2 =
m∑

s=⌊m∕4⌋+1

(
(2.01)N1 exp{−s∕2m}

2a

)s
1

s!
.

Ignoring the term exp{−s∕2m} we see that

S1 ≤

⌊(.5025) log N⌋∑
s=2

((1.005) log N)s
s!

= o(N9∕10)

since this latter sum is dominated by its last term.

Finally, using exp{−s∕2m} < e−1∕8 for s > m∕4 we see that

S2 ≤ N(1+o(1))1.005)e−1∕8

< N9∕10.

The result follows from (A6) to (A10). ▪


